1
|
Global Increases in Human Immunodeficiency Virus Neutralization Sensitivity Due to Alterations in the Membrane-Proximal External Region of the Envelope Glycoprotein Can Be Minimized by Distant State 1-Stabilizing Changes. J Virol 2022; 96:e0187821. [PMID: 35289647 DOI: 10.1128/jvi.01878-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Binding to the receptor, CD4, drives the pretriggered, "closed" (State-1) conformation of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer ([gp120/gp41]3) into more "open" conformations. HIV-1 Env on the viral membrane is maintained in a State-1 conformation that resists binding and neutralization by commonly elicited antibodies. Premature triggering of Env before the virus engages a target cell typically leads to increased susceptibility to spontaneous inactivation or ligand-induced neutralization. Here, we showed that single amino acid substitutions in the gp41 membrane-proximal external region (MPER) of a primary HIV-1 strain resulted in viral phenotypes indicative of premature triggering of Env to downstream conformations. Specifically, the MPER changes reduced viral infectivity and globally increased virus sensitivity to poorly neutralizing antibodies, soluble CD4, a CD4-mimetic compound, and exposure to cold. In contrast, the MPER mutants exhibited decreased sensitivity to the State 1-preferring inhibitor, BMS-806, and to the PGT151 broadly neutralizing antibody. Depletion of cholesterol from virus particles did not produce the same State 1-destabilizing phenotypes as MPER alterations. Notably, State 1-stabilizing changes in Env distant from the MPER could minimize the phenotypic effects of MPER alteration but did not affect virus sensitivity to cholesterol depletion. Thus, membrane-proximal gp41 elements contribute to the maintenance of the pretriggered Env conformation. The conformationally disruptive effects of MPER changes can be minimized by distant State 1-stabilizing Env modifications, a strategy that may be useful in preserving the native pretriggered state of Env. IMPORTANCE The pretriggered shape of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) is a major target for antibodies that can neutralize many strains of the virus. An effective HIV-1 vaccine may need to raise these types of antibodies, but this goal has proven difficult. One reason is that the pretriggered shape of Env is unstable and dependent on interactions near the viral membrane. Here, we showed that the membrane-proximal external region (MPER) of Env plays an important role in maintaining Env in a pretriggered shape. Alterations in the MPER resulted in global changes in Env conformation that disrupted its pretriggered shape. We also found that these disruptive effects of MPER changes could be minimized by distant Env modifications that stabilized the pretriggered shape. These modifications may be useful for preserving the native shape of Env for structural and vaccine studies.
Collapse
|
2
|
Whitehead M, Osborne A, Yu-Wai-Man P, Martin K. Humoral immune responses to AAV gene therapy in the ocular compartment. Biol Rev Camb Philos Soc 2021; 96:1616-1644. [PMID: 33837614 DOI: 10.1111/brv.12718] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Viral vectors can be utilised to deliver therapeutic genes to diseased cells. Adeno-associated virus (AAV) is a commonly used viral vector that is favoured for its ability to infect a wide range of tissues whilst displaying limited toxicity and immunogenicity. Most humans harbour anti-AAV neutralising antibodies (NAbs) due to subclinical infections by wild-type virus during infancy and these pre-existing NAbs can limit the efficiency of gene transfer depending on the target cell type, route of administration and choice of serotype. Vector administration can also result in de novo NAb synthesis that could limit the opportunity for repeated gene transfer to diseased sites. A number of strategies have been described in preclinical models that could circumvent NAb responses in humans, however, the successful translation of these innovations into the clinical arena has been limited. Here, we provide a comprehensive review of the humoral immune response to AAV gene therapy in the ocular compartment. We cover basic AAV biology and clinical application, the role of pre-existing and induced NAbs, and possible approaches to overcoming antibody responses. We conclude with a framework for a comprehensive strategy for circumventing humoral immune responses to AAV in the future.
Collapse
Affiliation(s)
- Michael Whitehead
- John Van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, U.K
| | - Andrew Osborne
- John Van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, U.K
| | - Patrick Yu-Wai-Man
- John Van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, U.K.,MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, U.K.,NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, U.K
| | - Keith Martin
- John Van Geest Centre for Brain Repair, Department of Clinical Neuroscience, University of Cambridge, Cambridge, U.K.,Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, U.K.,Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Yuan C, Wang JY, Zhao HJ, Li Y, Li D, Ling H, Zhuang M. Mutations of Glu560 within HIV-1 Envelope Glycoprotein N-terminal heptad repeat region contribute to resistance to peptide inhibitors of virus entry. Retrovirology 2019; 16:36. [PMID: 31796053 PMCID: PMC6889725 DOI: 10.1186/s12977-019-0496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/21/2019] [Indexed: 11/17/2022] Open
Abstract
Background Peptides corresponding to N- and C-terminal heptad repeat regions (HR1 and HR2, respectively) of gp41 can inhibit HIV-1 infection in a dominant negative manner by interfering with refolding of the viral HR1 and HR2 to form a six-helix bundle (6HB) that induces fusion between viral and host cell membranes. Previously, we found that HIV-1 acquired the mutations of Glu560 (E560) in HR1 of envelope (Env) to escape peptide inhibitors. The present study aimed to elucidate the critical role of position 560 in the virus entry and potential resistance mechanisms. Results The Glu560Lys/Asp/Gly (E560K/D/G) mutations in HR1 of gp41 that are selected under the pressure of N- and C-peptide inhibitors modified its molecular interactions with HR2 to change 6HB stability and peptide inhibitor binding. E560K mutation increased 6HB thermostability and resulted in resistance to N peptide inhibitors, but E560G or E560D as compensatory mutations destabilized the 6HB to reduce inhibitor binding and resulted in increased resistance to C peptide inhibitor, T20. Significantly, the neutralizing activities of all mutants to soluble CD4 and broadly neutralizing antibodies targeting membrane proximal external region, 2F5 and 4E10 were improved, indicating the mutations of E560 could regulate Env conformations through cross interactions with gp120 or gp41. The molecular modeling analysis of E560K/D/G mutants suggested that position 560 might interact with the residues within two potentially flexible topological layer 1 and layer 2 in the gp120 inner domain to apparently affect the CD4 utilization. The E560K/D/G mutations changed its interactions with Gln650 (Q650) in HR2 to contribute to the resistance of peptide inhibitors. Conclusions These findings identify the contributions of mutations of E560K/D/G in the highly conserved gp41 and highlight Env’s high degree of plasticity for virus entry and inhibitor design.
Collapse
Affiliation(s)
- Chen Yuan
- Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jia-Ye Wang
- Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China
| | - Hai-Jiao Zhao
- Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yan Li
- Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China.,Key Laboratory of Pathogen Biology, Harbin, China
| | - Di Li
- Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China.,Key Laboratory of Pathogen Biology, Harbin, China
| | - Hong Ling
- Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang, China. .,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China. .,Key Laboratory of Pathogen Biology, Harbin, China. .,Wu Lien-Teh Institute, Harbin Medical University, Harbin, China.
| | - Min Zhuang
- Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang, China. .,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China. .,Key Laboratory of Pathogen Biology, Harbin, China. .,Wu Lien-Teh Institute, Harbin Medical University, Harbin, China.
| |
Collapse
|
4
|
DeLeon O, Hodis H, O’Malley Y, Johnson J, Salimi H, Zhai Y, Winter E, Remec C, Eichelberger N, Van Cleave B, Puliadi R, Harrington RD, Stapleton JT, Haim H. Accurate predictions of population-level changes in sequence and structural properties of HIV-1 Env using a volatility-controlled diffusion model. PLoS Biol 2017; 15:e2001549. [PMID: 28384158 PMCID: PMC5383018 DOI: 10.1371/journal.pbio.2001549] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/06/2017] [Indexed: 01/08/2023] Open
Abstract
The envelope glycoproteins (Envs) of HIV-1 continuously evolve in the host by random mutations and recombination events. The resulting diversity of Env variants circulating in the population and their continuing diversification process limit the efficacy of AIDS vaccines. We examined the historic changes in Env sequence and structural features (measured by integrity of epitopes on the Env trimer) in a geographically defined population in the United States. As expected, many Env features were relatively conserved during the 1980s. From this state, some features diversified whereas others remained conserved across the years. We sought to identify “clues” to predict the observed historic diversification patterns. Comparison of viruses that cocirculate in patients at any given time revealed that each feature of Env (sequence or structural) exists at a defined level of variance. The in-host variance of each feature is highly conserved among individuals but can vary between different HIV-1 clades. We designate this property “volatility” and apply it to model evolution of features as a linear diffusion process that progresses with increasing genetic distance. Volatilities of different features are highly correlated with their divergence in longitudinally monitored patients. Volatilities of features also correlate highly with their population-level diversification. Using volatility indices measured from a small number of patient samples, we accurately predict the population diversity that developed for each feature over the course of 30 years. Amino acid variants that evolved at key antigenic sites are also predicted well. Therefore, small “fluctuations” in feature values measured in isolated patient samples accurately describe their potential for population-level diversification. These tools will likely contribute to the design of population-targeted AIDS vaccines by effectively capturing the diversity of currently circulating strains and addressing properties of variants expected to appear in the future. HIV-1 is the causative agent of the global AIDS pandemic. The envelope glycoproteins (Envs) of HIV-1 constitute a primary target for antibody-based vaccines. However, the diversity of Envs in the population limits the potential efficacy of this approach. Accurate estimates of the range of variants that currently infect patients and those expected to appear in the future will likely contribute to the design of population-targeted immunogens. We found that different properties (features) of Env have different propensities for small “fluctuations” in their values among viruses that infect patients at any given time point. This propensity of each feature for in-host variance, which we designate “volatility”, is conserved among patients. We apply this parameter to model the evolution of features (in patients and population) as a diffusion process driven by their “diffusion coefficients” (volatilities). Using volatilities measured from a few patient samples from the 1980s, we accurately predict properties of viruses that evolved in the population over the course of 30 years. The diffusion-based model described here efficiently captures evolution of phenotypes in biological systems controlled by a dominant random component.
Collapse
Affiliation(s)
- Orlando DeLeon
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Hagit Hodis
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Yunxia O’Malley
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jacklyn Johnson
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Hamid Salimi
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Yinjie Zhai
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Elizabeth Winter
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Claire Remec
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Noah Eichelberger
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Brandon Van Cleave
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Ramya Puliadi
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Robert D. Harrington
- Center for AIDS Research (CFAR) at the University of Washington, Seattle, Washington, United States of America
| | - Jack T. Stapleton
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Veterans Affairs Medical Center, Iowa City, Iowa, United States of America
| | - Hillel Haim
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
5
|
Antigenic and immunosuppressive properties of a trimeric recombinant transmembrane envelope protein gp41 of HIV-1. PLoS One 2017; 12:e0173454. [PMID: 28282446 PMCID: PMC5345815 DOI: 10.1371/journal.pone.0173454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
The transmembrane envelope (TM) protein gp41 of the human immunodeficiency virus—1 (HIV-1) plays an important role during virus infection inducing the fusion of the viral and cellular membranes. In addition, there are indications that the TM protein plays a role in the immunopathogenesis leading to the acquired immunodeficiency syndrome (AIDS). Inactivated virus particles and recombinant gp41 have been reported to inhibit lymphocyte proliferation, as well as to alter cytokine release and gene expression. The same was shown for a peptide corresponding to a highly conserved domain of all retroviral TM proteins, the immunosuppressive domain. Due to its propensity to aggregate and to be expressed at low levels, studies comprising authentic gp41 produced in eukaryotic cells are extremely rare. Here we describe the production of a secreted, soluble recombinant gp41 in 293 cells. The antigen was purified to homogeneity and characterised thoroughly by various biochemical and immunological methods. It was shown that the protein was glycosylated and assembled into trimers. Binding studies by ELISA and surface plasmon resonance using conformation-specific monoclonal antibodies implied a six-helix bundle conformation. The low binding of broadly neutralising antibodies (bnAb) directed against the membrane proximal external region (MPER) suggested that this gp41 is probably not suited as vaccine to induce such bnAb. Purified gp41 bound to monocytes and to a lesser extent to lymphocytes and triggered the production of specific cytokines when added to normal peripheral blood mononuclear cells. In addition, gp41 expressed on target cells inhibited the antigen-specific response of murine CD8+ T cells by drastically impairing their IFNγ production. To our knowledge, this is the first comprehensive analysis of a gp41 produced in eukaryotic cells including its immunosuppressive properties. Our data provide another line of evidence that gp41 might be directly involved in HIV-1 immunopathogenesis through modulation of the cytokine release and active inhibition of immune responses.
Collapse
|
6
|
Sood C, Marin M, Chande A, Pizzato M, Melikyan GB. SERINC5 protein inhibits HIV-1 fusion pore formation by promoting functional inactivation of envelope glycoproteins. J Biol Chem 2017; 292:6014-6026. [PMID: 28179429 DOI: 10.1074/jbc.m117.777714] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/07/2017] [Indexed: 12/24/2022] Open
Abstract
The host proteins, SERINC3 and SERINC5, have been recently shown to incorporate into HIV-1 particles and compromise their ability to fuse with target cells, an effect that is antagonized by the viral Nef protein. Envelope (Env) glycoproteins from different HIV-1 isolates exhibit a broad range of sensitivity to SERINC-mediated restriction, and the mechanism by which SERINCs interfere with HIV-1 fusion remains unclear. Here, we show that incorporation of SERINC5 into virions in the absence of Nef inhibits the formation of small fusion pores between viruses and cells. Strikingly, we found that SERINC5 promotes spontaneous functional inactivation of sensitive but not resistant Env glycoproteins. Although SERINC5-Env interaction was not detected by co-immunoprecipitation, incorporation of this protein enhanced the exposure of the conserved gp41 domains and sensitized the virus to neutralizing antibodies and gp41-derived inhibitory peptides. These results imply that SERINC5 restricts HIV-1 fusion at a step prior to small pore formation by selectively inactivating sensitive Env glycoproteins, likely through altering their conformation. The increased HIV-1 sensitivity to anti-gp41 antibodies and peptides suggests that SER5 also delays refolding of the remaining fusion-competent Env trimers.
Collapse
Affiliation(s)
- Chetan Sood
- From the Department of Pediatrics, Emory University, Atlanta, Georgia 30322 and
| | - Mariana Marin
- From the Department of Pediatrics, Emory University, Atlanta, Georgia 30322 and
| | - Ajit Chande
- the Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Massimo Pizzato
- the Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Gregory B Melikyan
- From the Department of Pediatrics, Emory University, Atlanta, Georgia 30322 and
| |
Collapse
|
7
|
Banerjee S, Shi H, Habte HH, Qin Y, Cho MW. Modulating immunogenic properties of HIV-1 gp41 membrane-proximal external region by destabilizing six-helix bundle structure. Virology 2016; 490:17-26. [PMID: 26803471 DOI: 10.1016/j.virol.2016.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/05/2016] [Accepted: 01/09/2016] [Indexed: 01/31/2023]
Abstract
The C-terminal alpha-helix of gp41 membrane-proximal external region (MPER; (671)NWFDITNWLWYIK(683)) encompassing 4E10/10E8 epitopes is an attractive target for HIV-1 vaccine development. We previously reported that gp41-HR1-54Q, a trimeric protein comprised of the MPER in the context of a stable six-helix bundle (6HB), induced strong immune responses against the helix, but antibodies were directed primarily against the non-neutralizing face of the helix. To better target 4E10/10E8 epitopes, we generated four putative fusion intermediates by introducing double point mutations or deletions in the heptad repeat region 1 (HR1) that destabilize 6HB in varying degrees. One variant, HR1-∆10-54K, elicited antibodies in rabbits that targeted W672, I675 and L679, which are critical for 4E10/10E8 recognition. Overall, the results demonstrated that altering structural parameters of 6HB can influence immunogenic properties of the MPER and antibody targeting. Further exploration of this strategy could allow development of immunogens that could lead to induction of 4E10/10E8-like antibodies.
Collapse
Affiliation(s)
- Saikat Banerjee
- Department of Biomedical Sciences, College of Veterinary Medicine; and Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA 50011, United States
| | - Heliang Shi
- Department of Biomedical Sciences, College of Veterinary Medicine; and Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA 50011, United States
| | - Habtom H Habte
- Department of Biomedical Sciences, College of Veterinary Medicine; and Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA 50011, United States
| | - Yali Qin
- Department of Biomedical Sciences, College of Veterinary Medicine; and Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA 50011, United States
| | - Michael W Cho
- Department of Biomedical Sciences, College of Veterinary Medicine; and Center for Advanced Host Defenses, Immunobiotics and Translational Comparative Medicine, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
8
|
Chan KR, Ong EZ, Mok DZL, Ooi EE. Fc receptors and their influence on efficacy of therapeutic antibodies for treatment of viral diseases. Expert Rev Anti Infect Ther 2015; 13:1351-60. [PMID: 26466016 PMCID: PMC4673539 DOI: 10.1586/14787210.2015.1079127] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The lack of vaccines against several important viral diseases necessitates the development of therapeutics to save lives and control epidemics. In recent years, therapeutic antibodies have received considerable attention due to their good safety profiles and clinical success when used against viruses such as respiratory syncytial virus, Ebola virus and Hendra virus. The binding affinity of these antibodies can directly impact their therapeutic efficacy. However, we and others have also demonstrated that the subtype of Fc-gamma receptors (FcγRs) engaged influences the stoichiometric requirement for virus neutralization. Hence, the development of therapeutic antibodies against infectious diseases should consider the FcγRs engaged and Fc-effector functions involved. This review highlights the current state of knowledge about FcγRs and FcγR effector functions involved in virus neutralization, with emphasis on factors that can affect FcγR engagement. A better understanding of Fc-FcγR interactions during virus neutralization will allow development of therapeutic antibodies that are efficacious and can be administered with minimal side effects.
Collapse
Affiliation(s)
- Kuan Rong Chan
- a 1 Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Eugenia Z Ong
- b 2 Experimental Therapeutics Centre, Agency for Science Technology and Research, 31 Biopolis Way, Singapore 138669, Singapore
| | - Darren Z L Mok
- c 3 Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Eng Eong Ooi
- a 1 Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| |
Collapse
|
9
|
Immunogens Modeling a Fusion-Intermediate Conformation of gp41 Elicit Antibodies to the Membrane Proximal External Region of the HIV Envelope Glycoprotein. PLoS One 2015; 10:e0128562. [PMID: 26087072 PMCID: PMC4472232 DOI: 10.1371/journal.pone.0128562] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/28/2015] [Indexed: 12/02/2022] Open
Abstract
The membrane proximal external region (MPER) of the gp41 subunit of the HIV-1 envelope glycoprotein (Env) contains determinants for broadly neutralizing antibodies and has remained an important focus of vaccine design. However, creating an immunogen that elicits broadly neutralizing antibodies to this region has proven difficult in part due to the relative inaccessibility of the MPER in the native conformation of Env. Here, we describe the antigenicity and immunogenicity of a panel of oligomeric gp41 immunogens designed to model a fusion-intermediate conformation of Env in order to enhance MPER exposure in a relevant conformation. The immunogens contain segments of the gp41 N- and C-heptad repeats to mimic a trapped intermediate, followed by the MPER, with variations that include different N-heptad lengths, insertion of extra epitopes, and varying C-termini. These well-characterized immunogens were evaluated in two different immunization protocols involving gp41 and gp140 proteins, gp41 and gp160 DNA primes, and different immunization schedules and adjuvants. We found that the immunogens designed to reduce extension of helical structure into the MPER elicited the highest MPER antibody binding titers, but these antibodies lacked neutralizing activity. The gp41 protein immunogens also elicited higher MPER titers than the gp140 protein immunogen. In prime-boost studies, the best MPER responses were seen in the groups that received DNA priming with gp41 vectors followed by gp41 protein boosts. Finally, although titers to the entire protein immunogen were similar in the two immunization protocols, MPER-specific titers differed, suggesting that the immunization route, schedule, dose, or adjuvant may differentially influence MPER immunogenicity. These findings inform the design of future MPER immunogens and immunization protocols.
Collapse
|
10
|
Mengistu M, Ray K, Lewis GK, DeVico AL. Antigenic properties of the human immunodeficiency virus envelope glycoprotein gp120 on virions bound to target cells. PLoS Pathog 2015; 11:e1004772. [PMID: 25807494 PMCID: PMC4373872 DOI: 10.1371/journal.ppat.1004772] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 03/02/2015] [Indexed: 12/17/2022] Open
Abstract
The HIV-1 envelope glycoprotein, gp120, undergoes multiple molecular interactions and structural rearrangements during the course of host cell attachment and viral entry, which are being increasingly defined at the atomic level using isolated proteins. In comparison, antigenic markers of these dynamic changes are essentially unknown for single HIV-1 particles bound to target cells. Such markers should indicate how neutralizing and/or non-neutralizing antibodies might interdict infection by either blocking infection or sensitizing host cells for elimination by Fc-mediated effector function. Here we address this deficit by imaging fluorescently labeled CCR5-tropic HIV-1 pseudoviruses using confocal and superresolution microscopy to track the exposure of neutralizing and non-neutralizing epitopes as they appear on single HIV-1 particles bound to target cells. Epitope exposure was followed under conditions permissive or non-permissive for viral entry to delimit changes associated with virion binding from those associated with post-attachment events. We find that a previously unexpected array of gp120 epitopes is exposed rapidly upon target cell binding. This array comprises both neutralizing and non-neutralizing epitopes, the latter being hidden on free virions yet capable of serving as potent targets for Fc-mediated effector function. Under non-permissive conditions for viral entry, both neutralizing and non-neutralizing epitope exposures were relatively static over time for the majority of bound virions. Under entry-permissive conditions, epitope exposure patterns changed over time on subsets of virions that exhibited concurrent variations in virion contents. These studies reveal that bound virions are distinguished by a broad array of both neutralizing and non-neutralizing gp120 epitopes that potentially sensitize a freshly engaged target cell for destruction by Fc-mediated effector function and/or for direct neutralization at a post-binding step. The elucidation of these epitope exposure patterns during viral entry will help clarify antibody-mediated inhibition of HIV-1 as it is measured in vitro and in vivo. A major strategy for blocking HIV-1 infection is to target antiviral antibodies or drugs to sites of vulnerability on the surface proteins of the virus. It is a relatively straightforward matter to explore these sites on the surfaces of free HIV-1 particles or on isolated viral envelope antigens. However, one difficulty presented by HIV-1 is that its surface proteins are flexible and change shape once the virus has attached to its host cell. To date, it has been difficult to predict how cell-bound HIV-1 exposes its sites of vulnerability. Yet the antiviral activities of certain antibodies indirectly suggest that there must be unique sites on cell-bound HIV-1 that are not found on free virus. Here, we use new techniques and tools to determine how HIV-1 exposes unique sites of vulnerability after attaching to host cells. We find that the virus exposes a remarkable array of these sites, including ones previously believed hidden. These exposure patterns explain the antiviral activities of various anti-HIV-1 antibodies and provide a new view of how HIV-1 might interact with the immune system. Our study also provides insights for how to target HIV-1 with antiviral antibodies, vaccines, or antiviral agents.
Collapse
Affiliation(s)
- Meron Mengistu
- The Institute of Human Virology of the University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (MM); (ALD)
| | - Krishanu Ray
- Center for Fluorescence Spectroscopy of the University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - George K. Lewis
- The Institute of Human Virology of the University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Anthony L. DeVico
- The Institute of Human Virology of the University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (MM); (ALD)
| |
Collapse
|
11
|
Abstract
ABSTRACT
Antibodies can impact pathogens in the presence or in the absence of effector cells or effector molecules such as complement, and experiments can often sort out with precision the mechanisms by which an antibody inhibits a pathogen
in vitro
. In addition,
in vivo
models, particularly those engineered to knock in or knock out effector cells or effector molecules, are excellent tools for understanding antibody functions. However, it is highly likely that multiple antibody functions occur simultaneously or sequentially in the presence of an infecting organism
in vivo
. The most critical incentive for measuring antibody functions is to provide a basis for vaccine development and for the development of therapeutic antibodies. In this respect, some functions, such as virus neutralization, serve to inhibit the acquisition of a pathogen or limit its pathogenesis. However, antibodies can also enhance replication or contribute to pathogenesis. This review emphasizes those antibody functions that are potentially beneficial to the host. In addition, this review will focus on the effects of antibodies on organisms themselves, rather than on the toxins the organisms may produce.
Collapse
|
12
|
Forthal DN. Functions of Antibodies. Microbiol Spectr 2014; 2:1-17. [PMID: 25215264 PMCID: PMC4159104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Affiliation(s)
- Donald N. Forthal
- Chief, Infectious Diseases, University of California, Irvine, 3044 Hewitt Hall, Irvine, CA 92617, 949-824-3366
| |
Collapse
|
13
|
Kim AS, Leaman DP, Zwick MB. Antibody to gp41 MPER alters functional properties of HIV-1 Env without complete neutralization. PLoS Pathog 2014; 10:e1004271. [PMID: 25058619 PMCID: PMC4110039 DOI: 10.1371/journal.ppat.1004271] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 06/11/2014] [Indexed: 01/08/2023] Open
Abstract
Human antibody 10E8 targets the conserved membrane proximal external region (MPER) of envelope glycoprotein (Env) subunit gp41 and neutralizes HIV-1 with exceptional potency. Remarkably, HIV-1 containing mutations that reportedly knockout 10E8 binding to linear MPER peptides are partially neutralized by 10E8, producing a local plateau in the dose response curve. Here, we found that virus partially neutralized by 10E8 becomes significantly less neutralization sensitive to various MPER antibodies and to soluble CD4 while becoming significantly more sensitive to antibodies and fusion inhibitors against the heptad repeats of gp41. Thus, 10E8 modulates sensitivity of Env to ligands both pre- and post-receptor engagement without complete neutralization. Partial neutralization by 10E8 was influenced at least in part by perturbing Env glycosylation. With unliganded Env, 10E8 bound with lower apparent affinity and lower subunit occupancy to MPER mutant compared to wild type trimers. However, 10E8 decreased functional stability of wild type Env while it had an opposite, stabilizing effect on MPER mutant Envs. Clade C isolates with natural MPER polymorphisms also showed partial neutralization by 10E8 with altered sensitivity to various gp41-targeted ligands. Our findings suggest a novel mechanism of virus neutralization by demonstrating how antibody binding to the base of a trimeric spike cross talks with adjacent subunits to modulate Env structure and function. The ability of an antibody to stabilize, destabilize, partially neutralize as well as alter neutralization sensitivity of a virion spike pre- and post-receptor engagement may have implications for immunotherapy and vaccine design.
Collapse
Affiliation(s)
- Arthur S. Kim
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Daniel P. Leaman
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Michael B. Zwick
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Abstract
Antibodies m66.6 and 2F5 are the only effective human HIV-1-neutralizing antibodies reported thus far to recognize the N-terminal region of the membrane-proximal external region (MPER) of the gp41 subunit of the HIV-1 envelope glycoprotein. Although 2F5 has been extensively characterized, much less is known about antibody m66.6 or antibody m66, a closely related light-chain variant. Here, we report the crystal structure of m66 in complex with its gp41 epitope, along with unbound structures of m66 and m66.6. We used mutational and binding analyses to decipher antibody elements critical for their recognition of gp41 and determined the molecular basis that underlies their neutralization of HIV-1. When bound by m66, the N-terminal region of the gp41 MPER adopts a conformation comprising a helix, followed by an extended loop. Comparison of gp41-bound m66 to unbound m66.6 identified three light-chain residues of m66.6 that were confirmed through mutagenesis to underlie the greater breadth of m66.6-mediated virus neutralization. Recognition of gp41 by m66 also revealed similarities to antibody 2F5 both in the conformation of crucial epitope residues as well as in the angle of antibody approach. Aromatic residues at the tip of the m66.6 heavy-chain third complementarity-determining region, as in the case of 2F5, were determined to be critical for virus neutralization in a manner that correlated with antibody recognition of the MPER in a lipid context. Antibodies m66, m66.6, and 2F5 thus utilize similar mechanistic elements to recognize a common gp41-MPER epitope and to neutralize HIV-1.
Collapse
|
15
|
Abstract
The structural flexibility found in human immunodeficiency virus (HIV) envelope glycoproteins creates a complex relationship between antigenicity and sensitivity to antiviral antibodies. The study of this issue in the context of viral particles is particularly problematic as conventional virus capture approaches can perturb antigenicity profiles. Here, we employed a unique analytical system based on fluorescence correlation spectroscopy (FCS), which measures antibody-virion binding with all reactants continuously in solution. Panels of nine anti-envelope monoclonal antibodies (MAbs) and five virus types were used to connect antibody binding profiles with neutralizing activities. Anti-gp120 MAbs against the 2G12 or b12 epitope, which marks functional envelope structures, neutralized viruses expressing CCR5-tropic envelopes and exhibited efficient virion binding in solution. MAbs against CD4-induced (CD4i) epitopes considered hidden on functional envelope structures poorly bound these viruses and were not neutralizing. Anti-gp41 MAb 2F5 was neutralizing despite limited virion binding. Similar antigenicity patterns occurred on CXCR4-tropic viruses, except that anti-CD4i MAbs 17b and 19e were neutralizing despite little or no virion binding. Notably, anti-gp120 MAb PG9 and anti-gp41 MAb F240 bound to both CCR5-tropic and CXCR4-tropic viruses without exerting neutralizing activity. Differences in the virus production system altered the binding efficiencies of some antibodies but did not enhance antigenicity of aberrant gp120 structures. Of all viruses tested, only JRFL pseudoviruses showed a direct relationship between MAb binding efficiency and neutralizing potency. Collectively, these data indicate that the antigenic profiles of free HIV particles generally favor the exposure of functional over aberrant gp120 structures. However, the efficiency of virion-antibody interactions in solution inconsistently predicts neutralizing activity in vitro.
Collapse
|
16
|
Demirkhanyan L, Marin M, Lu W, Melikyan GB. Sub-inhibitory concentrations of human α-defensin potentiate neutralizing antibodies against HIV-1 gp41 pre-hairpin intermediates in the presence of serum. PLoS Pathog 2013; 9:e1003431. [PMID: 23785290 PMCID: PMC3681749 DOI: 10.1371/journal.ppat.1003431] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/02/2013] [Indexed: 12/13/2022] Open
Abstract
Human defensins are at the forefront of the host responses to HIV and other pathogens in mucosal tissues. However, their ability to inactivate HIV in the bloodstream has been questioned due to the antagonistic effect of serum. In this study, we have examined the effect of sub-inhibitory concentrations of human α-defensin HNP-1 on the kinetics of early steps of fusion between HIV-1 and target cells in the presence of serum. Direct measurements of HIV-cell fusion using an enzymatic assay revealed that, in spite of the modest effect on the extent of fusion, HNP-1 prolonged the exposure of functionally important transitional epitopes of HIV-1 gp41 on the cell surface. The increased lifetime of gp41 intermediates in the presence of defensin was caused by a delay in the post-coreceptor binding steps of HIV-1 entry that correlated with the marked enhancement of the virus' sensitivity to neutralizing anti-gp41 antibodies. By contrast, the activity of antibodies to gp120 was not affected. HNP-1 appeared to specifically potentiate antibodies and peptides targeting the first heptad repeat domain of gp41, while its effect on inhibitors and antibodies to other gp41 domains was less prominent. Sub-inhibitory concentrations of HNP-1 also promoted inhibition of HIV-1 entry into peripheral blood mononuclear cells by antibodies and, more importantly, by HIV-1 immune serum. Our findings demonstrate that: (i) sub-inhibitory doses of HNP-1 potently enhance the activity of a number of anti-gp41 antibodies and peptide inhibitors, apparently by prolonging the lifetime of gp41 intermediates; and (ii) the efficiency of HIV-1 fusion inhibitors and neutralizing antibodies is kinetically restricted. This study thus reveals an important role of α-defensin in enhancing adaptive immune responses to HIV-1 infection and suggests future strategies to augment these responses. Human neutrophil peptide 1 (HNP-1) is a small cationic peptide that can directly block HIV-1 entry in the absence of serum. However, since serum attenuates the anti-HIV activity of this peptide, HNP-1 is unlikely to inhibit infection in the bloodstream. Here, we demonstrate that sub-inhibitory doses of HNP-1 in the presence of serum can strongly enhance the activity of neutralizing antibodies and inhibitors targeting transiently exposed intermediate conformations of HIV-1 gp41. HNP-1 appears to exert this effect by delaying post-coreceptor binding steps of fusion and thereby prolonging the exposure of gp41 intermediates. These results imply that the HIV-1 fusion kinetics is an important determinant of sensitivity to neutralizing antibodies and peptides against transiently exposed functional domains of gp41. The surprising synergy between sub-inhibitory concentrations of HNP-1 and anti-gp41 antibodies suggests new strategies to sensitize the virus to circulating antibodies by developing compounds that prolong the exposure of conserved gp41 epitopes on the cell surface.
Collapse
Affiliation(s)
- Lusine Demirkhanyan
- Division of Pediatric Infectious Diseases, Emory University Children's Center, Atlanta, Georgia, United States of America
| | - Mariana Marin
- Division of Pediatric Infectious Diseases, Emory University Children's Center, Atlanta, Georgia, United States of America
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Gregory B. Melikyan
- Division of Pediatric Infectious Diseases, Emory University Children's Center, Atlanta, Georgia, United States of America
- Children's Healthcare of Atlanta, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
17
|
Petitdemange C, Achour A, Dispinseri S, Malet I, Sennepin A, Ho Tsong Fang R, Crouzet J, Marcelin AG, Calvez V, Scarlatti G, Debré P, Vieillard V. A single amino-acid change in a highly conserved motif of gp41 elicits HIV-1 neutralization and protects against CD4 depletion. Clin Infect Dis 2013; 57:745-55. [PMID: 23696512 DOI: 10.1093/cid/cit335] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The induction of neutralizing antibodies against conserved regions of the human immunodeficiency virus type 1 (HIV-1) envelope protein is a major goal of vaccine strategies. We previously identified 3S, a critical conserved motif of gp41 that induces the NKp44L ligand of an activating NK receptor. In vivo, anti-3S antibodies protect against the natural killer (NK) cell-mediated CD4 depletion that occurs without efficient viral neutralization. METHODS Specific substitutions within the 3S peptide motif were prepared by directed mutagenesis. Virus production was monitored by measuring the p24 production. Neutralization assays were performed with immune-purified antibodies from immunized mice and a cohort of HIV-infected patients. Expression of NKp44L on CD4(+) T cells and degranulation assay on activating NK cells were both performed by flow cytometry. RESULTS Here, we show that specific substitutions in the 3S motif reduce viral infection without affecting gp41 production, while decreasing both its capacity to induce NKp44L expression on CD4(+) T cells and its sensitivity to autologous NK cells. Generation of antibodies in mice against the W614 specific position in the 3S motif elicited a capacity to neutralize cross-clade viruses, notable in its magnitude, breadth, and durability. Antibodies against this 3S variant were also detected in sera from some HIV-1-infected patients, demonstrating both neutralization activity and protection against CD4 depletion. CONCLUSIONS These findings suggest that a specific substitution in a 3S-based immunogen might allow the generation of specific antibodies, providing a foundation for a rational vaccine that combine a capacity to neutralize HIV-1 and to protect CD4(+) T cells.
Collapse
|
18
|
Generation of HIV-1 potent and broad neutralizing antibodies by immunization with postfusion HR1/HR2 complex. AIDS 2013; 27:717-30. [PMID: 23719346 DOI: 10.1097/qad.0b013e32835cfca5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The envelope glycoproteins are major targets for HIV vaccines. The N-terminal and the C-terminal regions of the gp41 interact to form six helix bundles that are responsible for the fusion between the viral and the target cell membranes. Monoclonal antibodies (Abs) able to disrupt the formation of this complex or to interfere with it could inhibit HIV fusion. Most of the well described gp41-specific broadly neutralizing Abs target conformational epitopes within the membrane proximal region of gp41 (MPER) and recognize linear peptides. METHOD AND RESULTS In this study, a stable human transfected cell line, expressing a well folded heptad repeat regions 1 (HR1)/HR2 postfusion complex was developed. Transfected cells were highly immunogenic in mice and allowed the generation of 40 complex specific B-cell clones. Three of them were able to neutralize efficiently both HIV-1 laboratory adapted virus and primary isolates from different clades. Two neutralizing Abs (Nabs) FC-2 and FC-3 bound to a recombinant folded gp140 and blocked with a high potency HR1/HR2 fusion complex formation in vitro. The conformational epitopes of the three antibodies are different to 2F5, 4E10, D5 or NC-1 and mainly located in the MPER region. Abs were capable of inhibiting syncytium formation by blocking spatial interactions between HR1 and HR2 regions. CONCLUSION These findings suggest that immunogenicity of gp41 is achievable and that the use of a fusion complex expressing human cell line is a highly potent immunogen to generate neutralizing antibodies against gp41 envelope glycoprotein.
Collapse
|
19
|
Lutje Hulsik D, Liu YY, Strokappe NM, Battella S, El Khattabi M, McCoy LE, Sabin C, Hinz A, Hock M, Macheboeuf P, Bonvin AMJJ, Langedijk JPM, Davis D, Forsman Quigley A, Aasa-Chapman MMI, Seaman MS, Ramos A, Poignard P, Favier A, Simorre JP, Weiss RA, Verrips CT, Weissenhorn W, Rutten L. A gp41 MPER-specific llama VHH requires a hydrophobic CDR3 for neutralization but not for antigen recognition. PLoS Pathog 2013; 9:e1003202. [PMID: 23505368 PMCID: PMC3591319 DOI: 10.1371/journal.ppat.1003202] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/07/2013] [Indexed: 01/28/2023] Open
Abstract
The membrane proximal external region (MPER) of the HIV-1 glycoprotein gp41 is targeted by the broadly neutralizing antibodies 2F5 and 4E10. To date, no immunization regimen in animals or humans has produced HIV-1 neutralizing MPER-specific antibodies. We immunized llamas with gp41-MPER proteoliposomes and selected a MPER-specific single chain antibody (VHH), 2H10, whose epitope overlaps with that of mAb 2F5. Bi-2H10, a bivalent form of 2H10, which displayed an approximately 20-fold increased affinity compared to the monovalent 2H10, neutralized various sensitive and resistant HIV-1 strains, as well as SHIV strains in TZM-bl cells. X-ray and NMR analyses combined with mutagenesis and modeling revealed that 2H10 recognizes its gp41 epitope in a helical conformation. Notably, tryptophan 100 at the tip of the long CDR3 is not required for gp41 interaction but essential for neutralization. Thus bi-2H10 is an anti-MPER antibody generated by immunization that requires hydrophobic CDR3 determinants in addition to epitope recognition for neutralization similar to the mode of neutralization employed by mAbs 2F5 and 4E10.
Collapse
Affiliation(s)
- David Lutje Hulsik
- Unit of Virus Host Cell Interactions (UVHCI), UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Ying-ying Liu
- Biomolecular Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Nika M. Strokappe
- Biomolecular Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Simone Battella
- Biomolecular Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Mohamed El Khattabi
- Biomolecular Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Laura E. McCoy
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Charles Sabin
- Unit of Virus Host Cell Interactions (UVHCI), UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Andreas Hinz
- Unit of Virus Host Cell Interactions (UVHCI), UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Miriam Hock
- Unit of Virus Host Cell Interactions (UVHCI), UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Pauline Macheboeuf
- Unit of Virus Host Cell Interactions (UVHCI), UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Alexandre M. J. J. Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | - David Davis
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Anna Forsman Quigley
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Marlén M. I. Aasa-Chapman
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Michael S. Seaman
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alejandra Ramos
- Department of Immunology and Microbial Science, International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
| | - Pascal Poignard
- Department of Immunology and Microbial Science, International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Adrien Favier
- CNRS, Institut de Biologie Structurale-Jean-Pierre Ebel, Grenoble Cedex, France
- CEA, Institut de Biologie Structurale-Jean-Pierre Ebel, Grenoble Cedex, France
- UJF-Grenoble-1, Institut de Biologie Structurale-Jean-Pierre Ebel, Grenoble Cedex, France
| | - Jean-Pierre Simorre
- CNRS, Institut de Biologie Structurale-Jean-Pierre Ebel, Grenoble Cedex, France
- CEA, Institut de Biologie Structurale-Jean-Pierre Ebel, Grenoble Cedex, France
- UJF-Grenoble-1, Institut de Biologie Structurale-Jean-Pierre Ebel, Grenoble Cedex, France
| | - Robin A. Weiss
- MRC/UCL Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - C. Theo Verrips
- Biomolecular Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, The Netherlands
- QVQ BV, Utrecht, The Netherlands
| | - Winfried Weissenhorn
- Unit of Virus Host Cell Interactions (UVHCI), UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
- * E-mail: (WW); (LR)
| | - Lucy Rutten
- Biomolecular Imaging (BMI), Faculty of Science, Utrecht University, Utrecht, The Netherlands
- * E-mail: (WW); (LR)
| |
Collapse
|
20
|
Gao G, Wieczorek L, Peachman KK, Polonis VR, Alving CR, Rao M, Rao VB. Designing a soluble near full-length HIV-1 gp41 trimer. J Biol Chem 2012. [PMID: 23184960 DOI: 10.1074/jbc.m112.424432] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HIV-1 envelope spike is a trimer of heterodimers composed of an external glycoprotein gp120 and a transmembrane glycoprotein gp41. gp120 initiates virus entry by binding to host receptors, whereas gp41 mediates fusion between viral and host membranes. Although the basic pathway of HIV-1 entry has been extensively studied, the detailed mechanism is still poorly understood. Design of gp41 recombinants that mimic key intermediates is essential to elucidate the mechanism as well as to develop potent therapeutics and vaccines. Here, using molecular genetics and biochemical approaches, a series of hypotheses was tested to overcome the extreme hydrophobicity of HIV-1 gp41 and design a soluble near full-length gp41 trimer. The two long heptad repeat helices HR1 and HR2 of gp41 ectodomain were mutated to disrupt intramolecular HR1-HR2 interactions but not intermolecular HR1-HR1 interactions. This resulted in reduced aggregation and improved solubility. Attachment of a 27-amino acid foldon at the C terminus and slow refolding channeled gp41 into trimers. The trimers appear to be stabilized in a prehairpin-like structure, as evident from binding of a HR2 peptide to exposed HR1 grooves, lack of binding to hexa-helical bundle-specific NC-1 mAb, and inhibition of virus neutralization by broadly neutralizing antibodies 2F5 and 4E10. Fusion to T4 small outer capsid protein, Soc, allowed display of gp41 trimers on the phage nanoparticle. These approaches for the first time led to the design of a soluble gp41 trimer containing both the fusion peptide and the cytoplasmic domain, providing insights into the mechanism of entry and development of gp41-based HIV-1 vaccines.
Collapse
Affiliation(s)
- Guofen Gao
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Proteolytic processing of the human immunodeficiency virus envelope glycoprotein precursor decreases conformational flexibility. J Virol 2012; 87:1884-9. [PMID: 23175369 DOI: 10.1128/jvi.02765-12] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The mature envelope glycoprotein (Env) spike on the surface of human immunodeficiency virus type 1 (HIV-1) virions is derived by proteolytic cleavage of a trimeric gp160 glycoprotein precursor. Remarkably, proteolytic processing of the HIV-1 Env precursor results in changes in Env antigenicity that resemble those associated with glutaraldehyde fixation. Apparently, proteolytic processing of the HIV-1 Env precursor decreases conformational flexibility of the Env trimeric complex, differentially affecting the integrity/accessibility of epitopes for neutralizing and nonneutralizing antibodies.
Collapse
|
22
|
Lotter-Stark HCT, Rybicki EP, Chikwamba RK. Plant made anti-HIV microbicides--a field of opportunity. Biotechnol Adv 2012; 30:1614-26. [PMID: 22750509 PMCID: PMC7132877 DOI: 10.1016/j.biotechadv.2012.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 06/10/2012] [Accepted: 06/20/2012] [Indexed: 12/15/2022]
Abstract
HIV remains a significant global burden and without an effective vaccine, it is crucial to develop microbicides to halt the initial transmission of the virus. Several microbicides have been researched with various levels of success. Amongst these, the broadly neutralising antibodies and peptide lectins are promising in that they can immediately act on the virus and have proven efficacious in in vitro and in vivo protection studies. For the purpose of development and access by the relevant population groups, it is crucial that these microbicides be produced at low cost. For the promising protein and peptide candidate molecules, it appears that current production systems are overburdened and expensive to establish and maintain. With recent developments in vector systems for protein expression coupled with downstream protein purification technologies, plants are rapidly gaining credibility as alternative production systems. Here we evaluate the advances made in host and vector system development for plant expression as well as the progress made in expressing HIV neutralising antibodies and peptide lectins using plant-based platforms.
Collapse
|
23
|
Stanfield RL, Julien JP, Pejchal R, Gach JS, Zwick MB, Wilson IA. Structure-based design of a protein immunogen that displays an HIV-1 gp41 neutralizing epitope. J Mol Biol 2011; 414:460-76. [PMID: 22033480 PMCID: PMC3245871 DOI: 10.1016/j.jmb.2011.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 10/03/2011] [Accepted: 10/10/2011] [Indexed: 01/21/2023]
Abstract
Antibody Z13e1 is a relatively broadly neutralizing anti-human immunodeficiency virus type 1 antibody that recognizes the membrane-proximal external region (MPER) of the human immunodeficiency virus type 1 envelope glycoprotein gp41. Based on the crystal structure of an MPER epitope peptide in complex with Z13e1 Fab, we identified an unrelated protein, interleukin (IL)-22, with a surface-exposed region that is structurally homologous in its backbone to the gp41 Z13e1 epitope. By grafting the gp41 Z13e1 epitope sequence onto the structurally homologous region in IL-22, we engineered a novel protein (Z13-IL22-2) that contains the MPER epitope sequence for use as a potential immunogen and as a reagent for the detection of Z13e1-like antibodies. The Z13-IL22-2 protein binds Fab Z13e1 with a K(d) of 73 nM. The crystal structure of Z13-IL22-2 in complex with Fab Z13e1 shows that the epitope region is faithfully replicated in the Fab-bound scaffold protein; however, isothermal calorimetry studies indicate that Fab binding to Z13-IL22-2 is not a lock-and-key event, leaving open the question of whether conformational changes upon binding occur in the Fab, in Z13-IL-22, or in both.
Collapse
Affiliation(s)
- Robyn L Stanfield
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Binding of anti-membrane-proximal gp41 monoclonal antibodies to CD4-liganded and -unliganded human immunodeficiency virus type 1 and simian immunodeficiency virus virions. J Virol 2011; 86:1820-31. [PMID: 22090143 DOI: 10.1128/jvi.05489-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The broadly neutralizing monoclonal antibodies (MAbs) 4E10, 2F5, and Z13e1 target membrane-proximal external region (MPER) epitopes of HIV-1 gp41 in a manner that remains controversial. The requirements for initial lipid bilayer binding and/or CD4 ligation have been proposed. To further investigate these issues, we probed for binding of these MAbs to human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) virions with protein A-conjugated gold (PAG) nanoparticles using negative-stain electron microscopy. We found moderate levels of PAG associated with unliganded HIV-1 and SIV virions incubated with the three MAbs. Significantly higher levels of PAG were associated with CD4-liganded HIV-1 (epitope-positive) but not SIV (epitope-negative) virions. A chimeric SIV virion displaying the HIV-1 4E10 epitope also showed significantly higher PAG association after CD4 ligation and incubation with 4E10. MAbs accumulated rapidly on CD4-liganded virions and slowly on unliganded virions, although both reached similar levels in time. Anti-MPER epitope-specific binding was stable to washout. Virions incubated with an irrelevant MAb or CD4-only (no MAb) showed negligible PAG association, as did a vesicle-rich fraction devoid of virions. Preincubation with Fab 4E10 inhibited both specific and nonspecific 4E10 IgG binding. Our data provide evidence for moderate association of anti-MPER MAbs to viral surfaces but not lipid vesicles, even in the absence of cognate epitopes. Significantly greater MAb interaction occurs in epitope-positive virions following long incubation or CD4 ligation. These findings are consistent with a two-stage binding model where these anti-MPER MAbs bind first to the viral lipid bilayer and then to the MPER epitopes following spontaneous or induced exposure.
Collapse
|
25
|
Lovelace E, Xu H, Blish CA, Strong R, Overbaugh J. The role of amino acid changes in the human immunodeficiency virus type 1 transmembrane domain in antibody binding and neutralization. Virology 2011; 421:235-44. [PMID: 22029936 DOI: 10.1016/j.virol.2011.09.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/27/2011] [Accepted: 09/30/2011] [Indexed: 10/16/2022]
Abstract
The detailed interactions between antibodies and the HIV-1 envelope protein that lead to neutralization are not well defined. Here, we show that several conservative substitutions in the envelope gp41 led to a ~100 fold increase in neutralization sensitivity to monoclonal antibodies (MAbs) that target gp41: 4E10 and 2F5. Substitution at position 675 alone did not impact neutralization susceptibility to MAbs that recognize more distal sites in gp120 (b12, VRC01, PG9). However, changes at position 675 in conjunction with Thr to Ala at position 569 increased the neutralization sensitivity to all gp41 and gp120 MAbs and plasma, in some cases by more than 1000-fold. Interestingly, the T569A change had a dramatic effect on b12 binding, but no effect on neutralization sensitivity. This finding suggests that antibody neutralization may occur through a multi-step pathway that includes distinct changes in envelope conformation that may affect binding but not neutralization susceptibility.
Collapse
Affiliation(s)
- Erica Lovelace
- Divisions of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
26
|
Direct antibody access to the HIV-1 membrane-proximal external region positively correlates with neutralization sensitivity. J Virol 2011; 85:8217-26. [PMID: 21653673 DOI: 10.1128/jvi.00756-11] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
On the prereceptor-engaged HIV-1 envelope glycoprotein (Env) spike, epitope access by the membrane-proximal external region (MPER)-directed broadly neutralizing antibodies 2F5 and 4E10 remains unresolved. Data on binding to cell surface Env and entry data using primary isolates suggest inaccessibility of the 2F5 and 4E10 epitopes on the viral spike prior to receptor engagement, but trimer gel shift analysis and slow kinetics of shedding induced by 2F5 and 4E10 indicate otherwise. Therefore, it remains unclear if the epitopes themselves are formed in their antibody-bound state (or at least sampled) prior to receptor/coreceptor engagement or if receptor interactions both expose and form the MPER epitopes, presumably in the putative prefusion transitional intermediate. Here, we performed antibody-virus "washout experiments" using both lab-adapted and a panel of clade B primary isolates to analyze MPER accessibility. The neutralization activity of 2F5 and 4E10 against lab-adapted viruses and sensitive and moderately resistant viruses was largely unaffected by relatively rapid antibody-virus washing, suggesting direct interaction with the "static" spike. However, for more neutralization-resistant viruses, the 2F5 and 4E10 antibodies could neutralize only under the "no antibody-virus wash" conditions, implying that the MPER epitopes were not accessible prior to receptor engagement. Accessibility in the washout conditions could be precisely predicted by the relative resistance to neutralization in a standard neutralization format. These data are consistent with a model in which the local MPER antibody epitope conformations may be sampled on the native spike but are occluded to antibody by local steric or distal quaternary constraints adopted by highly resistant HIV-1 isolates.
Collapse
|
27
|
Sabin C, Corti D, Buzon V, Seaman MS, Lutje Hulsik D, Hinz A, Vanzetta F, Agatic G, Silacci C, Mainetti L, Scarlatti G, Sallusto F, Weiss R, Lanzavecchia A, Weissenhorn W. Crystal structure and size-dependent neutralization properties of HK20, a human monoclonal antibody binding to the highly conserved heptad repeat 1 of gp41. PLoS Pathog 2010; 6:e1001195. [PMID: 21124990 PMCID: PMC2987821 DOI: 10.1371/journal.ppat.1001195] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 10/14/2010] [Indexed: 11/19/2022] Open
Abstract
The human monoclonal antibody (mAb) HK20 neutralizes a broad spectrum of primary HIV-1 isolates by targeting the highly conserved heptad repeat 1 (HR1) of gp41, which is transiently exposed during HIV-1 entry. Here we present the crystal structure of the HK20 Fab in complex with a gp41 mimetic 5-Helix at 2.3 Å resolution. HK20 employs its heavy chain CDR H2 and H3 loops to bind into a conserved hydrophobic HR1 pocket that is occupied by HR2 residues in the gp41 post fusion conformation. Compared to the previously described HR1-specific mAb D5, HK20 approaches its epitope with a different angle which might favor epitope access and thus contribute to its higher neutralization breadth and potency. Comparison of the neutralization activities of HK20 IgG, Fab and scFv employing both single cycle and multiple cycle neutralization assays revealed much higher potencies for the smaller Fab and scFv over IgG, implying that the target site is difficult to access for complete antibodies. Nevertheless, two thirds of sera from HIV-1 infected individuals contain significant titers of HK20-inhibiting antibodies. The breadth of neutralization of primary isolates across all clades, the higher potencies for C-clade viruses and the targeting of a distinct site as compared to the fusion inhibitor T-20 demonstrate the potential of HK20 scFv as a therapeutic tool.
Collapse
Affiliation(s)
- Charles Sabin
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Davide Corti
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Victor Buzon
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Mike S. Seaman
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - David Lutje Hulsik
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | - Andreas Hinz
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| | | | | | - Chiara Silacci
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Lara Mainetti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplant and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplant and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | | | - Robin Weiss
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Bellinzona, Switzerland
- Institute of Microbiology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Winfried Weissenhorn
- Unit of Virus Host Cell Interactions (UVHCI) UMI 3265, Université Joseph Fourier-EMBL-CNRS, Grenoble, France
| |
Collapse
|
28
|
The effect of sCD4 on the binding and accessibility of HIV-1 gp41 MPER epitopes to human monoclonal antibodies. Virology 2010; 408:213-23. [PMID: 20961591 DOI: 10.1016/j.virol.2010.09.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/13/2010] [Accepted: 09/23/2010] [Indexed: 11/23/2022]
Abstract
Two human monoclonal anti-HIV-1 antibodies, 2F5 and 4E10, were utilized to investigate the accessibility and conservation of gp41 MPER epitopes on five different clades of HIV-1 in the absence and presence of sCD4. The binding of human monoclonal antibodies (mAbs) to HIV-1 was dependent upon the virus clade. Soluble CD4 significantly increased the accessibility of gp41 MPER-binding epitopes on several isolates that previously showed little or no binding with 2F5 and 4E10 mAbs as determined by a modified ELISA-based virus capture assay and surface plasmon resonance. Studies on the relationship between virus binding and neutralization in a TZM-bl pseudovirus assay indicated that in most cases, mAbs that exhibited neutralization also bound the virus. However, neither binding per se nor the total envelope content per virion was a predictor of neutralization. The hidden or conformational gp41 MPER epitopes unmasked by sCD4 may provide additional targets for vaccine design.
Collapse
|
29
|
Jain S, Patrick AJ, Rosenthal KL. Multiple tandem copies of conserved gp41 epitopes incorporated in gag virus-like particles elicit systemic and mucosal antibodies in an optimized heterologous vector delivery regimen. Vaccine 2010; 28:7070-80. [DOI: 10.1016/j.vaccine.2010.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/17/2010] [Accepted: 08/02/2010] [Indexed: 10/19/2022]
|
30
|
Jin L, Pan C, Qi Z, Zhou ZH, Jiang S. Fab crystallization and preliminary X-ray analysis of NC-1, an anti-HIV-1 antibody that recognizes the six-helix bundle core of gp41. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:854-7. [PMID: 20606291 DOI: 10.1107/s1744309110019287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 05/22/2010] [Indexed: 11/10/2022]
Abstract
NC-1 is a murine monoclonal antibody that specifically recognizes the six-helix bundle core of the human immunodeficiency virus type 1 (HIV-1) gp41. As such, it is a useful tool for probing gp41 conformations in HIV-1 membrane fusion. To establish the structural basis underlying the NC-1 specificity, X-ray crystallography was employed to solve its three-dimensional structure. To accomplish this, hybridoma-produced NC-1 antibody was first purified and digested with papain. Its Fab fragment was then purified using size-exclusion chromatography following Fc depletion using a Protein A affinity column. Finally, crystallization of NC-1 Fab was performed by the hanging-drop vapour-diffusion method and the protein was crystallized at pH 8.0 using PEG 6000 as precipitant. The results showed that the NC-1 Fab crystals belonged to the trigonal space group P3(2)21, with unit-cell parameters a = b = 118.7, c = 106.0 A. There is one Fab molecule in the asymmetric unit, with 67.5% solvent content. An X-ray diffraction data set was collected at 3.2 A resolution and a clear molecular-replacement solution was obtained for solution of the structure.
Collapse
Affiliation(s)
- Lei Jin
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
31
|
Chen X, Lu L, Qi Z, Lu H, Wang J, Yu X, Chen Y, Jiang S. Novel recombinant engineered gp41 N-terminal heptad repeat trimers and their potential as anti-HIV-1 therapeutics or microbicides. J Biol Chem 2010; 285:25506-15. [PMID: 20538590 DOI: 10.1074/jbc.m110.101170] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peptides derived from N-terminal heptad repeat (NHR) of the HIV-1 gp41 are generally poor inhibitors of HIV-1 entry, because they tend to aggregate and do not form a trimeric coiled-coil. In this study, we have fused portions of gp41 NHR, e.g. N36 or N28, to the T4 fibritin trimerization domain, Foldon (Fd), thus constructing novel NHR trimers, designated N36Fd or N28Fd, which could be expressed in Escherichia coli cells. The purified N36Fd and N28Fd exhibited SDS-resistant trimeric coiled-coil conformation with improved alpha-helicity compared with the corresponding N-peptides. They could interact with a C-peptide (e.g. C34) to form stable six-helix bundle and possessed potent anti-HIV-1 activity against a broad spectrum of HIV-1 strains. N28Fd was effective against T20-resistant HIV-1 variants and more resistant to proteinase K compared with T20 (enfuvirtide), a C-peptide-based HIV fusion inhibitor. Therefore, N28Fd trimer has great potentials for further development as an affordable therapeutic or microbicide for treatment and prevention of HIV-1 infection.
Collapse
Affiliation(s)
- Xi Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Tulip PR, Gregor CR, Troitzsch RZ, Martyna GJ, Cerasoli E, Tranter G, Crain J. Conformational Plasticity in an HIV-1 Antibody Epitope. J Phys Chem B 2010; 114:7942-50. [DOI: 10.1021/jp100929n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- P. R. Tulip
- School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K., IBM T.J. Watson Research Center, Yorktown Heights, New York, 10598, and National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| | - C. R. Gregor
- School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K., IBM T.J. Watson Research Center, Yorktown Heights, New York, 10598, and National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| | - R. Z. Troitzsch
- School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K., IBM T.J. Watson Research Center, Yorktown Heights, New York, 10598, and National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| | - G. J. Martyna
- School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K., IBM T.J. Watson Research Center, Yorktown Heights, New York, 10598, and National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| | - E. Cerasoli
- School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K., IBM T.J. Watson Research Center, Yorktown Heights, New York, 10598, and National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| | - G. Tranter
- School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K., IBM T.J. Watson Research Center, Yorktown Heights, New York, 10598, and National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| | - J. Crain
- School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K., IBM T.J. Watson Research Center, Yorktown Heights, New York, 10598, and National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| |
Collapse
|
33
|
Leaman DP, Kinkead H, Zwick MB. In-solution virus capture assay helps deconstruct heterogeneous antibody recognition of human immunodeficiency virus type 1. J Virol 2010; 84:3382-95. [PMID: 20089658 PMCID: PMC2838137 DOI: 10.1128/jvi.02363-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 01/06/2010] [Indexed: 01/27/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) on whole virions is heterogeneous, so molecular analysis of Env with monoclonal antibodies (MAbs) is challenging. Virus capture assays (VCAs) involving immobilized MAbs are typically used, but these assays suffer from immobilization artifacts and do not provide binding constants. Furthermore, we show here that certain HIV-1 neutralizing MAbs, including 2G12, 4E10, 2F5, Z13e1, and D5, will capture virion particles completely devoid of Env. We modified the VCA such that MAbs and virions are incubated in solution, and unbound MAbs are removed prior to the capture step. This modification nearly eliminated evidence of Env-independent binding by MAbs to virions and allowed determination of apparent affinity constants in solution. Three important qualitative observations were further revealed. First, neutralizing MAbs 2F5, 4E10, and Z13e1 against the membrane-proximal external region (MPER) of HIV-1 gp41 were found to capture virions efficiently only if a significant amount of uncleaved gp160 or synthetic MPER peptide was present. Second, we show how non-native forms of Env vary by Env genotype and that Env from HIV-1(JR-FL) is more homogeneously trimeric than that from HIV-1(JR-CSF). Third, we determined that Env containing all or parts of gp41, including uncleaved gp160, binds spontaneously to free virions. This exogenous Env is an indiscriminate molecular "bridge" between Env-specific Ab and virions and can affect VCA analyses, particularly using pseudotyped virions. Heterogeneity in Env from endogenous and exogenous sources might also subvert humoral immunity to HIV-1, so in-solution VCAs may help to dissect this heterogeneity for vaccine design purposes.
Collapse
Affiliation(s)
- Daniel P. Leaman
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037
| | - Heather Kinkead
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037
| | - Michael B. Zwick
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
34
|
Role of HIV membrane in neutralization by two broadly neutralizing antibodies. Proc Natl Acad Sci U S A 2009; 106:20234-9. [PMID: 19906992 DOI: 10.1073/pnas.0908713106] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Induction of effective antibody responses against HIV-1 infection remains an elusive goal for vaccine development. Progress may require in-depth understanding of the molecular mechanisms of neutralization by monoclonal antibodies. We have analyzed the molecular actions of two rare, broadly neutralizing, human monoclonal antibodies, 4E10 and 2F5, which target the transiently exposed epitopes in the membrane proximal external region (MPER) of HIV-1 gp41 envelope during viral entry. Both have long CDR H3 loops with a hydrophobic surface facing away from the peptide epitope. We find that the hydrophobic residues of 4E10 mediate a reversible attachment to the viral membrane and that they are essential for neutralization, but not for interaction with gp41. We propose that these antibodies associate with the viral membrane in a required first step and are thereby poised to capture the transient gp41 fusion intermediate. These results bear directly on strategies for rational design of HIV-1 envelope immunogens.
Collapse
|
35
|
Liu J, Deng Y, Dey AK, Moore JP, Lu M. Structure of the HIV-1 gp41 membrane-proximal ectodomain region in a putative prefusion conformation. Biochemistry 2009; 48:2915-23. [PMID: 19226163 DOI: 10.1021/bi802303b] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conserved membrane-proximal external region (MPER) of the HIV-1 gp41 envelope protein is the established target for very rare but broadly neutralizing monoclonal antibodies (NAbs) elicited during natural human infection. Nevertheless, attempts to generate an HIV-1 neutralizing antibody response with immunogens bearing MPER epitopes have met with limited success. Here we show that the MPER peptide (residues 662-683) forms a labile alpha-helical trimer in aqueous solution and report the crystal structure of this autonomous folding subdomain stabilized by addition of a C-terminal isoleucine zipper motif. The structure reveals a parallel triple-stranded coiled coil in which the neutralization epitope residues are buried within the interface between the associating MPER helices. Accordingly, both the 2F5 and 4E10 NAbs recognize the isolated MPER peptide but fail to bind the trimeric MPER subdomain. We propose that the trimeric MPER structure represents the prefusion conformation of gp41, preceding the putative prehairpin intermediate and the postfusion trimer-of-hairpins structure. As such, the MPER trimer should inform the design of new HIV-1 immunogens to elicit broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
36
|
Hinz A, Schoehn G, Quendler H, Hulsik DL, Stiegler G, Katinger H, Seaman MS, Montefiori D, Weissenhorn W. Characterization of a trimeric MPER containing HIV-1 gp41 antigen. Virology 2009; 390:221-7. [PMID: 19539967 DOI: 10.1016/j.virol.2009.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/17/2009] [Accepted: 05/15/2009] [Indexed: 01/08/2023]
Abstract
The membrane-proximal external region (MPER) of gp41 is considered as a prime target for the induction of neutralizing antibodies, since it contains the epitopes for three broadly neutralizing antibodies (2F5, 4E10 and Z13). Here we present a novel gp41 construct (HA-gp41) comprising gp41 HR2 and MPER fused to two triple-stranded coiled-coil domains at both ends. HA-gp41 is trimeric, has a high helical content in solution and forms rod-like structures as revealed by negative staining electron microscopy. Immunization of rabbits with HA-gp41 induced antibodies directed against MPER, which failed to exert significant neutralization capacity against envelopes from primary isolates. Thus trimerisation of MPER regions does not suffice to induce a potent neutralizing antibody response specific for conserved regions within gp41.
Collapse
Affiliation(s)
- Andreas Hinz
- Unit for Virus Host Cell Interaction, UMI 3265 UJF-EMBL-CNRS, 6 rue Jules Horowitz, 38042 Grenoble cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ferraz RM, Rodríguez-Carmona E, Ferrer-Miralles N, Meyerhans A, Villaverde A. Screening HIV-1 antigenic peptides as receptors for antibodies and CD4 in allosteric nanosensors. J Mol Recognit 2009; 22:255-60. [DOI: 10.1002/jmr.940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
38
|
Yuan W, Li X, Kasterka M, Gorny MK, Zolla-Pazner S, Sodroski J. Oligomer-specific conformations of the human immunodeficiency virus (HIV-1) gp41 envelope glycoprotein ectodomain recognized by human monoclonal antibodies. AIDS Res Hum Retroviruses 2009; 25:319-28. [PMID: 19292593 DOI: 10.1089/aid.2008.0213] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trimerization of the human immunodeficiency virus (HIV-1) envelope glycoproteins is mediated by the ectodomain of the gp41 transmembrane glycoprotein. Here we investigate oligomer-specific conformations of gp41 by using monoclonal antibodies (MAbs) from HIV-1-infected humans. Human MAbs directed against the cluster I region of gp41 recognized trimeric, dimeric, and monomeric forms of soluble envelope glycoproteins; thus, the integrity of the cluster I epitopes is minimally affected by the oligomeric state. In contrast, human MAbs to the cluster II region were all oligomers specific. One cluster II MAb, 126-6, recognized exclusively the trimeric form of envelope glycoproteins, whereas the others recognized both trimeric and dimeric forms. Thus, a distinct trimer-specific conformation exists in the cluster II region of gp41. Analysis of soluble envelope glycoprotein mutants revealed that gp41 sequences immediately N-terminal to isoleucine 646 contribute to the formation of both the trimer and the trimer-specific conformational epitope.
Collapse
Affiliation(s)
- Wen Yuan
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia 22908
| | - Xing Li
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
- Department of Pathology, Division of AIDS, Harvard Medical School, Boston, Massachusetts 02115
| | - Marta Kasterka
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
| | - Miroslaw K. Gorny
- Department of Pathology, New York University School of Medicine, New York, New York 10016
| | - Susan Zolla-Pazner
- Department of Pathology, New York University School of Medicine, New York, New York 10016
- Veterans Affairs Medical Center, New York, New York 10010
| | - Joseph Sodroski
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
- Department of Pathology, Division of AIDS, Harvard Medical School, Boston, Massachusetts 02115
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115
| |
Collapse
|
39
|
Pantophlet R, Wang M, Aguilar-Sino RO, Burton DR. The human immunodeficiency virus type 1 envelope spike of primary viruses can suppress antibody access to variable regions. J Virol 2009; 83:1649-59. [PMID: 19036813 PMCID: PMC2643787 DOI: 10.1128/jvi.02046-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Accepted: 11/18/2008] [Indexed: 01/30/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) envelope spike is a heavily glycosylated trimeric structure in which protein surfaces conserved between different HIV-1 isolates are particularly well hidden from antibody recognition. However, even variable regions on the spike tend to be less antigenic and immunogenic than one might have anticipated for external structures. Here we show that the envelope spike of primary viruses has an ability to restrict antibody recognition of variable regions. We show that access to an artificial epitope, introduced at multiple positions across the spike, is frequently limited, even though the epitope has been inserted at surface-exposed regions on the spike. Based on the data, we posit that restricted antibody access may be the result, at least in part, of a rigidification of the epitope sequence in the context of the spike and/or a highly effective flexible arrangement of the glycan shield on primary viruses. Evolution of the HIV envelope structure to incorporate extra polypeptide sequences into nominally accessible regions with limited antibody recognition may contribute to reducing the magnitude of antibody responses during infection and allow the virus to replicate unhindered by antibody pressure for longer periods.
Collapse
Affiliation(s)
- Ralph Pantophlet
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | |
Collapse
|
40
|
Melikyan GB. Common principles and intermediates of viral protein-mediated fusion: the HIV-1 paradigm. Retrovirology 2008; 5:111. [PMID: 19077194 PMCID: PMC2633019 DOI: 10.1186/1742-4690-5-111] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 12/10/2008] [Indexed: 12/20/2022] Open
Abstract
Enveloped viruses encode specialized fusion proteins which promote the merger of viral and cell membranes, permitting the cytosolic release of the viral cores. Understanding the molecular details of this process is essential for antiviral strategies. Recent structural studies revealed a stunning diversity of viral fusion proteins in their native state. In spite of this diversity, the post-fusion structures of these proteins share a common trimeric hairpin motif in which the amino- and carboxy-terminal hydrophobic domains are positioned at the same end of a rod-shaped molecule. The converging hairpin motif, along with biochemical and functional data, implies that disparate viral proteins promote membrane merger via a universal "cast-and-fold" mechanism. According to this model, fusion proteins first anchor themselves to the target membrane through their hydrophobic segments and then fold back, bringing the viral and cellular membranes together and forcing their merger. However, the pathways of protein refolding and the mechanism by which this refolding is coupled to membrane rearrangements are still not understood. The availability of specific inhibitors targeting distinct steps of HIV-1 entry permitted the identification of key conformational states of its envelope glycoprotein en route to fusion. These studies provided functional evidence for the direct engagement of the target membrane by HIV-1 envelope glycoprotein prior to fusion and revealed the role of partially folded pre-hairpin conformations in promoting the pore formation.
Collapse
Affiliation(s)
- Gregory B Melikyan
- Institute of Human Virology, Department of Microbiology and Immunology, University of Maryland School of Medicine, 725 W, Lombard St, Baltimore, MD 21201, USA.
| |
Collapse
|
41
|
Hrin R, Montgomery DL, Wang F, Condra JH, An Z, Strohl WR, Bianchi E, Pessi A, Joyce JG, Wang YJ. Short communication: In vitro synergy between peptides or neutralizing antibodies targeting the N- and C-terminal heptad repeats of HIV Type 1 gp41. AIDS Res Hum Retroviruses 2008; 24:1537-44. [PMID: 19102685 DOI: 10.1089/aid.2008.0129] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Class 1 and class 2 fusion peptides bind to the trimeric N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR) regions of HIV-1 envelope glycoprotein gp41, respectively, and block its intramolecular folding required for Env-mediated viral and host cell membrane fusion and subsequent viral entry. Using a combination of T-20 (class 1) and (CCIZN17)(3) (class 2), we provide evidence that these classes of fusion peptides work synergistically in an in vitro infectivity assay in inhibiting the entry of primary HIV-1 isolate 89.6 with combination indexes reaching 0.37 and 0.32 at IC(50) and IC(90), respectively. We further demonstrate a similar degree of neutralization synergy between a monoclonal antibody (MAb), D5, targeting the hydrophobic pocket region of the NHR, and 2F5, a well-characterized MAb that targets the C-terminal end of CHR and the membrane-proximal external region (MPER), providing a rational basis for developing combination vaccines targeting these two highly conserved regions of gp41.
Collapse
Affiliation(s)
- Renee Hrin
- Department of Antiviral Research, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Donna L. Montgomery
- Department of Biologics Research, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Fubao Wang
- Department of Biologics Research, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Jon H. Condra
- Department of Biologics Research, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Zhiqiang An
- Department of Biologics Research, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - William R. Strohl
- Department of Biologics Research, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Elisabetta Bianchi
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, I-00040 Pomezia (Rome), Italy
| | - Antonello Pessi
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, I-00040 Pomezia (Rome), Italy
| | - Joseph G. Joyce
- Department of Vaccines Research, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Ying-Jie Wang
- Department of Antiviral Research, Merck Research Laboratories, West Point, Pennsylvania 19486
| |
Collapse
|
42
|
Identification of the LWYIK motif located in the human immunodeficiency virus type 1 transmembrane gp41 protein as a distinct determinant for viral infection. J Virol 2008; 83:870-83. [PMID: 18987155 DOI: 10.1128/jvi.01088-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The highly conserved LWYIK motif located immediately proximal to the membrane-spanning domain of the gp41 transmembrane protein of human immunodeficiency virus type 1 has been proposed as being important for the surface envelope (Env) glycoprotein's association with lipid rafts and gp41-mediated membrane fusion. Here we employed substitution and deletion mutagenesis to understand the role of this motif in the virus life cycle. None of the mutants examined affected the synthesis, precursor processing, CD4 binding, oligomerization, or cell surface expression of the Env, nor did they alter Env incorporation into the virus. All of the mutants, particularly the DeltaYI, DeltaIK, and DeltaLWYIK mutants, in which the indicated residues were deleted, exhibited greatly reduced one-cycle viral replication and the Env trans-complementation ability. All of these deletion mutant proteins were still localized in the lipid rafts. With the exception of the Trp-to-Ala (WA) mutant, which exhibited reduced viral infectivity albeit with normal membrane fusion, all mutants displayed loss of some or almost all of the membrane fusion ability. Although these deletion mutants partially inhibited in trans wild-type (WT) Env-mediated fusion, they were more effective in dominantly interfering with WT Env-mediated viral entry when coexpressed with the WT Env, implying a role of this motif in postfusion events as well. Both T20 and L43L peptides derived from the two gp41 extracellular C- and N-terminal alpha-helical heptad repeats, respectively, inhibited WT and DeltaLWYIK Env-mediated viral entry with comparable efficacies. Biotin-tagged T20 effectively captured both the fusion-active, prehairpin intermediates of WT and mutant gp41 upon CD4 activation. Env without the deletion of the LWYIK motif still effectively mediated lipid mixing but inhibited content mixing. Our study demonstrates that the immediate membrane-proximal LWYIK motif acts as a unique and distinct determinant located in the gp41 C-terminal ectodomain by promoting enlargement of fusion pores and postfusion activities.
Collapse
|
43
|
Abstract
Mechanisms of HIV-mediated CD4+ T cell loss leading to immunodeficiency are amongst the most extensively studied yet unanswered questions in HIV biology. The level of CD4+ T cell depletion in HIV infected patients far exceeds the number of infected T cells, suggesting an indirect mechanism of HIV pathogenesis termed bystander cell death. Evidence is accumulating that the HIV envelope glycoprotein (Env) is a major determinant of HIV pathogenesis and plays a critical role in bystander cell death. The complex structure and function of HIV Env makes the determination of the mechanism of Env mediated apoptosis more complex than previously thought. This review will examine the complex relationship between HIV Env phenotype, coreceptor expression and immune activation in determining HIV pathogenesis. We review data here corresponding to the role of HIV Env hemifusion activity in HIV pathogenesis and how it interplays with other AIDS associated factors such as chemokine receptor expression and immune activation.
Collapse
Affiliation(s)
- H. Garg
- Membrane Structure and Function Section, Center for Cancer Research, Nanobiology Program, National Cancer Institute, National Institutes of Health, P.O. Box B, Building 469, Room 152, Miller Drive, Frederick, MD 21702-1201 USA
| | - R. Blumenthal
- Membrane Structure and Function Section, Center for Cancer Research, Nanobiology Program, National Cancer Institute, National Institutes of Health, P.O. Box B, Building 469, Room 152, Miller Drive, Frederick, MD 21702-1201 USA
| |
Collapse
|
44
|
Julien JP, Bryson S, Nieva JL, Pai EF. Structural details of HIV-1 recognition by the broadly neutralizing monoclonal antibody 2F5: epitope conformation, antigen-recognition loop mobility, and anion-binding site. J Mol Biol 2008; 384:377-92. [PMID: 18824005 DOI: 10.1016/j.jmb.2008.09.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 09/05/2008] [Accepted: 09/08/2008] [Indexed: 11/25/2022]
Abstract
2F5 is a monoclonal antibody with potent and broadly neutralizing activity against HIV-1. It targets the membrane-proximal external region (MPER) of the gp41 subunit of the envelope glycoprotein and interferes with the process of fusion between viral and host cell membranes. This study presents eight 2F5 F(ab)' crystal structures in complex with various gp41 peptide epitopes. These structures reveal several key features of this antibody-antigen interaction. (1) Whenever free of contacts caused by crystal artifacts, the extended complementarity-determining region H3 loop is mobile; this is true for ligand-free and epitope-bound forms. (2) The interaction between the antibody and the gp41 ELDKWA epitope core is absolutely critical, and there are also close and specific contacts with residues located N-terminal to the epitope core. (3) Residues located at the C-terminus of the gp41 ELDKWA core do not interact as tightly with the antibody. However, in the presence of a larger peptide containing the gp41 fusion peptide segment, these residues adopt a conformation consistent with the start of an alpha-helix. (4) At high sulfate concentrations, the electron density maps of 2F5 F(ab)'-peptide complexes contain a peak that may mark a binding site for phosphate groups of negatively charged lipid headgroups. The refined atomic-level details of 2F5 paratope-epitope interactions revealed here should contribute to a better understanding of the mechanism of 2F5-based virus neutralization, in general, and prove important for the design of potential vaccine candidates intended to elicit 2F5-like antibody production.
Collapse
Affiliation(s)
- Jean-Philippe Julien
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | | | | | | |
Collapse
|
45
|
Ferraz RM, Martínez MA, Cubarsi R, Villaverde A. Antiretroviral Therapy-Induced Functional Modification of IgG4 and IgM Responses in HIV-1–Infected Individuals Screened by an Allosteric Biosensor. ACTA ACUST UNITED AC 2008; 13:817-21. [DOI: 10.1177/1087057108323126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have explored the effect of antiretroviral drugs on the antiviral immune response in human immunodeficiency virus-1 (HIV-1)—infected patients by using an enzymatic immunosensor that detects epitope-modifying anti-gp41 antibodies. By this molecular sensing approach, we have identified an irreversible impact of drug administration on the functionality of IgG4 and IgM specific antibodies regarding the structural modification promoted on their target epitope. During the antiretroviral therapy, the prevalent induced fit promoted by IgM on the epitope was lost at the expense of that promoted by IgG4, suggesting alternative-ness in the neutralization potency of these antibody subpopulations. Because the particular drug composition of the antiretroviral treatment did not affect such immune shift, the obtained data strongly suggest that the drop in the viral load and the consequent lost of antigenemia are responsible for the functional adaptation observed in the humoral response. ( Journal of Biomolecular Screening 2008:817-821)
Collapse
Affiliation(s)
- Rosa María Ferraz
- Departament de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya, Campus Nord, Barcelona, Spain, Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain, CIBER-BBN en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain
| | - Miguel Angel Martínez
- Fundació irsiCaixa, Universitat Autònoma de Barcelona, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Rafael Cubarsi
- Departament de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya, Campus Nord, Barcelona, Spain, CIBER-BBN en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain, , CIBER-BBN en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain
| |
Collapse
|
46
|
The membrane-proximal external region of the human immunodeficiency virus type 1 envelope: dominant site of antibody neutralization and target for vaccine design. Microbiol Mol Biol Rev 2008; 72:54-84, table of contents. [PMID: 18322034 DOI: 10.1128/mmbr.00020-07] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Enormous efforts have been made to produce a protective vaccine against human immunodeficiency virus type 1; there has been little success. However, the identification of broadly neutralizing antibodies against epitopes on the highly conserved membrane-proximal external region (MPER) of the gp41 envelope protein has delineated this region as an attractive vaccine target. Furthermore, emerging structural information on the MPER has provided vaccine designers with new insights for building relevant immunogens. This review describes the current state of the field regarding (i) the structure and function of the gp41 MPER; (ii) the structure and binding mechanisms of the broadly neutralizing antibodies 2F5, 4E10, and Z13; and (iii) the development of an MPER-targeting vaccine. In addition, emerging approaches to vaccine design are presented.
Collapse
|
47
|
Huang JH, Qi Z, Wu F, Kotula L, Jiang S, Chen YH. Interaction of HIV-1 gp41 core with NPF motif in Epsin: implication in endocytosis of HIV. J Biol Chem 2008; 283:14994-5002. [PMID: 18375383 DOI: 10.1074/jbc.m800525200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human immunodeficiency virus, type 1 (HIV-1), gp41 core plays an important role in fusion between viral and target cell membranes. We previously identified an HIV-1 gp41 core-binding motif HXXNPF (where X is any amino acid residue). In this study, we found that Asn, Pro, and Phe were the key residues for gp41 core binding. There are two NPF motifs in Epsin-1-(470-499), a fragment of Epsin, which is an essential accessory factor of endocytosis that can dock to the plasma membrane by interacting with the lipid. Epsin-1-(470-499) bound significantly to the gp41 core formed by the polypeptide N36(L8)C34 and interacted with the recombinant soluble gp41 containing the core structure. A synthetic peptide containing the Epsin-1-(470-499) sequence could effectively block entry of HIV-1 virions into SupT1 T cells via the endocytosis pathway. These results suggest that interaction between Epsin and the gp41 core, which may be present in the target cell membrane, is probably essential for endocytosis of HIV-1, an alternative pathway of HIV-1 entry into the target cell.
Collapse
Affiliation(s)
- Jing-He Huang
- Laboratory of Immunology, Department of Biology, Tsinghua University, Protein Science Laboratory of the Ministry of Education, Beijing, China
| | | | | | | | | | | |
Collapse
|
48
|
A fusion-intermediate state of HIV-1 gp41 targeted by broadly neutralizing antibodies. Proc Natl Acad Sci U S A 2008; 105:3739-44. [PMID: 18322015 DOI: 10.1073/pnas.0800255105] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Most antibodies induced by HIV-1 are ineffective at preventing initiation or spread of infection because they are either nonneutralizing or narrowly isolate-specific. Rare, "broadly neutralizing" antibodies have been detected that recognize relatively conserved regions on the envelope glycoprotein. Using stringently characterized, homogeneous preparations of trimeric HIV-1 envelope protein in relevant conformations, we have analyzed the molecular mechanism of neutralization by two of these antibodies, 2F5 and 4E10. We find that their epitopes, in the membrane-proximal segment of the envelope protein ectodomain, are exposed only on a form designed to mimic an intermediate state during viral entry. These results help explain the rarity of 2F5- and 4E10-like antibody responses and suggest a strategy for eliciting them.
Collapse
|
49
|
Chien MP, Jiang S, Chang DK. The function of coreceptor as a basis for the kinetic dissection of HIV type 1 envelope protein-mediated cell fusion. FASEB J 2007; 22:1179-92. [PMID: 18032634 DOI: 10.1096/fj.07-9576com] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The function of HIV-1 HXB2 envelope (Env) glycoprotein (gp) was investigated by surface plasmon resonance and fluorescence imaging techniques. Strikingly, it was found that gp120 shedding requires the presence of the X4 coreceptor. A similar coreceptor requirement was observed for the membrane mixing and the Env recruitment on the cell surface. However, exposure and membrane penetration of the fusion peptide do not require X4 and occur within the first minute after incubation of Env with CD4 and/or X4. Analogously X4 was not required but enhanced binding of the fusion inhibitor. In contrast, bundle formation of the gp41 ectodomain, as monitored by NC-1, was accelerated by the presence of X4. The kinetics of these key post-Env binding events as determined in real time by fluorescence microscopic imaging, coupled with the differential coreceptor requirement, led to the proposition that gp120 shedding, which takes place from 1 to 10 min after engagement of receptor and coreceptor to Env, is a primary function of the coreceptor. The shedding of the surface subunits is needed for the subsequent processes including hemifusion, full fusion, and Env recruitment. The temporal order of these fusogenic steps allows construction of a refined model on the Env-mediated cell fusion event.
Collapse
Affiliation(s)
- Miao-Ping Chien
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Republic of China
| | | | | |
Collapse
|
50
|
Abstract
Humoral immunity is considered a key component of effective vaccines against HIV-1. Hence, an enormous effort has been put into investigating the neutralizing antibody response to HIV-1 over the past 20 years which generated key information on epitope specificity, potency, breadth and in vivo activity of the neutralizing antibodies. Less clear is still the role of antibody-mediated effector functions (antibody-dependent cellular cytotoxicity, phagocytosis, complement system) and uncertainty prevails whether Fc-mediated mechanisms are largely beneficial or detrimental for the host. The current knowledge on the manifold functions of the humoral immune response in HIV infection, their underlying mechanisms and potential in vaccine-induced immunity will be discussed in this review.
Collapse
Affiliation(s)
- M Huber
- Division of Infectious Diseases, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|