1
|
Tong H, Wang J, Zhu N, Li H, Zhai Y, Shao B, Li H, Xia P, Jiang Y, Jiang C, Liu Y. A nomogram and heat map based on LASSO-Cox regression for predicting the risk of early-stage severe fever with thrombocytopenia syndrome patients developing into critical illness at 7-day and 14-day. J Med Virol 2024; 96:e29921. [PMID: 39300802 DOI: 10.1002/jmv.29921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/28/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) represents an emerging infectious disease characterized by a substantial mortality risk. Early identification of patients is crucial for effective risk assessment and timely interventions. In the present study, least absolute shrinkage and selection operator (LASSO)-Cox regression analysis was conducted to identify key risk factors associated with progression to critical illness at 7-day and 14-day. A nomogram was constructed and subsequently assessed for its predictive accuracy through evaluation and validation processes. The risk stratification of patients was performed using X-tile software. The performance of this risk stratification system was assessed using the Kaplan-Meier method. Additionally, a heat map was generated to visualize the results of these analyses. A total of 262 SFTS patients were included in this study, and four predictive factors were included in the nomogram, namely viral copies, aspartate aminotransferase (AST) level, C-reactive protein (CRP), and neurological symptoms. The AUCs for 7-day and 14-day were 0.802 [95% confidence interval (CI): 0.707-0.897] and 0.859 (95% CI: 0.794-0.925), respectively. The nomogram demonstrated good discrimination among low, moderate, and high-risk groups. The heat map effectively illustrated the relationships between risk groups and predictive factors, providing valuable insights with high predictive and practical significance.
Collapse
Affiliation(s)
- Hanwen Tong
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Jun Wang
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Naisheng Zhu
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Haopeng Li
- Department of Emergency Medicine, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, Jiangsu, China
| | - Yu Zhai
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Binxia Shao
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Huiying Li
- Department of Geriatric Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Peng Xia
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yunfei Jiang
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Chenxiao Jiang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Yun Liu
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Faivre N, Verollet C, Dumas F. The chemokine receptor CCR5: multi-faceted hook for HIV-1. Retrovirology 2024; 21:2. [PMID: 38263120 PMCID: PMC10807162 DOI: 10.1186/s12977-024-00634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/13/2024] [Indexed: 01/25/2024] Open
Abstract
Chemokines are cytokines whose primary role is cellular activation and stimulation of leukocyte migration. They perform their various functions by interacting with G protein-coupled cell surface receptors (GPCRs) and are involved in the regulation of many biological processes such as apoptosis, proliferation, angiogenesis, hematopoiesis or organogenesis. They contribute to the maintenance of the homeostasis of lymphocytes and coordinate the function of the immune system. However, chemokines and their receptors are sometimes hijacked by some pathogens to infect the host organism. For a given chemokine receptor, there is a wide structural, organizational and conformational diversity. In this review, we describe the evidence for structural variety reported for the chemokine receptor CCR5, how this variability can be exploited by HIV-1 to infect its target cells and what therapeutic solutions are currently being developed to overcome this problem.
Collapse
Affiliation(s)
- Natacha Faivre
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Toulouse, France
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Buenos Aires, Argentina
| | - Christel Verollet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Toulouse, France
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Buenos Aires, Argentina
| | - Fabrice Dumas
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France.
| |
Collapse
|
3
|
Sun L, Yin X, Sossah FL, Han X, Li Y. Comparative genomic analysis of pleurotus species reveals insights into the evolution and coniferous utilization of Pleurotus placentodes. Front Mol Biosci 2023; 10:1292556. [PMID: 38028535 PMCID: PMC10658006 DOI: 10.3389/fmolb.2023.1292556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Pleurotus placentodes (PPL) and Pleurotus cystidiosus (PCY) are economically valuable species. PPL grows on conifers, while PCY grows on broad-leaved trees. To reveal the genetic mechanism behind PPL's adaptability to conifers, we performed de novo genome sequencing and comparative analysis of PPL and PCY. We determined the size of the genomes for PPL and PCY to be 36.12 and 42.74 Mb, respectively, and found that they contain 10,851 and 15,673 protein-coding genes, accounting for 59.34% and 53.70% of their respective genome sizes. Evolution analysis showed PPL was closely related to P. ostreatus with the divergence time of 62.7 MYA, while PCY was distantly related to other Pleurotus species with the divergence time of 111.7 MYA. Comparative analysis of carbohydrate-active enzymes (CAZYmes) in PPL and PCY showed that the increase number of CAZYmes related to pectin and cellulose degradation (e.g., AA9, PL1) in PPL may be important for the degradation and colonization of conifers. In addition, geraniol degradation and peroxisome pathways identified by comparative genomes should be another factors for PPL's tolerance to conifer substrate. Our research provides valuable genomes for Pleurotus species and sheds light on the genetic mechanism of PPL's conifer adaptability, which could aid in breeding new Pleurotus varieties for coniferous utilization.
Collapse
Affiliation(s)
- Lei Sun
- Jilin Province Key Laboratory of Fungal Phenomics, Jilin Agricultural University, Changchun, China
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, China
| | - Xiaolei Yin
- Jilin Province Key Laboratory of Fungal Phenomics, Jilin Agricultural University, Changchun, China
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, China
| | - Frederick Leo Sossah
- Jilin Province Key Laboratory of Fungal Phenomics, Jilin Agricultural University, Changchun, China
- Council for Scientific and Industrial Research (CSIR), Oil Palm Research Institute, Coconut Research Programme, Sekondi, Ghana
| | - Xuerong Han
- Jilin Province Key Laboratory of Fungal Phenomics, Jilin Agricultural University, Changchun, China
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, China
| | - Yu Li
- Jilin Province Key Laboratory of Fungal Phenomics, Jilin Agricultural University, Changchun, China
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, China
| |
Collapse
|
4
|
YAP promotes cell-autonomous immune responses to tackle intracellular Staphylococcus aureus in vitro. Nat Commun 2022; 13:6995. [PMID: 36384856 PMCID: PMC9669043 DOI: 10.1038/s41467-022-34432-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Transcriptional cofactors YAP/TAZ have recently been found to support autophagy and inflammation, which are part of cell-autonomous immunity and are critical in antibacterial defense. Here, we studied the role of YAP against Staphylococcus aureus using CRISPR/Cas9-mutated HEK293 cells and a primary cell-based organoid model. We found that S. aureus infection increases YAP transcriptional activity, which is required to reduce intracellular S. aureus replication. A 770-gene targeted transcriptomic analysis revealed that YAP upregulates genes involved in autophagy/lysosome and inflammation pathways in both infected and uninfected conditions. The YAP-TEAD transcriptional activity promotes autophagic flux and lysosomal acidification, which are then important for defense against intracellular S. aureus. Furthermore, the staphylococcal toxin C3 exoenzyme EDIN-B was found effective in preventing YAP-mediated cell-autonomous immune response. This study provides key insights on the anti-S. aureus activity of YAP, which could be conserved for defense against other intracellular bacteria.
Collapse
|
5
|
Common Microbial Genital Infections and Their Impact on the Innate Immune Response to HPV in Cervical Cells. Pathogens 2022; 11:pathogens11111361. [DOI: 10.3390/pathogens11111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
The persistence of high-risk (HR) human papillomavirus (HPV) genotypes is a prerequisite of cervical cancer. It is not clear whether and how bacterial vaginosis (BV) and sexually transmitted infections (STIs) cause higher rates of persistent HPV infection. This study aimed to characterize mucosal innate immunity to HPV, comparing different conditions. Specifically, expression levels of genes coding for Toll-like receptors (TLR)7 and 9, several type III Interferon-related genes (IFNL1, 2, 3, their specific receptor subunit IFNLR1, and the IFN-stimulated gene ISG15). Chemokines CCL5 and CCL20 were measured in cervical cells positive, or not, for HPV, BV, and STIs. HPV DNA was detected in 51/120 (42.5%) enrolled women, two/third were HR-HPV genotypes. More than 50% of samples were BV- and/or STI-positive. HPV-positive women had BV, but not other STIs, more frequently than the HPV-negative. TLR9 and IFNL1 mRNAs were expressed in the LR, but much less in the HR HPV infection. Enhanced levels of TLR9, TLR7, IFNL2, and IFNLR1 were observed in HPV-positive women with BV and STI. TLR9-increased expression was associated with HPV persistence in previous studies; hence, bacterial coinfections may enhance this risk. Prospective measurements of type III IFNs and IFNLR1 are warranted to evaluate whether this response may act as a double-edged sword in infected epithelia.
Collapse
|
6
|
Song L, Zhao Y, Wang G, Huang D, Sai L. Analysis of risk factors associated with fatal outcome among severe fever with thrombocytopenia syndrome patients from 2015 to 2019 in Shandong, China. Eur J Clin Microbiol Infect Dis 2022; 41:1415-1420. [PMID: 36219345 DOI: 10.1007/s10096-022-04506-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/06/2022] [Indexed: 11/26/2022]
Abstract
To better understand the progression of severe fever with thrombocytopenia syndrome (SFTS), identify early predictors of mortality, and improve the cure rate, the present study aimed to analyze the demographic feature, clinical characteristics, and laboratory parameters of patients with SFTS and to explore the risk factors associated with fatal outcome. We retrospectively analyzed demographic feature, clinical characteristics, and laboratory parameters of 216 laboratory-confirmed SFTS patients in Shandong province between January 2015 and December 2019. Univariate analysis was used to assess the relevance between these factors and fatal outcome. Factors with P < 0.05 in univariate analysis were further analyzed using multivariable logistic regression analysis to identify the independent risk factors for mortality of SFTS. Age, five complications (including CNS symptoms, pulmonary infection, heart failure, arrhythmia, and bleeding events), and ten abnormal laboratory parameters (including serum viral load, blood platelet, ALT, AST, LDH, CK, CK-MB, Cr, serum Ca2+, and APTT) were statistically significant by univariate analysis. These factors were further analyzed by multivariable logistic regression analysis, and the results indicated that coma, pulmonary infection, high viral load, and prolonged APTT were associated with fatal outcome in SFTS patients. Our study identified four independent risk factors associated with fatal outcome for SFTS patients. The results were hoped to provide help for active treatment of SFTS. However, the identification of risk factors is not absolutely associated with fatal outcome. Patients' risk should be assessed by dynamic observation of the changes in risk factor indicators.
Collapse
Affiliation(s)
- Li Song
- Department of Infectious Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road 107, Jinan, 250012, Shandong, China
| | - Yingjie Zhao
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road 107, Jinan, 250012, Shandong, China
| | - Gang Wang
- Department of Infectious Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road 107, Jinan, 250012, Shandong, China
| | - Deyu Huang
- Department of Infectious Diseases, Affiliated Hospital of Qingdao University, Jiangsu Road 16, Qingdao, 266000, Shandong, China
| | - Lintao Sai
- Department of Infectious Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Wenhua Xi Road 107, Jinan, 250012, Shandong, China.
| |
Collapse
|
7
|
Truong AD, Hong Y, Tran HTT, Dang HV, Nguyen VK, Pham TT, Lillehoj HS, Hong YH. Characterization and functional analyses of novel chicken leukocyte immunoglobulin-like receptor subfamily B members 4 and 5. Poult Sci 2020; 98:6989-7002. [PMID: 31376355 PMCID: PMC8913971 DOI: 10.3382/ps/pez442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/23/2019] [Indexed: 12/16/2022] Open
Abstract
The inhibitory leukocyte immuno-globulin-like receptors (LILRBs) play an important role in innate immunity. Currently, no data exist regarding the role of LILRB4 and LILRB5 in the activation of immune signaling pathways in mammalian and avian species. Here, we report for the first time, the cloning and structural and functional analyses of chicken LILRB4–5 genes identified from 2 genetically disparate chicken lines. Comparison of LILRB4–5 amino acid sequences from lines 6.3 and 7.2 with those of mammalian proteins revealed 17 to 62% and 19 to 29% similarity, respectively. Phylogenetic analysis indicated that the chicken LILRB4–5 genes were closely associated with those of other species. LILRB4–5 could be subdivided into 2 groups having distinct immunoreceptor tyrosine-based inhibitory motifs, which bind to Src homology 2-containing tyrosine phosphatase 2 (SHP-2). Importantly, LILRB4–5 also upregulated the major histocompatibility complex (MHC) class I and β2-microglobulin gene expression as well as the expression of transporter associated with antigen processing 1–2, which play an important role in MHC class I activation. Our results indicate that LILRB4–5 are transcriptional regulators of the MHC class I pathway components and regulate innate immune responses. Furthermore, LILRB4–5 could activate the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway genes in macrophages and induce the expression of chemokines and T helper (Th)1, Th2, and Th17 cytokines. Our data suggest that LILRB4–5 are innate immune receptors associated with SHP-2, MHC class I, and β2-microglobulin. Additionally, they activate the JAK/STAT signaling pathway and control the expression of cytokines in macrophages.
Collapse
Affiliation(s)
- Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.,Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Ha Thi Thanh Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Hoang Vu Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Viet Khong Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Viet Nam
| | - Thu Thao Pham
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|
8
|
Ellwanger JH, Kaminski VDL, Rodrigues AG, Kulmann-Leal B, Chies JAB. CCR5 and CCR5Δ32 in bacterial and parasitic infections: Thinking chemokine receptors outside the HIV box. Int J Immunogenet 2020; 47:261-285. [PMID: 32212259 DOI: 10.1111/iji.12485] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022]
Abstract
The CCR5 molecule was reported in 1996 as the main HIV-1 co-receptor. In that same year, the CCR5Δ32 genetic variant was described as a strong protective factor against HIV-1 infection. These findings led to extensive research regarding the CCR5, culminating in critical scientific advances, such as the development of CCR5 inhibitors for the treatment of HIV infection. Recently, the research landscape surrounding CCR5 has begun to change. Different research groups have realized that, since CCR5 has such important effects in the chemokine system, it could also affect other different physiological systems. Therefore, the effect of reduced CCR5 expression due to the presence of the CCR5Δ32 variant began to be further studied. Several studies have investigated the role of CCR5 and the impacts of CCR5Δ32 on autoimmune and inflammatory diseases, various types of cancer, and viral diseases. However, the role of CCR5 in diseases caused by bacteria and parasites is still poorly understood. Therefore, the aim of this article is to review the role of CCR5 and the effects of CCR5Δ32 on bacterial (brucellosis, osteomyelitis, pneumonia, tuberculosis and infection by Chlamydia trachomatis) and parasitic infections (toxoplasmosis, leishmaniasis, Chagas disease and schistosomiasis). Basic information about each of these infections was also addressed. The neglected role of CCR5 in fungal disease and emerging studies regarding the action of CCR5 on regulatory T cells are briefly covered in this review. Considering the "renaissance of CCR5 research," this article is useful for updating researchers who develop studies involving CCR5 and CCR5Δ32 in different infectious diseases.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Valéria de Lima Kaminski
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Andressa Gonçalves Rodrigues
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Bruna Kulmann-Leal
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| |
Collapse
|
9
|
Noh JR, Kim JH, Na SY, Lee IB, Seo YJ, Choi JH, Seo Y, Lee TG, Choi HS, Kim YH, Lee CH. Hepatocyte CREBH deficiency aggravates inflammatory liver injury following chemokine-dependent neutrophil infiltration through upregulation of NF-κB p65 in mice. Arch Toxicol 2019; 94:509-522. [DOI: 10.1007/s00204-019-02633-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/26/2019] [Indexed: 12/31/2022]
|
10
|
Yan Y, Chen R, Wang X, Hu K, Huang L, Lu M, Hu Q. CCL19 and CCR7 Expression, Signaling Pathways, and Adjuvant Functions in Viral Infection and Prevention. Front Cell Dev Biol 2019; 7:212. [PMID: 31632965 PMCID: PMC6781769 DOI: 10.3389/fcell.2019.00212] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022] Open
Abstract
Chemokine (C–C motif) ligand 19 (CCL19) is a critical regulator of the induction of T cell activation, immune tolerance, and inflammatory responses during continuous immune surveillance, homeostasis, and development. Migration of CC-chemokine receptor 7 (CCR7)-expressing cells to secondary lymphoid organs is a crucial step in the onset of adaptive immunity, which is initiated by a complex interaction between CCR7 and its cognate ligands. Recent advances in knowledge regarding the response of the CCL19-CCR7 axis to viral infections have elucidated the complex network of interplay among the invading virus, target cells and host immune responses. Viruses use various strategies to evade or delay the cytokine response, gaining additional time to replicate in the host. In this review, we summarize the impacts of CCL19 and CCR7 expression on the regulation of viral pathogenesis with an emphasis on the corresponding signaling pathways and adjuvant mechanisms. We present and discuss the expression, signaling adaptor proteins and effects of CCL19 and CCR7 as these molecules differentially impact different viral infections and viral life cycles in host homeostatic strategies. The underlying mechanisms discussed in this review may assist in the design of novel agents to modulate chemokine activity for viral prevention.
Collapse
Affiliation(s)
- Yan Yan
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China.,The International Joint Research Laboratory for Infection and Immunity (China-Germany), Jiangnan University, Wuxi, China
| | - Renfang Chen
- The International Joint Research Laboratory for Infection and Immunity (China-Germany), Jiangnan University, Wuxi, China.,Hepatology Institute of Wuxi, The Fifth People's Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xu Wang
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Kai Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Lihua Huang
- The International Joint Research Laboratory for Infection and Immunity (China-Germany), Jiangnan University, Wuxi, China.,Hepatology Institute of Wuxi, The Fifth People's Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Mengji Lu
- The International Joint Research Laboratory for Infection and Immunity (China-Germany), Jiangnan University, Wuxi, China.,Institute of Virology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Institute for Infection and Immunity, St. George's, University of London, London, United Kingdom
| |
Collapse
|
11
|
Zhang H, Wu ZM, Yang YP, Shaukat A, Yang J, Guo YF, Zhang T, Zhu XY, Qiu JX, Deng GZ, Shi DM. Catalpol ameliorates LPS-induced endometritis by inhibiting inflammation and TLR4/NF-κB signaling. J Zhejiang Univ Sci B 2019; 20:816-827. [PMID: 31489801 PMCID: PMC6751487 DOI: 10.1631/jzus.b1900071] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Catalpol is the main active ingredient of an extract from Radix rehmanniae, which in a previous study showed a protective effect against various types of tissue injury. However, a protective effect of catalpol on uterine inflammation has not been reported. In this study, to investigate the protective mechanism of catalpol on lipopolysaccharide (LPS)-induced bovine endometrial epithelial cells (bEECs) and mouse endometritis, in vitro and in vivo inflammation models were established. The Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway and its downstream inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), western blot (WB), and immunofluorescence techniques. The results from ELISA and qRT-PCR showed that catalpol dose-dependently reduced the expression of pro-inflammatory cytokines such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β, and IL-6, and chemokines such as C-X-C motif chemokine ligand 8 (CXCL8) and CXCL5, both in bEECs and in uterine tissue. From the experimental results of WB, qRT-PCR, and immunofluorescence, the expression of TLR4 and the phosphorylation of NF-κB p65 were markedly inhibited by catalpol compared with the LPS group. The inflammatory damage to the mouse uterus caused by LPS was greatly reduced and was accompanied by a decline in myeloperoxidase (MPO) activity. The results of this study suggest that catalpol can exert an anti-inflammatory impact on LPS-induced bEECs and mouse endometritis by inhibiting inflammation and activation of the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Zhi-min Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Ya-ping Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Aftab Shaukat
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying-fang Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin-ying Zhu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin-xia Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Gan-zhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- †E-mail:
| | - Dong-mei Shi
- Department of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- †E-mail:
| |
Collapse
|
12
|
Sun B, Lei Y, Cao Z, Zhou Y, Sun Y, Wu Y, Wang S, Guo W, Liu C. TroCCL4, a CC chemokine of Trachinotus ovatus, is involved in the antimicrobial immune response. FISH & SHELLFISH IMMUNOLOGY 2019; 86:525-535. [PMID: 30521967 DOI: 10.1016/j.fsi.2018.11.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
CC chemokines are a large subfamily of chemokines that play an important role in the innate immune system. To date, several CC chemokines have been identified in fish species; however, the activities and functions of these putative chemokines remain ambiguous in teleosts, especially in the golden pompano, Trachinotus ovatus. Here, we characterized CC chemokine ligand 4 from T. ovatus (TroCCL4) and studied its functions. TroCCL4 contains a 294 bp open reading frame that encodes a putative peptide comprising 97 amino acids. TroCCL4 shares a high amino acid sequence similarity of 31.11%-78.35% with other CC chemokines sequences in humans and teleosts and has four cysteine residues that are conserved among other CC chemokines. TroCCL4 is also related to the macrophage inflammatory protein (MIP) group of CC chemokines. TroCCL4 expression was most abundant in immune organs and significantly upregulated in a time-dependent manner following Edwardsiella tarda infection. Recombinant TroCCL4 (rTroCCL4) induced the migration of peripheral blood leukocytes and the cellular proliferation of head kidney lymphocytes. In addition, rTroCCL4 inhibited the growth of Escherichia coli and E. tarda, indicating an antimicrobial function. Furthermore, the results of in vivo analysis showed that TroCCL4 overexpression in T. ovatus significantly enhanced macrophage activation; upregulated the gene expression of interleukin 1-β (IL-1β), interleukin 15 (IL15), interferon-induced Mx protein (Mx), tumor necrosis factor α (TNFα), complement C3, and major histocompatibility complex (MHC) class Iα and class IIα; and protected against bacterial infection in fish tissues. In contrast, knockdown of TroCCL4 expression resulted in increased bacterial dissemination and colonization in fish tissues. Taken together, our results provide evidence indicating that TroCCL4 has the ability to stimulate leukocytes and macrophages and enhance host immunity to defend against bacterial infection.
Collapse
Affiliation(s)
- Baiming Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Yang Lei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China.
| | - Ying Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Shifeng Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Weiliang Guo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Chunsheng Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| |
Collapse
|
13
|
Alfituri OA, Ajibola O, Brewer JM, Garside P, Benson RA, Peel T, Morrison LJ, Mabbott NA. Effects of host-derived chemokines on the motility and viability of Trypanosoma brucei. Parasite Immunol 2019; 41:e12609. [PMID: 30525202 PMCID: PMC6767366 DOI: 10.1111/pim.12609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/29/2018] [Indexed: 12/04/2022]
Abstract
African trypanosomes (Trypanosoma brucei spp.) are extracellular, hemoflagellate, protozoan parasites. Mammalian infection begins when the tsetse fly vector injects trypanosomes into the skin during blood feeding. The trypanosomes then reach the draining lymph nodes before disseminating systemically. Intravital imaging of the skin post-tsetse fly bite revealed that trypanosomes were observed both extravascularly and intravascularly in the lymphatic vessels. Whether host-derived cues play a role in the attraction of the trypanosomes towards the lymphatic vessels to aid their dissemination from the site of infection is not known. Since chemokines can mediate the attraction of leucocytes towards the lymphatics, in vitro chemotaxis assays were used to determine whether chemokines might also act as chemoattractants for trypanosomes. Although microarray data suggested that the chemokines CCL8, CCL19, CCL21, CCL27 and CXCL12 were highly expressed in mouse skin, they did not stimulate the chemotaxis of T brucei. Certain chemokines also possess potent antimicrobial properties. However, none of the chemokines tested exerted any parasiticidal effects on T brucei. Thus, our data suggest that host-derived chemokines do not act as chemoattractants for T brucei. Identification of the mechanisms used by trypanosomes to establish host infection will aid the development of novel approaches to block disease transmission.
Collapse
Affiliation(s)
- Omar A. Alfituri
- The Roslin Institute and Royal (Dick) School of Veterinary SciencesUniversity of EdinburghEdinburghUK
| | - Olumide Ajibola
- Wellcome Centre for Molecular ParasitologyInstitute of Infection, Immunity and InflammationCollege of Medicine and Veterinary MedicineGlasgowUK
- Department of MicrobiologyFederal University Birnin KebbiBirnin KebbiNigeria
| | - James M. Brewer
- Wellcome Centre for Molecular ParasitologyInstitute of Infection, Immunity and InflammationCollege of Medicine and Veterinary MedicineGlasgowUK
| | - Paul Garside
- Wellcome Centre for Molecular ParasitologyInstitute of Infection, Immunity and InflammationCollege of Medicine and Veterinary MedicineGlasgowUK
| | - Robert A. Benson
- Wellcome Centre for Molecular ParasitologyInstitute of Infection, Immunity and InflammationCollege of Medicine and Veterinary MedicineGlasgowUK
| | - Tamlyn Peel
- Centre for Inflammation Biology and Cancer ImmunologyFaculty of Life SciencesKing's College LondonLondonUK
| | - Liam J. Morrison
- The Roslin Institute and Royal (Dick) School of Veterinary SciencesUniversity of EdinburghEdinburghUK
| | - Neil A. Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
14
|
Lobo AM, Agelidis AM, Shukla D. Pathogenesis of herpes simplex keratitis: The host cell response and ocular surface sequelae to infection and inflammation. Ocul Surf 2019; 17:40-49. [PMID: 30317007 PMCID: PMC6340725 DOI: 10.1016/j.jtos.2018.10.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/26/2018] [Accepted: 10/10/2018] [Indexed: 02/08/2023]
Abstract
Herpes simplex virus type 1 (HSV) keratitis is a leading cause of infectious blindness. Clinical disease occurs variably throughout the cornea from epithelium to endothelium and recurrent HSV stromal keratitis is associated with corneal scarring and neovascularization. HSV keratitis can be associated with ocular pain and subsequent neutrophic keratopathy. Host cell interactions with HSV trigger an inflammatory cascade responsible not only for clearance of virus but also for progressive corneal opacification due to inflammatory cell infiltrate, angiogenesis, and corneal nerve loss. Current antiviral therapies target viral replication to decrease disease duration, severity and recurrence, but there are limitations to these agents. Therapies directed towards viral entry into cells, protein synthesis, inflammatory cytokines and vascular endothelial growth factor pathways in animal models represent promising new approaches to the treatment of recurrent HSV keratitis.
Collapse
Affiliation(s)
- Ann-Marie Lobo
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.
| | - Alex M Agelidis
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Deepak Shukla
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
15
|
Truong AD, Hong Y, Lee J, Lee K, Tran HTT, Dang HV, Nguyen VK, Lillehoj HS, Hong YH. Chicken novel leukocyte immunoglobulin-like receptor subfamilies B1 and B3 are transcriptional regulators of major histocompatibility complex class I genes and signaling pathways. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 32:614-628. [PMID: 30381742 PMCID: PMC6502725 DOI: 10.5713/ajas.18.0561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
Objective The inhibitory leukocyte immunoglobulin-like receptors (LILRBs) play an important role in innate immunity. The present study represents the first description of the cloning and structural and functional analysis of LILRB1 and LILRB3 isolated from two genetically disparate chicken lines. Methods Chicken LILRB1-3 genes were identified by bioinformatics approach. Expression studies were performed by transfection, quantitative polymerase chain reaction. Signal transduction was analyzed by western blots, immunoprecipitation and flow cytometric. Cytokine levels were determined by enzyme-linked immunosorbent assay. Results Amino acid homology and phylogenetic analyses showed that the homologies of LILRB1 and LILRB3 in the chicken line 6.3 to those proteins in the chicken line 7.2 ranged between 97%–99%, while homologies between chicken and mammal proteins ranged between 13%–19%, and 13%–69%, respectively. Our findings indicate that LILRB1 and LILRB3 subdivided into two groups based on the immunoreceptor tyrosine-based inhibitory motifs (ITIM) present in the transmembrane domain. Chicken line 6.3 has two ITIM motifs of the sequence LxYxxL and SxYxxV while line 7.2 has two ITIM motifs of the sequences LxYxxL and LxYxxV. These motifs bind to SHP-2 (protein tyrosine phosphatase, non-receptor type 11) that plays a regulatory role in immune functions. Moreover, our data indicate that LILRB1 and LILRB3 associated with and activated major histocompatibility complex (MHC) class I and β2-microglobulin and induced the expression of transporters associated with antigen processing, which are essential for MHC class I antigen presentation. This suggests that LILRB1 and LILRB3 are transcriptional regulators, modulating the expression of components in the MHC class I pathway and thereby regulating immune responses. Furthermore, LILRB1 and LILRB3 activated Janus kinase2/tyrosine kinase 2 (JAK2/TYK2); signal transducer and activator of transcription1/3 (STAT1/3), and suppressor of cytokine signaling 1 genes expressed in Macrophage (HD11) cells, which induced Th1, Th2, and Th17 cytokines. Conclusion These data indicate that LILRB1 and LILRB3 are innate immune receptors associated with SHP-2, MHC class I, β2-microglobulin, and they activate the Janus kinase/signal transducer and activator of transcription signaling pathway. Thus, our study provides novel insights into the regulation of immunity and immunopathology.
Collapse
Affiliation(s)
- Anh Duc Truong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.,Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam
| | - Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Janggeun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Kyungbaek Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Ha Thi Thanh Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam
| | - Hoang Vu Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam
| | - Viet Khong Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi 100000, Vietnam
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
16
|
Zarifi Roodposhti S, Motalleb G, Nikokar I. Rs4073 single nucleotide polymorphism of interleukin-8 (CXCL8/IL-8) and susceptibility to pulmonary tuberculosis in Gilan, Northern Iran. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
WITHDRAWN: Rs4073 single nucleotide polymorphism of interleukin-8 (CXCL8/IL-8) and susceptibility to pulmonary tuberculosis in Gilan, northern Iran. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Liu MM, Lei XY, Yu XJ. Meta-analysis of the clinical and laboratory parameters of SFTS patients in China. Virol J 2016; 13:198. [PMID: 27899121 PMCID: PMC5129669 DOI: 10.1186/s12985-016-0661-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/25/2016] [Indexed: 04/09/2023] Open
Abstract
Background Severe fever with thrombocytopenia syndrome (SFTS) is an emerging hemorrhagic fever in East Asia, which is caused by a novel bunyavirus-SFTSV. Many studies have reported the clinical characters of SFTS patients, but the reports were not consistent and a systematic summary of clinical manifestations and laboratory parameters are not available. Method A comprehensive literature research of Web of Science, PubMed, Wan Fang Data, and Chinese National Knowledge Infrastructure databases was conducted on articles which have described the clinical characters of SFTS patients. Data from selected studies were pooled by using STATA VERSION 12.0 software. Result Nine articles comprising 844 laboratory-confirmed SFTSV cases were included in this meta-analysis. The pooled case fatality rate was 16% (95% CI: 0.13–0.19). The major clinical characters of patients with SFTSV infection were fever, thrombocytopenia, leucopenia, gastrointestinal symptoms, and central nervous system manifestations. The risk factors for severe disease included bleeding tendency, central nervous system manifestations, elevated serum enzymes, and high viral load. Although there is no specific antiviral therapy for SFTSV infection, symptomatic treatment and supportive therapy including intensive monitoring is the most essential part of case management. Conclusion The major clinical characters of patients with SFTSV infection were fever, thrombocytopenia, leucopenia and gastrointestinal symptoms, and central nervous system manifestations. The risk factors for severity and fatality among SFTS patients included: old age, CNS manifestations, bleeding tendency, elevated serum enzymes, and high vial load.
Collapse
Affiliation(s)
- Miao-Miao Liu
- School of Public Health, Shandong University, 250012, Jinan, China
| | - Xiao-Ying Lei
- School of Public Health, Shandong University, 250012, Jinan, China
| | - Xue-Jie Yu
- School of Public Health, Shandong University, 250012, Jinan, China. .,Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555-0609, USA.
| |
Collapse
|
19
|
Cheng J, Li H, Jie S. Association of the Serum Angiotensin II Level with Disease Severity in Severe Fever with Thrombocytopenia Syndrome Patients. Intern Med 2016; 55:895-900. [PMID: 27086801 DOI: 10.2169/internalmedicine.55.5296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by a novel Bunyavirus. Recent data suggest that the physiological balance of multiple proinflammatory cytokines is substantially changed in cases of severe fever with thrombocytopenia syndrome virus (SFTSV) infection, and the inflammatory response probably plays an important role in disease progression. Angiotensin II is an important active substance of the renin-angiotensin system, and studies have demonstrated that angiotensin II is involved in key events in the inflammatory process and can regulate inflammatory cell responses. METHODS In order to elucidate the role of angiotensin II in the pathogenesis of SFTS, we collected serum samples from SFTS patients in the acute or convalescent phase and tested the angiotensin II levels using an enzyme-linked immunosorbent assay as well as SFTSV viral RNA with real-time reverse-transcriptase polymerase chain reaction. Furthermore, we explored possible correlations between the angiotensin II levels and clinical parameters in SFTS patients. RESULTS Our data showed that the serum level of angiotensin II was significantly increased in the acute phase compared with that seen in the convalescent phase and the healthy controls, while there were no significant differences between the convalescent cases and healthy controls (p>0.05). A correlation analysis demonstrated that the level of angiotensin II positively correlated with the SFTS viral RNA load. The angiotensin II levels were also found to be correlated with clinical parameters indicating impairments in organ functions. Moreover, we also found that the angiotensin II levels were significantly increased in the severe cases versus the non-severe cases (p<0.001). CONCLUSION The serum angiotensin II levels in SFTS patients may be used to stratify the disease severity and are possibly predictive of disease outcomes.
Collapse
Affiliation(s)
- Jiamei Cheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | | | | |
Collapse
|
20
|
Fas/FasL pathway participates in regulation of antiviral and inflammatory response during mousepox infection of lungs. Mediators Inflamm 2015; 2015:281613. [PMID: 25873756 PMCID: PMC4385687 DOI: 10.1155/2015/281613] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 02/26/2015] [Indexed: 11/25/2022] Open
Abstract
Fas receptor-Fas ligand (FasL) signalling is involved in apoptosis of immune cells as well as of the virus infected target cells but increasing evidence accumulates on Fas as a mediator of apoptosis-independent processes such as induction of activating and proinflammatory signals. In this study, we examined the role of Fas/FasL pathway in inflammatory and antiviral response in lungs using a mousepox model applied to C57BL6/J, B6. MRL-Faslpr/J, and B6Smn.C3-Faslgld/J mice. Ectromelia virus (ECTV) infection of Fas- and FasL-deficient mice led to increased virus titers in lungs and decreased migration of IFN-γ expressing NK cells, CD4+ T cells, CD8+ T cells, and decreased IL-15 expression. The lungs of ECTV-infected Fas- and FasL-deficient mice showed significant inflammation during later phases of infection accompanied by decreased expression of anti-inflammatory IL-10 and TGF-β1 cytokines and disturbances in CXCL1 and CXCL9 expression. Experiments in vitro demonstrated that ECTV-infected cultures of epithelial cells, but not macrophages, upregulate Fas and FasL and are susceptible to Fas-induced apoptosis. Our study demonstrates that Fas/FasL pathway during ECTV infection of the lungs plays an important role in controlling local inflammatory response and mounting of antiviral response.
Collapse
|
21
|
Yi X, Li W, Li H, Jie S. Circulating regulatory T cells in patients with severe fever with thrombocytopenia syndrome. Infect Dis (Lond) 2015; 47:294-301. [PMID: 25712790 DOI: 10.3109/00365548.2014.987812] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome (SFTS) is a newly emerging infectious disease caused by SFTS virus (SFTSV). Immunologic factors have been proved to be related to the occurrence and development of SFTS; however, their role still remains to be further elucidated. METHODS Samples from 30 patients with laboratory-confirmed SFTS and 15 healthy controls were subjected to flow cytometry to detect the proportion of CD4+/total lymphocytes, CD4 + CD25+/CD4 + cells and CD4 + CD25+ Foxp3+/CD4 + CD25+ cells in circulating blood and to evaluate their potential function in the development of SFTS. RESULTS The data showed that a reduced proportion of CD4+/total lymphocytes and CD4 + CD25+/CD4 + cells was observed in patients with SFTS compared with healthy controls. In contrast, the percentage of CD4 + CD25+ Foxp3+/CD4 + CD25+ cells in the patients in the SFTS group was significantly elevated. Furthermore, we investigated the dynamic changes of the circulating regulatory T cells (Tregs) in patients with SFTS at different stages. The results showed that the proportion of CD4+/total lymphocytes and CD4 + CD25+/CD4 + cells in the non-severe group was prominently higher than that in patients with severe SFTS. Conversely, the proportion of CD4 + CD25+ Foxp3+/CD4 + CD25+ cells was lower in the non-severe group than in the severe group. Additionally, the circulating Tregs reverted to normal ranges during the convalescent phase of SFTSV infection. Moreover, the Tregs level correlated with various clinical parameters. CONCLUSION We demonstrated that SFTSV infection resulted in a robust circulating Treg response in patients with SFTS. Our investigation suggested that the proportions of CD4+/total lymphocytes and CD4 + CD25+ Foxp3+/CD4 + CD25+ cells in circulating blood could serve as sensitive indices to evaluate the changes in Tregs in SFTS and predict the progression of SFTS.
Collapse
|
22
|
Pathogenic Escherichia coli and lipopolysaccharide enhance the expression of IL-8, CXCL5, and CXCL10 in canine endometrial stromal cells. Theriogenology 2015; 84:34-42. [PMID: 25765298 DOI: 10.1016/j.theriogenology.2015.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/05/2015] [Accepted: 02/05/2015] [Indexed: 01/05/2023]
Abstract
Chemokines play a central role in cellular communication in response to bacterial infection. However, the knowledge of the chemokine responses to bacterial infections in dogs remains limited. Uterine bacterial infection (pyometra) is one of the most common bacterial diseases in dogs and causes sepsis in most of the cases. We have shown previously that dogs with pyometra have higher messenger RNA (mRNA) levels of chemokines in uterus. To assess whether the stromal part of the endometrium expresses chemokines in response to bacterial infection, we cultured endometrial stromal cells isolated from healthy dogs and exposed them to either live pathogenic Escherichia coli, isolated from the uterus of a dog with pyometra, or lipopolysaccharide. Changes in the mRNA expression of ELR(+) CXC chemokines, IL-8, CXCL5, CXCL7, and ELR(-) CXC chemokine, CXCL10, were measured after 24 hours using quantitative real-time polymerase chain reaction. Levels of IL-8, CXCL5, and CXCL10 were upregulated in endometrial stromal cells exposed to E coli and lipopolysaccharide, whereas the level of CXCL7 was decreased or unaffected. In addition, levels of IL-8 and CXCL5, but not CXCL7 or CXCL10, were significantly higher in dogs with pyometra than those in healthy dogs. Our findings show that pathogenic uterine-derived E coli induces a CXC chemokine response both in cultured endometrial stromal cells within 24 hours and in pyometra-affected uteri from dogs. Stromal cells could therefore play an important role in early neutrophil and T cell recruitment to the site of inflammation during gram-negative bacterial infection of the uterus. Further studies are needed to clarify the role of chemokines in host response to bacterial infection in dogs and the possibility of using chemokines as diagnostic parameters for bacterial infection in this species.
Collapse
|
23
|
Tomankova T, Kriegova E, Liu M. Chemokine receptors and their therapeutic opportunities in diseased lung: far beyond leukocyte trafficking. Am J Physiol Lung Cell Mol Physiol 2015; 308:L603-18. [PMID: 25637606 DOI: 10.1152/ajplung.00203.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/28/2015] [Indexed: 12/13/2022] Open
Abstract
Chemokine receptors and their chemokine ligands, key mediators of inflammatory and immune cell trafficking, are involved in the regulation of both physiological and pathological processes in the lung. The discovery that chemokine receptors/chemokines, typically expressed by inflammatory and immune cells, are also expressed in structural lung tissue cells suggests their role in mediating the restoration of lung tissue structure and functions. Thus, chemokine receptors/chemokines contribute not only to inflammatory and immune responses in the lung but also play a critical role in the regulation of lung tissue repair, regeneration, and remodeling. This review aims to summarize current state-of-the-art on chemokine receptors and their ligands in lung diseases such as chronic obstructive pulmonary disease, asthma/allergy, pulmonary fibrosis, acute lung injury, and lung infection. Furthermore, the therapeutic opportunities of chemokine receptors in aforementioned lung diseases are discussed. The review also aims to delineate the potential contribution of chemokine receptors to the processes leading to repair/regeneration of the lung tissue.
Collapse
Affiliation(s)
- Tereza Tomankova
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University Olomouc, Czech Republic; Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; and
| | - Eva Kriegova
- Faculty of Medicine and Dentistry, Department of Immunology, Palacky University Olomouc, Czech Republic
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; and Faculty of Medicine, Departments of Physiology, Surgery, and Medicine, Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
HSV-2 regulates monocyte inflammatory response via the Fas/FasL pathway. PLoS One 2013; 8:e70308. [PMID: 23922974 PMCID: PMC3726399 DOI: 10.1371/journal.pone.0070308] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 06/18/2013] [Indexed: 11/21/2022] Open
Abstract
Monocytic cells represent important cellular elements of the innate and adaptive immune responses in viral infections. We assessed the role of Fas/FasL in promoting monocyte apoptosis during HSV-2 infection by using an in vitro model based on the murine RAW 264.7 monocytic cell line and an in vivo murine model of HSV-2 infection applied to C57BL6, MRL-Faslpr/J (Fas−/−) and C3-Faslgld/J (FasL−/−) mice. HSV-2 infection of the monocytic cell line led to early induction of apoptosis, with no protective expression of anti-apoptotic Bcl-2. HSV-2 infected monocytes up-regulated Fas and FasL expression early during in vitro infection but were susceptible to Fas induced apoptosis. The vaginal monocytes in the HSV-2 murine model of infection up-regulated FasL expression and were susceptible to Fas induced apoptosis. HSV-2 infection of Fas and FasL- deficient mice led to decreased apoptosis of monocytes and impaired recruitment of NK, CD4+ and CD8+ T cells within the infection sites. The vaginal lavages of HSV-2 infected Fas and FasL- deficient showed decreased production of CXCL9, CXCL10 and TNF-α in comparison to HSV-2 infected wild-type mice strain. The decreased recruitment of immune competent cells was accompanied by delayed virus clearance from the infected tissue. Triggering of the Fas receptor on HSV-2 infected monocytes in vitro up-regulated the expression of CXCL9 chemokines and the cytokine TNF-α. Our study provides novel insights on the role of Fas/FasL pathway not only in apoptosis of monocytes but also in regulating local immune response by monocytes during HSV-2 infection.
Collapse
|
25
|
Sun Y, Jin C, Zhan F, Wang X, Liang M, Zhang Q, Ding S, Guan X, Huo X, Li C, Qu J, Wang Q, Zhang S, Zhang Y, Wang S, Xu A, Bi Z, Li D. Host cytokine storm is associated with disease severity of severe fever with thrombocytopenia syndrome. J Infect Dis 2012; 206:1085-94. [PMID: 22904342 DOI: 10.1093/infdis/jis452] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome (SFTS) is an emerging viral disease in China, caused by SFTS virus (SFTSV). Severe SFTS patients can quickly proceed to multiorgan dysfunction and death; however, underlying pathogenic mechanisms remain unclear. METHODS Serum samples from 15 fatal and 44 nonfatal SFTS cases were subjected to multiplex-microbead immunoassays to detect a broad spectrum of cytokines. The viral load and virus-specific IgG titers were also tested by real-time PCR and ELISA, respectively. RESULTS Cytokines IL-1RA, IL-6, IL-10, G-CSF, IP-10, and MCP-1 were elevated in SFTS patients and produced at robust levels in fatal cases. In contrast, cytokines PDGF-BB and RANTES decreased in SFTS patients. These cytokines reverted to normal ranges during the convalescent phase of SFTSV infection. Cytokines IL-1β, IL-8, MIP-1α, and MIP-1β showed a unique pattern of elevation in fatal cases but not in nonfatal cases. However, these cytokines increased in the convalescent phase of nonfatal SFTS cases. Our regression analysis revealed that the serum viral load correlated with these cytokines. Moreover, levels of these cytokines correlated with various clinical parameters and virus-specific IgG titers. CONCLUSION The study demonstrates that SFTSV infection induces a cytokine storm with abnormally expressed cytokine profiles, which are associated with the disease severity.
Collapse
Affiliation(s)
- Yulan Sun
- National Institute for Viral Disease Control and Prevention, China Centers for Disease Control and Prevention (CDC), China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gai ZT, Zhang Y, Liang MF, Jin C, Zhang S, Zhu CB, Li C, Li XY, Zhang QF, Bian PF, Zhang LH, Wang B, Zhou N, Liu JX, Song XG, Xu A, Bi ZQ, Chen SJ, Li DX. Clinical progress and risk factors for death in severe fever with thrombocytopenia syndrome patients. J Infect Dis 2012; 206:1095-102. [PMID: 22850122 DOI: 10.1093/infdis/jis472] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by the SFTS virus (SFTSV) with an average fatality rate of 12%. The clinical factors for death in SFTS patients remain unclear. METHODS Clinical features and laboratory parameters were dynamically collected for 11 fatal and 48 non-fatal SFTS cases. Univariate logistic regression was used to evaluate the risk factors associated with death. RESULTS Dynamic tracking of laboratory parameters revealed that during the initial fever stage, the viral load was comparable for the patients who survived as well as the ones that died. Then in the second stage when multi-organ dysfunction occurred, from 7-13 days after disease onset, the viral load decreased in survivors but it remained high in the patients that died. The key risk factors that contributed to patient death were elevated serum aspartate aminotransferase, lactate dehydrogenase, creatine kinase, and creatine kinase fraction, as well as the appearance of CNS (central nervous system) symptoms, hemorrhagic manifestation, disseminated intravascular coagulation, and multi-organ failure. All clinical markers reverted to normal in the convalescent stage for SFTS patients who survived. CONCLUSIONS We identified a period of 7-13 days after the onset of illness as the critical stage in SFTS progression. A sustained serum viral load may indicate that disease conditions will worsen and lead to death.
Collapse
Affiliation(s)
- Zhong-Tao Gai
- Jinan Infectious Disease Hospital, Shandong University, Shandong Province, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Deletions in the neuraminidase stalk region of H2N2 and H9N2 avian influenza virus subtypes do not affect postinfluenza secondary bacterial pneumonia. J Virol 2012; 86:3564-73. [PMID: 22278240 DOI: 10.1128/jvi.05809-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We investigated the synergism between influenza virus and Streptococcus pneumoniae, particularly the role of deletions in the stalk region of the neuraminidase (NA) of H2N2 and H9N2 avian influenza viruses. Deletions in the NA stalk (ΔNA) had no effect on NA activity or on the adherence of S. pneumoniae to virus-infected human alveolar epithelial (A549) and mouse lung adenoma (LA-4) cells, although it delayed virus elution from turkey red blood cells. Sequential S. pneumoniae infection of mice previously inoculated with isogenic recombinant H2N2 and H9N2 influenza viruses displayed severe pneumonia, elevated levels of intrapulmonary proinflammatory responses, and death. No differences between the WT and ΔNA mutant viruses were detected with respect to effects on postinfluenza pneumococcal pneumonia as measured by bacterial growth, lung inflammation, morbidity, mortality, and cytokine/chemokine concentrations. Differences were observed, however, in influenza virus-infected mice that were treated with oseltamivir prior to a challenge with S. pneumoniae. Under these circumstances, mice infected with ΔNA viruses were associated with a better prognosis following a secondary bacterial challenge. These data suggest that the H2N2 and H9N2 subtypes of avian influenza A viruses can contribute to secondary bacterial pneumonia and deletions in the NA stalk may modulate its outcome in the context of antiviral therapy.
Collapse
|
28
|
Lee S, Kim JH, Kim JH, Seo JW, Han HS, Lee WH, Mori K, Nakao K, Barasch J, Suk K. Lipocalin-2 Is a chemokine inducer in the central nervous system: role of chemokine ligand 10 (CXCL10) in lipocalin-2-induced cell migration. J Biol Chem 2011; 286:43855-43870. [PMID: 22030398 DOI: 10.1074/jbc.m111.299248] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The secreted protein lipocalin-2 (LCN2) has been implicated in diverse cellular processes, including cell morphology and migration. Little is known, however, about the role of LCN2 in the CNS. Here, we show that LCN2 promotes cell migration through up-regulation of chemokines in brain. Studies using cultured glial cells, microvascular endothelial cells, and neuronal cells suggest that LCN2 may act as a chemokine inducer on the multiple cell types in the CNS. In particular, up-regulation of CXCL10 by JAK2/STAT3 and IKK/NF-κB pathways in astrocytes played a pivotal role in LCN2-induced cell migration. The cell migration-promoting activity of LCN2 in the CNS was verified in vivo using mouse models. The expression of LCN2 was notably increased in brain following LPS injection or focal injury. Mice lacking LCN2 showed the impaired migration of astrocytes to injury sites with a reduced CXCL10 expression in the neuroinflammation or injury models. Thus, the LCN2 proteins, secreted under inflammatory conditions, may amplify neuroinflammation by inducing CNS cells to secrete chemokines such as CXCL10, which recruit additional inflammatory cells.
Collapse
Affiliation(s)
- Shinrye Lee
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Jong-Heon Kim
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Jae-Hong Kim
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Jung-Wan Seo
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Hyung-Soo Han
- Department of Physiology, Brain Science & Engineering Institute, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Won-Ha Lee
- Departments of School of Life Sciences and Biotechnology, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Kiyoshi Mori
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kazuwa Nakao
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Jonathan Barasch
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York 10027
| | - Kyoungho Suk
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 700-422, Korea.
| |
Collapse
|
29
|
Identification of the bacterial protein FtsX as a unique target of chemokine-mediated antimicrobial activity against Bacillus anthracis. Proc Natl Acad Sci U S A 2011; 108:17159-64. [PMID: 21949405 DOI: 10.1073/pnas.1108495108] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chemokines are a family of chemotactic cytokines that function in host defense by orchestrating cellular movement during infection. In addition to this function, many chemokines have also been found to mediate the direct killing of a range of pathogenic microorganisms through an as-yet-undefined mechanism. As an understanding of the molecular mechanism and microbial targets of chemokine-mediated antimicrobial activity is likely to lead to the identification of unique, broad-spectrum therapeutic targets for effectively treating infection, we sought to investigate the mechanism by which the chemokine CXCL10 mediates bactericidal activity against the Gram-positive bacterium Bacillus anthracis, the causative agent of anthrax. Here, we report that disruption of the gene ftsX, which encodes the transmembrane domain of a putative ATP-binding cassette transporter, affords resistance to CXCL10-mediated antimicrobial effects against vegetative B. anthracis bacilli. Furthermore, we demonstrate that in the absence of FtsX, CXCL10 is unable to localize to its presumed site of action at the bacterial cell membrane, suggesting that chemokines interact with specific, identifiable bacterial components to mediate direct microbial killing. These findings provide unique insight into the mechanism of CXCL10-mediated bactericidal activity and establish, to our knowledge, the first description of a bacterial component critically involved in the ability of host chemokines to target and kill a bacterial pathogen. These observations also support the notion of chemokine-mediated antimicrobial activity as an important foundation for the development of innovative therapeutic strategies for treating infections caused by pathogenic, potentially multidrug-resistant microorganisms.
Collapse
|
30
|
Distinct CCR2(+) Gr1(+) cells control growth of the Yersinia pestis ΔyopM mutant in liver and spleen during systemic plague. Infect Immun 2010; 79:674-87. [PMID: 21149593 DOI: 10.1128/iai.00808-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We are using a systemic plague model to identify the cells and pathways that are undermined by the virulence protein YopM of the plague bacterium Yersinia pestis. In this study, we pursued previous findings that Gr1(+) cells are required to selectively limit growth of ΔyopM Y. pestis and that CD11b(+) cells other than polymorphonuclear leukocytes (PMNs) are selectively lost in spleens infected with parent Y. pestis. When PMNs were ablated from mice, ΔyopM Y. pestis grew as well as the parent strain in liver but not in spleen, showing that these cells are critical for controlling growth of the mutant in liver but not spleen. In mice lacking expression of the chemokine receptor CCR2, wild-type growth was restored to ΔyopM Y. pestis in both organs. In spleen, the Gr1(+) cells differentially recruited by parent and ΔyopM Y. pestis infections were CCR2(+) Gr1(+) CD11b(+) CD11c(Lo-Int) MAC3(+) iNOS(+) (inducible nitric oxide synthase-positive) inflammatory dendritic cells (iDCs), and their recruitment to spleen from blood was blocked when YopM was present in the infecting strain. Consistent with influx of iDCs being affected by YopM in spleen, the growth defect of the ΔyopM mutant was relieved by the parent Y. pestis strain in a coinfection assay in which the parent strain could affect the fate of the mutant in trans. In a mouse model of bubonic plague, CCR2 also was shown to be required for ΔyopM Y. pestis to show wild-type growth in skin. The data imply that YopM's pathogenic effect indirectly undermines signaling through CCR2. We propose a model for how YopM exerts its different effects in liver and spleen.
Collapse
|
31
|
Jalili A, Pashenkov M, Kriehuber E, Wagner C, Nakano H, Stingl G, Wagner SN. Induction of Targeted Cell Migration by Cutaneous Administration of a DNA Vector Encoding a Biologically Active Chemokine CCL21. J Invest Dermatol 2010; 130:1611-23. [DOI: 10.1038/jid.2010.31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Abstract
Sepsis describes a complex clinical syndrome that results from an infection, setting off a cascade of systemic inflammatory responses that can lead to multiple organ failure and death. Leptin is a 16 kDa adipokine that, among its multiple known effects, is involved in regulating immune function. Here we demonstrate that leptin deficiency in ob/ob mice leads to higher mortality and more severe organ damage in a standard model of sepsis in mice [cecal ligation and puncture (CLP)]. Moreover, systemic leptin replacement improved the immune response to CLP. Based on the molecular mechanisms of leptin regulation of energy metabolism and reproductive function, we hypothesized that leptin acts in the CNS to efficiently coordinate peripheral immune defense in sepsis. We now report that leptin signaling in the brain increases survival during sepsis in leptin-deficient as well as in wild-type mice and that endogenous CNS leptin action is required for an adequate systemic immune response. These findings reveal the existence of a relevant neuroendocrine control of systemic immune defense and suggest a possible therapeutic potential for leptin analogs in infectious disease.
Collapse
|
33
|
Adiponectin is required for enhancement of CCL2 expression in adipose tissue during Listeria monocytogenes infection. Cytokine 2010; 50:170-4. [DOI: 10.1016/j.cyto.2009.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 10/27/2009] [Accepted: 12/04/2009] [Indexed: 12/15/2022]
|
34
|
Maghazachi AA. Role of chemokines in the biology of natural killer cells. Curr Top Microbiol Immunol 2010; 341:37-58. [PMID: 20369317 DOI: 10.1007/82_2010_20] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural killer (NK) cells represent a major subpopulation of lymphocytes. These cells have effector functions as they recognize and kill transformed cells as well as microbially infected cells. In addition, alloreactive NK cells have been successfully used to treat patients with acute myeloid leukemia and other hematological malignancies. NK cells are also endowed with immunoregulatory functions since they secrete cytokines such as IFN-γ, which favor the development of T helper 1 (Th1) cells, and chemokines such as CCL3/MIP-1α and CCL4/MIP-1β, which recruit various inflammatory cells into sites of inflammation. In human blood, NK cells are divided into CD56(bright) CD16(dim) and CD56(dim) CD16(bright) subsets. These subsets have different phenotypic expression and may have different functions; the former subset is more immunoregulatory and the latter is more cytolytic. The CD56(bright)CD16(dim) NK cells home into tissues such as the peripheral lymph nodes (LNs) under physiological conditions because they express the LN homing receptor CCR7 and they respond to CCL19/MIP-3β and CCL21/SLC chemokines. They also distribute into adenoid tissues or decidual uterus following the CXCR3/CXCL10 or CXCR4/CXCL12 axis. On the other hand, both NK cell subsets migrate into inflammatory sites, with more CD56(dim)CD16(bright) NK cells distributing into inflamed liver and lungs. CCR5/CCL5 axis plays an important role in the accumulation of NK cells in virally infected sites as well as during parasitic infections. CD56(bright)CD16(dim) cells also migrate into autoimmune sites such as inflamed synovial fluids in patients having rheumatoid arthritis facilitated by the CCR5/CCL3/CCL4/CCL5 axis, whereas they distribute into inflamed brains aided by the CX₃CR1/CX₃CL1 axis. On the other hand, CD56(dim)CD16(bright) NK cells accumulate in the liver of patients with primary biliary disease aided by the CXCR1/CXCL8 axis. However, the types of chemokines that contribute to their accumulation in target organs during graft vs. host (GvH) disease are not known. Further, chemokines activate NK cells to become highly cytolytic cells known as CC chemokine-activated killer (CHAK) cells that kill tumor cells. In summary, chemokines whether secreted in an autocrine or paracrine fashion regulate various biological functions of NK cells. Depending on the tissue and the chemokine secreted, NK cells may ameliorate the disease such as their roles in combating tumors or virally infected cells, and their therapeutic potentials in treating leukemias and other hematological malignancies, as well as reducing the incidence of GvH disease. In contrast, they may exacerbate the disease by damaging the affected tissues through direct cytotoxicity or by the release of multiple inflammatory cytokines and chemokines. Examples are their deleterious roles in autoimmune diseases such as rheumatoid arthritis and primary biliary cirrhosis.
Collapse
Affiliation(s)
- Azzam A Maghazachi
- Department of Physiology, Faculty of Medicine, Institute of Basic Medical Sciences, Blindern, 0317 Oslo, Norway.
| |
Collapse
|
35
|
Kim DM, Ko BS, Ju JW, Cho SH, Yang SJ, Yeom YI, Kim TS, Won Y, Kim IC. Gene expression profiling in mouse liver infected with Clonorchis sinensis metacercariae. Parasitol Res 2009; 106:269-78. [PMID: 19902254 DOI: 10.1007/s00436-009-1662-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 10/19/2009] [Indexed: 01/25/2023]
Abstract
Clonorchis sinensis, the parasite that causes clonorchiasis, is endemic in many Asian countries, and infection with the organism drives changes in the liver tissues of the host. However, information regarding the molecular events in clonorchiasis remains limited, and little is currently known about host-pathogen interactions in clonorchiasis. In this study, we assessed the gene expression profiles in mice livers via DNA microarray analysis 1, 2, 4, and 6 weeks after induced metacercariae infection. Functional clustering of the gene expression profile showed that the immunity-involved genes were induced in the livers of the mice at the early stage of metacercariae infection, whereas immune responses were reduced in the 6-week liver tissues after infection in which the metacercariae became adult flukes. Many genes involved in fatty acid metabolism, including Peci, Cyp4a10, Acat1, Ehhadh, Gcdh, and Cyp2 family were downregulated in the infected livers. On the other hand, the liver tissues infected with the parasite expressed Wnt signaling molecules such as Wnt7b, Fzd6, and Pdgfrb and cell cycle-regulating genes including cyclin-D1, Cdca3, and Bcl3. These investigations constitute an excellent starting point for increased understanding of the molecular mechanisms underlying host-pathogen interaction during the development of C. sinensis in the host liver.
Collapse
Affiliation(s)
- Dong Min Kim
- BK21 Ubiquitous Information Appliances, Chonnam National University, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Suppressive Effect on MDC and IP-10 Expression in Monocytes by Endocrine Disruptor Chemicals. Inflammation 2009; 33:10-7. [DOI: 10.1007/s10753-009-9153-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Zhong W, Yin H, Xie L. Expression and potential role of major inflammatory cytokines in experimental keratomycosis. Mol Vis 2009; 15:1303-11. [PMID: 19590756 PMCID: PMC2707360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 06/30/2009] [Indexed: 12/02/2022] Open
Abstract
PURPOSE The aim of this study was to investigate the expression and regulation of the four major inflammatory cytokines in fungal keratitis (FK) with the goal of further understanding its pathogenesis in order to develop more effective therapeutic approaches. METHODS Aspergillus fumigatus and Candida albicans were the corneal pathogens selected for this study to establish murine FK using epikeratophakia with the aid of corneal epithelium erasion. One, three, five, and seven days post-infection, the corneal lesions and inflammatory responses were observed by slit-lamp and histopathology, and the expressions of the four inflammatory cytokines, macrophage inflammatory protein-2 (MIP-2), cytokine-induced neutrophil chemoattractant (KC), interleukin-1beta (IL-1beta), and interleukin-6 (IL-6), in the infected corneas were determined using reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). For the intervention experiment with neutralizing antibodies, the experimental mice were then injected subconjunctivally with 5 microl (2 ng/microl) MIP-2 or IL-1beta polyclonal antibody 1 h before and 24 h after surgery. Reestablishment of the FK murine model was performed following injection. Effects of MIP-2 or IL-1beta polyclonal antibody on the corneal diseases were observed by slit-lamp microscopy, histopathology, and ELISA. RESULTS Expression of MIP-2, KC, IL-1beta, and IL-6 was upregulated significantly in the infected group one, three, five, and seven days after surgery. Following treatment with an MIP-2 polyclonal antibody, the corneal clinical scores and inflammatory responses decreased, the MIP-2 protein levels were downregulated significantly (p<0.01), and the KC protein levels decreased slightly (p>0.05). Upon administration of IL-1beta polyclonal antibodies, the decrease in clinical scores, inflammatory responses, and protein levels of MIP-2 and KC was apparent at 1 and 3 days after infection (p<0.01). CONCLUSIONS A persistent, high level expression of MIP-2 and IL-1beta is an important and even major factor in the corneal pathogenesis of FK. Specific polyclonal neutralizing antibodies may be administered to inhibit the major chemokines and cytokines responsible for corneal damage thus effectively relieving the injury caused by FK.
Collapse
|
38
|
Thapa M, Carr DJJ. Chemokines and Chemokine Receptors Critical to Host Resistance following Genital Herpes Simplex Virus Type 2 (HSV-2) Infection. ACTA ACUST UNITED AC 2008; 1:33-41. [PMID: 19043604 DOI: 10.2174/1874226200801010033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
HSV-2 is a highly successful human pathogen with a remarkable ability to elude immune detection or counter the innate and adaptive immune response through the production of viral-encoded proteins. In response to infection, resident cells secrete soluble factors including chemokines that mobilize and guide leukocytes including T and NK cells, neutrophils, and monocytes to sites of infection. While there is built-in redundancy within the system, chemokines signal through specific membrane-bound receptors that act as antennae detailing a chemical pathway that will provide a means to locate and eliminate the viral insult. Within the central nervous system (CNS), the temporal and spatial expression of chemokines relative to leukocyte mobilization in response to HSV-2 infection has not been elucidated. This paper will review some of the chemokine/chemokine receptor candidates that appear critical to the host in viral resistance and clearance from the CNS and peripheral tissue using murine models of genital HSV-2 infection.
Collapse
Affiliation(s)
- M Thapa
- Department of Microbiology, Immunology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma-73104, USA
| | | |
Collapse
|
39
|
Ramnath RD, Ng SW, Guglielmotti A, Bhatia M. Role of MCP-1 in endotoxemia and sepsis. Int Immunopharmacol 2008; 8:810-818. [PMID: 18442784 DOI: 10.1016/j.intimp.2008.01.033] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 01/30/2008] [Accepted: 01/30/2008] [Indexed: 11/22/2022]
Abstract
Sepsis is a complex clinical syndrome resulting from a harmful host inflammatory response to infection. Similarly, lipopolysaccharide (LPS) induced endotoxemia is marked by the activation of inflammatory responses, which can lead to shock, multiple organ damage and even death. Inflammatory mediator, chemokines are known to play an important role in the pathogenesis of sepsis and endotoxemia. Monocyte chemoattractant protein (MCP)-1, a prototype of CC chemokines, is a potent chemoattractant and a regulatory mediator involved in a variety of inflammatory diseases. The objective of this study is to investigate the role of MCP-1, by using bindarit, a blocker of MCP-1 synthesis, in murine models of sepsis and endotoxemia. Treatment with bindarit both prophylactically and therapeutically significantly (P<0.05) reduced MCP-1 levels in the lungs and liver in both sepsis and endotoxemia. In addition, prophylactic and therapeutic treatment with bindarit significantly (P<0.05) protected mice against sepsis and endotoxemia, as evidenced by the attenuation in lung and liver myeloperoxidase (MPO) activity, an indicator of neutrophil recruitment. The protective effect of bindarit was further confirmed by histological examination of lung and liver sections. Treatment with bindarit reduced lung and liver injury as indicated by decreased thickening of alveolar and neutrophil infiltration in CLP-induced sepsis and LPS-induced endotoxemia. Considering these results, we propose that anti-MCP-1 strategies may be of potential therapeutic value in the treatment of sepsis and endotoxemia.
Collapse
|
40
|
Crane IJ, Liversidge J. Mechanisms of leukocyte migration across the blood-retina barrier. Semin Immunopathol 2008; 30:165-77. [PMID: 18305941 PMCID: PMC2315689 DOI: 10.1007/s00281-008-0106-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 02/04/2008] [Indexed: 12/24/2022]
Abstract
Immune-mediated inflammation in the retina is regulated by a combination of anatomical, physiological and immuno-regulatory mechanisms, referred to as the blood-retina barrier (BRB). The BRB is thought to be part of the specialised ocular microenvironment that confers protection or "immune privilege" by deviating or suppressing destructive inflammation. The barrier between the blood circulation and the retina is maintained at two separate anatomical sites. These are the endothelial cells of the inner retinal vasculature and the retinal pigment epithelial cells on Bruch's membrane between the fenestrated choroidal vessels and the outer retina. The structure and regulation of the tight junctions forming the physical barrier are described. For leukocyte migration across the BRB to occur, changes are needed in both the leukocytes themselves and the cells forming the barrier. We review how the blood-retina barrier is compromised in various inflammatory diseases and discuss the mechanisms controlling leukocyte subset migration into the retina in uveoretinitis in more detail. In particular, we examine the relative roles of selectins and integrins in leukocyte interactions with the vascular endothelium and the pivotal role of chemokines in selective recruitment of leukocyte subsets, triggering adhesion, diapedesis and migration of inflammatory cells into the retinal tissue.
Collapse
Affiliation(s)
- Isabel J. Crane
- School of Medicine, University of Aberdeen Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD Scotland UK
| | - Janet Liversidge
- School of Medicine, University of Aberdeen Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD Scotland UK
| |
Collapse
|
41
|
Xue ML, Thakur A, Cole N, Lloyd A, Stapleton F, Wakefield D, Willcox MDP. A critical role for CCL2 and CCL3 chemokines in the regulation of polymorphonuclear neutrophils recruitment during corneal infection in mice. Immunol Cell Biol 2007; 85:525-31. [PMID: 17579602 DOI: 10.1038/sj.icb.7100082] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
While the role of CC chemokines in mononuclear cell trafficking and activation has been well studied, the functional role of CC chemokines in the regulation of polymorphonuclear neutrophil (PMN) recruitment in vivo has not been widely examined. Bacterial infection of the cornea (keratitis) is a relatively common, sometimes sight-threatening disease, which features acute inflammation with ulceration and PMN infiltration. Here, we demonstrate a critical role for the chemokines, CCL2 and CCL3, in the Pseudomonas aeruginosa-induced model of corneal infection in BALB/c mice. Treatment of mice with anti-CCL2 or anti-CCL3 antibodies resulted in a significant reduction in severity of corneal damage and PMN infiltration at 1 and 7 days after infection compared to control antibody-treated eyes, but did not significantly alter the rate of bacterial clearance from the cornea. Our findings provide strong evidence that CCL2 and CCL3 are critical regulators of PMN recruitment, and may lead to therapeutic strategies via targeting of the CC chemokines, CCL2 and CCL3, in the management of P. aeruginosa keratitis.
Collapse
Affiliation(s)
- Mei-Lang Xue
- Vision Cooperative Research Centre, Sydney, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
42
|
Salazar-Mather TP, Hokeness KL. Cytokine and chemokine networks: pathways to antiviral defense. Curr Top Microbiol Immunol 2007; 303:29-46. [PMID: 16570855 DOI: 10.1007/978-3-540-33397-5_2] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The complex interplays between cytokines and chemokines are emerging as key communication signals in the shaping of innate and adaptive immune responses against foreign pathogens, including viruses. In particular, the virus-induced expression of cytokine and chemokine profiles drives the recruitment and activation of immune effector cells to sites of tissue infection. Under the conditions of infection with murine cytomegalovirus (MCMV), a herpesvirus with pathogenic potential, early immune functions are essential in the control of virus replication and virus-induced pathology. The coordinated MCMV-induced cytokine and chemokine responses promote effective natural killer (NK) cell recruitment and function, and ultimately MCMV clearance. The studies highlighted in this chapter illustrate in vivo pathways mediated by innate cytokines in regulating chemokine responses that are vital for localized antiviral defenses.
Collapse
Affiliation(s)
- T P Salazar-Mather
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, 69 Brown Street, Box G-B6, Providence, RI 02912, USA.
| | | |
Collapse
|
43
|
Carr DJJ, Tomanek L. Herpes simplex virus and the chemokines that mediate the inflammation. Curr Top Microbiol Immunol 2007; 303:47-65. [PMID: 16570856 PMCID: PMC4076168 DOI: 10.1007/978-3-540-33397-5_3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herpes simplex viruses (HSV) are highly pervasive pathogens in the human host with a seroconversion rate upwards of 60% worldwide. HSV type 1 (HSV-1) is associated with the disease herpetic stromal keratitis, the leading cause of infectious corneal blindness in the industrialized world. Individuals suffering from genital herpes associated with HSV type 2 (HSV-2) are found to be two- to threefold more susceptible in acquiring human immunodeficiency virus (HIV). The morbidity associated with these infections is principally due to the inflammatory response, the development of lesions, and scarring. Chemokines have become an important aspect in understanding the host immune response to microbial pathogens due in part to the timing of expression. In this paper, we will explore the current understanding of chemokine production as it relates to the orchestration of the immune response to HSV infection.
Collapse
Affiliation(s)
- D J J Carr
- Department of Ophthalmology, University of Oklahoma, DMEI 415, Health Sciences Center, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA.
| | | |
Collapse
|
44
|
Morrison PT, Thomas LH, Sharland M, Friedland JS. RSV-infected airway epithelial cells cause biphasic up-regulation of CCR1 expression on human monocytes. J Leukoc Biol 2007; 81:1487-95. [PMID: 17389578 DOI: 10.1189/jlb.1006611] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection can cause extensive airway inflammation, which is orchestrated by chemokines and their receptors. RSV-infected epithelial cells secrete many cytokines and chemokines, but little is known about regulation of chemokine receptors on target cells. We investigated the effects of conditioned media (CM) from RSV-infected epithelial cells on monocyte CCR1, CCR2, and CCR5 expression. RSV-CM but not control-CM stimulated a biphasic increase in cell-surface CCR1, and levels peaked at 36 h and 96 h poststimulation. Similar CCR1 up-regulation occurred on monocyte-derived macrophages. Cytochlasin D and colchicine blocked both peaks of expression, demonstrating requirement of a functional cytoskeleton. Intracellular staining revealed little internal sequestration of CCR1 protein, and CCR1 up-regulation was inhibited by actinomycin D and cycloheximide, indicating that both waves of RSV-CM-induced surface CCR1 expression were dependent on de novo transcription and protein synthesis. Cytokine-neutralizing experiments showed that the effects of RSV-CM were decreased by blocking TNF-alpha (percent inhibition=51+/-2.3% at 36 h peak and 42+/-7.7% at 96 h peak) and to a lesser extent, IL-1 (percent inhibition=32+/-7.2% at 36 h and 23+/-2.9% at 96 h). In summary, RSV-CM causes a biphasic up-regulation of surface CCR1 on monocytes, which is dependent on an intact cytoskeleton, requires new gene transcription and protein synthesis, and is mediated in part by the proinflammatory cytokines TNF-alpha and IL-1.
Collapse
Affiliation(s)
- Paul T Morrison
- Department of Infectious Diseases and Immunity, Imperial College, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | | | | | | |
Collapse
|
45
|
Echeverry A, Schesser K, Adkins B. Murine neonates are highly resistant to Yersinia enterocolitica following orogastric exposure. Infect Immun 2007; 75:2234-43. [PMID: 17325052 PMCID: PMC1865740 DOI: 10.1128/iai.01681-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neonates are considered highly susceptible to gastrointestinal infections. This susceptibility has been attributed partially to immaturity in immune cell function. To study this phenomenon, we have developed a model system with murine neonates, using the natural orogastric route of transmission for the enteropathogen Yersinia enterocolitica. The susceptibilities of 7-day-old and adult mice to orogastric Y. enterocolitica infection were assessed in 50% lethal dose experiments. Remarkably, neonatal mice of either the BALB/c or C57BL/6 mouse strain showed markedly enhanced survival after infection compared to adult mice. The resistance of neonates was not due to failure of the bacteria to colonize neonatal tissues; Y. enterocolitica was readily detectable in the intestine and mesenteric lymph nodes (MLN) for at least 1 week after infection. In adult mice, Y. enterocolitica rapidly disseminated to the spleen and liver. In striking contrast, bacterial invasion of the spleen and liver in neonates was limited. Using flow cytometry and histology, we found substantial increases in the percentages of neutrophils and macrophages in the neonatal MLN, while influx of these cells into the adult MLN was limited. Similar results were obtained using two different high-virulence Y. enterocolitica strains. Importantly, depletion of neutrophils with a specific antibody led to increased translocation of the bacteria to the spleens and livers of neonates. Together, these experiments support the hypothesis that the neonatal intestinal immune system can rapidly mobilize innate phagocytes and thereby confine the bacterial infection to the gut, resulting in a high level of resistance.
Collapse
Affiliation(s)
- Andrea Echeverry
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | | | | |
Collapse
|
46
|
Marechal V. Inflammation et virus: déclenchement,contournements et détournements de la réponse inflammatoire au cours des infections virales. REVUE FRANCOPHONE DES LABORATOIRES : RFL 2007; 2007:49-58. [PMID: 32288802 PMCID: PMC7140270 DOI: 10.1016/s1773-035x(07)80062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 11/23/2006] [Indexed: 10/26/2022]
Abstract
The inflammatory process aims at opposing an early responseto the viral infections. Inflammation is supposed to delay or limit viral multiplication and dissemination until a specific immune response can be raised. This review introduces the basis of virus-induced inflammation and presents various strategies that are used by viruses to circumvent or exploit inflammation for their own benefit.
Collapse
Affiliation(s)
- Vincent Marechal
- UMR7079 (CNRS - Université Pierre-et-Marie-Curie)Centre de recherches biomédicales des Cordeliers 15, rue de l'École-de-Médecine 75270 Paris cedex 06, France
| |
Collapse
|
47
|
Smith MW, Schmidt JE, Rehg JE, Orihuela CJ, McCullers JA. Induction of pro- and anti-inflammatory molecules in a mouse model of pneumococcal pneumonia after influenza. Comp Med 2007; 57:82-9. [PMID: 17348295 PMCID: PMC2736785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Mortality after influenza is often due to secondary bacterial pneumonia with Streptococcus pneumoniae, particularly in the elderly. The reasons for the high fatality rate seen with this disease are unclear. To further characterize the pathogenesis of pneumonia after influenza in a mouse model, we examined the pathology and immunology that leads to fatal infection. Influenza-infected mice were either euthanized 24 h after secondary infection with S. pneumoniae for determination of pathology, bacterial cultures, and levels of immune effectors or were followed by use of a live imaging system for development of pneumonia. Influenza-infected mice challenged with each of 3 serotypes of pneumococcus developed a severe, necrotic pneumonia and met endpoints for euthanasia in 24 to 60 h. Strikingly elevated levels of both pro- and anti-inflammatory molecules including interleukins 6 and 10, macrophage inflammatory protein 1alpha, and chemokine KC were present in the blood. High levels of these cytokines and chemokines as well as tumor necrosis factor alpha, interleukin 1beta, and heme oxygenase 1 were present in the lungs, accompanied by a massive influx of neutrophils. Mortality correlated with the development of pneumonia and lung inflammation but not with bacteremia. This model has the potential to help us understand the pathogenesis of severe lung infections.
Collapse
Affiliation(s)
- Matthew W Smith
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN
| | - Jeffrey E Schmidt
- Division of Critical Care Medicine, St. Jude Children's Research Hospital, Memphis, TN
| | - Jerold E Rehg
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Carlos J Orihuela
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN
| | - Jonathan A McCullers
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN
- Corresponding author.
| |
Collapse
|
48
|
Thomas LH, Wickremasinghe MIY, Friedland JS. IL-1 beta stimulates divergent upper and lower airway epithelial cell CCL5 secretion. Clin Immunol 2006; 122:229-38. [PMID: 17126080 DOI: 10.1016/j.clim.2006.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 10/06/2006] [Accepted: 10/06/2006] [Indexed: 11/21/2022]
Abstract
Direct infection of respiratory epithelium induces chemokine secretion and upregulates cytokine networks, which are central in regulating inflammation. IL-1beta may have a pivotal role in such networks. Differential control of chemokine secretion within specific airway regions, which have distinct roles in immunity, is not well characterized. We investigated IL-1beta-induced CXCL8 and CCL5 secretion from primary normal human bronchial and small airway epithelial cells, and the alveolar cell line A549. CXCL8 was secreted by all cells, but only lower airway cells secreted CCL5. IL-1beta induced nuclear translocation of NF-kappaB (p50, p65 and c-Rel subunits), NF-IL-6 and AP-1, each with distinct kinetics. This was associated with high level CCL5 promoter activation, via transcription factor binding to multiple regions, including NF-kappaB, AP-1 and NF-IL-6 sites. The IL-1-related cytokine IL-18 did not drive or modulate IL-1beta-induced CXCL8 or CCL5 secretion. In summary, IL-1beta, but not IL-18, induces transcription-dependent lower airway epithelial cell-specific CCL5 secretion. Differential chemokine secretion may have profound effects on local leukocyte influx within upper or lower airways exposed to airway infection or environmental stimuli, which might then require different anti-inflammatory strategies.
Collapse
Affiliation(s)
- Lynette H Thomas
- Department of Infectious Diseases and Immunity, Faculty of Medicine, Imperial College (Hammersmith Campus), Du Cane Road, London, W12 0NN, UK
| | | | | |
Collapse
|
49
|
Chen JP, Lu HL, Lai SL, Campanella GS, Sung JM, Lu MY, Wu-Hsieh BA, Lin YL, Lane TE, Luster AD, Liao F. Dengue virus induces expression of CXC chemokine ligand 10/IFN-gamma-inducible protein 10, which competitively inhibits viral binding to cell surface heparan sulfate. THE JOURNAL OF IMMUNOLOGY 2006; 177:3185-92. [PMID: 16920957 DOI: 10.4049/jimmunol.177.5.3185] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Dengue virus is an arthropod-borne flavivirus that causes a mild febrile illness, dengue fever, or a potentially fatal syndrome, dengue hemorrhagic fever/dengue shock syndrome. Chemokines primarily orchestrate leukocyte recruitment to the areas of viral infection, which makes them critical mediators of immune and inflammatory responses. In the present study, we investigated the induction and function of chemokines in mice early after infection with dengue virus in vivo. We found that CXCL10/IFN-gamma-inducible protein 10 (IP-10) expression was rapidly and transiently induced in liver following infection. The expressed CXCL10/IP-10 likely mediates the recruitment of activated NK cells, given that anti-CXCL10/IP-10-treated mice showed diminished NK cell infiltration and reduced hepatic expression of effector molecules in activated NK cells after dengue virus infection. Of particular interest, we found that CXCL10/IP-10 also was able to inhibit viral binding to target cells in vitro. Further investigation revealed that various CXCL10/IP-10 mutants, in which the residues that mediate the interaction between the chemokine and heparan sulfate were substituted, failed to exert the inhibitory effect on dengue binding, which suggests that CXCL10/IP-10 competes with dengue virus for binding to heparan sulfate on the cell surface. Moreover, subsequent plaque assays showed that this inhibition of dengue binding blocked viral uptake and replication. The inhibitory effect of CXCL10/IP-10 on the binding of dengue virus to cells may represent a novel contribution of this chemokine to the host defense against viral infection.
Collapse
Affiliation(s)
- Jia-Perng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bubonja M, Wraber B, Brumini G, Gobin I, Veljkovic D, Abram M. Systemic and local CC chemokines production in a murine model of Listeria monocytogenes infection. Mediators Inflamm 2006; 2006:54202. [PMID: 16951491 PMCID: PMC1592594 DOI: 10.1155/mi/2006/54202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Repeated intragastric inoculation of Listeria
monocytogenes into BALB/c mice resulted in prolonged bacteraemia
and severe hepatic infection. Bacteria could also be isolated from
the brain tissue of all experimental mice. During the inflammatory
process, chemokine concentrations typically increased at the local
site in comparison to the systemic level. The liver-to-serum ratio
was more pronounced in the case of macrophage inflammatory protein
1α (MIP-1α), suggesting its role in the inflammatory response in
the liver. The ratio of brain-to-serum concentration of monocyte
chemoattractant protein 1 (MCP-1) remained the same as in the
control animals, while it was lower in the infected mice, both in
the case MIP-1α and in the case of regulated on activation, normal
T cell expressed and secreted (RANTES). This is in correlation
with slight inflammatory infiltrates found in the brain tissue
early in infection.
Collapse
Affiliation(s)
- Marina Bubonja
- Department of Microbiology, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia
| | - Branka Wraber
- Institute of Microbiology and Immunology, Medical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Gordana Brumini
- Department of Medical Informatics, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia
| | - Ivana Gobin
- Department of Microbiology, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia
| | - Danijela Veljkovic
- Department of Microbiology, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia
| | - Maja Abram
- Department of Microbiology, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia
- *Maja Abram:
| |
Collapse
|