1
|
Puranik N, Jung H, Song M. SPROUTY2, a Negative Feedback Regulator of Receptor Tyrosine Kinase Signaling, Associated with Neurodevelopmental Disorders: Current Knowledge and Future Perspectives. Int J Mol Sci 2024; 25:11043. [PMID: 39456824 PMCID: PMC11507918 DOI: 10.3390/ijms252011043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Growth-factor-induced cell signaling plays a crucial role in development; however, negative regulation of this signaling pathway is important for sustaining homeostasis and preventing diseases. SPROUTY2 (SPRY2) is a potent negative regulator of receptor tyrosine kinase (RTK) signaling that binds to GRB2 during RTK activation and inhibits the GRB2-SOS complex, which inhibits RAS activation and attenuates the downstream RAS/ERK signaling cascade. SPRY was formerly discovered in Drosophila but was later discovered in higher eukaryotes and was found to be connected to many developmental abnormalities. In several experimental scenarios, increased SPRY2 protein levels have been observed to be involved in both peripheral and central nervous system neuronal regeneration and degeneration. SPRY2 is a desirable pharmaceutical target for improving intracellular signaling activity, particularly in the RAS/ERK pathway, in targeted cells because of its increased expression under pathological conditions. However, the role of SPRY2 in brain-derived neurotrophic factor (BDNF) signaling, a major signaling pathway involved in nervous system development, has not been well studied yet. Recent research using a variety of small-animal models suggests that SPRY2 has substantial therapeutic promise for treating a range of neurological conditions. This is explained by its function as an intracellular ERK signaling pathway inhibitor, which is connected to a variety of neuronal activities. By modifying this route, SPRY2 may open the door to novel therapeutic approaches for these difficult-to-treat illnesses. This review integrates an in-depth analysis of the structure of SPRY2, the role of its major interactive partners in RTK signaling cascades, and their possible mechanisms of action. Furthermore, this review highlights the possible role of SPRY2 in neurodevelopmental disorders, as well as its future therapeutic implications.
Collapse
Affiliation(s)
| | | | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (H.J.)
| |
Collapse
|
2
|
Gao X, Jin Y, Zhu W, Wu X, Wang J, Guo C. Regulation of Eukaryotic Translation Initiation Factor 4E as a Potential Anticancer Strategy. J Med Chem 2023; 66:12678-12696. [PMID: 37725577 DOI: 10.1021/acs.jmedchem.3c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Eukaryotic translation initiation factors (eIFs) are highly expressed in cancer cells, especially eIF4E, the central regulatory node driving cancer cell growth and a potential target for anticancer drugs. eIF4E-targeting strategies primarily focus on inhibiting eIF4E synthesis, interfering with eIF4E/eIF4G interactions, and targeting eIF4E phosphorylation and peptide inhibitors. Although some small-molecule inhibitors are in clinical trials, no eIF4E inhibitors are available for clinical use. We provide an overview of the regulatory mechanisms of eIF4E and summarize the progress in developing and discovering eIF4E inhibitor strategies. We propose that interference with eIF4E/eIF4G interactions will provide a new perspective for the design of eIF4E inhibitors and may be a preferred strategy.
Collapse
Affiliation(s)
- Xintao Gao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yonglong Jin
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Wenyong Zhu
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China
| | - Xiaochen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Wang
- Department of Biology Science and Technology, Baotou Teacher's College, Baotou 014030, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
3
|
Fernandez A, Monsen PJ, Platanias LC, Schiltz GE. Medicinal chemistry approaches to target the MNK-eIF4E axis in cancer. RSC Med Chem 2023; 14:1060-1087. [PMID: 37360400 PMCID: PMC10285747 DOI: 10.1039/d3md00121k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Aberrant translation of proteins that promote cell proliferation is an essential factor that defines oncogenic processes and cancer. The process for ribosomal translation of proteins from mRNA requires an essential initiation step which is controlled by the protein eIF4E, which binds the RNA 5'-cap and forms the eIF4F complex that subsequently translates protein. Typically, eIF4E is activated by phosphorylation on Ser209 by MNK1 and MNK2 kinases. Substantial work has shown that eIF4E and MNK1/2 are dysregulated in many cancers and this axis has therefore become an active area of interest for developing new cancer therapeutics. This review summarizes and discusses recent work to develop small molecules that target different steps in the MNK-eIF4E axis as potential cancer therapeutics. The aim of this review is to cover the breadth of different molecular approaches being taken and the medicinal chemistry basis for their optimization and testing as new cancer therapeutics.
Collapse
Affiliation(s)
- Ann Fernandez
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
| | - Paige J Monsen
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center Chicago IL 60611 USA
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University Chicago IL 60611 USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center Chicago IL 60612 USA
| | - Gary E Schiltz
- Department of Chemistry, Northwestern University Evanston IL 60208 USA
- Robert H. Lurie Comprehensive Cancer Center Chicago IL 60611 USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine Chicago IL 60611 USA
| |
Collapse
|
4
|
Carrión-Marchante R, Pinto-Díez C, Klett-Mingo JI, Palacios E, Barragán-Usero M, Pérez-Morgado MI, Pascual-Mellado M, Alcalá S, Ruiz-Cañas L, Sainz B, González VM, Martín ME. An Aptamer against MNK1 for Non-Small Cell Lung Cancer Treatment. Pharmaceutics 2023; 15:pharmaceutics15041273. [PMID: 37111758 PMCID: PMC10146192 DOI: 10.3390/pharmaceutics15041273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Its late diagnosis and consequently poor survival make necessary the search for new therapeutic targets. The mitogen-activated protein kinase (MAPK)-interacting kinase 1 (MNK1) is overexpressed in lung cancer and correlates with poor overall survival in non-small cell lung cancer (NSCLC) patients. The previously identified and optimized aptamer from our laboratory against MNK1, apMNKQ2, showed promising results as an antitumor drug in breast cancer in vitro and in vivo. Thus, the present study shows the antitumor potential of apMNKQ2 in another type of cancer where MNK1 plays a significant role, such as NSCLC. The effect of apMNKQ2 in lung cancer was studied with viability, toxicity, clonogenic, migration, invasion, and in vivo efficacy assays. Our results show that apMNKQ2 arrests the cell cycle and reduces viability, colony formation, migration, invasion, and epithelial-mesenchymal transition (EMT) processes in NSCLC cells. In addition, apMNKQ2 reduces tumor growth in an A549-cell line NSCLC xenograft model. In summary, targeting MNK1 with a specific aptamer may provide an innovative strategy for lung cancer treatment.
Collapse
Affiliation(s)
- Rebeca Carrión-Marchante
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS-Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | | | - José Ignacio Klett-Mingo
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS-Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Esther Palacios
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS-Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Miriam Barragán-Usero
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS-Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - M Isabel Pérez-Morgado
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS-Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Manuel Pascual-Mellado
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS-Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Sonia Alcalá
- Department of Cancer, Instituto de Investigaciones-Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, 28034 Madrid, Spain
- Chronic Diseases and Cancer Area 3-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Laura Ruiz-Cañas
- Department of Cancer, Instituto de Investigaciones-Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, 28034 Madrid, Spain
- Chronic Diseases and Cancer Area 3-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Bruno Sainz
- Department of Cancer, Instituto de Investigaciones-Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, 28034 Madrid, Spain
- Chronic Diseases and Cancer Area 3-Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- Centro de Investigación Biomédica en Red, Área Cáncer-CIBERONC, ISCIII, 28029 Madrid, Spain
| | - Víctor M González
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS-Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - M Elena Martín
- Aptamer Group, Deparment Biochemistry-Research, IRYCIS-Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| |
Collapse
|
5
|
Martínez N, Gragera T, de Lucas MP, Cámara AB, Ballester A, Anta B, Fernández-Medarde A, López-Briones T, Ortega J, Peña-Jiménez D, Barbáchano A, Montero-Calle A, Cordero V, Barderas R, Iglesias T, Yunta M, Oliva JL, Muñoz A, Santos E, Zarich N, Rojas-Cabañeros JM. PKD phosphorylation and COP9/Signalosome modulate intracellular Spry2 protein stability. Oncogenesis 2023; 12:20. [PMID: 37045830 PMCID: PMC10097667 DOI: 10.1038/s41389-023-00465-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Spry2 is a molecular modulator of tyrosine kinase receptor signaling pathways that has cancer-type-specific effects. Mammalian Spry2 protein undergoes tyrosine and serine phosphorylation in response to growth factor stimulation. Spry2 expression is distinctly altered in various cancer types. Inhibition of the proteasome functionality results in reduced intracellular Spry2 degradation. Using in vitro and in vivo assays, we show that protein kinase D (PKD) phosphorylates Spry2 at serine 112 and interacts in vivo with the C-terminal half of this protein. Importantly, missense mutation of Ser112 decreases the rate of Spry2 intracellular protein degradation. Either knocking down the expression of all three mammalian PKD isoforms or blocking their kinase activity with a specific inhibitor contributes to the stabilization of Spry2 wild-type protein. Downregulation of CSN3, a component of the COP9/Signalosome that binds PKD, significantly increases the half-life of Spry2 wild-type protein but does not affect the stability of a Spry2 after mutating Ser112 to the non-phosphorylatable residue alanine. Our data demonstrate that both PKD and the COP9/Signalosome play a significant role in control of Spry2 intracellular stability and support the consideration of the PKD/COP9 complex as a potential therapeutic target in tumors where Spry2 expression is reduced.
Collapse
Affiliation(s)
- Natalia Martínez
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Teresa Gragera
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
- Facultad de Odontología, Universidad Alfonso X el Sabio (UAX), Avenida de la Universidad 1, 28691, Villanueva de la Cañada, Madrid, Spain
| | - María Pilar de Lucas
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Ana Belén Cámara
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Alicia Ballester
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Berta Anta
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Alberto Fernández-Medarde
- Centro de Investigación del Cáncer, IBMCC (CSIC-USAL) and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Universidad de Salamanca, 37007, Salamanca, Spain
| | - Tania López-Briones
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Judith Ortega
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Daniel Peña-Jiménez
- Unidad de Investigación Biomédica, Universidad Alfonso X el Sabio (UAX), Avenida de la Universidad 1, 28691, Villanueva de la Cañada, Madrid, Spain
| | - Antonio Barbáchano
- Instituto de Investigaciones Biomédicas Alberto Sols and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), 28029, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), 28046, Madrid, Spain
| | - Ana Montero-Calle
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Víctor Cordero
- Unidad de Investigación Biomédica, Universidad Alfonso X el Sabio (UAX), Avenida de la Universidad 1, 28691, Villanueva de la Cañada, Madrid, Spain
| | - Rodrigo Barderas
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Teresa Iglesias
- Instituto de Investigaciones Biomédicas Alberto Sols and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), 28029, Madrid, Spain
| | - Mónica Yunta
- Unidad de Investigación Biomédica, Universidad Alfonso X el Sabio (UAX), Avenida de la Universidad 1, 28691, Villanueva de la Cañada, Madrid, Spain
| | - José Luís Oliva
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Alberto Muñoz
- Instituto de Investigaciones Biomédicas Alberto Sols and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), 28029, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), 28046, Madrid, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer, IBMCC (CSIC-USAL) and Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Universidad de Salamanca, 37007, Salamanca, Spain
| | - Natasha Zarich
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - José M Rojas-Cabañeros
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| |
Collapse
|
6
|
Mazewski C, Platanias LC. MNK Proteins as Therapeutic Targets in Leukemia. Onco Targets Ther 2023; 16:283-295. [PMID: 37113687 PMCID: PMC10128080 DOI: 10.2147/ott.s370874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
In leukemia, resistance to therapy is a major concern for survival. MAPK-interacting kinases (MNKs) have been identified as important activators of oncogenic-related signaling and may be mediators of resistance. Recent studies in leukemia models, especially acute myeloid leukemia (AML), have focused on targeting MNKs together with other inhibitors or treating chemotherapy-resistant cells with MNK inhibitors. The preclinical demonstrations of the efficacy of MNK inhibitors in these combination formats would suggest a promising potential for use in clinical trials. Optimizing MNK inhibitors and testing in leukemia models is actively being pursued and may have important implications for the future. These studies are furthering the understanding of the mechanisms of MNKs in cancer which could translate to clinical studies.
Collapse
Affiliation(s)
- Candice Mazewski
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Division of Hematology–Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Correspondence: Candice Mazewski; Leonidas C Platanias, Email ;
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Division of Hematology–Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| |
Collapse
|
7
|
Xu W, Kannan S, Verma CS, Nacro K. Update on the Development of MNK Inhibitors as Therapeutic Agents. J Med Chem 2021; 65:983-1007. [PMID: 34533957 DOI: 10.1021/acs.jmedchem.1c00368] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mitogen-activated protein kinase-interacting kinases 1 and 2 (MNK1/2) represent a central class of enzymes that are activated by extracellular signal-regulated kinase (ERK) or p38 mitogen-activated protein (MAP) kinases. MNK1 and MNK2 coordinate cellular signaling, control production of inflammatory chemokines, and regulate cell proliferation and survival. MNK1/2 are referred to as serine/threonine kinases as they phosphorylate serine or threonine residues on their substrates. Upon activation, MNK1/2 phosphorylate eukaryotic translation initiation factor 4E (eIF4E) at Ser209, which in turn initiates ribosome assembly and protein translation. Deleterious overexpression of MNK1/2 and/or eIF4E have been reported in several diseases including cancers, neurological disorders, autism, and inflammation. Recently, there have been intense efforts toward the development of potent and selective inhibitors of MNK1/2 in both academia and industry. Herein, we review the current understanding of the structural and biological aspects of MNK1/2 and provide an update of pharmacological inhibitors of MNK1/2 including candidates in clinical trials.
Collapse
Affiliation(s)
- Weijun Xu
- Experimental Drug Development Centre (EDDC), A*STAR, 10 Biopolis Road, Chromos #05-01, 138670, Singapore
| | | | - Chandra S Verma
- Bioinformatics Institute (BII), A*STAR, 30 Biopolis Street, #07-01 Matrix, 138671, Singapore.,Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore.,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Kassoum Nacro
- Experimental Drug Development Centre (EDDC), A*STAR, 10 Biopolis Road, Chromos #05-01, 138670, Singapore
| |
Collapse
|
8
|
Inhibitory effects of Tomivosertib in acute myeloid leukemia. Oncotarget 2021; 12:955-966. [PMID: 34012509 PMCID: PMC8121614 DOI: 10.18632/oncotarget.27952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/19/2021] [Indexed: 12/26/2022] Open
Abstract
The MAPK-interacting kinases 1 and 2 (MNK1/2) have generated increasing interest as therapeutic targets for acute myeloid leukemia (AML). We evaluated the therapeutic potential of the highly-selective MNK1/2 inhibitor Tomivosertib on AML cells. Tomivosertib was highly effective at blocking eIF4E phosphorylation on serine 209 in AML cells. Such inhibitory effects correlated with dose-dependent suppression of cellular viability and leukemic progenitor colony formation. Moreover, combination of Tomivosertib and Venetoclax resulted in synergistic anti-leukemic responses in AML cell lines. Mass spectrometry studies identified novel putative MNK1/2 interactors, while in parallel studies we demonstrated that MNK2 - RAPTOR - mTOR complexes are not disrupted by Tomivosertib. Overall, these findings demonstrate that Tomivosertib exhibits potent anti-leukemic properties on AML cells and support the development of clinical translational efforts involving the use of this drug, alone or in combination with other therapies for the treatment of AML.
Collapse
|
9
|
A Sprouty4 Mutation Identified in Kallmann Syndrome Increases the Inhibitory Potency of the Protein towards FGF and Connected Processes. Int J Mol Sci 2021; 22:ijms22042145. [PMID: 33670044 PMCID: PMC7926442 DOI: 10.3390/ijms22042145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/03/2022] Open
Abstract
Kallmann syndrome is the result of innate genetic defects in the fibroblast growth factor (FGF) regulated signaling network causing diminished signal transduction. One of the rare mutations associated with the syndrome alters the Sprouty (Spry)4 protein by converting the serine at position 241 into a tyrosine. In this study, we characterize the tyrosine Spry4 mutant protein in the primary human embryonic lung fibroblasts WI-38 and osteosarcoma-derived cell line U2OS. As demonstrated in a cell signaling assay, Spry4 gains the capability of inhibiting FGF, but not epithelial growth factor (EGF)-induced signaling as a consequence of the tyrosine substitution. Additionally, migration of normal embryonic lung fibroblasts and osteosarcoma-derived cells is potently inhibited by the tyrosine Spry4 variant, while an effect of the wildtype Spry4 protein is hardly measureable. Concerning cell proliferation, the unaltered Spry4 protein is ineffective to influence the WI-38 cells, while the mutated Spry4 protein decelerates the cell doubling. In summary, these data emphasize that like the other mutations associated with Kallmann syndrome the described Spry4 mutation creates a hyperactive version of a selective inhibitory molecule and can thereby contribute to a weakened FGF signaling. Additionally, the study pinpoints a Spry4 variation expanding the applicability of Spry4 in a potential cancer therapy.
Collapse
|
10
|
MNK1 and MNK2 enforce expression of E2F1, FOXM1, and WEE1 to drive soft tissue sarcoma. Oncogene 2021; 40:1851-1867. [PMID: 33564073 PMCID: PMC7946644 DOI: 10.1038/s41388-021-01661-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/25/2020] [Accepted: 01/15/2021] [Indexed: 01/31/2023]
Abstract
Soft tissue sarcoma (STS) is a heterogeneous disease that arises from connective tissues. Clinical outcome of patients with advanced tumors especially de-differentiated liposarcoma and uterine leiomyosarcoma remains unsatisfactory, despite intensive treatment regimens including maximal surgical resection, radiation, and chemotherapy. MAP kinase-interacting serine/threonine-protein kinase 1 and 2 (MNK1/2) have been shown to contribute to oncogenic translation via phosphorylation of eukaryotic translation initiation factor 4E (eIF4E). However, little is known about the role of MNK1/2 and their downstream targets in STS. In this study, we show that depletion of either MNK1 or MNK2 suppresses cell viability, anchorage-independent growth, and tumorigenicity of STS cells. We also identify a compelling antiproliferative efficacy of a novel, selective MNK inhibitor ETC-168. Cellular responsiveness of STS cells to ETC-168 correlates positively with that of phosphorylated ribosomal protein S6 (RPS6). Mirroring MNK1/2 silencing, ETC-168 treatment strongly blocks eIF4E phosphorylation and represses expression of sarcoma-driving onco-proteins including E2F1, FOXM1, and WEE1. Moreover, combination of ETC-168 and MCL1 inhibitor S63845 exerts a synergistic antiproliferative activity against STS cells. In summary, our study reveals crucial roles of MNK1/2 and their downstream targets in STS tumorigenesis. Our data encourage further clinical translation of MNK inhibitors for STS treatment.
Collapse
|
11
|
Locatelli C, Lemonidis K, Salaun C, Tomkinson NCO, Chamberlain LH. Identification of key features required for efficient S-acylation and plasma membrane targeting of sprouty-2. J Cell Sci 2020; 133:jcs249664. [PMID: 33037124 PMCID: PMC7657471 DOI: 10.1242/jcs.249664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/30/2020] [Indexed: 11/24/2022] Open
Abstract
Sprouty-2 is an important regulator of growth factor signalling and a tumour suppressor protein. The defining feature of this protein is a cysteine-rich domain (CRD) that contains twenty-six cysteine residues and is modified by S-acylation. In this study, we show that the CRD of sprouty-2 is differentially modified by S-acyltransferase enzymes. The high specificity/low activity zDHHC17 enzyme mediated restricted S-acylation of sprouty-2, and cysteine-265 and -268 were identified as key targets of this enzyme. In contrast, the low specificity/high activity zDHHC3 and zDHHC7 enzymes mediated more expansive modification of the sprouty-2 CRD. Nevertheless, S-acylation by all enzymes enhanced sprouty-2 expression, suggesting that S-acylation stabilises this protein. In addition, we identified two charged residues (aspartate-214 and lysine-223), present on opposite faces of a predicted α-helix in the CRD, which are essential for S-acylation of sprouty-2. Interestingly, mutations that perturbed S-acylation also led to a loss of plasma membrane localisation of sprouty-2 in PC12 cells. This study provides insight into the mechanisms and outcomes of sprouty-2 S-acylation, and highlights distinct patterns of S-acylation mediated by different classes of zDHHC enzymes.
Collapse
Affiliation(s)
- Carolina Locatelli
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Kimon Lemonidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Christine Salaun
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Nicholas C O Tomkinson
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
12
|
Pham TN, Spaulding C, Munshi HG. Controlling TIME: How MNK Kinases Function to Shape Tumor Immunity. Cancers (Basel) 2020; 12:cancers12082096. [PMID: 32731503 PMCID: PMC7465005 DOI: 10.3390/cancers12082096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022] Open
Abstract
A number of studies have clearly established the oncogenic role for MAPK-interacting protein kinases (MNK) in human malignancies. Modulation of MNK activity affects translation of mRNAs involved in cancer development, progression, and resistance to therapies. As a result, there are ongoing efforts to develop and evaluate MNK inhibitors for cancer treatment. However, it is important to recognize that MNK activity also plays an important role in regulating the innate and adaptive immune systems. A better understanding of the role of MNK kinases and MNK-mediated signals in regulating the immune system could help mitigate undesired side effects while maximizing therapeutic efficacy of MNK inhibitors. Here, we provide a systematic review on the function of MNK kinases and their substrates in immune cells.
Collapse
Affiliation(s)
- Thao N.D. Pham
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Correspondence: (T.N.D.P.); (H.G.M.); Tel.: +312-503-0312 (T.N.D.P.); +312-503-2301 (H.G.M.)
| | - Christina Spaulding
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Hidayatullah G. Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA
- Correspondence: (T.N.D.P.); (H.G.M.); Tel.: +312-503-0312 (T.N.D.P.); +312-503-2301 (H.G.M.)
| |
Collapse
|
13
|
Prabhu SA, Moussa O, Miller WH, del Rincón SV. The MNK1/2-eIF4E Axis as a Potential Therapeutic Target in Melanoma. Int J Mol Sci 2020; 21:E4055. [PMID: 32517051 PMCID: PMC7312468 DOI: 10.3390/ijms21114055] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
: Melanoma is a type of skin cancer that originates in the pigment-producing cells of the body known as melanocytes. Most genetic aberrations in melanoma result in hyperactivation of the mitogen activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways. We and others have shown that a specific protein synthesis pathway known as the MNK1/2-eIF4E axis is often dysregulated in cancer. The MNK1/2-eIF4E axis is a point of convergence for these signaling pathways that are commonly constitutively activated in melanoma. In this review we consider the functional implications of aberrant mRNA translation in melanoma and other malignancies. Moreover, we discuss the consequences of inhibiting the MNK1/2-eIF4E axis on the tumor and tumor-associated cells, and we provide important avenues for the utilization of this treatment modality in combination with other targeted and immune-based therapies. The past decade has seen the increased development of selective inhibitors to block the action of the MNK1/2-eIF4E pathway, which are predicted to be an effective therapy regardless of the melanoma subtype (e.g., cutaneous, acral, and mucosal).
Collapse
Affiliation(s)
- Sathyen A. Prabhu
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (S.A.P.); (O.M.); (W.H.M.J.)
- Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
| | - Omar Moussa
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (S.A.P.); (O.M.); (W.H.M.J.)
- Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
| | - Wilson H. Miller
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (S.A.P.); (O.M.); (W.H.M.J.)
- Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
- Department of Oncology, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada
- McGill Centre for Translational Research in Cancer (MCTRC), McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
- Rossy Cancer Network, McGill University, 1980 Sherbrooke Ouest, #1101, Montreal, QC H3H 1E8, Canada
| | - Sonia V. del Rincón
- Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; (S.A.P.); (O.M.); (W.H.M.J.)
- Lady Davis Institute, Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
- Department of Oncology, McGill University, 845 Sherbrooke St W, Montreal, QC H3A 0G4, Canada
- McGill Centre for Translational Research in Cancer (MCTRC), McGill University, 3755 Côte Ste-Catherine Road, Montreal, QC H3T 1E2, Canada
| |
Collapse
|
14
|
Pinto-Díez C, Ferreras-Martín R, Carrión-Marchante R, González VM, Martín ME. Deeping in the Role of the MAP-Kinases Interacting Kinases (MNKs) in Cancer. Int J Mol Sci 2020; 21:ijms21082967. [PMID: 32340135 PMCID: PMC7215568 DOI: 10.3390/ijms21082967] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs) are involved in oncogenic transformation and can promote metastasis and tumor progression. In human cells, there are four MNKs isoforms (MNK1a/b and MNK2a/b), derived from two genes by alternative splicing. These kinases play an important role controlling the expression of specific proteins involved in cell cycle, cell survival and cell motility via eukaryotic initiation factor 4E (eIF4E) regulation, but also through other substrates such as heterogeneous nuclear ribonucleoprotein A1, polypyrimidine tract-binding protein-associated splicing factor and Sprouty 2. In this review, we provide an overview of the role of MNK in human cancers, describing the studies conducted to date to elucidate the mechanism involved in the action of MNKs, as well as the development of MNK inhibitors in different hematological cancers and solid tumors.
Collapse
|
15
|
Park JW, Wollmann G, Urbiola C, Fogli B, Florio T, Geley S, Klimaschewski L. Sprouty2 enhances the tumorigenic potential of glioblastoma cells. Neuro Oncol 2019; 20:1044-1054. [PMID: 29635363 PMCID: PMC6280149 DOI: 10.1093/neuonc/noy028] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Sprouty2 (SPRY2), a feedback regulator of receptor tyrosine kinase (RTK) signaling, has been shown to be associated with drug resistance and cell proliferation in glioblastoma (GBM), but the underlying mechanisms are still poorly defined. Methods SPRY2 expression and survival patterns of patients with gliomas were analyzed using publicly available databases. Effects of RNA interference targeting SPRY2 on cellular proliferation in established GBM or patient-derived GBM stemlike cells were examined. Loss- or gain-of-function of SPRY2 to regulate the tumorigenic capacity was assessed in both intracranial and subcutaneous xenografts. Results SPRY2 was found to be upregulated in GBM, which correlated with reduced survival in GBM patients. SPRY2 knockdown significantly impaired proliferation of GBM cells but not of normal astrocytes. Silencing of SPRY2 increased epidermal growth factor-induced extracellular signal-regulated kinase (ERK) and Akt activation causing premature onset of DNA replication, increased DNA damage, and impaired proliferation, suggesting that SPRY2 suppresses DNA replication stress. Abrogating SPRY2 function strongly inhibited intracranial tumor growth and led to significantly prolonged survival of U87 xenograft-bearing mice. In contrast, SPRY2 overexpression promoted tumor propagation of low-tumorigenic U251 cells. Conclusions The present study highlights an antitumoral effect of SPRY2 inhibition that is based on excessive activation of ERK signaling and DNA damage response, resulting in reduced cell proliferation and increased cytotoxicity, proposing SPRY2 as a promising pharmacological target in GBM patients.
Collapse
Affiliation(s)
- Jong-Whi Park
- Division of Neuroanatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Guido Wollmann
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Carles Urbiola
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Division of Virology, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Fogli
- Division of Neuroanatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Tullio Florio
- Section of Pharmacology, Department of Internal Medicine and Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
| | - Stephan Geley
- Division of Molecular Pathophysiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lars Klimaschewski
- Division of Neuroanatomy, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Dittmer J, Stütz A, Vanas V, Salhi J, Reisecker JM, Kral RM, Sutterlüty-Fall H. Spatial signal repression as an additional role of Sprouty2 protein variants. Cell Signal 2019; 62:109332. [PMID: 31154002 DOI: 10.1016/j.cellsig.2019.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 11/19/2022]
Abstract
Sprouty2 (Spry2) is a prominent member of a protein family with crucial functions in the modulation of signal transduction. One of its main actions is the repression of mitogen-activated protein kinase (MAPK) pathway in response to growth factor-induced signalling. A common single nucleotide polymorphism within the Spry2 gene creates two protein variants where a proline adjacent to the serine rich domain is converted to an additional serine. Both protein variants perform similar functions although their efficiency in fulfilling these tasks varies. In this report, we used biochemical fractionation methods as well as confocal microscopy to analyse quantitative and qualitative differences in the distribution of Spry2 variants. We found that Spry2 proteins localize not solely to the plasma membrane, but also to other membrane engulfed compartments like for example the Golgi apparatus. In these less dense organelles, predominantly slower migrating forms reside indicating that posttranslational modification contributes to the distribution profile of Spry2. However there is no significant difference in the distribution of the two variants. Additionally, we found that Spry2 could be found exclusively in membrane fractions irrespective of the mitogen availability and the phosphorylation status. Considering the interference of extracellular signal-regulated kinase (ERK) activation in the cytoplasm, both Spry2 variants inhibited the levels of phosphorylated ERK (pERK) significantly to a similar extent. In contrast, the induction profiles of pERK levels were completely different in the nuclei. Again, both Spry2 variants diminished the levels of pERK. While the proline variant lowered the activation throughout the observation period, the serine variant failed to interfere with immediate accumulation of nuclear pERK levels, but the signal duration was shortened. Since the extent of the pERK inhibition in the nuclei was drastically more pronounced than in the cytoplasm, we conclude that Spry2 - in addition to its known functions as a repressor of general ERK phosphorylation - functions as a spatial repressor of nucleic ERK activation. Accordingly, a dominant negative version of Spry2 was only able to enhance the pERK levels of serum-deprived cells in the cytosol, while in the nucleus the intensity of the pERK signal in response to serum addition was significantly increased.
Collapse
Affiliation(s)
- Jakob Dittmer
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Astrid Stütz
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Vanita Vanas
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Jihen Salhi
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Johannes Manfred Reisecker
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Rosana Maria Kral
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| | - Hedwig Sutterlüty-Fall
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
17
|
Xie J, Merrett JE, Jensen KB, Proud CG. The MAP kinase-interacting kinases (MNKs) as targets in oncology. Expert Opin Ther Targets 2019; 23:187-199. [DOI: 10.1080/14728222.2019.1571043] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jianling Xie
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - James E. Merrett
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Kirk B. Jensen
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, Adelaide, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Christopher G. Proud
- Nutrition & Metabolism, South Australian Health & Medical Research Institute, Adelaide, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
18
|
Yuan X, Wu H, Bu H, Zhou J, Zhang H. Targeting the immunity protein kinases for immuno-oncology. Eur J Med Chem 2018; 163:413-427. [PMID: 30530193 DOI: 10.1016/j.ejmech.2018.11.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 01/09/2023]
Abstract
With the rise of immuno-oncology, small-molecule modulators targeting immune system and inflammatory processes are becoming a research hotspot. This work mainly focuses on key kinases acting as central nodes in immune signaling pathways. Although over thirty small-molecule kinase inhibitors have been approved by FDA for the treatment of various cancers, only a few are associated with immuno-oncology. With the going deep of the research work, more and more immunity protein kinase inhibitors are approved for clinical trials to treat solid tumors and hematologic malignancies by FDA, which remain good prospects. Meanwhile, in-depth understanding of biological function of immunity protein kinases in immune system is pushing the field forward. This article focuses on the development of safe and effective small-molecule immunity protein kinase inhibitors and further work needs to keep the promises of these inhibitors for patients' welfare.
Collapse
Affiliation(s)
- Xinrui Yuan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Hanshu Wu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Hong Bu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
19
|
VENTURI V, MASEK T, POSPISEK M. A Blood Pact: the Significance and Implications of eIF4E on Lymphocytic Leukemia. Physiol Res 2018. [DOI: 10.33549/physiolres.933696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Elevated levels of eukaryotic initiation factor 4E (eIF4E) are implicated in neoplasia, with cumulative evidence pointing to its role in the etiopathogenesis of hematological diseases. As a node of convergence for several oncogenic signaling pathways, eIF4E has attracted a great deal of interest from biologists and clinicians whose efforts have been targeting this translation factor and its biological circuits in the battle against leukemia. The role of eIF4E in myeloid leukemia has been ascertained and drugs targeting its functions have found their place in clinical trials. Little is known, however, about the pertinence of eIF4E to the biology of lymphocytic leukemia and a paucity of literature is available in this regard that prospectively evaluates the topic to guide practice in hematological cancer. A comprehensive analysis on the significance of eIF4E translation factor in the clinical picture of leukemia arises, therefore, as a compelling need. This review presents aspects of eIF4E involvement in the realm of the lymphoblastic leukemia status; translational control of immunological function via eIF4E and the state-of-the-art in drugs will also be outlined.
Collapse
Affiliation(s)
| | | | - M. POSPISEK
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
20
|
Berger MD, Stintzing S, Heinemann V, Yang D, Cao S, Sunakawa Y, Ning Y, Matsusaka S, Okazaki S, Miyamoto Y, Suenaga M, Schirripa M, Soni S, Zhang W, Falcone A, Loupakis F, Lenz HJ. Impact of genetic variations in the MAPK signaling pathway on outcome in metastatic colorectal cancer patients treated with first-line FOLFIRI and bevacizumab: data from FIRE-3 and TRIBE trials. Ann Oncol 2017; 28:2780-2785. [PMID: 29045529 PMCID: PMC5834083 DOI: 10.1093/annonc/mdx412] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The MAPK-interacting kinase 1 (MKNK1) is localized downstream of the RAS/RAF/ERK and the MAP3K1/MKK/p38 signaling pathway. Through phosphorylation MKNK1 regulates the function of eukaryotic translation initiation factor 4E, a key player in translational control, whose expression is often upregulated in metastatic colorectal cancer patients (mCRC). Preclinical data suggest that MKNK1 increases angiogenesis by upregulating angiogenic factors. We therefore hypothesize that variations in the MKNK1 gene predict outcome in mCRC patients treated with first-line FOLFIRI and bevacizumab (bev). PATIENTS AND METHODS A total of 567 patients with KRAS wild-type mCRC in the randomized phase III FIRE-3 and TRIBE trials treated with first-line FOLFIRI/bev (discovery and validation cohorts) or FOLFIRI and cetuximab (cet) (control cohort) were included in this study. Five single-nucleotide polymorphisms in the MAPK signaling pathway were analyzed. RESULTS AA genotype carriers of the MKNK1 rs8602 single-nucleotide polymorphism treated with FOLFIRI/bev in the discovery cohort (FIRE-3) had a shorter progression-free survival (PFS) than those harboring any C (7.9 versus 10.3 months, Hazard ratio (HR) 1.73, P = 0.038). This association could be confirmed in the validation cohort (TRIBE) in multivariable analysis (PFS 9.0 versus 11.0 months, HR 3.04, P = 0.029). Furthermore, AA carriers in the validation cohort had a decreased overall response rate (25% versus 66%, P = 0.049). Conversely, AA genotype carriers in the control group receiving FOLFIRI/cet did not show a shorter PFS. By combining both FOLFIRI/bev cohorts the worse outcome among AA carriers became more significant (PFS 9.0 versus 10.5 months) in univariable (HR 1.74, P = 0.015) and multivariable analysis (HR 1.76, P = 0.022). Accordingly, AA carriers did also exhibit an inferior overall response rate compared with those harboring any C (36% versus 65%, P = 0.005). CONCLUSION MKNK1 polymorphism rs8602 might serve as a predictive marker in KRAS wild-type mCRC patients treated with FOLFIRI/bev in the first-line setting. Additionally, MKNK1 might be a promising target for drug development.
Collapse
Affiliation(s)
- M D Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - S Stintzing
- Department of Medical Oncology and Comprehensive Cancer Center, University of Munich (LMU), Munich, Germany
| | - V Heinemann
- Department of Medical Oncology and Comprehensive Cancer Center, University of Munich (LMU), Munich, Germany
| | - D Yang
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - S Cao
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Y Sunakawa
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Y Ning
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - S Matsusaka
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - S Okazaki
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Y Miyamoto
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - M Suenaga
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - M Schirripa
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - S Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - W Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - A Falcone
- U.O. Oncologia Medica, Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano Tumori, Pisa
| | - F Loupakis
- Oncologia Medica 1, Istituto Oncologico Veneto, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Padova, Italy
| | - H-J Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, USA;.
| |
Collapse
|
21
|
Bell JB, Eckerdt F, Dhruv HD, Finlay D, Peng S, Kim S, Kroczynska B, Beauchamp EM, Alley K, Clymer J, Goldman S, Cheng SY, James CD, Nakano I, Horbinski C, Mazar AP, Vuori K, Kumthekar P, Raizer J, Berens ME, Platanias LC. Differential Response of Glioma Stem Cells to Arsenic Trioxide Therapy Is Regulated by MNK1 and mRNA Translation. Mol Cancer Res 2017; 16:32-46. [PMID: 29042487 DOI: 10.1158/1541-7786.mcr-17-0397] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/13/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022]
Abstract
Mesenchymal (MES) and proneural (PN) are two distinct glioma stem cell (GSC) populations that drive therapeutic resistance in glioblastoma (GBM). We screened a panel of 650 small molecules against patient-derived GBM cells to discover compounds targeting specific GBM subtypes. Arsenic trioxide (ATO), an FDA-approved drug that crosses the blood-brain barrier, was identified as a potent PN-specific compound in the initial screen and follow-up validation studies. Furthermore, MES and PN GSCs exhibited differential sensitivity to ATO. As ATO has been shown to activate the MAPK-interacting kinase 1 (MNK1)-eukaryotic translation initiation factor 4E (eIF4E) pathway and subsequent mRNA translation in a negative regulatory feedback manner, the mechanistic role of ATO resistance in MES GBM was explored. In GBM cells, ATO-activated translation initiation cellular events via the MNK1-eIF4E signaling axis. Furthermore, resistance to ATO in intracranial PDX tumors correlated with high eIF4E phosphorylation. Polysomal fractionation and microarray analysis of GBM cells were performed to identify ATO's effect on mRNA translation and enrichment of anti-apoptotic mRNAs in the ATO-induced translatome was found. Additionally, it was determined that MNK inhibition sensitized MES GSCs to ATO in neurosphere and apoptosis assays. Finally, examination of the effect of ATO on patients from a phase I/II clinical trial of ATO revealed that PN GBM patients responded better to ATO than other subtypes as demonstrated by longer overall and progression-free survival.Implications: These findings raise the possibility of a unique therapeutic approach for GBM, involving MNK1 targeting to sensitize MES GSCs to drugs like arsenic trioxide. Mol Cancer Res; 16(1); 32-46. ©2017 AACR.
Collapse
Affiliation(s)
- Jonathan B Bell
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Frank Eckerdt
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Harshil D Dhruv
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona
| | - Darren Finlay
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Sen Peng
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona
| | - Seungchan Kim
- Integrated Cancer Genomics Division, The Translational Genomics Research Institute, Phoenix, Arizona.,Department of Electrical and Computer Engineering, Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, Texas
| | - Barbara Kroczynska
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Elspeth M Beauchamp
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois
| | - Kristen Alley
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jessica Clymer
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Division of Hematology/Oncology/Stem Cell Transplantation, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Stewart Goldman
- Division of Hematology/Oncology/Stem Cell Transplantation, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Shi-Yuan Cheng
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - C David James
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ichiro Nakano
- Department of Neurosurgery and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Andrew P Mazar
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Developmental Therapeutics Core, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois
| | - Kristiina Vuori
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Priya Kumthekar
- Division of Neuro-Oncology, Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jeffrey Raizer
- Division of Neuro-Oncology, Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Michael E Berens
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. .,Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois
| |
Collapse
|
22
|
Pashenkov MV, Balyasova LS, Dagil YA, Pinegin BV. The Role of the p38-MNK-eIF4E Signaling Axis in TNF Production Downstream of the NOD1 Receptor. THE JOURNAL OF IMMUNOLOGY 2017; 198:1638-1648. [PMID: 28087669 DOI: 10.4049/jimmunol.1600467] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 12/11/2016] [Indexed: 11/19/2022]
Abstract
Activation of nucleotide-binding oligomerization domain (NOD) 1 and NOD2 by muropeptides triggers a complex transcriptional program in innate immune cells. However, little is known about posttranscriptional regulation of NOD1- and NOD2-dependent responses. When stimulated with a prototypic NOD1 agonist, N-acetylglucosaminyl-N-acetylmuramyl-l-alanyl-d-isoglutamyl-meso-diaminopimelic acid (GM-triDAP), human monocyte-derived macrophages (MDM) produced an order of magnitude more TNF, IL-6, and pro-IL-1β than did monocyte-derived dendritic cells (MDDC), despite similar NOD1 expression, similar cytokine mRNA kinetics, and comparable responses to LPS. TNF production by GM-triDAP-activated MDM was independent of autocrine IL-1. However, GM-triDAP-activated MDM translated TNF mRNA more efficiently than did MDDC. As an underlying mechanism, NOD1 triggering in MDM caused a more potent and long-lasting activation of the signaling axis involving p38 MAPK, MAPK-interacting kinase (MNK), and eukaryotic translation initiation factor 4E, which is a critical regulator of translation. Furthermore, MNK controlled TNF mRNA abundance in MDDC and MDM upon NOD1 triggering. NOD1-dependent responses were more sensitive to MNK inhibition than were TLR4-dependent responses. These results demonstrate the importance of the p38-MNK-eukaryotic translation initiation factor 4E axis in TNF production downstream of NOD1.
Collapse
Affiliation(s)
- Mikhail V Pashenkov
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency, 115478 Moscow, Russia
| | - Lyudmila S Balyasova
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency, 115478 Moscow, Russia
| | - Yulia A Dagil
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency, 115478 Moscow, Russia
| | - Boris V Pinegin
- Laboratory of Clinical Immunology, National Research Center Institute of Immunology of the Federal Medical-Biological Agency, 115478 Moscow, Russia
| |
Collapse
|
23
|
Santag S, Siegel F, Wengner AM, Lange C, Bömer U, Eis K, Pühler F, Lienau P, Bergemann L, Michels M, von Nussbaum F, Mumberg D, Petersen K. BAY 1143269, a novel MNK1 inhibitor, targets oncogenic protein expression and shows potent anti-tumor activity. Cancer Lett 2016; 390:21-29. [PMID: 28043914 DOI: 10.1016/j.canlet.2016.12.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 12/29/2022]
Abstract
The initiation of mRNA translation has received increasing attention as an attractive target for cancer treatment in the recent years. The oncogenic eukaryotic translation initiation factor 4E (eIF4E) is the major substrate of MAP kinase-interacting kinase 1 (MNK1), and it is located at the junction of the cancer-associated PI3K and MAPK pathways. The fact that MNK1 is linked to cell transformation and tumorigenesis renders the kinase a promising target for cancer therapy. We identified a novel small molecule MNK1 inhibitor, BAY 1143269, by high-throughput screening and lead optimization. In kinase assays, BAY 1143269 showed potent and selective inhibition of MNK1. By targeting MNK1 activity, BAY 1143269 strongly regulated downstream factors involved in cell cycle regulation, apoptosis, immune response and epithelial-mesenchymal transition in vitro or in vivo. In addition, BAY 1143269 demonstrated strong efficacy in monotherapy in cell line and patient-derived non-small cell lung cancer xenograft models as well as delayed tumor regrowth in combination treatment with standard of care chemotherapeutics. In summary, the inhibition of MNK1 activity with a highly potent and selective inhibitor BAY 1143269 may provide an innovative approach for anti-cancer therapy.
Collapse
Affiliation(s)
- Susann Santag
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Franziska Siegel
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Antje M Wengner
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Claudia Lange
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Ulf Bömer
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Knut Eis
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Florian Pühler
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Philip Lienau
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Linda Bergemann
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Martin Michels
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Franz von Nussbaum
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Dominik Mumberg
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany
| | - Kirstin Petersen
- Bayer AG, Drug Discovery, Pharmaceuticals, Müllerstr. 178, 13353 Berlin, Germany.
| |
Collapse
|
24
|
Rabaneda LG, Geribaldi-Doldán N, Murillo-Carretero M, Carrasco M, Martínez-Salas JM, Verástegui C, Castro C. Altered regulation of the Spry2/Dyrk1A/PP2A triad by homocysteine impairs neural progenitor cell proliferation. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:3015-3026. [PMID: 27686255 DOI: 10.1016/j.bbamcr.2016.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/13/2016] [Accepted: 09/22/2016] [Indexed: 01/06/2023]
Abstract
Hyperhomocysteinemia reduces neurogenesis in the adult mouse brain. Homocysteine (Hcy) inhibits postnatal neural progenitor cell (NPC) proliferation by specifically impairing the fibroblast growth factor receptor (FGFR)-Erk1/2-cyclin E signaling pathway. We demonstrate herein that the inhibition of FGFR-dependent NPC proliferation induced by Hcy is mediated by its capacity to alter the cellular methylation potential. Our results show that this alteration modified the expression pattern and activity of Sprouty2 (Spry2), a negative regulator of the above mentioned pathway. Both elevated concentrations of Hcy and methyltransferase activity inhibition induced Spry2 promoter demethylation in NPC cultures leading to a sustained upregulation of the expression of Spry2 mRNA and protein. In addition, protein levels of two kinases responsible for Spry2 activation/deactivation were altered by Hcy: Spry2 kinase Dyrk1A levels diminished while Spry2 phosphatase PP2A increased, leading to changes in the phosphorylation pattern, activity and stability of Spry2. In conclusion, Hcy inhibits NPC proliferation by indirect mechanisms involving alterations in DNA methylation, gene expression, and Spry2 function, causing FGFR signaling impairment.
Collapse
Affiliation(s)
- Luis G Rabaneda
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Spain; Currently at Laboratorio de Neurobiología Celular, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | | | | | - Manuel Carrasco
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Spain
| | | | | | - Carmen Castro
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Spain.
| |
Collapse
|
25
|
Yuan Y, Yan L, Wu QQ, Zhou H, Jin YG, Bian ZY, Deng W, Yang Z, Shen DF, Zeng XF, Wang SS, Li H, Tang QZ. Mnk1 (Mitogen-Activated Protein Kinase-Interacting Kinase 1) Deficiency Aggravates Cardiac Remodeling in Mice. Hypertension 2016; 68:1393-1399. [PMID: 27698061 DOI: 10.1161/hypertensionaha.116.07906] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/03/2016] [Accepted: 09/12/2016] [Indexed: 01/19/2023]
Abstract
Identifying the key factor involved in cardiac remodeling is critically important for developing novel strategies to protect against heart failure. Here, the role of Mnk1 (mitogen-activated protein kinase-interacting kinase 1) in cardiac remodeling was clarified. Cardiac remodeling was induced by transverse aortic constriction in Mnk1-knockout mice and their wild-type control mice. After 4 weeks of transverse aortic constriction, Mnk1-knockout mice developed exaggerated cardiac hypertrophy, fibrosis, dysfunction, and cardiomyocyte apoptosis and showed increased ERK1/2 (extracellular signal-regulated kinase 1/2) activation along with reduced sprouty2 expression. In line with the in vivo studies, Mnk1 knockdown by Mnk1 siRNA transfection induced exaggerated angiotensin II-induced cardiomyocyte hypertrophy in neonatal rat ventricular myocytes (NRVMs). Moreover, adenovirus-mediated overexpression of Mnk1 in NRVMs protected cardiomyocytes from angiotensin II-induced hypertrophy. In addition, overexpression of sprouty2 rescued NRVMs with Mnk1 knockdown from angiotensin II-induced hypertrophy. In accordance with the in vivo studies, as compared with the control group, Mnk1 knockdown led to hyperphosphorylation of ERK1/2 and suppression of the sprouty2 expression in angiotensin II-treated NRVMs; furthermore, Mnk1 overexpression led to hypophosphorylation of ERK1/2 in angiotensin II-treated NRVMs. In addition, sprouty2 overexpression suppressed the activation of ERK1/2 in angiotensin II-treated NRVMs with Mnk1 knockdown. Impressively, MnK1-knockout mice with overexpression of sprouty2 exhibited signs of a blunted cardiac hypertrophic response. Mnk1 likely carries out a suppressive function in cardiac hypertrophy via regulating the sprouty2/ERK1/2 pathway. It implicates Mnk1 in the development of cardiac remodeling.
Collapse
Affiliation(s)
- Yuan Yuan
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., H.L., Q.-Z.T.); and Cardiovascular Research Institute of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., X.-F.Z., S.-S.W., H.L., Q.-Z.T.)
| | - Ling Yan
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., H.L., Q.-Z.T.); and Cardiovascular Research Institute of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., X.-F.Z., S.-S.W., H.L., Q.-Z.T.)
| | - Qing-Qing Wu
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., H.L., Q.-Z.T.); and Cardiovascular Research Institute of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., X.-F.Z., S.-S.W., H.L., Q.-Z.T.)
| | - Heng Zhou
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., H.L., Q.-Z.T.); and Cardiovascular Research Institute of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., X.-F.Z., S.-S.W., H.L., Q.-Z.T.)
| | - Ya-Ge Jin
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., H.L., Q.-Z.T.); and Cardiovascular Research Institute of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., X.-F.Z., S.-S.W., H.L., Q.-Z.T.)
| | - Zhou-Yan Bian
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., H.L., Q.-Z.T.); and Cardiovascular Research Institute of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., X.-F.Z., S.-S.W., H.L., Q.-Z.T.)
| | - Wei Deng
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., H.L., Q.-Z.T.); and Cardiovascular Research Institute of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., X.-F.Z., S.-S.W., H.L., Q.-Z.T.)
| | - Zheng Yang
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., H.L., Q.-Z.T.); and Cardiovascular Research Institute of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., X.-F.Z., S.-S.W., H.L., Q.-Z.T.)
| | - Di-Fei Shen
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., H.L., Q.-Z.T.); and Cardiovascular Research Institute of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., X.-F.Z., S.-S.W., H.L., Q.-Z.T.)
| | - Xiao-Feng Zeng
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., H.L., Q.-Z.T.); and Cardiovascular Research Institute of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., X.-F.Z., S.-S.W., H.L., Q.-Z.T.)
| | - Sha-Sha Wang
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., H.L., Q.-Z.T.); and Cardiovascular Research Institute of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., X.-F.Z., S.-S.W., H.L., Q.-Z.T.)
| | - Hongliang Li
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., H.L., Q.-Z.T.); and Cardiovascular Research Institute of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., X.-F.Z., S.-S.W., H.L., Q.-Z.T.)
| | - Qi-Zhu Tang
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., H.L., Q.-Z.T.); and Cardiovascular Research Institute of Wuhan University, China (Y.Y., L.Y., Q.-Q.W., H.Z., Y.-G.J., Z.-Y.B., W.D., Z.Y., D.-F.S., X.-F.Z., S.-S.W., H.L., Q.-Z.T.).
| |
Collapse
|
26
|
Bramham CR, Jensen KB, Proud CG. Tuning Specific Translation in Cancer Metastasis and Synaptic Memory: Control at the MNK-eIF4E Axis. Trends Biochem Sci 2016; 41:847-858. [PMID: 27527252 DOI: 10.1016/j.tibs.2016.07.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 02/07/2023]
Abstract
The eukaryotic translation initiation factor (eIF) 4E, which binds to the 5'-cap of mRNA, undergoes phosphorylation on a single conserved serine, executed by the mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs). However, the functional consequences and physiological roles of MNK signalling have remained obscure. Now, new pharmacological and genetic tools have provided unprecedented insights into the function of MNKs and eIF4E phosphorylation. The studies suggest that MNKs control the translation of specific mRNAs in cancer metastasis and neuronal synaptic plasticity by a novel mechanism involving the regulation of the translational repressor, cytoplasmic fragile-X protein-interacting protein 1 (CYFIP1). These recent breakthroughs go a long way to resolving the longstanding enigma and controversy surrounding the function of the MNK-eIF4E axis in cancer cell biology and neurobiology.
Collapse
Affiliation(s)
- Clive R Bramham
- Department of Biomedicine and KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, 5009 Bergen, Norway.
| | - Kirk B Jensen
- South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Christopher G Proud
- South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
27
|
Hicks KC, Patel TB. Sprouty2 Protein Regulates Hypoxia-inducible Factor-α (HIFα) Protein Levels and Transcription of HIFα-responsive Genes. J Biol Chem 2016; 291:16787-801. [PMID: 27281823 DOI: 10.1074/jbc.m116.714139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 12/14/2022] Open
Abstract
The α-subunits of hypoxia-inducible factors (HIF1α and HIF2α) promote transcription of genes that regulate glycolysis and cell survival and growth. Sprouty2 (Spry2) is a modulator of receptor tyrosine kinase signaling and inhibits cell proliferation by a number of different mechanisms. Because of the seemingly opposite actions of HIFα subunits and Spry2 on cellular processes, we investigated whether Spry2 regulates the levels of HIF1α and HIF2α proteins. In cell lines from different types of tumors in which the decreased protein levels of Spry2 have been associated with poor prognosis, silencing of Spry2 elevated HIF1α protein levels. Increases in HIF1α and HIF2α protein levels due to silencing of Spry2 also up-regulated HIFα target genes. Using HIF1α as a prototype, we show that Spry2 decreases HIF1α stability and enhances the ubiquitylation of HIF1α by a von Hippel-Lindau protein (pVHL)-dependent mechanism. Spry2 also exists in a complex with HIF1α. Because Spry2 can also associate with pVHL, using a mutant form of Spry2 (3P/3A-Spry2) that binds HIF1α, but not pVHL, we show that WT-Spry2, but not the 3P/3A-Spry2 decreases HIF1α protein levels. In accordance, expression of WT-Spry2, but not 3P/3A-Spry2 results in a decrease in HIF1α-sensitive glucose uptake. Together our data suggest that Spry2 acts as a scaffold to bring more pVHL/associated E3 ligase in proximity of HIF1α and increase its ubiquitylation and degradation. This represents a novel action for Spry2 in modulating biological processes regulated by HIFα subunits.
Collapse
Affiliation(s)
- Kristin C Hicks
- From the Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, Illinois 60153, and
| | - Tarun B Patel
- the Albany College of Pharmacy and Health Sciences, Albany, New York 12208
| |
Collapse
|
28
|
An FGFR1-SPRY2 Signaling Axis Limits Basal Cell Proliferation in the Steady-State Airway Epithelium. Dev Cell 2016; 37:85-97. [PMID: 27046834 PMCID: PMC4825408 DOI: 10.1016/j.devcel.2016.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 01/06/2016] [Accepted: 03/01/2016] [Indexed: 12/30/2022]
Abstract
The steady-state airway epithelium has a low rate of stem cell turnover but can nevertheless mount a rapid proliferative response following injury. This suggests a mechanism to restrain proliferation at steady state. One such mechanism has been identified in skeletal muscle in which pro-proliferative FGFR1 signaling is antagonized by SPRY1 to maintain satellite cell quiescence. Surprisingly, we found that deletion of Fgfr1 or Spry2 in basal cells of the adult mouse trachea caused an increase in steady-state proliferation. We show that in airway basal cells, SPRY2 is post-translationally modified in response to FGFR1 signaling. This allows SPRY2 to inhibit intracellular signaling downstream of other receptor tyrosine kinases and restrain basal cell proliferation. An FGFR1-SPRY2 signaling axis has previously been characterized in cell lines in vitro. We now demonstrate an in vivo biological function of this interaction and thus identify an active signaling mechanism that maintains quiescence in the airway epithelium.
Collapse
|
29
|
Han W, Ding Y, Xu Y, Pfister K, Zhu S, Warne B, Doyle M, Aikawa M, Amiri P, Appleton B, Stuart DD, Fanidi A, Shafer CM. Discovery of a Selective and Potent Inhibitor of Mitogen-Activated Protein Kinase-Interacting Kinases 1 and 2 (MNK1/2) Utilizing Structure-Based Drug Design. J Med Chem 2016; 59:3034-45. [DOI: 10.1021/acs.jmedchem.5b01657] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wooseok Han
- Global
Discovery Chemistry, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Yu Ding
- Global
Discovery Chemistry, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Yongjin Xu
- Global
Discovery Chemistry, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Keith Pfister
- Global
Discovery Chemistry, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Shejin Zhu
- Global
Discovery Chemistry, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Bob Warne
- Oncology, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Mike Doyle
- Oncology, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Mina Aikawa
- Oncology, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Payman Amiri
- Oncology, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Brent Appleton
- Global
Discovery Chemistry, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Darrin D. Stuart
- Oncology, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Abdallah Fanidi
- Oncology, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| | - Cynthia M. Shafer
- Global
Discovery Chemistry, Novartis Institutes for BioMedical Research, 4560 Horton Street, Emeryville, California 94608, United States
| |
Collapse
|
30
|
Kral R, Doriguzzi A, Mayer CE, Krenbek D, Setinek U, Sutterlüty-Fall H. Differential Effects of Variations at Codon 106 on Sprouty2 Functions in Lung Cancer-Derived Cells. J Cell Biochem 2016; 117:1822-32. [PMID: 26727965 DOI: 10.1002/jcb.25482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/04/2016] [Indexed: 11/09/2022]
Abstract
Sprouty2 is a modulator of receptor tyrosine kinase-mediated signalling with an important role during lung carcinogenesis. Here, we characterize a Sprouty2 variant harbouring a substitution of proline 106 with serine. Serine substitution fails to influence expression, but accumulation of slower migrating phosphatase-sensitive forms indicates that its presence facilitates phosphorylation. In normal lung cells the serine variant is slightly more potent in inhibiting proliferation and migration. Additionally non-malignant cells expressing the major Sprouty2 variant attach more effective to fibronectin, while the serine variant only weakly stimulates cell adhesion. Mechanistically, the serine variant interferes less effectively with mitogen-activated protein kinase induction in response to serum. Concerning the positive Sprouty2 effect on epidermal growth factor receptor activation the serine variant is more potent. In all lung cancer-derived cell lines proliferation is more effectively inhibited if the Sprouty2 protein harbours the serine. In contrast, an increased interference of the serine Sprouty2 variant is only observed in cells with unaltered K-Ras. In cells harbouring a K-Ras mutation the serine conversion weakens the reduction of migration velocity indicating that dependent on the status of K-Ras the serine influences Sprouty2 functions differently. Accordingly, cell adhesion in cells with unaffected K-Ras is only stimulated by a Sprouty2 protein harbouring proline, while a serine conversion improves the attachment of the cells with constitutive active Ras. In summary our studies demonstrate that substitution of proline by serine at position 106 has biological significance and that the observed effects of this conversion depend on the activation status of endogenous K-Ras. J. Cell. Biochem. 117: 1822-1832, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rosana Kral
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Angelina Doriguzzi
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christoph-Erik Mayer
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Dagmar Krenbek
- Institute for Pathology and Bacteriology, Otto Wagner Hospital, Baumgartner Höhe, A-1140 Vienna, Austria
| | - Ulrike Setinek
- Institute for Pathology and Bacteriology, Otto Wagner Hospital, Baumgartner Höhe, A-1140 Vienna, Austria
| | - Hedwig Sutterlüty-Fall
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| |
Collapse
|
31
|
Barbáchano A, Fernández-Barral A, Pereira F, Segura MF, Ordóñez-Morán P, Carrillo-de Santa Pau E, González-Sancho JM, Hanniford D, Martínez N, Costales-Carrera A, Real FX, Pálmer HG, Rojas JM, Hernando E, Muñoz A. SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150. Oncogene 2015; 35:2991-3003. [PMID: 26455323 DOI: 10.1038/onc.2015.366] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 08/02/2015] [Accepted: 08/28/2015] [Indexed: 12/29/2022]
Abstract
SPROUTY-2 (SPRY2) is a modulator of tyrosine kinase receptor signaling with receptor- and cell type-dependent inhibitory or enhancing effects. Studies on the action of SPRY2 in major cancers are conflicting and its role remains unclear. Here we have dissected SPRY2 action in human colon cancer. Global transcriptomic analyses show that SPRY2 downregulates genes encoding tight junction proteins such as claudin-7 and occludin and other cell-to-cell and cell-to-matrix adhesion molecules in human SW480-ADH colon carcinoma cells. Moreover, SPRY2 represses LLGL2/HUGL2, PATJ1/INADL and ST14, main regulators of the polarized epithelial phenotype, and ESRP1, an epithelial-to-mesenchymal transition (EMT) inhibitor. A key action of SPRY2 is the upregulation of the major EMT inducer ZEB1, as these effects are reversed by ZEB1 knock-down by means of RNA interference. Consistently, we found an inverse correlation between the expression level of claudin-7 and those of SPRY2 and ZEB1 in human colon tumors. Mechanistically, ZEB1 upregulation by SPRY2 results from the combined induction of ETS1 transcription factor and the repression of microRNAs (miR-200 family, miR-150) that target ZEB1 RNA. Moreover, SPRY2 increased AKT activation by epidermal growth factor, whereas AKT and also Src inhibition reduced the induction of ZEB1. Altogether, these data suggest that AKT and Src are implicated in SPRY2 action. Collectively, these results show a tumorigenic role of SPRY2 in colon cancer that is based on the dysregulation of tight junction and epithelial polarity master genes via upregulation of ZEB1. The dissection of the mechanism of action of SPRY2 in colon cancer cells is important to understand the upregulation of this gene in a subset of patients with this neoplasia that have poor prognosis.
Collapse
Affiliation(s)
- A Barbáchano
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - A Fernández-Barral
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - F Pereira
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - M F Segura
- Department of Pathology, New York University School of Medicine, New York, USA
| | - P Ordóñez-Morán
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - E Carrillo-de Santa Pau
- Epithelial Carcinogenesis Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - J M González-Sancho
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - D Hanniford
- Department of Pathology, New York University School of Medicine, New York, USA
| | - N Martínez
- Unidad de Biología Celular, Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - A Costales-Carrera
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - F X Real
- Epithelial Carcinogenesis Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - H G Pálmer
- Stem cells and Cancer Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - J M Rojas
- Unidad de Biología Celular, Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - E Hernando
- Department of Pathology, New York University School of Medicine, New York, USA
| | - A Muñoz
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
32
|
Abstract
Sprouty proteins are evolutionarily conserved modulators of MAPK/ERK pathway. Through interacting with an increasing number of effectors, mediators, and regulators with ultimate influence on multiple targets within or beyond ERK, Sprouty orchestrates a complex, multilayered regulatory system and mediates a crosstalk among different signaling pathways for a coordinated cellular response. As such, Sprouty has been implicated in various developmental and physiological processes. Evidence shows that ERK is aberrantly activated in malignant conditions. Accordingly, Sprouty deregulation has been reported in different cancer types and shown to impact cancer development, progression, and metastasis. In this article, we have tried to provide an overview of the current knowledge about the Sprouty physiology and its regulatory functions in health, as well as an updated review of the Sprouty status in cancer. Putative implications of Sprouty in cancer biology, their clinical relevance, and their proposed applications are also revisited. As a developing story, however, role of Sprouty in cancer remains to be further elucidated.
Collapse
Affiliation(s)
- Samar Masoumi-Moghaddam
- UNSW Department of Surgery, University of New South Wales, St George Hospital, Kogarah, Sydney, NSW, 2217, Australia,
| | | | | |
Collapse
|
33
|
A SPRY2 mutation leading to MAPK/ERK pathway inhibition is associated with an autosomal dominant form of IgA nephropathy. Eur J Hum Genet 2015; 23:1673-8. [PMID: 25782674 DOI: 10.1038/ejhg.2015.52] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 01/16/2015] [Accepted: 02/20/2015] [Indexed: 11/08/2022] Open
Abstract
IgA nephropathy (IgAN) represents the most common primary glomerulonephritis worldwide with a prevalence of 25-50% among patients with primary glomerulopathies. In ~5-10% of the patients the disease segregates with an autosomal dominant (AD) pattern. Association studies identified loci on chromosomes 1q32, 6p21, 8p23, 17p13, 22q12, whereas classical linkage studies on AD families identified loci on chromosomes 2q36, 4q26-31, 6q22, 17q12-22. We have studied a large Sicilian family where IgAN segregates with an AD transmission. To identify the causal gene, the exomes of two affected and one unaffected individual have been sequenced. From the bioinformatics analysis a p.(Arg119Trp) variant in the SPRY2 gene was identified as the probable disease-causing mutation. Moreover, functional characterization of this variant showed that it is responsible for the inhibition of the MAPK/ERK1/2 pathway. The same effect was observed in two sporadic IgAN patients carriers of wild-type SPRY2, suggesting that downregulation of the MAPK/ERK1/2 pathway represents a common mechanism leading to IgAN.
Collapse
|
34
|
Proud CG. Mnks, eIF4E phosphorylation and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:766-73. [PMID: 25450520 DOI: 10.1016/j.bbagrm.2014.10.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/06/2014] [Accepted: 10/18/2014] [Indexed: 01/18/2023]
Abstract
The MAP kinase signal-integrating kinases or MAP kinase-interacting protein kinases (Mnks) are activated by signaling through the oncogenic MAP kinase (ERK) pathway. The best-known Mnk substrate is eukaryotic initiation factor eIF4E, the protein which binds the 5'-cap structure of eukaryotic mRNAs and helps to recruit ribosomes to them. eIF4E is a well-established proto-oncogene, whose expression or activation is associated with transformation and tumorigenesis. Mnks phosphorylate eIF4E at a single site. Increasing evidence implicates the Mnks and/or phosphorylation of eIF4E in cell transformation, tumorigenesis or tumor progression, in a growing range of settings. Mnks and/or the phosphorylation of eIF4E have been suggested to regulate the expression of proteins involved in cell cycle progression, cell survival and cell motility. Further work is needed to extend our understanding of the impact of the Mnks on gene expression, explore the biochemical mechanisms involved and evaluate the utility of targeting the Mnks in cancer therapy. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Christopher G Proud
- South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
| |
Collapse
|
35
|
Joshi S, Platanias LC. Mnk kinase pathway: Cellular functions and biological outcomes. World J Biol Chem 2014; 5:321-333. [PMID: 25225600 PMCID: PMC4160526 DOI: 10.4331/wjbc.v5.i3.321] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/10/2014] [Accepted: 06/03/2014] [Indexed: 02/05/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) interacting protein kinases 1 and 2 (Mnk1 and Mnk2) play important roles in controlling signals involved in mRNA translation. In addition to the MAPKs (p38 or Erk), multiple studies suggest that the Mnk kinases can be regulated by other known kinases such as Pak2 and/or other unidentified kinases by phosphorylation of residues distinct from the sites phosphorylated by the MAPKs. Several studies have established multiple Mnk protein targets, including PSF, heterogenous nuclear ribonucleoprotein A1, Sprouty 2 and have lead to the identification of distinct biological functions and substrate specificity for the Mnk kinases. In this review we discuss the pathways regulating the Mnk kinases, their known substrates as well as the functional consequences of engagement of pathways controlled by Mnk kinases. These kinases play an important role in mRNA translation via their regulation of eukaryotic initiation factor 4E (eIF4E) and their functions have important implications in tumor biology as well as the regulation of drug resistance to anti-oncogenic therapies. Other studies have identified a role for the Mnk kinases in cap-independent mRNA translation, suggesting that the Mnk kinases can exert important functional effects independently of the phosphorylation of eIF4E. The role of Mnk kinases in inflammation and inflammation-induced malignancies is also discussed.
Collapse
|
36
|
Phosphorylation of eIF4E promotes EMT and metastasis via translational control of SNAIL and MMP-3. Oncogene 2014; 34:2032-42. [PMID: 24909168 PMCID: PMC4978545 DOI: 10.1038/onc.2014.146] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 02/08/2023]
Abstract
The progression of cancers from primary tumors to invasive and metastatic stages accounts for the overwhelming majority of cancer deaths. Understanding the molecular events which promote metastasis is thus critical in the clinic. Translational control is emerging as an important factor in tumorigenesis. The mRNA cap-binding protein eIF4E is an oncoprotein that plays an important role in cancer initiation and progression. eIF4E must be phosphorylated to promote tumor development. However, the role of eIF4E phosphorylation in metastasis is not known. Here, we show that mice in which eIF4E cannot be phosphorylated are resistant to lung metastases in a mammary tumor model, and that cells isolated from these mice exhibit impaired invasion. We also demonstrate that TGFβ induces eIF4E phosphorylation to promote translation of Snail and Mmp-3 mRNAs, and the induction of epithelial-to-mesenchymal transition (EMT). Furthermore, we describe a new model wherein EMT induced by TGFβ requires translational activation via the non-canonical TGFβ signaling branch acting through eIF4E phosphorylation.
Collapse
|
37
|
Yim DGR, Ghosh S, Guy GR, Virshup DM. Casein kinase 1 regulates Sprouty2 in FGF-ERK signaling. Oncogene 2014; 34:474-84. [PMID: 24469046 DOI: 10.1038/onc.2013.564] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/14/2013] [Accepted: 12/10/2013] [Indexed: 12/11/2022]
Abstract
Sprouty2 (SPRY2) is a potent negative regulator of receptor tyrosine kinase signaling, and is implicated as a tumor suppressor. SPRY2 inhibits FGF-RAS-ERK signaling by binding to growth factor receptor bound protein 2 (GRB2) during fibroblast growth factor receptor (FGFR) activation, disrupting the GRB2-SOS (son of sevenless) complex that transduces signals from FGFR to RAS. SPRY2 binding to GRB2 is modulated by phosphorylation but the key regulatory kinase(s) are not known. Prior studies identified the frequent presence of CK1 phosphorylation motifs on SPRY2. We therefore tested if CK1 has a role in SPRY2 phosphorylation and function. Loss of CK1 binding and inhibition of CK1 activity by two structurally distinct small molecules abrogated SPRY2 inhibition of FGF-ERK signaling, leading to decreased SPRY2 interaction with GRB2. Moreover, CK1 activity and binding are necessary for SPRY2 inhibition of FGF-stimulated neurite outgrowth in PC12 cells. Consistent with its proposed role as an inhibitor of FGF signaling, we find that CSNK1E transcript abundance negatively correlates with FGF1/FGF7 message in human gastric cancer samples. Modulation of CK1 activity may be therapeutically useful in the treatment of FGF/SPRY2-related diseases.
Collapse
Affiliation(s)
- D G R Yim
- 1] Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, Singapore [2] Signal Transduction Laboratory, Institute for Molecular and Cellular Biology, Biopolis, Singapore [3] Genome Institute of Singapore, Biopolis, Singapore
| | - S Ghosh
- Center for Computational Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - G R Guy
- Signal Transduction Laboratory, Institute for Molecular and Cellular Biology, Biopolis, Singapore
| | - D M Virshup
- 1] Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, Singapore [2] Department of Biochemistry, YYL School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
38
|
Annenkov A. Receptor tyrosine kinase (RTK) signalling in the control of neural stem and progenitor cell (NSPC) development. Mol Neurobiol 2013; 49:440-71. [PMID: 23982746 DOI: 10.1007/s12035-013-8532-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/09/2013] [Indexed: 01/04/2023]
Abstract
Important developmental responses are elicited in neural stem and progenitor cells (NSPC) by activation of the receptor tyrosine kinases (RTK), including the fibroblast growth factor receptors, epidermal growth factor receptor, platelet-derived growth factor receptors and insulin-like growth factor receptor (IGF1R). Signalling through these RTK is necessary and sufficient for driving a number of developmental processes in the central nervous system. Within each of the four RTK families discussed here, receptors are activated by sets of ligands that do not cross-activate receptors of the other three families, and therefore, their activation can be independently regulated by ligand availability. These RTK pathways converge on a conserved core of signalling molecules, but differences between the receptors in utilisation of signalling molecules and molecular adaptors for intracellular signal propagation become increasingly apparent. Intracellular inhibitors of RTK signalling are widely involved in the regulation of developmental signalling in NSPC and often determine developmental outcomes of RTK activation. In addition, cellular responses of NSPC to the activation of a given RTK may be significantly modulated by signal strength. Cellular propensity to respond also plays a role in developmental outcomes of RTK signalling. In combination, these mechanisms regulate the balance between NSPC maintenance and differentiation during development and in adulthood. Attribution of particular developmental responses of NSPC to specific pathways of RTK signalling becomes increasingly elucidated. Co-activation of several RTK in developing NSPC is common, and analysis of co-operation between their signalling pathways may advance knowledge of RTK role in NSPC development.
Collapse
Affiliation(s)
- Alexander Annenkov
- Bone and Joint Research Unit, William Harvey Research Institute, Bart's and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK,
| |
Collapse
|
39
|
Rathmanner N, Haigl B, Vanas V, Doriguzzi A, Gsur A, Sutterlüty-Fall H. Sprouty2 but not Sprouty4 is a potent inhibitor of cell proliferation and migration of osteosarcoma cells. FEBS Lett 2013; 587:2597-605. [PMID: 23831057 DOI: 10.1016/j.febslet.2013.06.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/17/2013] [Accepted: 06/22/2013] [Indexed: 10/26/2022]
Abstract
As negative regulators of receptor tyrosine kinase-mediated signalling, Sprouty proteins fulfil important roles during carcinogenesis. In this report, we demonstrate that Sprouty2 protein expression inhibits cell proliferation and migration in osteosarcoma-derived cells. Although earlier reports describe a tumour-promoting function, these results indicate that Sprouty proteins also have the potential to function as tumour suppressors in sarcoma. In contrast to Sprouty2, Sprouty4 expression failed to interfere with proliferation and migration of the osteosarcoma-derived cells, possibly due to a less pronounced interference with mitogen-activated protein kinase activity. Sequences within the NH2-terminus are responsible for the specific inhibitory function of Sprouty2 protein.
Collapse
Affiliation(s)
- Nadine Rathmanner
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
40
|
SPROUTY2 is a β-catenin and FOXO3a target gene indicative of poor prognosis in colon cancer. Oncogene 2013; 33:1975-85. [DOI: 10.1038/onc.2013.140] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 03/02/2013] [Accepted: 03/04/2013] [Indexed: 01/02/2023]
|
41
|
Abekhoukh S, Planque C, Ripoll C, Urbaniak P, Paul JL, Delabar JM, Janel N. Dyrk1A, a serine/threonine kinase, is involved in ERK and Akt activation in the brain of hyperhomocysteinemic mice. Mol Neurobiol 2013; 47:105-16. [PMID: 22923366 DOI: 10.1007/s12035-012-8326-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/12/2012] [Indexed: 01/25/2023]
Abstract
Hyperhomocysteinemia due to cystathionine beta synthase (CBS) deficiency is associated with diverse brain disease. Whereas the biological actions linking hyperhomocysteinemia to the cognitive dysfunction are not well understood, we tried to establish relationships between hyperhomocysteinemia and alterations of signaling pathways. In the brain of CBS-deficient mice, a murine model of hyperhomocysteinemia, we previously found an activation of extracellular signal-regulated kinase (ERK) pathway and an increase of Dyrk1A, a serine/threonine kinase involved in diverse functions ranging from development and growth to apoptosis. We then investigated the relationship between Dyrk1A and the signaling pathways initiated by receptor tyrosine kinases (RTK), the ERK and PI3K/Akt pathways. We found a significant increase of phospho-ERK, phospho-MEK, and phospho-Akt in the brain of CBS-deficient and Dyrk1a-overexpressing mice. This increase was abolished when CBS-deficient and Dyrk1A-transgenic mice were treated with harmine, an inhibitor of Dyrk1A kinase activity, which emphasizes the role of Dyrk1A activity on ERK and Akt activation. Sprouty 2 protein level, a negative feedback loop modulator that limits the intensity and duration of RTK activation, is decreased in the brain of CBS-deficient mice, but not in the brain of Dyrk1A transgenic mice. Furthermore, a reduced Dyrk1A and Grb2 binding on sprouty 2 and an increased interaction of Dyrk1A with Grb2 were found in the brain of Dyrk1A transgenic mice. The consequence of Dyrk1A overexpression on RTK activation seems to be a decreased interaction of sprouty 2/Grb2. These observations demonstrate ERK and Akt activation induced by Dyrk1A in the brain of hyperhomocysteinemic mice and open new perspectives to understand the basis of the cognitive defects in hyperhomocysteinemia.
Collapse
Affiliation(s)
- Sabiha Abekhoukh
- Unit of Functional and Adaptive Biology (BFA), Univ Paris Diderot, Sorbonne Paris Cité, EAC-CNRS 4413, Case 7104, 75205, Paris, cedex 13, France
| | | | | | | | | | | | | |
Collapse
|
42
|
LY2801653 is an orally bioavailable multi-kinase inhibitor with potent activity against MET, MST1R, and other oncoproteins, and displays anti-tumor activities in mouse xenograft models. Invest New Drugs 2012; 31:833-44. [PMID: 23275061 PMCID: PMC3717159 DOI: 10.1007/s10637-012-9912-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/03/2012] [Indexed: 01/03/2023]
Abstract
The HGF/MET signaling pathway regulates a wide variety of normal cellular functions that can be subverted to support neoplasia, including cell proliferation, survival, apoptosis, scattering and motility, invasion, and angiogenesis. MET over-expression (with or without gene amplification), aberrant autocrine or paracrine ligand production, and missense MET mutations are mechanisms that lead to activation of the MET pathway in tumors and are associated with poor prognostic outcome. We report here preclinical development of a potent, orally bioavailable, small-molecule inhibitor LY2801653 targeting MET kinase. LY2801653 is a type-II ATP competitive, slow-off inhibitor of MET tyrosine kinase with a dissociation constant (Ki) of 2 nM, a pharmacodynamic residence time (Koff) of 0.00132 min(-1) and t1/2 of 525 min. LY2801653 demonstrated in vitro effects on MET pathway-dependent cell scattering and cell proliferation; in vivo anti-tumor effects in MET amplified (MKN45), MET autocrine (U-87MG, and KP4) and MET over-expressed (H441) xenograft models; and in vivo vessel normalization effects. LY2801653 also maintained potency against 13 MET variants, each bearing a single-point mutation. In subsequent nonclinical characterization, LY2801653 was found to have potent activity against several other receptor tyrosine oncokinases including MST1R, FLT3, AXL, MERTK, TEK, ROS1, DDR1/2 and against the serine/threonine kinases MKNK1/2. The potential value of MET and other inhibited targets within a number of malignancies (such as colon, bile ducts, and lung) is discussed. LY2801653 is currently in phase 1 clinical testing in patients with advanced cancer (trial I3O-MC-JSBA, NCT01285037).
Collapse
|
43
|
Sharma B, Joshi S, Sassano A, Majchrzak B, Kaur S, Aggarwal P, Nabet B, Bulic M, Stein BL, McMahon B, Baker DP, Fukunaga R, Altman JK, Licht JD, Fish EN, Platanias LC. Sprouty proteins are negative regulators of interferon (IFN) signaling and IFN-inducible biological responses. J Biol Chem 2012; 287:42352-60. [PMID: 23074222 DOI: 10.1074/jbc.m112.400721] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Interferons (IFNs) have important antiviral and antineoplastic properties, but the precise mechanisms required for generation of these responses remain to be defined. We provide evidence that during engagement of the Type I IFN receptor (IFNR), there is up-regulation of expression of Sprouty (Spry) proteins 1, 2, and 4. Our studies demonstrate that IFN-inducible up-regulation of Spry proteins is Mnk kinase-dependent and results in suppressive effects on the IFN-activated p38 MAP kinase (MAPK), the function of which is required for transcription of interferon-stimulated genes (ISGs). Our data establish that ISG15 mRNA expression and IFN-dependent antiviral responses are enhanced in Spry1,2,4 triple knock-out mouse embryonic fibroblasts, consistent with negative feedback regulatory roles for Spry proteins in IFN-mediated signaling. In other studies, we found that siRNA-mediated knockdown of Spry1, Spry2, or Spry4 promotes IFN-inducible antileukemic effects in vitro and results in enhanced suppressive effects on malignant hematopoietic progenitors from patients with polycythemia vera. Altogether, our findings demonstrate that Spry proteins are potent regulators of Type I IFN signaling and negatively control induction of Type I IFN-mediated biological responses.
Collapse
Affiliation(s)
- Bhumika Sharma
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Joshi S, Platanias LC. Mnk Kinases in Cytokine Signaling and Regulation of Cytokine Responses. Biomol Concepts 2012; 3:255-266. [PMID: 23710261 DOI: 10.1515/bmc-2011-0057] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The kinases Mnk1 and Mnk2 are activated downstream of the p38 MAPK and MEK/ERK signaling pathways. Extensive work over the years has shown that these kinases control phosphorylation of the eukaryotic initiation factor 4E (eIF4E) and regulate engagement of other effector elements, including hnRNPA1 and PSF. Mnk kinases are ubiquitously expressed and play critical roles in signaling for various cytokine receptors, while there is emerging evidence that they have important functions as mediators of pro-inflammatory cytokine production. In this review the mechanisms of activation of MNK pathways by cytokine receptors are addressed and their roles in diverse cytokine-dependent biological processes are reviewed. The clinical-translational implications of such work and the relevance of future development of specific MNK inhibitors for the treatment of malignancies and auto-immune disorders are discussed.
Collapse
Affiliation(s)
- Sonali Joshi
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School, and Jesse Brown VA, Medical Center, Chicago, IL ; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
45
|
Astanehe A, Finkbeiner MR, Krzywinski M, Fotovati A, Dhillon J, Berquin IM, Mills GB, Marra MA, Dunn SE. MKNK1 is a YB-1 target gene responsible for imparting trastuzumab resistance and can be blocked by RSK inhibition. Oncogene 2012; 31:4434-46. [PMID: 22249268 DOI: 10.1038/onc.2011.617] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Trastuzumab (Herceptin) resistance is a major obstacle in the treatment of patients with HER2-positive breast cancers. We recently reported that the transcription factor Y-box binding protein-1 (YB-1) leads to acquisition of resistance to trastuzumab in a phosphorylation-dependent manner that relies on p90 ribosomal S6 kinase (RSK). To explore how this may occur we compared YB-1 target genes between trastuzumab-sensitive cells (BT474) and those with acquired resistance (HR5 and HR6) using genome-wide chromatin immunoprecipitation sequencing (ChIP-sequencing), which identified 1391 genes uniquely bound by YB-1 in the resistant cell lines. We then examined differences in protein expression and phosphorylation between these cell lines using the Kinexus Kinex antibody microarrays. Cross-referencing these two data sets identified the mitogen-activated protein kinase-interacting kinase (MNK) family as potentially being involved in acquired resistance downstream from YB-1. MNK1 and MNK2 were subsequently shown to be overexpressed in the resistant cell lines; however, only the former was a YB-1 target based on ChIP-PCR and small interfering RNA (siRNA) studies. Importantly, loss of MNK1 expression using siRNA enhanced sensitivity to trastuzumab. Further, MNK1 overexpression was sufficient to confer resistance to trastuzumab in cells that were previously sensitive. We then developed a de novo model of acquired resistance by exposing BT474 cells to trastuzumab for 60 days (BT474LT). Similar to the HR5/HR6 cells, the BT474LT cells had elevated MNK1 levels and were dependent on it for survival. In addition, we demonstrated that RSK phosphorylated MNK1, and that this phosphorylation was required for ability of MNK1 to mediate resistance to trastuzumab. Furthermore, inhibition of RSK with the small molecule BI-D1870 repressed the MNK1-mediated trastuzumab resistance. In conclusion, this unbiased integrated approach identified MNK1 as a player in mediating trastuzumab resistance as a consequence of YB-1 activation, and demonstrated RSK inhibition as a means to overcome recalcitrance to trastuzumab.
Collapse
Affiliation(s)
- A Astanehe
- Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Joshi S, Platanias LC. Mnk Kinases in Cytokine Signaling and Regulation of Cytokine Responses. Biomol Concepts 2012. [PMID: 23710261 DOI: 10.1515/bmc-2011-1057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The kinases Mnk1 and Mnk2 are activated downstream of the p38 MAPK and MEK/ERK signaling pathways. Extensive work over the years has shown that these kinases control phosphorylation of the eukaryotic initiation factor 4E (eIF4E) and regulate engagement of other effector elements, including hnRNPA1 and PSF. Mnk kinases are ubiquitously expressed and play critical roles in signaling for various cytokine receptors, while there is emerging evidence that they have important functions as mediators of pro-inflammatory cytokine production. In this review the mechanisms of activation of MNK pathways by cytokine receptors are addressed and their roles in diverse cytokine-dependent biological processes are reviewed. The clinical-translational implications of such work and the relevance of future development of specific MNK inhibitors for the treatment of malignancies and auto-immune disorders are discussed.
Collapse
Affiliation(s)
- Sonali Joshi
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School, and Jesse Brown VA, Medical Center, Chicago, IL ; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
47
|
Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 2011; 75:50-83. [PMID: 21372320 DOI: 10.1128/mmbr.00031-10] [Citation(s) in RCA: 2186] [Impact Index Per Article: 168.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs by relaying extracellular signals to intracellular responses. In mammals, there are more than a dozen MAPK enzymes that coordinately regulate cell proliferation, differentiation, motility, and survival. The best known are the conventional MAPKs, which include the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-terminal kinases 1 to 3 (JNK1 to -3), p38 (α, β, γ, and δ), and ERK5 families. There are additional, atypical MAPK enzymes, including ERK3/4, ERK7/8, and Nemo-like kinase (NLK), which have distinct regulation and functions. Together, the MAPKs regulate a large number of substrates, including members of a family of protein Ser/Thr kinases termed MAPK-activated protein kinases (MAPKAPKs). The MAPKAPKs are related enzymes that respond to extracellular stimulation through direct MAPK-dependent activation loop phosphorylation and kinase activation. There are five MAPKAPK subfamilies: the p90 ribosomal S6 kinase (RSK), the mitogen- and stress-activated kinase (MSK), the MAPK-interacting kinase (MNK), the MAPK-activated protein kinase 2/3 (MK2/3), and MK5 (also known as p38-regulated/activated protein kinase [PRAK]). These enzymes have diverse biological functions, including regulation of nucleosome and gene expression, mRNA stability and translation, and cell proliferation and survival. Here we review the mechanisms of MAPKAPK activation by the different MAPKs and discuss their physiological roles based on established substrates and recent discoveries.
Collapse
|
48
|
Cargnello M, Roux PP. Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases. Microbiol Mol Biol Rev 2011. [DOI: 78495111110.1128/mmbr.00031-10' target='_blank'>'"<>78495111110.1128/mmbr.00031-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [78495111110.1128/mmbr.00031-10','', '10.1128/mcb.26.5.1898-1907.2006')">Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
78495111110.1128/mmbr.00031-10" />
Abstract
SUMMARYThe mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs by relaying extracellular signals to intracellular responses. In mammals, there are more than a dozen MAPK enzymes that coordinately regulate cell proliferation, differentiation, motility, and survival. The best known are the conventional MAPKs, which include the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-terminal kinases 1 to 3 (JNK1 to -3), p38 (α, β, γ, and δ), and ERK5 families. There are additional, atypical MAPK enzymes, including ERK3/4, ERK7/8, and Nemo-like kinase (NLK), which have distinct regulation and functions. Together, the MAPKs regulate a large number of substrates, including members of a family of protein Ser/Thr kinases termed MAPK-activated protein kinases (MAPKAPKs). The MAPKAPKs are related enzymes that respond to extracellular stimulation through direct MAPK-dependent activation loop phosphorylation and kinase activation. There are five MAPKAPK subfamilies: the p90 ribosomal S6 kinase (RSK), the mitogen- and stress-activated kinase (MSK), the MAPK-interacting kinase (MNK), the MAPK-activated protein kinase 2/3 (MK2/3), and MK5 (also known as p38-regulated/activated protein kinase [PRAK]). These enzymes have diverse biological functions, including regulation of nucleosome and gene expression, mRNA stability and translation, and cell proliferation and survival. Here we review the mechanisms of MAPKAPK activation by the different MAPKs and discuss their physiological roles based on established substrates and recent discoveries.
Collapse
Affiliation(s)
- Marie Cargnello
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
- Molecular Biology Program, Université de Montréal, Montreal, Quebec, Canada
| | - Philippe P. Roux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
- Molecular Biology Program, Université de Montréal, Montreal, Quebec, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
49
|
Joshi S, Sharma B, Kaur S, Majchrzak B, Ueda T, Fukunaga R, Verma AK, Fish EN, Platanias LC. Essential role for Mnk kinases in type II interferon (IFNgamma) signaling and its suppressive effects on normal hematopoiesis. J Biol Chem 2011; 286:6017-26. [PMID: 21149447 PMCID: PMC3057839 DOI: 10.1074/jbc.m110.197921] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/10/2010] [Indexed: 12/22/2022] Open
Abstract
IFNγ exhibits potent antitumor effects and plays important roles in the innate immunity against cancer. However, the mechanisms accounting for the antiproliferative effects of IFNγ still remain to be elucidated. We examined the role of Mnk1 (MAPK-interacting protein kinase 1) in IFNγ signaling. Our data demonstrate that IFNγ treatment of sensitive cells results in engagement of Mnk1, activation of its kinase domain, and downstream phosphorylation of the cap-binding protein eIF4E on Ser-209. Such engagement of Mnk1 plays an important role in IFNγ-induced IRF-1 (IFN regulatory factor 1) gene mRNA translation/protein expression and is essential for generation of antiproliferative responses. In studies aimed to determine the role of Mnk1 in the induction of the suppressive effects of IFNs on primitive hematopoietic progenitors, we found that siRNA-mediated Mnk1/2 knockdown results in partial reversal of the suppressive effects of IFNγ on human CD34+-derived myeloid (CFU-GM) and erythroid (BFU-E) progenitors. These findings establish a key role for the Mnk/eIF4E pathway in the regulatory effects of IFNγ on normal hematopoiesis and identify Mnk kinases as important elements in the control of IFNγ-inducible ISG mRNA translation.
Collapse
Affiliation(s)
- Sonali Joshi
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60611
| | - Bhumika Sharma
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60611
| | - Surinder Kaur
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60611
| | - Beata Majchrzak
- the Division of Cell and Molecular Biology, Toronto Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, Ontario M5G2M1, Canada
| | - Takeshi Ueda
- the Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 737-8553 Japan
| | - Rikiro Fukunaga
- the Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan, and
| | - Amit K. Verma
- the Division of Hematology-Oncology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Eleanor N. Fish
- the Division of Cell and Molecular Biology, Toronto Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, Ontario M5G2M1, Canada
| | - Leonidas C. Platanias
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60611
| |
Collapse
|
50
|
Spry2 expression correlates with BRAF mutation in thyroid cancer. Surgery 2011; 148:1282-7; discussion 1287. [PMID: 21134562 DOI: 10.1016/j.surg.2010.09.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 09/16/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND BRAF mutations activate the mitogen-activated protein kinase pathway and often confer an aggressive thyroid cancer (TC) phenotype. Spry2 is an inducible negative feedback regulator of the mitogen-activated protein kinase (MAPK) pathway. The aim of this study was to investigate the role of Spry2 in TC. METHODS TC cell lines were analyzed for Spry2 expression and MAPK pathway activation. Cells were treated with MEK inhibitor and Spry2 small hairpin RNA. Cells were analyzed for Spry2 expression and MEK/ERK phosphorylation (pMEK, pERK). Thirty human papillary TCs were analyzed for mitogen-activated protein kinase pathway activating mutations and Spry2 expression. RESULTS Increased baseline pMEK levels and Spry2 expression was found in BRAF V600E mutant (BRAF+) cells. MEK inhibition in BRAF+ cells showed decreased Spry2 expression and decreased pMEK/pERK levels. From our tissue samples, 10 papillary TCs had BRAF mutation, and increased Spry2 expression was found only in BRAF+ tumors. CONCLUSION Spry2 expression correlates with BRAF status in vitro and in human tissue. Spry2 may serve as a negative feedback regulator of the mitogen-activated protein kinase pathway in BRAF+ TC. Increased Spry2 expression may serve as a surrogate marker of mitogen-activated protein kinase pathway activation with prognostic and therapeutic implications.
Collapse
|