1
|
Olagoke O, Aziz A, Zhu L, Read T, Dean D. Whole-genome automated assembly pipeline for Chlamydia trachomatis strains from reference, in vitro and clinical samples using the integrated CtGAP pipeline. NAR Genom Bioinform 2025; 7:lqae187. [PMID: 39781511 PMCID: PMC11704784 DOI: 10.1093/nargab/lqae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
Whole genome sequencing (WGS) is pivotal for the molecular characterization of Chlamydia trachomatis (Ct)-the leading bacterial cause of sexually transmitted infections and infectious blindness worldwide. Ct WGS can inform epidemiologic, public health and outbreak investigations of these human-restricted pathogens. However, challenges persist in generating high-quality genomes for downstream analyses given its obligate intracellular nature and difficulty with in vitro propagation. No single tool exists for the entirety of Ct genome assembly, necessitating the adaptation of multiple programs with varying success. Compounding this issue is the absence of reliable Ct reference strain genomes. We, therefore, developed CtGAP-Chlamydia trachomatisGenome Assembly Pipeline-as an integrated 'one-stop-shop' pipeline for assembly and characterization of Ct genome sequencing data from various sources including isolates, in vitro samples, clinical swabs and urine. CtGAP, written in Snakemake, enables read quality statistics output, adapter and quality trimming, host read removal, de novo and reference-guided assembly, contig scaffolding, selective ompA, multi-locus-sequence and plasmid typing, phylogenetic tree construction, and recombinant genome identification. Twenty Ct reference genomes were also generated. Successfully validated on a diverse collection of 363 samples containing Ct, CtGAP represents a novel pipeline requiring minimal bioinformatics expertise with easy adaptation for use with other bacterial species.
Collapse
Affiliation(s)
- Olusola Olagoke
- Departments of Medicine and Pediatrics, Division of Infectious Diseases and Global Health, University of California San Francisco School of Medicine, 550 16th Street, 4th Floor Mission Hall, San Francisco, CA, 94158, USA
| | - Ammar Aziz
- Victorian Infectious Diseases Reference Laboratory, 792 Elizabeth Street, Melbourne, Victoria, 3000, Australia
| | - Lucile H Zhu
- Department of Bioengineering, University of California San Francisco and Berkeley School of Engineering, 306 Stanley Hall, Berkeley, CA, 94720, USA
| | - Timothy D Read
- Departments of Medicine and Genetics, Division of Infectious Diseases, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA, 30322, USA
| | - Deborah Dean
- Departments of Medicine and Pediatrics, Division of Infectious Diseases and Global Health, University of California San Francisco School of Medicine, 550 16th Street, 4th Floor Mission Hall, San Francisco, CA, 94158, USA
- Department of Bioengineering, University of California San Francisco and Berkeley School of Engineering, 306 Stanley Hall, Berkeley, CA, 94720, USA
- Bixby Center for Global Reproductive Health, University of California San Francisco, 1001 Potrero Ave, San Francisco, CA, 94110, USA
- Benioff Center for Microbiome Medicine, University of California San Francisco, 513 Parnassus Avenue, S357, San Francisco, CA, 94143, USA
- University of California San Francisco Institute of Global Health Sciences, 550 16th Street, 3rd Floor Mission Hall, San Francisco, CA, 94158, USA
| |
Collapse
|
2
|
Martínez-García L, Orviz E, González-Alba JM, Comunión A, Puerta T, Mateo M, Sánchez-Conde M, Rodríguez-Jiménez MC, Rodríguez-Domínguez M, Bru-Gorraiz FJ, del Romero J, Cantón R, Galán JC. Rapid expansion of lymphogranuloma venereum infections with fast diversification and spread of Chlamydia trachomatis L genovariants. Microbiol Spectr 2024; 12:e0285523. [PMID: 38095475 PMCID: PMC10783107 DOI: 10.1128/spectrum.02855-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Numerous international organizations, including the World Health Organization, have been drawing attention to the global increase in sexually transmitted infections. Twenty years ago, lymphogranuloma venereum (LGV) was mainly considered a tropical disease; in recent decades, however, LGV has been increasingly present in high-income countries. This increase has been linked to men who have sex with men who participate in highly interconnected sexual networks, leading to a rapid spread of LGV. This study focuses on the spread of LGV, presenting the largest time series of LGV prevalence in Spain, which includes more than a thousand diagnosed cases in one large city. The number of LGV cases diagnosed was analyzed over time, and a selection of strains was subjected to molecular genotyping. The results indicate that the LGV epidemic is gradually evolving toward an increasingly complex diversification due to the selection of successful genovariants that have emerged by mutation and recombination events, suggesting that we are moving toward an unpredictable scenario.
Collapse
Affiliation(s)
- Laura Martínez-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Eva Orviz
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - José María González-Alba
- Servicio de Microbiología, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | | | - Teresa Puerta
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - María Mateo
- Servicio de Microbiología, Hospital Central de la Defensa Gómez-Ulla, Madrid, Spain
| | - Matilde Sánchez-Conde
- Servicio de Enfermedades Infecciosas, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - María Concepción Rodríguez-Jiménez
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Mario Rodríguez-Domínguez
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Jorge del Romero
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Juan Carlos Galán
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
3
|
Joseph SJ, Bommana S, Ziklo N, Kama M, Dean D, Read TD. Patterns of within-host spread of Chlamydia trachomatis between vagina, endocervix and rectum revealed by comparative genomic analysis. Front Microbiol 2023; 14:1154664. [PMID: 37056744 PMCID: PMC10086254 DOI: 10.3389/fmicb.2023.1154664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction Chlamydia trachomatis, a gram-negative obligate intracellular bacterium, commonly causes sexually transmitted infections (STIs). Little is known about C. trachomatis transmission within the host, which is important for understanding disease epidemiology and progression. Methods We used RNA-bait enrichment and whole-genome sequencing to compare rectal, vaginal and endocervical samples collected at the same time from 26 study participants who attended Fijian Ministry of Health and Medical Services clinics and tested positive for C. trachomatis at each anatomic site. Results The 78 C. trachomatis genomes from participants resolved into two major clades of the C. trachomatis phylogeny (the "prevalent urogenital and anorectal" clade and "non-prevalent urogenital and anorectal" clade). For 21 participants, genome sequences were almost identical in each anatomic site. For the other five participants, two distinct C. trachomatis strains were present in different sites; in two cases, the vaginal sample was a mixture of strains. Discussion The absence of large numbers of fixed SNPs between C. trachomatis genomes within many of the participants could indicate recent acquisition of infection prior to the clinic visit without sufficient time to accumulate significant genetic variation in different body sites. This model suggests that many C. trachomatis infections may be resolved relatively quickly in the Fijian population, possibly reflecting common prescription or over-the-counter antibiotics usage.
Collapse
Affiliation(s)
- Sandeep J. Joseph
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Sankhya Bommana
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, United States
| | - Noa Ziklo
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, United States
| | - Mike Kama
- Ministry of Health and Medical Services, Suva, Fiji
| | - Deborah Dean
- Department of Pediatrics, University of California, San Francisco, Oakland, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Bioengineering, Joint Graduate Program, University of California, San Francisco, San Francisco, CA, United States
- Department of Bioengineering, Joint Graduate Program, University of California, Berkeley, Berkeley, CA, United States
| | - Timothy D. Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
4
|
Joseph SJ, Bommana S, Ziklo N, Kama M, Dean D, Read TD. Patterns of within-host spread of Chlamydia trachomatis between vagina, endocervix and rectum revealed by comparative genomic analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525576. [PMID: 36747780 PMCID: PMC9901013 DOI: 10.1101/2023.01.25.525576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Chlamydia trachomatis , a gram-negative obligate intracellular bacterium, commonly causes sexually transmitted infections (STIs). Little is known about C. trachomatis transmission within the host, which is important for understanding disease epidemiology and progression. We used RNA-bait enrichment and whole-genome sequencing to compare rectal, vaginal and endocervical samples collected at the same time from 26 study participants who attended Fijian Ministry of Health and Medical Services clinics and tested positive for C. trachomatis at each anatomic site. The 78 C. trachomatis genomes from participants were from two major clades of the C. trachomatis phylogeny (the "prevalent urogenital and anorecta"l clade and "non-prevalent urogenital and anorectal" clade). For 21 participants, genome sequences were almost identical in each anatomic site. For the other five participants, two distinct C. trachomatis strains were present in different sites; in two cases, the vaginal sample was a mixture of strains. The absence of large numbers of fixed SNPs between C. trachomatis strains within many of the participants could indicate recent acquisition of infection prior to the clinic visit without sufficient time to accumulate significant variation in the different body sites. This model suggests that many C. trachomatis infections may be resolved relatively quickly in the Fijian population, possibly reflecting common prescription or over-the-counter antibiotics usage. Importance Chlamydia trachomatis is a bacterial pathogen that causes millions of sexually transmitted infections (STIs) annually across the globe. Because C. trachomatis lives inside human cells, it has historically been hard to study. We know little about how the bacterium spreads between body sites. Here, samples from 26 study participants who had simultaneous infections in their vagina, rectum and endocervix were genetically analyzed using an improved method to extract C. trachomatis DNA directly from clinical samples for genome sequencing. By analyzing patterns of mutations in the genomes, we found that 21 participants shared very similar C. trachomatis strains in all three anatomic sites, suggesting recent infection and spread. For five participants two C. trachomatis strains were evident, indicating multiple infections. This study is significant in that improved enrichment methods for genome sequencing provides robust data to genetically trace patterns of C. trachomatis infection and transmission within an individual for epidemiologic and pathogenesis interrogations.
Collapse
Affiliation(s)
- Sandeep J. Joseph
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sankhya Bommana
- Department of Pediatrics, University of California San Francisco, Oakland, California, USA
| | - Noa Ziklo
- Department of Pediatrics, University of California San Francisco, Oakland, California, USA
| | - Mike Kama
- Ministry of Health and Medical Services, Suva, Fiji
| | - Deborah Dean
- Department of Pediatrics, University of California San Francisco, Oakland, California, USA,Department of Medicine, University of California San Francisco, San Francisco, California, USA,Department of Bioengineering, Joint Graduate Program, University of California San Francisco and University of California Berkeley, San Francisco, California, USA,Bixby Center for Global Reproductive Health, University of California San Francisco, San Francisco, California, USA,Benioff Center for Microbiome Medicine, University of California San Francisco, San Francisco, California, USA,Corresponding authors, contributed equally, DD: , TDR:
| | - Timothy D. Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA,Corresponding authors, contributed equally, DD: , TDR:
| |
Collapse
|
5
|
Zhao J, Shui J, Luo L, Ao C, Lin H, Liang Y, Wang L, Wang H, Chen H, Tang S. Identification and characterization of mixed infections of Chlamydia trachomatis via high-throughput sequencing. Front Microbiol 2022; 13:1041789. [PMID: 36439830 PMCID: PMC9687396 DOI: 10.3389/fmicb.2022.1041789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
Precise genotyping is necessary to understand epidemiology and clinical manifestations of Chlamydia trachomatis infection with different genotypes. Next-generation high-throughput sequencing (NGHTS) has opened new frontiers in microbial genotyping, but has been clinically characterized in only a few settings. This study aimed to determine C. trachomatis genotypes in particular mixed-genotype infections and their association with clinical manifestations and to characterize the sensitivity and accuracy of NGHTS. Cervical specimens were collected from 8,087 subjects from physical examination center (PEC), assisted reproductive technology center (ART) and gynecology clinics (GC) of Chenzhou Hospital of China. The overall prevalence of C. trachomatis was 3.8% (311/8087) whereas a prevalence of 2.8, 3.7 and 4.8% was found in PEC, ART and GC, respectively. The most frequent three C. trachomatis genotypes were E (27.4%, 83/303), F (21.5%, 65/303) and J (18.2%, 55/303). Moreover, NGHTS identified 20 (6.6%, 20/303) mixed-genotype infections of C. trachomatis. Genotype G was more often observed in the subjects with pelvic inflammatory disease than genotype E (adjusted OR = 3.61, 95%CI, 1.02-12.8, p = 0.046). Mixed-genotype infection was associated with severe vaginal cleanliness (degree IV) with an adjusted OR of 5.17 (95%CI 1.03-25.9, p = 0.046) whereas mixed-genotype infection with large proportion of minor genotypes was associated with cervical squamous intraepithelial lesion (SIL) with an adjusted OR of 5.51 (95%CI 1.17-26.01, p = 0.031). Our results indicated that NGHTS is a feasible tool to identity C. trachomatis mixed-genotype infections, which may be associated with worse vaginal cleanliness and cervical SIL.
Collapse
Affiliation(s)
- Jianhui Zhao
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jingwei Shui
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lipei Luo
- Department of Clinical Microbiology Laboratory, Chenzhou No. 1 People’s Hospital, Chenzhou, China
| | - Cailing Ao
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hongqing Lin
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuanhao Liang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Li Wang
- Department of Clinical Microbiology Laboratory, Chenzhou No. 1 People’s Hospital, Chenzhou, China
| | - Haiying Wang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hongliang Chen
- Department of Clinical Microbiology Laboratory, Chenzhou No. 1 People’s Hospital, Chenzhou, China
| | - Shixing Tang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Marti H, Suchland RJ, Rockey DD. The Impact of Lateral Gene Transfer in Chlamydia. Front Cell Infect Microbiol 2022; 12:861899. [PMID: 35321311 PMCID: PMC8936141 DOI: 10.3389/fcimb.2022.861899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 11/24/2022] Open
Abstract
Lateral gene transfer (LGT) facilitates many processes in bacterial ecology and pathogenesis, especially regarding pathogen evolution and the spread of antibiotic resistance across species. The obligate intracellular chlamydiae, which cause a range of diseases in humans and animals, were historically thought to be highly deficient in this process. However, research over the past few decades has demonstrated that this was not the case. The first reports of homologous recombination in the Chlamydiaceae family were published in the early 1990s. Later, the advent of whole-genome sequencing uncovered clear evidence for LGT in the evolution of the Chlamydiaceae, although the acquisition of tetracycline resistance in Chlamydia (C.) suis is the only recent instance of interphylum LGT. In contrast, genome and in vitro studies have shown that intraspecies DNA exchange occurs frequently and can even cross species barriers between closely related chlamydiae, such as between C. trachomatis, C. muridarum, and C. suis. Additionally, whole-genome analysis led to the identification of various DNA repair and recombination systems in C. trachomatis, but the exact machinery of DNA uptake and homologous recombination in the chlamydiae has yet to be fully elucidated. Here, we reviewed the current state of knowledge concerning LGT in Chlamydia by focusing on the effect of homologous recombination on the chlamydial genome, the recombination machinery, and its potential as a genetic tool for Chlamydia.
Collapse
Affiliation(s)
- Hanna Marti
- Institute of Veterinary Pathology, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
- *Correspondence: Hanna Marti,
| | - Robert J. Suchland
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Daniel D. Rockey
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
7
|
Call for consensus in Chlamydia trachomatis nomenclature: moving from biovars, serovars and serotypes to genovariants and genotypes. Clin Microbiol Infect 2022; 28:761-763. [PMID: 35202789 DOI: 10.1016/j.cmi.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 11/21/2022]
|
8
|
Dimond ZE, Suchland RJ, Baid S, LaBrie SD, Soules KR, Stanley J, Carrell S, Kwong F, Wang Y, Rockey DD, Hybiske K, Hefty PS. Inter-species lateral gene transfer focused on the Chlamydia plasticity zone identifies loci associated with immediate cytotoxicity and inclusion stability. Mol Microbiol 2021; 116:1433-1448. [PMID: 34738268 PMCID: PMC9119408 DOI: 10.1111/mmi.14832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022]
Abstract
Chlamydia muridarum actively grows in murine mucosae and is a representative model of human chlamydial genital tract disease. In contrast, C. trachomatis infections in mice are limited and rarely cause disease. The factors that contribute to these differences in host adaptation and specificity remain elusive. Overall genomic similarity leads to challenges in the understanding of these significant differences in tropism. A region of major genetic divergence termed the plasticity zone (PZ) has been hypothesized to contribute to the host specificity. To evaluate this hypothesis, lateral gene transfer was used to generate multiple hetero-genomic strains that are predominately C. trachomatis but have replaced regions of the PZ with those from C. muridarum. In vitro analysis of these chimeras revealed C. trachomatis-like growth as well as poor mouse infection capabilities. Growth-independent cytotoxicity phenotypes have been ascribed to three large putative cytotoxins (LCT) encoded in the C. muridarum PZ. However, analysis of PZ chimeras supported that gene products other than the LCTs are responsible for cytopathic and cytotoxic phenotypes. Growth analysis of associated chimeras also led to the discovery of an inclusion protein, CTL0402 (CT147), and homolog TC0424, which was critical for the integrity of the inclusion and preventing apoptosis.
Collapse
Affiliation(s)
- Zoe E. Dimond
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Robert J. Suchland
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Srishti Baid
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Scott D. LaBrie
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Katelyn R. Soules
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Jacob Stanley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Steven Carrell
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Forrest Kwong
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Yibing Wang
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Daniel D. Rockey
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Kevin Hybiske
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - P. Scott Hefty
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
9
|
Sixt BS. Host cell death during infection with Chlamydia: a double-edged sword. FEMS Microbiol Rev 2021; 45:5902849. [PMID: 32897321 PMCID: PMC7794043 DOI: 10.1093/femsre/fuaa043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
The phylum Chlamydiae constitutes a group of obligate intracellular bacteria that infect a remarkably diverse range of host species. Some representatives are significant pathogens of clinical or veterinary importance. For instance, Chlamydia trachomatis is the leading infectious cause of blindness and the most common bacterial agent of sexually transmitted diseases. Chlamydiae are exceptionally dependent on their eukaryotic host cells as a consequence of their developmental biology. At the same time, host cell death is an integral part of the chlamydial infection cycle. It is therefore not surprising that the bacteria have evolved exquisite and versatile strategies to modulate host cell survival and death programs to their advantage. The recent introduction of tools for genetic modification of Chlamydia spp., in combination with our increasing awareness of the complexity of regulated cell death in eukaryotic cells, and in particular of its connections to cell-intrinsic immunity, has revived the interest in this virulence trait. However, recent advances also challenged long-standing assumptions and highlighted major knowledge gaps. This review summarizes current knowledge in the field and discusses possible directions for future research, which could lead us to a deeper understanding of Chlamydia's virulence strategies and may even inspire novel therapeutic approaches.
Collapse
Affiliation(s)
- Barbara S Sixt
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
10
|
Manning C, O’Neill C, Clarke IN, Rebec M, Cliff PR, Marsh P. High-resolution genotyping of Lymphogranuloma Venereum (LGV) strains of Chlamydia trachomatis in London using multi-locus VNTR analysis-ompA genotyping (MLVA-ompA). PLoS One 2021; 16:e0254233. [PMID: 34237111 PMCID: PMC8266103 DOI: 10.1371/journal.pone.0254233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/22/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Lymphogranuloma venereum (LGV) is caused by Chlamydia trachomatis strains with ompA genotypes L1 to L3. An LGV epidemic associated with the L2b genotype has emerged in the past few decades amongst men who have sex with men (MSM). C. trachomatis genotypes can be discriminated by outer membrane protein A gene (ompA) sequencing, however this method has limited resolution. This study employed a high-resolution genotyping method, namely, multi-locus tandem repeat (VNTR) analysis with ompA sequencing (MLVA-ompA), to assess the distribution of LGV MLVA-ompA genotypes amongst individuals attending genitourinary medicine (GUM) clinics in London. METHODS Clinical specimens were collected from individuals attending eight London-based GUM clinics. Specimens that tested positive for C. trachomatis by commercial nucleic acid amplification test (NAAT) were confirmed as LGV by pmpH real-time PCR. LGV-positive DNA extracts were subsequently genotyped using MLVA-ompA. RESULTS Two hundred and thirty DNA extracts were confirmed as LGV, and 162 (70%) yielded complete MLVA-ompA genotypes. Six LGV MLVA-ompA genotypes were identified: 1.9.2b-L2, 1.9.3b-L2b, 1.9.2b-L2b, 1.9.2b-L2b/D, 1.4a.2b-L2b, and 5.9.2b-L1. The following LGV ompA genotypes were identified (in descending order of abundance): L2, L2b, L2b/D, and L1. Eight ompA sequences with the hybrid L2b/D profile were detected. The hybrid sequence was identical to the ompA of a recombinant L2b/D strain detected in Portugal in 2017. CONCLUSIONS The L2 ompA genotype was found to predominate in the London study population. The study detected an unusual hybrid L2b/D ompA profile that was previously reported in Portugal. We recommend further monitoring and surveillance of LGV strains within the UK population.
Collapse
Affiliation(s)
- Chloe Manning
- Department of Molecular Microbiology, Division of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Colette O’Neill
- Department of Molecular Microbiology, Division of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ian N. Clarke
- Department of Molecular Microbiology, Division of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Monica Rebec
- Department of Microbiology, Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, United Kingdom
| | - Penelope R. Cliff
- Department of Infection Sciences, St Thomas’ Hospital, London, United Kingdom
| | - Peter Marsh
- Public Health England, Porton Down, Salisbury, United Kingdom
| |
Collapse
|
11
|
Banerjee A, Nelson DE. The growing repertoire of genetic tools for dissecting chlamydial pathogenesis. Pathog Dis 2021; 79:ftab025. [PMID: 33930127 PMCID: PMC8112481 DOI: 10.1093/femspd/ftab025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/28/2021] [Indexed: 01/29/2023] Open
Abstract
Multiple species of obligate intracellular bacteria in the genus Chlamydia are important veterinary and/or human pathogens. These pathogens all share similar biphasic developmental cycles and transition between intracellular vegetative reticulate bodies and infectious elementary forms, but vary substantially in their host preferences and pathogenic potential. A lack of tools for genetic engineering of these organisms has long been an impediment to the study of their biology and pathogenesis. However, the refinement of approaches developed in C. trachomatis over the last 10 years, and adaptation of some of these approaches to other Chlamydia spp. in just the last few years, has opened exciting new possibilities for studying this ubiquitous group of important pathogens.
Collapse
Affiliation(s)
- Arkaprabha Banerjee
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - David E Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
12
|
Tryptophan Operon Diversity Reveals Evolutionary Trends among Geographically Disparate Chlamydia trachomatis Ocular and Urogenital Strains Affecting Tryptophan Repressor and Synthase Function. mBio 2021; 12:mBio.00605-21. [PMID: 33975934 PMCID: PMC8262981 DOI: 10.1128/mbio.00605-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis (Ct) is the leading cause of bacterial sexually transmitted infections and blindness globally. To date, Ct urogenital strains are considered tryptophan prototrophs, utilizing indole for tryptophan synthesis within a closed-conformation tetramer comprised of two α (TrpA)- and two β (TrpB)-subunits. In contrast, ocular strains are auxotrophs due to mutations in TrpA, relying on host tryptophan pools for survival. It has been speculated that there is strong selective pressure for urogenital strains to maintain a functional operon. Here, we performed genetic, phylogenetic, and novel functional modeling analyses of 595 geographically diverse Ct ocular, urethral, vaginal, and rectal strains with complete operon sequences. We found that ocular and urogenital, but not lymphogranuloma venereum, TrpA-coding sequences were under positive selection. However, vaginal and urethral strains exhibited greater nucleotide diversity and a higher ratio of nonsynonymous to synonymous substitutions [Pi(a)/Pi(s)] than ocular strains, suggesting a more rapid evolution of beneficial mutations. We also identified nonsynonymous amino acid changes for an ocular isolate with a urogenital backbone in the intergenic region between TrpR and TrpB at the exact binding site for YtgR-the only known iron-dependent transcription factor in Chlamydia-indicating that selective pressure has disabled the response to fluctuating iron levels. In silico effects on protein stability, ligand-binding affinity, and tryptophan repressor (TrpR) affinity for single-stranded DNA (ssDNA) measured by calculating free energy changes (ΔΔG) between Ct reference and mutant tryptophan operon proteins were also analyzed. We found that tryptophan synthase function was likely suboptimal compared to other bacterial tryptophan prototrophs and that a diversity of urogenital strain mutations rendered the synthase nonfunctional or inefficient. The novel mutations identified here affected active sites in an orthosteric manner but also hindered α- and β-subunit allosteric interactions from distant sites, reducing efficiency of the tryptophan synthase. Importantly, strains with mutant proteins were inclined toward energy conservation by exhibiting an altered affinity for their respective ligands compared to reference strains, indicating greater fitness. This is not surprising as l-tryptophan is one of the most energetically costly amino acids to synthesize. Mutations in the tryptophan repressor gene (trpR) among urogenital strains were similarly detrimental to function. Our findings indicate that urogenital strains are evolving more rapidly than previously recognized with mutations that impact tryptophan operon function in a manner that is energetically beneficial, providing a novel host-pathogen evolutionary mechanism for intracellular survival.IMPORTANCE Chlamydia trachomatis (Ct) is a major global public health concern causing sexually transmitted and ocular infections affecting over 130 million and 260 million people, respectively. Sequelae include infertility, preterm birth, ectopic pregnancy, and blindness. Ct relies on available host tryptophan pools and/or substrates to synthesize tryptophan to survive. Urogenital strains synthesize tryptophan from indole using their intact tryptophan synthase (TS). Ocular strains contain a trpA frameshift mutation that encodes a truncated TrpA with loss of TS function. We found that TS function is likely suboptimal compared to other tryptophan prototrophs and that urogenital stains contain diverse mutations that render TS nonfunctional/inefficient, evolve more rapidly than previously recognized, and impact operon function in a manner that is energetically beneficial, providing an alternative host-pathogen evolutionary mechanism for intracellular survival. Our research has broad scientific appeal since our approach can be applied to other bacteria that may explain evolution/survival in host-pathogen interactions.
Collapse
|
13
|
Whole-Genome Enrichment and Sequencing of Chlamydia trachomatis Directly from Patient Clinical Vaginal and Rectal Swabs. mSphere 2021; 6:6/2/e01302-20. [PMID: 33658279 PMCID: PMC8546720 DOI: 10.1128/msphere.01302-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia trachomatis, an obligately intracellular bacterium, is the most prevalent cause of bacterial sexually transmitted infections (STIs) worldwide. Numbers of U.S. infections of the urogenital tract and rectum have increased annually. Because C. trachomatis is not easily cultured, comparative genomic studies are limited, restricting our understanding of strain diversity and emergence among populations globally. While Agilent SureSelectXT target enrichment RNA bait libraries have been developed for whole-genome enrichment and sequencing of C. trachomatis directly from clinical urine, vaginal, conjunctival, and rectal samples, public access to these libraries is not available. We therefore designed an RNA bait library (34,795 120-mer probes based on 85 genomes, versus 33,619 probes using 74 genomes in a previous one) to augment organism sequencing from clinical samples that can be shared with the scientific community, enabling comparison studies. We describe the library and limit of detection for genome copy input, and we present results of 100% efficiency and high-resolution determination of recombination and identical genomes within vaginal-rectal specimen pairs in women. This workflow provides a robust approach for discerning genomic diversity and advancing our understanding of the molecular epidemiology of contemporary C. trachomatis STIs across sample types, geographic populations, sexual networks, and outbreaks associated with proctitis/proctocolitis among women and men who have sex with men.IMPORTANCE Chlamydia trachomatis is an obligate intracellular bacterium that is not easily cultured, which limits our understanding of urogenital and rectal C. trachomatis transmission and impact on morbidity. To provide a publicly available workflow for whole-genome target enrichment and sequencing of C. trachomatis directly from clinical urine, vaginal, conjunctival, and rectal specimens, we developed and report on an RNA bait library to enrich the organism from clinical samples for sequencing. We demonstrate an increased efficiency in the percentage of reads mapping to C. trachomatis and identified recombinant and identical C. trachomatis genomes in paired vaginal-rectal samples from women. Our workflow provides a robust genomic epidemiologic approach to advance our understanding of C. trachomatis strains causing ocular, urogenital, and rectal infections and to explore geo-sexual networks, outbreaks of colorectal infections among women and men who have sex with men, and the role of these strains in morbidity.
Collapse
|
14
|
De Clercq E, Van Gils M, Schautteet K, Devriendt B, Kiekens C, Chiers K, Van Den Broeck W, Cox E, Dean D, Vanrompay D. Chlamydia trachomatis L2c Infection in a Porcine Model Produced Urogenital Pathology and Failed to Induce Protective Immune Responses Against Re-Infection. Front Immunol 2020; 11:555305. [PMID: 33193323 PMCID: PMC7649141 DOI: 10.3389/fimmu.2020.555305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/28/2020] [Indexed: 01/02/2023] Open
Abstract
The current study was designed to evaluate the pathogenesis, pathology and immune response of female genital tract infection with Chlamydia trachomatis L2c, the most recently discovered lymphogranuloma venereum strain, using a porcine model of sexually transmitted infections. Pigs were mock infected, infected once or infected and re-infected intravaginally, and samples were obtained for chlamydial culture, gross and microscopic pathology, and humoral and cell-mediated immunity. Intravaginal inoculation of pigs with this bacterium resulted in an infection that was confined to the urogenital tract, where inflammation and pathology were caused that resembled what is seen in human infection. Re-infection resulted in more severe gross pathology than primary infection, and chlamydial colonization of the urogenital tract was similar for primary infected and re-infected pigs. This indicates that primary infection failed to induce protective immune responses against re-infection. Indeed, the proliferative responses of mononuclear cells from blood and lymphoid tissues to C. trachomatis strain L2c were never statistically different among groups, suggesting that C. trachomatis-specific lymphocytes were not generated following infection or re-infection. Nevertheless, anti-chlamydial antibodies were elicited in sera and vaginal secretions after primary infection and re-infection, clearly resulting in a secondary systemic and mucosal antibody response. While primary infection did not protect against reinfection, the porcine model is relevant for evaluating immune and pathogenic responses for emerging and known C. trachomatis strains to advance drug and/or vaccine development in humans.
Collapse
Affiliation(s)
- Evelien De Clercq
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Matthias Van Gils
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Katelijn Schautteet
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Celien Kiekens
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Koen Chiers
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Wim Van Den Broeck
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland, Research Institute, Oakland, CA, United States.,Department of Medicine, University of California, San Francisco, CA, United States.,Joint Graduate Program in Bioengineering, University of California, Berkeley, CA, United States
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Thapa J, Hashimoto K, Sugawara S, Tsujikawa R, Okubo T, Nakamura S, Yamaguchi H. Hypoxia promotes Chlamydia trachomatis L2/434/Bu growth in immortal human epithelial cells via activation of the PI3K-AKT pathway and maintenance of a balanced NAD +/NADH ratio. Microbes Infect 2020; 22:441-450. [PMID: 32442683 DOI: 10.1016/j.micinf.2020.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 01/09/2023]
Abstract
Chlamydia trachomatis LGV (CtL2) causes systemic infection and proliferates in lymph nodes as well as genital tract or rectum producing a robust inflammatory response, presumably leading to a low oxygen environment. We therefore assessed how CtL2 growth in immortal human epithelial cells adapts to hypoxic conditions. Assessment of inclusion forming units, the quantity of chlamydial 16S rDNA, and inclusion size showed that hypoxia promotes CtL2 growth. Under hypoxia, HIF-1α was stabilized and p53 was degraded in infected cells. Moreover, AKT was strongly phosphorylated at S473 by CtL2 infection. This activation was significantly diminished by LY-294002, a PI3K-AKT inhibitor, which decreased the number of CtL2 progeny. HIF-1α stabilizers (CoCl2, desferrioxamine) had no effect on increasing CtL2 growth, indicating no autocrine impact of growth factors produced by HIF-1α stabilization. Furthermore, in normoxia, CtL2 infection changed the NAD+/NADH ratio of cells with increased gapdh expression; in contrast, under hypoxia, the NAD+/NADH ratio was the same in infected and uninfected cells with high and stable expression of gapdh, suggesting that CtL2-infected cells adapted better to hypoxia. Together, these data indicate that hypoxia promotes CtL2 growth in immortal human epithelial cells by activating the PI3K-AKT pathway and maintaining the NAD+/NADH ratio with stably activated glycolysis.
Collapse
Affiliation(s)
- Jeewan Thapa
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Kent Hashimoto
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Saori Sugawara
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Ryoya Tsujikawa
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Torahiko Okubo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Shinji Nakamura
- Division of Biomedical Imaging Research, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
16
|
Borges V, Cordeiro D, Salas AI, Lodhia Z, Correia C, Isidro J, Fernandes C, Rodrigues AM, Azevedo J, Alves J, Roxo J, Rocha M, Côrte-Real R, Vieira L, Borrego MJ, Gomes JP. Chlamydia trachomatis: when the virulence-associated genome backbone imports a prevalence-associated major antigen signature. Microb Genom 2020; 5. [PMID: 31697227 PMCID: PMC6927300 DOI: 10.1099/mgen.0.000313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chlamydia trachomatis is the most prevalent sexually transmitted bacterium worldwide and the causative agent of trachoma. Its strains are classified according to their ompA genotypes, which are strongly linked to differential tissue tropism and disease outcomes [ocular disease, urogenital disease and lymphogranuloma venereum (LGV)]. While the genome-based species phylogenetic tree presents four main clades correlating with tropism/prevalence, namely ocular, LGV, urogenital T1 (more prevalent genotypes) and urogenital T2 (less prevalent genotypes), inter-clade exchange of ompA is considered a rare phenomenon probably mediating marked tropism alterations. An LGV epidemic, associated with the clonal expansion of the L2b genotype, has emerged in the last few decades, raising concerns particularly due to its atypical clinical presentation (ulcerative proctitis) and circulation among men who have sex with men (MSM). Here, we report an LGV outbreak, mostly affecting human immunodeficiency virus-positive MSM engaging in high-risk sexual practices, caused by an L2b strain with a rather unique non-LGV ompA signature that precluded the laboratory notification of this outbreak as LGV. C. trachomatis whole-genome capture and sequencing directly from clinical samples was applied to deeply characterize the genomic backbone of this novel LGV outbreak-causing clone. It revealed a chimeric genome structure due to the genetic transfer of ompA and four neighbouring genes from a serovar D/Da strain, likely possessing the genomic backbone associated with the more prevalent urogenital genotypes (T1 clade), to an LGV (L2b) strain. The hybrid L2b/D-Da strain presents the adhesin and immunodominant antigen MOMP (major outer membrane protein) (encoded by ompA) with an epitope repertoire typical of non-invasive genital strains, while keeping the genome-dispersed virulence fingerprint of a classical LGV strain. As previously reported for inter-clade ompA exchange among non-LGV clades, this novel C. trachomatis genomic mosaic involving a contemporary epidemiologically and clinically relevant LGV strain may have implications on its transmission, tissue tropism and pathogenic capabilities. The emergence of variants with epidemic and pathogenic potential highlights the need for more focused surveillance strategies to capture C. trachomatis evolution in action.
Collapse
Affiliation(s)
- Vítor Borges
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Dora Cordeiro
- National Reference Laboratory (NRL) for Curable Sexually Transmitted Infections (STIs), National Institute of Health, Lisbon, Portugal
| | - Ana Isabel Salas
- National Reference Laboratory (NRL) for Curable Sexually Transmitted Infections (STIs), National Institute of Health, Lisbon, Portugal
| | - Zohra Lodhia
- National Reference Laboratory (NRL) for Curable Sexually Transmitted Infections (STIs), National Institute of Health, Lisbon, Portugal
| | - Cristina Correia
- National Reference Laboratory (NRL) for Curable Sexually Transmitted Infections (STIs), National Institute of Health, Lisbon, Portugal
| | - Joana Isidro
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Cândida Fernandes
- Sexually Transmitted Diseases Clinic, Dermatovenereology Department, Central Lisbon University Hospital Centre (CHULC), Lisbon, Portugal
| | - Ana Maria Rodrigues
- Sexually Transmitted Diseases Clinic, Dermatovenereology Department, Central Lisbon University Hospital Centre (CHULC), Lisbon, Portugal
| | - Jacinta Azevedo
- Sexually Transmitted Diseases Clinic, Lapa Health Centre, Lisbon, Portugal
| | - João Alves
- Sexually Transmitted Diseases Clinic, Lapa Health Centre, Lisbon, Portugal
| | - João Roxo
- CheckpointLX, Grupo de Ativistas em Tratamentos, Lisboa, Portugal
| | - Miguel Rocha
- CheckpointLX, Grupo de Ativistas em Tratamentos, Lisboa, Portugal
| | - Rita Côrte-Real
- Sexually Transmitted Diseases Clinic, Dermatovenereology Department, Central Lisbon University Hospital Centre (CHULC), Lisbon, Portugal
| | - Luís Vieira
- Innovation and Technology Unit, Department of Human Genetics, National Institute of Health, Lisbon, Portugal
| | - Maria José Borrego
- National Reference Laboratory (NRL) for Curable Sexually Transmitted Infections (STIs), National Institute of Health, Lisbon, Portugal
| | - João Paulo Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| |
Collapse
|
17
|
Vall-Mayans M. Lymphogranuloma Venereum as Re-emerged Sexually Transmitted Infection. Sex Transm Infect 2020. [DOI: 10.1007/978-3-030-02200-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
18
|
de Vries HJC, de Barbeyrac B, de Vrieze NHN, Viset JD, White JA, Vall-Mayans M, Unemo M. 2019 European guideline on the management of lymphogranuloma venereum. J Eur Acad Dermatol Venereol 2019; 33:1821-1828. [PMID: 31243838 DOI: 10.1111/jdv.15729] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/17/2019] [Indexed: 11/26/2022]
Abstract
New or important issues in this updated version of the 2013 European guideline on the management of lymphogranuloma venereum (LGV): EPIDEMIOLOGY: Lymphogranuloma venereum continues to be endemic among European men who have sex with men (MSM) since 2003. Lymphogranuloma venereum infections in heterosexuals are extremely rare in Europe, and there is no evidence of transmission of LGV in the European heterosexual population. AETIOLOGY AND TRANSMISSION Chlamydia trachomatis serovars/genovars L2b and L2 are the causative strains in the majority of cases in Europe. CLINICAL FEATURES Among MSM, about 25% of the anorectal LGV infections are asymptomatic. Genital infections among MSM are rare; the ratio of genital vs. anorectal LGV infections is 1 in 15. DIAGNOSIS To diagnose LGV, a sample tested C. trachomatis positive with a commercial nucleic acid amplification test (NAAT) platform should be confirmed with an LGV discriminatory NAAT. TREATMENT Doxycycline 100 mg twice a day orally for 21 days is the recommended treatment for LGV. This same treatment is recommended also in asymptomatic patients and contacts of LGV patients. If another regimen is used, a test of cure (TOC) must be performed.
Collapse
Affiliation(s)
- H J C de Vries
- STI Outpatient Clinic, Infectious Diseases Department, Public Health Service Amsterdam, Amsterdam, The Netherlands.,Department of Dermatology, Amsterdam Institute for Infection and Immunity (AI&II), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - B de Barbeyrac
- Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,Mycoplasmal and Chlamydial Infections in Humans, INRA, Bordeaux, France.,Centre Hospitalier Universitaire de Bordeaux, Laboratoire de Bacteriologie, French National Reference Center for Bacterial STIs, Bordeaux, France
| | - N H N de Vrieze
- Department of Dermatology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - J D Viset
- Department of Dermatology, Amsterdam Institute for Infection and Immunity (AI&II), Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - J A White
- Department of Genitourinary Medicine, Western Health & Social Care Trust, Londonderry, UK
| | - M Vall-Mayans
- STI Unit Vall d'Hebron-Drassanes, Department of Infectious Diseases, Hospital Vall d'Hebron, Barcelona, Spain
| | - M Unemo
- WHO Collaborating Centre for Gonorrhoea and Other Sexually Transmitted Infections, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
19
|
Naveed M, Mehboob MZ, Hussain A, Ikram K, Talat A, Zeeshan N. Structural and Functional Annotation of Conserved Virulent Hypothetical Proteins in Chlamydia Trachomatis: An In-Silico Approach. Curr Bioinform 2019. [DOI: 10.2174/1574893613666181107111259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Though after a start of genome sequencing most of the protein sequences are deposited in databases, some proteins remain to be unannotated and functionally uncharacterized. Chlamydia trachomatis L2C is a gram-negative pathogen bacterium involved in causing severe disorders like lymphogranuloma venereum, nongonococcal urethritis, and cervicitis. <P> Objectives: Analyzing and annotating the hypothetical proteins can help to understand its pathogenicity and therapeutic hotspots. Its genome encodes a total of 221 hypothetical proteins and out of these, 14 hypothetical proteins are declared as virulent by virulence prediction server (VirulentPred). <P> Methods: In this study, the functional and structural analysis was carried out by conserve domain finding servers, protein function annotators and physiochemical properties predictors. Proteinprotein interactions studies revealed the involvement of these virulent HPs in a number of pathways, which would be of interest for drug designers. <P> Results: Classifier tool was used to classify the virulent hypothetical proteins into enzymes, membrane protein, transporter and regulatory protein groups. <P> Conclusion: Our study would help to understand the mechanisms of pathogenesis and new potential therapeutic targets for a couple of diseases caused by C. trachomatis.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | | | - Aadil Hussain
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Khadija Ikram
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Attha Talat
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| | - Nadia Zeeshan
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat 50700, Pakistan
| |
Collapse
|
20
|
Jolly AL, Rau S, Chadha AK, Abdulraheem EA, Dean D. Stromal Fibroblasts Drive Host Inflammatory Responses That Are Dependent on Chlamydia trachomatis Strain Type and Likely Influence Disease Outcomes. mBio 2019; 10:e00225-19. [PMID: 30890604 PMCID: PMC6426598 DOI: 10.1128/mbio.00225-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 01/11/2023] Open
Abstract
Chlamydia trachomatis ocular strains cause a blinding disease known as trachoma. These strains rarely cause urogenital infections and are not found in the upper genital tract or rectum. Urogenital strains are responsible for a self-limited conjunctivitis and the sequelae of infertility, ectopic pregnancy, and hemorrhagic proctitis. However, the differential cellular responses that drive these clinically observed disease outcomes are not completely understood. Primary conjunctival, endocervical, and endometrial epithelial and stromal fibroblast cells, HeLa229 cells, and immortalized conjunctival epithelial (HCjE) cells were infected with the ocular A/Har-13 (A) and Ba/Apache-2 (Ba) strains and urogenital D/UW-3 (D) and E/Bour (E) strains. Infection rates, progeny production, and cytokine/chemokine secretion levels were evaluated in comparison with those in uninfected cells. All strain types infected all cell types with similar levels of efficacy and development. However, progeny production levels differed among primary cells: Ba produced significantly more progeny than E in endocervical and endometrial fibroblasts, while A progeny were less abundant than E progeny. C.trachomatis infection of primary epithelial cells elicited an increase in pro- and anti-inflammatory mediators compared to levels in uninfected cells, but there were no significant differences by strain type. In contrast, for primary fibroblasts, ocular strains elicited significant increases in the pro- and anti-inflammatory mediators macrophage inflammatory protein (MIP)-1β, thymus- and activation-regulated chemokine (TARC), interleukin (IL)-2, IL-12p70, and interferon gamma-induced protein 10 (IP-10) compared to levels in urogenital strains, while urogenital strains elicited a distinct and significant increase in the proinflammatory mediators IL-1α, IL-1β, IL-8, gamma interferon (IFN-γ), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Our data indicate that primary fibroblasts, not epithelial cells, drive host inflammatory responses that are dependent on strain type and likely influence disease outcomes, establishing their importance as a novel model for studies of C. trachomatis disease pathogenesis.IMPORTANCEChlamydia trachomatis is a human pathogen and the leading cause of preventable blindness and sexually transmitted diseases in the world. Certain C. trachomatis strains cause ocular disease, while others cause upper genital tract pathology. However, little is known about the cellular or immunologic basis for these differences. Here, we compared the abilities of the strain types to infect, replicate, and initiate an immune response in primary human ocular and urogenital epithelial cells, as well as in fibroblasts from the underlying stroma. While there were no significant differences in infection rates or intracellular growth for any strain in any cell type, proinflammatory responses were driven not by the epithelial cells but by fibroblasts and were distinct between ocular and urogenital strains. Our findings suggest that primary fibroblasts are a novel and more appropriate model for studies of immune responses that will expand our understanding of the differential pathological disease outcomes caused by various C. trachomatis strain types.
Collapse
Affiliation(s)
- Amber Leah Jolly
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Sameeha Rau
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Anmol K Chadha
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Ekhlas Ahmed Abdulraheem
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, California, USA
- Department of Bioengineering, University of California at Berkeley, Berkeley, California, USA
- Department of Medicine and Pediatrics, University of California at San Francisco, San Francisco, California, USA
| |
Collapse
|
21
|
Seth-Smith HM, Galán JC, Goldenberger D, Lewis DA, Peuchant O, Bébéar C, de Barbeyrac B, Bénard A, Carter I, Kok J, Bruisten SM, Versteeg B, Morré SA, Thomson NR, Egli A, de Vries HJ. Concern regarding the alleged spread of hypervirulent lymphogranuloma venereum Chlamydia trachomatis strain in Europe. ACTA ACUST UNITED AC 2018; 22:30511. [PMID: 28449734 PMCID: PMC5476980 DOI: 10.2807/1560-7917.es.2017.22.15.30511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/12/2017] [Indexed: 12/04/2022]
Affiliation(s)
- Helena Mb Seth-Smith
- Clinical Microbiology, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Juan C Galán
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal. CIBER en Epidemiología y Salud Pública (CIBERESP). Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | - David A Lewis
- Western Sydney Sexual Health Centre, Western Sydney Local Health District, Parramatta, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity & Sydney Medical School-Westmead, Sydney, Australia
| | - Olivia Peuchant
- University of Bordeaux, INRA, USC ES 3671, French National Reference Centre for chlamydiae, Bordeaux, France
| | - Cecile Bébéar
- University of Bordeaux, INRA, USC ES 3671, French National Reference Centre for chlamydiae, Bordeaux, France
| | - Bertille de Barbeyrac
- University of Bordeaux, INRA, USC ES 3671, French National Reference Centre for chlamydiae, Bordeaux, France
| | - Angele Bénard
- Wellcome Trust Sanger Institute. Cambridge, United Kingdom
| | - Ian Carter
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
| | - Jen Kok
- Marie Bashir Institute for Infectious Diseases and Biosecurity & Sydney Medical School-Westmead, Sydney, Australia.,Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
| | - Sylvia M Bruisten
- STI Outpatient Clinic, Department of Infectious Diseases, Public Health Service Amsterdam, Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute (AI&II), Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Bart Versteeg
- STI Outpatient Clinic, Department of Infectious Diseases, Public Health Service Amsterdam, Amsterdam, the Netherlands
| | - Servaas A Morré
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center Amsterdam, Amsterdam, the Netherlands.,Institute for Public Health Genomics (IPHG), Department of Genetics and Cell Biology, Research Institute GROW, University of Maastricht, Maastricht, the Netherlands
| | - Nicholas R Thomson
- Wellcome Trust Sanger Institute. Cambridge, United Kingdom.,London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Adrian Egli
- Clinical Microbiology, University Hospital Basel, Basel, Switzerland.,Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Henry Jc de Vries
- STI Outpatient Clinic, Department of Infectious Diseases, Public Health Service Amsterdam, Amsterdam, the Netherlands.,Amsterdam Infection and Immunity Institute (AI&II), Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands.,Department of Dermatology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
22
|
Escobedo-Guerra MR, Katoku-Herrera M, Lopez-Hurtado M, Villagrana-Zesati JR, de Haro-Cruz MDJ, Guerra-Infante FM. Identification of a new variant of Chlamydia trachomatis in Mexico. Enferm Infecc Microbiol Clin 2018; 37:93-99. [PMID: 29636285 DOI: 10.1016/j.eimc.2018.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Chlamydia trachomatis is one of the main etiological agents of sexually transmitted infections worldwide. In 2006, a Swedish variant of C. trachomatis (Swedish-nvCT), which has a deletion of 377bp in the plasmid, was reported. In Latin America, Swedish-nvCT infections have not been reported. We investigated the presence of Swedish-nvCT in women with infertility in Mexico. METHODS Swedish-nvCT was searched in 69C. trachomatis positive samples from 2339 endocervical specimens. We designed PCR primers to identify the deletion in the plasmid in the ORF1, and the presence of a repeated 44bp in the ORF3. The sample with the deletion was genotyped with the genes of the major outer membrane protein A (ompA) and the polymorphic membrane protein (pmpH). RESULTS The deletion was detected in one of the 69 samples positive C. trachomatis of 2339 endocervical exudates. The nucleotide sequence analysis of the ompA shows a high degree of similarity with the Swedish nvCT (98%), however the variant found belongs to serovar D. The nucleotide sequence of the pmpH gene associates to the variant found in the genitourinary pathotype of the Swedish-nvCT but in different clusters. CONCLUSIONS Our results revealed the presence of a new variant of C. trachomatis in Mexican patients. This variant found in Mexico belongs to serovar D based on the in silico analysis of the ompA and pmpH genes and differs to the Swedish-nvCT (serovars E). For these variants of C. trachomatis that have been found it is necessary to carry out a more detailed analysis, although the role of this mutation has not been demonstrated in the pathogenesis.
Collapse
Affiliation(s)
- Marcos R Escobedo-Guerra
- Departamento de Infectología, Instituto Nacional de Perinatología, CDMX, Mexico; Unidad Médica de Alta Especialidad, Hospital de Especialidades, Centro Médico Nacional La Raza, IMSS, CDMX, Mexico
| | | | | | | | - María de J de Haro-Cruz
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, del Instituto Politécnico Nacional, CDMX, Mexico
| | - Fernando M Guerra-Infante
- Departamento de Infectología, Instituto Nacional de Perinatología, CDMX, Mexico; Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, del Instituto Politécnico Nacional, CDMX, Mexico.
| |
Collapse
|
23
|
Transformation of Chlamydia: current approaches and impact on our understanding of chlamydial infection biology. Microbes Infect 2018; 20:445-450. [PMID: 29409975 DOI: 10.1016/j.micinf.2018.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/11/2022]
Abstract
The intonation "The king is dead, long live the king" aptly describes the state of Chlamydia research. Genetic-based approaches are rapidly replacing correlative strategies to provide new insights. We describe how current transformation technologies are enhancing progress in understanding Chlamydia infection biology and present key opportunities for further development.
Collapse
|
24
|
Abstract
The expanding field of bacterial genomics has revolutionized our understanding of microbial diversity, biology and phylogeny. For most species, DNA extracted from culture material is used as the template for genome sequencing; however, the majority of microbes are actually uncultivable, and others, such as obligate intracellular bacteria, require laborious tissue culture to yield sufficient genomic material for sequencing. Chlamydiae are one such group of obligate intracellular microbes whose characterization has been hampered by this requirement. To circumvent these challenges, researchers have developed culture-independent sample preparation methods that can be applied to the sample directly or to genomic material extracted from the sample. These methods, which encompass both targeted [immunomagnetic separation-multiple displacement amplification (IMS-MDA) and sequence capture] and non-targeted approaches (host methylated DNA depletion-microbial DNA enrichment and cell-sorting-MDA), have been applied to a range of clinical and environmental samples to generate whole genomes of novel chlamydial species and strains. This review aims to provide an overview of the application, advantages and limitations of these targeted and non-targeted approaches in the chlamydial context. The methods discussed also have broad application to other obligate intracellular bacteria or clinical and environmental samples.
Collapse
Affiliation(s)
- Alyce Taylor-Brown
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Danielle Madden
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| |
Collapse
|
25
|
Sharma M, Recuero-Checa MA, Fan FY, Dean D. Chlamydia trachomatis regulates growth and development in response to host cell fatty acid availability in the absence of lipid droplets. Cell Microbiol 2017; 20. [PMID: 29117636 DOI: 10.1111/cmi.12801] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 01/08/2023]
Abstract
Chlamydia trachomatis (Ct) is a Gram-negative obligate intracellular pathogen of humans that causes significant morbidity from sexually transmitted and ocular diseases globally. Ct acquires host fatty acids (FA) to meet the metabolic and growth requirements of the organism. Lipid droplets (LDs) are storehouses of FAs in host cells and have been proposed to be a source of FAs for the parasitophorous vacuole, termed inclusion, in which Ct replicates. Previously, cells devoid of LDs were shown to produce reduced infectious progeny at 24 hr postinfection (hpi). Here, although we also found reduced progeny at 24 hpi, there were significantly more progeny at 48 hpi in the absence of LDs compared to the control wild-type (WT) cells. These findings were confirmed using transmission electron microscopy where cells without LDs were shown to have significantly more metabolically active reticulate bodies at 24 hpi and significantly more infectious but metabolically inert elementary bodies at 48 hpi than WT cells. Furthermore, by measuring basal oxygen consumption rates (OCR) using extracellular flux analysis, Ct infected cells without LDs had higher OCRs at 24 hpi than cells with LDs, confirming ongoing metabolic activity in the absence of LDs. Although the FA oleic acid is a major source of phospholipids for Ct and stimulates LD synthesis, treatment with oleic acid, but not other FAs, enhanced growth and led to an increase in basal OCR in both LD depleted and WT cells, indicating that FA transport to the inclusion is not affected by the loss of LDs. Our results show that Ct regulates inclusion metabolic activity and growth in response to host FA availability in the absence of LDs.
Collapse
Affiliation(s)
- Manu Sharma
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Maria A Recuero-Checa
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Frances Yue Fan
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, USA.,Department of Bioengineering, University of California at Berkeley and San Francisco, CA, USA.,Department of Medicine and Pediatrics, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
26
|
Henning TR, Morris M, Ellis S, Kelley K, Phillips C, Ritter J, Jones T, Nachamkin E, Chen CY, Hong J, Kang J, Patton D, McNicholl J, Papp J, Kersh EN. Development of a rectal sexually transmitted infection (STI) Model in Rhesus macaques using Chlamydia trachomatis serovars E and L 2. J Med Primatol 2017; 46:218-227. [PMID: 28488731 DOI: 10.1111/jmp.12272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND Rectal STI coinfection models enhance the understanding of rectal HIV transmission risk factors. MATERIALS AND METHODS Rhesus macaques (n=9) were exposed to one of three rectal Chlamydia trachomatis (CT) challenges: C. trachomatis L2 (CT-L2 ); C. trachomatis serovar E (CT-E), followed by CT-L2 ; or CT-E, treatment/clearance, then CT-L2 . Infections were monitored by PCR. Weekly blood and rectal secretion/lavage samples were collected for cytokine analyzes and/or epithelial sloughing, occult, and overt blood determinations. RESULTS Chlamydial infections were successfully established in each animal, with varying degrees of persistence. Mucosal IL-1beta was upregulated in animals consecutively infected with CT-E then CT-L2 (P=.05). Epithelial sloughing was also significantly increased post-infection in this group (P=.0003). CONCLUSIONS This study demonstrates successful rectal infection of rhesus macaques with CT-E and CT-L2 and describes measures of assessing rectal inflammation and pathology. Different infection strategies yield varying inflammatory and pathologic outcomes, providing well-described models for future SIV/SHIV susceptibility studies.
Collapse
Affiliation(s)
- Tara R Henning
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | - Christi Phillips
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jana Ritter
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tara Jones
- Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eli Nachamkin
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cheng Y Chen
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jaeyoung Hong
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joseph Kang
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Dorothy Patton
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Janet McNicholl
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John Papp
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ellen N Kersh
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
27
|
Abstract
Species of Chlamydia are the etiologic agent of endemic blinding trachoma, the leading cause of bacterial sexually transmitted diseases, significant respiratory pathogens, and a zoonotic threat. Their dependence on an intracellular growth niche and their peculiar developmental cycle are major challenges to elucidating their biology and virulence traits. The last decade has seen tremendous advances in our ability to perform a molecular genetic analysis of Chlamydia species. Major achievements include the generation of large collections of mutant strains, now available for forward- and reverse-genetic applications, and the introduction of a system for plasmid-based transformation enabling complementation of mutations; expression of foreign, modified, or reporter genes; and even targeted gene disruptions. This review summarizes the current status of the molecular genetic toolbox for Chlamydia species and highlights new insights into their biology and new challenges in the nascent field of Chlamydia genetics.
Collapse
Affiliation(s)
- Barbara S Sixt
- Department for Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710; .,Centre de Recherche des Cordeliers, INSERM U1138, Paris 75006, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France.,Université Pierre et Marie Curie, Paris 75005, France
| | - Raphael H Valdivia
- Department for Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710;
| |
Collapse
|
28
|
Desclaux A, Touati A, Neau D, Laurier-Nadalié C, Bébéar C, de Barbeyrac B, Cazanave C. Extra-rectal lymphogranuloma venereum in France: a clinical and molecular study. Sex Transm Infect 2017; 94:3-8. [PMID: 28698211 DOI: 10.1136/sextrans-2017-053126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/18/2017] [Accepted: 05/20/2017] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES To describe a series of extrarectal lymphogranuloma venereum (LGV) cases diagnosed in France. METHODS Consecutive LGV cases confirmed at the French Reference Centre for chlamydiae with an extrarectal sample from January 2010 to December 2015 were included. The first part of the study consisted of a retrospective case note review and analysis. In a second part, the complete ompA gene sequence of our samples was determined. RESULTS There were 56 cases overall: 50 cases of genital LGV and six cases of pharyngeal LGV. Subjects were all men, median age 39 years, 27/53 were HIV-positive, 47/51 reported having sex with other men, 43/49 reported multiple sexual partners (a mean 25 in the last 6 months). Median time from symptom onset to diagnosis was 21 days. Subjects most commonly presented with inguinal adenopathy alone (19 of 50 genital cases) and adenopathy with genital ulcer (17 of 50). Three pharyngeal cases were symptomatic. Fever was reported in 11 cases. Inguinal abscess was reported in 22 of 42 cases presenting with lymphadenopathy. Co-infections were frequent: eight cases of syphilis, four non-LGV Chlamydia trachomatis infections, one case of gonorrhoea. Cure was always achieved with doxycycline therapy but prolonged treatment was necessary in eight cases with inguinal abscess. Genotyping according to ompA sequencing showed the co-circulation of genovars L2 (16 of 42 strains successfully typed) and L2b (24 of 42). There was no association between HIV status and disease severity or genovar distribution. CONCLUSION In the span of 6 years, 56 extrarectal LGV cases were confirmed through genotyping in France. Extrarectal LGV seemed to share a common epidemiological background with rectal disease in terms of affected population and genovar distribution. HIV prevalence was lower than expected.
Collapse
Affiliation(s)
- Arnaud Desclaux
- CHU Bordeaux, Service des Maladies Infectieuses et Tropicales, F-33000 Bordeaux, France
| | - Arabella Touati
- Univ. Bordeaux, USC EA 3671, Infections humaines à mycoplasmes et chlamydiae, F-33000 Bordeaux, France.,Institut National de la Recherche Agronomique, USC EA 3671, Infections humaines à mycoplasmes et chlamydiae, F-33000 Bordeaux, France
| | - Didier Neau
- CHU Bordeaux, Service des Maladies Infectieuses et Tropicales, F-33000 Bordeaux, France.,Univ. Bordeaux, USC EA 3671, Infections humaines à mycoplasmes et chlamydiae, F-33000 Bordeaux, France
| | - Cécile Laurier-Nadalié
- Univ. Bordeaux, USC EA 3671, Infections humaines à mycoplasmes et chlamydiae, F-33000 Bordeaux, France.,Institut National de la Recherche Agronomique, USC EA 3671, Infections humaines à mycoplasmes et chlamydiae, F-33000 Bordeaux, France
| | - Cécile Bébéar
- Univ. Bordeaux, USC EA 3671, Infections humaines à mycoplasmes et chlamydiae, F-33000 Bordeaux, France.,Institut National de la Recherche Agronomique, USC EA 3671, Infections humaines à mycoplasmes et chlamydiae, F-33000 Bordeaux, France
| | - Bertille de Barbeyrac
- Univ. Bordeaux, USC EA 3671, Infections humaines à mycoplasmes et chlamydiae, F-33000 Bordeaux, France.,Institut National de la Recherche Agronomique, USC EA 3671, Infections humaines à mycoplasmes et chlamydiae, F-33000 Bordeaux, France
| | - Charles Cazanave
- CHU Bordeaux, Service des Maladies Infectieuses et Tropicales, F-33000 Bordeaux, France.,Univ. Bordeaux, USC EA 3671, Infections humaines à mycoplasmes et chlamydiae, F-33000 Bordeaux, France.,Institut National de la Recherche Agronomique, USC EA 3671, Infections humaines à mycoplasmes et chlamydiae, F-33000 Bordeaux, France
| |
Collapse
|
29
|
Turingan RS, Kaplun L, Krautz-Peterson G, Norsworthy S, Zolotova A, Joseph SJ, Read TD, Dean D, Tan E, Selden RF. Rapid detection and strain typing of Chlamydia trachomatis using a highly multiplexed microfluidic PCR assay. PLoS One 2017; 12:e0178653. [PMID: 28562672 PMCID: PMC5451082 DOI: 10.1371/journal.pone.0178653] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/16/2017] [Indexed: 11/19/2022] Open
Abstract
Nucleic acid amplification tests (NAATs) are recommended by the CDC for detection of Chlamydia trachomatis (Ct) urogenital infections. Current commercial NAATs require technical expertise and sophisticated laboratory infrastructure, are time-consuming and expensive, and do not differentiate the lymphogranuloma venereum (LGV) strains that require a longer duration of treatment than non-LGV strains. The multiplexed microfluidic PCR-based assay presented in this work simultaneously interrogates 13 loci to detect Ct and identify LGV and non-LGV strain-types. Based on amplified fragment length polymorphisms, the assay differentiates LGV, ocular, urogenital, and proctocolitis clades, and also serovars L1, L2, and L3 within the LGV group. The assay was evaluated in a blinded fashion using 95 clinical swabs, with 76 previously reported as urogenital Ct-positive samples and typed by ompA genotyping and/or Multi-Locus Sequence Typing. Results of the 13-plex assay showed that 51 samples fell within urogenital clade 2 or 4, 24 samples showed both clade 2 and 4 signatures, indicating possible mixed infection, gene rearrangement, or inter-clade recombination, and one sample was a noninvasive trachoma biovar (either a clade 3 or 4). The remaining 19 blinded samples were correctly identified as LGV clade 1 (3), ocular clade 3 (4), or as negatives (12). To date, no NAAT assay can provide a point-of-care applicable turnaround time for Ct detection while identifying clinically significant Ct strain types to inform appropriate treatment. Coupled with rapid DNA processing of clinical swabs (approximately 60 minutes from swab-in to result-out), the assay has significant potential as a rapid POC diagnostic for Ct infections.
Collapse
Affiliation(s)
| | - Ludmila Kaplun
- NetBio, Waltham, Massachusetts, United States of America
| | | | | | - Anna Zolotova
- NetBio, Waltham, Massachusetts, United States of America
| | - Sandeep J. Joseph
- Department of Medicine, Division of Infectious Diseases and Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Timothy D. Read
- Department of Medicine, Division of Infectious Diseases and Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
- University of California at San Francisco School of Medicine, San Francisco, California, United States of America
- University of California at Berkeley and University of California at San Francisco Joint Graduate Program in Bioengineering, Berkeley, California, United States of America
| | - Eugene Tan
- NetBio, Waltham, Massachusetts, United States of America
| | | |
Collapse
|
30
|
Petrovay F, Balla E, Erdősi T. Emergence of the lymphogranuloma venereum L2c genovariant, Hungary, 2012 to 2016. ACTA ACUST UNITED AC 2017; 22. [PMID: 28183394 PMCID: PMC5388118 DOI: 10.2807/1560-7917.es.2017.22.5.30455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/20/2017] [Indexed: 11/20/2022]
Abstract
In eastern Europe, few countries have so far reported laboratory-confirmed cases of lymphogranuloma venereum (LGV). Here we describe 22 LGV cases in men who have sex with men (MSM) detected in Hungary from November 2012 to July 2016. Sequence analyses show that 16 of these 22 cases were affected by the L2c genovariant, with from 2012 to 2014, one LGV L2c case detected per year, followed by seven cases in 2015 and six up to July 2016. Of the 16 total L2c LGV cases, 10 had severe haemorrhagic proctitis. These findings are concerning as cases with this new genovariant among MSM have not been frequently reported in Europe to date. More research is needed to assess the spread of the L2c genovariant and its potential association with virulence and severe clinical manifestation.
Collapse
Affiliation(s)
- Fruzsina Petrovay
- Department of Bacteriology II., National Centre for Epidemiology, Budapest, Hungary
| | - Eszter Balla
- Department of Bacteriology II., National Centre for Epidemiology, Budapest, Hungary
| | - Tímea Erdősi
- Department of Phage and Molecular Typing, National Centre for Epidemiology, Budapest, Hungary
| |
Collapse
|
31
|
Petrovay F, Balla E, Erdősi T. Authors’reply: Concern regarding the alleged spread of hypervirulent lymphogranuloma venereum Chlamydia trachomatis strain in Europe. Euro Surveill 2017; 22:30512. [PMID: 28449737 PMCID: PMC5476978 DOI: 10.2807/1560-7917.es.2017.22.15.30512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 04/12/2017] [Indexed: 12/05/2022] Open
Affiliation(s)
- Fruzsina Petrovay
- Department of Bacteriology II., National Centre for Epidemiology, Budapest, Hungary
| | - Eszter Balla
- Department of Bacteriology II., National Centre for Epidemiology, Budapest, Hungary
| | - Timea Erdősi
- Department of Phage and Molecular Typing, National Centre for Epidemiology, Budapest, Hungary
| |
Collapse
|
32
|
Rodríguez-Domínguez M, González-Alba JM, Puerta T, Martínez-García L, Menéndez B, Cantón R, Del Romero J, Galán JC. Spread of a new Chlamydia trachomatis variant from men who have sex with men to the heterosexual population after replacement and recombination in ompA and pmpH genes. Clin Microbiol Infect 2017; 23:761-766. [PMID: 28323193 DOI: 10.1016/j.cmi.2017.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/08/2017] [Accepted: 03/12/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Sexually transmitted infections are frequently related to outbreaks in high-risk populations due to the dense sexual networks. We wanted to determine the dissemination of a Chlamydia trachomatis variant characterized by the pmpH-recombinant gene between L and G genotypes, which was previously described in a high-risk population. METHODS A total of 449 samples were analysed in two periods ranging from 2009 to 2015 for detection of the pmpH-recombinant gene. For those samples yielding positive amplification, a sampling was selected for phylogenetic reconstructions based on sequencing of five chromosomal genes. RESULTS Globally this variant was found in 113 of the 449 samples (25%). During the first years (2009-13), this variant was found almost exclusively in rectal samples (30/112 samples) of men who have sex with men and in only one non-rectal sample (1/63). In 2014, this variant was also found in urethral and pharyngeal samples (1/24 and 1/7, respectively). However, in 2015, an epidemiological change was observed as the proportion of this variant had increased in rectal samples (20/51; 39%) and non-rectal samples, including cervical samples (51/142; 36.4%). The molecular characterization revealed the replacement of the ompA gene belonging to subtype G in samples recovered from 2009 to 2013 by the ompA gene belonging to subtype J after 2013. CONCLUSIONS Our data would support the evidence that subtype J could be a 'subtype bridge' between different sexual networks, as subtype J has been found in men who have sex with men and heterosexual populations in similar proportions. This work reveals the necessity of implementing molecular surveillance in extra-rectal samples to help us understand the gaps in transmission.
Collapse
Affiliation(s)
- M Rodríguez-Domínguez
- Servicio de Microbiología Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain; CIBER en Epidemiología y Salud Pública, Madrid, Spain
| | - J M González-Alba
- Servicio de Microbiología Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain; CIBER en Epidemiología y Salud Pública, Madrid, Spain
| | - T Puerta
- Centro Sanitario Sandoval, Madrid, Spain; Instituto de Investigación Sanitaria Hospital Clínico San Carlos, Madrid, Spain
| | - L Martínez-García
- Servicio de Microbiología Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain; Red Española de Investigación en Patología Infecciosa, Madrid, Spain
| | - B Menéndez
- Centro Sanitario Sandoval, Madrid, Spain; Instituto de Investigación Sanitaria Hospital Clínico San Carlos, Madrid, Spain; Laboratorio de Microbiología, Centro Sandoval, Madrid, Spain
| | - R Cantón
- Servicio de Microbiología Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain; Red Española de Investigación en Patología Infecciosa, Madrid, Spain
| | - J Del Romero
- Centro Sanitario Sandoval, Madrid, Spain; Instituto de Investigación Sanitaria Hospital Clínico San Carlos, Madrid, Spain
| | - J C Galán
- Servicio de Microbiología Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain; CIBER en Epidemiología y Salud Pública, Madrid, Spain; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana, Madrid, Spain.
| |
Collapse
|
33
|
Marti H, Kim H, Joseph SJ, Dojiri S, Read TD, Dean D. Tet(C) Gene Transfer between Chlamydia suis Strains Occurs by Homologous Recombination after Co-infection: Implications for Spread of Tetracycline-Resistance among Chlamydiaceae. Front Microbiol 2017; 8:156. [PMID: 28223970 PMCID: PMC5293829 DOI: 10.3389/fmicb.2017.00156] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/20/2017] [Indexed: 11/13/2022] Open
Abstract
Chlamydia suis is a swine pathogen that has also recently been found to cause zoonotic infections of the human eye, pharynx, and gastrointestinal tract. Many strains contain a tetracycline class C gene [tet(C)] cassette that confers tetracycline resistance. The cassette was likely originally acquired by horizontal gene transfer from a Gram-negative donor after the introduction of tetracycline into animal feed in the 1950s. Various research groups have described the capacity for different Chlamydia species to exchange DNA by homologous recombination. Since over 90% of C. suis strains are tetracycline resistant, they represent a potential source for antibiotic-resistance spread within and between Chlamydiaceae species. Here, we examined the genetics of tet(C)-transfer among C. suis strains. Tetracycline-sensitive C. suis strain S45 was simultaneously or sequentially co-infected with tetracycline-resistant C. suis strains in McCoy cells. Potential recombinants were clonally purified by a harvest assay derived from the classic plaque assay. C. suis strain Rogers132, lacking transposases IS200 and IS605, was the most efficient donor, producing two unique recombinants detected in three of the 56 (5.4%) clones screened. Recombinants were found to have a minimal inhibitory concentration (MIC) of 8-16 μg/mL for tetracycline. Resistance remained stable over 10 passages as long as recombinants were initially grown in tetracycline at twice the MIC of S45 (0.032 μg/mL). Genomic analysis revealed that tet(C) had integrated into the S45 genome by homologous recombination at two unique sites depending on the recombinant: a 55 kb exchange between nrqF and pckG, and a 175 kb exchange between kdsA and cysQ. Neither site was associated with inverted repeats or motifs associated with recombination hotspots. Our findings show that cassette transfer into S45 has low frequency, does not require IS200/IS605 transposases, is stable if initially grown in tetracycline, and results in multiple genomic configurations. We provide a model for stable cassette transfer to better understand the capability for cassette acquisition by Chlamydiaceae species that infect humans, a matter of public health importance.
Collapse
Affiliation(s)
- Hanna Marti
- Center for Immunobiology and Vaccine Development, University of California at San Francisco/Benioff Children's Hospital Oakland Research Institute, Oakland CA, USA
| | - Hoyon Kim
- Center for Immunobiology and Vaccine Development, University of California at San Francisco/Benioff Children's Hospital Oakland Research Institute, Oakland CA, USA
| | - Sandeep J Joseph
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, AtlantaGA, USA; Department of Human Genetics, Emory University School of Medicine, AtlantaGA, USA
| | - Stacey Dojiri
- Center for Immunobiology and Vaccine Development, University of California at San Francisco/Benioff Children's Hospital Oakland Research Institute, Oakland CA, USA
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, AtlantaGA, USA; Department of Human Genetics, Emory University School of Medicine, AtlantaGA, USA
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, University of California at San Francisco/Benioff Children's Hospital Oakland Research Institute, OaklandCA, USA; Joint Graduate Program in Bioengineering, University of California, San Francisco, San FranciscoCA, USA; Joint Graduate Program in Bioengineering, University of California, Berkeley, BerkeleyCA, USA; Departments of Medicine and Pediatrics, University of California, San Francisco, San FranciscoCA, USA
| |
Collapse
|
34
|
Leeyaphan C, Ong JJ, Chow EPF, Kong FYS, Hocking JS, Bissessor M, Fairley CK, Chen M. Systematic Review and Meta-Analysis of Doxycycline Efficacy for Rectal Lymphogranuloma Venereum in Men Who Have Sex with Men. Emerg Infect Dis 2016; 22:1778-84. [PMID: 27513890 PMCID: PMC5038401 DOI: 10.3201/eid2210.160986] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A high microbial cure rate was shown with 100 mg doxycycline twice daily for 21 days. Rectal lymphogranuloma venereum (LGV) has reemerged as a sexually transmitted infection among men who have sex with men (MSM), particularly those who are HIV-positive. We undertook a systematic review and meta-analysis to determine the efficacy of doxycycline (100 mg 2×/d for 21 days) for rectal LGV in MSM. Nine studies were included: 4 prospective, 4 retrospective, and 1 combined retrospective and prospective. In total, 282 MSM with rectal LGV were included in the studies. All studies reported using nucleic acid amplification tests to assess microbial cure. Most patients (>80%) had symptomatic rectal infection. The fixed-effects pooled efficacy for doxycycline was 98.5% (95% CI 96.3%–100%, I2 = 0%; p = 0.993). Doxycycline at 100 mg twice daily for 21 days demonstrated a high microbial cure rate. These data support doxycycline at this dosage and duration as first-line therapy for rectal LGV in MSM.
Collapse
|
35
|
Joseph SJ, Marti H, Didelot X, Read TD, Dean D. Tetracycline Selective Pressure and Homologous Recombination Shape the Evolution of Chlamydia suis: A Recently Identified Zoonotic Pathogen. Genome Biol Evol 2016; 8:2613-23. [PMID: 27576537 PMCID: PMC5010913 DOI: 10.1093/gbe/evw182] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2016] [Indexed: 12/22/2022] Open
Abstract
Species closely related to the human pathogen Chlamydia trachomatis (Ct) have recently been found to cause zoonotic infections, posing a public health threat especially in the case of tetracycline resistant Chlamydia suis (Cs) strains. These strains acquired a tet(C)-containing cassette via horizontal gene transfer (HGT). Genomes of 11 Cs strains from various tissues were sequenced to reconstruct evolutionary pathway(s) for tet(C) HGT. Cs had the highest recombination rate of Chlamydia species studied to date. Admixture occurred among Cs strains and with Chlamydia muridarum but not with Ct Although in vitro tet(C) cassette exchange with Ct has been documented, in vivo evidence may require examining human samples from Ct and Cs co-infected sites. Molecular-clock dating indicated that ancestral clades of resistant Cs strains predated the 1947 discovery of tetracycline, which was subsequently used in animal feed. The cassette likely spread throughout Cs strains by homologous recombination after acquisition from an external source, and our analysis suggests Betaproteobacteria as the origin. Selective pressure from tetracycline may be responsible for recent bottlenecks in Cs populations. Since tetracycline is an important antibiotic for treating Ct, zoonotic infections at mutual sites of infection indicate the possibility for cassette transfer and major public health repercussions.
Collapse
Affiliation(s)
- Sandeep J Joseph
- Department of Medicine, Division of Infectious Diseases and Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Hanna Marti
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Xavier Didelot
- Department of Infectious Disease Epidemiology, Imperial College, London, United Kingdom
| | - Timothy D Read
- Department of Medicine, Division of Infectious Diseases and Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, USA Joint Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, CA, USA
| |
Collapse
|
36
|
Meyer T. Diagnostic Procedures to Detect Chlamydia trachomatis Infections. Microorganisms 2016; 4:microorganisms4030025. [PMID: 27681919 PMCID: PMC5039585 DOI: 10.3390/microorganisms4030025] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 11/20/2022] Open
Abstract
The intracellular life style of chlamydia and the ability to cause persistent infections with low-grade replication requires tests with high analytical sensitivity to directly detect C. trachomatis (CT) in medical samples. Nucleic acid amplification tests (NAATs) are the most sensitive assays with a specificity similar to cell culture and are considered the method of choice for CT detection. In addition, NAATs can be performed on various clinical specimens that do not depend on specific transport and storage conditions, since NAATs do not require infectious bacteria. In the case of lower genital tract infections, first void urine and vaginal swabs are the recommended specimens for testing males and females, respectively. Infections of anorectal, oropharyngeal and ocular epithelia should also be tested by NAAT analysis of corresponding mucosal swabs. In particular, anorectal infections of men who have sex with men (MSM) should include evaluation of lymphogranuloma venereum (LGV) by identification of genotypes L1, L2 or L3. Detection of CT antigens by enzyme immunoassay (EIAs) or rapid diagnostic tests (RDTs) are unsuitable due to insufficient sensitivity and specificity. Recent PCR-based RDTs, however, are non-inferior to standard NAATs, and might be used at the point-of-care. Serology finds application in the diagnostic work-up of suspected chronic CT infection but is inappropriate to diagnose acute infections.
Collapse
Affiliation(s)
- Thomas Meyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg 20246, Germany.
| |
Collapse
|
37
|
Van Lent S, Creasy HH, Myers GS, Vanrompay D. The Number, Organization, and Size of Polymorphic Membrane Protein Coding Sequences as well as the Most Conserved Pmp Protein Differ within and across Chlamydia Species. J Mol Microbiol Biotechnol 2016; 26:333-44. [DOI: 10.1159/000447092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/25/2016] [Indexed: 11/19/2022] Open
Abstract
Variation is a central trait of the polymorphic membrane protein (Pmp) family. The number of <i>pmp</i> coding sequences differs between <i>Chlamydia</i> species, but it is unknown whether the number of <i>pmp</i> coding sequences is constant within a <i>Chlamydia</i> species. The level of conservation of the Pmp proteins has previously only been determined for <i>Chlamydia trachomatis.</i> As different Pmp proteins might be indispensible for the pathogenesis of different <i>Chlamydia </i>species, this study investigated the conservation of Pmp proteins both within and across <i>C. trachomatis,</i><i>C. pneumoniae,</i><i>C. abortus,</i> and <i>C. psittaci.</i> The <i>pmp</i> coding sequences were annotated in 16 <i>C. trachomatis,</i> 6 <i>C. pneumoniae,</i> 2 <i>C. abortus,</i> and 16 <i>C. psittaci</i> genomes. The number and organization of polymorphic membrane coding sequences differed within and across the analyzed <i>Chlamydia </i>species. The length of coding sequences of <i>pmpA,</i><i>pmpB,</i> and <i>pmpH</i> was conserved among all analyzed genomes, while the length of <i>pmpE/F</i> and <i>pmpG,</i> and remarkably also of the subtype <i>pmpD,</i> differed among the analyzed genomes. PmpD, PmpA, PmpH, and PmpA were the most conserved Pmp in <i>C. trachomatis,</i><i>C. pneumoniae,</i><i>C. abortus,</i> and <i>C. psittaci</i>, respectively. PmpB was the most conserved Pmp across the 4 analyzed <i>Chlamydia</i> species.
Collapse
|
38
|
Matičič M, Klavs I, Videčnik Zorman J, Vidmar Vovko D, Kogoj R, Keše D. Confirmed inguinal lymphogranuloma venereum genovar L2c in a man who had sex with men, Slovenia, 2015. ACTA ACUST UNITED AC 2016; 21:2-5. [PMID: 26889644 DOI: 10.2807/1560-7917.es.2016.21.5.30129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/04/2016] [Indexed: 11/20/2022]
Abstract
A laboratory-confirmed lymphogranuloma venereum (LGV) case in Slovenia was reported in 2015, in a human immunodeficiency virus (HIV)-negative man presenting with inguinal lymphadenopathy. He reported unprotected insertive anal intercourse with two male partners in Croatia. Variant L2c of Chlamydia trachomatis was detected in clinical samples. Although the patient was eventually cured, the recommended treatment regimen with doxycycline had to be prolonged.
Collapse
Affiliation(s)
- Mojca Matičič
- Clinic for Infectious Diseases and Febrile Illnesses, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
39
|
Touati A, Peuchant O, Hénin N, Bébéar C, de Barbeyrac B. The L2b real-time PCR targeting the pmpH gene of Chlamydia trachomatis used for the diagnosis of lymphogranuloma venereum is not specific to L2b strains. Clin Microbiol Infect 2016; 22:574.e7-9. [PMID: 27040805 DOI: 10.1016/j.cmi.2016.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 10/22/2022]
Abstract
The French Reference Centre for chlamydiae uses two real-time PCRs targeting the pmpH gene of Chlamydia trachomatis to differentiate between L strains and variant L2b, responsible for a lymphogranuloma venereum outbreak in Europe. We compared the results obtained for 122 L2b C. trachomatis-positive specimens, using the two real-time PCRs, with the sequencing of the ompA gene. Only 91 specimens were confirmed as L2b. Our results demonstrate that the lymphogranuloma venereum outbreak is no longer dominated by the variant L2b, and that many L-positive specimens were misidentified as L2b with the method used, which raises the question of its specificity.
Collapse
Affiliation(s)
- A Touati
- University of Bordeaux, USC EA3671 Mycoplasmal and Chlamydial Infections in Humans, and National Reference Centre for Chlamydia, France; INRA, USC EA3671 Mycoplasmal and Chlamydial Infections in Humans, and National Reference Centre for Chlamydia, France
| | - O Peuchant
- University of Bordeaux, USC EA3671 Mycoplasmal and Chlamydial Infections in Humans, and National Reference Centre for Chlamydia, France; INRA, USC EA3671 Mycoplasmal and Chlamydial Infections in Humans, and National Reference Centre for Chlamydia, France; Bacteriology Department, Bordeaux University Hospital, Bordeaux, France
| | - N Hénin
- University of Bordeaux, USC EA3671 Mycoplasmal and Chlamydial Infections in Humans, and National Reference Centre for Chlamydia, France; INRA, USC EA3671 Mycoplasmal and Chlamydial Infections in Humans, and National Reference Centre for Chlamydia, France
| | - C Bébéar
- University of Bordeaux, USC EA3671 Mycoplasmal and Chlamydial Infections in Humans, and National Reference Centre for Chlamydia, France; INRA, USC EA3671 Mycoplasmal and Chlamydial Infections in Humans, and National Reference Centre for Chlamydia, France; Bacteriology Department, Bordeaux University Hospital, Bordeaux, France
| | - B de Barbeyrac
- University of Bordeaux, USC EA3671 Mycoplasmal and Chlamydial Infections in Humans, and National Reference Centre for Chlamydia, France; INRA, USC EA3671 Mycoplasmal and Chlamydial Infections in Humans, and National Reference Centre for Chlamydia, France; Bacteriology Department, Bordeaux University Hospital, Bordeaux, France.
| |
Collapse
|
40
|
Emancipating Chlamydia: Advances in the Genetic Manipulation of a Recalcitrant Intracellular Pathogen. Microbiol Mol Biol Rev 2016; 80:411-27. [PMID: 27030552 DOI: 10.1128/mmbr.00071-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chlamydia species infect millions of individuals worldwide and are important etiological agents of sexually transmitted disease, infertility, and blinding trachoma. Historically, the genetic intractability of this intracellular pathogen has hindered the molecular dissection of virulence factors contributing to its pathogenesis. The obligate intracellular life cycle of Chlamydia and restrictions on the use of antibiotics as selectable markers have impeded the development of molecular tools to genetically manipulate these pathogens. However, recent developments in the field have resulted in significant gains in our ability to alter the genome of Chlamydia, which will expedite the elucidation of virulence mechanisms. In this review, we discuss the challenges affecting the development of molecular genetic tools for Chlamydia and the work that laid the foundation for recent advancements in the genetic analysis of this recalcitrant pathogen.
Collapse
|
41
|
Recuero-Checa MA, Sharma M, Lau C, Watkins PA, Gaydos CA, Dean D. Chlamydia trachomatis growth and development requires the activity of host Long-chain Acyl-CoA Synthetases (ACSLs). Sci Rep 2016; 6:23148. [PMID: 26988341 PMCID: PMC4796813 DOI: 10.1038/srep23148] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/25/2016] [Indexed: 11/17/2022] Open
Abstract
The obligate-intracellular pathogen Chlamydia trachomatis (Ct) has undergone considerable genome reduction with consequent dependence on host biosynthetic pathways, metabolites and enzymes. Long-chain acyl-CoA synthetases (ACSLs) are key host-cell enzymes that convert fatty acids (FA) into acyl-CoA for use in metabolic pathways. Here, we show that the complete host ACSL family [ACSL1 and ACSL3-6] translocates into the Ct membrane-bound vacuole, termed inclusion, and remains associated with membranes of metabolically active forms of Ct throughout development. We discovered that three different pharmacologic inhibitors of ACSL activity independently impede Ct growth in a dose-dependent fashion. Using an FA competition assay, host ACSLs were found to activate Ct branched-chain FAs, suggesting that one function of the ACSLs is to activate Ct FAs and host FAs (recruited from the cytoplasm) within the inclusion. Because the ACSL inhibitors can deplete lipid droplets (LD), we used a cell line where LD synthesis was switched off to evaluate whether LD deficiency affects Ct growth. In these cells, we found no effect on growth or on translocation of ACSLs into the inclusion. Our findings support an essential role for ACSL activation of host-cell and bacterial FAs within the inclusion to promote Ct growth and development, independent of LDs.
Collapse
Affiliation(s)
- Maria A. Recuero-Checa
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children’s Hospital Oakland Research Institute, Oakland, CA, 94609, USA
- Department of Infectious Disease, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Manu Sharma
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children’s Hospital Oakland Research Institute, Oakland, CA, 94609, USA
| | - Constance Lau
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children’s Hospital Oakland Research Institute, Oakland, CA, 94609, USA
| | - Paul A. Watkins
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Charlotte A. Gaydos
- Department of Infectious Disease, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children’s Hospital Oakland Research Institute, Oakland, CA, 94609, USA
- Department of Bioengineering, University of California at Berkeley and San Francisco, CA, USA
| |
Collapse
|
42
|
Andersson P, Harris SR, Smith HMBS, Hadfield J, O'Neill C, Cutcliffe LT, Douglas FP, Asche LV, Mathews JD, Hutton SI, Sarovich DS, Tong SYC, Clarke IN, Thomson NR, Giffard PM. Chlamydia trachomatis from Australian Aboriginal people with trachoma are polyphyletic composed of multiple distinctive lineages. Nat Commun 2016; 7:10688. [PMID: 26912299 PMCID: PMC4773424 DOI: 10.1038/ncomms10688] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 01/07/2016] [Indexed: 01/29/2023] Open
Abstract
Chlamydia trachomatis causes sexually transmitted infections and the blinding disease trachoma. Current data on C. trachomatis phylogeny show that there is only a single trachoma-causing clade, which is distinct from the lineages causing urogenital tract (UGT) and lymphogranuloma venerum diseases. Here we report the whole-genome sequences of ocular C. trachomatis isolates obtained from young children with clinical signs of trachoma in a trachoma endemic region of northern Australia. The isolates form two lineages that fall outside the classical trachoma lineage, instead being placed within UGT clades of the C. trachomatis phylogenetic tree. The Australian trachoma isolates appear to be recombinants with UGT C. trachomatis genome backbones, in which loci that encode immunodominant surface proteins (ompA and pmpEFGH) have been replaced by those characteristic of classical ocular isolates. This suggests that ocular tropism and association with trachoma are functionally associated with some sequence variants of ompA and pmpEFGH.
Collapse
Affiliation(s)
- Patiyan Andersson
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Casuarina, Northern Territory 0811, Australia
| | - Simon R. Harris
- Pathogen Variation Programme, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Helena M. B. Seth Smith
- Pathogen Variation Programme, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
- Functional Genomics Centre Zürich, University of Zurich, Zurich CH-8057, Switzerland
- Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich CH-8057, Switzerland
| | - James Hadfield
- Pathogen Variation Programme, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Colette O'Neill
- Department of Clinical and Experimental Science, Molecular Microbiology Group, University Medical School, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Lesley T. Cutcliffe
- Department of Clinical and Experimental Science, Molecular Microbiology Group, University Medical School, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Fiona P. Douglas
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Casuarina, Northern Territory 0811, Australia
| | - L. Valerie Asche
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Casuarina, Northern Territory 0811, Australia
| | - John D. Mathews
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Casuarina, Northern Territory 0811, Australia
- School of Population and Global Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Susan I. Hutton
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Casuarina, Northern Territory 0811, Australia
| | - Derek S. Sarovich
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Casuarina, Northern Territory 0811, Australia
| | - Steven Y. C. Tong
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Casuarina, Northern Territory 0811, Australia
| | - Ian N. Clarke
- Department of Clinical and Experimental Science, Molecular Microbiology Group, University Medical School, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Nicholas R. Thomson
- Pathogen Variation Programme, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Philip M. Giffard
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Casuarina, Northern Territory 0811, Australia
- School of Psychological and Clinical Sciences, Charles Darwin University, Casuarina, Northern Territory 0811, Australia
| |
Collapse
|
43
|
Joseph SJ, Marti H, Didelot X, Castillo-Ramirez S, Read TD, Dean D. Chlamydiaceae Genomics Reveals Interspecies Admixture and the Recent Evolution of Chlamydia abortus Infecting Lower Mammalian Species and Humans. Genome Biol Evol 2015; 7:3070-84. [PMID: 26507799 PMCID: PMC4994753 DOI: 10.1093/gbe/evv201] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chlamydiaceae are obligate intracellular bacteria that cause a diversity of severe infections among humans and livestock on a global scale. Identification of new species since 1989 and emergence of zoonotic infections, including abortion in women, underscore the need for genome sequencing of multiple strains of each species to advance our knowledge of evolutionary dynamics across Chlamydiaceae. Here, we genome sequenced isolates from avian, lower mammalian and human hosts. Based on core gene phylogeny, five isolates previously classified as Chlamydia abortus were identified as members of Chlamydia psittaci and Chlamydia pecorum. Chlamydia abortus is the most recently emerged species and is a highly monomorphic group that lacks the conserved virulence-associated plasmid. Low-level recombination and evidence for adaptation to the placenta echo evolutionary processes seen in recently emerged, highly virulent niche-restricted pathogens, such as Bacillus anthracis. In contrast, gene flow occurred within C. psittaci and other Chlamydiaceae species. The C. psittaci strain RTH, isolated from a red-tailed hawk (Buteo jamaicensis), is an outlying strain with admixture of C. abortus, C. psittaci, and its own population markers. An average nucleotide identity of less than 94% compared with other Chlamydiaceae species suggests that RTH belongs to a new species intermediary between C. psittaci and C. abortus. Hawks, as scavengers and predators, have extensive opportunities to acquire multiple species in their intestinal tract. This could facilitate transformation and homologous recombination with the potential for new species emergence. Our findings indicate that incubator hosts such as birds-of-prey likely promote Chlamydiaceae evolution resulting in novel pathogenic lineages.
Collapse
Affiliation(s)
- Sandeep J Joseph
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine
| | - Hanna Marti
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California
| | - Xavier Didelot
- Department of Infectious Disease Epidemiology, Imperial College, London, United Kingdom
| | - Santiago Castillo-Ramirez
- Programa de Genomica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine Department of Human Genetics, Emory University School of Medicine
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California Department of Medicine, University of California, San Francisco Joint Graduate Program in Bioengineering, University of California, San Francisco, and University of California, Berkeley
| |
Collapse
|
44
|
Malisiewicz B, Schöfer H. [Diagnosis and therapy of genitoanal ulcers of infectious etiology]. Hautarzt 2015; 66:19-29. [PMID: 25523404 DOI: 10.1007/s00105-014-3551-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND/OBJECTIVES In this review article the diagnostic and therapeutic principles of genital ulcers of infectious etiology are highlighted. Besides frequent causative infections rare but relevant diseases in the differential diagnosis are discussed in detail. MATERIAL AND METHODS A Pubmed literature search was carried out, guidelines from different task groups and clinical experiences are presented. RESULTS Infections with herpes simplex virus (first) and syphilis (second) are still the most common causes of infectious genital ulcers. An endemic occurrence, previously rare in Europe, has been observed in recent years. Particular risk groups, such as men who have sex with men (MSM), sex workers or sex tourists are affected. Even less common locations, such as the mouth or the rectum, lymphogranuloma venereum (LGV) and atypical clinical symptoms (e.g. pelvic pain in pelvic lymphadenopathy with LGV) must be considered in the differential diagnosis. CONCLUSION In recent years sexually transmitted infections (STI) have shown a significant increase in western industrialized nations. In all cases with unclear findings in the genital and anal areas (and also in the oral cavity) STI diseases must be reconsidered in the differential diagnosis.
Collapse
Affiliation(s)
- B Malisiewicz
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum, Goethe-Universität Frankfurt/M., Theodor-Stern-Kai 7, 60590, Frankfurt/M., Deutschland
| | | |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW A state-of-the-art overview of molecular Chlamydia trachomatis typing methods that are used for routine diagnostics and scientific studies. RECENT FINDINGS Molecular epidemiology uses high-resolution typing techniques such as multilocus sequence typing, multilocus variable number of tandem repeats analysis, and whole-genome sequencing to identify strains based on their DNA sequence. These data can be used for cluster, network and phylogenetic analyses, and are used to unveil transmission networks, risk groups, and evolutionary pathways. High-resolution typing of C. trachomatis strains is applied to monitor treatment efficacy and re-infections, and to study the recent emergence of lymphogranuloma venereum (LGV) amongst men who have sex with men in high-income countries. Chlamydia strain typing has clinical relevance in disease management, as LGV needs longer treatment than non-LGV C. trachomatis. It has also led to the discovery of a new variant Chlamydia strain in Sweden, which was not detected by some commercial C. trachomatis diagnostic platforms. SUMMARY After a brief history and comparison of the various Chlamydia typing methods, the applications of the current techniques are described and future endeavors to extend scientific understanding are formulated. High-resolution typing will likely help to further unravel the pathophysiological mechanisms behind the wide clinical spectrum of chlamydial disease.
Collapse
|
46
|
Batteiger BE, Wan R, Williams JA, He L, Ma A, Fortenberry JD, Dean D. Novel Chlamydia trachomatis strains in heterosexual sex partners, Indianapolis, Indiana, USA. Emerg Infect Dis 2015; 20:1841-7. [PMID: 25340463 PMCID: PMC4214310 DOI: 10.3201/2011.140604] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Use of multilocus sequence typing may help identify new strains in at-risk populations. Chlamydia trachomatis causes a high number of sexually transmitted infections worldwide, but reproducible and precise strain typing to link partners is lacking. We evaluated multilocus sequence typing (MLST) for this purpose by detecting sequence types (STs) concordant for the ompA genotype, a single-locus typing standard. We tested samples collected during April 2000–October 2003 from members of established heterosexual partnerships (dyads) in the Indianapolis, Indiana, USA, area who self-reported being coital partners within the previous 30 days. C. trachomatis DNA from 28 dyads was tested by MLST; sequences were aligned and analyzed for ST and phylogenetic relationships. MLST detected 9 C. trachomatis STs, 4 unique to Indianapolis; STs were identical within each dyad. Thirteen unique strains were identified; 9 (32%) dyads harbored novel recombinant strains that phylogenetically clustered with strains comprising the recombinants. The high rate of novel C. trachomatis recombinants identified supports the use of MLST for transmission and strain diversity studies among at-risk populations.
Collapse
|
47
|
'SEEDY' (Simulation of Evolutionary and Epidemiological Dynamics): An R Package to Follow Accumulation of Within-Host Mutation in Pathogens. PLoS One 2015; 10:e0129745. [PMID: 26075402 PMCID: PMC4467979 DOI: 10.1371/journal.pone.0129745] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 05/12/2015] [Indexed: 01/19/2023] Open
Abstract
Genome sequencing is an increasingly common component of infectious disease outbreak investigations. However, the relationship between pathogen transmission and observed genetic data is complex, and dependent on several uncertain factors. As such, simulation of pathogen dynamics is an important tool for interpreting observed genomic data in an infectious disease outbreak setting, in order to test hypotheses and to explore the range of outcomes consistent with a given set of parameters. We introduce ‘seedy’, an R package for the simulation of evolutionary and epidemiological dynamics (http://cran.r-project.org/web/packages/seedy/). Our software implements stochastic models for the accumulation of mutations within hosts, as well as individual-level disease transmission. By allowing variables such as the transmission bottleneck size, within-host effective population size and population mixing rates to be specified by the user, our package offers a flexible framework to investigate evolutionary dynamics during disease outbreaks. Furthermore, our software provides theoretical pairwise genetic distance distributions to provide a likelihood of person-to-person transmission based on genomic observations, and using this framework, implements transmission route assessment for genomic data collected during an outbreak. Our open source software provides an accessible platform for users to explore pathogen evolution and outbreak dynamics via simulation, and offers tools to assess observed genomic data in this context.
Collapse
|
48
|
Rodriguez-Dominguez M, Gonzalez-Alba JM, Puerta T, Menendez B, Sanchez-Diaz AM, Canton R, del Romero J, Galan JC. High Prevalence of Co-Infections by Invasive and Non-Invasive Chlamydia trachomatis Genotypes during the Lymphogranuloma Venereum Outbreak in Spain. PLoS One 2015; 10:e0126145. [PMID: 25965545 PMCID: PMC4428631 DOI: 10.1371/journal.pone.0126145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/29/2015] [Indexed: 12/16/2022] Open
Abstract
The evolution of Chlamydia trachomatis is mainly driven by recombination events. This fact can be fuelled by the coincidence in several European regions of the high prevalence of non-invasive urogenital genotypes and lymphogranuloma venereum (LGV) outbreaks. This scenario could modify the local epidemiology and favor the selection of new C. trachomatis variants. Quantifying the prevalence of co-infection could help to predict the potential risk in the selection of new variants with unpredictable results in pathogenesis or transmissibility. In the 2009-2013 period, 287 clinical samples with demonstrated presence of C. trachomatis were selected. They were divided in two groups. The first group was constituted by 137 samples with C. trachomatis of the LGV genotypes, and the second by the remaining 150 samples in which the presence of LGV genotypes was previously excluded. They were analyzed to detect the simultaneous presence of non-LGV genotypes based on pmpH and ompA genes. In the first group, co-infections were detected in 10.9% of the cases whereas in the second group the prevalence was 14.6%, which is the highest percentage ever described among European countries. Moreover, bioinformatic analyses suggested the presence among men who have sex with men of a pmpH-recombinant variant, similar to strains described in Seattle in 2002. This variant was the result of genetic exchange between genotypes belonging to LGV and members of G-genotype. Sequencing of other genes, phylogenetically related to pathotype, confirmed that the putative recombinant found in Madrid could have a common origin with the strains described in Seattle. Countries with a high prevalence of co-infections and high migration flows should enhance surveillance programs in at least their vulnerable population.
Collapse
Affiliation(s)
- Mario Rodriguez-Dominguez
- Servicio de Microbiología Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Jose Maria Gonzalez-Alba
- Servicio de Microbiología Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Teresa Puerta
- Centro Sanitario Sandoval, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Clínico San Carlos, Madrid, Spain
| | - Blanca Menendez
- Instituto de Investigación Sanitaria Hospital Clínico San Carlos, Madrid, Spain
- Laboratorio de Microbiología, Centro Sandoval, Madrid, Spain
| | - Ana Maria Sanchez-Diaz
- Servicio de Microbiología Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Rafael Canton
- Servicio de Microbiología Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Jorge del Romero
- Centro Sanitario Sandoval, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Clínico San Carlos, Madrid, Spain
| | - Juan Carlos Galan
- Servicio de Microbiología Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Unidad de Resistencia a Antibióticos y Virulencia Bacteriana (RYC-CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
49
|
Wolff BJ, Morrison SS, Pesti D, Ganakammal SR, Srinivasamoorthy G, Changayil S, Weil MR, MacCannell D, Rowe L, Frace M, Ritchie BW, Dean D, Winchell JM. Chlamydia psittaci comparative genomics reveals intraspecies variations in the putative outer membrane and type III secretion system genes. MICROBIOLOGY-SGM 2015; 161:1378-91. [PMID: 25887617 PMCID: PMC4635502 DOI: 10.1099/mic.0.000097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Chlamydia psittaci is an obligate intracellular bacterium that can cause significant disease among a broad range of hosts. In humans, this organism may cause psittacosis, a respiratory disease that can spread to involve multiple organs, and in rare untreated cases may be fatal. There are ten known genotypes based on sequencing the major outer-membrane protein gene, ompA, of C. psittaci. Each genotype has overlapping host preferences and virulence characteristics. Recent studies have compared C. psittaci among other members of the Chlamydiaceae family and showed that this species frequently switches hosts and has undergone multiple genomic rearrangements. In this study, we sequenced five genomes of C. psittaci strains representing four genotypes, A, B, D and E. Due to the known association of the type III secretion system (T3SS) and polymorphic outer-membrane proteins (Pmps) with host tropism and virulence potential, we performed a comparative analysis of these elements among these five strains along with a representative genome from each of the remaining six genotypes previously sequenced. We found significant genetic variation in the Pmps and tbl3SS genes that may partially explain differences noted in C. psittaci host infection and disease.
Collapse
Affiliation(s)
- Bernard J Wolff
- 1Infectious Diseases Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA, USA 2Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Shatavia S Morrison
- 2Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Denise Pesti
- 1Infectious Diseases Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Satishkumar Ranganathan Ganakammal
- 3The National Center for Emerging and Zoonotic Infectious Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ganesh Srinivasamoorthy
- 3The National Center for Emerging and Zoonotic Infectious Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Shankar Changayil
- 3The National Center for Emerging and Zoonotic Infectious Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - M Ryan Weil
- 3The National Center for Emerging and Zoonotic Infectious Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Duncan MacCannell
- 3The National Center for Emerging and Zoonotic Infectious Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lori Rowe
- 3The National Center for Emerging and Zoonotic Infectious Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michael Frace
- 3The National Center for Emerging and Zoonotic Infectious Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Branson W Ritchie
- 1Infectious Diseases Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Deborah Dean
- 4Children's Hospital Oakland Research Institute, Oakland, CA 5UCSF and UC Berkeley Joint Graduate Program in Bioengineering, Oakland, CA
| | - Jonas M Winchell
- 2Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
50
|
Borges V, Gomes JP. Deep comparative genomics among Chlamydia trachomatis lymphogranuloma venereum isolates highlights genes potentially involved in pathoadaptation. INFECTION GENETICS AND EVOLUTION 2015; 32:74-88. [PMID: 25745888 DOI: 10.1016/j.meegid.2015.02.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/23/2015] [Accepted: 02/26/2015] [Indexed: 11/19/2022]
Abstract
Lymphogranuloma venereum (LGV) is a human sexually transmitted disease caused by the obligate intracellular bacterium Chlamydia trachomatis (serovars L1-L3). LGV clinical manifestations range from severe ulcerative proctitis (anorectal syndrome), primarily caused by the epidemic L2b strains, to painful inguinal lymphadenopathy (the typical LGV bubonic form). Besides potential host-related factors, the differential disease severity and tissue tropism among LGV strains is likely a function of the genetic backbone of the strains. We aimed to characterize the genetic variability among LGV strains as strain- or serovar-specific mutations may underlie phenotypic signatures, and to investigate the mutational events that occurred throughout the pathoadaptation of the epidemic L2b lineage. By analyzing 20 previously published genomes from L1, L2, L2b and L3 strains and two new genomes from L2b strains, we detected 1497 variant sites and about 100 indels, affecting 453 genes and 144 intergenic regions, with 34 genes displaying a clear overrepresentation of nonsynonymous mutations. Effectors and/or type III secretion substrates (almost all of those described in the literature) and inclusion membrane proteins showed amino acid changes that were about fivefold more frequent than silent changes. More than 120 variant sites occurred in plasmid-regulated virulence genes, and 66% yielded amino acid changes. The identified serovar-specific variant sites revealed that the L2b-specific mutations are likely associated with higher fitness and pointed out potential targets for future highly discriminatory diagnostic/typing tests. By evaluating the evolutionary pathway beyond the L2b clonal radiation, we observed that 90.2% of the intra-L2b variant sites occurring in coding regions involve nonsynonymous mutations, where CT456/tarp has been the main target. Considering the progress on C. trachomatis genetic manipulation, this study may constitute an important contribution for prioritizing study targets for functional genomics aiming to dissect the impact of the identified intra-LGV polymorphisms on virulence or tropism dissimilarities among LGV strains.
Collapse
Affiliation(s)
- Vítor Borges
- Reference Laboratory of Bacterial Sexually Transmitted Infections, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal; Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - João Paulo Gomes
- Reference Laboratory of Bacterial Sexually Transmitted Infections, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal; Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal.
| |
Collapse
|