1
|
Słyk Ż, Stachowiak N, Małecki M. Recombinant Adeno-Associated Virus Vectors for Gene Therapy of the Central Nervous System: Delivery Routes and Clinical Aspects. Biomedicines 2024; 12:1523. [PMID: 39062095 PMCID: PMC11274884 DOI: 10.3390/biomedicines12071523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
The Central Nervous System (CNS) is vulnerable to a range of diseases, including neurodegenerative and oncological conditions, which present significant treatment challenges. The blood-brain barrier (BBB) restricts molecule penetration, complicating the achievement of therapeutic concentrations in the CNS following systemic administration. Gene therapy using recombinant adeno-associated virus (rAAV) vectors emerges as a promising strategy for treating CNS diseases, demonstrated by the registration of six gene therapy products in the past six years and 87 ongoing clinical trials. This review explores the implementation of rAAV vectors in CNS disease treatment, emphasizing AAV biology and vector engineering. Various administration methods-such as intravenous, intrathecal, and intraparenchymal routes-and experimental approaches like intranasal and intramuscular administration are evaluated, discussing their advantages and limitations in different CNS contexts. Additionally, the review underscores the importance of optimizing therapeutic efficacy through the pharmacokinetics (PK) and pharmacodynamics (PD) of rAAV vectors. A comprehensive analysis of clinical trials reveals successes and challenges, including barriers to commercialization. This review provides insights into therapeutic strategies using rAAV vectors in neurological diseases and identifies areas requiring further research, particularly in optimizing rAAV PK/PD.
Collapse
Affiliation(s)
- Żaneta Słyk
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
- Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Natalia Stachowiak
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Maciej Małecki
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
- Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
2
|
Pathak S, Singh V, Kumar N, Jayandharan GR. Inducible caspase 9-mediated suicide gene therapy using AAV6 vectors in a murine model of breast cancer. Mol Ther Methods Clin Dev 2023; 31:101166. [PMID: 38149057 PMCID: PMC10750187 DOI: 10.1016/j.omtm.2023.101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023]
Abstract
Breast carcinoma has one of the highest incidence rates (11.7%), with significant clinical heterogeneity. Although conventional chemotherapy and surgical resection are the current standard of care, the resistance and recurrence, after these interventions, necessitate alternate therapeutic approaches. Cancer gene therapy for breast cancer with the suicide gene is an attractive option due to their directed delivery into the tumor. In this study, we have developed a novel treatment strategy against breast cancer with recombinant adeno-associated virus (AAV) serotype 6 vectors carrying a suicide gene, inducible Caspase 9 (iCasp9). Upon treatment with AAV6-iCasp9 vectors and the chemical inducer of dimerizer, AP20187, the viability of murine breast cancer cells (4T1) was significantly reduced to ∼40%-60% (mock control 100%). Following intratumoral delivery of AAV6-iCasp9 vectors in an orthotopic breast cancer mouse model, we observed a significant increase in iCasp9 transgene expression and a significant reduction in tumor growth rate. At the molecular level, immunohistochemical analysis demonstrated subsequent activation of the effector caspase 3 and cellular death. These data highlight the potential of AAV6-iCasp9-based suicide gene therapy for aggressive breast cancer in patients.
Collapse
Affiliation(s)
- Subhajit Pathak
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Center for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Vijayata Singh
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Center for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Narendra Kumar
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Center for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Giridhara R. Jayandharan
- Laurus Center for Gene Therapy, Department of Biological Sciences and Bioengineering and Mehta Family Center for Engineering in Medicine and Gangwal School of Medical Sciences and Technology, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
3
|
Dogbey DM, Torres VES, Fajemisin E, Mpondo L, Ngwenya T, Akinrinmade OA, Perriman AW, Barth S. Technological advances in the use of viral and non-viral vectors for delivering genetic and non-genetic cargos for cancer therapy. Drug Deliv Transl Res 2023; 13:2719-2738. [PMID: 37301780 PMCID: PMC10257536 DOI: 10.1007/s13346-023-01362-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2023] [Indexed: 06/12/2023]
Abstract
The burden of cancer is increasing globally. Several challenges facing its mainstream treatment approaches have formed the basis for the development of targeted delivery systems to carry and distribute anti-cancer payloads to their defined targets. This site-specific delivery of drug molecules and gene payloads to selectively target druggable biomarkers aimed at inducing cell death while sparing normal cells is the principal goal for cancer therapy. An important advantage of a delivery vector either viral or non-viral is the cumulative ability to penetrate the haphazardly arranged and immunosuppressive tumour microenvironment of solid tumours and or withstand antibody-mediated immune response. Biotechnological approaches incorporating rational protein engineering for the development of targeted delivery systems which may serve as vehicles for packaging and distribution of anti-cancer agents to selectively target and kill cancer cells are highly desired. Over the years, these chemically and genetically modified delivery systems have aimed at distribution and selective accumulation of drug molecules at receptor sites resulting in constant maintenance of high drug bioavailability for effective anti-tumour activity. In this review, we highlighted the state-of-the art viral and non-viral drug and gene delivery systems and those under developments focusing on cancer therapy.
Collapse
Affiliation(s)
- Dennis Makafui Dogbey
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Emmanuel Fajemisin
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Liyabona Mpondo
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Takunda Ngwenya
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Olusiji Alex Akinrinmade
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, Bristol, UK
| | - Stefan Barth
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
4
|
De Silva ARI, Page RC. Ubiquitination detection techniques. Exp Biol Med (Maywood) 2023; 248:1333-1346. [PMID: 37787047 PMCID: PMC10625345 DOI: 10.1177/15353702231191186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Ubiquitination is an intricately regulated post-translational modification that involves the covalent attachment of ubiquitin to a substrate protein. The complex dynamic nature of the ubiquitination process regulates diverse cellular functions including targeting proteins for degradation, cell cycle, deoxyribonucleic acid (DNA) damage repair, and numerous cell signaling pathways. Ubiquitination also serves as a crucial mechanism in protein quality control. Dysregulation in ubiquitination could result in lethal disease conditions such as cancers and neurodegenerative diseases. Therefore, the ubiquitination cascade has become an attractive target for therapeutic interventions. Enormous efforts have been made to detect ubiquitination involving different detection techniques to better grasp the underlying molecular mechanisms of ubiquitination. This review discusses a wide range of techniques stretching from the simplest assays to real-time assays. This includes western blotting/immunoblotting, fluorescence assays, chemiluminescence assays, spectrophotometric assays, and nanopore sensing assays. This review compares these applications, and the inherent advantages and limitations.
Collapse
Affiliation(s)
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
5
|
Tang Y, Fakhari S, Huntemann ED, Feng Z, Wu P, Feng WY, Lei J, Yuan F, Excoffon KJ, Wang K, Limberis MP, Kolbeck R, Yan Z, Engelhardt JF. Immunosuppression reduces rAAV2.5T neutralizing antibodies that limit efficacy following repeat dosing to ferret lungs. Mol Ther Methods Clin Dev 2023; 29:70-80. [PMID: 36950451 PMCID: PMC10025970 DOI: 10.1016/j.omtm.2023.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
The efficacy of redosing the recombinant adeno-associated virus (rAAV) vector rAAV2.5T to ferret lung is limited by AAV neutralizing antibody (NAb) responses. While immunosuppression strategies have allowed for systemic rAAV repeat dosing, their utility for rAAV lung-directed gene therapy is largely unexplored. To this end, we evaluated two immunosuppression (IS) strategies to improve repeat dosing of rAAV2.5T to ferret lungs: (1) a combination of three IS drugs (Tri-IS) with broad coverage against cellular and humoral responses (methylprednisolone [MP], azathioprine, and cyclosporine) and (2) MP alone, which is typically used in systemic rAAV applications. Repeat dosing utilized AAV2.5T-SP183-fCFTRΔR (recombinant ferret CFTR transgene), followed 28 days later by AAV2.5T-SP183-gLuc (for quantification of transgene expression). Both the Tri-IS and MP strategies significantly improved transgene expression following repeat dosing and reduced AAV2.5T NAb responses in the bronchioalveolar lavage fluid (BALF) and plasma, while AAV2.5T binding antibody subtypes and cellular immune responses by ELISpot were largely unchanged by IS. One exception was the reduction in plasma AAV2.5T binding immunoglobulin G (IgG) in both IS groups. Only the Tri-IS strategy significantly suppressed splenocyte expression of IFNA (interferon α [IFN-α]) and IL4. Our studies suggest that IS strategies may be useful in clinical application of rAAV targeting lung genetic diseases such as cystic fibrosis.
Collapse
Affiliation(s)
- Yinghua Tang
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Shahab Fakhari
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Eric D. Huntemann
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Zehua Feng
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Peipei Wu
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - William Y. Feng
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Junying Lei
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Feng Yuan
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | - Kai Wang
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | | | | | - Ziying Yan
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - John F. Engelhardt
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Xiang YS, Hao GG. Biophysical characterization of adeno-associated virus capsid through the viral transduction life cycle. J Genet Eng Biotechnol 2023; 21:62. [PMID: 37195476 DOI: 10.1186/s43141-023-00518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/11/2023] [Indexed: 05/18/2023]
Abstract
Adeno-associated virus (AAV) vectors have emerged as the leading delivery platforms for gene therapy. Throughout the life cycle of the virions, the capsid vector carries out diverse functions, ranging from cell surface receptor engagement, cellular entry, endosomal escape, nuclear import to new particle packaging, and assembly. Each of these steps is mediated by exquisite structure features of the viral capsid and its interaction with viral genome, Rep proteins, and cellular organelle and apparatus. In this brief review, we provide an overview of results from over a decade of extensive biophysical studies of the capsid employing various techniques. The remaining unaddressed questions and perspective are also discussed. The detailed understanding of the structure and function interplay would provide insight to the strategy for improving the efficacy and safety of the viral vectors.
Collapse
Affiliation(s)
| | - Gang Gary Hao
- Weston Biomedical Reviews, 65 Autumn Road, Weston, MA, 02493, USA.
| |
Collapse
|
7
|
Scarrott JM, Johari YB, Pohle TH, Liu P, Mayer A, James DC. Increased recombinant adeno-associated virus production by HEK293 cells using small molecule chemical additives. Biotechnol J 2023; 18:e2200450. [PMID: 36495042 DOI: 10.1002/biot.202200450] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Recombinant adeno-associated virus (rAAV) has established itself as a highly efficacious gene delivery vector with a well characterised safety profile allowing broad clinical application. Recent successes in rAAV-mediated gene therapy clinical trials will continue to drive demand for improved rAAV production processes to reduce costs. Here, we demonstrate that small molecule bioactive chemical additives can significantly increase recombinant AAV vector production by human embryonic kidney (HEK) cells up to three-fold. Nocodazole (an anti-mitotic agent) and M344 (a selective histone deacetylase inhibitor) were identified as positive regulators of rAAV8 genome titre in a microplate screening assay. Addition of nocodazole to triple-transfected HEK293 suspension cells producing rAAV arrested cells in G2/M phase, increased average cell volume and reduced viable cell density relative to untreated rAAV producing cells at harvest. Final crude genome vector titre from nocodazole treated cultures was >2-fold higher compared to non-treated cultures. Further investigation showed nocodazole addition to cultures to be time critical. Genome titre improvement was found to be scalable and serotype independent across two distinct rAAV serotypes, rAAV8 and rAAV9. Furthermore, a combination of M344 and nocodazole produced a positive additive effect on rAAV8 genome titre, resulting in a three-fold increase in genome titre compared to untreated cells.
Collapse
Affiliation(s)
- Joseph M Scarrott
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Yusuf B Johari
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Thilo H Pohle
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Ping Liu
- Cell Line Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - Ayda Mayer
- Cell Line Development, REGENXBIO Inc., Rockville, Maryland, USA
| | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
8
|
Host Cell Restriction Factors Blocking Efficient Vector Transduction: Challenges in Lentiviral and Adeno-Associated Vector Based Gene Therapies. Cells 2023; 12:cells12050732. [PMID: 36899868 PMCID: PMC10001033 DOI: 10.3390/cells12050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Gene therapy relies on the delivery of genetic material to the patient's cells in order to provide a therapeutic treatment. Two of the currently most used and efficient delivery systems are the lentiviral (LV) and adeno-associated virus (AAV) vectors. Gene therapy vectors must successfully attach, enter uncoated, and escape host restriction factors (RFs), before reaching the nucleus and effectively deliver the therapeutic genetic instructions to the cell. Some of these RFs are ubiquitously expressed in mammalian cells, while others are cell-specific, and others still are expressed only upon induction by danger signals as type I interferons. Cell restriction factors have evolved to protect the organism against infectious diseases and tissue damage. These restriction factors can be intrinsic, directly acting on the vector, or related with the innate immune response system, acting indirectly through the induction of interferons, but both are intertwined. The innate immunity is the first line of defense against pathogens and, as such cells derived from myeloid progenitors (but not only), are well equipped with RFs to detect pathogen-associated molecular patterns (PAMPs). In addition, some non-professional cells, such as epithelial cells, endothelial cells, and fibroblasts, play major roles in pathogen recognition. Unsurprisingly, foreign DNA and RNA molecules are among the most detected PAMPs. Here, we review and discuss identified RFs that block LV and AAV vector transduction, hindering their therapeutic efficacy.
Collapse
|
9
|
Piechnik M, Amendum PC, Sawamoto K, Stapleton M, Khan S, Fnu N, Álvarez V, Pachon AMH, Danos O, Bruder JT, Karumuthil-Melethil S, Tomatsu S. Sex Difference Leads to Differential Gene Expression Patterns and Therapeutic Efficacy in Mucopolysaccharidosis IVA Murine Model Receiving AAV8 Gene Therapy. Int J Mol Sci 2022; 23:ijms232012693. [PMID: 36293546 PMCID: PMC9604118 DOI: 10.3390/ijms232012693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Adeno-associated virus (AAV) vector-based therapies can effectively correct some disease pathology in murine models with mucopolysaccharidoses. However, immunogenicity can limit therapeutic effect as immune responses target capsid proteins, transduced cells, and gene therapy products, ultimately resulting in loss of enzyme activity. Inherent differences in male versus female immune response can significantly impact AAV gene transfer. We aim to investigate sex differences in the immune response to AAV gene therapies in mice with mucopolysaccharidosis IVA (MPS IVA). MPS IVA mice, treated with different AAV vectors expressing human N-acetylgalactosamine 6-sulfate sulfatase (GALNS), demonstrated a more robust antibody response in female mice resulting in subsequent decreased GALNS enzyme activity and less therapeutic efficacy in tissue pathology relative to male mice. Under thyroxine-binding globulin promoter, neutralizing antibody titers in female mice were approximately 4.6-fold higher than in male mice, with GALNS enzyme activity levels approximately 6.8-fold lower. Overall, male mice treated with AAV-based gene therapy showed pathological improvement in the femur and tibial growth plates, ligaments, and articular cartilage as determined by contrasting differences in pathology scores compared to females. Cardiac histology revealed a failure to normalize vacuolation in females, in contrast, to complete correction in male mice. These findings promote the need for further determination of sex-based differences in response to AAV-mediated gene therapy related to developing treatments for MPS IVA.
Collapse
Affiliation(s)
- Matthew Piechnik
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Paige C. Amendum
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Kazuki Sawamoto
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Molly Stapleton
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Shaukat Khan
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Nidhi Fnu
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Victor Álvarez
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | | | | | | | - Subha Karumuthil-Melethil
- REGENXBIO Inc., Rockville, MD 20850, USA
- Correspondence: (S.K.-M.); or (S.T.); Tel.: +1-240-552-8584 (S.K.-M.); +1-302-298-7336 (S.T.); Fax: +1-302-651-6888 (S.T.)
| | - Shunji Tomatsu
- Nemours/Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Pediatrics, Shimane University, Izumo 693-8501, Shimane, Japan
- Correspondence: (S.K.-M.); or (S.T.); Tel.: +1-240-552-8584 (S.K.-M.); +1-302-298-7336 (S.T.); Fax: +1-302-651-6888 (S.T.)
| |
Collapse
|
10
|
Sui H, Xu X, Su Y, Gong Z, Yao M, Liu X, Zhang T, Jiang Z, Bai T, Wang J, Zhang J, Xu C, Luo M. Gene therapy for cystic fibrosis: Challenges and prospects. Front Pharmacol 2022; 13:1015926. [PMID: 36304167 PMCID: PMC9592762 DOI: 10.3389/fphar.2022.1015926] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Cystic fibrosis (CF) is a life-threatening autosomal-recessive disease caused by mutations in a single gene encoding cystic fibrosis transmembrane conductance regulator (CFTR). CF effects multiple organs, and lung disease is the primary cause of mortality. The median age at death from CF is in the early forties. CF was one of the first diseases to be considered for gene therapy, and efforts focused on treating CF lung disease began shortly after the CFTR gene was identified in 1989. However, despite the quickly established proof-of-concept for CFTR gene transfer in vitro and in clinical trials in 1990s, to date, 36 CF gene therapy clinical trials involving ∼600 patients with CF have yet to achieve their desired outcomes. The long journey to pursue gene therapy as a cure for CF encountered more difficulties than originally anticipated, but immense progress has been made in the past decade in the developments of next generation airway transduction viral vectors and CF animal models that reproduced human CF disease phenotypes. In this review, we look back at the history for the lessons learned from previous clinical trials and summarize the recent advances in the research for CF gene therapy, including the emerging CRISPR-based gene editing strategies. We also discuss the airway transduction vectors, large animal CF models, the complexity of CF pathogenesis and heterogeneity of CFTR expression in airway epithelium, which are the major challenges to the implementation of a successful CF gene therapy, and highlight the future opportunities and prospects.
Collapse
Affiliation(s)
- Hongshu Sui
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| | - Xinghua Xu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Yanping Su
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Zhaoqing Gong
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Minhua Yao
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Xiaocui Liu
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Ting Zhang
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Ziyao Jiang
- Department of Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, Shandong, China
| | - Tianhao Bai
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Junzuo Wang
- The Affiliated Tai’an City Central Hospital of Qingdao University, Tai’an, Shandong, China
| | - Jingjun Zhang
- Department of Neurology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, Shandong, China
| | - Changlong Xu
- The Reproductive Medical Center of Nanning Second People’s Hospital, Nanning, China
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| | - Mingjiu Luo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
- *Correspondence: Hongshu Sui, ; Changlong Xu, ; Mingjiu Luo,
| |
Collapse
|
11
|
Li X, Wei X, Lin J, Ou L. A versatile toolkit for overcoming AAV immunity. Front Immunol 2022; 13:991832. [PMID: 36119036 PMCID: PMC9479010 DOI: 10.3389/fimmu.2022.991832] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
Recombinant adeno-associated virus (AAV) is a promising delivery vehicle for in vivo gene therapy and has been widely used in >200 clinical trials globally. There are already several approved gene therapy products, e.g., Luxturna and Zolgensma, highlighting the remarkable potential of AAV delivery. In the past, AAV has been seen as a relatively non-immunogenic vector associated with low risk of toxicity. However, an increasing number of recent studies indicate that immune responses against AAV and transgene products could be the bottleneck of AAV gene therapy. In clinical studies, pre-existing antibodies against AAV capsids exclude many patients from receiving the treatment as there is high prevalence of antibodies among humans. Moreover, immune response could lead to loss of efficacy over time and severe toxicity, manifested as liver enzyme elevations, kidney injury, and thrombocytopenia, resulting in deaths of non-human primates and patients. Therefore, extensive efforts have been attempted to address these issues, including capsid engineering, plasmapheresis, IgG proteases, CpG depletion, empty capsid decoy, exosome encapsulation, capsid variant switch, induction of regulatory T cells, and immunosuppressants. This review will discuss these methods in detail and highlight important milestones along the way.
Collapse
Affiliation(s)
- Xuefeng Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaoli Wei
- Guangzhou Dezheng Biotechnology Co., Ltd., Guangzhou, China
| | - Jinduan Lin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Li Ou
- Genemagic Biosciences, Philadelphia, PA, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Li Ou,
| |
Collapse
|
12
|
Wang K, Zheng M, Askew C, Zhang X, Li C, Han Z. Elastin‐Like Polypeptides Facilitate Adeno‐Associated Virus Transduction in the Presence of Pre‐Existing Neutralizing Antibodies. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kai Wang
- Department of Ophthalmology The University of North Carolina at Chapel Hill Chapel Hill NC USA
| | - Min Zheng
- Department of Ophthalmology The University of North Carolina at Chapel Hill Chapel Hill NC USA
| | - Charles Askew
- Gene Therapy Center The University of North Carolina at Chapel Hill Chapel Hill NC USA
| | - Xintao Zhang
- Gene Therapy Center The University of North Carolina at Chapel Hill Chapel Hill NC USA
| | - Chengwen Li
- Gene Therapy Center The University of North Carolina at Chapel Hill Chapel Hill NC USA
- Department of Pediatrics The University of North Carolina at Chapel Hill Chapel Hill NC USA
| | - Zongchao Han
- Department of Ophthalmology The University of North Carolina at Chapel Hill Chapel Hill NC USA
- Pharmacoengineering & Molecular Pharmaceutics UNC Eshelman School of Pharmacy Chapel Hill NC USA
| |
Collapse
|
13
|
Wang Y, Yang C, Hu H, Chen C, Yan M, Ling F, Wang KC, Wang X, Deng Z, Zhou X, Zhang F, Lin S, Du Z, Zhao K, Xiao X. Directed evolution of adeno-associated virus 5 capsid enables specific liver tropism. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:293-306. [PMID: 35474733 PMCID: PMC9010518 DOI: 10.1016/j.omtn.2022.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
Impressive achievements in clinical trials to treat hemophilia establish a milestone in the development of gene therapy. It highlights the significance of AAV-mediated gene delivery to liver. AAV5 is a unique serotype featured by low neutralizing antibody prevalence. Nevertheless, its liver infectivity is relatively weak. Consequently, it is vital to exploit novel AAV5 capsid mutants with robust liver tropism. To this aim, we performed AAV5-NNK library and barcode screening in mice, from which we identified one capsid variant, called AAVzk2. AAVzk2 displayed a similar yield but divergent post-translational modification sites compared with wild-type serotypes. Mice intravenously injected with AAVzk2 demonstrated a stronger liver transduction than AAV5, roughly comparable with AAV8 and AAV9, with undetectable transduction of other tissues or organs such as heart, lung, spleen, kidney, brain, and skeletal muscle, indicating a liver-specific tropism. Further studies showed a superior human hepatocellular transduction of AAVzk2 to AAV5, AAV8 and AAV9, whereas the seroreactivity of AAVzk2 was as low as AAV5. Overall, we provide a novel AAV serotype that facilitates a robust and specific liver gene delivery to a large population, especially those unable to be treated by AAV8 and AAV9.
Collapse
Affiliation(s)
- Yuqiu Wang
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chen Yang
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hanyang Hu
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chen Chen
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mengdi Yan
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
| | - Feixiang Ling
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kathy Cheng Wang
- Department of Biology, New York University, 24 Waverly Pl, New York, NY 10003, USA
| | - Xintao Wang
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhe Deng
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyue Zhou
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
| | - Feixu Zhang
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
| | - Sen Lin
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing 400042, China
| | - Zengmin Du
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kai Zhao
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Corresponding author Kai Zhao, School of Bioengineering and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Xiao Xiao
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Corresponding author Xiao Xiao, School of Bioengineering and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
14
|
Tao Y, Liu X, Yang L, Chu C, Tan F, Yu Z, Ke J, Li X, Zheng X, Zhao X, Qi J, Lin CP, Chai R, Zhong G, Wu H. AAV-ie-K558R mediated cochlear gene therapy and hair cell regeneration. Signal Transduct Target Ther 2022; 7:109. [PMID: 35449181 PMCID: PMC9023545 DOI: 10.1038/s41392-022-00938-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 12/19/2022] Open
Abstract
The cochlea consists of multiple types of cells, including hair cells, supporting cells and spiral ganglion neurons, and is responsible for converting mechanical forces into electric signals that enable hearing. Genetic and environmental factors can result in dysfunctions of cochlear and auditory systems. In recent years, gene therapy has emerged as a promising treatment in animal deafness models. One major challenge of the gene therapy for deafness is to effectively deliver genes to specific cells of cochleae. Here, we screened and identified an AAV-ie mutant, AAV-ie-K558R, that transduces hair cells and supporting cells in the cochleae of neonatal mice with high efficiency. AAV-ie-K558R is a safe vector with no obvious deficits in the hearing system. We found that AAV-ie-K558R can partially restore the hearing loss in Prestin KO mice and, importantly, deliver Atoh1 into cochlear supporting cells to generate hair cell-like cells. Our results demonstrate the clinical potential of AAV-ie-K558R for treating the hearing loss caused by hair cell death.
Collapse
Affiliation(s)
- Yong Tao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, PR China
| | - Xiaoyi Liu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, PR China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Liu Yang
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, PR China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Cenfeng Chu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, PR China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Fangzhi Tan
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, PR China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Zehua Yu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, PR China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Junzi Ke
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, PR China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Xiang Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, PR China
| | - Xiaofei Zheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, PR China
| | - Xingle Zhao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, PR China
| | - Jieyu Qi
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, PR China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, PR China
| | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, PR China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, PR China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, PR China. .,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, 100069, Beijing, PR China.
| | - Guisheng Zhong
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China. .,iHuman Institute, ShanghaiTech University, Shanghai, 201210, PR China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, PR China.
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China. .,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China. .,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, 200011, PR China.
| |
Collapse
|
15
|
Stiles K, Frenk EZ, Kaminsky SM, Crystal RG. Genetic Modification of the AAV5 Capsid with Lysine Residues Results in a Lung-tropic, Liver-detargeted Gene Transfer Vector. Hum Gene Ther 2022; 33:148-154. [PMID: 35018834 DOI: 10.1089/hum.2021.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Intravenous (IV) administration of naturally occurring adeno-associated virus (AAV) vectors are liver tropic, with a significant proportion of the total vector dose mediating gene expression in liver hepatocytes. AAV capsids that are directed towards other organs such as lung may be useful for therapy of non-liver-based diseases. Based on the knowledge that the lung capillary endothelium is the first capillary bed encountered by an intravenously administered AAV vector, and that the lung endothelium glycocalyx is enriched in negatively charged sialic acid, we hypothesized that adding positively changed lysine residues to the AAV capsid would enhance AAV biodistribution to the lung following intravenous administration. Using site directed mutagenesis, two lysine residues were inserted into variable loop VIII of the AAV serotype 5 capsid vector (AAV5-PK2). Organ distribution of AAV5-PK2 was compared to AAV5, AAVrh.10, AAV2, and AAV2-7m8 4 wk after intravenous administration (1011 gc) to C57Bl/6 male mice. As predicted, following intravenous administration, AAAV5-PK2 had the highest biodistribution in the lung (p<0.02 compared to AAV5, AAVrh.10, AAV2 and AAV2-7m8). Further, biodistribution to liver of AAV5-PK2 was 2-logs decreased compared to AAV5 (p<10-4) with a ratio of AAV5-PK2 lung to liver of 62-fold compared to AAV5 of 0.2-fold (p<0.0003). The AAV5-PK2 capsid represents a lung-tropic AAV vector that is also significantly detargeted from the liver, a property that may be useful in lung directed gene therapies.
Collapse
Affiliation(s)
- Katie Stiles
- Weill Cornell Medicine, 12295, New York, New York, United States;
| | - Esther Z Frenk
- Weill Cornell Medical College, 12295, 1300 York Avenue, New York, New York, United States, 10065;
| | | | - Ronald G Crystal
- Weill Medical College of Cornell University, Department of Genetic Medicine, 1300 York Avenue, Box 96, New York, New York, United States, 10021;
| |
Collapse
|
16
|
Fakhiri J, Grimm D. Best of most possible worlds: Hybrid gene therapy vectors based on parvoviruses and heterologous viruses. Mol Ther 2021; 29:3359-3382. [PMID: 33831556 PMCID: PMC8636155 DOI: 10.1016/j.ymthe.2021.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/12/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Parvoviruses and especially the adeno-associated virus (AAV) species provide an exciting and versatile platform for the rational design or molecular evolution of human gene-therapy vectors, documented by literature from over half a century, hundreds of clinical trials, and the recent commercialization of multiple AAV gene therapeutics. For the last three decades, the power of these vectors has been further potentiated through various types of hybrid vectors created by intra- or inter-genus juxtaposition of viral DNA and protein cis elements or by synergistic complementation of parvoviral features with those of heterologous, prokaryotic, or eukaryotic viruses. Here, we provide an overview of the history and promise of this rapidly expanding field of hybrid parvoviral gene-therapy vectors, starting with early generations of chimeric particles composed of a recombinant AAV genome encapsidated in shells of synthetic AAVs or of adeno-, herpes-, baculo-, or protoparvoviruses. We then dedicate our attention to two newer, highly promising types of hybrid vectors created via (1) pseudotyping of AAV genomes with bocaviral serotypes and capsid mutants or (2) packaging of AAV DNA into, or tethering of entire vector particles to, bacteriophages. Finally, we conclude with an outlook summarizing critical requirements and improvements toward clinical translation of these original concepts.
Collapse
Affiliation(s)
- Julia Fakhiri
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany; BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany; BioQuant, University of Heidelberg, Heidelberg, Germany; German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Partner site Heidelberg, Heidelberg, Germany.
| |
Collapse
|
17
|
Riyad JM, Weber T. Intracellular trafficking of adeno-associated virus (AAV) vectors: challenges and future directions. Gene Ther 2021; 28:683-696. [PMID: 33658649 PMCID: PMC8413391 DOI: 10.1038/s41434-021-00243-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023]
Abstract
In the last two decades, recombinant adeno-associated virus has emerged as the most popular gene therapy vector. Recently AAV gene therapy has been approved by the FDA for the treatment of two rare genetic disorders, namely the early childhood blindness disease Leber congenital amaurosis and spinal muscular atrophy (SMA). As is the case for the treatment of SMA, if the AAV vector must be administered systemically, very high vector doses are often required for therapeutic efficacy. But higher vector doses inevitably increase the risk of adverse events. The tragic death of three children in a clinical trial to treat X-linked myotubular myopathy with an AAV vector has thrown this limitation into sharp relief. Regardless of the precise cause(s) that led to the death of the two children, it is critical that we develop better AAV vectors to achieve therapeutic levels of expression with lower vector doses. To transduce successfully a target cell, AAV has to overcome both systemic as well as cellular roadblocks. In this review, we discuss some of the most prominent cellular roadblocks that AAV must get past to deliver successfully its therapeutic payload. We also highlight recent advancements in our knowledge of AAV biology that can potentially be harnessed to improve AAV vector performance and thereby make AAV gene therapy safer.
Collapse
Affiliation(s)
- Jalish M Riyad
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Weber
- Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
18
|
Rindler TN, Brown KM, Stockman CA, van Lieshout LP, Martin EP, Weaver TE, Zacharias WJ, Wootton SK, Whitsett JA, Bridges JP. Efficient Transduction of Alveolar Type 2 Cells with Adeno-associated Virus for the Study of Lung Regeneration. Am J Respir Cell Mol Biol 2021; 65:118-121. [PMID: 34241584 DOI: 10.1165/rcmb.2021-0049le] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Tara N Rindler
- Cincinnati Children's Hospital Medical Center Cincinnati, Ohio
| | - Kari M Brown
- Cincinnati Children's Hospital Medical Center Cincinnati, Ohio
| | | | | | - Emily P Martin
- Cincinnati Children's Hospital Medical Center Cincinnati, Ohio
| | | | | | | | | | | |
Collapse
|
19
|
Cui S, Ganjawala TH, Abrams GW, Pan ZH. Effect of Proteasome Inhibitors on the AAV-Mediated Transduction Efficiency in Retinal Bipolar Cells. Curr Gene Ther 2021; 19:404-412. [PMID: 32072884 DOI: 10.2174/1566523220666200211111326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Adeno-associated Virus (AAV) vectors are the most promising vehicles for therapeutic gene delivery to the retina. To develop a practical gene delivery tool, achieving high AAV transduction efficiency in specific cell types is often required. AAV-mediated targeted expression in retinal bipolar cells is needed in certain applications such as optogenetic therapy, however, the transduction efficiency driven by endogenous cell-specific promoters is usually low. Methods that can improve AAV transduction efficiency in bipolar cells need to be developed. OBJECTIVE The study aimed to examine the effect of proteasome inhibitors on AAV-mediated transduction efficiency in retinal bipolar cells. METHODS Quantitative analysis of fluorescent reporter protein expression was performed to assess the effect of two proteasome inhibitors, doxorubicin and MG132, on AAV-mediated transduction efficiency in retinal bipolar cells in mice. RESULTS Our results showed that doxorubicin can increase the AAV transduction efficiency in retinal bipolar cells in a dose-dependent manner. We also observed doxorubicin-mediated cytotoxicity in retinal neurons, but the cytotoxicity could be mitigated by the coapplication of dexrazoxane. Three months after the coapplication of doxorubicin (300 μM) and dexrazoxane, the AAV transduction efficiency in retinal bipolar cells increased by 33.8% and no cytotoxicity was observed in all the layers of the retina. CONCLUSION Doxorubicin could enhance the AAV transduction efficiency in retinal bipolar cells in vivo. The potential long-term cytotoxicity caused by doxorubicin to retinal neurons could be partially mitigated by dexrazoxane. The coapplication of doxorubicin and dexrazoxane may serve as a potential adjuvant regimen for improving AAV transduction efficiency in retinal bipolar cells.
Collapse
Affiliation(s)
- Shengjie Cui
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, 48201, United States
| | - Tushar H Ganjawala
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, 48201, United States
| | - Gary W Abrams
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, 48201, United States
| | - Zhuo-Hua Pan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, 48201, United States
| |
Collapse
|
20
|
Effects of Altering HSPG Binding and Capsid Hydrophilicity on Retinal Transduction by AAV. J Virol 2021; 95:JVI.02440-20. [PMID: 33658343 PMCID: PMC8139652 DOI: 10.1128/jvi.02440-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated viruses (AAVs) have recently emerged as the leading vector for retinal gene therapy. However, AAV vectors which are capable of achieving clinically relevant levels of transgene expression and widespread retinal transduction are still an unmet need. Using rationally designed AAV2-based capsid variants, we investigate the role of capsid hydrophilicity and hydrophobicity as it relates to retinal transduction. We show that hydrophilic, single amino acid (aa) mutations (V387R, W502H, E530K, L583R) in AAV2 negatively impact retinal transduction when heparan sulfate proteoglycan (HSPG) binding remains intact. Conversely, addition of hydrophobic point mutations to an HSPG binding deficient capsid (AAV2ΔHS) lead to increased retinal transduction in both mouse and macaque. Our top performing vector, AAV2(4pMut)ΔHS, achieved robust rod and cone photoreceptor (PR) transduction in macaque, especially in the fovea, and demonstrates the ability to spread laterally beyond the borders of the subretinal injection (SRI) bleb. This study both evaluates biophysical properties of AAV capsids that influence retinal transduction, and assesses the transduction and tropism of a novel capsid variant in a clinically relevant animal model.ImportanceRationally guided engineering of AAV capsids aims to create new generations of vectors with enhanced potential for human gene therapy. By applying rational design principles to AAV2-based capsids, we evaluated the influence of hydrophilic and hydrophobic amino acid (aa) mutations on retinal transduction as it relates to vector administration route. Through this approach we identified a largely deleterious relationship between hydrophilic aa mutations and canonical HSPG binding by AAV2-based capsids. Conversely, the inclusion of hydrophobic aa substitutions on a HSPG binding deficient capsid (AAV2ΔHS), generated a vector capable of robust rod and cone photoreceptor (PR) transduction. This vector AAV2(4pMut)ΔHS also demonstrates a remarkable ability to spread laterally beyond the initial subretinal injection (SRI) bleb, making it an ideal candidate for the treatment of retinal diseases which require a large area of transduction.
Collapse
|
21
|
|
22
|
Tang Y, Yan Z, Lin S, Huntemann ED, Feng Z, Park SY, Sun X, Yuen E, Engelhardt JF. Repeat Dosing of AAV2.5T to Ferret Lungs Elicits an Antibody Response That Diminishes Transduction in an Age-Dependent Manner. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:186-200. [PMID: 33209961 PMCID: PMC7648090 DOI: 10.1016/j.omtm.2020.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/11/2020] [Indexed: 11/12/2022]
Abstract
Readministration of recombinant adeno-associated virus (rAAV) may be necessary to treat cystic fibrosis (CF) lung disease using gene therapy. However, little is known about rAAV-mediated immune responses in the lung. Here, we demonstrate the suitability of the ferret for testing AAV2.5T-mediated CFTR delivery to the lung and characterization of neutralizing-antibody (NAb) responses. AAV2.5T-SP183-hCFTRΔR efficiently transduced both human and ferret airway epithelial cultures and complemented CFTR Cl– currents in CF airway cultures. Delivery of AAV2.5T-hCFTRΔR to neonatal and juvenile ferret lungs produced hCFTR mRNA at 200%–300% greater levels than endogenous fCFTR. Single-dose (AAV2.5T-SP183-gLuc) or repeat dosing (AAV2.5T-SP183-fCFTRΔR followed by AAV2.5T-SP183-gLuc) of AAV2.5T was performed in neonatal and juvenile ferrets. Repeat dosing significantly reduced transgene expression (11-fold) and increased bronchoalveolar lavage fluid (BALF) NAbs only in juvenile, but not neonatal, ferrets, despite near-equivalent plasma NAb responses in both age groups. Notably, both age groups demonstrated a reduction in BALF anti-capsid binding immunoglobulin (Ig) G, IgM, and IgA antibodies after repeat dosing. Unique to juvenile ferrets was a suppression of plasma anti-capsid-binding IgM after the second vector administration. Thus, age-dependent immune system maturation and isotype switching may affect the development of high-affinity lung NAbs after repeat dosing of AAV2.5T and may provide a path to blunt AAV-neutralizing responses in the lung.
Collapse
Affiliation(s)
- Yinghua Tang
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Ziying Yan
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Shen Lin
- Spirovant Science Inc., Philadelphia, PA 19104, USA
| | - Eric D Huntemann
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Zehua Feng
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Soo-Yeun Park
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Xingshen Sun
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| | - Eric Yuen
- Spirovant Science Inc., Philadelphia, PA 19104, USA
| | - John F Engelhardt
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
23
|
Maurya S, Jayandharan GR. Gene Therapy: Contest between Adeno-Associated Virus and Host Cells and the Impact of UFMylation. Mol Pharm 2020; 17:3649-3653. [PMID: 32857512 DOI: 10.1021/acs.molpharmaceut.0c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adeno-associated virus (AAV)-based gene therapy is currently limited by (1) decline in therapeutic gene expression over time, (2) immune cell activation and (3) neutralization by pre-existing antibodies. Hence, studying the interaction of AAV vectors with various cellular pathways during the production and transduction process is necessary to overcome such barriers. Post-translational modifications (PTM) of AAV vectors during the production and transduction process is known to limit its transduction efficiency and further evoke the immune response. Further, AAV vectors are known to trigger cellular stress, resulting in an upregulation of distinct arms of the unfolded protein response (UPR) pathway. Recognition of the AAV genome by Toll-like receptor-9 triggers the myeloid differentiation primary response signaling cascade for innate (IL-6, IFN-α, IFN-β) and adaptive (CD8+ T-cell, B-cell) immune response against the viral capsid and the transgene product. Herein, we highlight a potential intersection of the UPR, PTMs, and intracellular trafficking pathways, which could be fine-tuned to augment the outcome of AAV-based gene delivery.
Collapse
Affiliation(s)
- Shubham Maurya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Giridhara R Jayandharan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
24
|
Modifiers of Adeno-Associated Virus-Mediated Gene Expression in Implication for Serotype-Universal Neutralizing Antibody Assay. Hum Gene Ther 2020. [PMID: 32495655 DOI: 10.6039/j.issn.1001-0408.2020.09.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Adeno-associated virus (AAV)-based gene therapy is undergoing major expansion into clinical practice, with two treatments currently being granted Food and Drug Administration (FDA) approval. However, the presence of pre-existing neutralizing antibodies (NAB) is one of the significant hurdles for the clinical application of AAV vectors that significantly limits the patient population, which benefits from the treatment. A reliable diagnostic to evaluate the patient's seropositivity is required to ensure the effectiveness of the AAV-mediated therapeutic. Here, we describe a simple method for the determination of AAV NAB activity based on our finding that Compound C makes HEK293 cell highly permissive for infection by 10 commonly used AAV serotypes.
Collapse
|
25
|
Krotova K, Aslanidi G. Modifiers of Adeno-Associated Virus-Mediated Gene Expression in Implication for Serotype-Universal Neutralizing Antibody Assay. Hum Gene Ther 2020; 31:1124-1131. [PMID: 32495655 PMCID: PMC7588322 DOI: 10.1089/hum.2020.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Adeno-associated virus (AAV)-based gene therapy is undergoing major expansion into clinical practice, with two treatments currently being granted Food and Drug Administration (FDA) approval. However, the presence of pre-existing neutralizing antibodies (NAB) is one of the significant hurdles for the clinical application of AAV vectors that significantly limits the patient population, which benefits from the treatment. A reliable diagnostic to evaluate the patient's seropositivity is required to ensure the effectiveness of the AAV-mediated therapeutic. Here, we describe a simple method for the determination of AAV NAB activity based on our finding that Compound C makes HEK293 cell highly permissive for infection by 10 commonly used AAV serotypes.
Collapse
Affiliation(s)
- Karina Krotova
- Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - George Aslanidi
- Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| |
Collapse
|
26
|
Piras F, Kajaste-Rudnitski A. Antiviral immunity and nucleic acid sensing in haematopoietic stem cell gene engineering. Gene Ther 2020; 28:16-28. [PMID: 32661282 PMCID: PMC7357672 DOI: 10.1038/s41434-020-0175-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
The low gene manipulation efficiency of human hematopoietic stem and progenitor cells (HSPC) remains a major hurdle for sustainable and broad clinical application of innovative therapies for a wide range of disorders. Given that all current and emerging gene transfer and editing technologies are bound to expose HSPC to exogenous nucleic acids and most often also to viral vectors, we reason that host antiviral factors and nucleic acid sensors play a pivotal role in the efficacy of HSPC genetic manipulation. Here, we review recent progress in our understanding of vector–host interactions and innate immunity in HSPC upon gene engineering and discuss how dissecting this crosstalk can guide the development of more stealth and efficient gene therapy approaches in the future.
Collapse
Affiliation(s)
- Francesco Piras
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
27
|
Tang Y, Yan Z, Engelhardt JF. Viral Vectors, Animal Models, and Cellular Targets for Gene Therapy of Cystic Fibrosis Lung Disease. Hum Gene Ther 2020; 31:524-537. [PMID: 32138545 PMCID: PMC7232698 DOI: 10.1089/hum.2020.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
After more than two decades since clinical trials tested the first use of recombinant adeno-associated virus (rAAV) to treat cystic fibrosis (CF) lung disease, gene therapy for this disorder has undergone a tremendous resurgence. Fueling this enthusiasm has been an enhanced understanding of rAAV transduction biology and cellular processes that limit transduction of airway epithelia, the development of new rAAV serotypes and other vector systems with high-level tropism for airway epithelial cells, an improved understanding of CF lung pathogenesis and the cellular targets for gene therapy, and the development of new animal models that reproduce the human CF disease phenotype. These advances have created a preclinical path for both assessing the efficacy of gene therapies in the CF lung and interrogating the target cell types in the lung required for complementation of the CF disease state. Lessons learned from early gene therapy attempts with rAAV in the CF lung have guided thinking for the testing of next-generation vector systems. Although unknown questions still remain regarding the cellular targets in the lung that are required or sufficient to complement CF lung disease, the field is now well positioned to tackle these challenges. This review will highlight the role that next-generation CF animal models are playing in the preclinical development of gene therapies for CF lung disease and the knowledge gaps in disease pathophysiology that these models are attempting to fill.
Collapse
Affiliation(s)
- Yinghua Tang
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ziying Yan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
28
|
Maurya S, Jayandharan GR. Exosome-associated SUMOylation mutant AAV demonstrates improved ocular gene transfer efficiency in vivo. Virus Res 2020; 283:197966. [PMID: 32302639 PMCID: PMC7212041 DOI: 10.1016/j.virusres.2020.197966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/24/2020] [Accepted: 04/08/2020] [Indexed: 01/08/2023]
Abstract
Exosome associated Adeno-associated virus (AAV) vectors have emerged as a promising tool in gene therapy. Recently, we elucidated the role of SUMOylation post-translational modification in AAV2 capsid and demonstrated that capsid modifications at SUMOylation sites, enhance vector transduction. The present study was designed to study the combinatorial effect of exosome delivery of a SUMOylation site modified AAV2, during ocular gene therapy. In the first set of experiments, we investigated the in vitro gene transfer potential of exo-some-associated SUMOylation mutant AAV2 (Exo-K105Q-EGFP) in human retinal pigmental epithelial (ARPE19) cells. Our data showed that, Exo-K105Q vectors had a significantly higher transduction potential in ARPE19 cells when compared to exosomes derived from wildtype AAV2 (Exo-AAV2-EGFP) vector packaging. Subsequently, an intravitreal administration of exosome associated mutant AAV2 vectors in C57BL6/J mice, demonstrated a significant increase reporter gene (EFGP) expression 4 weeks after gene transfer. Further immunostaining, revealed that these exosome-based vectors also had a better permeation across the retinal layers. These data highlight the translational potential of exosome associated SUMOylation mutant AAV for ocular gene therapy.
Collapse
Affiliation(s)
- Shubham Maurya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Giridhara R Jayandharan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India.
| |
Collapse
|
29
|
Zengel J, Carette JE. Structural and cellular biology of adeno-associated virus attachment and entry. Adv Virus Res 2020; 106:39-84. [PMID: 32327148 DOI: 10.1016/bs.aivir.2020.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adeno-associated virus (AAV) is a nonenveloped, ssDNA virus in the parvovirus family, which has become one of the leading candidate vectors for human gene therapy. AAV has been studied extensively to identify host cellular factors involved in infection, as well as to identify capsid variants that confer clinically favorable transduction profiles ex vivo and in vivo. Recent advances in technology have allowed for direct genetic approaches to be used to more comprehensively characterize host factors required for AAV infection and allowed for identification of a critical multi-serotype receptor, adeno-associated virus receptor (AAVR). In this chapter, we will discuss the interactions of AAV with its glycan and proteinaceous receptors and describe the host and viral components involved in AAV entry, which requires cellular attachment, endocytosis, trafficking to the trans-Golgi network and nuclear import. AAV serves as a paradigm for entry of nonenveloped viruses. Furthermore, we will discuss the potential of utilizing our increased understanding of virus-host interactions during AAV entry to develop better AAV-based therapeutics, with a focus on host factors and capsid interactions involved in in vivo tropism.
Collapse
|
30
|
Nidetz NF, McGee MC, Tse LV, Li C, Cong L, Li Y, Huang W. Adeno-associated viral vector-mediated immune responses: Understanding barriers to gene delivery. Pharmacol Ther 2019; 207:107453. [PMID: 31836454 DOI: 10.1016/j.pharmthera.2019.107453] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
Abstract
Adeno-associated viral (AAV) vectors have emerged as the leading gene delivery platform for gene therapy and vaccination. Three AAV-based gene therapy drugs, Glybera, LUXTURNA, and ZOLGENSMA were approved between 2012 and 2019 by the European Medicines Agency and the United States Food and Drug Administration as treatments for genetic diseases hereditary lipoprotein lipase deficiency (LPLD), inherited retinal disease (IRD), and spinal muscular atrophy (SMA), respectively. Despite these therapeutic successes, clinical trials have demonstrated that host anti-viral immune responses can prevent the long-term gene expression of AAV vector-encoded genes. Therefore, it is critical that we understand the complex relationship between AAV vectors and the host immune response. This knowledge could allow for the rational design of optimized gene transfer vectors capable of either subverting host immune responses in the context of gene therapy applications, or stimulating desirable immune responses that generate protective immunity in vaccine applications to AAV vector-encoded antigens. This review provides an overview of our current understanding of the AAV-induced immune response and discusses potential strategies by which these responses can be manipulated to improve AAV vector-mediated gene transfer.
Collapse
Affiliation(s)
- Natalie F Nidetz
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michael C McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Longping V Tse
- Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chengwen Li
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Le Cong
- Department of Pathology and Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yunxing Li
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
31
|
Maurer AC, Pacouret S, Cepeda Diaz AK, Blake J, Andres-Mateos E, Vandenberghe LH. The Assembly-Activating Protein Promotes Stability and Interactions between AAV's Viral Proteins to Nucleate Capsid Assembly. Cell Rep 2019; 23:1817-1830. [PMID: 29742436 DOI: 10.1016/j.celrep.2018.04.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/31/2017] [Accepted: 04/04/2018] [Indexed: 11/30/2022] Open
Abstract
The adeno-associated virus (AAV) vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a plurality of phenotypes relevant to gene therapy, including vector production and host tropism. Fundamental to these aspects is the mechanism of AAV capsid assembly. Here, the role of the viral co-factor assembly-activating protein (AAP) was evaluated in 12 naturally occurring AAVs and 9 putative ancestral capsid intermediates. The results demonstrate increased capsid protein stability and VP-VP interactions in the presence of AAP. The capsid's dependence on AAP can be partly overcome by strengthening interactions between monomers within the assembly, as illustrated by the transfer of a minimal motif defined by a phenotype-to-phylogeny mapping method. These findings suggest that the emergence of AAP within the Dependovirus genus relaxes structural constraints on AAV assembly in favor of increasing the degrees of freedom for the capsid to evolve.
Collapse
Affiliation(s)
- Anna C Maurer
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Simon Pacouret
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; INSERM UMR 1089, University of Nantes, Nantes University Hospital, 22 Boulevard Benoni Goullin, 44200 Nantes, France
| | - Ana Karla Cepeda Diaz
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Jessica Blake
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Eva Andres-Mateos
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Luk H Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA 02114, USA; Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
32
|
Maurya S, Mary B, Jayandharan GR. Rational Engineering and Preclinical Evaluation of Neddylation and SUMOylation Site Modified Adeno-Associated Virus Vectors in Murine Models of Hemophilia B and Leber Congenital Amaurosis. Hum Gene Ther 2019; 30:1461-1476. [PMID: 31642343 PMCID: PMC6919284 DOI: 10.1089/hum.2019.164] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synthetic engineering of viral vectors such as adeno-associated virus (AAV) is crucial to overcome host transduction barriers observed during clinical gene therapy. We reasoned that exploring the role of cellular ubiquitin-like modifiers (UBLs) such as Neddylation or SUMOylation during AAV transduction could be beneficial. Using a combination of in silico biochemical and molecular engineering strategies, we have studied the impact of these UBLs during AAV2 infection and further developed Neddylation or SUMOylation site–modified AAV vectors and validated them in multiple disease models in vitro and in vivo. Hepatic gene transfer of two novel vectors developed, K105Q (SUMOylation-site mutant) and K665Q (Neddylation-site mutant), demonstrated a significantly improved human coagulation factor (F) IX expression (up to two-fold) in a murine model of hemophilia B. Furthermore, subretinal gene transfer of AAV2-K105Q vector expressing RPE65 gene demonstrated visual correction in a murine model of a retinal degenerative disease (rd12 mice). These vectors did not have any adverse immunogenic events in vivo. Taken together, we demonstrate that gene delivery vectors specifically engineered at UBLs can improve the therapeutic outcome during AAV-mediated ocular or hepatic gene therapy.
Collapse
Affiliation(s)
- Shubham Maurya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, India
| | - Bertin Mary
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, India
| | - Giridhara R Jayandharan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, India
| |
Collapse
|
33
|
Mary B, Maurya S, Kumar M, Bammidi S, Kumar V, Jayandharan GR. Molecular Engineering of Adeno-Associated Virus Capsid Improves Its Therapeutic Gene Transfer in Murine Models of Hemophilia and Retinal Degeneration. Mol Pharm 2019; 16:4738-4750. [PMID: 31596095 PMCID: PMC7035104 DOI: 10.1021/acs.molpharmaceut.9b00959] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recombinant adeno-associated virus (AAV)-based gene therapy has been promising, but several host-related transduction or immune challenges remain. For this mode of therapy to be widely applicable, it is crucial to develop high transduction and permeating vectors that infect the target at significantly low doses. Because glycosylation of capsid proteins is known to be rate limiting in the life cycle of many viruses, we reasoned that perturbation of glycosylation sites in AAV2 capsid will enhance gene delivery. In our first set experiments, pharmacological modulation of the glycosylation status in host cells, modestly decreased (1-fold) AAV2 packaging efficacy while it improved their gene expression (∼74%) in vitro. We then generated 24 mutant AAV2 vectors modified to potentially create or disrupt a glycosylation site in its capsid. Three of them demonstrated a 1.3-2.5-fold increase in transgene expression in multiple cell lines (HeLa, Huh7, and ARPE-19). Hepatic gene transfer of these vectors in hemophilia B mice, resulted in a 2-fold increase in human coagulation factor (F)IX levels, while its T/B-cell immunogenic response was unaltered. Subsequently, intravitreal gene transfer of glycosylation site-modified vectors in C57BL6/J mice demonstrated an increase in green fluorescence protein expression (∼2- to 4-fold) and enhanced permeation across retina. Subretinal administration of these modified vectors containing RPE65 gene further rescued the photoreceptor response in a murine model of Leber congenital amarousis. Our studies highlight the translational potential of glycosylation site-modified AAV2 vectors for hepatic and ocular gene therapy applications.
Collapse
Affiliation(s)
- Bertin Mary
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208 016, Uttar Pradesh, India
| | - Shubham Maurya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208 016, Uttar Pradesh, India
| | - Mohit Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208 016, Uttar Pradesh, India
| | - Sridhar Bammidi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208 016, Uttar Pradesh, India
| | - Vikas Kumar
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha 68198, Nebraska, United States
| | - Giridhara R. Jayandharan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208 016, Uttar Pradesh, India
| |
Collapse
|
34
|
Retina transduction by rAAV2 after intravitreal injection: comparison between mouse and rat. Gene Ther 2019; 26:479-490. [PMID: 31562387 DOI: 10.1038/s41434-019-0100-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022]
Abstract
Adeno-associated virus vectors (rAAV) are currently the most common vehicle used in clinical trials of retinal gene therapy, usually delivered through subretinal injections to target cells of the outer retina. However, targeting the inner retina requires intravitreal injections, a simple and safe procedure, which is effective for transducing the rodent retina, but still of low efficiency in the eyes of primates. We investigated whether adjuvant pharmacological agents may enhance rAAV transduction of the retinas of mouse and rat after intravitreal delivery. Tyrosine kinase inhibitors were highly efficient in mice, especially imatinib and genistein, and promoted transduction even of the outer retina. In rats, however, we report that they were not effective. Even with direct proteasomal inhibition in rats, the effects upon transduction were only minimal and restricted to the inner retina. Even tyrosine capsid mutant rAAVs in rats had a transduction profile similar to wtAAV. Thus, the differences between mouse and rat, in both eye size and the inner limiting membrane, compromise the efficiency of AAV vectors penetration from the vitreous into the retina, and impact the efficacy of strategies developed to enhance intravitreal retinal rAAV transduction. Further improvement of strategies, then are required.
Collapse
|
35
|
Maes ME, Colombo G, Schulz R, Siegert S. Targeting microglia with lentivirus and AAV: Recent advances and remaining challenges. Neurosci Lett 2019; 707:134310. [PMID: 31158432 PMCID: PMC6734419 DOI: 10.1016/j.neulet.2019.134310] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
Abstract
Microglia have emerged as a critical component of neurodegenerative diseases. Genetic manipulation of microglia can elucidate their functional impact in disease. In neuroscience, recombinant viruses such as lentiviruses and adeno-associated viruses (AAVs) have been successfully used to target various cell types in the brain, although effective transduction of microglia is rare. In this review, we provide a short background of lentiviruses and AAVs, and strategies for designing recombinant viral vectors. Then, we will summarize recent literature on successful microglial transductions in vitro and in vivo, and discuss the current challenges. Finally, we provide guidelines for reporting the efficiency and specificity of viral targeting in microglia, which will enable the microglial research community to assess and improve methodologies for future studies.
Collapse
Affiliation(s)
- Margaret E Maes
- Institute of Science and Technology (IST) Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Gloria Colombo
- Institute of Science and Technology (IST) Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Rouven Schulz
- Institute of Science and Technology (IST) Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Sandra Siegert
- Institute of Science and Technology (IST) Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
36
|
Mary B, Maurya S, Arumugam S, Kumar V, Jayandharan GR. Post-translational modifications in capsid proteins of recombinant adeno-associated virus (AAV) 1-rh10 serotypes. FEBS J 2019; 286:4964-4981. [PMID: 31330090 PMCID: PMC7496479 DOI: 10.1111/febs.15013] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/13/2019] [Accepted: 07/19/2019] [Indexed: 01/27/2023]
Abstract
Post‐translational modifications in viral capsids are known to fine‐tune and regulate several aspects of the infective life cycle of several viruses in the host. Recombinant viruses that are generated in a specific producer cell line are likely to inherit unique post‐translational modifications during intra‐cellular maturation of its capsid proteins. Data on such post‐translational modifications in the capsid of recombinant adeno‐associated virus serotypes (AAV1‐rh10) is limited. We have employed liquid chromatography and mass spectrometry analysis to characterize post‐translational modifications in AAV1‐rh10 capsid protein. Our analysis revealed a total of 52 post‐translational modifications in AAV2‐AAVrh10 capsids, including ubiquitination (17%), glycosylation (36%), phosphorylation (21%), SUMOylation (13%) and acetylation (11%). While AAV1 had no detectable post‐translational modification, at least four AAV serotypes had >7 post‐translational modifications in their capsid protein. About 82% of these post‐translational modifications are novel. A limited validation of AAV2 capsids by MALDI‐TOF and western blot analysis demonstrated minimal glycosylation and ubiquitination of AAV2 capsids. To further validate this, we disrupted a glycosylation site identified in AAV2 capsid (AAV2‐N253Q), which severely compromised its packaging efficiency (~ 100‐fold vs. AAV2 wild‐type vectors). In order to confirm other post‐translational modifications detected such as SUMOylation, mutagenesis of a SUMOylation site(K258Q) in AAV2 was performed. This mutant vector demonstrated reduced levels of SUMO‐1/2/3 proteins and negligible transduction, 2 weeks after ocular gene transfer. Our study underscores the heterogeneity of post‐translational modifications in AAV vectors. The data presented here, should facilitate further studies to understand the biological relevance of post‐translational modifications in AAV life cycle and the development of novel bioengineered AAV vectors for gene therapy applications. Enzymes Trypsin, EC 3.4.21.4
Collapse
Affiliation(s)
- Bertin Mary
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Shubham Maurya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Sathyathithan Arumugam
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India.,SASTRA University, Thanjavur, India
| | - Vikas Kumar
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, NE, USA
| | - Giridhara R Jayandharan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India.,Department of Haematology and Centre for Stem Cell Research, Vellore, India
| |
Collapse
|
37
|
Fakhiri J, Schneider MA, Puschhof J, Stanifer M, Schildgen V, Holderbach S, Voss Y, El Andari J, Schildgen O, Boulant S, Meister M, Clevers H, Yan Z, Qiu J, Grimm D. Novel Chimeric Gene Therapy Vectors Based on Adeno-Associated Virus and Four Different Mammalian Bocaviruses. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 12:202-222. [PMID: 30766894 PMCID: PMC6360332 DOI: 10.1016/j.omtm.2019.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/11/2019] [Indexed: 02/06/2023]
Abstract
Parvoviruses are highly attractive templates for the engineering of safe, efficient, and specific gene therapy vectors, as best exemplified by adeno-associated virus (AAV). Another candidate that currently garners increasing attention is human bocavirus 1 (HBoV1). Notably, HBoV1 capsids can cross-package recombinant (r)AAV2 genomes, yielding rAAV2/HBoV1 chimeras that specifically transduce polarized human airway epithelia (pHAEs). Here, we largely expanded the repertoire of rAAV/BoV chimeras, by assembling packaging plasmids encoding the capsid genes of four additional primate bocaviruses, HBoV2–4 and GBoV (Gorilla BoV). Capsid protein expression and efficient rAAV cross-packaging were validated by immunoblotting and qPCR, respectively. Interestingly, not only HBoV1 but also HBoV4 and GBoV transduced pHAEs as well as primary human lung organoids. Flow cytometry analysis of pHAEs revealed distinct cellular specificities between the BoV isolates, with HBoV1 targeting ciliated, club, and KRT5+ basal cells, whereas HBoV4 showed a preference for KRT5+ basal cells. Surprisingly, primary human hepatocytes, skeletal muscle cells, and T cells were also highly amenable to rAAV/BoV transduction. Finally, we adapted our pipeline for AAV capsid gene shuffling to all five BoV isolates. Collectively, our chimeric rAAV/BoV vectors and bocaviral capsid library represent valuable new resources to dissect BoV biology and to breed unique gene therapy vectors.
Collapse
Affiliation(s)
- Julia Fakhiri
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Heidelberg, Germany.,BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Marc A Schneider
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany.,German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Jens Puschhof
- Hubrecht Institute and Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands
| | - Megan Stanifer
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Heidelberg, Germany.,Research Group "Cellular Polarity of Viral Infection", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Verena Schildgen
- Institute for Pathology, Kliniken der Stadt Köln gGmbH, Hospital of the Private University Witten/Herdecke, Cologne, Germany
| | - Stefan Holderbach
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Heidelberg, Germany.,BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Yannik Voss
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Heidelberg, Germany.,BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Jihad El Andari
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Heidelberg, Germany.,BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Oliver Schildgen
- Institute for Pathology, Kliniken der Stadt Köln gGmbH, Hospital of the Private University Witten/Herdecke, Cologne, Germany
| | - Steeve Boulant
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Heidelberg, Germany.,Research Group "Cellular Polarity of Viral Infection", German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Meister
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany.,German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Hans Clevers
- Hubrecht Institute and Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, the Netherlands.,University Medical Center (UMC) Utrecht, Utrecht, the Netherlands.,Princess Máxima Centre, Utrecht, the Netherlands
| | - Ziying Yan
- Department of Anatomy and Cell Biology, Center for Gene Therapy, The University of Iowa, Iowa City, IA, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Heidelberg, Germany.,BioQuant Center, University of Heidelberg, Heidelberg, Germany.,German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| |
Collapse
|
38
|
Lee EJ, Robinson TM, Tabor JJ, Mikos AG, Suh J. Reverse transduction can improve efficiency of AAV vectors in transduction-resistant cells. Biotechnol Bioeng 2018; 115:3042-3049. [PMID: 30199099 DOI: 10.1002/bit.26830] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/20/2018] [Accepted: 09/05/2018] [Indexed: 12/17/2022]
Abstract
Reverse transduction, also known as substrate-mediated gene delivery, is a strategy in which viral vectors are first coated onto a surface that subsequently comes into contact with mammalian cells. The cells internalize the surface-attached vectors, resulting in transgene expression. We hypothesized that forcing the interaction between cells and adeno-associated virus (AAV) vectors through a reverse transduction format would increase in vitro gene delivery efficiencies of the vectors in transduction-resistant cells. We tested this hypothesis by comparing the gene delivery efficiencies of three AAV serotypes using either standard or reverse transduction approaches. Our study reveals reverse transduction of AAV7 and AAV9 can significantly improve their delivery efficiencies. In contrast, AAV2 does not perform better under the reverse transduction format. Interestingly, increased vector uptake by cells does not provide a complete explanation for the increased transduction efficiency. Our findings offer a simple and practical method for improving transduction outcomes in vitro in cell types less permissive to a particular AAV vector.
Collapse
Affiliation(s)
- Esther J Lee
- Department of Bioengineering, Rice University, Houston, Texas
| | | | - Jeffrey J Tabor
- Department of Bioengineering, Rice University, Houston, Texas
| | | | - Junghae Suh
- Department of Bioengineering, Rice University, Houston, Texas
| |
Collapse
|
39
|
Ravindran MS. Molecular chaperones: from proteostasis to pathogenesis. FEBS J 2018; 285:3353-3361. [PMID: 29890022 PMCID: PMC7164077 DOI: 10.1111/febs.14576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/12/2018] [Accepted: 06/07/2018] [Indexed: 12/13/2022]
Abstract
Maintaining protein homeostasis (proteostasis) is essential for a functional proteome. A wide range of extrinsic and intrinsic factors perturb proteostasis, causing protein misfolding, misassembly, and aggregation. This compromises cellular integrity and leads to aging and disease, including neurodegeneration and cancer. At the cellular level, protein aggregation is counteracted by powerful mechanisms comprising of a cascade of enzymes and chaperones that operate in a coordinated multistep manner to sense, prevent, and/or dispose of aberrant proteins. Although these processes are well understood for soluble proteins, there is a major gap in our understanding of how cells handle misfolded or aggregated membrane proteins. This article provides an overview of cellular proteostasis with emphasis on membrane protein substrates and suggests host-virus interaction as a tool to clarify outstanding questions in proteostasis.
Collapse
Affiliation(s)
- Madhu Sudhan Ravindran
- Department of Cell and Developmental BiologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Present address:
Biocon Bristol‐Myers Squibb R&D CenterBiocon Park, Bommasandra Jigani Link RdBengaluruKarnataka560099India
| |
Collapse
|
40
|
van Lieshout LP, Domm JM, Rindler TN, Frost KL, Sorensen DL, Medina SJ, Booth SA, Bridges JP, Wootton SK. A Novel Triple-Mutant AAV6 Capsid Induces Rapid and Potent Transgene Expression in the Muscle and Respiratory Tract of Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 9:323-329. [PMID: 30038936 PMCID: PMC6054702 DOI: 10.1016/j.omtm.2018.04.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/10/2018] [Indexed: 12/22/2022]
Abstract
Gene therapy for the treatment of genetic disorders has demonstrated considerable therapeutic success in clinical trials. Among the most effective and commonly used gene delivery vectors are those based on adeno-associated virus (AAV). Despite these advances in clinical gene therapy, further improvements in AAV vector properties such as rapid intracellular processing and transgene expression, targeted transduction of therapeutically relevant cell types, and longevity of transgene expression, will render extension of such successes to many other human diseases. Engineering of AAV capsids continues to evolve the specificity and efficiency of AAV-mediated gene transfer. Here, we describe a triple AAV6 mutant, termed AAV6.2FF, containing F129L, Y445F, and Y731F mutations. AAV6.2FF yielded 10-fold greater transgene expression in lung than AAV6 after 21 days. Additionally, this novel capsid demonstrated 101-fold and 49-fold increased transgene expression in the muscle and lungs, respectively, 24 hr post vector delivery when compared with the parental AAV6. Furthermore, AAV6.2FF retains heparin sulfate binding capacity and displays a 10-fold increase in resistance to pooled immunoglobulin neutralization in vitro. The rapid and potent expression mediated by AAV6.2FF is ideally suited to applications such as vectored immunoprophylaxis, in which rapid transgene expression is vital for use during an outbreak response scenario.
Collapse
Affiliation(s)
| | - Jakob M Domm
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Tara N Rindler
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Kathy L Frost
- Molecular Pathobiology, National Microbiology Laboratory (NML), Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Debra L Sorensen
- Molecular Pathobiology, National Microbiology Laboratory (NML), Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Sarah J Medina
- Molecular Pathobiology, National Microbiology Laboratory (NML), Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Stephanie A Booth
- Molecular Pathobiology, National Microbiology Laboratory (NML), Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - James P Bridges
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
41
|
Grosse S, Penaud-Budloo M, Herrmann AK, Börner K, Fakhiri J, Laketa V, Krämer C, Wiedtke E, Gunkel M, Ménard L, Ayuso E, Grimm D. Relevance of Assembly-Activating Protein for Adeno-associated Virus Vector Production and Capsid Protein Stability in Mammalian and Insect Cells. J Virol 2017; 91:e01198-17. [PMID: 28768875 PMCID: PMC5625497 DOI: 10.1128/jvi.01198-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 07/28/2017] [Indexed: 12/16/2022] Open
Abstract
The discovery that adeno-associated virus 2 (AAV2) encodes an eighth protein, called assembly-activating protein (AAP), transformed our understanding of wild-type AAV biology. Concurrently, it raised questions about the role of AAP during production of recombinant vectors based on natural or molecularly engineered AAV capsids. Here, we show that AAP is indeed essential for generation of functional recombinant AAV2 vectors in both mammalian and insect cell-based vector production systems. Surprisingly, we observed that AAV2 capsid proteins VP1 to -3 are unstable in the absence of AAP2, likely due to rapid proteasomal degradation. Inhibition of the proteasome led to an increase of intracellular VP1 to -3 but neither triggered assembly of functional capsids nor promoted nuclear localization of the capsid proteins. Together, this underscores the crucial and unique role of AAP in the AAV life cycle, where it rapidly chaperones capsid assembly, thus preventing degradation of free capsid proteins. An expanded analysis comprising nine alternative AAV serotypes (1, 3 to 9, and rh10) showed that vector production always depends on the presence of AAP, with the exceptions of AAV4 and AAV5, which exhibited AAP-independent, albeit low-level, particle assembly. Interestingly, AAPs from all 10 serotypes could cross-complement AAP-depleted helper plasmids during vector production, despite there being distinct intracellular AAP localization patterns. These were most pronounced for AAP4 and AAP5, congruent with their inability to rescue an AAV2/AAP2 knockout. We conclude that AAP is key for assembly of genuine capsids from at least 10 different AAV serotypes, which has implications for vectors derived from wild-type or synthetic AAV capsids.IMPORTANCE Assembly of adeno-associated virus 2 (AAV2) is regulated by the assembly-activating protein (AAP), whose open reading frame overlaps with that of the viral capsid proteins. As the majority of evidence was obtained using virus-like particles composed solely of the major capsid protein VP3, AAP's role in and relevance for assembly of genuine AAV capsids have remained largely unclear. Thus, we established a trans-complementation assay permitting assessment of AAP functionality during production of recombinant vectors based on complete AAV capsids and derived from any serotype. We find that AAP is indeed a critical factor not only for AAV2, but also for generation of vectors derived from nine other AAV serotypes. Moreover, we identify a new role of AAP in maintaining capsid protein stability in mammalian and insect cells. Thereby, our study expands our current understanding of AAV/AAP biology, and it concomitantly provides insights into the importance of AAP for AAV vector production.
Collapse
Affiliation(s)
- Stefanie Grosse
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Magalie Penaud-Budloo
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - Anne-Kathrin Herrmann
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Kathleen Börner
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
- German Center for Infection Research, Partner Site Heidelberg, Heidelberg, Germany
| | - Julia Fakhiri
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Vibor Laketa
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- German Center for Infection Research, Partner Site Heidelberg, Heidelberg, Germany
| | - Chiara Krämer
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Ellen Wiedtke
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Manuel Gunkel
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
- CellNetworks Advanced Biological Screening Facility, University of Heidelberg, Heidelberg, Germany
| | - Lucie Ménard
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - Eduard Ayuso
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- BioQuant Center, University of Heidelberg, Heidelberg, Germany
- German Center for Infection Research, Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
42
|
Jin X, Liu L, Nass S, O'Riordan C, Pastor E, Zhang XK. Direct Liquid Chromatography/Mass Spectrometry Analysis for Complete Characterization of Recombinant Adeno-Associated Virus Capsid Proteins. Hum Gene Ther Methods 2017. [DOI: 10.1089/hgtb.2016.178] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Xiaoying Jin
- Biopharmaceutics Development, Sanofi, Framingham, Massachusetts
| | - Lin Liu
- Biopharmaceutics Development, Sanofi, Framingham, Massachusetts
| | - Shelley Nass
- Gene Therapy Research, Sanofi, Framingham, Massachusetts
| | | | - Eric Pastor
- Biopharmaceutics Development, Sanofi, Framingham, Massachusetts
| | - X. Kate Zhang
- Translational Science, Sanofi, Framingham, Massachusetts
| |
Collapse
|
43
|
Mingozzi F, High KA. Overcoming the Host Immune Response to Adeno-Associated Virus Gene Delivery Vectors: The Race Between Clearance, Tolerance, Neutralization, and Escape. Annu Rev Virol 2017; 4:511-534. [PMID: 28961410 DOI: 10.1146/annurev-virology-101416-041936] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immune responses in gene therapy with adeno-associated virus (AAV) vectors have been the object of almost two decades of study. Although preclinical models helped to define and predict certain aspects of interactions between the vector and the host immune system, most of our current knowledge has come from clinical trials. These studies have allowed development of effective interventions for modulating immunotoxicities associated with vector administration, resulting in therapeutic advances. However, the road to full understanding and effective modulation of immune responses in gene therapy is still long; the determinants of the balance between tolerance and immunogenicity in AAV vector-mediated gene transfer are not fully understood, and effective solutions for overcoming preexisting neutralizing antibodies are still lacking. However, despite these challenges, the goal of reliably delivering effective gene-based treatments is now in sight.
Collapse
Affiliation(s)
- Federico Mingozzi
- Genethon and INSERM U951, 91000 Evry, France; .,University Pierre and Marie Curie Paris 6 and INSERM U974, 75651 Paris, France
| | | |
Collapse
|
44
|
Yan Z, Feng Z, Sun X, Zhang Y, Zou W, Wang Z, Jensen-Cody C, Liang B, Park SY, Qiu J, Engelhardt JF. Human Bocavirus Type-1 Capsid Facilitates the Transduction of Ferret Airways by Adeno-Associated Virus Genomes. Hum Gene Ther 2017; 28:612-625. [PMID: 28490200 DOI: 10.1089/hum.2017.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human bocavirus type-1 (HBoV1) has a high tropism for the apical membrane of human airway epithelia. The packaging of a recombinant adeno-associated virus 2 (rAAV2) genome into HBoV1 capsid produces a chimeric vector (rAAV2/HBoV1) that also efficiently transduces human airway epithelia. As such, this vector is attractive for use in gene therapies to treat lung diseases such as cystic fibrosis. However, preclinical development of rAAV2/HBoV1 vectors has been hindered by the fact that humans are the only known host for HBoV1 infection. This study reports that rAAV2/HBoV1 vector is capable of efficiently transducing the lungs of both newborn (3- to 7-day-old) and juvenile (29-day-old) ferrets, predominantly in the distal airways. Analyses of in vivo, ex vivo, and in vitro models of the ferret proximal airway demonstrate that infection of this particular region is less effective than it is in humans. Studies of vector binding and endocytosis in polarized ferret proximal airway epithelial cultures revealed that a lack of effective vector endocytosis is the main cause of inefficient transduction in vitro. While transgene expression declined proportionally with growth of the ferrets following infection at 7 days of age, reinfection of ferrets with rAAV2/HBoV1 at 29 days gave rise to approximately 5-fold higher levels of transduction than observed in naive infected 29-day-old animals. The findings presented here lay the foundation for clinical development of HBoV1 capsid-based vectors for lung gene therapy in cystic fibrosis using ferret models.
Collapse
Affiliation(s)
- Ziying Yan
- 1 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa.,2 Center for Gene Therapy, University of Iowa , Iowa City, Iowa
| | - Zehua Feng
- 1 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Xingshen Sun
- 1 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Yulong Zhang
- 1 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Wei Zou
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center , Kansas City, Kansas
| | - Zekun Wang
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center , Kansas City, Kansas
| | | | - Bo Liang
- 1 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Soo-Yeun Park
- 1 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa
| | - Jianming Qiu
- 3 Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center , Kansas City, Kansas
| | - John F Engelhardt
- 1 Department of Anatomy and Cell Biology, University of Iowa , Iowa City, Iowa.,2 Center for Gene Therapy, University of Iowa , Iowa City, Iowa
| |
Collapse
|
45
|
Direct interaction of human serum proteins with AAV virions to enhance AAV transduction: immediate impact on clinical applications. Gene Ther 2016; 24:49-59. [PMID: 27834949 PMCID: PMC5269444 DOI: 10.1038/gt.2016.75] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/25/2016] [Accepted: 11/02/2016] [Indexed: 12/19/2022]
Abstract
Recent hemophilia B clinical trials using adeno-associated virus (AAV) gene delivery have demonstrated much lower FIX production in patients compared to the high levels observed in animal models and AAV capsid specific CTLs response elicited at high doses of AAV vectors. These results emphasize the necessity to explore effective approaches for enhancement of AAV transduction. Initially, we found that incubation of all AAV vectors with human serum enhanced AAV transduction. Complementary analytical experiments demonstrated that human serum albumin (HSA) directly interacted with the AAV capsid and augmented AAV transduction. The enhanced transduction was observed with clinical grade HSA. Mechanistic studies suggest that HSA increases AAV binding to target cells and that the interaction of HSA with AAV doesn’t interfere with the AAV infection pathway. Importantly, HSA incubation during vector dialysis also increased transduction. Finally, HSA enhancement of AAV transduction in a model of hemophilia B displayed greater than a 5-fold increase in vector derived circulating FIX, which improved the bleeding phenotype correction. In conclusion, incubation of HSA with AAV vectors supports a universal augmentation of AAV transduction and more importantly, this approach can be immediately transitioned to the clinic for the treatment of hemophilia and other diseases.
Collapse
|
46
|
Cellular transduction mechanisms of adeno-associated viral vectors. Curr Opin Virol 2016; 21:54-60. [PMID: 27544821 DOI: 10.1016/j.coviro.2016.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 12/27/2022]
Abstract
Recombinant adeno-associated viral vectors (rAAV) are regarded as promising vehicles for therapeutic gene delivery. Continued development and new strategies are essential to improve the potency of AAV vectors and reduce the effective dose needed for clinical efficacy. In this regard, many studies have focused on understanding the cellular transduction mechanisms of rAAV, often with the goal of exploiting this knowledge to increase gene transfer efficiency. Here, we provide an overview of our evolving understanding of rAAV cellular trafficking pathways through the host cell, beginning with cellular entry and ending with transcription of the vector genome. Strategies to exploit this information for improving rAAV transduction are discussed.
Collapse
|
47
|
Superior In vivo Transduction of Human Hepatocytes Using Engineered AAV3 Capsid. Mol Ther 2016; 24:1042-1049. [PMID: 27019999 DOI: 10.1038/mt.2016.61] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 12/13/2022] Open
Abstract
Adeno-associated viral (AAV) vectors are currently being tested in multiple clinical trials for liver-directed gene transfer to treat the bleeding disorders hemophilia A and B and metabolic disorders. The optimal viral capsid for transduction of human hepatocytes has been under active investigation, but results across various models are inconsistent. We tested in vivo transduction in "humanized" mice. Methods to quantitate percent AAV transduced human and murine hepatocytes in chimeric livers were optimized using flow cytometry and confocal microscopy with image analysis. Distinct transduction efficiencies were noted following peripheral vein administration of a self-complementary vector expressing a gfp reporter gene. An engineered AAV3 capsid with two amino acid changes, S663V+T492V (AAV3-ST), showed best efficiency for human hepatocytes (~3-times, ~8-times, and ~80-times higher than for AAV9, AAV8, and AAV5, respectively). AAV5, 8, and 9 were more efficient in transducing murine than human hepatocytes. AAV8 yielded the highest transduction rate of murine hepatocytes, which was 19-times higher than that for human hepatocytes. In summary, our data show substantial differences among AAV serotypes in transduction of human and mouse hepatocytes, are the first to report on AAV5 in humanized mice, and support the use of AAV3-based vectors for human liver gene transfer.
Collapse
|
48
|
Christensen MH, Paludan SR. Viral evasion of DNA-stimulated innate immune responses. Cell Mol Immunol 2016; 14:4-13. [PMID: 26972769 PMCID: PMC5214947 DOI: 10.1038/cmi.2016.06] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/18/2016] [Accepted: 01/18/2016] [Indexed: 12/14/2022] Open
Abstract
Cellular sensing of virus-derived nucleic acids is essential for early defenses against virus infections. In recent years, the discovery of DNA sensing proteins, including cyclic GMP-AMP synthase (cGAS) and gamma-interferon-inducible protein (IFI16), has led to understanding of how cells evoke strong innate immune responses against incoming pathogens carrying DNA genomes. The signaling stimulated by DNA sensors depends on the adaptor protein STING (stimulator of interferon genes), to enable expression of antiviral proteins, including type I interferon. To facilitate efficient infections, viruses have evolved a wide range of evasion strategies, targeting host DNA sensors, adaptor proteins and transcription factors. In this review, the current literature on virus-induced activation of the STING pathway is presented and we discuss recently identified viral evasion mechanisms targeting different steps in this antiviral pathway.
Collapse
Affiliation(s)
- Maria H Christensen
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark.,Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus DK-8000, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark.,Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus DK-8000, Denmark
| |
Collapse
|
49
|
Berry GE, Asokan A. Chemical Modulation of Endocytic Sorting Augments Adeno-associated Viral Transduction. J Biol Chem 2016; 291:939-47. [PMID: 26527686 PMCID: PMC4705411 DOI: 10.1074/jbc.m115.687657] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/24/2015] [Indexed: 01/10/2023] Open
Abstract
Intracellular trafficking of viruses can be influenced by a variety of inter-connected cellular sorting and degradation pathways involving endo-lysosomal vesicles, the ubiquitin-proteasome system, and autophagy-based or endoplasmic reticulum-associated machinery. In the case of recombinant adeno-associated viruses (AAV), proteasome inhibitors are known to prevent degradation of ubiquitinated AAV capsids, thereby leading to increased nuclear accumulation and transduction. However, the impact of other cellular degradation pathways on AAV trafficking is not well understood. In the current study, we screened a panel of small molecules focused on modulating different cellular degradation pathways and identified eeyarestatin I (EerI) as a novel reagent that enhances AAV transduction. EerI improved AAV transduction by an order of magnitude regardless of vector dose, genome architecture, cell type, or serotype. This effect was preceded by sequestration of AAV within enlarged vesicles that were dispersed throughout the cytoplasm. Specifically, EerI treatment redirected AAV particles toward large vesicles positive for late endosomal (Rab7) and lysosomal (LAMP1) markers. Notably, MG132 and EerI (proteasomal and endoplasmic reticulum-associated degradation inhibitors, respectively) appear to enhance AAV transduction by increasing the intracellular accumulation of viral particles in a mutually exclusive fashion. Taken together, our results expand on potential strategies to redirect recombinant AAV vectors toward more productive trafficking pathways by deregulating cellular degradation mechanisms.
Collapse
Affiliation(s)
- Garrett E Berry
- From the Gene Therapy Center, Department of Genetics, Curriculum in Genetics and Molecular Biology, and
| | - Aravind Asokan
- From the Gene Therapy Center, Department of Genetics, Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, North Carolina 27599-7352
| |
Collapse
|
50
|
Vidović D, Gijsbers R, Quiles-Jimenez A, Dooley J, Van den Haute C, Van der Perren A, Liston A, Baekelandt V, Debyser Z, Carlon MS. Noninvasive Imaging Reveals Stable Transgene Expression in Mouse Airways After Delivery of a Nonintegrating Recombinant Adeno-Associated Viral Vector. Hum Gene Ther 2016; 27:60-71. [DOI: 10.1089/hum.2015.109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Dragana Vidović
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Flanders, Belgium
| | - Rik Gijsbers
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Flanders, Belgium
- Leuven Viral Vector Core, KU Leuven, Flanders, Belgium
| | - Ana Quiles-Jimenez
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Flanders, Belgium
| | - James Dooley
- Department of Microbiology and Immunology, KU Leuven, Flanders, Belgium
- Vlaams Instituut Voor Biotechnologie, Translational Immunology Laboratory, Flanders, Belgium
| | - Chris Van den Haute
- Leuven Viral Vector Core, KU Leuven, Flanders, Belgium
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Flanders, Belgium
| | - Anke Van der Perren
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Flanders, Belgium
| | - Adrian Liston
- Department of Microbiology and Immunology, KU Leuven, Flanders, Belgium
- Vlaams Instituut Voor Biotechnologie, Translational Immunology Laboratory, Flanders, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Flanders, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Flanders, Belgium
| | - Marianne Sylvia Carlon
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Flanders, Belgium
| |
Collapse
|