1
|
Kaimala S, Lootah SS, Mehra N, Kumar CA, Marzooqi SA, Sampath P, Ansari SA, Emerald BS. The Long Non-Coding RNA Obesity-Related (Obr) Contributes To Lipid Metabolism Through Epigenetic Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401939. [PMID: 38704700 PMCID: PMC11234455 DOI: 10.1002/advs.202401939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Indexed: 05/07/2024]
Abstract
Obesity is a multifactorial disease that is part of today's epidemic and also increases the risk of other metabolic diseases. Long noncoding RNAs (lncRNAs) provide one tier of regulatory mechanisms to maintain metabolic homeostasis. Although lncRNAs are a significant constituent of the mammalian genome, studies aimed at their metabolic significance, including obesity, are only beginning to be addressed. Here, a developmentally regulated lncRNA, termed as obesity related (Obr), whose expression in metabolically relevant tissues such as skeletal muscle, liver, and pancreas is altered in diet-induced obesity, is identified. The Clone 9 cell line and high-fat diet-induced obese Wistar rats are used as a model system to verify the function of Obr. By using stable expression and antisense oligonucleotide-mediated downregulation of the expression of Obr followed by different molecular biology experiments, its role in lipid metabolism is verified. It is shown that Obr associates with the cAMP response element-binding protein (Creb) and activates different transcription factors involved in lipid metabolism. Its association with the Creb histone acetyltransferase complex, which includes the cAMP response element-binding protein (CBP) and p300, positively regulates the transcription of genes involved in lipid metabolism. In addition, Obr is regulated by Pparγ in response to lipid accumulation.
Collapse
Affiliation(s)
- Suneesh Kaimala
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, Al Ain, P.O. Box 15551, UAE
| | - Shareena Saeed Lootah
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, Al Ain, P.O. Box 15551, UAE
| | - Neha Mehra
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, Al Ain, P.O. Box 15551, UAE
| | - Challagandla Anil Kumar
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, Al Ain, P.O. Box 15551, UAE
| | - Saeeda Al Marzooqi
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, P.O. Box 15551, UAE
| | - Prabha Sampath
- A*STAR Skin Research Laboratory, Agency for Science Technology & Research (A*STAR), Singapore, 138648, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- Genome Institute of Singapore, Agency for Science Technology & Research (A*STAR), Singapore, 138672, Singapore
| | - Suraiya Anjum Ansari
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, P.O. Box 15551, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, P.O. Box 15551, UAE
- ASPIRE Precision Medicine, Research Institute Abu Dhabi, Al Ain, Abu Dhabi, P.O. Box 15551, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, Al Ain, P.O. Box 15551, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, P.O. Box 15551, UAE
- ASPIRE Precision Medicine, Research Institute Abu Dhabi, Al Ain, Abu Dhabi, P.O. Box 15551, UAE
| |
Collapse
|
2
|
Bai Y, Li J, Wei Y, Chen Z, Liu Z, Guo D, Jia X, Niu Y, Shi B, Zhang X, Zhao Z, Hu J, Han X, Wang J, Liu X, Li S. Proteome Analysis Related to Unsaturated Fatty Acid Synthesis by Interfering with Bovine Adipocyte ACSL1 Gene. Antioxidants (Basel) 2024; 13:641. [PMID: 38929080 PMCID: PMC11200461 DOI: 10.3390/antiox13060641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Unsaturated fatty acids (UFAs) in beef play a vital role in promoting human health. Long-chain fatty acyl-CoA synthase 1 (ACSL1) is a crucial gene for UFA synthesis in bovine adipocytes. To investigate the protein expression profile during UFA synthesis, we performed a proteomic analysis of bovine adipocytes by RNA interference and non-interference with ACSL1 using label-free techniques. A total of 3558 proteins were identified in both the NC and si-treated groups, of which 1428 were differentially expressed proteins (DEPs; fold change ≥ 1.2 or ≤ 0.83 and p-value < 0.05). The enrichment analysis of the DEPs revealed signaling pathways related to UFA synthesis or metabolism, including cAMP, oxytocin, fatty acid degradation, glycerol metabolism, insulin, and the regulation of lipolysis in adipocytes (p-value < 0.05). Furthermore, based on the enrichment analysis of the DEPs, we screened 50 DEPs that potentially influence the synthesis of UFAs and constructed an interaction network. Moreover, by integrating our previously published transcriptome data, this study established a regulatory network involving differentially expressed long non-coding RNAs (DELs), highlighting 21 DEPs and 13 DELs as key genes involved in UFA synthesis. These findings present potential candidate genes for further investigation into the molecular mechanisms underlying UFA synthesis in bovines, thereby offering insights to enhance the quality of beef and contribute to consumer health in future studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.B.); (J.L.); (Y.W.); (Z.C.); (Z.L.); (D.G.); (X.J.); (Y.N.); (B.S.); (X.Z.); (X.H.); (J.W.); (X.L.); (S.L.)
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.B.); (J.L.); (Y.W.); (Z.C.); (Z.L.); (D.G.); (X.J.); (Y.N.); (B.S.); (X.Z.); (X.H.); (J.W.); (X.L.); (S.L.)
| | | | | | | | | |
Collapse
|
3
|
Liu Y, He T, Li Z, Sun Z, Wang S, Shen H, Hou L, Li S, Wei Y, Zhuo B, Li S, Zhou C, Guo H, Zhang R, Li B. TET2 is recruited by CREB to promote Cebpb, Cebpa, and Pparg transcription by facilitating hydroxymethylation during adipocyte differentiation. iScience 2023; 26:108312. [PMID: 38026190 PMCID: PMC10663734 DOI: 10.1016/j.isci.2023.108312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/10/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Ten-eleven translocation proteins (TETs) are dioxygenases that convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), an important epigenetic mark that regulates gene expression during development and differentiation. Here, we found that the TET2 expression was positively associated with adipogenesis. Further, in vitro and in vivo experiments showed that TET2 deficiency blocked adipogenesis by inhibiting the expression of the key transcription factors CCAAT/enhancer-binding protein beta (C/EBPβ), C/EBPα and peroxisome proliferator-activated receptor gamma (PPARγ). In addition, TET2 promoted 5hmC on the CpG islands (CGIs) of Cebpb, Cebpa and Pparg at the initial time point of their transcription, which requires the cAMP-responsive element-binding protein (CREB). At last, specific knockout of Tet2 in preadipocytes enabled mice to resist obesity and attenuated the obesity-associated insulin resistance. Together, TET2 is recruited by CREB to promote the expression of Cebpb, Cebpa and Pparg via 5hmC during adipogenesis and may be a potential therapeutic target for obesity and insulin resistance.
Collapse
Affiliation(s)
- Yunjia Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Ting He
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Zhuofang Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Zhen Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Shuai Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
- Department of Cardiology, Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Huanming Shen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Lingfeng Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Shengnan Li
- School of Medicine, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| | - Yixin Wei
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Bingzhao Zhuo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Shanni Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Can Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Huiling Guo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| | - Rui Zhang
- Xiamen Cell Therapy Research Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China
| | - Boan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361100, China
| |
Collapse
|
4
|
Kawasaki T, Fujimori KE, Imada J, Yuba S. Analysis of medaka GAP43 gene promoter activity in transgenic lines. Gene 2023:147590. [PMID: 37364694 DOI: 10.1016/j.gene.2023.147590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/03/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
We produced transgenic medaka fish lines that mimicked the expression of the GAP43 gene. Fish lines with the proximal 2-kilobase (kb) 5'-untranslated region (UTR) as the expression promoter specifically expressed enhanced green fluorescent protein (EGFP) in neural tissues, such as the brain, spinal cord, and peripheral nerves, and its expression decreased with growth, but persisted until adulthood. A functional analysis of the promoter using partially deleted UTRs revealed that functions related to neural tissue-specific promoter activity were widely distributed in the region upstream of the proximal 400-b. Furthermore, the distal half of the 2-kb UTR contributed to expression throughout the brain, while the region 400-b upstream of the proximal 600-b was strongly associated with expression in specific areas, such as the telencephalon. In addition, a region from 957 to 557 b upstream of the translation initiation site was important for the long-term maintenance of promoter activity into adulthood. Among the transcription factors with recognition sequences in this region, Sp1 and CREB1 have been suggested to play important roles in the GAP43 promoter expression characteristics, such as strong expression in the telencephalon and long-term maintenance of expression.
Collapse
Affiliation(s)
- Takashi Kawasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Kazuhiro E Fujimori
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki 305-0046, Japan.
| | - Junko Imada
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Shunsuke Yuba
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Midorigaoka, Ikeda, Osaka, 563-8577, Japan.
| |
Collapse
|
5
|
Desouza LA, Benekareddy M, Fanibunda SE, Mohammad F, Janakiraman B, Ghai U, Gur T, Blendy JA, Vaidya VA. The Hallucinogenic Serotonin 2A Receptor Agonist, 2,5-Dimethoxy-4-Iodoamphetamine, Promotes cAMP Response Element Binding Protein-Dependent Gene Expression of Specific Plasticity-Associated Genes in the Rodent Neocortex. Front Mol Neurosci 2022; 14:790213. [PMID: 35002622 PMCID: PMC8739224 DOI: 10.3389/fnmol.2021.790213] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/26/2021] [Indexed: 12/27/2022] Open
Abstract
Psychedelic compounds that target the 5-HT2A receptor are reported to evoke psychoplastogenic effects, including enhanced dendritic arborization and synaptogenesis. Transcriptional regulation of neuronal plasticity-associated genes is implicated in the cytoarchitectural effects of serotonergic psychedelics, however, the transcription factors that drive this regulation are poorly elucidated. Here, we addressed the contribution of the transcription factor cyclic adenosine monophosphate (cAMP)-response element binding protein (CREB) in the regulation of neuronal plasticity-associated genes by the hallucinogenic 5-HT2A receptor agonist, 2,5-dimethoxy-4-iodoamphetamine (DOI). In vitro studies with rat cortical neurons indicated that DOI enhances the phosphorylation of CREB (pCREB) through mitogen-activated protein (MAP) kinase and calcium/calmodulin dependent kinase II (CaMKII) pathways, with both cascades contributing to the DOI-evoked upregulation of Arc, Bdnf1, Cebpb, and Egr2 expression, whilst the upregulation of Egr1 and cFos mRNA involved the MAP kinase and CaMKII pathway respectively. We observed a robust DOI-evoked increase in the expression of several neuronal plasticity-associated genes in the rat neocortex in vivo. This DOI-evoked upregulation of neuronal plasticity-associated genes was completely blocked by the 5-HT2A receptor antagonist MDL100,907 in vitro and was also abrogated in the neocortex of 5-HT2A receptor deficient mice. Further, 5-HT2A receptor stimulation enhanced pCREB enrichment at putative cAMP response element (CRE) binding sites in the Arc, Bdnf1, Cebpb, cFos, but not Egr1 and Egr2, promoters in the rodent neocortex. The DOI-mediated transcriptional induction of Arc, cFos and Cebpb was significantly attenuated in the neocortex of CREB deficient/knockout (CREBαδ KO) mice. Collectively, these results indicate that the hallucinogenic 5-HT2A receptor agonist DOI leads to a rapid transcriptional upregulation of several neuronal plasticity-associated genes, with a subset of them exhibiting a CREB-dependent regulation. Our findings raise the intriguing possibility that similar to slow-acting classical antidepressants, rapid-action serotonergic psychedelics that target the 5-HT2A receptor may also recruit the transcription factor CREB to enhance the expression of neuronal plasticity-associated genes in the neocortex, which could in turn contribute to the rapid psychoplastogenic changes evoked by these compounds.
Collapse
Affiliation(s)
- Lynette A Desouza
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Madhurima Benekareddy
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sashaina E Fanibunda
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.,Medical Research Centre, Kasturba Health Society, Mumbai, India
| | - Farhan Mohammad
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Balaganesh Janakiraman
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Utkarsha Ghai
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Tamar Gur
- Department of Psychiatry and Behavioral Health, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
6
|
Adipocyte Biology from the Perspective of In Vivo Research: Review of Key Transcription Factors. Int J Mol Sci 2021; 23:ijms23010322. [PMID: 35008748 PMCID: PMC8745732 DOI: 10.3390/ijms23010322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity and type 2 diabetes are both significant contributors to the contemporary pandemic of non-communicable diseases. Both disorders are interconnected and associated with the disruption of normal homeostasis in adipose tissue. Consequently, exploring adipose tissue differentiation and homeostasis is important for the treatment and prevention of metabolic disorders. The aim of this work is to review the consecutive steps in the postnatal development of adipocytes, with a special emphasis on in vivo studies. We gave particular attention to well-known transcription factors that had been thoroughly described in vitro, and showed that the in vivo research of adipogenic differentiation can lead to surprising findings.
Collapse
|
7
|
Yang ZS, Pan HY, Shi WW, Chen ST, Wang Y, Li MY, Zhang HY, Yang C, Liu AX, Yang ZM. Regulation and Function of Laminin A5 during Mouse and Human Decidualization. Int J Mol Sci 2021; 23:199. [PMID: 35008625 PMCID: PMC8745792 DOI: 10.3390/ijms23010199] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 01/03/2023] Open
Abstract
Decidualization is essential to the establishment of pregnancy in rodents and primates. Laminin A5 (encoding by Laminin α5) is a member of the laminin family, which is mainly expressed in the basement membranes. Although laminins regulate cellular phenotype maintenance, adhesion, migration, growth, and differentiation, the expression, function, and regulation of laminin A5 during early pregnancy are still unknown. Therefore, we investigated the expression and role of laminin A5 during mouse and human decidualization. Laminin A5 is highly expressed in mouse decidua and artificially induced deciduoma. Laminin A5 is significantly increased under in vitro decidualization. Laminin A5 knockdown significantly inhibits the expression of Prl8a2, a marker for mouse decidualization. Progesterone stimulates the expression of laminin A5 in ovariectomized mouse uterus and cultured mouse stromal cells. We also show that progesterone regulates laminin A5 through the PKA-CREB-C/EBPβ pathway. Laminin A5 is also highly expressed in human pregnant decidua and cultured human endometrial stromal cells during in vitro decidualization. Laminin A5 knockdown by siRNA inhibits human in vitro decidualization. Collectively, our study reveals that laminin A5 may play a pivotal role during mouse and human decidualization via the PKA-CREB-C/EBPβ pathway.
Collapse
Affiliation(s)
- Zhen-Shan Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.-S.Y.); (H.-Y.P.); (W.-W.S.); (S.-T.C.); (Y.W.); (M.-Y.L.); (H.-Y.Z.); (C.Y.)
| | - Hai-Yang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.-S.Y.); (H.-Y.P.); (W.-W.S.); (S.-T.C.); (Y.W.); (M.-Y.L.); (H.-Y.Z.); (C.Y.)
| | - Wen-Wen Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.-S.Y.); (H.-Y.P.); (W.-W.S.); (S.-T.C.); (Y.W.); (M.-Y.L.); (H.-Y.Z.); (C.Y.)
| | - Si-Ting Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.-S.Y.); (H.-Y.P.); (W.-W.S.); (S.-T.C.); (Y.W.); (M.-Y.L.); (H.-Y.Z.); (C.Y.)
| | - Ying Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.-S.Y.); (H.-Y.P.); (W.-W.S.); (S.-T.C.); (Y.W.); (M.-Y.L.); (H.-Y.Z.); (C.Y.)
| | - Meng-Yuan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.-S.Y.); (H.-Y.P.); (W.-W.S.); (S.-T.C.); (Y.W.); (M.-Y.L.); (H.-Y.Z.); (C.Y.)
| | - Hai-Yi Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.-S.Y.); (H.-Y.P.); (W.-W.S.); (S.-T.C.); (Y.W.); (M.-Y.L.); (H.-Y.Z.); (C.Y.)
| | - Chen Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.-S.Y.); (H.-Y.P.); (W.-W.S.); (S.-T.C.); (Y.W.); (M.-Y.L.); (H.-Y.Z.); (C.Y.)
| | - Ai-Xia Liu
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Xueshi Road, Hangzhou 310006, China
| | - Zeng-Ming Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Z.-S.Y.); (H.-Y.P.); (W.-W.S.); (S.-T.C.); (Y.W.); (M.-Y.L.); (H.-Y.Z.); (C.Y.)
| |
Collapse
|
8
|
AlSudais H, Wiper-Bergeron N. From quiescence to repair: C/EBPβ as a regulator of muscle stem cell function in health and disease. FEBS J 2021; 289:6518-6530. [PMID: 34854237 DOI: 10.1111/febs.16307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/21/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022]
Abstract
CCAAT/Enhancer Binding protein beta (C/EBPβ) is a transcriptional regulator involved in numerous physiological processes. Herein, we describe a role for C/EBPβ as a regulator of skeletal muscle stem cell function. In particular, C/EBPβ is expressed in muscle stem cells in healthy muscle where it inhibits myogenic differentiation. Downregulation of C/EBPβ expression at the protein and transcriptional level allows for differentiation. Persistence of C/EBPβ promotes stem cell self-renewal and C/EBPβ expression is required for mitotic quiescence in this cell population. As a critical regulator of skeletal muscle homeostasis, C/EBPβ expression is stimulated in pathological conditions such as cancer cachexia, which perturbs muscle regeneration and promotes myofiber atrophy in the context of systemic inflammation. C/EBPβ is also an important regulator of cytokine expression and immune response genes, a mechanism by which it can influence muscle stem cell function. In this viewpoint, we describe a role for C/EBPβ in muscle stem cells and propose a functional intersection between C/EBPβ and NF-kB action in the regulation of cancer cachexia.
Collapse
Affiliation(s)
- Hamood AlSudais
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Canada.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Nadine Wiper-Bergeron
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Canada
| |
Collapse
|
9
|
Peng H, Tian X, Gan L, Yang X. Nobiletin promotes adipogenesis in 3T3-L1 cells through the activation of Akt. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Juban G. Transcriptional control of macrophage inflammatory shift during skeletal muscle regeneration. Semin Cell Dev Biol 2021; 119:82-88. [PMID: 34183241 DOI: 10.1016/j.semcdb.2021.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 01/05/2023]
Abstract
Skeletal muscle is a tissue able to fully regenerate after an acute injury. Macrophages play an essential role during skeletal muscle regeneration. Resolution of inflammation is a crucial step during the regeneration process, allowing to contain the inflammatory response to avoid damage of the healthy surrounding muscle and triggers the recovery phase during which the muscle regenerates. Resolution of inflammation is mainly mediated by macrophage phenotypic shift that is the transition from a pro-inflammatory damage associated profile towards an anti-inflammatory restorative phenotype, which is characterized by a major transcriptional rewiring. Failure of the resolution of inflammation is observed in chronic diseases such as degenerative myopathies where permanent asynchronous muscle injuries trigger contradictory inflammatory cues, leading to fibrosis and alteration of muscle function. This review will focus on the described molecular pathways that control macrophage inflammatory shift during skeletal muscle regeneration. First, we will highlight the transcriptional changes that characterize macrophage inflammatory shift during skeletal muscle regeneration. Then, we will describe how the signaling pathways and the metabolic changes associated with this shift are controlled. Finally, we will emphasize the transcription factors involved.
Collapse
Affiliation(s)
- Gaëtan Juban
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, Université de Lyon, Lyon, France.
| |
Collapse
|
11
|
Paspala A, Papakonstantinou D, Prodromidou A, Danias N, Machairas A, Agrogiannis G, Machairas N, Zavras NJ, Patapis P, Pikoulis E. The Effects of Ursodeoxycholic Acid Pretreatment in an Experimental Setting of Extended Hepatectomy: A Feasibility Study. Cureus 2020; 12:e12120. [PMID: 33489534 PMCID: PMC7810173 DOI: 10.7759/cureus.12120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction Liver regeneration is an exceptionally complex process, orchestrated by a multitude of growth factors and cytokines. Tumor necrosis factor-alpha (TNF-a) and interleukin-6 (Il-6) have a pivotal role in the initiation of the regenerative response. Ursodeoxycholic acid (UDCA) exhibits a liver protective effect that enhances liver growth after injury. The aim of the present study is to evaluate the effect of UDCA in the circulating levels of TNF-a and Il-6 in rats undergoing extended 80% hepatectomy. Materials and methods Twenty-two male Sprague Dawley rats were randomly assigned in an experimental (UDCA group) and a control group. Mice in the UDCA-group received oral pretreatment of UDCA for two weeks preoperatively at a dosage of 25 mg/kg/day. An 80% hepatic resection was performed in both groups by resecting the middle, inferior right, and left lateral liver lobes. The experiment ended 48 hours postoperatively. Results UDCA pretreatment significantly depressed circulating levels of both TNF-a and Il-6 after the conclusion of the experiment as compared to the control group (p=0.001 and p=0.01, respectively). Furthermore, TNF-a levels were significantly reduced before the institution of liver injury (p=0.02). Mice in the UDCA-group exhibited better liver growth as demonstrated by significantly increased Ki-67 and mitotic rate (p=0.04 and p=0.02, respectively). Finally, the liver regeneration rate (LRR) was significantly elevated in the experimental group (UDCA group, 54.5% vs control group, 35.8%; p=0.002) signifying enhanced liver growth kinetics. Conclusion UDCA reduces the expression of TNF-a and Il-6 during the priming phase of liver regeneration. An 80% hepatectomy model of acute liver failure exhibited enhanced liver regeneration in the experimental group, plausibly due to the immunomodulatory effects of UDCA.
Collapse
Affiliation(s)
- Anna Paspala
- Third Department of Surgery, Attikon University General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, GRC
| | - Dimitrios Papakonstantinou
- Third Department of Surgery, Attikon University General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, GRC
| | - Anastasia Prodromidou
- Obstetrics and Gynecology, Alexandra Hospital, National and Kapodistrian University of Athens, Athens, GRC
| | - Nick Danias
- Fourth Department of Surgery, Attikon University General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, GRC
| | - Anastasios Machairas
- Third Department of Surgery, Attikon University General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, GRC
| | - Georgios Agrogiannis
- First Department of Pathology, National and Kapodistrian University of Athens, Faculty of Medicine, Athens, GRC
| | - Nikolaos Machairas
- Third Department of Surgery, Attikon University General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, GRC
| | - Nikolaos J Zavras
- Third Department of Surgery, Attikon University General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, GRC
| | - Paulos Patapis
- Third Department of Surgery, Attikon University General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, GRC
| | - Emmanouil Pikoulis
- Third Department of Surgery, Attikon University General Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, GRC
| |
Collapse
|
12
|
Wang X, Li A, Raza SHA, Liang C, Zhang S, Mei C, Yang W, Zan L. Transcription Factors ZEB1 and CREB Promote the Transcription of Bovine ABHD5 Gene. DNA Cell Biol 2020; 40:219-230. [PMID: 33332227 DOI: 10.1089/dna.2020.5994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alpha/beta hydrolase domain 5 (ABHD5) plays a significant role in intracellular lipid metabolism, which is regulated by a complex network of transcription factors. The transcriptional regulation of the ABHD5 gene in cattle and other livestock, however, has not been previously investigated. Investigations in humans and animal models indicate that the transcription factors zinc finger E-box binding homeobox 1 (ZEB1) and cAMP-response element binding protein (CREB) may play important roles in the transcriptional regulation of ABHD5 in cattle. Our comparison of the sequence similarities in the transcription factor binding sites in Bos taurus, Bos indicus, Bos mutus, and Homo sapiens revealed high homology. Based on the data collected by the Cistrome Data Browser and its visualization window, we found that ZEB1 and CREB have significant ChIP-seq enrichments in the 5'-untranslated region (5' UTR) of the human ABHD5 gene. In bovine adipocytes, we detected ZEB1 and CREB binding sites in the ABHD5 gene. Mutations in the ZEB1 and CREB binding sites significantly reduced the promoter activity (p < 0.05 and p < 0.01, respectively). Moreover, electrophoretic mobility shift assays and chromatin immunoprecipitation (ChIP) assays demonstrated the binding of the transcription factors in vivo and in vitro, respectively. And overexpression or silencing the expression of the ZEB1 and CREB, respectively, resulted in significant changes to the ABHD5 promoter activity. Collectively, these results indicate that ZEB1 and CREB are important transcription factors that regulate ABHD5 gene expression in bovine adipocytes. They further our understanding of the transcriptional regulation and biological functions of the bovine ABHD5 gene.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chengcheng Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Song Zhang
- Research Centre for Animal Genome, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chugang Mei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
13
|
Polumuri S, Perkins DJ, Vogel SN. cAMP levels regulate macrophage alternative activation marker expression. Innate Immun 2020; 27:133-142. [PMID: 33241977 PMCID: PMC7882807 DOI: 10.1177/1753425920975082] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The capacity for macrophages to polarize into distinct functional activation states (e.g., M1, M2) is critical to tune an inflammatory response to the relevant infection or injury. Alternative or M2 polarization of macrophages is most often achieved in vitro in response to IL-4/IL-13 and results in the transcriptional up-regulation of a constellation of characteristic M2 marker genes. In vivo, additional signals from the inflammatory milieu can further increase or decrease M2 marker expression. Particularly, activation of cAMP-generating G protein-coupled receptors is reported to increase M2 markers, but whether this is strictly dependent upon cAMP production is unclear. We report herein that increased cAMP alone can increase IL-4-dependent M2 marker expression through a PKA/C/EBPβ/CREB dependent pathway in murine macrophages.
Collapse
Affiliation(s)
- Swamy Polumuri
- Food and Drug Administration (FDA), White Oak Campus, Silver Spring, MD, USA
| | - Darren J Perkins
- Department of Microbiology and Immunology, University of Maryland, Baltimore (UMB), School of Medicine, Baltimore, MD, USA
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland, Baltimore (UMB), School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Smolen P, Wood MA, Baxter DA, Byrne JH. Modeling suggests combined-drug treatments for disorders impairing synaptic plasticity via shared signaling pathways. J Comput Neurosci 2020; 49:37-56. [PMID: 33175283 DOI: 10.1007/s10827-020-00771-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 08/27/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Genetic disorders such as Rubinstein-Taybi syndrome (RTS) and Coffin-Lowry syndrome (CLS) cause lifelong cognitive disability, including deficits in learning and memory. Can pharmacological therapies be suggested that improve learning and memory in these disorders? To address this question, we simulated drug effects within a computational model describing induction of late long-term potentiation (L-LTP). Biochemical pathways impaired in these and other disorders converge on a common target, histone acetylation by acetyltransferases such as CREB binding protein (CBP), which facilitates gene induction necessary for L-LTP. We focused on four drug classes: tropomyosin receptor kinase B (TrkB) agonists, cAMP phosphodiesterase inhibitors, histone deacetylase inhibitors, and ampakines. Simulations suggested each drug type alone may rescue deficits in L-LTP. A potential disadvantage, however, was the necessity of simulating strong drug effects (high doses), which could produce adverse side effects. Thus, we investigated the effects of six drug pairs among the four classes described above. These combination treatments normalized impaired L-LTP with substantially smaller individual drug 'doses'. In addition three of these combinations, a TrkB agonist paired with an ampakine and a cAMP phosphodiesterase inhibitor paired with a TrkB agonist or an ampakine, exhibited strong synergism in L-LTP rescue. Therefore, we suggest these drug combinations are promising candidates for further empirical studies in animal models of genetic disorders that impair histone acetylation, L-LTP, and learning.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
| | - Douglas A Baxter
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - John H Byrne
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| |
Collapse
|
15
|
Al-Ghamdi TH, Atta IS. Efficacy of interleukin-6 in the induction of liver cell proliferation after hemi-hepatectomy: histopathologic and immunohistochemical study. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:1540-1549. [PMID: 32782672 PMCID: PMC7414478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION The function of Interleukin-6 (IL-6) in the regenerative process is not fully understood. The aim was to show the IL-6 role in hepatocyte regeneration by identifying the proliferative rate of hepatocytes following partial hepatectomy. MATERIAL AND METHODS Eighty male adult Sprague-Dawley rats were categorized into two equivalent groups (n = 40 rats); non-treated, and treated group with IL-6 of 35 µg/100 gm body weight according to lethality study for a four-day observation. Both groups were subjected to 70% hepatic resection. Liver specimens were taken for histo/immunohistochemical studies. Five measures were investigated histopathologically; binucleation, mitoses, thickening of the hepatic plate, ductular reaction, and presence of inflammatory cells. Ki-67 labeling index was evaluated using mouse anti-Ki-67 antibody. RESULTS In non-treated group; binucleation and multinucleation were noted in 12 cases (30%), bizarre cells with abnormal mitoses 16 cases (42%), and thickening of liver cell plate 18 cases (45%), in contrast to 32 (80%), 30 (75%) and 28 (70%), in treated group. Patches of inflammatory infiltrate were more marked in the treated group. Ki-67 labeling index was higher in the treated group (p-value 0.00001). The degree of Ki-67 reactivity in the treated group was: negative 6 (15%), weak 6 (15%), moderate 16 (40%) and strong 12 (30%) compared with 18 (45%), 13 (32.5%), 6 (15%) and strong 3 (7.5%) in non-treated group. CONCLUSION IL-6 is valuable in the induction of liver cell regeneration. Correlation with biochemical assay and flow cytometric studies is recommended.
Collapse
Affiliation(s)
| | - Ihab Shafek Atta
- Pathology Department Faculty of Medicine, Assuit, Al-Azhar UniversityEgypt
- Pathology Department Faculty of Medicine, Albaha UniversityKSA
| |
Collapse
|
16
|
Xu F, Hua C, Tautenhahn HM, Dirsch O, Dahmen U. The Role of Autophagy for the Regeneration of the Aging Liver. Int J Mol Sci 2020; 21:ijms21103606. [PMID: 32443776 PMCID: PMC7279469 DOI: 10.3390/ijms21103606] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Age is one of the key risk factors to develop malignant diseases leading to a high incidence of hepatic tumors in the elderly population. The only curative treatment for hepatic tumors is surgical removal, which initiates liver regeneration. However, liver regeneration is impaired with aging, leading to an increased surgical risk for the elderly patient. Due to the increased risk, those patients are potentially excluded from curative surgery. Aging impairs autophagy via lipofuscin accumulation and inhibition of autophagosome formation. Autophagy is a recycling mechanism for eukaryotic cells to maintain homeostasis. Its principal function is to degrade endogenous bio-macromolecules for recycling cellular substances. A number of recent studies have shown that the reduced regenerative capacity of the aged remnant liver can be restored by promoting autophagy. Autophagy can be activated via multiple mTOR-dependent and mTOR-independent pathways. However, inducing autophagy through the mTOR-dependent pathway alone severely impairs liver regeneration. In contrast, recent observations suggest that inducing autophagy via mTOR-independent pathways might be promising in promoting liver regeneration. Conclusion: Activation of autophagy via an mTOR-independent autophagy inducer is a potential therapy for promoting liver regeneration, especially in the elderly patients at risk.
Collapse
Affiliation(s)
- Fengming Xu
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany; (F.X.); (C.H.); (H.-M.T.)
| | - Chuanfeng Hua
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany; (F.X.); (C.H.); (H.-M.T.)
| | - Hans-Michael Tautenhahn
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany; (F.X.); (C.H.); (H.-M.T.)
| | - Olaf Dirsch
- Institute of Pathology, Klinikum Chemnitz gGmbH, 09111 Chemnitz, Germany;
| | - Uta Dahmen
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany; (F.X.); (C.H.); (H.-M.T.)
- Correspondence: ; Tel.: +49-03641-9325350
| |
Collapse
|
17
|
Chaurasiya V, Kumari S, Onteru SK, Singh D. miR-326 down-regulate CYP19A1 expression and estradiol-17b production in buffalo granulosa cells through CREB and C/EBP-β. J Steroid Biochem Mol Biol 2020; 199:105608. [PMID: 31996328 DOI: 10.1016/j.jsbmb.2020.105608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/02/2020] [Accepted: 01/24/2020] [Indexed: 01/17/2023]
Abstract
Ovarian granulosa cells, known to be endocrine cells, have well active TLR4-/NFKB signalling mediated innate immune capabilities. We have previously shown that endotoxin not only transiently regulates proinflammatory cytokines but cells become tolerant on repeated exposure to endotoxin and impaired granulosa cells functions, which includes downregulation of CYP19A1 gene. To understand further endotoxin tolerance and impaired granulosa cells function, genome-wide transcriptomic profiling in endotoxin tolerant buffalo granulosa cells (bGCs) identified miR-326 as upregulated amongst top 5 DE miRNAs [unpublished data] and qPCR validation confirmed its upregulation during endotoxin tolerance. In silico analyses showed that miR-326 targets CYP19A1 gene. Therefore, in the present study, we elucidated the role of miR-326 in buffalo granulosa cells (bGCs). We first validated its expression vis-à-vis CYP19A1 gene expression in bGCs, both in vivo and in vitro. Results showed an inverse relationship between miR-326 and CYP19A1 expression. Similarly, transcription factors, known to be involved in CYP19A1 gene regulation, CREB and C/EBP-β expression was also found to be decreased in granulosa cells mimicking pre-ovulatory follicular stage. Further, miR-326 mimic was transfected to bGCs in culture and expression of CYP19A1 and CREB & C/EBP-β and genes encoding other enzymes of steroidogenesis pathway were also analyzed. The present study results showed that miR-326 significantly inhibits the expression of CYP19A1 gene while expression of transcription factors CREB and C/EBP-β was found to be upregulated. The expression of STAR and CYP11A1 was found to be unaffected. To elucidate the molecular mechanism of miR-326 mediated downregulation of CYP19A1, binding analyses of RNA polymerase II and CEBP-β to CYP19A1 gene promoter II was analyzed. The result also showed decreased binding of RNA polymerase II with increased binding of CEBP-β to CYP19A1 gene promoter II in bGCs, transfected with miR-326 as compared to control. In summary, our results suggest that miR-326 upregulate CREB and CREB may activate C/EBP-β and later inhibited the transcription of CYP19A1 and decreased estradiol-17b production. The miR-326 mediated down-regulation of the CYP19A1 gene involving CREB-C/EBP-β can be exploited in developing strategies to attenuate endotoxin-mediated tolerance induced impaired granulosa cells function to ensure proper fertility in females.
Collapse
Affiliation(s)
- Vaishali Chaurasiya
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Suman Kumari
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, 132001, Haryana, India.
| |
Collapse
|
18
|
Function and characterization of the promoter region of perilipin 1 (PLIN1): Roles of E2F1, PLAG1, C/EBPβ, and SMAD3 in bovine adipocytes. Genomics 2020; 112:2400-2409. [DOI: 10.1016/j.ygeno.2020.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/01/2020] [Accepted: 01/21/2020] [Indexed: 12/23/2022]
|
19
|
Rivi V, Benatti C, Colliva C, Radighieri G, Brunello N, Tascedda F, Blom JMC. Lymnaea stagnalis as model for translational neuroscience research: From pond to bench. Neurosci Biobehav Rev 2019; 108:602-616. [PMID: 31786320 DOI: 10.1016/j.neubiorev.2019.11.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/24/2019] [Accepted: 11/25/2019] [Indexed: 12/18/2022]
Abstract
The purpose of this review is to illustrate how a reductionistic, but sophisticated, approach based on the use of a simple model system such as the pond snail Lymnaea stagnalis (L. stagnalis), might be useful to address fundamental questions in learning and memory. L. stagnalis, as a model, provides an interesting platform to investigate the dialog between the synapse and the nucleus and vice versa during memory and learning. More importantly, the "molecular actors" of the memory dialogue are well-conserved both across phylogenetic groups and learning paradigms, involving single- or multi-trials, aversion or reward, operant or classical conditioning. At the same time, this model could help to study how, where and when the memory dialog is impaired in stressful conditions and during aging and neurodegeneration in humans and thus offers new insights and targets in order to develop innovative therapies and technology for the treatment of a range of neurological and neurodegenerative disorders.
Collapse
Affiliation(s)
- V Rivi
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - C Benatti
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - C Colliva
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - G Radighieri
- Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - N Brunello
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - F Tascedda
- Dept. of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - J M C Blom
- Dept. of Education and Human Sciences, University of Modena and Reggio Emilia, Modena, Italy; Centre of Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
20
|
Hernández-Díazcouder A, Romero-Nava R, Carbó R, Sánchez-Lozada LG, Sánchez-Muñoz F. High Fructose Intake and Adipogenesis. Int J Mol Sci 2019; 20:E2787. [PMID: 31181590 PMCID: PMC6600229 DOI: 10.3390/ijms20112787] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
In modern societies, high fructose intake from sugar-sweetened beverages has contributed to obesity development. In the diet, sucrose and high fructose corn syrup are the main sources of fructose and can be metabolized in the intestine and transported into the systemic circulation. The liver can metabolize around 70% of fructose intake, while the remaining is metabolized by other tissues. Several tissues including adipose tissue express the main fructose transporter GLUT5. In vivo, chronic fructose intake promotes white adipose tissue accumulation through activating adipogenesis. In vitro experiments have also demonstrated that fructose alone induces adipogenesis by several mechanisms, including (1) triglycerides and very-low-density lipoprotein (VLDL) production by fructose metabolism, (2) the stimulation of glucocorticoid activation by increasing 11β-HSD1 activity, and (3) the promotion of reactive oxygen species (ROS) production through uric acid, NOX and XOR expression, mTORC1 signaling and Ang II induction. Moreover, it has been observed that fructose induces adipogenesis through increased ACE2 expression, which promotes high Ang-(1-7) levels, and through the inhibition of the thermogenic program by regulating Sirt1 and UCP1. Finally, microRNAs may also be involved in regulating adipogenesis in high fructose intake conditions. In this paper, we propose further directions for research in fructose participation in adipogenesis.
Collapse
Affiliation(s)
- Adrián Hernández-Díazcouder
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
- Departamento de Ciencias de la Salud, Área de Investigación Médica, Universidad Autónoma Metropolitana Iztapalapa, Mexico city 09340, Mexico.
| | - Rodrigo Romero-Nava
- Departamento de Ciencias de la Salud, Área de Investigación Médica, Universidad Autónoma Metropolitana Iztapalapa, Mexico city 09340, Mexico.
- Laboratorio de investigación en Farmacología, Hospital Infantil de México Federico Gómez, Mexico city 06720, Mexico.
- Sección de Postgraduados, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico city 11340, Mexico.
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
| | - L Gabriela Sánchez-Lozada
- Laboratorio de Fisiopatología Renal, Departamento de Nefrología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
- Sección de Postgraduados, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico city 11340, Mexico.
| |
Collapse
|
21
|
Guindi C, Cloutier A, Gaudreau S, Zerif E, McDonald PP, Tatsiy O, Asselin C, Dupuis G, Gris D, Amrani AA. Role of the p38 MAPK/C/EBPβ Pathway in the Regulation of Phenotype and IL-10 and IL-12 Production by Tolerogenic Bone Marrow-Derived Dendritic Cells. Cells 2018; 7:cells7120256. [PMID: 30544623 PMCID: PMC6316502 DOI: 10.3390/cells7120256] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/28/2018] [Accepted: 12/04/2018] [Indexed: 01/06/2023] Open
Abstract
Dendritic cells (DCs) play a major role in innate and adaptive immunity and self-immune tolerance. Immunogenic versus tolerogenic DC functions are dictated by their levels of costimulatory molecules and their cytokine expression profile. The transcription factor C/EBPβ regulates the expression of several inflammatory genes in many cell types including macrophages. However, little is known regarding the role of C/EBPβ in tolerogenic versus immunogenic DCs functions. We have previously reported that bone marrow-derived DCs generated with GM-CSF (GM/DCs) acquire the signature of semi-mature tolerogenic IL-10-producing DCs as opposed to immunogenic DCs generated with GM-CSF and IL-4 (IL-4/DCs). Here, we show that tolerogenic GM/DCs exhibit higher levels of phosphorylation and enhanced DNA binding activity of C/EBPβ and CREB than immunogenic IL-4/DCs. We also show that the p38 MAPK/CREB axis and GSK3 play an important role in regulating C/EBPβ phosphorylation and DNA binding activity. Inhibition of p38 MAPK in GM/DCs resulted in a drastic decrease of C/EBPβ and CREB DNA binding activities, a reduction of their IL-10 production and an increase of their IL-12p70 production, a characteristic of immunogenic IL-4/DCs. We also present evidence that GSK3 inhibition in GM/DCs reduced C/EBPβ DNA binding activity and increased expression of costimulatory molecules in GM/DCs and their production of IL-10. Analysis of GM/DCs of C/EBPβ-/- mice showed that C/EBPβ was essential to maintain the semimature phenotype and the production of IL-10 as well as low CD4⁺ T cell proliferation. Our results highlight the importance of the p38MAPK-C/EBPβ pathway in regulating phenotype and function of tolerogenic GM/DCs.
Collapse
Affiliation(s)
- Chantal Guindi
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Alexandre Cloutier
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Simon Gaudreau
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Echarki Zerif
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Patrick P McDonald
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Olga Tatsiy
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Claude Asselin
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Gilles Dupuis
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Denis Gris
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - And Abdelaziz Amrani
- Immunology Division, Faculty of Medicine and Health Sciences and Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
22
|
Abstract
Macroautophagy/autophagy is vital for intracellular quality control and homeostasis. Therefore, careful regulation of autophagy is very important. In the past 10 years, a number of studies have reported that estrogenic effectors affect autophagy. However, some results, especially those regarding the modulatory effect of 17β-estradiol (E2) on autophagy seem inconsistent. Moreover, several clinical trials are already in place combining both autophagy inducers and autophagy inhibitors with endocrine therapies for breast cancer. Not all patients experience benefit, which further confuses and complicates our understanding of the main effects of autophagy in estrogen-related cancer. In view of the importance of the crosstalk between estrogen signaling and autophagy, this review summarizes the estrogenic effectors reported to affect autophagy, subcellular distribution and translocation of estrogen receptors, autophagy-targeted transcription factors (TFs), miRNAs, and histone modifications regulated by E2. Upon stimulation with estrogen, there will always be opposing functional actions, which might occur between different receptors, receptors on TFs, TFs on autophagy genes, or even histone modifications on transcription. The huge signaling network downstream of estrogen can promote autophagy and reduce overstimulated autophagy at the same time, which allows autophagy to be regulated by estrogen in a restricted range. To help understand how the estrogenic regulation of autophagy affects cell fate, a hypothetical model is presented here. Finally, we discuss some exciting new directions in the field. We hope this might help to better understand the multiple associations between estrogen and autophagy, the pathogenic mechanisms of many estrogen-related diseases, and to design novel and efficacious therapeutics. Abbreviations: AP-1, activator protein-1; HATs, histone acetyltransferases; HDAC, histone deacetylases; HOTAIR, HOX transcript antisense RNA.
Collapse
Affiliation(s)
- Jin Xiang
- a Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , PR China
| | - Xiang Liu
- a Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , PR China
| | - Jing Ren
- a Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , PR China
| | - Kun Chen
- a Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , PR China
| | - Hong-Lu Wang
- a Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , PR China
| | - Yu-Yang Miao
- a Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , PR China
| | - Miao-Miao Qi
- a Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences , Wuhan University , Wuhan , PR China
| |
Collapse
|
23
|
Developmental Decline in the MicroRNA 199a (miR-199a)/miR-214 Cluster in Human Fetal Lung Promotes Type II Cell Differentiation by Upregulating Key Transcription Factors. Mol Cell Biol 2018; 38:MCB.00037-18. [PMID: 29507184 DOI: 10.1128/mcb.00037-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 02/27/2018] [Indexed: 02/07/2023] Open
Abstract
The major surfactant protein, SP-A (a product of the SFTPA gene), serves as a marker of type II pneumocyte differentiation and surfactant synthesis. SFTPA expression in cultured human fetal lung (HFL) epithelial cells is upregulated by hormones that increase cyclic AMP (cAMP) and activate TTF-1/NKX2.1 and NF-κB. To further define mechanisms for type II cell differentiation and induction of SP-A, we investigated roles of microRNAs (miRNAs). Using microarray to identify differentially expressed miRNAs in HFL epithelial cells during type II cell differentiation in culture, we observed that members of the miRNA 199a (miR-199a)/miR-214 cluster were significantly downregulated during differentiation. Validated and predicted targets of miR-199a-3p/miR-199a-5p and miR-214, which serve roles in type II cell differentiation (COX-2, NF-κB p50/p65, and CREB1), and the CREB1 target, C/EBPβ, were coordinately upregulated. Accordingly, overexpression of miR-199a-5p, miR-199a-3p, or miR-214 mimics in cultured HFL epithelial cells decreased COX-2, NF-κB p50/p65, CREB1, and C/EBPβ proteins, with an associated inhibition of SP-A expression. Interestingly, overexpression of the EMT factor, ZEB1, which declines during cAMP-induced type II cell differentiation, increased pri-miR-199a and reduced the expression of the targets NF-κB/p50 and COX-2. Collectively, these findings suggest that the developmental decline in miR-199a/miR-214 in HFL causes increased expression of critical targets that enhance type II cell differentiation and SP-A expression.
Collapse
|
24
|
Shafei AES, Nabih ES, Shehata KA, Abd Elfatah ESM, Sanad ABA, Marey MY, Hammouda AAMA, Mohammed MMM, Mostafa R, Ali MA. Prenatal Exposure to Endocrine Disruptors and Reprogramming of Adipogenesis: An Early-Life Risk Factor for Childhood Obesity. Child Obes 2018; 14:18-25. [PMID: 29019419 DOI: 10.1089/chi.2017.0180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Obesity is a global health problem. It is characterized by excess adipose tissue that results from either increase in the number of adipocytes or increase in adipocytes size. Adipocyte differentiation is a highly regulated process that involves the activation of several transcription factors culminating in the removal of adipocytes from the cell cycle and induction of highly specific proteins. Several other factors, including hormones, genes, and epigenetics, are among the most important triggers of the differentiation process. Although the main contributing factors to obesity are high caloric intake, a sedentary lifestyle, and genetic predisposition, strong evidence supports a role for life exposure to environmental pollutants. Endocrine-disrupting chemicals are exogenous, both natural and man-made, chemicals that disrupt the body signaling processes, thus interfering with the endocrine system. Several studies have shown that prenatal exposure to endocrine disruptors modulates the mechanisms, by which multipotent mesenchymal stem cells differentiate into adipocytes. This review discusses adipocytes differentiation and highlights the possible mechanisms of prenatal exposure to endocrine disruptors in reprogramming of adipogenesis and induction of obesity later in life. Therefore, this review provides knowledge that reduction of early life exposure to these chemicals could open the door for new strategies in the prevention of obesity, especially during childhood.
Collapse
Affiliation(s)
- Ayman El-Sayed Shafei
- 1 Department of Biomedical Research, Armed Forces College of Medicine , Cairo, Egypt
| | - Enas Samir Nabih
- 2 Department of Medical Biochemistry, Faculty of Medicine, Ain Shams University , Cairo, Egypt
| | | | | | | | | | | | | | - Randa Mostafa
- 1 Department of Biomedical Research, Armed Forces College of Medicine , Cairo, Egypt
| | - Mahmoud A Ali
- 1 Department of Biomedical Research, Armed Forces College of Medicine , Cairo, Egypt
| |
Collapse
|
25
|
Goldstein I, Hager GL. The Three Ds of Transcription Activation by Glucagon: Direct, Delayed, and Dynamic. Endocrinology 2018; 159:206-216. [PMID: 29077799 PMCID: PMC6283435 DOI: 10.1210/en.2017-00521] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022]
Abstract
Upon lowered blood glucose occurring during fasting, glucagon is secreted from pancreatic islets, exerting various metabolic effects to normalize glucose levels. A considerable portion of these effects is mediated by glucagon-activated transcription factors (TFs) in liver. Glucagon directly activates several TFs via immediate cyclic adenosine monophosphate (cAMP)- and calcium-dependent signaling events. Among these TFs, cAMP response element-binding protein (CREB) is a major factor. CREB recruits histone-modifying enzymes and cooperates with other TFs on the chromatin template to increase the rate of gene transcription. In addition to direct signal transduction, the transcriptional effects of glucagon are also influenced by dynamic TF cross talk. Specifically, assisted loading of one TF by a companion TF leads to increased binding and activity. Lastly, transcriptional regulation by glucagon is also exerted by TF cascades by which a primary TF induces the gene expression of secondary TFs that bring about their activity a few hours after the initial glucagon signal. This mechanism of a delayed response may be instrumental in establishing the temporal organization of the fasting response by which distinct metabolic events separate early from prolonged fasting. In this mini-review, we summarize recent advances and critical discoveries in glucagon-dependent gene regulation with a focus on direct TF activation, dynamic TF cross talk, and TF cascades.
Collapse
Affiliation(s)
- Ido Goldstein
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Correspondence: Gordon L. Hager, PhD, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 41, Room B602, Bethesda, Maryland 20892. E-mail: ; or Ido Goldstein, PhD, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 41, Room B307, Bethesda, Maryland 20892. E-mail:
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Correspondence: Gordon L. Hager, PhD, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 41, Room B602, Bethesda, Maryland 20892. E-mail: ; or Ido Goldstein, PhD, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 41, Room B307, Bethesda, Maryland 20892. E-mail:
| |
Collapse
|
26
|
Liu J, Zhang S, Cao H, Wang H, Sun C, Liu S, Yu S, Li Y, Liu W, Wang H, Jiang J, Ying H. Deficiency of p38α in macrophage ameliorates d
-galactosamine/TNF-α-induced acute liver injury in mice. FEBS J 2017; 284:4200-4215. [DOI: 10.1111/febs.14294] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/20/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Jiao Liu
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Shengjie Zhang
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Hongchao Cao
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Hui Wang
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Chao Sun
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Shengnan Liu
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Shuxian Yu
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Yan Li
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Wei Liu
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
| | - Hui Wang
- School of Public Health; Shanghai Jiao Tong University School of Medicine; China
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism; Zhongshan Hospital; Fudan University; Shanghai China
| | - Hao Ying
- Key Laboratory of Food Safety Research; Institute for Nutritional Sciences; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; University of Chinese Academy of Sciences; Shanghai China
- Key Laboratory of Food Safety Risk Assessment; Ministry of Health; Beijing China
| |
Collapse
|
27
|
Newton R, Giembycz MA. Understanding how long-acting β 2 -adrenoceptor agonists enhance the clinical efficacy of inhaled corticosteroids in asthma - an update. Br J Pharmacol 2016; 173:3405-3430. [PMID: 27646470 DOI: 10.1111/bph.13628] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/19/2016] [Accepted: 08/21/2016] [Indexed: 12/18/2022] Open
Abstract
In moderate-to-severe asthma, adding an inhaled long-acting β2 -adenoceptor agonist (LABA) to an inhaled corticosteroid (ICS) provides better disease control than simply increasing the dose of ICS. Acting on the glucocorticoid receptor (GR, gene NR3C1), ICSs promote anti-inflammatory/anti-asthma gene expression. In vitro, LABAs synergistically enhance the maximal expression of many glucocorticoid-induced genes. Other genes, including dual-specificity phosphatase 1(DUSP1) in human airways smooth muscle (ASM) and epithelial cells, are up-regulated additively by both drug classes. Synergy may also occur for LABA-induced genes, as illustrated by the bronchoprotective gene, regulator of G-protein signalling 2 (RGS2) in ASM. Such effects cannot be produced by either drug alone and may explain the therapeutic efficacy of ICS/LABA combination therapies. While the molecular basis of synergy remains unclear, mechanistic interpretations must accommodate gene-specific regulation. We explore the concept that each glucocorticoid-induced gene is an independent signal transducer optimally activated by a specific, ligand-directed, GR conformation. In addition to explaining partial agonism, this realization provides opportunities to identify novel GR ligands that exhibit gene expression bias. Translating this into improved therapeutic ratios requires consideration of GR density in target tissues and further understanding of gene function. Similarly, the ability of a LABA to interact with a glucocorticoid may be suboptimal due to low β2 -adrenoceptor density or biased β2 -adrenoceptor signalling. Strategies to overcome these limitations include adding-on a phosphodiesterase inhibitor and using agonists of other Gs-coupled receptors. In all cases, the rational design of ICS/LABA, and derivative, combination therapies requires functional knowledge of induced (and repressed) genes for therapeutic benefit to be maximized.
Collapse
Affiliation(s)
- Robert Newton
- Department of Cell Biology and Anatomy, Airways Inflammation Research Group, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark A Giembycz
- Department of Physiology and Pharmacology, Airways Inflammation Research Group, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
28
|
SOCS1 suppresses IL-1β-induced C/EBPβ expression via transcriptional regulation in human chondrocytes. Exp Mol Med 2016; 48:e241. [PMID: 27339399 PMCID: PMC4929694 DOI: 10.1038/emm.2016.47] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 01/31/2016] [Accepted: 02/29/2016] [Indexed: 12/22/2022] Open
Abstract
CAAT/enhancer-binding protein-beta (C/EBPβ) is a transcription factor that regulates interleukin-1β (IL-1β)-induced catabolic pathways, including the expression of matrix metalloproteinases (MMPs), in chondrocytes. We previously reported that suppressor of cytokine signaling 1 (SOCS1) inhibits IL-1β signaling in chondrocytes. However, the effect of SOCS1 on C/EBPβ has not been explored. To investigate the interaction between SOCS1 and C/EBPβ, we established human SW1353 cells with overexpression or knockdown of SOCS1 or C/EBPβ. Both SOCS1 and C/EBPβ were involved in transcription of MMP-3 and MMP-13. When stimulated with IL-1β, C/EBPβ levels were significantly increased by SOCS1 knockdown and decreased by SOCS1 overexpression. A similar change in IL-1β-induced C/EBPβ expression was observed in SOCS1-transfected human articular chondrocytes. However, C/EBPβ overexpression or knockdown did not change the levels of IL-1β-induced SOCS1. SOCS1 regulated the levels of C/EBPβ mRNA by ubiquitination of C/EBPβ as well as transcriptional regulation. Furthermore, it suppressed the phosphorylation of cAMP response element-binding protein (CREB), an active transcription factor of C/EBPβ. In addition, p38 mitogen-activated protein kinases, a target of SOCS1, was involved in CREB phosphorylation. The chromatin immunoprecipitation assay confirmed that SOCS1 overexpression led to reduced binding of C/EBPβ to the MMP-13 promoter. Taken together, our results demonstrate that SOCS1 downregulates the p38-CREB-C/EBPβ pathway resulting in increased expression of MMPs in chondrocytes.
Collapse
|
29
|
Ravnskjaer K, Madiraju A, Montminy M. Role of the cAMP Pathway in Glucose and Lipid Metabolism. Handb Exp Pharmacol 2016; 233:29-49. [PMID: 26721678 DOI: 10.1007/164_2015_32] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
3'-5'-Cyclic adenosine monophosphate (cyclic AMP or cAMP) was first described in 1957 as an intracellular second messenger mediating the effects of glucagon and epinephrine on hepatic glycogenolysis (Berthet et al., J Biol Chem 224(1):463-475, 1957). Since this initial characterization, cAMP has been firmly established as a versatile molecular signal involved in both central and peripheral regulation of energy homeostasis and nutrient partitioning. Many of these effects appear to be mediated at the transcriptional level, in part through the activation of the transcription factor CREB and its coactivators. Here we review current understanding of the mechanisms by which the cAMP signaling pathway triggers metabolic programs in insulin-responsive tissues.
Collapse
|
30
|
Lala-Tabbert N, Fu D, Wiper-Bergeron N. Induction of CCAAT/Enhancer-Binding Protein β Expression With the Phosphodiesterase Inhibitor Isobutylmethylxanthine Improves Myoblast Engraftment Into Dystrophic Muscle. Stem Cells Transl Med 2016; 5:500-10. [PMID: 26941360 DOI: 10.5966/sctm.2015-0169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/25/2015] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is the most common muscular dystrophy. Characterized by rounds of muscle degeneration and regeneration, DMD features progressive muscle wasting and is fatal. One approach for treatment is transplantation of muscle progenitor cells to repair and restore dystrophin expression to damaged muscle. However, the success of this approach has been limited by difficulties in isolating large numbers of myogenic progenitors with strong regenerative potential, poor engraftment, poor survival of donor cells, and limited migration in the diseased muscle. We demonstrate that induction of the transcription factor CCAAT/enhancer-binding protein β (C/EBPβ) using the cyclic adenosine monophosphate phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) results in enhanced myoblast expansion in culture and increased satellite cell marker expression. When equal numbers of IBMX-treated cells were transplanted into dystrophic muscle, they contributed to muscle repair more efficiently than did vehicle-treated cells and engrafted into the satellite cell niche in higher numbers, demonstrating improved cell migration from the site of injury and enhanced survival after transplantation. Thus, pharmacologic stimulation of C/EBPβ expression reprograms myoblasts to a more stem cell-like state, promotes expansion in culture, and improves engraftment such that better transplantation outcomes are achieved. SIGNIFICANCE Duchenne muscular dystrophy is a genetic disorder for which no cure exists. One therapeutic approach is transplantation of myogenic progenitors to restore dystrophin to damaged muscle, but this approach is limited by poor engraftment of cultured myoblasts. Transient upregulation of CCAAT/enhancer-binding protein β in primary myoblasts using the phosphodiesterase isobutylmethylxanthine (IBMX) increases satellite cell marker expression in cultured myoblasts, improves their migration, and increases their survival after transplantation. When transplanted into C57BL/10ScSn-mdx/J mice , IBMX-treated myoblasts restored dystrophin expression and were able to occupy the satellite cell niche more efficiently than controls. A myoblast culture approach that reprograms myoblasts to a more primitive state, resulting in improved transplantation outcomes and reinvigorating research into myoblast transplantation as a viable therapeutic approach, is described.
Collapse
Affiliation(s)
- Neena Lala-Tabbert
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Dechen Fu
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Nadine Wiper-Bergeron
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
31
|
Untereiner AA, Wang R, Ju Y, Wu L. Decreased Gluconeogenesis in the Absence of Cystathionine Gamma-Lyase and the Underlying Mechanisms. Antioxid Redox Signal 2016; 24:129-40. [PMID: 26401978 PMCID: PMC4742978 DOI: 10.1089/ars.2015.6369] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AIMS To investigate the regulation of hepatic glucose production by cystathionine γ-lyase (CSE)-generated hydrogen sulfide (H2S) in hepatic glucose production under physiological conditions. RESULTS We found that CSE knockout (KO) mice had a reduced rate of gluconeogenesis, which was reversed by administration of NaHS (an H2S donor) (i.p.). Interestingly, isolated CSE KO hepatocytes exhibited a reduced glycemic response to chemical-induced activation of the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and glucocorticoid pathways compared with wild-type (WT) hepatocytes. Treatment with the inhibitors for PKA (KT5720) or glucocorticoid receptor (GR) (RU-486) significantly reduced H2S-stimulated glucose production from both WT and CSE KO mouse hepatocytes. NaHS treatment upregulated the protein levels of key gluconeogenic transcription factors, such as peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and CCAAT-enhancer-binding protein-β (C/EBP-β). Moreover, exogenous H2S augmented the S-sulfhydration of the rate-limiting gluconeogenic enzymes and PGC-1α and increased their activities, which were lower in untreated CSE KO hepatocytes. Finally, knockdown of PGC-1α, but not C/EBP-β, significantly decreased NaHS-induced glucose production from the primary hepatocytes. INNOVATION This study demonstrates the stimulatory effect of endogenous H2S on liver glucose production and reveals three underlying mechanisms; that is, H2S upregulates the expression levels of PGC-1α and phosphoenolpyruvate carboxykinase via the GR pathway; H2S upregulates the expression level of PGC-1α through the activation of the cAMP/PKA pathway as well as PGC-1α activity via S-sulfhydration; and H2S upregulates the expression and the activities (by S-sulfhydration) of glucose-6-phosphatase and fructose-1,6-bisphosphatase. CONCLUSION This study may offer clues for the homeostatic regulation of glucose metabolism under physiological conditions and its dysregulation in metabolic syndrome.
Collapse
Affiliation(s)
- Ashley A Untereiner
- 1 The Cardiovascular and Metabolic Research Unit, Lakehead University , Ontario, Canada .,2 Department of Health Sciences, Lakehead University , Ontario, Canada .,3 Thunder Bay Regional Research Institute , Ontario, Canada
| | - Rui Wang
- 1 The Cardiovascular and Metabolic Research Unit, Lakehead University , Ontario, Canada .,4 Department of Biology, Laurentian University , Ontario, Canada
| | - YoungJun Ju
- 1 The Cardiovascular and Metabolic Research Unit, Lakehead University , Ontario, Canada .,5 Department of Kinesiology, Lakehead University , Ontario, Canada
| | - Lingyun Wu
- 1 The Cardiovascular and Metabolic Research Unit, Lakehead University , Ontario, Canada .,2 Department of Health Sciences, Lakehead University , Ontario, Canada .,3 Thunder Bay Regional Research Institute , Ontario, Canada
| |
Collapse
|
32
|
Hayakawa K, Wang X, Lo EH. CD200 increases alternatively activated macrophages through cAMP-response element binding protein - C/EBP-beta signaling. J Neurochem 2016; 136:900-6. [PMID: 26670206 DOI: 10.1111/jnc.13492] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/30/2015] [Accepted: 12/04/2015] [Indexed: 12/27/2022]
Abstract
The concept of macrophage polarization toward different phenotypes after CNS injury has been increasingly discussed. Here, we propose that CD200 treatment may help shift pro-inflammatory macrophages to an arginase 1 (Arg1)-, transglutaminase 2 (TGM2)-, and transforming growth factor beta 1 (TGF-β)-positive phenotype. Rat macrophages were stimulated by interferon γ and lipopolysaccharide (LPS) to induce pro-inflammatory phenotypes. Treatment with human CD200-Fc up-regulated expression levels of alternatively activated M2-like markers such as Arg1 and TGM2 but suppressed pro-inflammatory M1-like markers such as toll-like receptor 4, interleukin 1 beta (IL-1β), IL-6, and GM-CSF. Concomitantly, CD200-Fc enhanced (CCAAT/enhancer-binding protein) C/EBP-beta promoter activity, whereas NF-κB activity was suppressed. Treatment with CD200-Fc also up-regulated potentially beneficial TGF-β expression in macrophages. When C/EBP-beta signaling was suppressed with siRNA, the effect of CD200-Fc on Arg1, TGM2 and TGF-β up-regulation was canceled. Taken together, these data provide proof-of-principle that targeting CD200 signaling may be a novel therapeutic approach to shift macrophages toward M2-like polarization via modulating cAMP-response element binding protein-C/EBP-beta transcriptional activity. We showed that CD200 treatment decreased pro-inflammatory cytokines (IL-1β, IL-6, and GM-CSF) along with suppressed inflammatory NF-κB activity in pro-inflammatory Mφ. On the other hand, CD200 increased Arg1, TGM2, and TGF-β production through CREB-C/EBPβ signaling. We think that these findings provide proof-of-concept that CD200 signaling may play a key role in regulating macrophage polarization toward anti-inflammatory phenotypes.
Collapse
Affiliation(s)
- Kazuhide Hayakawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Xiaohua Wang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
33
|
Interleukin-1B signalling leads to increased survival of gastric carcinoma cells through a CREB-C/EBPβ-associated mechanism. Gastric Cancer 2016; 19:74-84. [PMID: 25740226 DOI: 10.1007/s10120-014-0448-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/17/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Polymorphisms in inflammation-related genes have been associated with a risk of gastric carcinoma (GC). However, the biological mechanisms underlying these associations are still elusive. Our objective was to determine whether chronic inflammation-associated IL1Β signalling, as seen in the context of Helicobacter pylori infection, could be linked to gastric carcinogenesis by modulating the behaviour of gastric epithelial cells. METHODS The effect of IL1B was assessed by studying the expression and activation status of the IL1Β-activated transcription factors C/EBPβ and CREB in GC cell lines. Interaction between CREB and C/EBPβ was explored through interference RNA, chromatin immunoprecipitation and chemical inhibition. CREB and C/EBPβ expression was analysed in 66 samples of primary GC and in normal gastric mucosa. GC cell growth was analysed in vitro by BrdU incorporation and in vivo employing a chicken embryo chorioallantoic membrane model. RESULTS We found that IL1B regulates the expression/activation status of both C/EBPβ and CREB in GC cells through an ERK1/2-dependent mechanism. Our results show that CREB is a direct transactivator of CEBPB, acting as an upstream effector in this regulatory mechanism. Furthermore, we found CREB to be overexpressed in 94 % of GC samples and significantly associated with C/EBPβ expression (P < 0.05). Finally, we demonstrated both in vitro and in vivo that CREB can mediate IL1B-induced GC cell proliferation. CONCLUSIONS Our results support the hypothesis that the effect of chronic inflammation on gastric carcinogenesis, as seen in the context of genetically susceptible individuals infected with Helicobacter pylori, includes the modulation of signalling pathways that regulate survival mechanisms in epithelial cells. IL1B is able to increase the expression/activation status of CREB and its target gene C/EBPβ, which are mandatory for GC cell survival. Our results may help inform new strategies for the prevention and treatment of GC, including the control of chronic inflammation.
Collapse
|
34
|
Pulido-Salgado M, Vidal-Taboada JM, Saura J. C/EBPβ and C/EBPδ transcription factors: Basic biology and roles in the CNS. Prog Neurobiol 2015; 132:1-33. [PMID: 26143335 DOI: 10.1016/j.pneurobio.2015.06.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/08/2015] [Accepted: 06/16/2015] [Indexed: 02/01/2023]
Abstract
CCAAT/enhancer binding protein (C/EBP) β and C/EBPδ are transcription factors of the basic-leucine zipper class which share phylogenetic, structural and functional features. In this review we first describe in depth their basic molecular biology which includes fascinating aspects such as the regulated use of alternative initiation codons in the C/EBPβ mRNA. The physical interactions with multiple transcription factors which greatly opens the number of potentially regulated genes or the presence of at least five different types of post-translational modifications are also remarkable molecular mechanisms that modulate C/EBPβ and C/EBPδ function. In the second part, we review the present knowledge on the localization, expression changes and physiological roles of C/EBPβ and C/EBPδ in neurons, astrocytes and microglia. We conclude that C/EBPβ and C/EBPδ share two unique features related to their role in the CNS: whereas in neurons they participate in memory formation and synaptic plasticity, in glial cells they regulate the pro-inflammatory program. Because of their role in neuroinflammation, C/EBPβ and C/EBPδ in microglia are potential targets for treatment of neurodegenerative disorders. Any strategy to reduce C/EBPβ and C/EBPδ activity in neuroinflammation needs to take into account its potential side-effects in neurons. Therefore, cell-specific treatments will be required for the successful application of this strategy.
Collapse
Affiliation(s)
- Marta Pulido-Salgado
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Jose M Vidal-Taboada
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain
| | - Josep Saura
- Biochemistry and Molecular Biology Unit, School of Medicine, University of Barcelona, IDIBAPS, Casanova 143, planta 3, 08036 Barcelona, Spain.
| |
Collapse
|
35
|
Yang B, Li W, Zheng Q, Qin T, Wang K, Li J, Guo B, Yu Q, Wu Y, Gao Y, Cheng X, Hu S, Kumar SN, Liu S, Song Z. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells. Biochem Biophys Res Commun 2015; 463:130-6. [DOI: 10.1016/j.bbrc.2015.05.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/03/2015] [Indexed: 01/18/2023]
|
36
|
Kang SI, Shin HS, Kim SJ. Sinensetin enhances adipogenesis and lipolysis by increasing cyclic adenosine monophosphate levels in 3T3-L1 adipocytes. Biol Pharm Bull 2015; 38:552-8. [PMID: 25735898 DOI: 10.1248/bpb.b14-00700] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sinensetin is a rare polymethoxylated flavone (PMF) found in certain citrus fruits. In this study, we investigated the effects of sinensetin on lipid metabolism in 3T3-L1 cells. Sinensetin promoted adipogenesis in 3T3-L1 preadipocytes growing in incomplete differentiation medium, which did not contain 3-isobutyl-1-methylxanthine. Sinensetin up-regulated expression of the adipogenic transcription factors peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein (C/EBP) α, and sterol regulatory element-binding protein 1c. It also potentiated expression of C/EBPβ and activation of cAMP-responsive element-binding protein. Sinensetin enhanced activation of protein kinase A and increased intracellular cAMP levels in 3T3-L1 preadipocytes. In mature 3T3-L1 adipocytes, sinensetin stimulated lipolysis via a cAMP pathway. Taken together, these results suggest that sinensetin enhances adipogenesis and lipolysis by increasing cAMP levels in adipocytes.
Collapse
|
37
|
Schaefer FM, Peng J, Hu W, Drvarov O, Nevzorova YA, Zhao G, Masaoudi MA, Davis RJ, Trautwein C, Cubero FJ. Bone marrow-derived c-jun N-terminal kinase-1 (JNK1) mediates liver regeneration. Biochim Biophys Acta Mol Basis Dis 2015; 1852:137-45. [DOI: 10.1016/j.bbadis.2014.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 01/24/2023]
|
38
|
Pogrmic-Majkic K, Samardzija D, Fa S, Hrubik J, Glisic B, Kaisarevic S, Andric N. Atrazine Enhances Progesterone Production Through Activation of Multiple Signaling Pathways in FSH-Stimulated Rat Granulosa Cells: Evidence for Premature Luteinization1. Biol Reprod 2014; 91:124. [DOI: 10.1095/biolreprod.114.122606] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
39
|
Park S, Fujishita C, Komatsu T, Kim SE, Chiba T, Mori R, Shimokawa I. NPY antagonism reduces adiposity and attenuates age-related imbalance of adipose tissue metabolism. FASEB J 2014; 28:5337-48. [PMID: 25205743 DOI: 10.1096/fj.14-258384] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
An orexigenic hormone, neuropeptide Y (NPY), plays a role not only in the hypothalamic regulation of appetite, but also in the peripheral regulation of lipid metabolism. However, the intracellular mechanisms triggered by NPY to regulate lipid metabolism are poorly understood. Here we report that NPY deficiency reduces white adipose tissue (WAT) mass and ameliorates the age-related imbalance of adipose tissue metabolism in mice. Gene expression involved in adipogenesis/lipogenesis was found to decrease, whereas proteins involved in lipolysis increased in gonadal WAT (gWAT) of NPY-knockout mice. These changes were associated with an activated SIRT1- and PPARγ-mediated pathway. Moreover, the age-related decrease of de novo lipogenesis in gWAT and thermogenesis in inguinal WAT was inhibited by NPY deficiency. Further analysis using 3T3-L1 cells showed that NPY inhibited lipolysis through the Y1 receptor and enhanced lipogenesis following a reduction in cAMP response element-binding protein (CREB) and SIRT1 protein expression. Therefore, NPY appears to act as a key regulator of adipose tissue metabolism via the CREB-SIRT1 signaling pathway. Taken together, NPY deficiency reduces adiposity and ameliorates the age-related imbalance of adipose tissue metabolism, suggesting that antagonism of NPY may be a promising target for drug development to prevent age-related metabolic diseases.
Collapse
Affiliation(s)
- Seongjoon Park
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, Nagasaki City, Japan
| | - Chika Fujishita
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, Nagasaki City, Japan
| | - Toshimitsu Komatsu
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, Nagasaki City, Japan
| | - Sang Eun Kim
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, Nagasaki City, Japan
| | - Takuya Chiba
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, Nagasaki City, Japan
| | - Ryoichi Mori
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, Nagasaki City, Japan
| | - Isao Shimokawa
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, Nagasaki City, Japan
| |
Collapse
|
40
|
Li M, Zhou X, Mei J, Geng X, Zhou Y, Zhang W, Xu C. Study on the activity of the signaling pathways regulating hepatocytes from G0 phase into G1 phase during rat liver regeneration. Cell Mol Biol Lett 2014; 19:181-200. [PMID: 24643584 PMCID: PMC6275877 DOI: 10.2478/s11658-014-0188-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/04/2014] [Indexed: 12/03/2022] Open
Abstract
Under normal physiological conditions, the majority of hepatocytes are in the functional state (G0 phase). After injury or liver partial hepatectomy (PH), hepatocytes are rapidly activated to divide. To understand the mechanism underlying hepatocyte G0/G1 transition during rat liver regeneration, we used the Rat Genome 230 2.0 Array to determine the expression changes of genes, then searched the GO and NCBI databases for genes associated with the G0/G1 transition, and QIAGEN and KEGG databases for the G0/G1 transition signaling pathways. We used expression profile function (E t ) to calculate the activity level of the known G0/G1 transition signal pathways, and Ingenuity Pathway Analysis 9.0 (IPA) to determine the interactions among these signaling pathways. The results of our study show that the activity of the signaling pathways of HGF, IL-10 mediated by p38MAPK, IL-6 mediated by STAT3, and JAK/STAT mediated by Ras/ERK and STAT3 are significantly increased during the priming phase (2-6 h after PH) of rat liver regeneration. This leads us to conclude that during rat liver regeneration, the HGF, IL-10, IL-6 and JAK/STAT signaling pathways play a major role in promoting hepatocyte G0/G1 transition in the regenerating liver.
Collapse
Affiliation(s)
- Menghua Li
- College of Life Science, Henan Normal University, Xinxiang, 453007 P. R. China
- Key Laboratory for Cell Differentiation Regulation, Xinxiang, 453007 P. R. China
| | - Xiaochun Zhou
- College of Life Science, Henan Normal University, Xinxiang, 453007 P. R. China
- Key Laboratory for Cell Differentiation Regulation, Xinxiang, 453007 P. R. China
| | - Jinxin Mei
- College of Life Science, Henan Normal University, Xinxiang, 453007 P. R. China
- Key Laboratory for Cell Differentiation Regulation, Xinxiang, 453007 P. R. China
| | - Xiaofang Geng
- College of Life Science, Henan Normal University, Xinxiang, 453007 P. R. China
- Key Laboratory for Cell Differentiation Regulation, Xinxiang, 453007 P. R. China
| | - Yun Zhou
- College of Life Science, Henan Normal University, Xinxiang, 453007 P. R. China
- Key Laboratory for Cell Differentiation Regulation, Xinxiang, 453007 P. R. China
| | - Weimin Zhang
- Key Laboratory for Cell Differentiation Regulation, Xinxiang, 453007 P. R. China
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang, 453007 P. R. China
- Key Laboratory for Cell Differentiation Regulation, Xinxiang, 453007 P. R. China
| |
Collapse
|
41
|
Yu K, Mo D, Wu M, Chen H, Chen L, Li M, Chen Y. Activating transcription factor 4 regulates adipocyte differentiation via altering the coordinate expression of CCATT/enhancer binding protein β and peroxisome proliferator-activated receptor γ. FEBS J 2014; 281:2399-409. [PMID: 24673832 DOI: 10.1111/febs.12792] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 03/18/2014] [Accepted: 03/24/2014] [Indexed: 12/28/2022]
Abstract
Adipose tissue is crucial for energy homeostasis and is a topic interest with respect to investigating the regulation of adipose tissue formation for the ever-increasing health concerns of obesity and type 2 diabetes. Adipocyte differentiation is tightly regulated by the characteristic sequential expression change of adipocyte genes, including members of the CCATT/enhancer binding protein (C/EBP) family of transcription factors, peroxisome proliferator-activated receptor γ and tribbles homolog 3. In the present study, we demonstrate that C/EBPβ and peroxisome proliferator-activated receptor γ (but not tribbles homolog 3) are targeted for activation by activating transcription factor 4 (ATF4), a member of cAMP response element-binding/activator transcription factor family. Importantly, overexpression of ATF4 in 3T3-L1 cells enhanced adipogenesis, whereas small-interfering ATF4 blocked conversion of preadipocytes to adipocytes. These findings were accomplished by altering the coordinate expression of adipogenic transcription factors. Taken together, our results suggest that ATF4 is a positive regulator of adipocyte differentiation. This notion is also supported by the results of the present study showing that the expression of ATF4 is induced during adipocyte differentiation. Thus, ATF4 could be an important regulator of energy homeostasis.
Collapse
Affiliation(s)
- Kaifan Yu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Shoji T, Higuchi H, Nishijima KI, Iijima S. Effects of Siglec on the expression of IL-10 in the macrophage cell line RAW264. Cytotechnology 2014; 67:633-9. [PMID: 24715531 DOI: 10.1007/s10616-014-9717-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/20/2014] [Indexed: 11/24/2022] Open
Abstract
Interleukin-10 (IL-10) expression was significantly elevated upon stimulation with lipopolysaccharide (LPS) when the sialic acid-recognizing Ig-superfamily lectin Siglec-5 or -9 was overexpressed in RAW264 cells. During the course to clarify the mechanism for this activation, we found that IL-10 promoter proximal region up to -500 bp led to transactivation similar to that up to -1,500 bp. Among the transcription factors that activate the mouse IL-10 promoter so far reported, the level of C/EBPβ was increased in Siglec-9-expressing cells. Transient expression of the C/EBPβ major isoform LAP led to an increase in the expression of IL-10 in Siglec-9-expressing cells, but not in mock-transfected control RAW264 cells upon stimulation with LPS, as assessed by either a luciferase assay or the production of IL-10. Without LPS, the IL-10 promoter was activated by transiently expressed LAP in Siglec-9-expressing cells, however, the magnitude of transactivation was less than that with the LPS stimulation. The knockdown of C/EBPβ down-regulated the production of IL-10. Taken together, these results suggest that one of the reasons for the stimulation of IL-10 expression in Siglec-9-expressing cells may be an increase in intracellular C/EBPβ level.
Collapse
Affiliation(s)
- Toru Shoji
- Department of Biotechnology, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | | | | | | |
Collapse
|
43
|
Fructose promotes the differentiation of 3T3-L1 adipocytes and accelerates lipid metabolism. FEBS Lett 2013; 588:490-6. [DOI: 10.1016/j.febslet.2013.12.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/04/2013] [Accepted: 12/07/2013] [Indexed: 01/20/2023]
|
44
|
Shimada Y, Kuroyanagi J, Zhang B, Ariyoshi M, Umemoto N, Nishimura Y, Tanaka T. Downregulation of Max dimerization protein 3 is involved in decreased visceral adipose tissue by inhibiting adipocyte differentiation in zebrafish and mice. Int J Obes (Lond) 2013; 38:1053-60. [PMID: 24254064 DOI: 10.1038/ijo.2013.217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/16/2013] [Accepted: 11/05/2013] [Indexed: 01/14/2023]
Abstract
BACKGROUND The diet-induced obesity model of zebrafish (DIO-zebrafish) share a common pathophysiological pathway with mammalian obesity. OBJECTIVES We aimed to investigate the role of Max dimerization protein 3 (MXD3) in visceral fat accumulation and adipocyte differentiation, by conducting knockdown experiments using zebrafish and mouse preadipocytes. METHODS To identify genes related to visceral adiposity, we conducted transcriptome analyses of human and zebrafish obese populations using the Gene Expression Omnibus and DNA microarray. We then intraperitoneally injected morpholino antisense oligonucleotides (MO-mxd3) to knockdown mxd3 gene expression in DIO-zebrafish and measured several parameters, which reflected human obesity and associated metabolic diseases. Finally, lentiviral Mxd3 shRNA knockdown in mouse 3T3-L1 preadipocytes was conducted. Quantitative PCR analyses of several differentiation markers were conducted during these gene knockdown experiments. RESULTS We found that MXD3 expression was increased in the obese population in humans and zebrafish. Intraperitoneal MO-mxd3 administration to DIO-zebrafish suppressed the increase in body weight, visceral fat accumulation and the size of mature adipocytes. Subsequently, dyslipidemia and liver steatosis were also ameliorated by MO-mxd3. In mouse adipocytes, Mxd3 expression was drastically increased in the early differentiation stage. Mxd3 shRNA inhibited preadipocyte proliferation and adipocyte maturation. Quantitative PCR analyses showed that the early differentiation marker, CCAAT/enhancer-binding protein delta (Cebpd) and late differentiation markers (CCAAT/enhancer-binding protein, alpha and peroxisome proliferator-activated receptor gamma) were downregulated by Mxd3 knockdown in 3T3-L1 cells and DIO-zebrafish. Subsequently, mature adipocyte markers (adiponectin and caveolin 1 for zebrafish, and fatty acid binding protein 4 and stearoyl-coenzyme A desaturase 1 for mouse adipocytes) were also decreased. CONCLUSION Mxd3 regulates preadipocyte proliferation and early adipocyte differentiation via Cebpd downregulation in vitro and in vivo. Integrated analysis of human and zebrafish transcriptomes allows identification of a novel therapeutic target against human obesity and further associated metabolic disease.
Collapse
Affiliation(s)
- Y Shimada
- 1] Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Mie, Japan [2] Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie, Japan [3] Mie University Medical Zebrafish Research Center, Mie, Japan [4] Department of Bioinformatics, Mie University Life Science Research Center, Mie, Japan [5] Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie, Japan
| | - J Kuroyanagi
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Mie, Japan
| | - B Zhang
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Mie, Japan
| | - M Ariyoshi
- 1] Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Mie, Japan [2] Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie, Japan
| | - N Umemoto
- 1] Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Mie, Japan [2] Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie, Japan
| | - Y Nishimura
- 1] Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Mie, Japan [2] Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie, Japan [3] Mie University Medical Zebrafish Research Center, Mie, Japan [4] Department of Bioinformatics, Mie University Life Science Research Center, Mie, Japan [5] Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie, Japan
| | - T Tanaka
- 1] Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Mie, Japan [2] Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie, Japan [3] Mie University Medical Zebrafish Research Center, Mie, Japan [4] Department of Bioinformatics, Mie University Life Science Research Center, Mie, Japan [5] Department of Omics Medicine, Mie University Industrial Technology Innovation, Mie, Japan
| |
Collapse
|
45
|
Chen L, Song J, Cui J, Hou J, Zheng X, Li C, Liu L. microRNAs regulate adipocyte differentiation. Cell Biol Int 2013; 37:533-46. [PMID: 23504919 DOI: 10.1002/cbin.10063] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 01/22/2013] [Indexed: 02/05/2023]
Abstract
The number of adipocytes is relevant to the extent of differentiation from pluripotent stem cells into pre-adipocytes, whereas the size of adipocytes relates to the extent of differentiation from pre-adipocytes into mature fat cells and the accumulation of triglyceride. Investigation of the molecular regulatory mechanism of adipocyte differentiation is not only essential for understanding the physiological processes of adipogenesis, but it is also important for identifying new biomarkers and therapeutic targets for some metabolic diseases, such as obesity and diabetes. microRNAs (miRNAs) appear to play important roles in adipocyte differentiation. During adipogenesis, miRNAs can accelerate or inhibit adipocyte differentiation by acting on transcription factors, regulating signalling pathways related to adipogenesis, or blocking the mitotic clonal expansion stage, thus regulating adipocyte development. The regulatory role of some miRNAs varies in different species or different cells. In this review, the biological characteristics of miRNA and the adipocyte differentiation process are concisely discussed. Recent advances in our understanding of the role of miRNAs in adipocytes development or adipogenesis are discussed.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China
| | | | | | | | | | | | | |
Collapse
|
46
|
The transcription factor C/EBP-β mediates constitutive and LPS-inducible transcription of murine SerpinB2. PLoS One 2013; 8:e57855. [PMID: 23472114 PMCID: PMC3589482 DOI: 10.1371/journal.pone.0057855] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/28/2013] [Indexed: 01/26/2023] Open
Abstract
SerpinB2 or plasminogen activator inhibitor type 2 (PAI-2) is highly induced in macrophages in response to inflammatory stimuli and is linked to the modulation of innate immunity, macrophage survival, and inhibition of plasminogen activators. Lipopolysaccharide (LPS), a potent bacterial endotoxin, can induce SerpinB2 expression via the toll-like receptor 4 (TLR4) by ∼1000-fold over a period of 24 hrs in murine macrophages. To map the LPS-regulated SerpinB2 promoter regions, we transfected reporter constructs driven by the ∼5 kb 5'-flanking region of the murine SerpinB2 gene and several deletion mutants into murine macrophages. In addition, we compared the DNA sequence of the murine 5′ flanking sequence with the sequence of the human gene for homologous functional regulatory elements and identified several regulatory cis-acting elements in the human SERPINB2 promoter conserved in the mouse. Mutation analyses revealed that a CCAAT enhancer binding (C/EBP) element, a cyclic AMP response element (CRE) and two activator protein 1 (AP-1) response elements in the murine SerpinB2 proximal promoter are essential for optimal LPS-inducibility. Electrophoretic mobility shift (EMSA) and chromatin immunoprecipitation (ChIP) assays demonstrated that LPS induces the formation of C/EBP-β containing complexes with the SerpinB2 promoter. Importantly, both constitutive and LPS-induced SerpinB2 expression was severely abrogated in C/EBP-β-null mouse embryonic fibroblasts (MEFs) and primary C/EBP-β-deficient peritoneal macrophages. Together, these data provide new insight into C/EBP-β-dependent regulation of inflammation-associated SerpinB2 expression.
Collapse
|
47
|
Hirai H, Kamio N, Huang G, Matsusue A, Ogino S, Kimura N, Satake S, Ashihara E, Imanishi J, Tenen DG, Maekawa T. Cyclic AMP responsive element binding proteins are involved in 'emergency' granulopoiesis through the upregulation of CCAAT/enhancer binding protein β. PLoS One 2013; 8:e54862. [PMID: 23382991 PMCID: PMC3559830 DOI: 10.1371/journal.pone.0054862] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 12/19/2012] [Indexed: 11/18/2022] Open
Abstract
In contrast to the definitive role of the transcription factor, CCAAT/Enhancer binding protein α (C/EBPα), in steady-state granulopoiesis, previous findings have suggested that granulopoiesis during emergency situations, such as infection, is dependent on C/EBPβ. In this study, a novel lentivirus-based reporter system was developed to elucidate the molecular switch required for C/EBPβ-dependency. The results demonstrated that two cyclic AMP responsive elements (CREs) in the proximal promoter region of C/EBPβ were involved in the positive regulation of C/EBPβ transcription during granulocyte-macrophage colony-stimulating factor (GM-CSF)–induced differentiation of bone marrow cells. In addition, the transcripts of CRE binding (CREB) family proteins were readily detected in hematopoietic stem/progenitor cells. CREB was upregulated, phosphorylated and bound to the CREs in response to GM-CSF stimulation. Retroviral transduction of a dominant negative CREB mutant reduced C/EBPβ mRNA levels and significantly impaired the proliferation/differentiation of granulocyte precursors, while a constitutively active form of CREB facilitated C/EBPβ transcription. These data suggest that CREB proteins are involved in the regulation of granulopoiesis via C/EBPβ upregulation.
Collapse
Affiliation(s)
- Hideyo Hirai
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kemenes G. Molecular and Cellular Mechanisms of Classical Conditioning in the Feeding System of Lymnaea. INVERTEBRATE LEARNING AND MEMORY 2013. [DOI: 10.1016/b978-0-12-415823-8.00020-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
49
|
Role of C/EBPβ-LAP and C/EBPβ-LIP in early adipogenic differentiation of human white adipose-derived progenitors and at later stages in immature adipocytes. Differentiation 2013; 85:20-31. [DOI: 10.1016/j.diff.2012.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/20/2012] [Accepted: 11/26/2012] [Indexed: 12/20/2022]
|
50
|
Miao L, Grebhardt S, Shi J, Peipe I, Zhang J, Mayer D. Prostaglandin E2 stimulates S100A8 expression by activating protein kinase A and CCAAT/enhancer-binding-protein-beta in prostate cancer cells. Int J Biochem Cell Biol 2012; 44:1919-28. [DOI: 10.1016/j.biocel.2012.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/04/2012] [Accepted: 06/12/2012] [Indexed: 12/17/2022]
|