1
|
Devos J, Van Dijck P, Van Genechten W. Genetic Tagging and Imaging of Proteins with iFAST in Candida albicans. Bio Protoc 2024; 14:e5082. [PMID: 39399593 PMCID: PMC11470380 DOI: 10.21769/bioprotoc.5082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 10/15/2024] Open
Abstract
Candida albicans is the most common human fungal pathogen, able to reside in a broad range of niches within the human body. Even though C. albicans systemic infection is associated with high mortality, the fungus has historically received relatively little attention, resulting in a lack of optimized molecular and fluorescent tools. Over the last decade, some extra focus has been put on the optimization of fluorescent proteins (FPs) of C. albicans. However, as the FPs are GFP-type, they require an aerobic environment and a relatively long period to fully mature. Recently, we have shown the application of a novel type of fluorogen-based FP, with an improved version of fluorescence activating and absorption shifting tag (iFAST), in C. albicans. Due to the dynamic relation between iFAST and its fluorogens, the system has the advantage of being reversible in terms of fluorescence. Furthermore, the combination of iFAST with different fluorogens results in different spectral and cellular properties, allowing customization of the system. Key features • Genetic integration and tagging with the iFAST tag in Candida albicans. • Imaging and localization of a protein of interest tagged with iFAST. • Reversibility of fluorescence with iFAST.
Collapse
Affiliation(s)
- Jonas Devos
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Wouter Van Genechten
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Owotade FJ, Gulube Z, Patel M. Oral Candida albicans strain diversity and maintenance in HIV positive women in South Africa. Arch Oral Biol 2024; 164:106007. [PMID: 38795522 DOI: 10.1016/j.archoralbio.2024.106007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
OBJECTIVE This study investigated C. albicans strain diversity and maintenance in the oral cavity of HIV positive women over a 6 month period. STUDY DESIGN C. albicans strains were isolated from 17 HIV positive women at Charlotte Maxeke Academic Hospital, Johannesburg at 3 intervals over a 6 month period. Strains were genotyped using ABC and Multilocus Sequence Typing (MLST) techniques. In the MLST technique, for each strain, a Diploid Sequence Type (DST) number was obtained. Using cluster analysis, an Unweighted Pair Group Method with Arithmetic Mean (UPGMA) dendrogram and a matrix of strain similarities were generated. Strains were also compared to the previous South African isolates documented in the MLST database. RESULTS Ninety four percent of women carried the same ABC genotype for 6 months. MLST technique, showed that ten women (58.8%) carried the same DST at 2 visits, while seven (41.2%) carried different DST at all visits. Further analysis showed that 64.7% of women were recolonised with different strains and 35.3% carried the same strains of C. albicans with heterozygosity. A total of 40 diploid sequence types were identified of which 27 DSTs were unique to this study group that were added to the MLST database. Most of the strains were closely related to previously isolated strains from South Africa. CONCLUSION Recolonization of the oral cavity with different strains and microevolution of the original strains of C. albicans can occur, which can be a potential problem for HIV patients, in whom highly virulent and drug resistant strains can emerge.
Collapse
Affiliation(s)
- F J Owotade
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, South Africa; Faculty of Dentistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Z Gulube
- Department of Oral Biological Sciences School of Oral Health Sciences, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, South Africa
| | - M Patel
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, South Africa.
| |
Collapse
|
3
|
Iracane E, Arias-Sardá C, Maufrais C, Ene IV, d’Enfert C, Buscaino A. Identification of an active RNAi pathway in Candida albicans. Proc Natl Acad Sci U S A 2024; 121:e2315926121. [PMID: 38625945 PMCID: PMC11047096 DOI: 10.1073/pnas.2315926121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/08/2024] [Indexed: 04/18/2024] Open
Abstract
RNA interference (RNAi) is a fundamental regulatory pathway with a wide range of functions, including regulation of gene expression and maintenance of genome stability. Although RNAi is widespread in the fungal kingdom, well-known species, such as the model yeast Saccharomyces cerevisiae, have lost the RNAi pathway. Until now evidence has been lacking for a fully functional RNAi pathway in Candida albicans, a human fungal pathogen considered critically important by the World Health Organization. Here, we demonstrated that the widely used C. albicans reference strain (SC5314) contains an inactivating missense mutation in the gene encoding for the central RNAi component Argonaute. In contrast, most other C. albicans isolates contain a canonical Argonaute protein predicted to be functional and RNAi-active. Indeed, using high-throughput small and long RNA sequencing combined with seamless CRISPR/Cas9-based gene editing, we demonstrate that an active C. albicans RNAi machinery represses expression of subtelomeric gene families. Thus, an intact and functional RNAi pathway exists in C. albicans, highlighting the importance of using multiple reference strains when studying this dangerous pathogen.
Collapse
Affiliation(s)
- Elise Iracane
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, CanterburyCT2 7NZ, United Kingdom
| | - Cristina Arias-Sardá
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, CanterburyCT2 7NZ, United Kingdom
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, Bioinformatic Hub, ParisF-75015, France
| | - Iuliana V. Ene
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, ParisF-75015, France
| | - Christophe d’Enfert
- Institut Pasteur, Université Paris Cité, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement USC2019, Fungal Biology and Pathogenicity Unit, ParisF-75015, France
| | - Alessia Buscaino
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, CanterburyCT2 7NZ, United Kingdom
| |
Collapse
|
4
|
Gnaien M, Maufrais C, Rebai Y, Kallel A, Ma L, Hamouda S, Khalsi F, Meftah K, Smaoui H, Khemiri M, Hadj Fredj S, Bachellier-Bassi S, Najjar I, Messaoud T, Boussetta K, Kallel K, Mardassi H, d’Enfert C, Bougnoux ME, Znaidi S. A gain-of-function mutation in zinc cluster transcription factor Rob1 drives Candida albicans adaptive growth in the cystic fibrosis lung environment. PLoS Pathog 2024; 20:e1012154. [PMID: 38603707 PMCID: PMC11037546 DOI: 10.1371/journal.ppat.1012154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/23/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Candida albicans chronically colonizes the respiratory tract of patients with Cystic Fibrosis (CF). It competes with CF-associated pathogens (e.g. Pseudomonas aeruginosa) and contributes to disease severity. We hypothesize that C. albicans undergoes specific adaptation mechanisms that explain its persistence in the CF lung environment. To identify the underlying genetic and phenotypic determinants, we serially recovered 146 C. albicans clinical isolates over a period of 30 months from the sputum of 25 antifungal-naive CF patients. Multilocus sequence typing analyses revealed that most patients were individually colonized with genetically close strains, facilitating comparative analyses between serial isolates. We strikingly observed differential ability to filament and form monospecies and dual-species biofilms with P. aeruginosa among 18 serial isolates sharing the same diploid sequence type, recovered within one year from a pediatric patient. Whole genome sequencing revealed that their genomes were highly heterozygous and similar to each other, displaying a highly clonal subpopulation structure. Data mining identified 34 non-synonymous heterozygous SNPs in 19 open reading frames differentiating the hyperfilamentous and strong biofilm-former strains from the remaining isolates. Among these, we detected a glycine-to-glutamate substitution at position 299 (G299E) in the deduced amino acid sequence of the zinc cluster transcription factor ROB1 (ROB1G299E), encoding a major regulator of filamentous growth and biofilm formation. Introduction of the G299E heterozygous mutation in a co-isolated weak biofilm-former CF strain was sufficient to confer hyperfilamentous growth, increased expression of hyphal-specific genes, increased monospecies biofilm formation and increased survival in dual-species biofilms formed with P. aeruginosa, indicating that ROB1G299E is a gain-of-function mutation. Disruption of ROB1 in a hyperfilamentous isolate carrying the ROB1G299E allele abolished hyperfilamentation and biofilm formation. Our study links a single heterozygous mutation to the ability of C. albicans to better survive during the interaction with other CF-associated microbes and illuminates how adaptive traits emerge in microbial pathogens to persistently colonize and/or infect the CF-patient airways.
Collapse
Affiliation(s)
- Mayssa Gnaien
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Tunis, Tunisia
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, INRAE USC2019A, Département Mycologie, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Yasmine Rebai
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Tunis, Tunisia
| | - Aicha Kallel
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Tunis, Tunisia
- Hôpital La Rabta, Laboratoire de Parasitologie et de Mycologie, UR17SP03, Tunis, Tunisia
| | - Laurence Ma
- Institut Pasteur, Université Paris Cité, Biomics core facility, Centre de Ressources et Recherche Technologique (C2RT), Paris, France
| | - Samia Hamouda
- Hôpital d’Enfants Béchir Hamza de Tunis, Tunis, Tunisia
| | - Fatma Khalsi
- Hôpital d’Enfants Béchir Hamza de Tunis, Tunis, Tunisia
| | | | - Hanen Smaoui
- Hôpital d’Enfants Béchir Hamza de Tunis, Tunis, Tunisia
| | - Monia Khemiri
- Hôpital d’Enfants Béchir Hamza de Tunis, Tunis, Tunisia
| | | | - Sophie Bachellier-Bassi
- Institut Pasteur, Université Paris Cité, INRAE USC2019A, Département Mycologie, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Imène Najjar
- Institut Pasteur, Université Paris Cité, Biomics core facility, Centre de Ressources et Recherche Technologique (C2RT), Paris, France
| | | | | | - Kalthoum Kallel
- Hôpital La Rabta, Laboratoire de Parasitologie et de Mycologie, UR17SP03, Tunis, Tunisia
| | - Helmi Mardassi
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Tunis, Tunisia
| | - Christophe d’Enfert
- Institut Pasteur, Université Paris Cité, INRAE USC2019A, Département Mycologie, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Marie-Elisabeth Bougnoux
- Institut Pasteur, Université Paris Cité, INRAE USC2019A, Département Mycologie, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Sadri Znaidi
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique (LR16IPT01), Tunis, Tunisia
- Institut Pasteur, Université Paris Cité, INRAE USC2019A, Département Mycologie, Unité Biologie et Pathogénicité Fongiques, Paris, France
| |
Collapse
|
5
|
Devos J, Van Dijck P, Van Genechten W. A multi-colour fluorogenic tag and its application in Candida albicans. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001451. [PMID: 38535895 PMCID: PMC10995450 DOI: 10.1099/mic.0.001451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/13/2024] [Indexed: 04/07/2024]
Abstract
Fluorescent proteins (FPs) have always been a crucial part of molecular research in life sciences, including the research into the human fungal pathogen Candida albicans, but have obvious shortcomings such as their relatively large size and long maturation time. However, the next generation of FPs overcome these issues and rely on the binding of a fluorogen for the protein to become fluorescently active. This generation of FPs includes the improved version of Fluorescence activating and Absorption Shifting Tag (iFAST). The binding between the fluorogen and the iFAST protein is reversible, thus resulting in reversible fluorescence. The fluorogens of iFAST are analogues of 4-hydroxylbenzylidene-rhodanine (HBR). These HBR analogues differ in spectral properties depending on functional group substitutions, which gives the iFAST system flexibility in terms of absorbance and emission maxima. In this work we describe and illustrate the application of iFAST as a protein tag and its reversible multi-colour characteristics in C. albicans.
Collapse
Affiliation(s)
- Jonas Devos
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, 3001 Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, 3001 Leuven, Belgium
| | - Wouter Van Genechten
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
6
|
Gudisa R, Harchand R, Rudramurthy SM. Nucleic-Acid-Based Molecular Fungal Diagnostics: A Way to a Better Future. Diagnostics (Basel) 2024; 14:520. [PMID: 38472992 DOI: 10.3390/diagnostics14050520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The world has seen a tremendous increase in the number of fungal infections during the past two decades. Recently, the World Health Organisation released the pathogen priority list for fungal infections, signifying the importance of these infections in the fields of research and public health. Microbiology laboratories demand an upgrade in the diagnostic system to keep up with the increased burden of these infections. Diagnosis of fungal infections using conventional techniques has always faced limitations in terms of specificity, sensitivity, and turnaround time. Although these methods are the core pillars of the diagnosis, there is an increased need for molecular approaches. Molecular techniques have revolutionised the field of fungal diagnostics. The diverse array of molecular techniques, including techniques like Polymerase Chain Reaction (PCR), have emerged as a cornerstone in fungal diagnostics. Molecular techniques have transformed fungal diagnostics, providing powerful tools for the rapid and accurate identification of pathogens. As these technologies continue to evolve, their integration into routine clinical practice holds the promise of improving patient outcomes through timely and targeted antifungal interventions. This review will cover the molecular approaches involved in fungal diagnostics, moving from the basic techniques to the advanced-level nucleic-acid-based molecular approaches providing a high throughput and decreased turnaround time for the diagnosis of serious fungal infections.
Collapse
Affiliation(s)
- Rajendra Gudisa
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Ritika Harchand
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
7
|
Alkhars N, Al Jallad N, Wu TT, Xiao J. Multilocus sequence typing of Candida albicans oral isolates reveals high genetic relatedness of mother-child dyads in early life. PLoS One 2024; 19:e0290938. [PMID: 38232064 PMCID: PMC10793898 DOI: 10.1371/journal.pone.0290938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024] Open
Abstract
Candida albicans is a pathogenic fungus recently recognized for its role in severe early childhood caries development (S-ECC). C. albicans oral colonization begins at birth, but the extent of the mother's involvement in yeast transmission to their children is unclear, therefore, this study used a prospective mother-infant cohort to investigate the maternal contribution of C. albicans oral colonization in early life. Oral samples were collected from 160 mother-child dyads during pregnancy and from birth to two years of life. We used whole-genome sequencing to obtain the genetic information of C. albicans isolates and examined the genetic relatedness of C. albicans between mothers and their children using Multilocus Sequence Typing. Multivariate statistical methods were used to identify factors associated with C. albicans' acquisition (horizontal and vertical transmissions). Overall, 227 C. albicans oral isolates were obtained from 93 (58.1%) of mother-child pairs. eBURST analysis revealed 16 clonal complexes, and UPGMA analysis identified 6 clades, with clade 1 being the most populated 124 isolates (54.6%). Significantly, 94% of mothers and children with oral C. albicans had highly genetically related strains, highlighting a strong maternal influence on children's C. albicans acquisition. Although factors such as race, ethnicity, delivery method, and feeding behaviors did not show a significant association with C. albicans vertical transmission, the mother's oral hygiene status reflected by plaque index (PI) emerged as a significant factor; Mothers with higher dental plaque accumulation (PI >=2) had a significantly increased risk of vertically transmitting C. albicans to their infants [odds ratio (95% confidence interval) of 8.02 (1.21, 53.24), p=0.03]. Furthermore, Black infants and those who attended daycare had an elevated risk of acquiring C. albicans through horizontal transmission (p <0.01). These findings highlight the substantial role of maternal transmission in the oral acquisition of C. albicans during early life. Incorporating screening for maternal fungal oral carriage and implementing oral health education programs during the perinatal stage may prove valuable in preventing fungal transmission in early infancy.
Collapse
Affiliation(s)
- Naemah Alkhars
- Department of General Dental Practice, College of Dentistry, Health Science Center, Kuwait University, Safat, Kuwait
- Translational Biomedical Science Program, Clinical and Translational Science Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Nisreen Al Jallad
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jin Xiao
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
8
|
Opuni KF, Kretchy JP, Agyabeng K, Boadu JA, Adanu T, Ankamah S, Appiah A, Amoah GB, Baidoo M, Kretchy IA. Contamination of herbal medicinal products in low-and-middle-income countries: A systematic review. Heliyon 2023; 9:e19370. [PMID: 37674839 PMCID: PMC10477504 DOI: 10.1016/j.heliyon.2023.e19370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023] Open
Abstract
The use of herbal medicinal products (HMPs) has grown significantly across low-and-middle-income countries (LMICs). Consequently, the safety of these products due to contamination is a significant public health concern. This systematic review aimed to determine the prevalence, types, and levels of contaminants in HMPs from LMICs. A search was performed in seven online databases, i.e., Africa journal online (AJOL), Cumulative Index to Nursing and Allied Health Literature (CINAHL), Directory of Open Access Journals (DOAJ), Health Inter-Network Access to Research Initiative (HINARI), World Health Organization Global Index Medicus (WHO GIM), Scopus, and PubMed using appropriate search queries and reported as per the "Preferred Reporting Items for Systematic Reviews and Meta-Analyses" (PRISMA) guidelines. Ninety-one peer-reviewed articles published from 1982 to 2021 from 28 different countries across four continents were included in the study. Although metals, microbial, mycotoxins, pesticides, and residual solvents were the reported contaminants in the 91 articles, metals (56.0%, 51/91), microbial (27.5%, 25/91), and mycotoxins (18.7%, 17/91) were the most predominant. About 16.4% (1236/7518) of the samples had their contaminant levels above the regulatory limits. Samples tested for microbial contaminants had the highest proportion (46.4%, 482/1039) of contaminants exceeding the regulatory limit, followed by mycotoxins (25.8%, 109/423) and metals (14.3%, 591/4128). The proportion of samples that had their average non-essential metal contaminant levels above the regulatory limit was (57.6%, 377/655), 18.3% (88/480), 10.7% (24/225), and 11.3% (29/257) for Pb, Cd, Hg, and As, respectively. The commonest bacteria species found were Escherichia coli (52.3%, 10/19) and Salmonella species (42.1%, 8/19). This review reported that almost 90% of Candida albicans and more than 80% of moulds exceeded the required regulatory limits. HMP consumption poses profound health implications to consumers and patients. Therefore, designing and/or implementing policies that effectively regulate HMPs to minimize the health hazards related to their consumption while improving the quality of life of persons living in LMICs are urgently needed.
Collapse
Affiliation(s)
- Kwabena F.M. Opuni
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Ghana, P.O. Box LG43, Legon, Accra, Ghana
| | - James-Paul Kretchy
- Department of Public Health, School of Medicine and Health Sciences, Central University, P. O. Box 2305, Miotso, Accra, Ghana
| | - Kofi Agyabeng
- Department of Biostatistics, School of Public Health, University of Ghana, P. O. Box LG13, Legon, Accra, Ghana
| | - Joseph A. Boadu
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Ghana, P.O. Box LG43, Legon, Accra, Ghana
| | - Theodosia Adanu
- Balme Library, University of Ghana, P.O. Box LG24, Legon, Accra, Ghana
| | - Samuel Ankamah
- Balme Library, University of Ghana, P.O. Box LG24, Legon, Accra, Ghana
| | - Alexander Appiah
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Ghana, P.O. Box LG43, Legon, Accra, Ghana
| | - Geralda B. Amoah
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Ghana, P.O. Box LG43, Legon, Accra, Ghana
| | - Mariam Baidoo
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Ghana, P.O. Box LG43, Legon, Accra, Ghana
| | - Irene A. Kretchy
- Department of Pharmacy Practice and Clinical Pharmacy, School of Pharmacy, University of Ghana, P.O. Box LG43, Legon, Accra, Ghana
| |
Collapse
|
9
|
Bryan-Thomas J, McClear T, Omoregie S. Antimicrobial potential of unstressed and heat stressed Allium sativum. Saudi J Biol Sci 2023; 30:103749. [PMID: 37560481 PMCID: PMC10407899 DOI: 10.1016/j.sjbs.2023.103749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 08/11/2023] Open
Abstract
Garlic (Allium sativum) is generally known to be of medicinal value, possessing potentials that include antimicrobial activity, but are often consumed in foods after subjection to cooking heat. The antimicrobial potential of heat stressed garlic may become decreased or lost when cooked, making its medicinal benefit unavailable to consumers. The potential of uncooked and cooked extracts from garlic imported to Jamaica, to inhibit the growth of eight microbes of clinical significance was investigated. Aqueous extracts of fresh garlic of 15 g/100 ml (fw), and dried and pulverized garlic cloves of 12.5 g/100 ml, 25 g/100 ml, 50 g/100 ml, and 100 g/100 ml (dw), were tested for inhibition of microbial growth. Extracts were tested uncooked, and cooked by boiling for 5, 10, and 15 min respectively. Of all the microbes studied, C. albicans incurred the largest zone of inhibition (57.7 ± 0.6 mm at the 100 g/100 ml of the dried extract, F(3, 8) = 51.778, p < 0.001, ω2 = 0.93). Cooking of garlic extracts resulted in statistically significant decreases in zones of inhibition of microbes, as evident in the linear regression and one-way ANOVA analyses, and/or complete loss of microbial inhibition. C. albicans was the most inhibited microbe, followed by E. coli, and Salmonella sp., respectively. The use of uncooked garlic may be the best route for obtaining the greatest antimicrobial potential of garlic against susceptible bacteria and fungi because cooking heat stress resulted in the decrease and complete loss of the antimicrobial potentials of the garlic.
Collapse
Affiliation(s)
- Joneshia Bryan-Thomas
- Department of Medical Technology, Northern Caribbean University, Mandeville, Jamaica
| | - Teena McClear
- Department of Biology, Chemistry and Environmental Science, Northern Caribbean University, Mandeville, Jamaica
| | - Samson Omoregie
- School of Natural and Applied Sciences, University of Technology, Kingston 6, Jamaica
| |
Collapse
|
10
|
Azevedo MJ, Araujo R, Campos J, Campos C, Ferreira AF, Falcão-Pires I, Ramalho C, Zaura E, Pinto E, Sampaio-Maia B. Vertical Transmission and Antifungal Susceptibility Profile of Yeast Isolates from the Oral Cavity, Gut, and Breastmilk of Mother-Child Pairs in Early Life. Int J Mol Sci 2023; 24:ijms24021449. [PMID: 36674962 PMCID: PMC9867488 DOI: 10.3390/ijms24021449] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Yeast acquisition begins at birth; however, the contribution of the mother on yeast transmission to the offspring and associated resistance is yet to be clarified. The aim of this study was to explore the vertical transmission of yeasts and their antifungal susceptibility profile in early life. Oral, fecal, and breastmilk samples were collected from 73 mother-child pairs four to twelve weeks after delivery and cultured on Sabouraud dextrose agar with chloramphenicol. The isolates were identified by MALDI-TOF MS. The vertical transmission was studied by microsatellite genotyping. Antifungal susceptibility was determined for fluconazole, voriconazole, miconazole, anidulafungin, and nystatin by broth microdilution assay, following CLSI-M60 guidelines. A total of 129 isolates were identified from 53% mother-child pairs. We verified the vertical transmission of Candida albicans (n = three mother-child pairs) and Candida parapsilosis (n = one mother-child pair) strains, including an antifungal resistant strain transmitted from breastmilk to the gut of a child. Most isolates were susceptible to the tested antifungals, with the exception of four C. albicans isolates and one R. mucilaginosa isolate. The vertical transmission of yeasts happens in early life. This is the first work that demonstrated the role of the mother as a source of transmission of antifungal-resistant yeasts to the child.
Collapse
Affiliation(s)
- Maria João Azevedo
- INEB—Instituto Nacional de Engenharia Biomédica, 4150-177 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Ricardo Araujo
- INEB—Instituto Nacional de Engenharia Biomédica, 4150-177 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Campos
- INEB—Instituto Nacional de Engenharia Biomédica, 4150-177 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Carla Campos
- Serviço de Patologia Clínica, Departamento de Patologia e Medicina Laboratorial, Instituto Português de Oncologia do Porto Francisco Gentil, 4200-072 Porto, Portugal
- Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| | | | - Inês Falcão-Pires
- Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Carla Ramalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
- Department of Gynecology and Obstetrics, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Eugénia Pinto
- Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - Benedita Sampaio-Maia
- INEB—Instituto Nacional de Engenharia Biomédica, 4150-177 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Faculdade de Medicina Dentária, Universidade do Porto, 4200-393 Porto, Portugal
- Correspondence:
| |
Collapse
|
11
|
A Clinical Study Provides the First Direct Evidence That Interindividual Variations in Fecal β-Lactamase Activity Affect the Gut Mycobiota Dynamics in Response to β-Lactam Antibiotics. mBio 2022; 13:e0288022. [PMID: 36448778 PMCID: PMC9765473 DOI: 10.1128/mbio.02880-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Antibiotics disturb the intestinal bacterial microbiota, leading to gut dysbiosis and an increased risk for the overgrowth of opportunistic pathogens. It is not fully understood to what extent antibiotics affect the fungal fraction of the intestinal microbiota, the mycobiota. There is no report of the direct role of antibiotics in the overgrowth in healthy humans of the opportunistic pathogenic yeast Candida albicans. Here, we have explored the gut mycobiota of 22 healthy subjects before, during, and up to 6 months after a 3-day regimen of third-generation cephalosporins (3GCs). Using ITS1-targeted metagenomics, we highlighted the strong intra- and interindividual diversity of the healthy gut mycobiota. With a specific quantitative approach, we showed that C. albicans prevalence was much higher than previously reported, with all subjects but one being carriers of C. albicans, although with highly variable burdens. 3GCs significantly altered the mycobiota composition and the fungal load was increased both at short and long term. Both C. albicans relative and absolute abundances were increased but 3GCs did not reduce intersubject variability. Variations in C. albicans burden in response to 3GC treatment could be partly explained by changes in the levels of endogenous fecal β-lactamase activity, with subjects characterized by a high increase of β-lactamase activity displaying a lower increase of C. albicans levels. A same antibiotic treatment might thus affect differentially the gut mycobiota and C. albicans carriage, depending on the treated subject, suggesting a need to adjust the current risk factors for C. albicans overgrowth after a β-lactam treatment. IMPORTANCE Fungal infections are redoubtable healthcare-associated complications in immunocompromised patients. Particularly, the commensal intestinal yeast Candida albicans causes invasive infections in intensive care patients and is, therefore, associated with high mortality. These infections are preceded by an intestinal expansion of C. albicans before its translocation into the bloodstream. Antibiotics are a well-known risk factor for C. albicans overgrowth but the impact of antibiotic-induced dysbiosis on the human gut mycobiota-the fungal microbiota-and the understanding of the mechanisms involved in C. albicans overgrowth in humans are very limited. Our study shows that antibiotics increase the fungal proportion in the gut and disturb the fungal composition, especially C. albicans, in a subject-dependent manner. Indeed, variations across subjects in C. albicans burden in response to β-lactam treatment could be partly explained by changes in the levels of endogenous fecal β-lactamase activity. This highlighted a potential new key factor for C. albicans overgrowth. Thus, the significance of our research is in providing a better understanding of the factors behind C. albicans intestinal overgrowth, which might lead to new means to prevent life-threatening secondary infections.
Collapse
|
12
|
Candidalysin Is the Hemolytic Factor of Candida albicans. Toxins (Basel) 2022; 14:toxins14120874. [PMID: 36548771 PMCID: PMC9785678 DOI: 10.3390/toxins14120874] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Candida albicans produces an important virulence factor, the hypha-associated Ece1-derived secreted peptide toxin candidalysin, which is crucial for the establishment of mucosal and systemic infections. C. albicans has also long been known to be hemolytic, yet the hemolytic factor has not been clearly identified. Here, we show that candidalysin is the hemolytic factor of C. albicans. Its hemolytic activity is modulated by fragments of another Ece1 peptide, P7. Hemolysis by candidalysin can be neutralized by the purinergic receptor antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS). PPADS also affects candidalysin's ability to intercalate into synthetic membranes. We also describe the neutralization potential of two anti-candidalysin nanobodies, which are promising candidates for future anti-Candida therapy. This work provides evidence that the historically proposed hemolytic factor of C. albicans is in fact candidalysin and sheds more light on the complex roles of this toxin in C. albicans biology and pathogenicity.
Collapse
|
13
|
Genetic Diversity of Candida spp. Isolates Colonizing Twins and Their Family Members. Pathogens 2022; 11:pathogens11121532. [PMID: 36558865 PMCID: PMC9783311 DOI: 10.3390/pathogens11121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
A wide range of options for studying Candida species are available through genetic methods. Twins, particularly monozygotic ones and their families may be fitting subjects for studying those microorganisms. The question is: How specific can yeast flora be in an individual? The study aimed to analyze the strain relatedness among commensal yeasts isolated from various parts of the bodies of healthy people and to compare correlations between the genotypes of the isolates. Yeasts were isolated from 63 twins and their family members (n = 25) from the oral cavity, anus, interdigital space and navel. After species identification, Candida albicans (n = 139), C. parapsilosis (n = 39), C. guilliermondii (n = 25), C. dubliniensis (n = 11) and C. krusei (n = 9) isolates were analyzed using the random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) optimization method. The similarities between the strains were calculated based on the Dice (Sab) coefficient and are displayed graphically as dendrograms. Using cluster analysis, the following relatedness was distinguished: 13 genotypes and three unique (Un) patterns among C. albicans; 10 genotypes and four Un patterns among C. parapsilosis; three genotypes and one Un pattern among C. guilliermondii and C. dubliniensis; and three genotypes among C. krusei isolates. The presence of identical, similar or both genotypes among the strains isolated from family members shows the transmission of yeasts between ontocenoses in the same person and between individuals. The similarity between the genotypes of C. albicans, C. guilliermondii, C. dubliniensis and C. krusei was more remarkable than between the genotypes of C. parapsilosis in the strains isolated from ontocenoses of the same individual and their family members. The degrees of genetic similarity between Candida spp. strains isolated from monozygotic twins and those obtained from their relatives did not differ.
Collapse
|
14
|
Lopes JP, Lionakis MS. Pathogenesis and virulence of Candida albicans. Virulence 2022; 13:89-121. [PMID: 34964702 PMCID: PMC9728475 DOI: 10.1080/21505594.2021.2019950] [Citation(s) in RCA: 133] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Candida albicans is a commensal yeast fungus of the human oral, gastrointestinal, and genital mucosal surfaces, and skin. Antibiotic-induced dysbiosis, iatrogenic immunosuppression, and/or medical interventions that impair the integrity of the mucocutaneous barrier and/or perturb protective host defense mechanisms enable C. albicans to become an opportunistic pathogen and cause debilitating mucocutaneous disease and/or life-threatening systemic infections. In this review, we synthesize our current knowledge of the tissue-specific determinants of C. albicans pathogenicity and host immune defense mechanisms.
Collapse
Affiliation(s)
- José Pedro Lopes
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Michail S. Lionakis
- From the Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| |
Collapse
|
15
|
Hamion G, Aucher W, Tardif C, Miranda J, Rouger C, Imbert C, Girardot M. Valorization of Invasive Plant Extracts against the Bispecies Biofilm Staphylococcus aureus- Candida albicans by a Bioguided Molecular Networking Screening. Antibiotics (Basel) 2022; 11:antibiotics11111595. [PMID: 36421241 PMCID: PMC9686625 DOI: 10.3390/antibiotics11111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Invasive plants efficiently colonize non-native territories, suggesting a great production of bioactive metabolites which could be effective antibiofilm weapons. Our study aimed to look for original molecules able to inhibit bispecies biofilm formed by S. aureus and C. albicans. Extracts from five invasive macrophytes (Ludwigia peploides, Ludwigia grandiflora, Myriophyllum aquaticum, Lagarosiphon major and Egeria densa) were prepared and tested in vitro against 24 h old bispecies biofilms using a crystal violet staining (CVS) assay. The activities of the extracts reducing the biofilm total biomass by 50% or more were comparatively analyzed against each microbial species forming the biofilm by flow cytometry (FCM) and scanning electron microscopy. Extracts active against both species were fractionated. Obtained fractions were analyzed by UHPLC-MS/MS and evaluated by the CVS assay. Chemical and biological data were combined into a bioactivity-based molecular networking (BBMN) to identify active compounds. The aerial stem extract of L. grandiflora showed the highest antibiofilm activity (>50% inhibition at 50 µg∙mL−1). The biological, chemical and BBMN investigations of its fractions highlighted nine ions correlated with the antibiofilm activity. The most correlated compound, identified as betulinic acid (BA), inhibited bispecies biofilms regardless of the three tested couples of strains (ATCC strains: >40% inhibition, clinical isolates: ≈27% inhibition), confirming its antibiofilm interest.
Collapse
Affiliation(s)
- Guillaume Hamion
- Laboratoire EBI, University of Poitiers, UMR CNRS 7267, F-86000 Poitiers, France
- Correspondence:
| | - Willy Aucher
- Laboratoire EBI, University of Poitiers, UMR CNRS 7267, F-86000 Poitiers, France
| | - Charles Tardif
- University of Bordeaux, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33140 Villenave d’Ornon, France
- Bordeaux Sciences Agro, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33170 Gradignan, France
| | - Julie Miranda
- University of Bordeaux, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33140 Villenave d’Ornon, France
- Bordeaux Sciences Agro, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33170 Gradignan, France
| | - Caroline Rouger
- University of Bordeaux, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33140 Villenave d’Ornon, France
- Bordeaux Sciences Agro, UMR INRAE 1366, Bordeaux INP, OENO, ISVV, F-33170 Gradignan, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine-Bordeaux, F-33140 Villenave d’Ornon, France
| | - Christine Imbert
- Laboratoire EBI, University of Poitiers, UMR CNRS 7267, F-86000 Poitiers, France
| | - Marion Girardot
- Laboratoire EBI, University of Poitiers, UMR CNRS 7267, F-86000 Poitiers, France
| |
Collapse
|
16
|
Begum N, Lee S, Portlock TJ, Pellon A, Nasab SDS, Nielsen J, Uhlen M, Moyes DL, Shoaie S. Integrative functional analysis uncovers metabolic differences between Candida species. Commun Biol 2022; 5:1013. [PMID: 36163459 PMCID: PMC9512779 DOI: 10.1038/s42003-022-03955-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Abstract
Candida species are a dominant constituent of the human mycobiome and associated with the development of several diseases. Understanding the Candida species metabolism could provide key insights into their ability to cause pathogenesis. Here, we have developed the BioFung database, providing an efficient annotation of protein-encoding genes. Along, with BioFung, using carbohydrate-active enzyme (CAZymes) analysis, we have uncovered core and accessory features across Candida species demonstrating plasticity, adaption to the environment and acquired features. We show a greater importance of amino acid metabolism, as functional analysis revealed that all Candida species can employ amino acid metabolism. However, metabolomics revealed that only a specific cluster of species (AGAu species—C. albicans, C. glabrata and C. auris) utilised amino acid metabolism including arginine, cysteine, and methionine metabolism potentially improving their competitive fitness in pathogenesis. We further identified critical metabolic pathways in the AGAu cluster with biomarkers and anti-fungal target potential in the CAZyme profile, polyamine, choline and fatty acid biosynthesis pathways. This study, combining genomic analysis, and validation with gene expression and metabolomics, highlights the metabolic diversity with AGAu species that underlies their remarkable ability to dominate they mycobiome and cause disease. Metabolic differences between Candida species are uncovered using the BioFung database alongside genomic and metabolic analysis.
Collapse
Affiliation(s)
- Neelu Begum
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK
| | - Sunjae Lee
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK
| | - Theo John Portlock
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - Aize Pellon
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK
| | - Shervin Dokht Sadeghi Nasab
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Kemivägen 10, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.,BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen N, Denmark
| | - Mathias Uhlen
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK.
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, London, UK. .,Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-171 21, Sweden.
| |
Collapse
|
17
|
Parker A, James SA, Purse C, Brion A, Goldson A, Telatin A, Baker D, Carding SR. Absence of Bacteria Permits Fungal Gut-To-Brain Translocation and Invasion in Germfree Mice but Ageing Alone Does Not Drive Pathobiont Expansion in Conventionally Raised Mice. Front Aging Neurosci 2022; 14:828429. [PMID: 35923548 PMCID: PMC9339909 DOI: 10.3389/fnagi.2022.828429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Age-associated changes in the structure of the intestinal microbiome and in its interaction with the brain via the gut-brain axis are increasingly being implicated in neurological and neurodegenerative diseases. Intestinal microbial dysbiosis and translocation of microbes and microbial products including fungal species into the brain have been implicated in the development of dementias such as Alzheimer's disease. Using germ-free mice, we investigated if the fungal gut commensal, Candida albicans, an opportunistic pathogen in humans, can traverse the gastrointestinal barrier and disseminate to brain tissue and whether ageing impacts on the gut mycobiome as a pre-disposing factor in fungal brain infection. C. albicans was detected in different regions of the brain of colonised germ-free mice in both yeast and hyphal cell forms, often in close association with activated (Iba-1+) microglial cells. Using high-throughput ITS1 amplicon sequencing to characterise the faecal gut fungal composition of aged and young SPF mice, we identified several putative gut commensal fungal species with pathobiont potential although their abundance was not significantly different between young and aged mice. Collectively, these results suggest that although some fungal species can travel from the gut to brain where they can induce an inflammatory response, ageing alone is not correlated with significant changes in gut mycobiota composition which could predispose to these events. These results are consistent with a scenario in which significant disruptions to the gut microbiota or intestinal barrier, beyond those which occur with natural ageing, are required to allow fungal escape and brain infection.
Collapse
Affiliation(s)
- Aimée Parker
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, United Kingdom
| | - Steve A. James
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, United Kingdom
| | - Catherine Purse
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, United Kingdom
| | - Arlaine Brion
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, United Kingdom
| | - Andrew Goldson
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, United Kingdom
| | - Andrea Telatin
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, United Kingdom
| | - David Baker
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, United Kingdom
| | - Simon R. Carding
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
18
|
Swidergall M, LeibundGut-Landmann S. Immunosurveillance of Candida albicans commensalism by the adaptive immune system. Mucosal Immunol 2022; 15:829-836. [PMID: 35778599 PMCID: PMC9385492 DOI: 10.1038/s41385-022-00536-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023]
Abstract
The fungal microbiota (mycobiota) is an integral part of the microbial community colonizing the body surfaces and is involved in many key aspects of human physiology, while an imbalance of the fungal communities, termed fungal dysbiosis, has been described in pathologies ranging from infections to inflammatory bowel disease. Commensal organisms, such as the fungus Candida albicans, induce antigen-specific immune responses that maintain immune homeostasis. Adaptive immune mechanisms are vital in this process, while deficiencies in adaptive immunity are linked to fungal infections. We start to understand the mechanisms by which a shift in mycobiota composition, in particular in C. albicans abundance, is linked to immunopathological conditions. This review discusses the mechanisms that ensure continuous immunosurveillance of C. albicans during mucosal colonization, how these protective adaptive immune responses can also promote immunopathology, and highlight therapeutic advances against C. albicans-associated disease.
Collapse
Affiliation(s)
- Marc Swidergall
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
19
|
Mba IE, Nweze EI, Eze EA, Anyaegbunam ZKG. Genome plasticity in Candida albicans: A cutting-edge strategy for evolution, adaptation, and survival. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105256. [PMID: 35231665 DOI: 10.1016/j.meegid.2022.105256] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/12/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
Abstract
Candida albicans is the most implicated fungal species that grows as a commensal or opportunistic pathogen in the human host. It is associated with many life-threatening infections, especially in immunocompromised persons. The genome of Candida albicans is very flexible and can withstand a wide assortment of variations in a continuously changing environment. Thus, genome plasticity is central to its adaptation and has long been of considerable interest. C. albicans has a diploid heterozygous genome that is highly dynamic and can display variation from small to large scale chromosomal rearrangement and aneuploidy, which have implications in drug resistance, virulence, and pathogenicity. This review presents an up-to-date overview of recent genomic studies involving C. albicans. It discusses the accumulating evidence that shows how mitotic recombination events, ploidy dynamics, aneuploidy, and loss of heterozygosity (LOH) influence evolution, adaptation, and survival in C. albicans. Understanding the factors that affect the genome is crucial for a proper understanding of species and rapid development and adjustment of therapeutic strategies to mitigate their spread.
Collapse
Affiliation(s)
| | | | | | - Zikora Kizito Glory Anyaegbunam
- Institution for Drug-Herbal Medicine-Excipient-Research and Development, Faculty of Pharmaceutical Sciences, Nsukka, Nigeria
| |
Collapse
|
20
|
Boriollo MFG, Oliveira MC, Bassinello V, Aníbal PC, da Silva TA, da Silva JJ, Bassi RC, Netto MFR, Dos Santos Dias CT, Höfling JF. Candida species biotypes and polyclonality of potentially virulent Candida albicans isolated from oral cavity of patients with orofacial clefts. Clin Oral Investig 2021; 26:3061-3084. [PMID: 34791549 DOI: 10.1007/s00784-021-04290-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES This study evaluated the incidence of Candida species, and the genetic diversity and virulence of C. albicans of the oral cavity from patients with cleft lip and palate (CLP). MATERIALS AND METHODS Oral samples were investigated by microbiological and species-specific PCR methods. The genetic diversity of C. albicans was established using isoenzyme markers, Nei's statistics, and clustering analysis. Hydrolytic enzymes (SAPs and PLs) were analyzed in vitro. RESULTS Oral colonization by Candida species was observed in 29 patients with CLP (65.9%), and C. albicans was highly prevalent. SAP and PL activities were observed in 100% and 51.9% of isolates, respectively. High genetic diversity and patterns of monoclonal and polyclonal oral colonization by C. albicans were observed among patients with CLP. Two major polymorphic taxa (A and B) and other minor polymorphic taxa (C to J) were identified. Only one of the 16 clusters (taxon A) harbored strains from patients with and without CLP, whereas other clusters harbored strains exclusively from CLP patients. CONCLUSIONS The anatomical conditions of the oral cavity of patients with CLP contribute to the high incidence of Candida species (C. albicans, C. krusei, C. tropicalis, and/or Candida spp.). Data suggest high genetic diversity of potentially virulent C. albicans strains in the oral cavity of CLP patients. CLINICAL RELEVANCE Microbiological niches in orofacial clefts can contribute to the emergence of a relative clinical genotypic identity of C. albicans. However, orofacial rehabilitation centers can contribute to the direct and indirect sources of transmission and propagation of Candida species.
Collapse
Affiliation(s)
- Marcelo Fabiano Gomes Boriollo
- Department of Oral Diagnosis, Dental School of Piracicaba, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba, SP, 13414-903, Brazil.
| | - Mateus Cardoso Oliveira
- Department of Oral Diagnosis, Dental School of Piracicaba, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba, SP, 13414-903, Brazil
| | - Vanessa Bassinello
- Department of Oral Diagnosis, Dental School of Piracicaba, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba, SP, 13414-903, Brazil
| | - Paula Cristina Aníbal
- Department of Oral Diagnosis, Dental School of Piracicaba, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba, SP, 13414-903, Brazil
| | - Thaísla Andrielle da Silva
- Department of Oral Diagnosis, Dental School of Piracicaba, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba, SP, 13414-903, Brazil
| | - Jeferson Júnior da Silva
- Department of Oral Diagnosis, Dental School of Piracicaba, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba, SP, 13414-903, Brazil
| | - Rodrigo Carlos Bassi
- Department of Oral Diagnosis, Dental School of Piracicaba, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba, SP, 13414-903, Brazil
| | - Manoel Francisco Rodrigues Netto
- Department of Oral Diagnosis, Dental School of Piracicaba, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba, SP, 13414-903, Brazil
| | - Carlos Tadeu Dos Santos Dias
- Department of Exact Sciences, College of Agriculture, University of São Paulo (ESALQ/USP), 11 Pádua Dias Ave, Piracicaba, SP, 13418-900, Brazil
| | - José Francisco Höfling
- Department of Oral Diagnosis, Dental School of Piracicaba, University of Campinas (FOP/UNICAMP), 901 Limeira Ave, Piracicaba, SP, 13414-903, Brazil
| |
Collapse
|
21
|
Fischer J, Gresnigt MS, Werz O, Hube B, Garscha U. Candida albicans-induced leukotriene biosynthesis in neutrophils is restricted to the hyphal morphology. FASEB J 2021; 35:e21820. [PMID: 34569657 DOI: 10.1096/fj.202100516rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/31/2022]
Abstract
Neutrophils are the most abundant leukocytes in circulation playing a key role in acute inflammation during microbial infections. Phagocytosis, one of the crucial defence mechanisms of neutrophils against pathogens, is amplified by chemotactic leukotriene (LT)B4 , which is biosynthesized via 5-lipoxygenase (5-LOX). However, extensive liberation of LTB4 can be destructive by over-intensifying the inflammatory process. While enzymatic biosynthesis of LTB4 is well characterized, less is known about molecular mechanisms that activate 5-LOX and lead to LTB4 formation during host-pathogen interactions. Here, we investigated the ability of the common opportunistic fungal pathogen Candida albicans to induce LTB4 formation in neutrophils, and elucidated pathogen-mediated drivers and cellular processes that activate this pathway. We revealed that C. albicans-induced LTB4 biosynthesis requires both the morphological transition from yeast cells to hyphae and the expression of hyphae-associated genes, as exclusively viable hyphae or yeast-locked mutant cells expressing hyphae-associated genes stimulated 5-LOX by [Ca2+ ]i mobilization and p38 MAPK activation. LTB4 biosynthesis was orchestrated by synergistic activation of dectin-1 and Toll-like receptor 2, and corresponding signaling via SYK and MYD88, respectively. Conclusively, we report hyphae-specific induction of LTB4 biosynthesis in human neutrophils. This highlights an expanding role of neutrophils during inflammatory processes in the response to C. albicans infections.
Collapse
Affiliation(s)
- Jana Fischer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Greifswald University, Greifswald, Germany.,Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany.,Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Ulrike Garscha
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Greifswald University, Greifswald, Germany.,Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
22
|
Huët MAL, Muzahid NH, Lee CZ, Goh CBS, Dwiyanto J, Rahman S, Tan JBL. Molecular typing of multi-drug resistant Candida albicans isolated from the Segamat community, Malaysia. Braz J Microbiol 2021; 52:2351-2356. [PMID: 34235705 DOI: 10.1007/s42770-021-00558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022] Open
Abstract
In the past decade, researchers have focused on the emergence of drug resistance in fungal pathogens such as Candida albicans, also considered as pathobionts that occur harmlessly in the human body but could potentially be triggered to cause diseases. The increasing rate of antifungal resistance in commensal gut fungi is alarming and should be further investigated. Here, we report seven novel MLST (Multi Locus Sequence Typing) genotypes of multi-drug resistant C. albicans isolates obtained from participants of a community study in Segamat, a district in the state of Johor, Malaysia. A total of eight C. albicans were isolated from four individuals, which were found to express high resistance against fluconazole, itraconazole, voriconazole and 5-fluorocytosine antifungals. MLST was performed to assess the clonal relatedness of these drug resistant isolates among themselves and against other strains isolated from other geographical regions. The novel MLST C. albicans sequence types suggest significant genetic changes compared to previous genotypes.
Collapse
Affiliation(s)
- Marie Andrea Laetitia Huët
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Nazmul Hasan Muzahid
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Chuen Zhang Lee
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Calvin Bok Sun Goh
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Jacky Dwiyanto
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Sadequr Rahman
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.,Tropical Medicine & Biology Multidisciplinary Platform, Monash University Malaysia, Subang Jaya, Malaysia
| | - Joash Ban Lee Tan
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
23
|
Impact of antifungal stewardship interventions on the susceptibility of colonized Candida species in pediatric patients with malignancy. Sci Rep 2021; 11:14099. [PMID: 34238976 PMCID: PMC8266849 DOI: 10.1038/s41598-021-93421-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/18/2021] [Indexed: 12/28/2022] Open
Abstract
There is a worldwide concern regarding the antimicrobial resistance and the inappropriate use of antifungal agents, which had led to an ever-increasing antifungal resistance. This study aimed to identify the antifungal susceptibility of colonized Candida species isolated from pediatric patients with cancer and evaluate the clinical impact of antifungal stewardship (AFS) interventions on the antifungal susceptibility of colonized Candida species. Candida species colonization was evaluated among hospitalized children with cancer in a tertiary teaching hospital, Shiraz 2017–2018. Samples were collected from the mouth, nose, urine, and stool of the patients admitted to our center and cultured on sabouraud dextrose agar. The isolated yeasts identified by polymerase chain reaction–restriction fragment length polymorphisms (PCR–RFLP). DNA Extracted and PCR amplification was performed using the ITS1 and ITS4 primer pairs and Msp I enzyme. The broth microdilution method was used to determine the minimum inhibitory concentrations (MICs) for amphotericin B, caspofungin, and azoles. The prevalence of Candida albicans in the present study was significantly higher than other Candida species. Candida albicans species were completely susceptible to the azoles. The susceptibility rate of C. albicans to amphotericin B and caspofungin was 93.1% and 97.1%, respectively. The fluconazole MIC values of Candida albicans decreased significantly during the post-AFS period (P < 0.001; mean difference: 72.3; 95% CI of the difference: 47.36–98.62). We found that 52.5% (53/117) of the isolated C. albicans were azole-resistant before AFS implementation, while only 1.5% (2/102) of the isolates were resistant after implementation of the AFS program (P < 0.001). C. albicans fluconazole and caspofungin resistant rate also decreased significantly (P < 0.001) after implementation of the AFS program [26 (32.9%) versus 0 (0.0%) and 11 (10.9%) versus 1 (0.9%), respectively]. Besides, fluconazole use (p < 0.05) and fluconazole expenditure reduced significantly (about one thousand US$ per year) after the AFS program. Our results confirm the positive effect of optimized antifungal usage and bedside intervention on the susceptibility of Candida species after the implementation of the AFS program. C. albicans and C. glabrata exhibited a significant increase in susceptibility after the execution of the AFS program.
Collapse
|
24
|
The Interplay Between Neutral and Adaptive Processes Shapes Genetic Variation During Candida Species Evolution. CURRENT CLINICAL MICROBIOLOGY REPORTS 2021. [DOI: 10.1007/s40588-021-00171-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Huët MAL, Wong LW, Goh CBS, Hussain MH, Muzahid NH, Dwiyanto J, Lee SWH, Ayub Q, Reidpath D, Lee SM, Rahman S, Tan JBL. Investigation of culturable human gut mycobiota from the segamat community in Johor, Malaysia. World J Microbiol Biotechnol 2021; 37:113. [PMID: 34101035 DOI: 10.1007/s11274-021-03083-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/31/2021] [Indexed: 11/28/2022]
Abstract
Although several studies have already been carried out in investigating the general profile of the gut mycobiome across several countries, there has yet to be an officially established baseline of a healthy human gut mycobiome, to the best of our knowledge. Microbial composition within the gastrointestinal tract differ across individuals worldwide, and most human gut fungi studies concentrate specifically on individuals from developed countries or diseased cohorts. The present study is the first culture-dependent community study assessing the prevalence and diversity of gut fungi among different ethnic groups from South East Asia. Samples were obtained from a multi-ethnic semi-rural community from Segamat in southern Malaysia. Faecal samples were screened for culturable fungi and questionnaire data analysis was performed. Culturable fungi were present in 45% of the participants' stool samples. Ethnicity had an impact on fungal prevalence and density in stool samples. The prevalence of resistance to fluconazole, itraconazole, voriconazole and 5-fluorocytosine, from the Segamat community, were 14%, 14%, 11% and 7% respectively. It was found that Jakun individuals had lower levels of antifungal resistance irrespective of the drug tested, and male participants had more fluconazole resistant yeast in their stool samples. Two novel point mutations were identified in the ERG11 gene from one azole resistant Candida glabrata, suggesting a possible cause of the occurrence of antifungal resistant isolates in the participant's faecal sample.
Collapse
Affiliation(s)
| | - Li Wen Wong
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | | | - Md Hamed Hussain
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | | | - Jacky Dwiyanto
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | | | - Qasim Ayub
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia.,Genomics Facility, Monash University Malaysia, Subang Jaya, Malaysia
| | - Daniel Reidpath
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia.,The South East Asia Community Observatory (SEACO), Segamat, Johor, Malaysia
| | - Sui Mae Lee
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia
| | - Sadequr Rahman
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia.,Tropical Medicine & Biology Multidisciplinary Platform, Monash University Malaysia, Subang Jaya, Malaysia
| | - Joash Ban Lee Tan
- School of Science, Monash University Malaysia, Subang Jaya, Malaysia. .,Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
26
|
d'Enfert C, Kaune AK, Alaban LR, Chakraborty S, Cole N, Delavy M, Kosmala D, Marsaux B, Fróis-Martins R, Morelli M, Rosati D, Valentine M, Xie Z, Emritloll Y, Warn PA, Bequet F, Bougnoux ME, Bornes S, Gresnigt MS, Hube B, Jacobsen ID, Legrand M, Leibundgut-Landmann S, Manichanh C, Munro CA, Netea MG, Queiroz K, Roget K, Thomas V, Thoral C, Van den Abbeele P, Walker AW, Brown AJP. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev 2021; 45:fuaa060. [PMID: 33232448 PMCID: PMC8100220 DOI: 10.1093/femsre/fuaa060] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans. It exists as a commensal in the oral cavity, gut or genital tract of most individuals, constrained by the local microbiota, epithelial barriers and immune defences. Their perturbation can lead to fungal outgrowth and the development of mucosal infections such as oropharyngeal or vulvovaginal candidiasis, and patients with compromised immunity are susceptible to life-threatening systemic infections. The importance of the interplay between fungus, host and microbiota in driving the transition from C. albicans commensalism to pathogenicity is widely appreciated. However, the complexity of these interactions, and the significant impact of fungal, host and microbiota variability upon disease severity and outcome, are less well understood. Therefore, we summarise the features of the fungus that promote infection, and how genetic variation between clinical isolates influences pathogenicity. We discuss antifungal immunity, how this differs between mucosae, and how individual variation influences a person's susceptibility to infection. Also, we describe factors that influence the composition of gut, oral and vaginal microbiotas, and how these affect fungal colonisation and antifungal immunity. We argue that a detailed understanding of these variables, which underlie fungal-host-microbiota interactions, will present opportunities for directed antifungal therapies that benefit vulnerable patients.
Collapse
Affiliation(s)
- Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Ann-Kristin Kaune
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Leovigildo-Rey Alaban
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Sayoni Chakraborty
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Nathaniel Cole
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Margot Delavy
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Daria Kosmala
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Benoît Marsaux
- ProDigest BV, Technologiepark 94, B-9052 Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 9000 Ghent, Belgium
| | - Ricardo Fróis-Martins
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Moran Morelli
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Marisa Valentine
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Zixuan Xie
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Yoan Emritloll
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Peter A Warn
- Magic Bullet Consulting, Biddlecombe House, Ugbrook, Chudleigh Devon, TQ130AD, UK
| | - Frédéric Bequet
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Stephanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF0545, 20 Côte de Reyne, 15000 Aurillac, France
| | - Mark S Gresnigt
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Bernhard Hube
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Ilse D Jacobsen
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Salomé Leibundgut-Landmann
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Chaysavanh Manichanh
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Karla Queiroz
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Karine Roget
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | - Vincent Thomas
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Claudia Thoral
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | | | - Alan W Walker
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J P Brown
- MRC Centre for Medical Mycology, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
27
|
Beheshti-Maal A, Shahrokh S, Ansari S, Mirsamadi ES, Yadegar A, Mirjalali H, Zali MR. Gut mycobiome: The probable determinative role of fungi in IBD patients. Mycoses 2021; 64:468-476. [PMID: 33421192 DOI: 10.1111/myc.13238] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a multi-factorial autoimmune disorder that its causative agents are unknown. The gut microbiota comprises of bacteria, viruses, fungi and protozoa that its role in IBD has remained controversially. Bacteria constitute more than 99% of the gut microbiota composition, and the main core of the gut microbiota is composed from Bacteroidetes and Firmicutes. The gut microbiota plays an important role in training, development and haemostasis of the immune responses during the life. Fungi compose a very small portion of gut microbiota, but play determinative roles in homeostasis of the gut bacterial composition and the mucosal immune responses. An interkingdom correlation between bacteria and fungi has been suggested. For example, the presence of Salmonella enterica serovar Typhimurium reduces the viability and colonisation of C albicans. Alterations in the composition and function of the gut microbiota, which is known as dysbiosis, are a usual event in patients who suffer from IBD. Although the main reason for this alteration is not clear, the interaction between gut bacteria and gut fungi seems to be an important subject in IBD patients. This review covers new findings on the interaction between fungi and bacteria and the role of fungi in the pathophysiology of IBD.
Collapse
Affiliation(s)
- Alireza Beheshti-Maal
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saham Ansari
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Sadat Mirsamadi
- Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Camp I, Spettel K, Willinger B. Molecular Methods for the Diagnosis of Invasive Candidiasis. J Fungi (Basel) 2020; 6:E101. [PMID: 32640656 PMCID: PMC7558065 DOI: 10.3390/jof6030101] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/19/2022] Open
Abstract
Invasive infections caused by members of the genus Candida are on the rise. Especially patients in intensive care units, immunocompromised patients, and those recovering from abdominal surgery are at risk for the development of candidemia or deep-seated candidiasis. Rapid initiation of appropriate antifungal therapy can increase survival rates significantly. In the past, most of these infections were caused by C. albicans, a species that typically is very susceptible to antifungals. However, in recent years a shift towards infections caused by non-albicans species displaying various susceptibly patterns has been observed and the prompt diagnosis of the underlying species has become an essential factor determining the therapeutic outcome. The gold standard for diagnosing invasive candidiasis is blood culture, even though its sensitivity is low and the time required for species identification usually exceeds 48 h. To overcome these issues, blood culture can be combined with other methods, and a large number of tests have been developed for this purpose. The aim of this review was to give an overview on strengths and limitations of currently available molecular methods for the diagnosis of invasive candidiasis.
Collapse
Affiliation(s)
| | | | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; (I.C.); (K.S.)
| |
Collapse
|
29
|
Maranhão FCDA, Mendonça NM, Teixeira TC, Lages GADCS, de Melo JA, Porciuncula CGG, da Silva Filho EA, Silva DMW. Molecular Identification of Candida Species in the Oral Microbiota of Individuals with Down Syndrome: A Case-Control Study. Mycopathologia 2020; 185:537-543. [PMID: 32458314 DOI: 10.1007/s11046-020-00457-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/14/2020] [Indexed: 01/25/2023]
Abstract
Candida species are common in the human oral microbiota and may cause oral candidiasis (OC) when the microbiota equilibrium is disturbed. Immunosuppressed individuals are susceptible to oral infections as individuals with Down syndrome (IDS) due to particularities of their mouth morphoanatomy, saliva and comorbidities. This study aimed to analyze the molecular epidemiology of Candida spp. from the oral cavity of IDS and their relatives. A case-control study with 80 IDS and 80 non-syndromic (non-DS) was evaluated by oral swab collection for culture on Sabouraud dextrose agar, selection of yeast colonies to Gram staining and culturing on chromogenic media. DNA extraction was performed with the phenol/chloroform method for screening of 6 Candida species medically important in PCR, applying SPSS for statistics. We confirmed four species in 46 IDS without use of antimicrobials (57.54%), with a high prevalence of C. albicans/Ca (93.48%/43) and 3 C. glabrata/Cg (6.52%), being 25 of these IDS (31.25%) colonized by species other than C. albicans: Ca + Cg (16), Ca + C. tropicalis/Ct (7) and Ca + C. krusei/Ck (2). Only 10 non-DS were colonized by one species (11.25%): 6 C. albicans, 2 C. glabrata, 1 C. tropicalis and 1 C. krusei. Previous OC was reported by 39 IDS (48.75%), being 33 positives for Candida spp. (84.61%) and 17 with active OC (21.25%). Five non-DS reported OC previously and had no active lesions. Behavioral changes and buccal health programs directed to IDS may help prevent OC and its recurrence, providing information on oral hygiene for self-care.
Collapse
Affiliation(s)
- Fernanda Cristina de Albuquerque Maranhão
- Department of Microbiology, Universidade Federal de Alagoas, Maceió, AL, Brazil. .,Laboratory of Clinical Microbiology, Institute of Biological and Health Sciences, Universidade Federal de Alagoas, Maceió, AL, 57022-222, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Jahanshiri Z, Manifar S, Hatami F, Arastehnazar F, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M. Genotyping of Candida albicans isolates from oropharyngeal candidiasis in head and neck cancer patients in Iran: Molecular epidemiology and SAP2 gene expression. J Mycol Med 2019; 29:310-316. [DOI: 10.1016/j.mycmed.2019.100896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 11/26/2022]
|
31
|
Felice MR, Giuffrè L, El Aamri L, Hafidi M, Criseo G, Romeo O, Scordino F. Looking for New Antifungal Drugs from Flavonoids: Impact of the Genetic Diversity of Candida albicans on the in-vitro Response. Curr Med Chem 2019; 26:5108-5123. [PMID: 29278204 DOI: 10.2174/0929867325666171226102700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/15/2017] [Accepted: 11/06/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND In an era in which antimicrobial resistance is increasing at an alarming pace, it is very important to find new antimicrobial agents effective against pathogenic microrganisms resistant to traditional treatments. Among the notable breakthroughs in the past years of research in natural-drug discovery, there is the identification and testing of flavonoids, a group of plant-derived substances capable of promoting many beneficial effects on humans. These compounds show different biological activities such as inhibition of neuroinflammation and tumor growth as well as antimicrobial activity against many microbial pathogens. METHODS We undertook a review of protocols and standard strains used in studies reporting the inhibitory effects of flavonoids against Candida albicans by focusing our attention on genetic characterization of the strains examined. Moreover, using the C. albicans MLST-database, we performed a phylogenetic analysis showing the genetic variation occurring in this species. RESULTS Today, we have enough information to estimate genetic diversity within microbial species and recent data revealed that most of fungal pathogens show complex population structures in which not a single isolate can be designated as representative of the entire taxon. This is especially true for the highly divergent fungal pathogen C. albicans, in which the assumption that one or few "standard strains" can represent the whole species is overly unrealistic and should be laid to rest. CONCLUSION The goal of this article is to shed light on the extent of genetic variation in C. albicans and how this phenomenon can largely influence the activity of flavonoids against this species.
Collapse
Affiliation(s)
- Maria Rosa Felice
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Letterio Giuffrè
- Department of Veterinary Sciences, Division of Animal Production, University of Messina, Messina, Italy
| | - Lamya El Aamri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Department of Biology, Moulay Ismail University, Faculty of Sciences, Zitoune Meknes, Morocco
| | - Majida Hafidi
- Department of Biology, Moulay Ismail University, Faculty of Sciences, Zitoune Meknes, Morocco
| | - Giuseppe Criseo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Scientific Institute for Research, Hospitalization and Health Care (IRCCS) - Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | - Fabio Scordino
- Scientific Institute for Research, Hospitalization and Health Care (IRCCS) - Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| |
Collapse
|
32
|
Double positive CD4+CD8+ T cells are part of the adaptive immune response against Candida albicans. Hum Immunol 2019; 80:999-1005. [PMID: 31561914 DOI: 10.1016/j.humimm.2019.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 11/21/2022]
Abstract
Although multiple immune cells participate in the innate and adaptive immune response against Candida albicans, the elucidation of cellular and inflammation kinetics may be a promising strategy to decipher events propitious to infection eradication. We used an in vitro Candida-human leucocyte coculture approach to study the dynamics of rare CD4+CD8+ double positive T lymphocytes (DP T) produced in response to this fungus. Our results highlight the presence of two phenotypically distinct subsets of DP T cells: CD4hiCD8lo and CD4loCD8hi, and that the different ratio of these cells correlates with infection outcome. The ratio of CD4hiCD8lo over CD4loCD8hi by day 6 was significantly higher in controlled infections and decreased when infection persisted due to a significant increase in the proportion of CD4loCD8hi. When infection was controlled, CD4hiCD8lo T cells secreted IFNγ, TNFα, IL-4 and IL-10 cytokines two days after challenge. By day 2, under conditions of persistent infection, CD4hiCD8lo and CD4loCD8hi T cells secreted significant levels of IL-4 and IL-10, respectively, compared to uninfected cultures. Frequency kinetics and original cytokine profiles detailed in this work indicate that DP T cells could participate in the adaptive immune response to C. albicans.
Collapse
|
33
|
Graf K, Last A, Gratz R, Allert S, Linde S, Westermann M, Gröger M, Mosig AS, Gresnigt MS, Hube B. Keeping Candida commensal: how lactobacilli antagonize pathogenicity of Candida albicans in an in vitro gut model. Dis Model Mech 2019; 12:dmm.039719. [PMID: 31413153 PMCID: PMC6765188 DOI: 10.1242/dmm.039719] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022] Open
Abstract
The intestine is the primary reservoir of Candida albicans that can cause systemic infections in immunocompromised patients. In this reservoir, the fungus exists as a harmless commensal. However, antibiotic treatment can disturb the bacterial microbiota, facilitating fungal overgrowth and favoring pathogenicity. The current in vitro gut models that are used to study the pathogenesis of C. albicans investigate the state in which C. albicans behaves as a pathogen rather than as a commensal. We present a novel in vitro gut model in which the fungal pathogenicity is reduced to a minimum by increasing the biological complexity. In this model, enterocytes represent the epithelial barrier and goblet cells limit C. albicans adhesion and invasion. Significant protection against C. albicans-induced necrotic damage was achieved by the introduction of a microbiota of antagonistic lactobacilli. We demonstrated a time-, dose- and species-dependent protective effect against C. albicans-induced cytotoxicity. This required bacterial growth, which relied on the presence of host cells, but was not dependent on the competition for adhesion sites. Lactobacillus rhamnosus reduced hyphal elongation, a key virulence attribute. Furthermore, bacterial-driven shedding of hyphae from the epithelial surface, associated with apoptotic epithelial cells, was identified as a main and novel mechanism of damage protection. However, host cell apoptosis was not the driving mechanism behind shedding. Collectively, we established an in vitro gut model that can be used to experimentally dissect commensal-like interactions of C. albicans with a bacterial microbiota and the host epithelial barrier. We also discovered fungal shedding as a novel mechanism by which bacteria contribute to the protection of epithelial surfaces.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Katja Graf
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Antonia Last
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Rena Gratz
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Susanne Linde
- Center for Electron Microscopy Jena University Hospital, Ziegelmühlenweg 1, 07743 Jena, Germany
| | - Martin Westermann
- Center for Electron Microscopy Jena University Hospital, Ziegelmühlenweg 1, 07743 Jena, Germany
| | - Marko Gröger
- Center for Sepsis Control and Care (CSCC), University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany
| | - Alexander S Mosig
- Center for Sepsis Control and Care (CSCC), University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany.,Institute of Biochemistry II, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Mark S Gresnigt
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knoell-Institute, Beutenbergstraße 11A, 07745 Jena, Germany .,Friedrich Schiller University, Fürstengraben 1, 07743 Jena, Germany
| |
Collapse
|
34
|
A three-dimensional immunocompetent intestine-on-chip model as in vitro platform for functional and microbial interaction studies. Biomaterials 2019; 220:119396. [PMID: 31398556 DOI: 10.1016/j.biomaterials.2019.119396] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/08/2019] [Accepted: 07/28/2019] [Indexed: 12/31/2022]
Abstract
Alterations of the microbial composition in the gut and the concomitant dysregulation of the mucosal immune response are associated with the pathogenesis of opportunistic infections, chronic inflammation, and inflammatory bowel disease. To create a platform for the investigation of the underlying mechanisms, we established a three-dimensional microphysiological model of the human intestine. This model resembles organotypic microanatomical structures and includes tissue resident innate immune cells exhibiting features of mucosal macrophages and dendritic cells. The model displays the physiological immune tolerance of the intestinal lumen to microbial-associated molecular patterns and can, therefore, be colonised with living microorganisms. Functional studies on microbial interaction between probiotic Lactobacillus rhamnosus and the opportunistic pathogen Candida albicans show that pre-colonization of the intestinal lumen of the model by L. rhamnosus reduces C. albicans-induced tissue damage, lowers its translocation, and limits fungal burden. We demonstrate that microbial interactions can be efficiently investigated using the in vitro model creating a more physiological and immunocompetent microenvironment. The intestinal model allows a detailed characterisation of the immune response, microbial pathogenicity mechanisms, and quantification of cellular dysfunction attributed to alterations in the microbial composition.
Collapse
|
35
|
Studying fungal pathogens of humans and fungal infections: fungal diversity and diversity of approaches. Microbes Infect 2019; 21:237-245. [PMID: 31255676 DOI: 10.1016/j.micinf.2019.06.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/26/2022]
Abstract
Seminal work by Louis Pasteur revealed the contribution of fungi - yeasts and microsporidia to agroindustry and disease in animals, respectively. More than 150 years later, the impact of fungi on human health and beyond is an ever-increasing issue, although often underestimated. Recent studies estimate that fungal infections, especially those caused by Candida, Cryptococcus and Aspergillus species, kill more than one million people annually. Indeed, these neglected infections are in general very difficult to cure and the associated mortality remains very high even when antifungal treatments exist. The development of new antifungals and diagnostic tools that are both necessary to fight fungal diseases efficiently, requires greater insights in the biology of the fungal pathogens of humans in the context of the infection, on their epidemiology, and on their role in the human mycobiota. We also need a better understanding of the host immune responses to fungal pathogens as well as the genetic basis for the increased sensitivity of some individuals to fungal infections. Here, we highlight some recent progress made in these different areas of research, in particular based on work conducted in our own laboratories. These progresses should lay the ground for better management of fungal infections, as they provide opportunities for better diagnostic, vaccination, the development of classical antifungals but also strategies for targeting virulence factors or the host.
Collapse
|
36
|
Pham LTT, Pharkjaksu S, Chongtrakool P, Suwannakarn K, Ngamskulrungroj P. A Predominance of Clade 17 Candida albicans Isolated From Hemocultures in a Tertiary Care Hospital in Thailand. Front Microbiol 2019; 10:1194. [PMID: 31258518 PMCID: PMC6587676 DOI: 10.3389/fmicb.2019.01194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/13/2019] [Indexed: 12/24/2022] Open
Abstract
Candida albicans is one of the most common human fungal pathogens. Candidemia has significant mortality globally. No epidemiological study of C. albicans based on multilocus sequence typing (MLST) has been conducted in Thailand. Therefore, MLST was used to study the molecular epidemiology of C. albicans blood strains in a large Thai teaching hospital. In vitro virulence phenotypes and antifungal susceptibility testing by broth microdilution were also conducted. Forty-six C. albicans blood strains from 37 patients were collected from the Department of Microbiology, Siriraj Hospital, in 2016 and 2017. Most patients (71.8%) were more than 60 years old, and the case fatality rate was 54.8%. The male-to-female ratio was 5:3. Thirty-four diploid sequence types (DSTs), including six new DSTs, were identified, with DST2514 (8.7%) and DST2876 (8.7%) as the most common DSTs. Strains were clustered into nine clades. Unlike other studies of C. albicans blood strains in Asia, clade 17 was the most common (13 strains, 28.3%). Sequential allelic changes were evident in sequential strains from one patient. All strains produced phospholipase and hemolysin, while none produced proteinase. The ability to form biofilm was found in 82.6% of the strains. Clade 17 strains showed significantly stronger hemolytic activity than non–clade 17 strains (69.2% versus 27.3%; p = 0.022). However, no significant association existed between clades and patient mortalities. All were susceptible or wild type to anidulafungin (MIC range = 0.015–0.12 and GM = 0.030), micafungin (MIC range = ≤ 0.008–0.015 and GM = 0.008), caspofungin (MIC range = 0.008–0.12 and GM = 0.036), and amphotericin B (MIC range = 0.25–0.5 and GM = 0.381). Only one strain was resistant to voriconazole (MIC range = ≤ 0.008 to ≥ 8 and GM = 0.010) and fluconazole (MIC range = 0.12–16 and GM = 0.398). In conclusion, a high prevalence of clade 17 C. albicans blood strains was found in Thailand, in contrast to other Asian countries. This unique finding might be explained by the strong hemolytic activity that is required for bloodstream infection of C. albicans.
Collapse
Affiliation(s)
- Linh Thi Truc Pham
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Thailand
| | - Sujiraphong Pharkjaksu
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Thailand
| | - Piriyaporn Chongtrakool
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Thailand
| | - Kamol Suwannakarn
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Thailand
| | - Popchai Ngamskulrungroj
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok Noi, Thailand
| |
Collapse
|
37
|
Denega I, d'Enfert C, Bachellier-Bassi S. Candida albicans Biofilms Are Generally Devoid of Persister Cells. Antimicrob Agents Chemother 2019; 63:e01979-18. [PMID: 30783002 PMCID: PMC6496073 DOI: 10.1128/aac.01979-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/10/2019] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is known for its ability to form biofilms, which are communities of microorganisms embedded in an extracellular matrix developing on different surfaces. Biofilms are highly tolerant to antifungal therapy. This phenomenon has been partially explained by the appearance of so-called persister cells, phenotypic variants of wild-type cells, capable of surviving very high concentrations of antimicrobial agents. Persister cells in C. albicans were found exceptionally in biofilms, while none were detected in planktonic cultures of this fungus. Yet, this topic remains controversial, as others could not observe persister cells in biofilms formed by the C. albicans SC5314 laboratory strain. Due to ambiguous data in the literature, this work aimed to reevaluate the presence of persister cells in C. albicans biofilms. We demonstrated that the isolation of C. albicans "persister cells" as described previously was likely to be the result of the survival of biofilm cells that were not reached by the antifungal. We tested biofilms of SC5314 and its derivatives, as well as 95 clinical isolates, using an improved protocol, demonstrating that persister cells are not a characteristic trait of C. albicans biofilms. Although some clinical isolates are able to yield survivors upon the antifungal treatment of biofilms, this phenomenon is rather stochastic and inconsistent.
Collapse
Affiliation(s)
- Iryna Denega
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | | |
Collapse
|
38
|
Studying fungal pathogens of humans and fungal infections: fungal diversity and diversity of approaches. Genes Immun 2019; 20:403-414. [PMID: 31019254 DOI: 10.1038/s41435-019-0071-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/24/2022]
Abstract
Seminal work by Louis Pasteur revealed the contribution of fungi-yeasts and microsporidia to agroindustry and disease in animals, respectively. More than 150 years later, the impact of fungi on human health and beyond is an ever-increasing issue, although often underestimated. Recent studies estimate that fungal infections, especially those caused by Candida, Cryptococcus and Aspergillus species, kill more than one million people annually. Indeed, these neglected infections are in general very difficult to cure and the associated mortality remains very high even when antifungal treatments exist. The development of new antifungals and diagnostic tools that are both necessary to fight fungal diseases efficiently, requires greater insights in the biology of the fungal pathogens of humans in the context of the infection, on their epidemiology, and on their role in the human mycobiota. We also need a better understanding of the host immune responses to fungal pathogens as well as the genetic basis for the increased sensitivity of some individuals to fungal infections. Here, we highlight some recent progress made in these different areas of research, in particular based on work conducted in our own laboratories. These progress should lay the ground for better management of fungal infections, as they provide opportunities for better diagnostic, vaccination, the development of classical antifungals but also strategies for targeting virulence factors or the host.
Collapse
|
39
|
Candida albicans Interactions with Mucosal Surfaces during Health and Disease. Pathogens 2019; 8:pathogens8020053. [PMID: 31013590 PMCID: PMC6631630 DOI: 10.3390/pathogens8020053] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022] Open
Abstract
Flexible adaptation to the host environment is a critical trait that underpins the success of numerous microbes. The polymorphic fungus Candida albicans has evolved to persist in the numerous challenging niches of the human body. The interaction of C. albicans with a mucosal surface is an essential prerequisite for fungal colonisation and epitomises the complex interface between microbe and host. C. albicans exhibits numerous adaptations to a healthy host that permit commensal colonisation of mucosal surfaces without provoking an overt immune response that may lead to clearance. Conversely, fungal adaptation to impaired immune fitness at mucosal surfaces enables pathogenic infiltration into underlying tissues, often with devastating consequences. This review will summarise our current understanding of the complex interactions that occur between C. albicans and the mucosal surfaces of the human body.
Collapse
|
40
|
Sitterlé E, Maufrais C, Sertour N, Palayret M, d'Enfert C, Bougnoux ME. Within-Host Genomic Diversity of Candida albicans in Healthy Carriers. Sci Rep 2019; 9:2563. [PMID: 30796326 PMCID: PMC6385308 DOI: 10.1038/s41598-019-38768-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/09/2019] [Indexed: 12/14/2022] Open
Abstract
Genomic variations in Candida albicans, a major fungal pathogen of humans, have been observed upon exposure of this yeast to different stresses and experimental infections, possibly contributing to subsequent adaptation to these stress conditions. Yet, little is known about the extent of genomic diversity that is associated with commensalism, the predominant lifestyle of C. albicans in humans. In this study, we investigated the genetic diversity of C. albicans oral isolates recovered from healthy individuals, using multilocus sequencing typing (MLST) and whole genome sequencing. While MLST revealed occasional differences between isolates collected from a single individual, genome sequencing showed that they differed by numerous single nucleotide polymorphisms, mostly resulting from short-range loss-of-heterozygosity events. These differences were shown to have occurred upon human carriage of C. albicans rather than subsequent in vitro manipulation of the isolates. Thus, C. albicans intra-sample diversity appears common in healthy individuals, higher than that observed using MLST. We propose that diversifying lineages coexist in a single human individual, and this diversity can enable rapid adaptation under stress exposure. These results are crucial for the interpretation of longitudinal studies evaluating the evolution of the C. albicans genome.
Collapse
Affiliation(s)
- Emilie Sitterlé
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
- Unité de Parasitologie-Mycologie, Service de Microbiologie clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
| | - Corinne Maufrais
- Center for Bioinformatics, BioStatistics and Integrative Biology (C3BI), USR 3756 IP CNRS, Institut Pasteur, Paris, France
| | - Natacha Sertour
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France
| | | | - Christophe d'Enfert
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France
| | - Marie-Elisabeth Bougnoux
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France.
- Unité de Parasitologie-Mycologie, Service de Microbiologie clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France.
| |
Collapse
|
41
|
Bensasson D, Dicks J, Ludwig JM, Bond CJ, Elliston A, Roberts IN, James SA. Diverse Lineages of Candida albicans Live on Old Oaks. Genetics 2019; 211:277-288. [PMID: 30463870 PMCID: PMC6325710 DOI: 10.1534/genetics.118.301482] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/05/2018] [Indexed: 12/26/2022] Open
Abstract
The human pathogen Candida albicans is considered an obligate commensal of animals, yet it is occasionally isolated from trees, shrubs, and grass. We generated genome sequence data for three strains of C. albicans that we isolated from oak trees in an ancient wood pasture, and compared these to the genomes of over 200 clinical strains. C. albicans strains from oak are similar to clinical C. albicans in that they are predominantly diploid and can become homozygous at the mating locus through whole-chromosome loss of heterozygosity. Oak strains differed from clinical strains in showing slightly higher levels of heterozygosity genome-wide. Using phylogenomic analyses and in silico chromosome painting, we show that each oak strain is more closely related to strains from humans and other animals than to strains from other oaks. The high genetic diversity of C. albicans from old oaks shows that they can live in this environment for extended periods of time.
Collapse
Affiliation(s)
- Douda Bensasson
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602
- Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602
| | - Jo Dicks
- National Collection of Yeast Cultures, Quadram Institute Bioscience, Norwich NR4 7UA, UK
| | - John M Ludwig
- Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602
| | - Christopher J Bond
- National Collection of Yeast Cultures, Quadram Institute Bioscience, Norwich NR4 7UA, UK
| | - Adam Elliston
- National Collection of Yeast Cultures, Quadram Institute Bioscience, Norwich NR4 7UA, UK
| | - Ian N Roberts
- National Collection of Yeast Cultures, Quadram Institute Bioscience, Norwich NR4 7UA, UK
| | - Stephen A James
- National Collection of Yeast Cultures, Quadram Institute Bioscience, Norwich NR4 7UA, UK
| |
Collapse
|
42
|
Amanloo S, Shams-Ghahfarokhi M, Ghahri M, Razzaghi-Abyaneh M. Genotyping of clinical isolates of Candida glabrata from Iran by multilocus sequence typing and determination of population structure and drug resistance profile. Med Mycol 2018; 56:207-215. [PMID: 28482076 DOI: 10.1093/mmy/myx030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/03/2017] [Indexed: 12/14/2022] Open
Abstract
Candida glabrata is often the second most common causative agent for candidiasis following Candida albicans. Despite the importance of C. glabrata infections, few epidemiological studies have been conducted on this issue. The goal of this study was genotyping of clinical isolates of C. glabrata by multilocus sequence typing (MLST) technique for determination of the endemic prevalent genotypes and any association between isolation source and drug resistance. A total of 50 C. glabrata clinical isolates from Iran were analyzed by MLST and tested for in-vitro susceptibilities to amphotericin-B, caspofungin, fluconazole, and voriconazole according to the Clinical Laboratory Standards Institute (CLSI) M27-A4 document guidelines. Among these isolates, 16 distinct STs were identified, indicating a discriminatory power index of 0.9029. The three major sequence types (STs) were ST-59, ST-74, and ST-7 with 10, 8, and 7 isolates, respectively. Furthermore, a total of 11 new sequences were found, to which no allele numbers were assigned in the MLST database. All the isolates were susceptible to amphotericin B and caspofungin. Fluconazole resistance was shown in four isolates. Also, a sole isolate was voriconazole resistant. This study shows that the population structure of C. glabrata in Iran consists of groups closely related to the global database as well as to some new clonal clusters and STs. Regarding the high prevalence of 11 new sequences found in this study, it can be concluded that, these new alleles are among the endemic genotypes of Iran. The genotypes or STs were independent of drug susceptibility and anatomic sources.
Collapse
Affiliation(s)
- Saeid Amanloo
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-331, Iran
| | | | - Mohammad Ghahri
- Department of Biological Sciences, Faculty of Basic Sciences, Imam Hossein University, Tehran, Iran
| | | |
Collapse
|
43
|
Multilocus sequence typing of Candida albicans isolates from the oral cavities of patients undergoing haemodialysis. Sci Rep 2018; 8:16413. [PMID: 30401875 PMCID: PMC6219599 DOI: 10.1038/s41598-018-34565-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 10/17/2018] [Indexed: 12/15/2022] Open
Abstract
This study evaluates the prevalence, diversity, and genetic profiles of Candida albicans isolates recovered from the oral cavities of haemodialysis patients. Oral swab samples were obtained from haemodialysis patients (n = 126) and healthy control subjects (n = 233) and Candida species were characterised. There was no significant difference between the haemodialysis and control groups in the prevalence of yeast carriers (23.6% vs. 31.0%, respectively) or C. albicans carriers (19.8% vs. 21.0%, respectively). C. albicans was the most populous species in both cohorts, followed by C. parapsilosis. C. parapsilosis and C. glabrata were more prevalent in the haemodialysis group than in the control group (C. parapsilosis 5.6% vs. 0.9% and C. glabrata 3.2% vs. 0.4%, respectively; P < 0.05). C. albicans isolates were analysed by multilocus sequence typing and the results were used to construct a phylogenetic tree. Most haemodialysis isolates were placed into Clade 4 (20.0%) and Clade 19 (16.0%) and most control isolates into Clade 8 (17%) and Clade 4 (14.9%). Differences in the strain abundance in each clade were not statistically significant between the two groups. Moreover, there was no significant association between the health status or diagnosis and either the sequence types or clades.
Collapse
|
44
|
Sendid B, Jawhara S, Sarter H, Maboudou P, Thierny C, Gower-Rousseau C, Colombel JF, Poulain D. Uric acid levels are independent of anti-Saccharomyces cerevisiae antibodies (ASCA) in Crohn's disease: A reappraisal of the role of S. cerevisiae in this setting. Virulence 2018; 9:1224-1229. [PMID: 30027793 PMCID: PMC6086291 DOI: 10.1080/21505594.2018.1496779] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- B Sendid
- a Inserm, Univ. Lille, CHU Lille, UMR995-LIRIC- Lille Inflammation Research International Center , Lille , France.,b CHU Lille, Parasitologie-Mycologie , Institut de Microbiologie , Lille , France
| | - S Jawhara
- a Inserm, Univ. Lille, CHU Lille, UMR995-LIRIC- Lille Inflammation Research International Center , Lille , France
| | - H Sarter
- a Inserm, Univ. Lille, CHU Lille, UMR995-LIRIC- Lille Inflammation Research International Center , Lille , France
| | - P Maboudou
- c CHU Lille, laboratoire de Biochimie , Institut de Biochimie et Biologie Moléculaire , Lille , France
| | - C Thierny
- c CHU Lille, laboratoire de Biochimie , Institut de Biochimie et Biologie Moléculaire , Lille , France
| | - C Gower-Rousseau
- a Inserm, Univ. Lille, CHU Lille, UMR995-LIRIC- Lille Inflammation Research International Center , Lille , France
| | - J F Colombel
- d Division of Gastroenterology , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - D Poulain
- a Inserm, Univ. Lille, CHU Lille, UMR995-LIRIC- Lille Inflammation Research International Center , Lille , France.,b CHU Lille, Parasitologie-Mycologie , Institut de Microbiologie , Lille , France
| |
Collapse
|
45
|
Su JZ, Yang YL, Rong R, Wu BQ. Genotype and homology analysis of pathogenic and colonization strains of Candida albicans from hospitalized neonates. Pediatr Neonatol 2018; 59:488-493. [PMID: 29339049 DOI: 10.1016/j.pedneo.2017.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/31/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND To detect the genotypes of pathogenic and colonization Candida albicans strains and to reveal whether there was a homologous relationship between these strains. METHODS Pathogenic and colonization isolates were collected from infants in the NICU of Shenzhen People's Hospital (Shenzhen, People's Republic of China). rDNA identification, multilocus sequence typing (MLST), and multi-loci variable number tandem repeat analysis (MLVA) were used for species confirmation, strain identification, phylogenetic tree clustering, and assessment of homology among the pathogenic and colonization strains. RESULTS All 48 isolates belonged to C. albicans species; 12 were collected from premature infants with fungal sepsis. These isolates generated 5 sequence types (ST1867, ST2551, ST2552, ST2937, and ST2945) and were designated as pathogenic strains. The other 36 isolates were collected from the infants without fungal infection; 9 sequence types were detected and designated as the colonization strains. In the phylogenetic tree, the upper branch consisted of a 4° clade composed of 20 colonization isolates designated to 3 strains, and 4 pathogenic isolates designated to 1 strain; a 5° clade composed of 8 pathogenic isolates designated to 3 strains; and a 4° clade consisting 1 pathogenic isolate designated to 1 strain and 4 colonization isolates designated to 2 strains. The lower branch consisted of a 3° clade composed of 6 colonization isolates designated to 2 strains and a control pathogenic isolate, and a 3° clade composed of 5 colonization isolates designated to 2 strains. CONCLUSION Although there was no core ST detected to specify pathogenicity or colonization of C. albicans, the genotypes of the colonization strains were different from those of the pathogenic strains. Most of the colonization and pathogenic strains were highly homologous within their classifications while some pathogenic strains had genomes highly homologous with those of colonization strains and clustered in heterogeneous groups.
Collapse
Affiliation(s)
- Jin-Zhen Su
- Department of Neonatology, Shenzhen People's Hospital, The Second clinical medical college of JiNan University, Shenzhen City 518020, China.
| | - Yu-Lan Yang
- Department of Neonatology, Shenzhen People's Hospital, The Second clinical medical college of JiNan University, Shenzhen City 518020, China.
| | - Rong Rong
- Department of Neonatology, The Northwest Women and Children Hospital, Xi'an City, Shaanxi Province 710000, China.
| | - Ben-Qing Wu
- Department of Neonatology, Shenzhen People's Hospital, The Second clinical medical college of JiNan University, Shenzhen City 518020, China.
| |
Collapse
|
46
|
Molecular Identification of Clinically Common and Uncommon Yeast Species. Jundishapur J Microbiol 2018. [DOI: 10.5812/jjm.66240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
47
|
Mishra AA, Koh AY. Adaptation of Candida albicans during gastrointestinal tract colonization. CURRENT CLINICAL MICROBIOLOGY REPORTS 2018; 5:165-172. [PMID: 30560045 DOI: 10.1007/s40588-018-0096-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose of Review Colonization of the gastrointestinal (GI) tract with Candida albicans (CA), the most common human fungal pathogen, is the first step towards the development of invasive infection. Yet the fungal virulence factors and host factors that modulate CA GI colonization are still poorly understood. In this review, we will review emerging evidence of the importance of select CA genetic determinants and CA's interaction with the host that contribute to its successful adaptation as a pathobiont in the human GI tract. Recent Findings Recent data reveal the importance of 1) CA genetic determinants; 2) host factors; and 3) environmental factors in modulating CA GI colonization in humans. Summary As evidence continues to grow supporting the notion that the GI tract and its resident microbiota are an integral part of the host immune system, it will be critical for studies to interrogate the interaction of CA with the host (including both the host innate and adaptive immune system as well as the endogenous gut microbiota) in order to dissect the mechanisms of CA pathogenesis and thus lay the foundation for novel therapeutic approaches to prevent and/or treat invasive fungal infections.
Collapse
Affiliation(s)
- Animesh A Mishra
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrew Y Koh
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
48
|
Allert S, Förster TM, Svensson CM, Richardson JP, Pawlik T, Hebecker B, Rudolphi S, Juraschitz M, Schaller M, Blagojevic M, Morschhäuser J, Figge MT, Jacobsen ID, Naglik JR, Kasper L, Mogavero S, Hube B. Candida albicans-Induced Epithelial Damage Mediates Translocation through Intestinal Barriers. mBio 2018; 9:e00915-18. [PMID: 29871918 PMCID: PMC5989070 DOI: 10.1128/mbio.00915-18] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 01/31/2023] Open
Abstract
Life-threatening systemic infections often occur due to the translocation of pathogens across the gut barrier and into the bloodstream. While the microbial and host mechanisms permitting bacterial gut translocation are well characterized, these mechanisms are still unclear for fungal pathogens such as Candida albicans, a leading cause of nosocomial fungal bloodstream infections. In this study, we dissected the cellular mechanisms of translocation of C. albicans across intestinal epithelia in vitro and identified fungal genes associated with this process. We show that fungal translocation is a dynamic process initiated by invasion and followed by cellular damage and loss of epithelial integrity. A screen of >2,000 C. albicans deletion mutants identified genes required for cellular damage of and translocation across enterocytes. Correlation analysis suggests that hypha formation, barrier damage above a minimum threshold level, and a decreased epithelial integrity are required for efficient fungal translocation. Translocation occurs predominantly via a transcellular route, which is associated with fungus-induced necrotic epithelial damage, but not apoptotic cell death. The cytolytic peptide toxin of C. albicans, candidalysin, was found to be essential for damage of enterocytes and was a key factor in subsequent fungal translocation, suggesting that transcellular translocation of C. albicans through intestinal layers is mediated by candidalysin. However, fungal invasion and low-level translocation can also occur via non-transcellular routes in a candidalysin-independent manner. This is the first study showing translocation of a human-pathogenic fungus across the intestinal barrier being mediated by a peptide toxin.IMPORTANCECandida albicans, usually a harmless fungus colonizing human mucosae, can cause lethal bloodstream infections when it manages to translocate across the intestinal epithelium. This can result from antibiotic treatment, immune dysfunction, or intestinal damage (e.g., during surgery). However, fungal processes may also contribute. In this study, we investigated the translocation process of C. albicans using in vitro cell culture models. Translocation occurs as a stepwise process starting with invasion, followed by epithelial damage and loss of epithelial integrity. The ability to secrete candidalysin, a peptide toxin deriving from the hyphal protein Ece1, is key: C. albicans hyphae, secreting candidalysin, take advantage of a necrotic weakened epithelium to translocate through the intestinal layer.
Collapse
Affiliation(s)
- Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Toni M Förster
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | | | - Jonathan P Richardson
- Mucosal & Salivary Biology Division, Dental Institute, King's College London, London, United Kingdom
| | - Tony Pawlik
- Research Group Microbial Immunology, Hans-Knöll-Institute, Jena, Germany
| | - Betty Hebecker
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
- Research Group Microbial Immunology, Hans-Knöll-Institute, Jena, Germany
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, United Kingdom
| | - Sven Rudolphi
- Research Group Microbial Immunology, Hans-Knöll-Institute, Jena, Germany
| | - Marc Juraschitz
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Martin Schaller
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Mariana Blagojevic
- Mucosal & Salivary Biology Division, Dental Institute, King's College London, London, United Kingdom
| | - Joachim Morschhäuser
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Marc Thilo Figge
- Research Group Applied Systems Biology, Hans-Knöll-Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Hans-Knöll-Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Julian R Naglik
- Mucosal & Salivary Biology Division, Dental Institute, King's College London, London, United Kingdom
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
49
|
Zhang N, Wheeler D, Truglio M, Lazzarini C, Upritchard J, McKinney W, Rogers K, Prigitano A, Tortorano AM, Cannon RD, Broadbent RS, Roberts S, Schmid J. Multi-Locus Next-Generation Sequence Typing of DNA Extracted From Pooled Colonies Detects Multiple Unrelated Candida albicans Strains in a Significant Proportion of Patient Samples. Front Microbiol 2018; 9:1179. [PMID: 29922262 PMCID: PMC5996278 DOI: 10.3389/fmicb.2018.01179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022] Open
Abstract
The yeast Candida albicans is an important opportunistic human pathogen. For C. albicans strain typing or drug susceptibility testing, a single colony recovered from a patient sample is normally used. This is insufficient when multiple strains are present at the site sampled. How often this is the case is unclear. Previous studies, confined to oral, vaginal and vulvar samples, have yielded conflicting results and have assessed too small a number of colonies per sample to reliably detect the presence of multiple strains. We developed a next-generation sequencing (NGS) modification of the highly discriminatory C. albicans MLST (multilocus sequence typing) method, 100+1 NGS-MLST, for detection and typing of multiple strains in clinical samples. In 100+1 NGS-MLST, DNA is extracted from a pool of colonies from a patient sample and also from one of the colonies. MLST amplicons from both DNA preparations are analyzed by high-throughput sequencing. Using base call frequencies, our bespoke DALMATIONS software determines the MLST type of the single colony. If base call frequency differences between pool and single colony indicate the presence of an additional strain, the differences are used to computationally infer the second MLST type without the need for MLST of additional individual colonies. In mixes of previously typed pairs of strains, 100+1 NGS-MLST reliably detected a second strain. Inferred MLST types of second strains were always more similar to their real MLST types than to those of any of 59 other isolates (22 of 31 inferred types were identical to the real type). Using 100+1 NGS-MLST we found that 7/60 human samples, including three superficial candidiasis samples, contained two unrelated strains. In addition, at least one sample contained two highly similar variants of the same strain. The probability of samples containing unrelated strains appears to differ considerably between body sites. Our findings indicate the need for wider surveys to determine if, for some types of samples, routine testing for the presence of multiple strains is warranted. 100+1 NGS-MLST is effective for this purpose.
Collapse
Affiliation(s)
- Ningxin Zhang
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - David Wheeler
- Nextgen Bioinformatic Services, Palmerston North, New Zealand
| | - Mauro Truglio
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Cristina Lazzarini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Jenine Upritchard
- Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Wendy McKinney
- LabPlus, Auckland District Health Board, Auckland, New Zealand
| | - Karen Rogers
- LabPlus, Auckland District Health Board, Auckland, New Zealand
| | - Anna Prigitano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Anna M. Tortorano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Richard D. Cannon
- Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Roland S. Broadbent
- Department of Women’s and Children’s Health, University of Otago, Dunedin, New Zealand
| | - Sally Roberts
- LabPlus, Auckland District Health Board, Auckland, New Zealand
| | - Jan Schmid
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
50
|
Tso GHW, Reales-Calderon JA, Pavelka N. The Elusive Anti- Candida Vaccine: Lessons From the Past and Opportunities for the Future. Front Immunol 2018; 9:897. [PMID: 29755472 PMCID: PMC5934487 DOI: 10.3389/fimmu.2018.00897] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022] Open
Abstract
Candidemia is a bloodstream fungal infection caused by Candida species and is most commonly observed in hospitalized patients. Even with proper antifungal drug treatment, mortality rates remain high at 40–50%. Therefore, prophylactic or preemptive antifungal medications are currently recommended in order to prevent infections in high-risk patients. Moreover, the majority of women experience at least one episode of vulvovaginal candidiasis (VVC) throughout their lifetime and many of them suffer from recurrent VVC (RVVC) with frequent relapses for the rest of their lives. While there currently exists no definitive cure, the only available treatment for RVVC is again represented by antifungal drug therapy. However, due to the limited number of existing antifungal drugs, their associated side effects and the increasing occurrence of drug resistance, other approaches are greatly needed. An obvious prevention measure for candidemia or RVVC relapse would be to immunize at-risk patients with a vaccine effective against Candida infections. In spite of the advanced and proven techniques successfully applied to the development of antibacterial or antiviral vaccines, however, no antifungal vaccine is still available on the market. In this review, we first summarize various efforts to date in the development of anti-Candida vaccines, highlighting advantages and disadvantages of each strategy. We next unfold and discuss general hurdles encountered along these efforts, such as the existence of large genomic variation and phenotypic plasticity across Candida strains and species, and the difficulty in mounting protective immune responses in immunocompromised or immunosuppressed patients. Lastly, we review the concept of “trained immunity” and discuss how induction of this rapid and nonspecific immune response may potentially open new and alternative preventive strategies against opportunistic infections by Candida species and potentially other pathogens.
Collapse
Affiliation(s)
- Gloria Hoi Wan Tso
- Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (ASTAR), Singapore, Singapore
| | | | - Norman Pavelka
- Singapore Immunology Network (SIgN), Agency of Science, Technology and Research (ASTAR), Singapore, Singapore
| |
Collapse
|