1
|
Guimarães-Moreira M, Marques CI, Afonso S, Lacerda B, Carneiro M, Araújo PM. A missense mutation in the tyrosinase gene explains acromelanism in domesticated canaries. Anim Genet 2024; 55:838-842. [PMID: 39377483 DOI: 10.1111/age.13481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024]
Abstract
Acromelanism is a form of albinism observed in several vertebrate species. In mammals, acromelanism is known to be caused by mutations in the tyrosinase gene (TYR) that induce a temperature-sensitive behavior of melanin synthesis, resulting in a characteristic hair color gradient. In birds, several phenotypes consistent with acromelanism have been reported, but their genetic basis remains unknown. This study aimed to identify the genetic basis of an acromelanistic phenotype in domesticated canaries known as pearl and test whether it is caused by the same molecular mechanism described for mammals. To do this, we compared the genomes of pearl and non-pearl canaries and searched for potentially causative genetic mutations. Our results suggest that the pearl phenotype is caused by a mutation in the TYR gene encoding a TYR-P45H missense substitution. Our findings further suggest that reports of acromelanism in other bird species might be explained by TYR mutations.
Collapse
Affiliation(s)
- Margarida Guimarães-Moreira
- Department of Life Sciences, MARE - Marine and Environmental Sciences Centre, University of Coimbra, Coimbra, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Cristiana I Marques
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Beatriz Lacerda
- Department of Life Sciences, MARE - Marine and Environmental Sciences Centre, University of Coimbra, Coimbra, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Natural History Museum of London, London, UK
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Pedro M Araújo
- Department of Life Sciences, MARE - Marine and Environmental Sciences Centre, University of Coimbra, Coimbra, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| |
Collapse
|
2
|
Chen Y, Tan S, Xu Q, Fu J, Qi Y, Qiu X, Yang W. Genomic Architecture Underlying the Striking Colour Variation in the Presence of Gene Flow for the Guinan Toad-Headed Lizard. Mol Ecol 2024:e17594. [PMID: 39548709 DOI: 10.1111/mec.17594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
How divergence occurs between closely related organisms in the absence of geographic barriers to gene flow stands as one of the long-standing questions in evolutionary biology. Previous studies suggested that the interplay between selection, gene flow and recombination strongly affected the process of divergence with gene flow. However, the extent to which these forces interact to drive divergence remains largely ambiguous. Guinan toad-headed lizards (Phrynocephalus guinanensis) in the Mugetan Desert exhibit striking colour differences from lizards outside the desert and provide an excellent model to address this question. Through extensive sampling and whole genome sequencing, we obtained genotypes for 191 samples from 14 populations inside and outside the desert. Despite the colour differences, continuous and asymmetric gene flow was detected across the desert border. More importantly, 273 highly diverged regions (HDRs) were identified between them, accounting only for 0.47% of the genome but widely distributed across 20 (out of the total 24) chromosomes. Strong signatures of selection were identified in HDRs, and local recombination rates were repressed. Furthermore, five HDRs exhibited significantly higher divergence, which contained key genes associated with crucial functions in animal coloration, including pteridine and melanocyte pigmentation. Genes related to retinal cells and steroid hormones were identified in other HDRs, which might have also contributed to the formation of colour variation in the presence of gene flow. This study provided novel insights into the understanding of the evolutionary mechanisms of genetic divergence in the presence of gene flow.
Collapse
Affiliation(s)
- Ying Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Song Tan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qiwei Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinzhong Fu
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - Yin Qi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xia Qiu
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Weizhao Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
3
|
Arbore R, Barbosa S, Brejcha J, Ogawa Y, Liu Y, Nicolaï MPJ, Pereira P, Sabatino SJ, Cloutier A, Poon ESK, Marques CI, Andrade P, Debruyn G, Afonso S, Afonso R, Roy SG, Abdu U, Lopes RJ, Mojzeš P, Maršík P, Sin SYW, White MA, Araújo PM, Corbo JC, Carneiro M. A molecular mechanism for bright color variation in parrots. Science 2024; 386:eadp7710. [PMID: 39480920 DOI: 10.1126/science.adp7710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/05/2024] [Indexed: 11/02/2024]
Abstract
Parrots produce stunning plumage colors through unique pigments called psittacofulvins. However, the mechanism underlying their ability to generate a spectrum of vibrant yellows, reds, and greens remains enigmatic. We uncover a unifying chemical basis for a wide range of parrot plumage colors, which result from the selective deposition of red aldehyde- and yellow carboxyl-containing psittacofulvin molecules in developing feathers. Through genetic mapping, biochemical assays, and single-cell genomics, we identified a critical player in this process, the aldehyde dehydrogenase ALDH3A2, which oxidizes aldehyde psittacofulvins into carboxyl forms in late-differentiating keratinocytes during feather development. The simplicity of the underlying molecular mechanism, in which a single enzyme influences the balance of red and yellow pigments, offers an explanation for the exceptional evolutionary lability of parrot coloration.
Collapse
Affiliation(s)
- Roberto Arbore
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Soraia Barbosa
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Jindřich Brejcha
- Department of Philosophy and History of Science, Faculty of Science, Charles University, Prague, Czech Republic
| | - Yohey Ogawa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yu Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michaël P J Nicolaï
- Evolution and Optics of Nanostructures Group, Biology Department, Ghent University, Ghent, Belgium
- Department of Recent Vertebrates, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Paulo Pereira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Stephen J Sabatino
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Alison Cloutier
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | | | - Cristiana I Marques
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Pedro Andrade
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Gerben Debruyn
- Evolution and Optics of Nanostructures Group, Biology Department, Ghent University, Ghent, Belgium
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Rita Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Shatadru Ghosh Roy
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ricardo J Lopes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- MHNC-UP, Natural History and Science Museum of the University of Porto, Porto, Portugal
- cE3c - Center for Ecology, Evolution and Environmental Change & CHANGE, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Peter Mojzeš
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Petr Maršík
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Michael A White
- Edison Family Center for Systems Biology and Genome Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Pedro M Araújo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Coimbra, Portugal
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| |
Collapse
|
4
|
Dunn PO, Sly ND, Freeman-Gallant CR, Henschen AE, Bossu CM, Ruegg KC, Minias P, Whittingham LA. Sexually selected differences in warbler plumage are related to a putative inversion on the Z chromosome. Mol Ecol 2024; 33:e17525. [PMID: 39268700 DOI: 10.1111/mec.17525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
Large structural variants in the genome, such as inversions, may play an important role in producing population structure and local adaptation to the environment through suppression of recombination. However, relatively few studies have linked inversions to phenotypic traits that are sexually selected and may play a role in reproductive isolation. Here, we found that geographic differences in the sexually selected plumage of a warbler, the common yellowthroat (Geothlypis trichas), are largely due to differences in the Z (sex) chromosome (males are ZZ), which contains at least one putative inversion spanning 40% (31/77 Mb) of its length. The inversions on the Z chromosome vary dramatically east and west of the Appalachian Mountains, which provides evidence of cryptic population structure within the range of the most widespread eastern subspecies (G. t. trichas). In an eastern (New York) and western (Wisconsin) population of this subspecies, female prefer different male ornaments; larger black facial masks are preferred in Wisconsin and larger yellow breasts are preferred in New York. The putative inversion also contains genes related to vision, which could influence mating preferences. Thus, structural variants on the Z chromosome are associated with geographic differences in male ornaments and female choice, which may provide a mechanism for maintaining different patterns of sexual selection in spite of gene flow between populations of the same subspecies.
Collapse
Affiliation(s)
- Peter O Dunn
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Nicholas D Sly
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | | | - Amberleigh E Henschen
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Christen M Bossu
- Department of Biology, Colorado State University, Ft. Collins, Colorado, USA
| | - Kristen C Ruegg
- Department of Biology, Colorado State University, Ft. Collins, Colorado, USA
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Linda A Whittingham
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
5
|
Flanagan SP, Alonzo SH. Supergenes are not necessary to explain the maintenance of complex alternative phenotypes. Proc Biol Sci 2024; 291:20241715. [PMID: 39406344 PMCID: PMC11479756 DOI: 10.1098/rspb.2024.1715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
Evolutionary biology aims to explain the diversity seen in nature. Evolutionary theory provides frameworks to understand how simple polymorphisms or continuous variation are maintained, but phenotypes inherited as discrete suites of quantitative traits are difficult to fit into this framework. Supergenes have been proposed as a solution to this problem-if causal genes are co-located, they can be inherited as if a single gene, thus bridging the gap between simple polymorphisms and continuous traits. We develop models to ask: how are critical supergenes for maintaining phenotypic diversity? In our simplest model, without explicit genetic architectures, three alternative reproductive morphs are maintained in many of the parameter combinations we evaluated. For these same parameter values, models with demographic stochasticity, recombination and mutation (but without explicit genetic architecture) maintained only two of these three morphs, with stochasticity determining which morphs persisted. With explicit genetic architectures, regardless of whether causal loci were co-located in a supergene or distributed randomly, this stochasticity in which morphs are maintained was reduced. Even when phenotypic variation was lost, genetic diversity was maintained. Altogether, categorical traits with polygenic bases exhibited similar evolutionary dynamics to those determined by supergenes. Our work suggests that supergenes are not the only answer to the puzzle of how discrete polygenic phenotypic variation is maintained.
Collapse
Affiliation(s)
- Sarah P. Flanagan
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Suzanne H. Alonzo
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
6
|
Yang Y, Wang H, Liu Y, Zhai S, Liu H, He D. A novel codominant plumage color pattern of white breast patches in WugangTong geese was controlled by EDNRB2. Poult Sci 2024; 103:104324. [PMID: 39353325 PMCID: PMC11472611 DOI: 10.1016/j.psj.2024.104324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 10/04/2024] Open
Abstract
Two basic plumage color patterns are observed in adult geese: solid grey (G) or colorless white (W). However, a Chinese indigenous breed, the Wugangtong goose (WGT), continues to be subject to selective breeding efforts as it displays segregation of plumage colors, including G, W, and a novel color pattern designated Wb (G with white breast circles). The underlying genetic mechanisms responsible for the Wb phenotype are yet to be determined. The current study employed the population differentiation index (FST) to analyze 90 geese exhibiting diverse plumage colors, identifying the fifth intron of EDNRB2 as a particularly noteworthy region with the highest FST values. Sanger sequencing of the region surrounding the EDNRB2 gene identified a 14-bp insertion within exon 3 as the causal mutation. The heterozygosity of this 14-bp insertion and wild-type alleles was completely associated with the Wb phenotype, thereby substantiating the codominant nature of the G and W phenotypes. An inter-species corroborated this finding cross between the graylag (no 14-bp insertion) and the swan goose (homozygous for the 14-bp insertion) breeds, as hybrids from this cross exhibited the Wb phenotype. Transcriptomes from white breast patches and gray dorsal skins of 4 Wb geese were compared. A significant downregulation of genes involved in melanin synthesis and melanocyte development was observed, including EDRNB2 and MLANA. The downregulation of MLANA indicated that the mutated EDNRB2 resulted in melanocyte loss in specific body regions, as MLANA is a marker gene for melanocytes. The findings were corroborated by melanin staining using the Mansson-Fontana method, which revealed no melanin particles deposited in the white breast patches. In summary, the gray plumage color was codominant to the white color in WGT geese, and plumage color variations were controlled by EDNRB2. The findings of our study offer valuable and practical guidance for the purification of plumage colors among WGT, whether through traditional phenotype selection or molecular breeding methods.
Collapse
Affiliation(s)
- Yunzhou Yang
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China
| | - Huiying Wang
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China
| | - Yi Liu
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China
| | - Shaojia Zhai
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China; College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650500, PR China
| | - Haodong Liu
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China; College of Animal Science and Technology, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Daqian He
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China.
| |
Collapse
|
7
|
Chen CK, Chang YM, Jiang TX, Yue Z, Liu TY, Lu J, Yu Z, Lin JJ, Vu TD, Huang TY, Harn HIC, Ng CS, Wu P, Chuong CM, Li WH. Conserved regulatory switches for the transition from natal down to juvenile feather in birds. Nat Commun 2024; 15:4174. [PMID: 38755126 PMCID: PMC11099144 DOI: 10.1038/s41467-024-48303-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
The transition from natal downs for heat conservation to juvenile feathers for simple flight is a remarkable environmental adaptation process in avian evolution. However, the underlying epigenetic mechanism for this primary feather transition is mostly unknown. Here we conducted time-ordered gene co-expression network construction, epigenetic analysis, and functional perturbations in developing feather follicles to elucidate four downy-juvenile feather transition events. We report that extracellular matrix reorganization leads to peripheral pulp formation, which mediates epithelial-mesenchymal interactions for branching morphogenesis. α-SMA (ACTA2) compartmentalizes dermal papilla stem cells for feather renewal cycling. LEF1 works as a key hub of Wnt signaling to build rachis and converts radial downy to bilateral symmetry. Novel usage of scale keratins strengthens feather sheath with SOX14 as the epigenetic regulator. We show that this primary feather transition is largely conserved in chicken (precocial) and zebra finch (altricial) and discuss the possibility that this evolutionary adaptation process started in feathered dinosaurs.
Collapse
Affiliation(s)
- Chih-Kuan Chen
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ting-Xin Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - ZhiCao Yue
- Department of Cell Biology and Medical Genetics, Shenzhen University Medical School, Shenzhen, Guangdong, China
- International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong, China
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Tzu-Yu Liu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jiayi Lu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhou Yu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jinn-Jy Lin
- National Applied Research Laboratories, National Center for High-performance Computing, Hsinchu, Taiwan
| | - Trieu-Duc Vu
- Michigan Neuroscience Institute, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Tao-Yu Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hans I-Chen Harn
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chen Siang Ng
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- Bioresource Conservation Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
8
|
Sebastianelli M, Lukhele SM, Secomandi S, de Souza SG, Haase B, Moysi M, Nikiforou C, Hutfluss A, Mountcastle J, Balacco J, Pelan S, Chow W, Fedrigo O, Downs CT, Monadjem A, Dingemanse NJ, Jarvis ED, Brelsford A, vonHoldt BM, Kirschel ANG. A genomic basis of vocal rhythm in birds. Nat Commun 2024; 15:3095. [PMID: 38653976 DOI: 10.1038/s41467-024-47305-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Vocal rhythm plays a fundamental role in sexual selection and species recognition in birds, but little is known of its genetic basis due to the confounding effect of vocal learning in model systems. Uncovering its genetic basis could facilitate identifying genes potentially important in speciation. Here we investigate the genomic underpinnings of rhythm in vocal non-learning Pogoniulus tinkerbirds using 135 individual whole genomes distributed across a southern African hybrid zone. We find rhythm speed is associated with two genes that are also known to affect human speech, Neurexin-1 and Coenzyme Q8A. Models leveraging ancestry reveal these candidate loci also impact rhythmic stability, a trait linked with motor performance which is an indicator of quality. Character displacement in rhythmic stability suggests possible reinforcement against hybridization, supported by evidence of asymmetric assortative mating in the species producing faster, more stable rhythms. Because rhythm is omnipresent in animal communication, candidate genes identified here may shape vocal rhythm across birds and other vertebrates.
Collapse
Affiliation(s)
- Matteo Sebastianelli
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus.
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23, Uppsala, Sweden.
| | - Sifiso M Lukhele
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Simona Secomandi
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Stacey G de Souza
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Bettina Haase
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
| | - Michaella Moysi
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Christos Nikiforou
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus
| | - Alexander Hutfluss
- Behavioural Ecology, Faculty of Biology, LMU Munich (LMU), 82152, Planegg-Martinsried, Germany
| | | | - Jennifer Balacco
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
| | | | | | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
| | - Colleen T Downs
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa
| | - Ara Monadjem
- Department of Biological Sciences, University of Eswatini, Kwaluseni, Eswatini
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Private Bag 20, Hatfield, 0028, Pretoria, South Africa
| | - Niels J Dingemanse
- Behavioural Ecology, Faculty of Biology, LMU Munich (LMU), 82152, Planegg-Martinsried, Germany
| | - Erich D Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Alan Brelsford
- Department of Evolution, Ecology and Organismal Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Bridgett M vonHoldt
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Alexander N G Kirschel
- Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia, 1678, Cyprus.
| |
Collapse
|
9
|
Price JJ, Garcia K, Eaton MD. Losses of sexual dichromatism involve rapid changes in female plumage colors to match males in New World blackbirds. Evolution 2024; 78:188-194. [PMID: 37943686 DOI: 10.1093/evolut/qpad201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Differences in coloration between the sexes (sexual dichromatism) can increase or decrease in a species through evolutionary changes in either or both sexes diverging or converging in their colors. Few previous studies, however, have examined the relative rates of such changes, particularly when dichromatism is lost. Using reflectance data from 37 species of the New World blackbird family (Icteridae), we compared evolutionary rates of plumage color change in males and females when dichromatism was either increasing (colors diverging) or decreasing (colors converging). Increases in dichromatism involved divergent changes in both sexes at approximately equal rates. Decreases in dichromatism, in contrast, involved changes in females to match male plumage colors that were significantly more rapid than any changes in males. Such dramatic changes in females show how selection can differ between the sexes. Moreover, these evolutionary patterns support the idea that losses of dimorphism involve genetic mechanisms that are already largely present in both sexes, whereas increases in dimorphism tend to involve the appearance of novel sex-specific traits, which evolve more slowly. Our results have broad implications for how sexual dimorphisms evolve.
Collapse
Affiliation(s)
- J Jordan Price
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, MD, United States
| | - Karolyn Garcia
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, MD, United States
| | - Muir D Eaton
- Biology Department, Drake University, Des Moines, IA, United States
| |
Collapse
|
10
|
Robinson CD, Hale MD, Wittman TN, Cox CL, John-Alder HB, Cox RM. Species differences in hormonally mediated gene expression underlie the evolutionary loss of sexually dimorphic coloration in Sceloporus lizards. J Hered 2023; 114:637-653. [PMID: 37498153 DOI: 10.1093/jhered/esad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
Phenotypic sexual dimorphism often involves the hormonal regulation of sex-biased expression for underlying genes. However, it is generally unknown whether the evolution of hormonally mediated sexual dimorphism occurs through upstream changes in tissue sensitivity to hormone signals, downstream changes in responsiveness of target genes, or both. Here, we use comparative transcriptomics to explore these possibilities in 2 species of Sceloporus lizards exhibiting different patterns of sexual dichromatism. Sexually dimorphic S. undulatus develops blue and black ventral coloration in response to testosterone, while sexually monomorphic S. virgatus does not, despite exhibiting similar sex differences in circulating testosterone levels. We administered testosterone implants to juveniles of each species and used RNAseq to quantify gene expression in ventral skin. Transcriptome-wide responses to testosterone were stronger in S. undulatus than in S. virgatus, suggesting species differences in tissue sensitivity to this hormone signal. Species differences in the expression of genes for androgen metabolism and sex hormone-binding globulin were consistent with this idea, but expression of the androgen receptor gene was higher in S. virgatus, complicating this interpretation. Downstream of androgen signaling, we found clear species differences in hormonal responsiveness of genes related to melanin synthesis, which were upregulated by testosterone in S. undulatus, but not in S. virgatus. Collectively, our results indicate that hormonal regulation of melanin synthesis pathways contributes to the development of sexual dimorphism in S. undulatus, and that changes in the hormonal responsiveness of these genes in S. virgatus contribute to the evolutionary loss of ventral coloration.
Collapse
Affiliation(s)
| | - Matthew D Hale
- University of Virginia, Department of Biology, Charlottesville, VA, United States
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, United States
| | - Tyler N Wittman
- University of Virginia, Department of Biology, Charlottesville, VA, United States
| | - Christian L Cox
- Florida International University, Department of Biological Sciences and Institute of Environment, Miami, FL, United States
| | - Henry B John-Alder
- Rutgers University, Department of Ecology, Evolution, and Natural Resources, New Brunswick, NJ, United States
| | - Robert M Cox
- University of Virginia, Department of Biology, Charlottesville, VA, United States
| |
Collapse
|
11
|
Li WH, Chuong CM, Chen CK, Wu P, Jiang TX, Harn HIC, Liu TY, Yu Z, Lu J, Chang YM, Yue Z, Lin J, Vu TD, Huang TY, Ng CS. Transition from natal downs to juvenile feathers: conserved regulatory switches in Neoaves. RESEARCH SQUARE 2023:rs.3.rs-3382427. [PMID: 37886492 PMCID: PMC10602114 DOI: 10.21203/rs.3.rs-3382427/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The transition from natal downs for heat conservation to juvenile feathers for simple flight is a remarkable environmental adaptation process in avian evolution. However, the underlying epigenetic mechanism for this primary feather transition is mostly unknown. Here we conducted time-ordered gene co-expression network construction, epigenetic analysis, and functional perturbations in developing feather follicles to elucidate four downy-juvenile feather transition events. We discovered that LEF1 works as a key hub of Wnt signaling to build rachis and converts radial downy to bilateral symmetry. Extracellular matrix reorganization leads to peripheral pulp formation, which mediates epithelial -mesenchymal interactions for branching morphogenesis. ACTA2 compartments dermal papilla stem cells for feather cycling. Novel usage of scale keratins strengthens feather sheath with SOX14 as the epigenetic regulator. We found this primary feather transition largely conserved in chicken (precocious) and zebra finch (altricial) and discussed the possibility that this evolutionary adaptation process started in feathered dinosaurs.
Collapse
Affiliation(s)
| | | | | | - Ping Wu
- University of Southern California
| | | | - Hans I-Chen Harn
- Department of Pathology, Keck School of Medicine, University of Southern California
| | - Tzu-Yu Liu
- Department of Pathology, Keck School of Medicine, University of Southern California
| | - Zhou Yu
- Department of Pathology, Keck School of Medicine, University of Southern California
| | - Jiayi Lu
- Department of Pathology, Keck School of Medicine, University of Southern California
| | | | | | | | - Trieu-Duc Vu
- Foundation for Advancement of International Science
| | - Tao-Yu Huang
- Biodiversity Research Center, Academia Sinica, Taipei
| | | |
Collapse
|
12
|
Anderson AP, Renn SCP. The Ancestral Modulation Hypothesis: Predicting Mechanistic Control of Sexually Heteromorphic Traits Using Evolutionary History. Am Nat 2023; 202:241-259. [PMID: 37606950 DOI: 10.1086/725438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
AbstractAcross the animal kingdom there are myriad forms within a sex across, and even within, species, rendering concepts of universal sex traits moot. The mechanisms that regulate the development of these trait differences are varied, although in vertebrates, common pathways involve gonadal steroid hormones. Gonadal steroids are often associated with heteromorphic trait development, where the steroid found at higher circulating levels is the one involved in trait development for that sex. Occasionally, there are situations in which a gonadal steroid associated with heteromorphic trait development in one sex is involved in heteromorphic or monomorphic trait development in another sex. We propose a verbal hypothesis, the ancestral modulation hypothesis (AMH), that uses the evolutionary history of the trait-particularly which sex ancestrally possessed higher trait values-to predict the regulatory pathway that governs trait expression. The AMH predicts that the genomic architecture appears first to resolve sexual conflict in an initially monomorphic trait. This architecture takes advantage of existing sex-biased signals, the gonadal steroid pathway, to generate trait heteromorphism. In cases where the other sex experiences evolutionary pressure for the new phenotype, that sex will co-opt the existing architecture by altering its signal to match that of the original high-trait-value sex. We describe the integrated levels needed to produce this pattern and what the expected outcomes will be given the evolutionary history of the trait. We present this framework as a testable hypothesis for the scientific community to investigate and to create further engagement and analysis of both ultimate and proximate approaches to sexual heteromorphism.
Collapse
|
13
|
Hanly JJ, Francescutti CM, Loh LS, Corning OBWH, Long DJ, Nakatani MA, Porter AH, Martin A. Genetics of yellow-orange color variation in a pair of sympatric sulphur butterflies. Cell Rep 2023; 42:112820. [PMID: 37481719 DOI: 10.1016/j.celrep.2023.112820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/02/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
Continuous color polymorphisms can serve as a tractable model for the genetic and developmental architecture of traits. Here we investigated continuous color variation in Colias eurytheme and Colias philodice, two species of sulphur butterflies that hybridize in sympatry. Using quantitative trait locus (QTL) analysis and high-throughput color quantification, we found two interacting large-effect loci affecting orange-to-yellow chromaticity. Knockouts of red Malpighian tubules (red), likely involved in endosomal maturation, result in depigmented wing scales. Additionally, the transcription factor bric-a-brac can act as a modulator of orange pigmentation. We also describe the QTL architecture of other continuously varying traits, together supporting a large-X effect model where the genetic control of species-defining traits is enriched on sex chromosomes. This study sheds light on the range of possible genetic architectures that can underpin a continuously varying trait and illustrates the power of using automated measurement to score phenotypes that are not always conspicuous to the human eye.
Collapse
Affiliation(s)
- Joseph J Hanly
- Department of Biological Sciences, The George Washington University, Washington, DC, USA; Smithsonian Tropical Research Institute, Gamboa, Panama.
| | | | - Ling S Loh
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Olaf B W H Corning
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Derek J Long
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Marshall A Nakatani
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Adam H Porter
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA.
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, DC, USA.
| |
Collapse
|
14
|
Wood AW, Szpiech ZA, Lovette IJ, Smith BT, Toews DPL. Genomes of the extinct Bachman's warbler show high divergence and no evidence of admixture with other extant Vermivora warblers. Curr Biol 2023:S0960-9822(23)00690-5. [PMID: 37329885 DOI: 10.1016/j.cub.2023.05.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/25/2023] [Accepted: 05/25/2023] [Indexed: 06/19/2023]
Abstract
Bachman's warbler1 (Vermivora bachmanii)-last sighted in 1988-is one of the only North American passerines to recently go extinct.2,3,4 Given extensive ongoing hybridization of its two extant congeners-the blue-winged warbler (V. cyanoptera) and golden-winged warbler (V. chrysoptera)5,6,7,8-and shared patterns of plumage variation between Bachman's warbler and hybrids between those extant species, it has been suggested that Bachman's warbler might have also had a component of hybrid ancestry. Here, we use historic DNA (hDNA) and whole genomes of Bachman's warblers collected at the turn of the 20th century to address this. We combine these data with the two extant Vermivora species to examine patterns of population differentiation, inbreeding, and gene flow. In contrast to the admixture hypothesis, the genomic evidence is consistent with V. bachmanii having been a highly divergent, reproductively isolated species, with no evidence of introgression. We show that these three species have similar levels of runs of homozygosity (ROH), consistent with effects of a small long-term effective population size or population bottlenecks, with one V. bachmanii outlier showing numerous long ROH and a FROH greater than 5%. We also found-using population branch statistic estimates-previously undocumented evidence of lineage-specific evolution in V. chrysoptera near a pigmentation gene candidate, CORIN, which is a known modifier of ASIP, which is in turn involved in melanic throat and mask coloration in this family of birds. Together, these genomic results also highlight how natural history collections are such invaluable repositories of information about extant and extinct species.
Collapse
Affiliation(s)
- Andrew W Wood
- Department of Biology, Pennsylvania State University, 619 Mueller Laboratory, University Park, State College, PA 16802, USA
| | - Zachary A Szpiech
- Department of Biology, Pennsylvania State University, 619 Mueller Laboratory, University Park, State College, PA 16802, USA; Institute for Computational and Data Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Irby J Lovette
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| | - Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - David P L Toews
- Department of Biology, Pennsylvania State University, 619 Mueller Laboratory, University Park, State College, PA 16802, USA.
| |
Collapse
|
15
|
Fuxjager MJ, Ryder TB, Moody NM, Alfonso C, Balakrishnan CN, Barske J, Bosholn M, Boyle WA, Braun EL, Chiver I, Dakin R, Day LB, Driver R, Fusani L, Horton BM, Kimball RT, Lipshutz S, Mello CV, Miller ET, Webster MS, Wirthlin M, Wollman R, Moore IT, Schlinger BA. Systems biology as a framework to understand the physiological and endocrine bases of behavior and its evolution-From concepts to a case study in birds. Horm Behav 2023; 151:105340. [PMID: 36933440 DOI: 10.1016/j.yhbeh.2023.105340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023]
Abstract
Organismal behavior, with its tremendous complexity and diversity, is generated by numerous physiological systems acting in coordination. Understanding how these systems evolve to support differences in behavior within and among species is a longstanding goal in biology that has captured the imagination of researchers who work on a multitude of taxa, including humans. Of particular importance are the physiological determinants of behavioral evolution, which are sometimes overlooked because we lack a robust conceptual framework to study mechanisms underlying adaptation and diversification of behavior. Here, we discuss a framework for such an analysis that applies a "systems view" to our understanding of behavioral control. This approach involves linking separate models that consider behavior and physiology as their own networks into a singular vertically integrated behavioral control system. In doing so, hormones commonly stand out as the links, or edges, among nodes within this system. To ground our discussion, we focus on studies of manakins (Pipridae), a family of Neotropical birds. These species have numerous physiological and endocrine specializations that support their elaborate reproductive displays. As a result, manakins provide a useful example to help imagine and visualize the way systems concepts can inform our appreciation of behavioral evolution. In particular, manakins help clarify how connectedness among physiological systems-which is maintained through endocrine signaling-potentiate and/or constrain the evolution of complex behavior to yield behavioral differences across taxa. Ultimately, we hope this review will continue to stimulate thought, discussion, and the emergence of research focused on integrated phenotypes in behavioral ecology and endocrinology.
Collapse
Affiliation(s)
- Matthew J Fuxjager
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02906, USA.
| | - T Brandt Ryder
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20013, USA
| | - Nicole M Moody
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02906, USA
| | - Camilo Alfonso
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | | | - Julia Barske
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Mariane Bosholn
- Animal Behavior Lab, Ecology Department, National Institute for Amazon Research, Manaus, Amazonas, Brazil
| | - W Alice Boyle
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Ioana Chiver
- GIGA Neurosciences, University of Liège, Liege, Belgium
| | - Roslyn Dakin
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20013, USA
| | - Lainy B Day
- Department of Biology, University of Mississippi, University, MS 38677, USA
| | - Robert Driver
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Leonida Fusani
- Department of Behavioral and Cognitive Biology, University of Vienna, and Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna
| | - Brent M Horton
- Department of Biology, Millersville University, Millersville, PA 17551, USA
| | - Rebecca T Kimball
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Sara Lipshutz
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | | | - Michael S Webster
- Cornell Lab of Ornithology, Ithaca, NY 14853, USA; Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Morgan Wirthlin
- Computational Biology Department, Carnegie Melon University, Pittsburgh, PA 15213, USA
| | - Roy Wollman
- Department of Physiology and Integrative Biology, University of California, Los Angeles, CA 90095, USA
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
| | - Barney A Schlinger
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA; Department of Physiology and Integrative Biology, University of California, Los Angeles, CA 90095, USA; Smithsonian Tropical Research Institute, Panama City, Panama.
| |
Collapse
|
16
|
Bandara S, von Lintig J. Aster la vista: Unraveling the biochemical basis of carotenoid homeostasis in the human retina. Bioessays 2022; 44:e2200133. [PMID: 36127289 PMCID: PMC10044510 DOI: 10.1002/bies.202200133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022]
Abstract
Carotenoids play pivotal roles in vision as light filters and precursor of chromophore. Many vertebrates also display the colorful pigments as ornaments in bare skin parts and feathers. Proteins involved in the transport and metabolism of these lipids have been identified including class B scavenger receptors and carotenoid cleavage dioxygenases. Recent research implicates members of the Aster protein family, also known as GRAM domain-containing (GRAMD), in carotenoid metabolism. These multi-domain proteins facilitate the intracellular movement of carotenoids from their site of cellular uptake by scavenger receptors to the site of their metabolic processing by carotenoid cleavage dioxygenases. We provide a model how the coordinated interplay of these proteins and their differential expression establishes carotenoid distribution patterns and function in tissues, with particular emphasis on the human retina.
Collapse
Affiliation(s)
- Sepalika Bandara
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
17
|
Brown AR, Comai K, Mannino D, McCullough H, Donekal Y, Meyers HC, Graves CW, Seidel HS. A community-science approach identifies genetic variants associated with three color morphs in ball pythons (Python regius). PLoS One 2022; 17:e0276376. [PMID: 36260636 PMCID: PMC9581371 DOI: 10.1371/journal.pone.0276376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Color morphs in ball pythons (Python regius) provide a unique and largely untapped resource for understanding the genetics of coloration in reptiles. Here we use a community-science approach to investigate the genetics of three color morphs affecting production of the pigment melanin. These morphs-Albino, Lavender Albino, and Ultramel-show a loss of melanin in the skin and eyes, ranging from severe (Albino) to moderate (Lavender Albino) to mild (Ultramel). To identify genetic variants causing each morph, we recruited shed skins of pet ball pythons via social media, extracted DNA from the skins, and searched for putative loss-of-function variants in homologs of genes controlling melanin production in other vertebrates. We report that the Albino morph is associated with missense and non-coding variants in the gene TYR. The Lavender Albino morph is associated with a deletion in the gene OCA2. The Ultramel morph is associated with a missense variant and a putative deletion in the gene TYRP1. Our study is one of the first to identify genetic variants associated with color morphs in ball pythons and shows that pet samples recruited from the community can provide a resource for genetic studies in this species.
Collapse
Affiliation(s)
- Autumn R. Brown
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Kaylee Comai
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Dominic Mannino
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Haily McCullough
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Yamini Donekal
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Hunter C. Meyers
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Chiron W. Graves
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
- * E-mail: (CWG); (HSS)
| | - Hannah S. Seidel
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
- * E-mail: (CWG); (HSS)
| | - The BIO306W Consortium
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| |
Collapse
|
18
|
Romero-Diaz C, Silva PA, Soares MC, Cardoso GC, Trigo S. Oestradiol reduces female bill colour in a mutually ornamented bird. Proc Biol Sci 2022; 289:20221677. [PMID: 36476006 PMCID: PMC9554724 DOI: 10.1098/rspb.2022.1677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 12/14/2022] Open
Abstract
Carotenoid-based colour signals can be costly to produce and maintain, and trade-offs between signalling and other fitness traits are expected. In mutually ornamented species, trade-offs with reproduction may be stronger for females than males, because females often dedicate more resources to offspring production, which may lead to plastic investment in colour signals and plastic sexual dichromatism. Oestradiol is a candidate mediator of this trade-off because it regulates reproductive physiology and may also influence the expression of coloration. We tested this hypothesis by giving female common waxbills (Estrilda astrild) either oestradiol (17β-oestradiol) or empty implants during the early breeding season and measured spectral reflectance of carotenoid-based bill coloration weekly for two months. Using a model of avian vision, we found that bill colour in oestradiol-implanted females became less saturated, less red in hue and brighter, compared with control females and with unimplanted males. This resulted in a change in bill sexual dichromatism from imperceptible to perceptible. Results support the hypothesis that female reproductive physiology influences investment in coloration through changes in oestradiol and show a form of female-driven plastic sexual dichromatism. Greater sensitivity of female colour to physiological and/or environmental conditions helps explain why differences in sexual dichromatism among species differing in ecology often evolve owing to changes in female rather than male phenotype.
Collapse
Affiliation(s)
- Cristina Romero-Diaz
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO Laboratório Associado, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
| | - Paulo A. Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO Laboratório Associado, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
| | - Marta C. Soares
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO Laboratório Associado, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
| | - Gonçalo C. Cardoso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO Laboratório Associado, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
| | - Sandra Trigo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO Laboratório Associado, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
| |
Collapse
|
19
|
Alonso-Alvarez C, Andrade P, Cantarero A, Morales J, Carneiro M. Relocation to avoid costs: A hypothesis on red carotenoid-based signals based on recent CYP2J19 gene expression data. Bioessays 2022; 44:e2200037. [PMID: 36209392 DOI: 10.1002/bies.202200037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/25/2022] [Accepted: 09/22/2022] [Indexed: 11/11/2022]
Abstract
In many vertebrates, the enzymatic oxidation of dietary yellow carotenoids generates red keto-carotenoids giving color to ornaments. The oxidase CYP2J19 is here a key effector. Its purported intracellular location suggests a shared biochemical pathway between trait expression and cell functioning. This might guarantee the reliability of red colorations as individual quality signals independent of production costs. We hypothesize that the ornament type (feathers vs. bare parts) and production costs (probably CYP2J19 activity compromising vital functions) could have promoted tissue-specific gene relocation. We review current avian tissue-specific CYP2J19 expression data. Among the ten red-billed species showing CYP2J19 bill expression, only one showed strong hepatic expression. Moreover, a phylogenetically-controlled analysis of 25 red-colored species shows that those producing red bare parts are less likely to have strong hepatic CYP2J19 expression than species with only red plumages. Thus, both production costs and shared pathways might have contributed to the evolution of red signals.
Collapse
Affiliation(s)
- Carlos Alonso-Alvarez
- Department of Evolutionary Ecology, National Museum of Natural Sciences - CSIC. C/ José Gutiérrez Abascal 2, Madrid, Spain
| | - Pedro Andrade
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Alejandro Cantarero
- Department of Evolutionary Ecology, National Museum of Natural Sciences - CSIC. C/ José Gutiérrez Abascal 2, Madrid, Spain.,Department of Physiology, Veterinary School, Complutense University of Madrid, Madrid, Spain
| | - Judith Morales
- Department of Evolutionary Ecology, National Museum of Natural Sciences - CSIC. C/ José Gutiérrez Abascal 2, Madrid, Spain
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| |
Collapse
|
20
|
Campagna L, Toews DP. The genomics of adaptation in birds. Curr Biol 2022; 32:R1173-R1186. [DOI: 10.1016/j.cub.2022.07.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Enbody ED, Sin SYW, Boersma J, Edwards SV, Ketaloya S, Schwabl H, Webster MS, Karubian J. The evolutionary history and mechanistic basis of female ornamentation in a tropical songbird. Evolution 2022; 76:1720-1736. [PMID: 35748580 PMCID: PMC9543242 DOI: 10.1111/evo.14545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 01/22/2023]
Abstract
Ornamentation, such as the showy plumage of birds, is widespread among female vertebrates, yet the evolutionary pressures shaping female ornamentation remain uncertain. In part this is due to a poor understanding of the mechanistic route to ornamentation in females. To address this issue, we evaluated the evolutionary history of ornament expression in a tropical passerine bird, the White-shouldered Fairywren, whose females, but not males, strongly vary between populations in occurrence of ornamented black-and-white plumage. We first use phylogenomic analysis to demonstrate that female ornamentation is derived and that female ornamentation evolves independently of changes in male plumage. We then use exogenous testosterone in a field experiment to induce partial ornamentation in naturally unornamented females. By sequencing the transcriptome of experimentally induced ornamented and natural feathers, we identify genes expressed during ornament production and evaluate the degree to which female ornamentation in this system is associated with elevated testosterone, as is common in males. We reveal that some ornamentation in females is linked to testosterone and that sexes differ in ornament-linked gene expression. Lastly, using genomic outlier analysis we identify a candidate melanogenesis gene that lies in a region of high genomic divergence among populations that is also differentially expressed in feather follicles of different female plumages. Taken together, these findings are consistent with sex-specific selection favoring the evolution of female ornaments and demonstrate a key role for testosterone in generating population divergence in female ornamentation through gene regulation. More broadly, our work highlights similarities and differences in how ornamentation evolves in the sexes.
Collapse
Affiliation(s)
- Erik D. Enbody
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisiana70118,Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSE‐75123Sweden
| | - Simon Y. W. Sin
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusetts02138,School of Biological SciencesThe University of Hong KongPok Fu Lam RoadHong Kong
| | - Jordan Boersma
- School of Biological Sciences, Center for Reproductive BiologyWashington State UniversityPullmanWashington99164,Department of Neurobiology and BehaviorCornell UniversityIthacaNew York14853,Macaulay LibraryCornell Lab of OrnithologyIthacaNew York14850
| | - Scott V. Edwards
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusetts02138
| | - Serena Ketaloya
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisiana70118
| | - Hubert Schwabl
- School of Biological Sciences, Center for Reproductive BiologyWashington State UniversityPullmanWashington99164
| | - Michael S. Webster
- Department of Neurobiology and BehaviorCornell UniversityIthacaNew York14853,Macaulay LibraryCornell Lab of OrnithologyIthacaNew York14850
| | - Jordan Karubian
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisiana70118
| |
Collapse
|
22
|
Sexual Dimorphism in the Chinese Endemic Species Hynobius maoershanensis (Urodela: Hynobiidae). Animals (Basel) 2022; 12:ani12131712. [PMID: 35804611 PMCID: PMC9265018 DOI: 10.3390/ani12131712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary In the present study, we examined the sexual dimorphism of Hynobius maoershanensis. The results showed that it exhibits sexual shape dimorphism, with five morphological traits being male-biased and one being female-biased. The observed sexual shape dimorphism between males and females could be explained using the sexual selection and fecundity theory hypotheses. Abstract Sexual dimorphism is common in most vertebrate species and has diverse manifestations. The study of sexual dimorphism has critical significance for evolutionary biological and ecological adaptation. In this study, we analysed the morphometric data of Hynobius maoershanensis, a rare and endangered species, to examine sexual dimorphism in size and shape. A total of 61 H. maoershanensis individuals (9 adult females and 52 adult males) were used in this study. We measured 14 morphological variables and weight of each individual. Analysis of covariance using snout–vent length (SVL) as the covariate showed significant differences in head width (HW), tail length (TL), tail height (TH), forelimb length (FLL), hindlimb length (HLL) and space between axilla and groin (AGS) between the male and female. The female AGS was greater than that of the male, whereas males had greater HW, TL, TH, FLL and HLL than females. The findings show that sexual dimorphism is present in terms of shape but not in terms of size. The wider head of the male could improve mating success, and its thicker limbs and longer tail might facilitate courtship. The females’ wider AGS may increase reproductive output. Our results support sexual dimorphism in H. maoershanensis, which could be explained by the sexual selection and fecundity theory hypothesis.
Collapse
|
23
|
Abstract
Carotenoids constitute an essential dietary component of animals and other non-carotenogenic species which use these pigments in both their modified and unmodified forms. Animals utilize uncleaved carotenoids to mitigate light damage and oxidative stress and to signal fitness and health. Carotenoids also serve as precursors of apocarotenoids including retinol, and its retinoid metabolites, which carry out essential functions in animals by forming the visual chromophore 11-cis-retinaldehyde. Retinoids, such as all-trans-retinoic acid, can also act as ligands of nuclear hormone receptors. The fact that enzymes and biochemical pathways responsible for the metabolism of carotenoids in animals bear resemblance to the ones in plants and other carotenogenic species suggests an evolutionary relationship. We will explore some of the modes of transmission of carotenoid genes from carotenogenic species to metazoans. This apparent relationship has been successfully exploited in the past to identify and characterize new carotenoid and retinoid modifying enzymes. We will review approaches used to identify putative animal carotenoid enzymes, and we will describe methods used to functionally validate and analyze the biochemistry of carotenoid modifying enzymes encoded by animals.
Collapse
Affiliation(s)
- Alexander R Moise
- Northern Ontario School of Medicine, Sudbury, ON, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada.
| | - Sepalika Bandara
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
24
|
McKinnon JS, Newsome WB, Balakrishnan CN. Gene expression in male and female stickleback from populations with convergent and divergent throat coloration. Ecol Evol 2022; 12:e8860. [PMID: 35509607 PMCID: PMC9055290 DOI: 10.1002/ece3.8860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jeffrey S. McKinnon
- Department of Biology East Carolina University Greenville North Carolina USA
| | | | | |
Collapse
|
25
|
Abstract
Carotenoid pigments accumulate in specific patterns in vertebrate tissues and play important roles as colorants, chromophores, and hormone precursors. However, proteins that facilitate transportation of these lipophilic pigments within cells have not been identified. We provide evidence that Aster proteins are key components for this process and show that they bind the pigments with high affinity. We observed in mice that carotenoids accumulate in tissues that express Aster-B and this accumulation can be prevented by enzymatic turnover by the BCO2 protein. Accordingly, we found opposing expression patterns of the Aster-B protein and BCO2 in the human retina that seemingly contribute to the unique carotenoid concentration in the macula lutea. Some mammalian tissues uniquely concentrate carotenoids, but the underlying biochemical mechanism for this accumulation has not been fully elucidated. For instance, the central retina of the primate eyes displays high levels of the carotenoids, lutein, and zeaxanthin, whereas the pigments are largely absent in rodent retinas. We previously identified the scavenger receptor class B type 1 and the enzyme β-carotene-oxygenase-2 (BCO2) as key components that determine carotenoid concentration in tissues. We now provide evidence that Aster (GRAM-domain-containing) proteins, recently recognized for their role in nonvesicular cholesterol transport, engage in carotenoid metabolism. Our analyses revealed that the StART-like lipid binding domain of Aster proteins can accommodate the bulky pigments and bind them with high affinity. We further showed that carotenoids and cholesterol compete for the same binding site. We established a bacterial test system to demonstrate that the StART-like domains of mouse and human Aster proteins can extract carotenoids from biological membranes. Mice deficient for the carotenoid catabolizing enzyme BCO2 concentrated carotenoids in Aster-B protein-expressing tissues such as the adrenal glands. Remarkably, Aster-B was expressed in the human but not in the mouse retina. Within the retina, Aster-B and BCO2 showed opposite expression patterns in central versus peripheral parts. Together, our study unravels the biochemical basis for intracellular carotenoid transport and implicates Aster-B in the pathway for macula pigment concentration in the human retina.
Collapse
|
26
|
Araújo PM, Dias MR, Matos DM, Norte AC. Reliability of steatocrit as an indicator of intestinal health in young birds – Relationships with morphology and growth rate of canary Serinus canaria nestlings. ZOOLOGY 2022; 151:126004. [DOI: 10.1016/j.zool.2022.126004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 02/03/2022] [Accepted: 03/04/2022] [Indexed: 10/18/2022]
|
27
|
Kwon YM, Vranken N, Hoge C, Lichak MR, Norovich AL, Francis KX, Camacho-Garcia J, Bista I, Wood J, McCarthy S, Chow W, Tan HH, Howe K, Bandara S, von Lintig J, Rüber L, Durbin R, Svardal H, Bendesky A. Genomic consequences of domestication of the Siamese fighting fish. SCIENCE ADVANCES 2022; 8:eabm4950. [PMID: 35263139 PMCID: PMC8906746 DOI: 10.1126/sciadv.abm4950] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/13/2022] [Indexed: 05/08/2023]
Abstract
Siamese fighting (betta) fish are among the most popular and morphologically diverse pet fish, but the genetic bases of their domestication and phenotypic diversification are largely unknown. We assembled de novo the genome of a wild Betta splendens and whole-genome sequenced 98 individuals across five closely related species. We find evidence of bidirectional hybridization between domesticated ornamental betta and other wild Betta species. We discover dmrt1 as the main sex determination gene in ornamental betta and that it has lower penetrance in wild B. splendens. Furthermore, we find genes with signatures of recent, strong selection that have large effects on color in specific parts of the body or on the shape of individual fins and that most are unlinked. Our results demonstrate how simple genetic architectures paired with anatomical modularity can lead to vast phenotypic diversity generated during animal domestication and launch betta as a powerful new system for evolutionary genetics.
Collapse
Affiliation(s)
- Young Mi Kwon
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Nathan Vranken
- Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Carla Hoge
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Madison R. Lichak
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Amy L. Norovich
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Kerel X. Francis
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | | | - Iliana Bista
- Wellcome Sanger Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | - Shane McCarthy
- Wellcome Sanger Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | - Heok Hui Tan
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore, Singapore
| | | | - Sepalika Bandara
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Johannes von Lintig
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| | - Lukas Rüber
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern 3012, Switzerland
- Naturhistorisches Museum Bern, Bern 3005, Switzerland
| | - Richard Durbin
- Wellcome Sanger Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Hannes Svardal
- Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
- Naturalis Biodiversity Center, 2333 Leiden, Netherlands
| | - Andres Bendesky
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| |
Collapse
|
28
|
Nokelainen O, Galarza JA, Kirvesoja J, Suisto K, Mappes J. Genetic colour variation visible for predators and conspecifics is concealed from humans in a polymorphic moth. J Evol Biol 2022; 35:467-478. [PMID: 35239231 PMCID: PMC9314616 DOI: 10.1111/jeb.13994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 11/29/2022]
Abstract
The definition of colour polymorphism is intuitive: genetic variants express discretely coloured phenotypes. This classification is, however, elusive as humans form subjective categories or ignore differences that cannot be seen by human eyes. We demonstrate an example of a ‘cryptic morph’ in a polymorphic wood tiger moth (Arctia plantaginis), a phenomenon that may be common among well‐studied species. We used pedigree data from nearly 20,000 individuals to infer the inheritance of hindwing colouration. The evidence supports a single Mendelian locus with two alleles in males: WW and Wy produce the white and yy the yellow hindwing colour. The inheritance could not be resolved in females as their hindwing colour varies continuously with no clear link with male genotypes. Next, we investigated if the male genotype can be predicted from their phenotype by machine learning algorithms and by human observers. Linear discriminant analysis grouped male genotypes with 97% accuracy, whereas humans could only group the yy genotype. Using vision modelling, we also tested whether the genotypes have differential discriminability to humans, moth conspecifics and their bird predators. The human perception was poor separating the genotypes, but avian and moth vision models with ultraviolet sensitivity could separate white WW and Wy males. We emphasize the importance of objective methodology when studying colour polymorphism. Our findings indicate that by‐eye categorization methods may be problematic, because humans fail to see differences that can be visible for relevant receivers. Ultimately, receivers equipped with different perception than ours may impose selection to morphs hidden from human sight.
Collapse
Affiliation(s)
- Ossi Nokelainen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.,Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki University, Helsinki, Finland
| | - Juan A Galarza
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.,Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki University, Helsinki, Finland
| | - Jimi Kirvesoja
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Kaisa Suisto
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Johanna Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.,Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki University, Helsinki, Finland
| |
Collapse
|
29
|
Toomey MB, Smith DJ, Gonzales DM, McGraw KJ. Methods for extracting and analyzing carotenoids from bird feathers. Methods Enzymol 2022; 670:459-497. [DOI: 10.1016/bs.mie.2022.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
OUP accepted manuscript. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
31
|
Wu L, Jiao X, Zhang D, Cheng Y, Song G, Qu Y, Lei F. Comparative Genomics and Evolution of Avian Specialized Traits. Curr Genomics 2021; 22:496-511. [PMID: 35386431 PMCID: PMC8905638 DOI: 10.2174/1389202923666211227143952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 11/25/2022] Open
Abstract
Genomic data are important for understanding the origin and evolution of traits. Under the context of rapidly developing of sequencing technologies and more widely available genome sequences, researchers are able to study evolutionary mechanisms of traits via comparative genomic methods. Compared with other vertebrates, bird genomes are relatively small and exhibit conserved synteny with few repetitive elements, which makes them suitable for evolutionary studies. Increasing genomic progress has been reported on the evolution of powered flight, body size variation, beak morphology, plumage colouration, high-elevation colonization, migration, and vocalization. By summarizing previous studies, we demonstrate the genetic bases of trait evolution, highlighting the roles of small-scale sequence variation, genomic structural variation, and changes in gene interaction networks. We suggest that future studies should focus on improving the quality of reference genomes, exploring the evolution of regulatory elements and networks, and combining genomic data with morphological, ecological, behavioural, and developmental biology data.
Collapse
Affiliation(s)
- Lei Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaolu Jiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
32
|
Ma S, Liu H, Wang J, Wang L, Xi Y, Liu Y, Xu Q, Hu J, Han C, Bai L, Li L, Wang J. Transcriptome Analysis Reveals Genes Associated With Sexual Dichromatism of Head Feather Color in Mallard. Front Genet 2021; 12:627974. [PMID: 34956302 PMCID: PMC8692775 DOI: 10.3389/fgene.2021.627974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Sexual dimorphism of feather color is typical in mallards, in which drakes exhibit green head feathers, while females show dull head feather color. We showed that more melanosomes deposited in the males' head's feather barbules than females and further form a two-dimensional hexagonal lattice, which conferred the green feather coloration of drakes. Additionally, transcriptome analysis revealed that some essential melanin biosynthesis genes were highly expressed in feather follicles during the development of green feathers, contributing to melanin deposition. We further identified 18 candidate differentially expressed genes, which may affect the sharp color differences between the males' head feathers, back feathers, and the females' head feathers. TYR and TYRP1 genes are associated with melanin biosynthesis directly. Their expressions in the males' head feather follicles were significantly higher than those in the back feather follicles and females' head feather follicles. Most clearly, the expression of TYRP1 was 256 and 32 times higher in the head follicles of males than in those of the female head and the male back, respectively. Hence, TYR and TYRP1 are probably the most critical candidate genes in DEGs. They may affect the sexual dimorphism of head feather color by cis-regulation of some transcription factors and the Z-chromosome dosage effect.
Collapse
Affiliation(s)
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Branch CL, Semenov GA, Wagner DN, Sonnenberg BR, Pitera AM, Bridge ES, Taylor SA, Pravosudov VV. The genetic basis of spatial cognitive variation in a food-caching bird. Curr Biol 2021; 32:210-219.e4. [PMID: 34735793 DOI: 10.1016/j.cub.2021.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/15/2021] [Accepted: 10/14/2021] [Indexed: 01/02/2023]
Abstract
Spatial cognition is used by most organisms to navigate their environment. Some species rely particularly heavily on specialized spatial cognition to survive, suggesting that a heritable component of cognition may be under natural selection. This idea remains largely untested outside of humans, perhaps because cognition in general is known to be strongly affected by learning and experience.1-4 We investigated the genetic basis of individual variation in spatial cognition used by non-migratory food-caching birds to recover food stores and survive harsh montane winters. Comparing the genomes of wild, free-living birds ranging from best to worst in their performance on a spatial cognitive task revealed significant associations with genes involved in neuron growth and development and hippocampal function. These results identify candidate genes associated with differences in spatial cognition and provide a critical link connecting individual variation in spatial cognition with natural selection.
Collapse
Affiliation(s)
- Carrie L Branch
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA.
| | - Georgy A Semenov
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Dominique N Wagner
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Benjamin R Sonnenberg
- Ecology, Evolution, and Conservation Biology Graduate Program, University of Nevada, Reno, NV 89557, USA
| | - Angela M Pitera
- Ecology, Evolution, and Conservation Biology Graduate Program, University of Nevada, Reno, NV 89557, USA
| | - Eli S Bridge
- Ecology and Evolutionary Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Scott A Taylor
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Vladimir V Pravosudov
- Ecology, Evolution, and Conservation Biology Graduate Program, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
34
|
Gamboa MP, Ghalambor CK, Scott Sillett T, Morrison SA, Chris Funk W. Adaptive divergence in bill morphology and other thermoregulatory traits is facilitated by restricted gene flow in song sparrows on the California Channel Islands. Mol Ecol 2021; 31:603-619. [PMID: 34704295 DOI: 10.1111/mec.16253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023]
Abstract
Disentangling the effects of neutral and adaptive processes in maintaining phenotypic variation across environmental gradients is challenging in natural populations. Song sparrows (Melospiza melodia) on the California Channel Islands occupy a pronounced east-west climate gradient within a small spatial scale, providing a unique opportunity to examine the interaction of genetic isolation (reduced gene flow) and the environment (selection) in driving variation. We used reduced representation genomic libraries to infer the role of neutral processes (drift and restricted gene flow) and divergent selection in driving variation in thermoregulatory traits with an emphasis on the mechanisms that maintain bill divergence among islands. Analyses of 22,029 neutral SNPs confirm distinct population structure by island with restricted gene flow and relatively large effective population sizes, suggesting bill differences are probably not a product of genetic drift. Instead, we found strong support for local adaptation using 3294 SNPs in differentiation-based and environmental association analyses coupled with genome-wide association tests. Specifically, we identified several putatively adaptive and candidate loci in or near genes involved in bill development pathways (e.g., BMP, CaM, Wnt), confirming the highly complex and polygenic architecture underlying bill morphology. Furthermore, we found divergence in genes associated with other thermoregulatory traits (i.e., feather structure, plumage colour, and physiology). Collectively, these results suggest strong divergent selection across an island archipelago results in genomic changes in a suite of traits associated with climate adaptation over small spatial scales. Future research should move beyond studying univariate traits to better understand multidimensional responses to complex environmental conditions.
Collapse
Affiliation(s)
- Maybellene P Gamboa
- Department of Organismal Biology and Ecology, Colorado College, Colorado Springs, Colorado, USA
| | - Cameron K Ghalambor
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA.,Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - T Scott Sillett
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
| | | | - W Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
35
|
Enbody ED, Sprehn CG, Abzhanov A, Bi H, Dobreva MP, Osborne OG, Rubin CJ, Grant PR, Grant BR, Andersson L. A multispecies BCO2 beak color polymorphism in the Darwin's finch radiation. Curr Biol 2021; 31:5597-5604.e7. [PMID: 34687609 DOI: 10.1016/j.cub.2021.09.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/25/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Carotenoid-based polymorphisms are widespread in populations of birds, fish, and reptiles,1 but generally little is known about the factors affecting their maintenance in populations.2 We report a combined field and molecular-genetic investigation of a nestling beak color polymorphism in Darwin's finches. Beaks are pink or yellow, and yellow is recessive.3 Here we show that the polymorphism arose in the Galápagos half a million years ago through a mutation associated with regulatory change in the BCO2 gene and is shared by 14 descendant species. The polymorphism is probably a balanced polymorphism, maintained by ecological selection associated with survival and diet. In cactus finches, the frequency of the yellow genotype is correlated with cactus fruit abundance and greater hatching success and may be altered by introgressive hybridization. Polymorphisms that are hidden as adults, as here, may be far more common than is currently recognized, and contribute to diversification in ways that are yet to be discovered.
Collapse
Affiliation(s)
- Erik D Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden.
| | - C Grace Sprehn
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Arhat Abzhanov
- Department of Life Sciences, Imperial College London, Silwood Park Campus, SL5 7PY Ascot, UK
| | - Huijuan Bi
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Mariya P Dobreva
- Department of Life Sciences, Imperial College London, Silwood Park Campus, SL5 7PY Ascot, UK
| | - Owen G Osborne
- School of Natural Sciences, Bangor University, Environment Centre Wales, Deiniol Road, Bangor LL57 2UW, UK
| | - Carl-Johan Rubin
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Peter R Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - B Rosemary Grant
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden; Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden; Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA.
| |
Collapse
|
36
|
Price-Waldman R, Stoddard MC. Avian Coloration Genetics: Recent Advances and Emerging Questions. J Hered 2021; 112:395-416. [PMID: 34002228 DOI: 10.1093/jhered/esab015] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
The colorful phenotypes of birds have long provided rich source material for evolutionary biologists. Avian plumage, beaks, skin, and eggs-which exhibit a stunning range of cryptic and conspicuous forms-inspired early work on adaptive coloration. More recently, avian color has fueled discoveries on the physiological, developmental, and-increasingly-genetic mechanisms responsible for phenotypic variation. The relative ease with which avian color traits can be quantified has made birds an attractive system for uncovering links between phenotype and genotype. Accordingly, the field of avian coloration genetics is burgeoning. In this review, we highlight recent advances and emerging questions associated with the genetic underpinnings of bird color. We start by describing breakthroughs related to 2 pigment classes: carotenoids that produce red, yellow, and orange in most birds and psittacofulvins that produce similar colors in parrots. We then discuss structural colors, which are produced by the interaction of light with nanoscale materials and greatly extend the plumage palette. Structural color genetics remain understudied-but this paradigm is changing. We next explore how colors that arise from interactions among pigmentary and structural mechanisms may be controlled by genes that are co-expressed or co-regulated. We also identify opportunities to investigate genes mediating within-feather micropatterning and the coloration of bare parts and eggs. We conclude by spotlighting 2 research areas-mechanistic links between color vision and color production, and speciation-that have been invigorated by genetic insights, a trend likely to continue as new genomic approaches are applied to non-model species.
Collapse
|
37
|
Andrade P, Carneiro M. Pterin-based pigmentation in animals. Biol Lett 2021; 17:20210221. [PMID: 34403644 PMCID: PMC8370806 DOI: 10.1098/rsbl.2021.0221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
Pterins are one of the major sources of bright coloration in animals. They are produced endogenously, participate in vital physiological processes and serve a variety of signalling functions. Despite their ubiquity in nature, pterin-based pigmentation has received little attention when compared to other major pigment classes. Here, we summarize major aspects relating to pterin pigmentation in animals, from its long history of research to recent genomic studies on the molecular mechanisms underlying its evolution. We argue that pterins have intermediate characteristics (endogenously produced, typically bright) between two well-studied pigment types, melanins (endogenously produced, typically cryptic) and carotenoids (dietary uptake, typically bright), providing unique opportunities to address general questions about the biology of coloration, from the mechanisms that determine how different types of pigmentation evolve to discussions on honest signalling hypotheses. Crucial gaps persist in our knowledge on the molecular basis underlying the production and deposition of pterins. We thus highlight the need for functional studies on systems amenable for laboratory manipulation, but also on systems that exhibit natural variation in pterin pigmentation. The wealth of potential model species, coupled with recent technological and analytical advances, make this a promising time to advance research on pterin-based pigmentation in animals.
Collapse
Affiliation(s)
- Pedro Andrade
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Miguel Carneiro
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| |
Collapse
|
38
|
Li X, Li N, Zhao L, Shi J, Wang S, Ning X, Li Y, Hu X. Tissue distribution and seasonal accumulation of carotenoids in Yesso scallop (Mizuhopecten yessoensis) with orange adductor muscle. Food Chem 2021; 367:130701. [PMID: 34388635 DOI: 10.1016/j.foodchem.2021.130701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 11/30/2022]
Abstract
Carotenoids are colored compounds with important physiological functions. The Haida golden scallop, which has an orange adductor muscle, is a carotenoid-enriched variety of scallop Mizuhopecten yessoensis, an important aquaculture shellfish. In this study, we investigated the tissue distribution of the carotenoids, pectenolone and pectenoxanthin, in both Haida golden scallop and normal Yesso scallop. Both carotenoids were detected in all the sampled tissues of the two scallops, except in the adductor muscle of normal scallop. There were significantly more carotenoids in Haida golden scallop than in normal scallop, in the tissues of the mantle, female gonad, kidney, and adductor muscle. Increased carotenoid concentrations were detected in Haida golden scallop adductor muscle during the spring spawning season, indicating the effects of reproduction on muscle carotenoids accumulation. This study was the first systematic investigation of carotenoid distribution in Yesso scallop tissues and will benefit future research on carotenoid accumulation and function in scallops.
Collapse
Affiliation(s)
- Xue Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ning Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Liang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, Qingdao 266237, China
| | - Jiaoxia Shi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shuyue Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xianhui Ning
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yueru Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, Qingdao 266237, China.
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, Qingdao 266237, China.
| |
Collapse
|
39
|
Shakya SB, Haryoko T, Irham M, Suparno, Prawiradilaga DM, Sheldon FH. Genomic investigation of colour polymorphism and phylogeographic variation among populations of black-headed bulbul (Brachypodius atriceps) in insular southeast Asia. Mol Ecol 2021; 30:4757-4770. [PMID: 34297854 DOI: 10.1111/mec.16089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/27/2022]
Abstract
Intraspecific polymorphism in birds, especially plumage colour polymorphism, and the mechanisms that control it are an area of active research in evolutionary biology. The black-headed bulbul (Brachypodius atriceps) is a polymorphic species with two distinct morphs, yellow and grey. This species inhabits the mainland and virtually all continental islands of Southeast Asia where yellow morphs predominate, but on two islands in the Sunda region, Bawean and Maratua, grey morphs are common or exclusive. Here, we generated a high-quality reference genome of a yellow individual and resequenced genomes of multiple individuals of both yellow and grey morphs to study the genetic basis of coloration and population history of the species. Using PCA and STRUCTURE analysis, we found the Maratua Island population (which is exclusively grey) to be distinct from all other B. atriceps populations, having been isolated c. 1.9 million years ago (Ma). In contrast, Bawean grey individuals (a subset of yellow and grey individuals on that island) are embedded within an almost panmictic Sundaic clade of yellow birds. Using FST and dxy to compare variable genomic segments between Maratua and yellow individuals, we located peaks of divergence and identified candidate loci involved in the colour polymorphism. Tests of selection among coding-proteins in high FST regions, however, did not indicate selection on the candidate genes. Overall, we report on some loci that are potentially responsible for the grey/yellow polymorphism in a species that otherwise shows little genetic diversification across most of its range.
Collapse
Affiliation(s)
- Subir B Shakya
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Tri Haryoko
- Museum Zoologicum Bogoriense, Research Centre for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Mohammad Irham
- Museum Zoologicum Bogoriense, Research Centre for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Suparno
- Museum Zoologicum Bogoriense, Research Centre for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Dewi M Prawiradilaga
- Museum Zoologicum Bogoriense, Research Centre for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Frederick H Sheldon
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
40
|
Ecological effects on female bill colour explain plastic sexual dichromatism in a mutually-ornamented bird. Sci Rep 2021; 11:14970. [PMID: 34294752 PMCID: PMC8298529 DOI: 10.1038/s41598-021-93897-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/16/2021] [Indexed: 11/08/2022] Open
Abstract
Sex differences in ornamentation are common and, in species with conventional sex roles, are generally thought of as stable, due to stronger sexual selection on males. Yet, especially in gregarious species, ornaments can also have non-sexual social functions, raising the possibility that observed sex differences in ornamentation are plastic. For example, females may invest in costly ornamentation more plastically, to protect body and reproductive ability in more adverse ecological conditions. We tested this hypothesis with experimental work on the mutually-ornamented common waxbill (Estrilda astrild), supplementing their diets either with pigmentary (lutein, a carotenoid) or non-pigmentary (vitamin E) antioxidants, or alleviating winter cold temperature. We found that both lutein and vitamin E supplementation increased red bill colour saturation in females, reaching the same mean saturation as males, which supports the hypothesis that female bill colour is more sensitive to environmental or physiological conditions. The effect of vitamin E, a non-pigment antioxidant, suggests that carotenoids were released from their antioxidant functions. Alleviating winter cold did not increase bill colour saturation in either sex, but increased the stability of female bill colour over time, suggesting that female investment in bill colour is sensitive to cold-mediated stress. Together, results show that waxbill bill sexual dichromatism is not stable. Instead, sexual dichromatism can be modulated, and even disappear completely, due to ecology-mediated plastic adjustments in female bill colour.
Collapse
|
41
|
Fontana S, Rasmann S, de Bello F, Pomati F, Moretti M. Reconciling trait based perspectives along a trait-integration continuum. Ecology 2021; 102:e03472. [PMID: 34260747 DOI: 10.1002/ecy.3472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 04/09/2021] [Accepted: 05/18/2021] [Indexed: 11/08/2022]
Abstract
Trait based ecology has developed fast in the last decades, aiming to both explain mechanisms of community assembly, and predict patterns in nature, such as the effects of biodiversity shifts on key ecosystem processes. This body of work has stimulated the development of several conceptual frameworks and analytical methods, as well as the production of trait databases covering a growing number of taxa and organizational levels (from individuals to guilds). However, this breeding ground of novel concepts and tools currently lacks a general and coherent framework, under which functional traits can help ecologists organize their research aims, and serve as the common currency to unify several scientific disciplines. Specifically, we see a need to bridge the gaps between community ecology, ecosystem ecology, and evolutionary biology, in order to address the most pressing environmental issues of our time. To achieve this integration goal, we define a trait-integration continuum, which reconciles alternative trait definitions and approaches in ecology. This continuum outlines a coherent progression of biological scales, along which traits interact and hierarchically integrate from genetic information, to whole organism fitness-related traits, to trait syndromes and functional groups. Our conceptual scheme proposes that lower-level trait integration is closer to the inference of ecoevolutionary mechanisms determining population and community properties, whereas higher-level trait integration is most suited to the prediction of ecosystem processes. Within these two extremes, trait integration varies on a continuous scale, which relates directly to the inductive-deductive loop that should characterize the scientific method. With our proposed framework, we aim to facilitate scientists in contextualising their research based on the trait-integration levels that matter most to their specific goals. Explicitly acknowledging the existence of a trait-integration continuum is a promising way for framing the appropriate questions, thus obtaining reliable answers and results that are comparable across studies and disciplines.
Collapse
Affiliation(s)
- Simone Fontana
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland.,Nature Conservation and Landscape Ecology, University of Freiburg, Tennenbacher Straße 4, Freiburg, 79106, Germany
| | - Sergio Rasmann
- Laboratory of Functional Ecology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Francesco de Bello
- Department of Botany, Faculty of Sciences, University of South Bohemia, Na Zlate Stoce 1, České Budějovice, 370 05, Czech Republic.,Desertification Research Centre (CIDE-CSIC), Carretera Moncada-Náquera, Km 4,5, Moncada (Valencia), 46113, Spain
| | - Francesco Pomati
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf, 8600, Switzerland
| | - Marco Moretti
- Biodiversity and Conservation Biology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| |
Collapse
|
42
|
de Mello PLH, Hime PM, Glor RE. Transcriptomic Analysis of Skin Color in Anole Lizards. Genome Biol Evol 2021; 13:evab110. [PMID: 33988681 PMCID: PMC8290120 DOI: 10.1093/gbe/evab110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 01/23/2023] Open
Abstract
Color and color pattern are critical for animal camouflage, reproduction, and defense. Few studies, however, have attempted to identify candidate genes for color and color pattern in squamate reptiles, a colorful group with over 10,000 species. We used comparative transcriptomic analyses between white, orange, and yellow skin in a color-polymorphic species of anole lizard to 1) identify candidate color and color-pattern genes in squamates and 2) assess if squamates share an underlying genetic basis for color and color pattern variation with other vertebrates. Squamates have three types of chromatophores that determine color pattern: guanine-filled iridophores, carotenoid- or pteridine-filled xanthophores/erythrophores, and melanin-filled melanophores. We identified 13 best candidate squamate color and color-pattern genes shared with other vertebrates: six genes linked to pigment synthesis pathways, and seven genes linked to chromatophore development and maintenance. In comparisons of expression profiles between pigment-rich and white skin, pigment-rich skin upregulated the pteridine pathway as well as xanthophore/erythrophore development and maintenance genes; in comparisons between orange and yellow skin, orange skin upregulated the pteridine and carotenoid pathways as well as melanophore maintenance genes. Our results corroborate the predictions that squamates can produce similar colors using distinct color-reflecting molecules, and that both color and color-pattern genes are likely conserved across vertebrates. Furthermore, this study provides a concise list of candidate genes for future functional verification, representing a first step in determining the genetic basis of color and color pattern in anoles.
Collapse
Affiliation(s)
- Pietro Longo Hollanda de Mello
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, KS, USA
| | - Paul M Hime
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, KS, USA
| | - Richard E Glor
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
43
|
Toomey MB, Ronald KL. Avian color expression and perception: is there a carotenoid link? J Exp Biol 2021; 224:269205. [PMID: 34142139 DOI: 10.1242/jeb.203844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Carotenoids color many of the red, orange and yellow ornaments of birds and also shape avian vision. The carotenoid-pigmented oil droplets in cone photoreceptors filter incoming light and are predicted to aid in color discrimination. Carotenoid use in both avian coloration and color vision raises an intriguing question: is the evolution of visual signals and signal perception linked through these pigments? Here, we explore the genetic, physiological and functional connections between these traits. Carotenoid color and droplet pigmentation share common mechanisms of metabolic conversion and are both affected by diet and immune system challenges. Yet, the time scale and magnitude of these effects differ greatly between plumage and the visual system. Recent observations suggest a link between retinal carotenoid levels and color discrimination performance, but the mechanisms underlying these associations remain unclear. Therefore, we performed a modeling exercise to ask whether and how changes in droplet carotenoid content could alter the perception of carotenoid-based plumage. This exercise revealed that changing oil droplet carotenoid concentration does not substantially affect the discrimination of carotenoid-based colors, but might change how reliably a receiver can predict the carotenoid content of an ornament. These findings suggest that, if present, a carotenoid link between signal and perception is subtle. Deconstructing this relationship will require a deeper understanding of avian visual perception and the mechanisms of color production. We highlight several areas where we see opportunities to gain new insights, including comparative genomic studies of shared mechanisms of carotenoid processing and alternative approaches to investigating color vision.
Collapse
Affiliation(s)
- Matthew B Toomey
- Department of Biological Science, University of Tulsa, 800 S Tucker Dr., Tulsa, OK 74104, USA
| | - Kelly L Ronald
- Department of Biology, Hope College, 35 East 12th Street, Holland, MI 49422, USA
| |
Collapse
|
44
|
Bennett KFP, Lim HC, Braun MJ. Sexual selection and introgression in avian hybrid zones: Spotlight on Manacus. Integr Comp Biol 2021; 61:1291-1309. [PMID: 34128981 DOI: 10.1093/icb/icab135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Hybrid zones offer a window into the processes and outcomes of evolution, from species formation or fusion to genomic underpinnings of specific traits and isolating mechanisms. Sexual selection is believed to be an important factor in speciation processes, and hybrid zones present special opportunities to probe its impact. The manakins (Aves, Pipridae) are a promising group in which to study the interplay of sexual selection and natural hybridization: they show substantial variation across the family in the strength of sexual selection they experience, they readily hybridize within and between genera, and they appear to have formed hybrid species, a rare event in birds. A hybrid zone between two manakins in the genus Manacus is unusual in that plumage and behavioral traits of one species have introgressed asymmetrically into populations of the second species through positive sexual selection, then apparently stalled at a river barrier. This is one of a handful of documented examples of asymmetric sexual trait introgression with a known selective mechanism. It offers opportunities to examine reproductive isolation, introgression, plumage color evolution, and natural factors enhancing or constraining the effects of sexual selection in real time. Here, we review previous work in this system, propose new hypotheses for observed patterns, and recommend approaches to test them.
Collapse
Affiliation(s)
- Kevin F P Bennett
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Haw Chuan Lim
- Department of Biology, George Mason University, Manassas, VA, USA.,Center for Conservation Genomics, Smithsonian Conservation Biology Institute, Washington, DC, USA
| | - Michael J Braun
- Behavior, Ecology, Evolution, and Systematics Program, University of Maryland, College Park, MD, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
45
|
Wang C, Lu B, Li T, Liang G, Xu M, Liu X, Tao W, Zhou L, Kocher TD, Wang D. Nile Tilapia: A Model for Studying Teleost Color Patterns. J Hered 2021; 112:469-484. [PMID: 34027978 DOI: 10.1093/jhered/esab018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/08/2021] [Indexed: 11/12/2022] Open
Abstract
The diverse color patterns of cichlid fishes play an important role in mate choice and speciation. Here we develop the Nile tilapia (Oreochromis niloticus) as a model system for studying the developmental genetics of cichlid color patterns. We identified 4 types of pigment cells: melanophores, xanthophores, iridophores and erythrophores, and characterized their first appearance in wild-type fish. We mutated 25 genes involved in melanogenesis, pteridine metabolism, and the carotenoid absorption and cleavage pathways. Among the 25 mutated genes, 13 genes had a phenotype in both the F0 and F2 generations. None of F1 heterozygotes had phenotype. By comparing the color pattern of our mutants with that of red tilapia (Oreochromis spp), a natural mutant produced during hybridization of tilapia species, we found that the pigmentation of the body and eye is controlled by different genes. Previously studied genes like mitf, kita/kitlga, pmel, tyrb, hps4, gch2, csf1ra, pax7b, and bco2b were proved to be of great significance for color patterning in tilapia. Our results suggested that tilapia, a fish with 4 types of pigment cells and a vertically barred wild-type color pattern, together with various natural and artificially induced color gene mutants, can serve as an excellent model system for study color patterning in vertebrates.
Collapse
Affiliation(s)
- Chenxu Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Baoyue Lu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Tao Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Guangyuan Liang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Mengmeng Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Xingyong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Thomas D Kocher
- the Department of Biology, University of Maryland, College Park, MD
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
46
|
Bazzano LT, Mendicino LR, Inchaussandague ME, Skigin DC, García NC, Tubaro PL, Barreira AS. Mechanisms involved in the production of differently colored feathers in the structurally colored swallow tanager (Tersina viridis; Aves: Thraupidae). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:404-416. [PMID: 33988912 DOI: 10.1002/jez.b.23043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/23/2021] [Accepted: 03/09/2021] [Indexed: 11/06/2022]
Abstract
Non-iridescent, structural coloration in birds originates from the feather's internal nanostructure (the spongy matrix) but melanin pigments and the barb's cortex can affect the resulting color. Here, we explore how this nanostructure is combined with other elements in differently colored plumage patches within a bird. We investigated the association between light reflectance and the morphology of feathers from the back and belly plumage patches of male swallow tanagers (Tersina viridis), which look greenish-blue and white, respectively. Both plumage patches have a reflectance peak around 550 nm but the reflectance spectrum is much less saturated in the belly. The barbs of both types of feathers have similar spongy matrices at their tips, rendering their reflectance spectra alike. However, the color of the belly feather barbs changes from light green at their tips to white closer to the rachis. These barbs lack pigments and their morphology changes considerably throughout. Toward the rachis, the barb is almost hollow, with a reduced area occupied by spongy matrix, and has a flattened shape. By contrast, the blue back feathers' barbs have melanin underneath the spongy matrix resulting in a much more saturated coloration. The color of these barbs is also even along the barbs' length. Our results suggest that the color differences between the white and greenish-blue plumage are mostly due to the differential deposition of melanin and a reduction of the spongy matrix near the rachis of the belly feather barbs and not a result of changes in the characteristics of the spongy matrix.
Collapse
Affiliation(s)
- Lisandro T Bazzano
- Grupo de Electromagnetismo Aplicado, Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucas R Mendicino
- Grupo de Electromagnetismo Aplicado, Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Marina E Inchaussandague
- Grupo de Electromagnetismo Aplicado, Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Instituto de Física de Buenos Aires (IFIBA)-CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Diana C Skigin
- Grupo de Electromagnetismo Aplicado, Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.,Instituto de Física de Buenos Aires (IFIBA)-CONICET, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia C García
- División Ornitología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"-CONICET, Ciudad Autónoma de Buenos Aires, Argentina.,Fuller Evolutionary Program, Cornell Lab of Ornithology, Cornell University, Ithaca, New York, USA
| | - Pablo L Tubaro
- División Ornitología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana S Barreira
- División Ornitología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
47
|
Robert A, Peona V, Ottenburghs J. Digest: Population genomics reveals convergence toward melanism in different island populations. Evolution 2021; 75:1582-1584. [PMID: 33905142 DOI: 10.1111/evo.14242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/19/2021] [Indexed: 11/28/2022]
Abstract
Distinct traits between mainland and island populations provide an excellent opportunity to study the evolution and genetic basis of these traits. In this issue, Walsh et al. unraveled the evolution of black plumage color that arose independently in two island populations of the white-winged fairywren. They also described the first steps in understanding the genetic underpinnings of this trait.
Collapse
Affiliation(s)
- Aloïs Robert
- Department of Ecology and Evolutionary Biology, Environmental Science, Center (ESC), Yale University, New Haven, Connecticut, 06511
| | - Valentina Peona
- Department of Ecology and Genetics-Evolutionary Biology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden.,Department of Organismal Biology-Systematic Biology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden
| | - Jente Ottenburghs
- Department of Ecology and Genetics-Evolutionary Biology, Science for Life Laboratories, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Karolinska Institute, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden
| |
Collapse
|
48
|
Wu L, Lu P, Guo X, Song K, Lyu Y, Bothwell J, Wu J, Hawkins O, Clarke SL, Lucas EA, Smith BJ, Chowanadisai W, Hartson SD, Ritchey JW, Wang W, Medeiros DM, Li S, Lin D. β-carotene oxygenase 2 deficiency-triggered mitochondrial oxidative stress promotes low-grade inflammation and metabolic dysfunction. Free Radic Biol Med 2021; 164:271-284. [PMID: 33453359 PMCID: PMC7946548 DOI: 10.1016/j.freeradbiomed.2021.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023]
Abstract
Low-grade inflammation is a critical pathological factor contributing to the development of metabolic disorders. β-carotene oxygenase 2 (BCO2) was initially identified as an enzyme catalyzing carotenoids in the inner mitochondrial membrane. Mutations in BCO2 are associated with inflammation and metabolic disorders in humans, yet the underlying mechanisms remain unknown. Here, we used loss-of-function approaches in mice and cell culture models to investigate the role of BCO2 in inflammation and metabolic dysfunction. We demonstrated decreases in BCO2 mRNA and protein levels and suppression of mitochondrial respiratory complex I proteins and mitochondrial superoxide dismutase levels in the liver of type 2 diabetic human subjects. Deficiency of BCO2 caused disruption of assembly of the mitochondrial respiratory supercomplexes, such as supercomplex III2+IV in mice, and overproduction of superoxide radicals in primary mouse embryonic fibroblasts. Further, deficiency of BCO2 increased protein carbonylation and populations of natural killer cells and M1 macrophages, and decreased populations of T cells, including CD4+ and/or CD8+ in the bone marrow and white adipose tissues. Elevation of plasma inflammatory cytokines and adipose tissue hypertrophy and inflammation were also characterized in BCO2 deficient mice. Moreover, BCO2 deficient mice were more susceptible to high-fat diet-induced obesity and hyperglycemia. Double knockout of BCO2 and leptin receptor genes caused a significantly greater elevation of the fasting blood glucose level in mice at 4 weeks of age, compared to the age- and sex-matched leptin receptor knockout. Finally, administration of Mito-TEMPO, a mitochondrial specific antioxidant attenuated systemic low-grade inflammation induced by BCO2 deficiency. Collectively, these findings suggest that BCO2 is essential for mitochondrial respiration and metabolic homeostasis in mammals. Loss or decreased expression of BCO2 leads to mitochondrial oxidative stress, low-grade inflammation, and the subsequent development of metabolic disorders.
Collapse
Affiliation(s)
- Lei Wu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Peiran Lu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Xin Guo
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Kun Song
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA
| | - Yi Lyu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - James Bothwell
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jinglong Wu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Olivia Hawkins
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Stephen L Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Winyoo Chowanadisai
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Steve D Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jerry W Ritchey
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Weiqun Wang
- Department of Food, Nutrition, Dietetics, and Health, Kansas State University, Manhattan, KS, 66506, USA
| | - Denis M Medeiros
- Department of Molecular Biology and Biochemistry, University of Missouri-Kansas City, Kansas City, MO, 64110, USA
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, 70112, USA
| | - Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
49
|
Pigmentation Genes Show Evidence of Repeated Divergence and Multiple Bouts of Introgression in Setophaga Warblers. Curr Biol 2021; 31:643-649.e3. [DOI: 10.1016/j.cub.2020.10.094] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/15/2023]
|
50
|
Aguillon SM, Walsh J, Lovette IJ. Extensive hybridization reveals multiple coloration genes underlying a complex plumage phenotype. Proc Biol Sci 2021; 288:20201805. [PMID: 33468000 DOI: 10.1098/rspb.2020.1805] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Coloration is an important target of both natural and sexual selection. Discovering the genetic basis of colour differences can help us to understand how this visually striking phenotype evolves. Hybridizing taxa with both clear colour differences and shallow genomic divergences are unusually tractable for associating coloration phenotypes with their causal genotypes. Here, we leverage the extensive admixture between two common North American woodpeckers-yellow-shafted and red-shafted flickers-to identify the genomic bases of six distinct plumage patches involving both melanin and carotenoid pigments. Comparisons between flickers across approximately 7.25 million genome-wide SNPs show that these two forms differ at only a small proportion of the genome (mean FST = 0.008). Within the few highly differentiated genomic regions, we identify 368 SNPs significantly associated with four of the six plumage patches. These SNPs are linked to multiple genes known to be involved in melanin and carotenoid pigmentation. For example, a gene (CYP2J19) known to cause yellow to red colour transitions in other birds is strongly associated with the yellow versus red differences in the wing and tail feathers of these flickers. Additionally, our analyses suggest novel links between known melanin genes and carotenoid coloration. Our finding of patch-specific control of plumage coloration adds to the growing body of literature suggesting colour diversity in animals could be created through selection acting on novel combinations of coloration genes.
Collapse
Affiliation(s)
- Stepfanie M Aguillon
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Road, Ithaca, NY 14853, USA.,Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| | - Jennifer Walsh
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Road, Ithaca, NY 14853, USA.,Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| | - Irby J Lovette
- Department of Ecology and Evolutionary Biology, Cornell University, 215 Tower Road, Ithaca, NY 14853, USA.,Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| |
Collapse
|