1
|
Zhang C, Zheng J, Yu X, Kuang B, Dai X, Zheng L, Yu W, Teng W, Cao H, Li M, Yao J, Liu X, Zou W. "Baihui" (DU20)-penetrating "Qubin" (GB7) acupuncture on blood-brain barrier integrity in rat intracerebral hemorrhage models via the RhoA/ROCK II/MLC 2 signaling pathway. Animal Model Exp Med 2024; 7:740-757. [PMID: 38379356 PMCID: PMC11528382 DOI: 10.1002/ame2.12374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/21/2023] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Blocking the RhoA/ROCK II/MLC 2 (Ras homolog gene family member A/Rho kinase II/myosin light chain 2) signaling pathway can initiate neuroprotective mechanisms against neurological diseases such as stroke, cerebral ischemia, and subarachnoid hemorrhage. Nevertheless, it is not clear whether and how disrupting the RhoA/ROCK II/MLC 2 signaling pathway changes the pathogenic processes of the blood-brain barrier (BBB) after intracerebral hemorrhage (ICH). The present investigation included the injection of rat caudal vein blood into the basal ganglia area to replicate the pathophysiological conditions caused by ICH. METHODS Scalp acupuncture (SA) therapy was performed on rats with ICH at the acupuncture point "Baihui"-penetrating "Qubin," and the ROCK selective inhibitor fasudil was used as a positive control to evaluate the inhibitory effect of acupuncture on the RhoA/ROCK II/MLC 2 signaling pathway. Post-assessments included neurological deficits, brain edema, Evans blue extravasation, Western blot, quantitative polymerase chain reaction, and transmission electron microscope imaging. RESULTS We found that ROCK II acts as a promoter of the RhoA/ROCK II/MLC 2 signaling pathway, and its expression increased at 6 h after ICH, peaked at 3 days, and then decreased at 7 days after ICH, but was still higher than the pre-intervention level. According to some experimental results, although 3 days is the peak, 7 days is the best time point for acupuncture treatment. Starting from 6 h after ICH, the neurovascular structure and endothelial cell morphology around the hematoma began to change. Based on the changes in the promoter ROCK II, a 7-day time point was selected as the breakthrough point for treating ICH model rats in the main experiment. The results of this experiment showed that both SA at "Baihui"-penetrating "Qubin" and treatment with fasudil could improve the expression of endothelial-related proteins by inhibiting the RhoA/ROCK II/MLC 2 signaling pathway and reduce neurological dysfunction, brain edema, and BBB permeability in rats. CONCLUSION This study found that these experimental data indicated that SA at "Baihui"-penetrating "Qubin" could preserve BBB integrity and neurological function recovery after ICH by inhibiting RhoA/ROCK II/MLC 2 signaling pathway activation and by regulating endothelial cell-related proteins.
Collapse
Affiliation(s)
- Ce Zhang
- Heilongjiang University of Chinese MedicineHarbinChina
| | - Jia Zheng
- Heilongjiang University of Chinese MedicineHarbinChina
| | - Xueping Yu
- First Affiliated Hospital of Heilongjiang University of Chinese MedicineHarbinChina
| | - Binglin Kuang
- Heilongjiang University of Chinese MedicineHarbinChina
| | - Xiaohong Dai
- First Affiliated Hospital of Heilongjiang University of Chinese MedicineHarbinChina
| | - Lei Zheng
- Clinical Key Laboratory of Integrated Traditional Chinese and Western Medicine of Heilongjiang University of Chinese MedicineHarbinChina
| | - Weiwei Yu
- First Affiliated Hospital of Heilongjiang University of Chinese MedicineHarbinChina
| | - Wei Teng
- First Affiliated Hospital of Heilongjiang University of Chinese MedicineHarbinChina
| | - Hongtao Cao
- First Affiliated Hospital of Heilongjiang University of Chinese MedicineHarbinChina
| | - Mingyue Li
- First Affiliated Hospital of Heilongjiang University of Chinese MedicineHarbinChina
| | - Jiayong Yao
- First Affiliated Hospital of Heilongjiang University of Chinese MedicineHarbinChina
| | - Xiaoying Liu
- First Affiliated Hospital of Heilongjiang University of Chinese MedicineHarbinChina
| | - Wei Zou
- First Affiliated Hospital of Heilongjiang University of Chinese MedicineHarbinChina
| |
Collapse
|
2
|
Sakaguchi R, Takahashi N, Yoshida T, Ogawa N, Ueda Y, Hamano S, Yamaguchi K, Sawamura S, Yamamoto S, Hara Y, Kawamoto T, Suzuki R, Nakao A, Mori MX, Furukawa T, Shimizu S, Inoue R, Mori Y. Dynamic remodeling of TRPC5 channel-caveolin-1-eNOS protein assembly potentiates the positive feedback interaction between Ca 2+ and NO signals. J Biol Chem 2024; 300:107705. [PMID: 39178948 PMCID: PMC11420454 DOI: 10.1016/j.jbc.2024.107705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024] Open
Abstract
The cell signaling molecules nitric oxide (NO) and Ca2+ regulate diverse biological processes through their closely coordinated activities directed by signaling protein complexes. However, it remains unclear how dynamically the multicomponent protein assemblies behave within the signaling complexes upon the interplay between NO and Ca2+ signals. Here we demonstrate that TRPC5 channels activated by the stimulation of G-protein-coupled ATP receptors mediate Ca2+ influx, that triggers NO production from endothelial NO synthase (eNOS), inducing secondary activation of TRPC5 via cysteine S-nitrosylation and eNOS in vascular endothelial cells. Mutations in the caveolin-1-binding domains of TRPC5 disrupt its association with caveolin-1 and impair Ca2+ influx and NO production, suggesting that caveolin-1 serves primarily as the scaffold for TRPC5 and eNOS to assemble into the signal complex. Interestingly, during ATP receptor activation, eNOS is dissociated from caveolin-1 and in turn directly associates with TRPC5, which accumulates at the plasma membrane dependently on Ca2+ influx and calmodulin. This protein reassembly likely results in a relief of eNOS from the inhibitory action of caveolin-1 and an enhanced TRPC5 S-nitrosylation by eNOS localized in the proximity, thereby facilitating the secondary activation of Ca2+ influx and NO production. In isolated rat aorta, vasodilation induced by acetylcholine was significantly suppressed by the TRPC5 inhibitor AC1903. Thus, our study provides evidence that dynamic remodeling of the protein assemblies among TRPC5, eNOS, caveolin-1, and calmodulin determines the ensemble of Ca2+ mobilization and NO production in vascular endothelial cells.
Collapse
Affiliation(s)
- Reiko Sakaguchi
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan; Laboratory of Biomaterials and Chemistry, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Nobuaki Takahashi
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Advanced Biomedical Engineering Research Unit, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Division of Pharmacology, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| | - Nozomi Ogawa
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yoshifumi Ueda
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Satoshi Hamano
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kaori Yamaguchi
- Laboratory of Environmental Systems Biology, Department of Technology and Ecology, Hall of Global Environmental Studies, Kyoto University, Kyoto, Japan
| | - Seishiro Sawamura
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Shinichiro Yamamoto
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Division of Pharmacology, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| | - Yuji Hara
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Department of Integrative Physiology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Tomoya Kawamoto
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Ryosuke Suzuki
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Akito Nakao
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Masayuki X Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Laboratory of Biomaterials and Chemistry, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shunichi Shimizu
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Tokyo, Japan
| | - Ryuji Inoue
- Department of Physiology, Fukuoka University, Fukuoka, Japan
| | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan; Advanced Biomedical Engineering Research Unit, Kyoto University, Kyoto, Japan.
| |
Collapse
|
3
|
Wakasugi R, Suzuki K, Kaneko-Kawano T. Molecular Mechanisms Regulating Vascular Endothelial Permeability. Int J Mol Sci 2024; 25:6415. [PMID: 38928121 PMCID: PMC11203514 DOI: 10.3390/ijms25126415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Vascular endothelial cells form a monolayer in the vascular lumen and act as a selective barrier to control the permeability between blood and tissues. To maintain homeostasis, the endothelial barrier function must be strictly integrated. During acute inflammation, vascular permeability temporarily increases, allowing intravascular fluid, cells, and other components to permeate tissues. Moreover, it has been suggested that the dysregulation of endothelial cell permeability may cause several diseases, including edema, cancer, and atherosclerosis. Here, we reviewed the molecular mechanisms by which endothelial cells regulate the barrier function and physiological permeability.
Collapse
Affiliation(s)
| | | | - Takako Kaneko-Kawano
- Graduate School of Pharmacy, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu 525-8577, Shiga, Japan; (R.W.); (K.S.)
| |
Collapse
|
4
|
Wang Y, Halawa M, Chatterjee A, Eshwaran R, Qiu Y, Wibowo YC, Pan J, Wieland T, Feng Y. Sufficient Cav-1 levels in the endothelium are critical for the maintenance of the neurovascular unit in the retina. Mol Med 2023; 29:152. [PMID: 37923999 PMCID: PMC10623831 DOI: 10.1186/s10020-023-00749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Caveolin-1 (Cav-1) is a pivotal protein in the plasma membrane. Studies on homozygous Cav-1 deficient mice revealed that Cav-1 is essential for endothelial function and angiogenesis in the retina. However, whether a reduction in Cav-1 content hampers the neurovascular unit (NVU) in the retina is unclear. Thus, this study examines the NVU in the retinas of heterozygous Cav-1 deficient (Cav-1+/-) mice and analyzes possible underlying mechanisms. METHODS The vascular, glial and neuronal components in the retina were evaluated using retinal morphometry, whole mount retinal immunofluorescence staining, histological analysis and optical coherence tomography. In addition, immunoblotting and immunofluorescence staining, subcellular fractionation, biotin labeling of cell surface proteins, and proximity ligation assay were employed to detect expression and localization of proteins in the retina or endothelial cells (ECs) upon knockdown of Cav-1 with Cav-1 siRNA. RESULTS Cav-1+/- retinas showed a significant reduction in pericyte coverage along with an increase in acellular capillaries compared to controls at 8 months of age, but not at 1 month. A significant loss and obvious morphological abnormalities of smooth muscle cells were observed in 8-month-old Cav-1+/- retinal arterioles. Macroglial and microglial cells were activated in the Cav-1+/- retinas. A transient significant delay in retinal angiogenesis was detected in Cav-1+/- retinas at p5, which was however no longer detectable at p10. The Cav-1+/- retinas displayed increased vascular permeability and a notable reduction in VEGFR2 content at 8 months. In vitro, siRNA-mediated knockdown experiments in ECs revealed that the loss of Cav-1 in ECs resulted in decreased levels of VEGFR2, VE-Cadherin and their interaction at the plasma membrane as well. CONCLUSION Our results indicate that a sufficient Cav-1 level over 50% of its normal abundance is vital for the proper localization of VEGFR2 and VE-cadherin, likely in a complex, at the plasma membrane, which is essential for the maintenance of normal NVU in the retina.
Collapse
Affiliation(s)
- Yixin Wang
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - Mahmoud Halawa
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - Anupriya Chatterjee
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - Rachana Eshwaran
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - Yi Qiu
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - Yohanes Cakrapradipta Wibowo
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - Jianyuan Pan
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Yuxi Feng
- Experimental Pharmacology Mannheim, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167, Mannheim, Germany.
| |
Collapse
|
5
|
Szewczyk-Roszczenko OK, Roszczenko P, Shmakova A, Finiuk N, Holota S, Lesyk R, Bielawska A, Vassetzky Y, Bielawski K. The Chemical Inhibitors of Endocytosis: From Mechanisms to Potential Clinical Applications. Cells 2023; 12:2312. [PMID: 37759535 PMCID: PMC10527932 DOI: 10.3390/cells12182312] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Endocytosis is one of the major ways cells communicate with their environment. This process is frequently hijacked by pathogens. Endocytosis also participates in the oncogenic transformation. Here, we review the approaches to inhibit endocytosis, discuss chemical inhibitors of this process, and discuss potential clinical applications of the endocytosis inhibitors.
Collapse
Affiliation(s)
| | - Piotr Roszczenko
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (P.R.); (A.B.)
| | - Anna Shmakova
- CNRS, UMR 9018, Institut Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France;
| | - Nataliya Finiuk
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine;
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (S.H.); (R.L.)
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine; (S.H.); (R.L.)
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (P.R.); (A.B.)
| | - Yegor Vassetzky
- CNRS, UMR 9018, Institut Gustave Roussy, Université Paris-Saclay, 94800 Villejuif, France;
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland;
| |
Collapse
|
6
|
Fancher IS, Levitan I. Membrane Cholesterol Interactions with Proteins in Hypercholesterolemia-Induced Endothelial Dysfunction. Curr Atheroscler Rep 2023; 25:535-541. [PMID: 37418067 PMCID: PMC10471518 DOI: 10.1007/s11883-023-01127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE OF REVIEW The goal of this review is to highlight work identifying mechanisms driving hypercholesterolemia-mediated endothelial dysfunction. We specifically focus on cholesterol-protein interactions and address specific questions related to the impact of hypercholesterolemia on cellular cholesterol and vascular endothelial function. We describe key approaches used to determine the effects of cholesterol-protein interactions in mediating endothelial dysfunction under dyslipidemic conditions. RECENT FINDINGS The benefits of removing the cholesterol surplus on endothelial function in models of hypercholesterolemia is clear. However, specific mechanisms driving cholesterol-induced endothelial dysfunction need to be determined. In this review, we detail the latest findings describing cholesterol-mediated endothelial dysfunction, highlighting our studies indicating that cholesterol suppresses endothelial Kir2.1 channels as a major underlying mechanism. The findings detailed in this review support the targeting of cholesterol-induced suppression of proteins in restoring endothelial function in dyslipidemic conditions. The identification of similar mechanisms regarding other cholesterol-endothelial protein interactions is warranted.
Collapse
Affiliation(s)
- Ibra S. Fancher
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, DE USA
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL USA
| |
Collapse
|
7
|
Ishii T, Warabi E, Mann GE. Mechanisms underlying Nrf2 nuclear translocation by non-lethal levels of hydrogen peroxide: p38 MAPK-dependent neutral sphingomyelinase2 membrane trafficking and ceramide/PKCζ/CK2 signaling. Free Radic Biol Med 2022; 191:191-202. [PMID: 36064071 DOI: 10.1016/j.freeradbiomed.2022.08.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022]
Abstract
Hydrogen peroxide is an aerobic metabolite playing a central role in redox signaling and oxidative stress. H2O2 could activate redox sensitive transcription factors, such as Nrf2, AP-1 and NF-κB by different manners. In some cells, treatment with non-lethal levels of H2O2 induces rapid activation of Nrf2, which upregulates expression of a set of genes involved in glutathione (GSH) synthesis and defenses against oxidative damage. It depends on two steps, the rapid translational activation of Nrf2 and facilitation of Nrf2 nuclear translocation. We review the molecular mechanisms by which H2O2 induces nuclear translocation of Nrf2 in cultured cells by highlighting the role of neutral sphingomyelinase 2 (nSMase2), a GSH sensor. H2O2 enters cells through aquaporin channels in the plasma membrane and is rapidly reduced to H2O by GSH peroxidases to consume cellular GSH, resulting in nSMase2 activation to generate ceramide. H2O2 also activates p38 MAP kinase, which enhances transfer of nSMase2 from perinuclear regions to plasma membrane lipid rafts to accelerate ceramide generation. Low levels of ceramide activate PKCζ, which then activates casein kinase 2 (CK2). These protein kinases are able to phosphorylate Nrf2 to stabilize and activate it. Notably, Nrf2 also binds to caveolin-1 (Cav1), which protects Nrf2 from Keap1-mediated degradation and limits Nrf2 nuclear translocation. We propose that Cav1serves as a signaling hub for the control of H2O2-mediated phosphorylation of Nrf2 by kinases, which results in release of Nrf2 from Cav1 to facilitate nuclear translocation. In summary, H2O2 induces GSH depletion which is recovered by Nrf2 activation dependent on p38/nSMase2/ceramide signaling.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
8
|
Fliri AF, Kajiji S. Functional characterization of nutraceuticals using spectral clustering: Centrality of caveolae-mediated endocytosis for management of nitric oxide and vitamin D deficiencies and atherosclerosis. Front Nutr 2022; 9:885364. [PMID: 36046126 PMCID: PMC9421303 DOI: 10.3389/fnut.2022.885364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
It is well recognized that redox imbalance, nitric oxide (NO), and vitamin D deficiencies increase risk of cardiovascular, metabolic, and infectious diseases. However, clinical studies assessing efficacy of NO and vitamin D supplementation have failed to produce unambiguous efficacy outcomes suggesting that the understanding of the pharmacologies involved is incomplete. This raises the need for using systems pharmacology tools to better understand cause-effect relationships at biological systems levels. We describe the use of spectral clustering methodology to analyze protein network interactions affected by a complex nutraceutical, Cardio Miracle (CM), that contains arginine, citrulline, vitamin D, and antioxidants. This examination revealed that interactions between protein networks affected by these substances modulate functions of a network of protein complexes regulating caveolae-mediated endocytosis (CME), TGF beta activity, vitamin D efficacy and host defense systems. Identification of this regulatory scheme and the working of embedded reciprocal feedback loops has significant implications for treatment of vitamin D deficiencies, atherosclerosis, metabolic and infectious diseases such as COVID-19.
Collapse
|
9
|
Batori RK, Chen F, Bordan Z, Haigh S, Su Y, Verin AD, Barman SA, Stepp DW, Chakraborty T, Lucas R, Fulton DJR. Protective role of Cav-1 in pneumolysin-induced endothelial barrier dysfunction. Front Immunol 2022; 13:945656. [PMID: 35967431 PMCID: PMC9363592 DOI: 10.3389/fimmu.2022.945656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/04/2022] [Indexed: 01/16/2023] Open
Abstract
Pneumolysin (PLY) is a bacterial pore forming toxin and primary virulence factor of Streptococcus pneumonia, a major cause of pneumonia. PLY binds cholesterol-rich domains of the endothelial cell (EC) plasma membrane resulting in pore assembly and increased intracellular (IC) Ca2+ levels that compromise endothelial barrier integrity. Caveolae are specialized plasmalemma microdomains of ECs enriched in cholesterol. We hypothesized that the abundance of cholesterol-rich domains in EC plasma membranes confers cellular susceptibility to PLY. Contrary to this hypothesis, we found increased PLY-induced IC Ca2+ following membrane cholesterol depletion. Caveolin-1 (Cav-1) is an essential structural protein of caveolae and its regulation by cholesterol levels suggested a possible role in EC barrier function. Indeed, Cav-1 and its scaffolding domain peptide protected the endothelial barrier from PLY-induced disruption. In loss of function experiments, Cav-1 was knocked-out using CRISPR-Cas9 or silenced in human lung microvascular ECs. Loss of Cav-1 significantly enhanced the ability of PLY to disrupt endothelial barrier integrity. Rescue experiments with re-expression of Cav-1 or its scaffolding domain peptide protected the EC barrier against PLY-induced barrier disruption. Dynamin-2 (DNM2) is known to regulate caveolar membrane endocytosis. Inhibition of endocytosis, with dynamin inhibitors or siDNM2 amplified PLY induced EC barrier dysfunction. These results suggest that Cav-1 protects the endothelial barrier against PLY by promoting endocytosis of damaged membrane, thus reducing calcium entry and PLY-dependent signaling.
Collapse
Affiliation(s)
- Robert K. Batori
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, China
| | - Zsuzsanna Bordan
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Stephen Haigh
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Division of Critical Care and Pulmonary Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Scott A. Barman
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - David W. Stepp
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Phyiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Trinad Chakraborty
- Institute of Human Microbiology, Justus-Liebig University, Giessen, Germany
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Division of Critical Care and Pulmonary Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - David J. R. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
10
|
Zouache MA. Variability in Retinal Neuron Populations and Associated Variations in Mass Transport Systems of the Retina in Health and Aging. Front Aging Neurosci 2022; 14:778404. [PMID: 35283756 PMCID: PMC8914054 DOI: 10.3389/fnagi.2022.778404] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
Aging is associated with a broad range of visual impairments that can have dramatic consequences on the quality of life of those impacted. These changes are driven by a complex series of alterations affecting interactions between multiple cellular and extracellular elements. The resilience of many of these interactions may be key to minimal loss of visual function in aging; yet many of them remain poorly understood. In this review, we focus on the relation between retinal neurons and their respective mass transport systems. These metabolite delivery systems include the retinal vasculature, which lies within the inner portion of the retina, and the choroidal vasculature located externally to the retinal tissue. A framework for investigation is proposed and applied to identify the structures and processes determining retinal mass transport at the cellular and tissue levels. Spatial variability in the structure of the retina and changes observed in aging are then harnessed to explore the relation between variations in neuron populations and those seen among retinal metabolite delivery systems. Existing data demonstrate that the relation between inner retinal neurons and their mass transport systems is different in nature from that observed between the outer retina and choroid. The most prominent structural changes observed across the eye and in aging are seen in Bruch's membrane, which forms a selective barrier to mass transfers at the interface between the choroidal vasculature and the outer retina.
Collapse
Affiliation(s)
- Moussa A. Zouache
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
11
|
TRPV4-dependent signaling mechanisms in systemic and pulmonary vasculature. CURRENT TOPICS IN MEMBRANES 2022; 89:1-41. [DOI: 10.1016/bs.ctm.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Iso T, Kurabayashi M. Cardiac Metabolism and Contractile Function in Mice with Reduced Trans-Endothelial Fatty Acid Transport. Metabolites 2021; 11:metabo11120889. [PMID: 34940647 PMCID: PMC8706312 DOI: 10.3390/metabo11120889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 01/15/2023] Open
Abstract
The heart is a metabolic omnivore that combusts a considerable amount of energy substrates, mainly long-chain fatty acids (FAs) and others such as glucose, lactate, ketone bodies, and amino acids. There is emerging evidence that muscle-type continuous capillaries comprise the rate-limiting barrier that regulates FA uptake into cardiomyocytes. The transport of FAs across the capillary endothelium is composed of three major steps-the lipolysis of triglyceride on the luminal side of the endothelium, FA uptake by the plasma membrane, and intracellular FA transport by cytosolic proteins. In the heart, impaired trans-endothelial FA (TEFA) transport causes reduced FA uptake, with a compensatory increase in glucose use. In most cases, mice with reduced FA uptake exhibit preserved cardiac function under unstressed conditions. When the workload is increased, however, the total energy supply relative to its demand (estimated with pool size in the tricarboxylic acid (TCA) cycle) is significantly diminished, resulting in contractile dysfunction. The supplementation of alternative fuels, such as medium-chain FAs and ketone bodies, at least partially restores contractile dysfunction, indicating that energy insufficiency due to reduced FA supply is the predominant cause of cardiac dysfunction. Based on recent in vivo findings, this review provides the following information related to TEFA transport: (1) the mechanisms of FA uptake by the heart, including TEFA transport; (2) the molecular mechanisms underlying the induction of genes associated with TEFA transport; (3) in vivo cardiac metabolism and contractile function in mice with reduced TEFA transport under unstressed conditions; and (4) in vivo contractile dysfunction in mice with reduced TEFA transport under diseased conditions, including an increased afterload and streptozotocin-induced diabetes.
Collapse
Affiliation(s)
- Tatsuya Iso
- Department of Medical Technology and Clinical Engineering, Faculty of Medical Technology and Clinical Engineering, Gunma University of Health and Welfare, 191-1 Kawamagari-Machi, Maebashi 371-0823, Gunma, Japan
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
- Correspondence:
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi 371-8511, Gunma, Japan;
| |
Collapse
|
13
|
Gokani S, Bhatt LK. Caveolin-1: A promising therapeutic target for diverse diseases. Curr Mol Pharmacol 2021; 15:701-715. [PMID: 34847854 DOI: 10.2174/1874467214666211130155902] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/26/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
The plasma membrane of eukaryotic cells contains small flask-shaped invaginations known as caveolae that are involved in the regulation of cellular signaling. Caveolin-1 is a 21-24kDa protein localized in the caveolar membrane. Caveolin-1 (Cav-1) has been considered as a master regulator among the various signaling molecules. It has been emerging as a chief protein regulating cellular events associated with homeostasis, caveolae formation, and caveolae trafficking. In addition to the physiological role of cav-1, it has a complex role in the progression of various diseases. Caveolin-1 has been identified as a prognosticator in patients with cancer and has a dual role in tumorigenesis. The expression of Cav-1 in hippocampal neurons and synapses is related to neurodegeneration, cognitive decline, and aging. Despite the ubiquitous association of caveolin-1 in various pathological processes, the mechanisms associated with these events are still unclear. Caveolin-1 has a significant role in various events of the viral cycle, such as viral entry. This review will summarize the role of cav-1 in the development of cancer, neurodegeneration, glaucoma, cardiovascular diseases, and infectious diseases. The therapeutic perspectives involving clinical applications of Caveolin-1 have also been discussed. The understanding of the involvement of caveolin-1 in various diseased states provides insights into how it can be explored as a novel therapeutic target.
Collapse
Affiliation(s)
- Shivani Gokani
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai. India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai. India
| |
Collapse
|
14
|
Ren Y, Li L, Wang MM, Cao LP, Sun ZR, Yang ZZ, Zhang W, Zhang P, Nie SN. Pravastatin attenuates sepsis-induced acute lung injury through decreasing pulmonary microvascular permeability via inhibition of Cav-1/eNOS pathway. Int Immunopharmacol 2021; 100:108077. [PMID: 34464887 DOI: 10.1016/j.intimp.2021.108077] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Disruption of alveolar endothelial barrier caused by inflammation drives the progression of septic acute lung injury (ALI). Pravastatin, an inhibitor of HMG Co-A reductase, has potent anti-inflammatory effects. In the present study, we aim to explore the beneficial role of pravastatin in sepsis-induced ALI and its related mechanisms. METHODS A septic ALI model was established by cecal ligation and puncture (CLP) in mice. The pulmonary microvascular endothelial cells (PMVECs) were challenged with lipopolysaccharide (LPS). The pathological changes in lung tissues were examined by HE staining. The pulmonary microvascular permeability was determined by lung wet-to-dry (W/D) weight ratio and Evans blue staining. The total protein concentration in bronchoalveolar lavage fluid (BALF) was detected by BCA assay. The levels of TNF-α, IL-1β, and IL-6 were assessed by qRT-PCR and ELISA. Apoptosis was determined by flow cytometry and TUNEL. Western blotting was performed for detection of target protein levels. The expression of VE-Cadherin in lung tissues was evaluated by immunohistochemical staining. RESULTS Pravastatin improved survival rate, attenuated lung pathological changes and reduced pulmonary microvascular permeability in septic mice. In addition, pravastatin restrained sepsis-induced inflammatory response and apoptosis in the lung tissues and PMVECs. Moreover, pravastatin up-regulated the levels of junction proteins ZO-1, JAM-C, and VE-Cadherin. Finally, pravastatin suppressed inflammation, apoptosis and enhanced the expression of junction proteins via regulating Cav-1/eNOS signaling pathway in LPS-exposed PMVECs. CONCLUSION Pravastatin ameliorates sepsis-induced ALI through improving alveolar endothelial barrier disruption via modulating Cav-1/eNOS pathway, which may be an effective candidate for treating septic ALI.
Collapse
Affiliation(s)
- Yi Ren
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 210002, Jiangsu Province, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, PR China
| | - Liang Li
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 210002, Jiangsu Province, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, PR China
| | - Meng-Meng Wang
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 210002, Jiangsu Province, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, PR China
| | - Li-Ping Cao
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 210002, Jiangsu Province, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, PR China
| | - Zhao-Rui Sun
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 210002, Jiangsu Province, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, PR China
| | - Zhi-Zhou Yang
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 210002, Jiangsu Province, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, PR China
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 210002, Jiangsu Province, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, PR China
| | - Peng Zhang
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 210002, Jiangsu Province, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, PR China
| | - Shi-Nan Nie
- Department of Emergency Medicine, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 210002, Jiangsu Province, PR China; Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, PR China.
| |
Collapse
|
15
|
Kamase K, Taguchi M, Ikari A, Endo S, Matsunaga T. 9,10-Phenanthrenequinone provokes dysfunction of brain endothelial barrier through down-regulating expression of claudin-5. Toxicology 2021; 461:152896. [PMID: 34391839 DOI: 10.1016/j.tox.2021.152896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Chronic exposure to diesel exhaust particle (DEP) is considered to provoke dysfunction of the blood-brain barrier, but the detailed molecular mechanism remains unclear. In this study, we investigated the toxic effects of five DEP components against human vascular cells and found that, among them, 9,10-phenanthrenequinone (9,10-PQ), a major tricyclic quinone in DEP, most potently elicits the cellular toxicities. Additionally, treatment with 9,10-PQ at its cytolethal concentrations (more than 2 μM) facilitated the production of reactive oxygen species (ROS), caspase activation, and DNA fragmentation in human brain microvascular endothelial (HBME) cells, inferring that high concentrations of 9,10-PQ elicit the cell apoptosis through the ROS-dependent mechanism. Measurement of trans-endothelial electrical resistance and paracellular permeability showed that treatment with sublethal concentrations (less than 1 μM) of 9,10-PQ elevates permeability across HBME cell monolayer. Immunofluorescence observation and Western blotting analysis also revealed that the 9,10-PQ treatment remarkably down-regulated the intercellular localization and expression of claudin-5 (CLDN5), a tight junctional protein that plays a key role in function of the blood-brain barrier, and the down-regulation was markedly recovered by pretreatment with a proteasome inhibitor Z-Leu-Leu-Leu-CHO. This result may indicate that sublethal concentrations of 9,10-PQ facilitate the dysfunction of the endothelial cell barrier through lowering in the expression and proteasomal proteolysis of CLDN5. The treatment with 9,10-PQ promoted nitric oxide (NO) production presumably through the induction of inducible NO synthase. In addition, the 9,10-PQ-mediated down-regulation of CLDN5 was ameliorated and deteriorated by pretreating with a scavenger and donor, respectively, of NO. Similarly to the 9,10-PQ treatment, treatment with a donor of peroxynitrite, a highly reactive oxidant formed by the reaction of NO and superoxide anion, resulted in the marked reduction of CLDN5 expression and elevation of 26S proteasome-based proteolytic activities. Thus, it is suggested that the formation of NO and peroxynitrite participates in the mechanism of brain endothelial cell barrier dysfunction elicited by 9,10-PQ.
Collapse
Affiliation(s)
- Kyoko Kamase
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Maki Taguchi
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 502-8585, Japan.
| |
Collapse
|
16
|
Huinen ZR, Huijbers EJM, van Beijnum JR, Nowak-Sliwinska P, Griffioen AW. Anti-angiogenic agents - overcoming tumour endothelial cell anergy and improving immunotherapy outcomes. Nat Rev Clin Oncol 2021; 18:527-540. [PMID: 33833434 DOI: 10.1038/s41571-021-00496-y] [Citation(s) in RCA: 179] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 02/07/2023]
Abstract
Immune checkpoint inhibitors have revolutionized medical oncology, although currently only a subset of patients has a response to such treatment. A compelling body of evidence indicates that anti-angiogenic therapy has the capacity to ameliorate antitumour immunity owing to the inhibition of various immunosuppressive features of angiogenesis. Hence, combinations of anti-angiogenic agents and immunotherapy are currently being tested in >90 clinical trials and 5 such combinations have been approved by the FDA in the past few years. In this Perspective, we describe how the angiogenesis-induced endothelial immune cell barrier hampers antitumour immunity and the role of endothelial cell anergy as the vascular counterpart of immune checkpoints. We review the antitumour immunity-promoting effects of anti-angiogenic agents and provide an update on the current clinical successes achieved when these agents are combined with immune checkpoint inhibitors. Finally, we propose that anti-angiogenic agents are immunotherapies - and vice versa - and discuss future research priorities.
Collapse
Affiliation(s)
- Zowi R Huinen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Elisabeth J M Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland. .,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
17
|
Ayididaer A, Sun K, Pan CS, Yan L, Liu YY, Li DT, Fan JY, Han JY. Post-treatment with yiqifumai injection and its main ingredients attenuates lipopolysaccharide-induced microvascular disturbance in mesentery and ileum. Microcirculation 2021; 28:e12680. [PMID: 33486837 DOI: 10.1111/micc.12680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/12/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate the effect of Yiqifumai injection (YQFM), a compound Chinese medicine, and its main active ingredients on lipopolysaccharide (LPS)-induced microvascular disturbance in mesentery and ileum. METHODS Rats were infused with LPS (5 mg/kg/h) for 90 min. Thirty minutes after initiation of LPS administration, YQFM (160 mg/kg/h), Rb1 (5 mg/kg/h), Sch (2.5 mg/kg/h), or Rb1+Sch (5 mg/kg/h + 2.5 mg/kg/h) was infused until 90 min. Human umbilical vein endothelial cells (HUVECs) were incubated with LPS (100 ng/ml) for 90 min. YQFM (1 mg/ml), Rb1 (100 µM), Sch (100 µM), or Rb1+Sch (200 µM) was added 30 min after initiation of LPS stimulation. RESULTS Yiqifumai injection and Rb1+Sch inhibited mesenteric venule hyperpermeability, suppressed microvillar erosion and submucosal edema, and protected claudin-5 from downregulation and interleukin-1β from upregulation in ileal tissues after LPS. Study in HUVECs confirmed the effect of YQFM and Rb1+Sch on JAM-1 after LPS and revealed a similar effect on other junction proteins. Moreover, YQFM and Rb1+Sch attenuated the dysfunctional energy metabolism and the activation of TLR-4/Src/NF-κB signaling with Rb1 and Sch being partially effective. CONCLUSION These results demonstrated the beneficial effect of post-treatment with YQFM, which is attributable to its main ingredient Rb1 and Sch, and likely mediated by targeting TLR-4/Src/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ayan Ayididaer
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Yu-Ying Liu
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Dan-Tong Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Jing-Yu Fan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China.,Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China.,Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China.,Beijing Microvascular Institute of Integration of Chinese and Western Medicine, Beijing, China
| |
Collapse
|
18
|
Tanaka K, Joshi D, Timalsina S, Schwartz MA. Early events in endothelial flow sensing. Cytoskeleton (Hoboken) 2021; 78:217-231. [PMID: 33543538 DOI: 10.1002/cm.21652] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/15/2022]
Abstract
Responses of vascular and lymphatic endothelial cells (ECs) to fluid shear stress (FSS) from blood or lymphatic fluid flow govern the development, physiology, and diseases of these structures. Extensive research has characterized the signaling, gene expression and cytoskeletal pathways that mediate effects on EC phenotype and vascular morphogenesis. But the primary mechanisms by which ECs transduce the weak forces from flow into biochemical signals are less well understood. This review covers recent advances in our understanding of the immediate mechanisms of FSS mechanotransduction, integrating results from different disciplines, addressing their roles in development, physiology and disease, and suggesting important questions for future work.
Collapse
Affiliation(s)
- Keiichiro Tanaka
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Divyesh Joshi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Sushma Timalsina
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA.,Department of Cell Biology, Yale University, New Haven, Connecticut, USA.,Department of Biomedical engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
19
|
Buwa N, Mazumdar D, Balasubramanian N. Caveolin1 Tyrosine-14 Phosphorylation: Role in Cellular Responsiveness to Mechanical Cues. J Membr Biol 2020; 253:509-534. [PMID: 33089394 DOI: 10.1007/s00232-020-00143-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
The plasma membrane is a dynamic lipid bilayer that engages with the extracellular microenvironment and intracellular cytoskeleton. Caveolae are distinct plasma membrane invaginations lined by integral membrane proteins Caveolin1, 2, and 3. Caveolae formation and stability is further supported by additional proteins including Cavin1, EHD2, Pacsin2 and ROR1. The lipid composition of caveolar membranes, rich in cholesterol and phosphatidylserine, actively contributes to caveolae formation and function. Post-translational modifications of Cav1, including its phosphorylation of the tyrosine-14 residue (pY14Cav1) are vital to its function in and out of caveolae. Cells that experience significant mechanical stress are seen to have abundant caveolae. They play a vital role in regulating cellular signaling and endocytosis, which could further affect the abundance and distribution of caveolae at the PM, contributing to sensing and/or buffering mechanical stress. Changes in membrane tension in cells responding to multiple mechanical stimuli affects the organization and function of caveolae. These mechanical cues regulate pY14Cav1 levels and function in caveolae and focal adhesions. This review, along with looking at the mechanosensitive nature of caveolae, focuses on the role of pY14Cav1 in regulating cellular mechanotransduction.
Collapse
Affiliation(s)
- Natasha Buwa
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Debasmita Mazumdar
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Nagaraj Balasubramanian
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.
| |
Collapse
|
20
|
Raz BD, Dimitry C, Andrea SS. The uptake mechanism and intracellular fate of Paraoxonase-1 in endothelial cells. Free Radic Biol Med 2020; 153:26-33. [PMID: 32244050 DOI: 10.1016/j.freeradbiomed.2020.03.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/18/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
Abstract
Paraoxonase-1 (PON1) is a high-density lipoprotein (HDL)-associated lactonase that plays a significant role in the anti-atherosclerotic activity of HDL. However, several studies have shown that PON1 localizes in cells, where it operates independently of HDL. Previously, we showed that PON1 localizes in endothelial cells (ECs), and impairs vasodilation mediated by the endothelium-derived hyperpolarizing factor (EDHF) 5,6-δ-DHTL. However, the internalization pathway of PON1 into ECs, and the intracellular fate of PON1 are unknown. Therefore, the present study aimed to elucidate the uptake mechanism, intracellular trafficking and the function of PON1 in ECs. We conducted a series of inhibition experiments of fluorescently labeled recombinant PON1 (rePON1) in ECs, followed by FACS analyses. We found that rePON1 binds the EC membrane via specific binding sites located in lipid-rafts/caveolae microdomains that are shared with HDL, and internalized through dynamin-dependent endocytosis. Qualitative assessments of the intracellular trafficking of rePON1, using confocal z-stack images, showed colocalization of the labeled rePON1 with early and late endosome/lysosome markers. Accordingly, a "pulse-chase" incubation of rePON1, followed by lactonase activity measurement in EC lysate, revealed that rePON1 retains its lactonase activity after binding to the cells. However, this activity decreases over time. Finally, induction of endothelial dysfunction with high glucose, angiotensin II, or palmitic acid increased rePON1 uptake by ECs. In conclusion, these results indicate that free PON1 interacts with ECs via binding sites located in lipid-rafts/caveolae, where it is enzymatically active and regulates endothelial functions. However, once internalized, PON1 is degraded. Additionally, alteration in endothelial function affects PON1 uptake by ECs.
Collapse
Affiliation(s)
- Ben-David Raz
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | | | - Szuchman-Sapir Andrea
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel.
| |
Collapse
|
21
|
Novel Molecular Mechanisms of Pulmonary Hypertension: A Search for Biomarkers and Novel Drug Targets-From Bench to Bed Site. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7265487. [PMID: 32566097 PMCID: PMC7261339 DOI: 10.1155/2020/7265487] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/11/2020] [Indexed: 12/23/2022]
Abstract
Pulmonary hypertension (PH) is defined as increased mean pulmonary artery pressure (mPAP) above 25 mmHg, measured at rest by right heart catheterization. The exact global prevalence of PH is difficult to estimate, mainly due to the complex aetiology, and its spread may be underestimated. To date, numerous studies on the aetiology and pathophysiology of PH at molecular level were conducted. Simultaneously, some clinical studies have shown potential usefulness of well-known and widely recognized cardiovascular biomarkers, but their potential clinical usefulness in diagnosis and management of PH is poor due to their low specificity accompanied with numerous other cardiovascular comorbidities of PH subjects. On the other hand, a large body of basic research-based studies provides us with novel molecular pathomechanisms, biomarkers, and drug targets, according to the evidence-based medicine principles. Unfortunately, the simple implementation of these results to clinical practice is impossible due to a large heterogeneity of the PH pathophysiology, where the clinical symptoms constitute only a common denominator and a final result of numerous crosstalking metabolic pathways. Therefore, future studies, based mostly on translational medicine, are needed in order to both organize better the pathophysiological classification of various forms of PH and define precisely the optimal diagnostic markers and therapeutic targets in particular forms of PH. This review paper summarizes the current state of the art regarding the molecular background of PH with respect to its current classification. Novel therapeutic strategies and potential biomarkers are discussed with respect to their limitations in use in common clinical practice.
Collapse
|
22
|
Hashimoto T, Isaji T, Hu H, Yamamoto K, Bai H, Santana JM, Kuo A, Kuwahara G, Foster TR, Hanisch JJ, Yatsula BA, Sessa WC, Hoshina K, Dardik A. Stimulation of Caveolin-1 Signaling Improves Arteriovenous Fistula Patency. Arterioscler Thromb Vasc Biol 2020; 39:754-764. [PMID: 30786746 DOI: 10.1161/atvbaha.119.312417] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective- Arteriovenous fistulae (AVF) are the most common access created for hemodialysis; however, many AVF fail to mature and require repeated intervention, suggesting a need to improve AVF maturation. Eph-B4 (ephrin type-B receptor 4) is the embryonic venous determinant that is functional in adult veins and can regulate AVF maturation. Cav-1 (caveolin-1) is the major scaffolding protein of caveolae-a distinct microdomain that serves as a mechanosensor at the endothelial cell membrane. We hypothesized that Cav-1 function is critical for Eph-B4-mediated AVF maturation. Approach and Results- In a mouse aortocaval fistula model, both Cav-1 mRNA and protein were increased in the AVF compared with control veins. Cav-1 KO (knockout) mice showed increased fistula wall thickening ( P=0.0005) and outward remodeling ( P<0.0001), with increased eNOS (endothelial NO synthase) activity compared with WT (wild type) mice. Ephrin-B2/Fc inhibited AVF outward remodeling in WT mice but not in Cav-1 KO mice and was maintained in Cav-1 RC (Cav-1 endothelial reconstituted) mice (WT, P=0.0001; Cav-1 KO, P=0.7552; Cav-1 RC, P=0.0002). Cavtratin-a Cav-1 scaffolding domain peptide-decreased AVF wall thickness in WT mice and in Eph-B4 het mice compared with vehicle alone (WT, P=0.0235; Eph-B4 het, P=0.0431); cavtratin also increased AVF patency (day 42) in WT mice ( P=0.0275). Conclusions- Endothelial Cav-1 mediates Eph-B4-mediated AVF maturation. The Eph-B4-Cav-1 axis regulates adaptive remodeling during venous adaptation to the fistula environment. Manipulation of Cav-1 function may be a translational strategy to enhance AVF patency.
Collapse
Affiliation(s)
- Takuya Hashimoto
- From the Vascular Biology and Therapeutics Program (T.H., T.I., H.H., K.Y., H.B., J.M.S., A.K., G.K., T.R.F., J.J.H., B.A.Y., W.C.S., A.D.), Yale School of Medicine, New Haven, CT.,Department of Surgery (T.H., T.I., H.H., K.Y., H.B., J.M.S., G.K., T.R.F., J.J.H., B.A.Y., A.D.), Yale School of Medicine, New Haven, CT.,Department of Surgery, VA Connecticut Healthcare System, West Haven (T.H., T.I., H.H., K.Y., H.B., T.R.F., A.D.).,Department of Vascular Surgery, University of Tokyo, Japan (T.H., T.I., K.Y., K.H.)
| | - Toshihiko Isaji
- From the Vascular Biology and Therapeutics Program (T.H., T.I., H.H., K.Y., H.B., J.M.S., A.K., G.K., T.R.F., J.J.H., B.A.Y., W.C.S., A.D.), Yale School of Medicine, New Haven, CT.,Department of Surgery (T.H., T.I., H.H., K.Y., H.B., J.M.S., G.K., T.R.F., J.J.H., B.A.Y., A.D.), Yale School of Medicine, New Haven, CT.,Department of Surgery, VA Connecticut Healthcare System, West Haven (T.H., T.I., H.H., K.Y., H.B., T.R.F., A.D.).,Department of Vascular Surgery, University of Tokyo, Japan (T.H., T.I., K.Y., K.H.)
| | - Haidi Hu
- From the Vascular Biology and Therapeutics Program (T.H., T.I., H.H., K.Y., H.B., J.M.S., A.K., G.K., T.R.F., J.J.H., B.A.Y., W.C.S., A.D.), Yale School of Medicine, New Haven, CT.,Department of Surgery (T.H., T.I., H.H., K.Y., H.B., J.M.S., G.K., T.R.F., J.J.H., B.A.Y., A.D.), Yale School of Medicine, New Haven, CT.,Department of Surgery, VA Connecticut Healthcare System, West Haven (T.H., T.I., H.H., K.Y., H.B., T.R.F., A.D.)
| | - Kota Yamamoto
- From the Vascular Biology and Therapeutics Program (T.H., T.I., H.H., K.Y., H.B., J.M.S., A.K., G.K., T.R.F., J.J.H., B.A.Y., W.C.S., A.D.), Yale School of Medicine, New Haven, CT.,Department of Surgery (T.H., T.I., H.H., K.Y., H.B., J.M.S., G.K., T.R.F., J.J.H., B.A.Y., A.D.), Yale School of Medicine, New Haven, CT.,Department of Surgery, VA Connecticut Healthcare System, West Haven (T.H., T.I., H.H., K.Y., H.B., T.R.F., A.D.).,Department of Vascular Surgery, University of Tokyo, Japan (T.H., T.I., K.Y., K.H.)
| | - Hualong Bai
- From the Vascular Biology and Therapeutics Program (T.H., T.I., H.H., K.Y., H.B., J.M.S., A.K., G.K., T.R.F., J.J.H., B.A.Y., W.C.S., A.D.), Yale School of Medicine, New Haven, CT.,Department of Surgery (T.H., T.I., H.H., K.Y., H.B., J.M.S., G.K., T.R.F., J.J.H., B.A.Y., A.D.), Yale School of Medicine, New Haven, CT.,Department of Surgery, VA Connecticut Healthcare System, West Haven (T.H., T.I., H.H., K.Y., H.B., T.R.F., A.D.)
| | - Jeans M Santana
- From the Vascular Biology and Therapeutics Program (T.H., T.I., H.H., K.Y., H.B., J.M.S., A.K., G.K., T.R.F., J.J.H., B.A.Y., W.C.S., A.D.), Yale School of Medicine, New Haven, CT.,Department of Surgery (T.H., T.I., H.H., K.Y., H.B., J.M.S., G.K., T.R.F., J.J.H., B.A.Y., A.D.), Yale School of Medicine, New Haven, CT
| | - Andrew Kuo
- From the Vascular Biology and Therapeutics Program (T.H., T.I., H.H., K.Y., H.B., J.M.S., A.K., G.K., T.R.F., J.J.H., B.A.Y., W.C.S., A.D.), Yale School of Medicine, New Haven, CT.,Department of Pharmacology (A.K., W.C.S.), Yale School of Medicine, New Haven, CT
| | - Go Kuwahara
- From the Vascular Biology and Therapeutics Program (T.H., T.I., H.H., K.Y., H.B., J.M.S., A.K., G.K., T.R.F., J.J.H., B.A.Y., W.C.S., A.D.), Yale School of Medicine, New Haven, CT.,Department of Surgery (T.H., T.I., H.H., K.Y., H.B., J.M.S., G.K., T.R.F., J.J.H., B.A.Y., A.D.), Yale School of Medicine, New Haven, CT
| | - Trenton R Foster
- From the Vascular Biology and Therapeutics Program (T.H., T.I., H.H., K.Y., H.B., J.M.S., A.K., G.K., T.R.F., J.J.H., B.A.Y., W.C.S., A.D.), Yale School of Medicine, New Haven, CT.,Department of Surgery (T.H., T.I., H.H., K.Y., H.B., J.M.S., G.K., T.R.F., J.J.H., B.A.Y., A.D.), Yale School of Medicine, New Haven, CT.,Department of Surgery, VA Connecticut Healthcare System, West Haven (T.H., T.I., H.H., K.Y., H.B., T.R.F., A.D.)
| | - Jesse J Hanisch
- From the Vascular Biology and Therapeutics Program (T.H., T.I., H.H., K.Y., H.B., J.M.S., A.K., G.K., T.R.F., J.J.H., B.A.Y., W.C.S., A.D.), Yale School of Medicine, New Haven, CT.,Department of Surgery (T.H., T.I., H.H., K.Y., H.B., J.M.S., G.K., T.R.F., J.J.H., B.A.Y., A.D.), Yale School of Medicine, New Haven, CT
| | - Bogdan A Yatsula
- From the Vascular Biology and Therapeutics Program (T.H., T.I., H.H., K.Y., H.B., J.M.S., A.K., G.K., T.R.F., J.J.H., B.A.Y., W.C.S., A.D.), Yale School of Medicine, New Haven, CT.,Department of Surgery (T.H., T.I., H.H., K.Y., H.B., J.M.S., G.K., T.R.F., J.J.H., B.A.Y., A.D.), Yale School of Medicine, New Haven, CT
| | - William C Sessa
- From the Vascular Biology and Therapeutics Program (T.H., T.I., H.H., K.Y., H.B., J.M.S., A.K., G.K., T.R.F., J.J.H., B.A.Y., W.C.S., A.D.), Yale School of Medicine, New Haven, CT.,Department of Pharmacology (A.K., W.C.S.), Yale School of Medicine, New Haven, CT
| | - Katsuyuki Hoshina
- Department of Vascular Surgery, University of Tokyo, Japan (T.H., T.I., K.Y., K.H.)
| | - Alan Dardik
- From the Vascular Biology and Therapeutics Program (T.H., T.I., H.H., K.Y., H.B., J.M.S., A.K., G.K., T.R.F., J.J.H., B.A.Y., W.C.S., A.D.), Yale School of Medicine, New Haven, CT.,Department of Surgery (T.H., T.I., H.H., K.Y., H.B., J.M.S., G.K., T.R.F., J.J.H., B.A.Y., A.D.), Yale School of Medicine, New Haven, CT.,Department of Surgery, VA Connecticut Healthcare System, West Haven (T.H., T.I., H.H., K.Y., H.B., T.R.F., A.D.)
| |
Collapse
|
23
|
Chen YL, Sonkusare SK. Endothelial TRPV4 channels and vasodilator reactivity. CURRENT TOPICS IN MEMBRANES 2020; 85:89-117. [PMID: 32402646 PMCID: PMC9748413 DOI: 10.1016/bs.ctm.2020.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transient receptor potential vanilloid 4 (TRPV4) ion channels on the endothelial cell membrane are widely regarded as a crucial Ca2+ influx pathway that promotes endothelium-dependent vasodilation. The downstream vasodilatory targets of endothelial TRPV4 channels vary among different vascular beds, potentially contributing to endothelial cell heterogeneity. Although numerous studies have examined the role of endothelial TRPV4 channels using specific pharmacological tools over the past decade, their physiological significance remains unclear, mainly due to a lack of endothelium-specific knockouts. Moreover, the loss of endothelium-dependent vasodilation is a significant contributor to vascular dysfunction in cardiovascular disease. The activity of endothelial TRPV4 channels is impaired in cardiovascular disease; therefore, strategies targeting the mechanisms that reduce endothelial TRPV4 channel activity may restore vascular function and provide therapeutic benefit. In this chapter, we discuss endothelial TRPV4 channel-dependent signaling mechanisms, the heterogeneity in endogenous activators and targets of endothelial TRPV4 channels, and the role of endothelial TRPV4 channels in the pathogenesis of cardiovascular diseases. We also discuss potentially interesting future research directions that may provide novel insights into the physiological and pathological roles of endothelial TRPV4 channels.
Collapse
Affiliation(s)
- Yen-Lin Chen
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, United States
| | - Swapnil K. Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, United States,Department of Molecular Physiology and Biological Physics, University of Virginia-School of Medicine, Charlottesville, VA, United States,Corresponding author:
| |
Collapse
|
24
|
Investigation of the Mechanism Underlying Calcium Dobesilate-Mediated Improvement of Endothelial Dysfunction and Inflammation Caused by High Glucose. Mediators Inflamm 2019; 2019:9893682. [PMID: 31780874 PMCID: PMC6855025 DOI: 10.1155/2019/9893682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/15/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
Background/Aims Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease. Calcium dobesilate (CaD) is widely used to treat diabetic retinopathy. Recent studies have demonstrated that CaD exerts protective effects against diabetic nephropathy. The aim of this study was to elucidate the molecular and cellular mechanisms underlying the protective effects of CaD. Methods Human umbilical vein endothelial cells (HUVECs) were cultured with different D-glucose concentrations to determine the effects of high glucose on HUVEC gene expression. HUVECs were also incubated with CaD (25 μM, 50 μM, and 100 μM) for 3 days to determine the effects of CaD on HUVEC viability. db/db mice were treated with CaD. 2-[(Aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide (TPCA-1) blocked the nuclear factor-κB (NF-κB) pathway in HUVECs. A pentraxin 3 (PTX3) small interfering RNA (siRNA) intervention experiment was performed in the cells. An adenovirus-encapsulated PTX3 siRNA intervention experiment was performed in db/db mice. Western blot and real-time PCR analyses were used to detect PTX3, p-IKBa/IKBa (I-kappa-B-alpha), and p-eNOS/eNOS (endothelial nitric oxide synthase) expression in mice and HUVECs. Hematoxylin-eosin (HE) staining and periodic acid-Schiff (PAS) staining were used to observe renal tissue damage in mice. PTX3 expression was observed by immunohistochemical staining. Results CaD downregulated the expression of PTX3 and p-IKBa/IKBa and upregulated the expression of p-eNOS/eNOS in vitro. When TPCA-1 was used, high glucose induced high PTX3 expression, and the expression of p-eNOS/eNOS increased. After PTX3 gene silencing, the expression of p-eNOS/eNOS also increased. In vivo, CaD reduced the expression of PTX3 and p-IKBa/IKBa in the kidneys of db/db mice and increased the expression of p-eNOS/eNOS. After PTX3 gene silencing, the urine protein and renal function of db/db mice were ameliorated, the glomerular extracellular matrix was decreased, and the expression of p-eNOS/eNOS was increased. Conclusions Our results suggested that CaD may inhibit the expression of PTX3 by altering the IKK/IKB/NF-κB pathway, thereby improving endothelial dysfunction in HUVECs. PTX3 may be a potential therapeutic target for DKD.
Collapse
|
25
|
Karki P, Birukov KG. Rho and Reactive Oxygen Species at Crossroads of Endothelial Permeability and Inflammation. Antioxid Redox Signal 2019; 31:1009-1022. [PMID: 31126187 PMCID: PMC6765062 DOI: 10.1089/ars.2019.7798] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Increased endothelial permeability and inflammation are two major hallmarks of the life-threatening conditions such as acute respiratory distress syndrome and sepsis. There is a growing consensus in the field that the Rho family of small guanosine triphosphates are critical regulators of endothelial function at both physiological and pathological states. A basal level of reactive oxygen species (ROS) is essential for maintaining metabolic homeostasis, vascular tone, and angiogenesis; however, excessive ROS generation impairs endothelial function and promotes lung inflammation. In this review, we will focus on the role of Rho in control of endothelial function and also briefly discuss a nexus between ROS generation and Rho activation during endothelial dysfunction. Recent Advances: Extensive studies in the past decades have established that a wide range of barrier-disruptive and proinflammatory agonists activate the Rho pathway that, ultimately, leads to endothelial dysfunction via disruption of endothelial barrier and further escalation of inflammation. An increasing body of evidence suggests that a bidirectional interplay exists between the Rho pathway and ROS generation during endothelial dysfunction. Rac, a member of the Rho family, is directly involved in ROS production and ROS, in turn, activate RhoA, Rac, and Cdc42. Critical Issues: A precise mechanism of interaction between ROS generation and Rho activation and its impact on endothelial function needs to be elucidated. Future Directions: By employing advanced molecular techniques, the sequential cascades in the Rho-ROS crosstalk signaling axis need to be explored. The therapeutic potential of the Rho pathway inhibitors in endothelial-dysfunction associated cardiopulmonary disorders needs to be evaluated.
Collapse
Affiliation(s)
- Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland, Baltimore, Maryland
| | - Konstantin G Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
26
|
Gorecka J, Fereydooni A, Gonzalez L, Lee SR, Liu S, Ono S, Xu J, Liu J, Taniguchi R, Matsubara Y, Gao X, Gao M, Langford J, Yatsula B, Dardik A. Molecular Targets for Improving Arteriovenous Fistula Maturation and Patency. VASCULAR INVESTIGATION AND THERAPY 2019; 2:33-41. [PMID: 31608322 DOI: 10.4103/vit.vit_9_19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The increasing prevalence of chronic and end-stage renal disease creates an increased need for reliable vascular access, and although arteriovenous fistulae (AVF) are the preferred mode of hemodialysis access, 60% fail to mature and only 50% remain patent at one year. Fistulae mature by diameter expansion and wall thickening; this outward remodeling of the venous wall in the fistula environment relies on a delicate balance of extracellular matrix (ECM) remodeling, inflammation, growth factor secretion, and cell adhesion molecule upregulation in the venous wall. AVF failure occurs via two distinct mechanisms with early failure secondary to lack of outward remodeling, that is insufficient diameter expansion or wall thickening, whereas late failure occurs with excessive wall thickening due to neointimal hyperplasia (NIH) and insufficient diameter expansion in a previously functional fistula. In recent years, the molecular basis of AVF maturation and failure are becoming understood in order to develop potential therapeutic targets to aide maturation and prevent access loss. Erythropoietin-producing hepatocellular carcinoma (Eph) receptors, along with their ligands, ephrins, determine vascular identity and are critical for vascular remodeling in the embryo. Manipulation of Eph receptor signaling in adults, as well as downstream pathways, is a potential treatment strategy to improve the rates of AVF maturation and patency. This review examines our current understanding of molecular changes occurring following fistula creation, factors predictive of fistula success, and potential areas of intervention to decrease AVF failure.
Collapse
Affiliation(s)
- Jolanta Gorecka
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA
| | - Arash Fereydooni
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA
| | - Luis Gonzalez
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA
| | - Shin Rong Lee
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA
| | - Shirley Liu
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA
| | - Shun Ono
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA
| | - Jianbiao Xu
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA
| | - Jia Liu
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA.,The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ryosuke Taniguchi
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA
| | - Yutaka Matsubara
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA
| | - Xixiang Gao
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA.,Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Mingjie Gao
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA.,Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - John Langford
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA
| | - Bogdan Yatsula
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA
| | - Alan Dardik
- Vascular Biology and Therapeutics Program and the Department of Surgery, Yale School of Medicine, Yale University, New Haven, USA.,Section of Vascular and Endovascular Surgery, VA Connecticut Healthcare System, West Haven, USA
| |
Collapse
|
27
|
Wettschureck N, Strilic B, Offermanns S. Passing the Vascular Barrier: Endothelial Signaling Processes Controlling Extravasation. Physiol Rev 2019; 99:1467-1525. [PMID: 31140373 DOI: 10.1152/physrev.00037.2018] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A central function of the vascular endothelium is to serve as a barrier between the blood and the surrounding tissue of the body. At the same time, solutes and cells have to pass the endothelium to leave or to enter the bloodstream to maintain homeostasis. Under pathological conditions, for example, inflammation, permeability for fluid and cells is largely increased in the affected area, thereby facilitating host defense. To appropriately function as a regulated permeability filter, the endothelium uses various mechanisms to allow solutes and cells to pass the endothelial layer. These include transcellular and paracellular pathways of which the latter requires remodeling of intercellular junctions for its regulation. This review provides an overview on endothelial barrier regulation and focuses on the endothelial signaling mechanisms controlling the opening and closing of paracellular pathways for solutes and cells such as leukocytes and metastasizing tumor cells.
Collapse
Affiliation(s)
- Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| | - Boris Strilic
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research , Bad Nauheim , Germany ; and Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt , Frankfurt , Germany
| |
Collapse
|
28
|
Meza CA, La Favor JD, Kim DH, Hickner RC. Endothelial Dysfunction: Is There a Hyperglycemia-Induced Imbalance of NOX and NOS? Int J Mol Sci 2019; 20:ijms20153775. [PMID: 31382355 PMCID: PMC6696313 DOI: 10.3390/ijms20153775] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
NADPH oxidases (NOX) are enzyme complexes that have received much attention as key molecules in the development of vascular dysfunction. NOX have the primary function of generating reactive oxygen species (ROS), and are considered the main source of ROS production in endothelial cells. The endothelium is a thin monolayer that lines the inner surface of blood vessels, acting as a secretory organ to maintain homeostasis of blood flow. The enzymatic production of nitric oxide (NO) by endothelial NO synthase (eNOS) is critical in mediating endothelial function, and oxidative stress can cause dysregulation of eNOS and endothelial dysfunction. Insulin is a stimulus for increases in blood flow and endothelium-dependent vasodilation. However, cardiovascular disease and type 2 diabetes are characterized by poor control of the endothelial cell redox environment, with a shift toward overproduction of ROS by NOX. Studies in models of type 2 diabetes demonstrate that aberrant NOX activation contributes to uncoupling of eNOS and endothelial dysfunction. It is well-established that endothelial dysfunction precedes the onset of cardiovascular disease, therefore NOX are important molecular links between type 2 diabetes and vascular complications. The aim of the current review is to describe the normal, healthy physiological mechanisms involved in endothelial function, and highlight the central role of NOX in mediating endothelial dysfunction when glucose homeostasis is impaired.
Collapse
Affiliation(s)
- Cesar A Meza
- Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Justin D La Favor
- Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Do-Houn Kim
- Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Robert C Hickner
- Department of Nutrition, Food & Exercise Sciences, Florida State University, Tallahassee, FL 32306, USA.
- Institute of Sports Sciences and Medicine, College of Human Sciences, Florida State University, Tallahassee, FL 32306, USA.
- Department of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Westville 4041, South Africa.
| |
Collapse
|
29
|
Lammel T, Mackevica A, Johansson BR, Sturve J. Endocytosis, intracellular fate, accumulation, and agglomeration of titanium dioxide (TiO 2) nanoparticles in the rainbow trout liver cell line RTL-W1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:15354-15372. [PMID: 30929178 PMCID: PMC6529399 DOI: 10.1007/s11356-019-04856-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/13/2019] [Indexed: 06/01/2023]
Abstract
There is increasing evidence that titanium dioxide (TiO2) nanoparticles (NPs) present in water or diet can be taken up by fish and accumulate in internal organs including the liver. However, their further fate in the organ is unknown. This study provides new insights into the interaction, uptake mechanism, intracellular trafficking, and fate of TiO2 NPs (Aeroxide® P25) in fish liver parenchymal cells (RTL-W1) in vitro using high-resolution transmission electron microscopy (TEM) and single particle inductively coupled plasma mass spectrometry (spICP-MS) as complementary analytical techniques. The results demonstrate that following their uptake via caveolae-mediated endocytosis, TiO2 NPs were trafficked through different intracellular compartments including early endosomes, multivesicular bodies, and late endosomes/endo-lysosomes, and eventually concentrated inside multilamellar vesicles. TEM and spICP-MS results provide evidence that uptake was nano-specific. Only NPs/NP agglomerates of a specific size range (~ 30-100 nm) were endocytosed; larger agglomerates were excluded from uptake and remained located in the extracellular space/exposure medium. NP number and mass inside cells increased linearly with time and was associated with an increase in particle diameter suggesting intracellular agglomeration/aggregation. No alterations in the expression of genes regulated by the redox balance-sensitive transcription factor Nrf-2 including superoxide dismutase, glutamyl cysteine ligase, glutathione synthetase, glutathione peroxidase, and glutathione S-transferase were observed. This shows that, despite the high intracellular NP burden (~ 3.9 × 102 ng Ti/mg protein after 24 h) and NP-interaction with mitochondria, cellular redox homeostasis was not significantly affected. This study contributes to a better mechanistic understanding of in vitro particokinetics as well as the potential fate and effects of TiO2 NPs in fish liver cells.
Collapse
Affiliation(s)
- Tobias Lammel
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 413 90, Göteborg, Sweden.
| | - Aiga Mackevica
- DTU Environment, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Bengt R Johansson
- The Electron Microscopy Unit, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, 405 30, Göteborg, Sweden
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 413 90, Göteborg, Sweden
| |
Collapse
|
30
|
Mitidieri E, Gurgone D, Caiazzo E, Tramontano T, Cicala C, Sorrentino R, d'Emmanuele di Villa Bianca R. L-cysteine/cystathionine-β-synthase-induced relaxation in mouse aorta involves a L-serine/sphingosine-1-phosphate/NO pathway. Br J Pharmacol 2019; 177:734-744. [PMID: 30835815 DOI: 10.1111/bph.14654] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/20/2018] [Accepted: 01/30/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Among the three enzymes involved in the transsulfuration pathway, only cystathionine β-synthase (CBS) converts L-cysteine into L-serine and H2 S. L-serine is also involved in the de novo sphingolipid biosynthesis through a condensation with palmitoyl-CoA by the action of serine palmitoyltransferase (SPT). Here, we have investigated if L-serine contributes to the vasorelaxant effect. EXPERIMENTAL APPROACH The presence of CBS in mouse vascular endothelium was assessed by immunohistochemistry and immunofluorescence. The relaxant activity of L-serine (0.1-300 μM) and L-cysteine (0.1-300 μM) was estimated on mouse aorta rings, with or without endothelium. A pharmacological modulation study evaluated NO and sphingosine-1-phosphate (S1P) involvement. Levels of NO and S1P were also measured following incubation of aorta tissue with either L-serine (1, 10, and 100 μM) or L-cysteine (10, 100 μM, and 1 mM). KEY RESULTS L-serine relaxed aorta rings in an endothelium-dependent manner. The vascular effect was reduced by L-NG-nitro-arginine methyl ester and wortmaninn. A similar pattern was obtained with L-cysteine. The S1P1 receptor antagonist (W146) or the SPT inhibitor (myriocin) reduced either L-serine or L-cysteine relaxant effect. L-serine or L-cysteine incubation increased NO and S1P levels in mouse aorta. CONCLUSIONS AND IMPLICATIONS L-serine, a by-product formed within the transsulfuration pathway starting from L-cysteine via CBS, contributes to the vasodilator action of L-cysteine. The L-serine effect involves both NO and S1P. This mechanism could be involved in the marked dysregulation of vascular tone in hyperhomocysteinemic patients (CBS deficiency) and may represent a feasible therapeutic target. LINKED ARTICLES This article is part of a themed section on Hydrogen Sulfide in Biology & Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.4/issuetoc.
Collapse
Affiliation(s)
- Emma Mitidieri
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Danila Gurgone
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Elisabetta Caiazzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Teresa Tramontano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Carla Cicala
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Raffaella Sorrentino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
31
|
Abstract
The pulmonary endothelial cell forms a critical semi-permeable barrier between the vascular and interstitial space. As part of the blood-gas barrier in the lung, the endothelium plays a key role in normal physiologic function and pathologic disease. Changes in endothelial cell shape, defined by its plasma membrane, determine barrier integrity. A number of key cytoskeletal regulatory and effector proteins including non-muscle myosin light chain kinase, cortactin, and Arp 2/3 mediate actin rearrangements to form cortical and membrane associated structures in response to barrier enhancing stimuli. These actin formations support and interact with junctional complexes and exert forces to protrude the lipid membrane to and close gaps between individual cells. The current knowledge of these cytoskeletal processes and regulatory proteins are the subject of this review. In addition, we explore novel advancements in cellular imaging that are poised to shed light on the complex nature of pulmonary endothelial permeability.
Collapse
|
32
|
Simmons S, Erfinanda L, Bartz C, Kuebler WM. Novel mechanisms regulating endothelial barrier function in the pulmonary microcirculation. J Physiol 2018; 597:997-1021. [PMID: 30015354 DOI: 10.1113/jp276245] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/25/2018] [Indexed: 12/11/2022] Open
Abstract
The pulmonary epithelial and vascular endothelial cell layers provide two sequential physical and immunological barriers that together form a semi-permeable interface and prevent alveolar and interstitial oedema formation. In this review, we focus specifically on the continuous endothelium of the pulmonary microvascular bed that warrants strict control of the exchange of gases, fluid, solutes and circulating cells between the plasma and the interstitial space. The present review provides an overview of emerging molecular mechanisms that permit constant transcellular exchange between the vascular and interstitial compartment, and cause, prevent or reverse lung endothelial barrier failure under experimental conditions, yet with a clinical perspective. Based on recent findings and at times seemingly conflicting results we discuss emerging paradigms of permeability regulation by altered ion transport as well as shifts in the homeostasis of sphingolipids, angiopoietins and prostaglandins.
Collapse
Affiliation(s)
- Szandor Simmons
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lasti Erfinanda
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Bartz
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Departments of Surgery and Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
Kobayashi H, Kabata R, Kinoshita H, Morimoto T, Ono K, Takeda M, Choi J, Okuda H, Liu W, Harada KH, Kimura T, Youssefian S, Koizumi A. Rare variants in RNF213, a susceptibility gene for moyamoya disease, are found in patients with pulmonary hypertension and aggravate hypoxia-induced pulmonary hypertension in mice. Pulm Circ 2018; 8:2045894018778155. [PMID: 29718794 PMCID: PMC5991195 DOI: 10.1177/2045894018778155] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ring finger 213 (RNF213) is a susceptibility gene for moyamoya disease (MMD), a progressive cerebrovascular disease. Recent studies suggest that RNF213 plays an important role not only in MMD, but also in extracranial vascular diseases, such as pulmonary hypertension (PH). In this study, we undertook genetic screening of RNF213 in patients with PH and performed functional analysis of an RNF213 variant using mouse models. Direct sequencing of the exons in the C-terminal region of RNF213, where MMD-associated mutations are highly clustered, and of the entire coding exons of BMPR2 and CAV1, the causative genes for PH, was performed in 27 Japanese patients with PH. Two MMD-associated rare variants (p.R4810K and p.A4399T) in RNF213 were identified in two patients, three BMPR2 mutations (p.Q92H, p.L198Rfs*4, and p.S930X) were found in three patients, whereas no CAV1 mutations were identified. To test the effect of the RNF213 variants on PH, vascular endothelial cell (EC)-specific Rnf213 mutant transgenic mice were exposed to hypoxia. Overexpression of the EC-specific Rnf213 mutant, but neither Rnf213 ablation nor EC-specific wild-type Rnf213 overexpression, aggravated the hypoxia-induced PH phenotype (high right ventricular pressure, right ventricular hypertrophy, and muscularization of pulmonary vessels). Under hypoxia, electron microscopy showed unique EC detachment in pulmonary vessels, and western blots demonstrated a significant reduction in caveolin-1 (encoded by CAV1), a key molecule involved in EC functions, in lungs of EC-specific Rnf213 mutant transgenic mice, suggestive of EC dysfunction. RNF213 appears to be a genetic risk factor for PH and could play a role in systemic vasculopathy.
Collapse
Affiliation(s)
- Hatasu Kobayashi
- 1 Department of Health and Environmental Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,2 Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Risako Kabata
- 1 Department of Health and Environmental Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideyuki Kinoshita
- 3 Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takaaki Morimoto
- 1 Department of Health and Environmental Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,4 Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koh Ono
- 3 Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Midori Takeda
- 1 Department of Health and Environmental Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jungmi Choi
- 1 Department of Health and Environmental Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroko Okuda
- 1 Department of Health and Environmental Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Wanyang Liu
- 5 Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Kouji H Harada
- 1 Department of Health and Environmental Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Kimura
- 3 Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shohab Youssefian
- 6 Laboratory of Molecular Biosciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akio Koizumi
- 1 Department of Health and Environmental Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
34
|
Giannoni P, Badaut J, Dargazanli C, Fayd'Herbe De Maudave A, Klement W, Costalat V, Marchi N. The pericyte-glia interface at the blood-brain barrier. Clin Sci (Lond) 2018; 132:361-374. [PMID: 29439117 DOI: 10.1042/cs20171634] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 12/30/2022]
Abstract
The cerebrovasculature is a multicellular structure with varying rheological and permeability properties. The outer wall of the brain capillary endothelium is enclosed by pericytes and astrocyte end feet, anatomically assembled to guarantee barrier functions. We, here, focus on the pericyte modifications occurring in disease conditions, reviewing evidence supporting the interplay amongst pericytes, the endothelium, and glial cells in health and pathology. Deconstruction and reactivity of pericytes and glial cells around the capillary endothelium occur in response to traumatic brain injury, epilepsy, and neurodegenerative disorders, impacting vascular permeability and participating in neuroinflammation. As this represents a growing field of research, addressing the multicellular reorganization occurring at the outer wall of the blood-brain barrier (BBB) in response to an acute insult or a chronic disease could disclose novel disease mechanisms and therapeutic targets.
Collapse
Affiliation(s)
| | - Jerome Badaut
- Laboratory of Brain Molecular Imaging, CNRS UMR5287, University of Bordeaux, France
- Basic Science Departments, Loma Linda University School of Medicine, CA, U.S.A
| | - Cyril Dargazanli
- Neuroradiology, University Hospital, Montpellier, France
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Alexis Fayd'Herbe De Maudave
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Wendy Klement
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Vincent Costalat
- Neuroradiology, University Hospital, Montpellier, France
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| | - Nicola Marchi
- Laboratory of Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics (UMR 5203 CNRS - U 1191 INSERM, University of Montpellier), Montpellier, France
| |
Collapse
|
35
|
Gross S, Devraj K, Feng Y, Macas J, Liebner S, Wieland T. Nucleoside diphosphate kinase B regulates angiogenic responses in the endothelium via caveolae formation and c-Src-mediated caveolin-1 phosphorylation. J Cereb Blood Flow Metab 2017; 37:2471-2484. [PMID: 27629102 PMCID: PMC5531345 DOI: 10.1177/0271678x16669365] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nucleoside diphosphate kinase B (NDPK-B) is an enzyme required for nucleoside triphosphate homeostasis, which has been shown to interact with caveolin-1 (Cav-1). In endothelial cells (ECs), NDPK-B contributes to the regulation of angiogenesis and adherens junction (AJ) integrity. We therefore investigated whether an interaction of NDPK-B with Cav-1 in ECs is required for this regulation and the involvement of VEGF signaling herein. We report that simultaneous depletion of NDPK-B/Cav-1 in HUVECs synergistically impaired sprouting angiogenesis. NDPK-B depletion alone impaired caveolae formation, VEGF-induced phosphorylation of c-Src/Cav-1 but not of ERK1/2/AKT/eNOS. In vivo, Cav-1-/- mice showed impaired retinal vascularization at postnatal-day five, whereas NDPK-B-/- mice did not. Primary mouse brain ECs (MBMECs) from NDPK-B-/- mice showed no change in caveolae content and transendothelial-electrical resistance upon VEGF stimulation. Interestingly, NDPK-B-/- MBMECs displayed an accumulation of intracellular vesicles and increased Cav-1 levels. Dextran tracer analysis showed increased vascular permeability in the brain of NDPK-B-/- mice compared to wild type. In conclusion, our data indicate that NDPK-B is required for the correct localization of Cav-1 at the plasma membrane and the formation of caveolae. The genetic ablation of NDPK-B could partially be compensated by an increased Cav-1 content, which restored caveolae formation and some endothelial functions.
Collapse
Affiliation(s)
- Shalini Gross
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kavi Devraj
- Institute of Neurology (Edinger-Institute), Goethe University, Frankfurt, Germany
| | - Yuxi Feng
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jadranka Macas
- Institute of Neurology (Edinger-Institute), Goethe University, Frankfurt, Germany
| | - Stefan Liebner
- Institute of Neurology (Edinger-Institute), Goethe University, Frankfurt, Germany
| | - Thomas Wieland
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Thomas Wieland, Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty Mannheim, Heidelberg University Maybachstr. 14, 68169 Mannheim, Germany.
| |
Collapse
|
36
|
Suwarto S, Sasmono RT, Sinto R, Ibrahim E, Suryamin M. Association of Endothelial Glycocalyx and Tight and Adherens Junctions With Severity of Plasma Leakage in Dengue Infection. J Infect Dis 2017; 215:992-999. [PMID: 28453844 PMCID: PMC5407050 DOI: 10.1093/infdis/jix041] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/18/2017] [Indexed: 12/21/2022] Open
Abstract
Background. The role of vascular endothelial (VE) components in dengue infection with plasma leakage is unknown. Therefore, we conducted a study to determine the adjusted association of the endothelial glycocalyx layer (EGL) and tight and adherens junction markers with plasma leakage. Methods. A prospective observational study was conducted at Cipto Mangunkusumo Hospital and Persahabatan Hospital, Jakarta, Indonesia. Adult dengue patients admitted to the hospital on the third day of fever from November 2013 through August 2015 were included in the study. Multiple regression analysis was used to determine the adjusted association of the VE biomarkers with the severity of the plasma leakage. Results. A total of 103 dengue-infected patients participated in the study. In the critical phase, levels of syndecan-1 (odds ratio [OR] = 1.004; 95% confidence interval [CI] = 1.001–1.007) and chondroitin sulfate (OR = 1.157; 95% CI = 1.025–1.307) had an adjusted association with plasma leakage, whereas levels of syndecan-1 (OR = 1.004; 95% CI = 1.000–1.008) and claudin-5 (OR = 1.038; 95% CI = 1.004–1.074) had an adjusted association with severe plasma leakage. Conclusions. In dengue-infected patients, elevated levels of syndecan-1 and chondroitin sulfate are strongly associated with plasma leakage, and elevated levels of syndecan-1 and claudin-5 are strongly associated with severe plasma leakage.
Collapse
Affiliation(s)
- Suhendro Suwarto
- Division of Tropical and Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | | | - Robert Sinto
- Division of Tropical and Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Eppy Ibrahim
- Department of Internal Medicine, Persahabatan Hospital, Jakarta, Indonesia
| | - Maulana Suryamin
- Department of Internal Medicine, Persahabatan Hospital, Jakarta, Indonesia
| |
Collapse
|
37
|
Masciantonio MG, Lee CKS, Arpino V, Mehta S, Gill SE. The Balance Between Metalloproteinases and TIMPs: Critical Regulator of Microvascular Endothelial Cell Function in Health and Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 147:101-131. [PMID: 28413026 DOI: 10.1016/bs.pmbts.2017.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endothelial cells (EC), especially the microvascular EC (MVEC), have critical functions in health and disease. For example, healthy MVEC provide a barrier between the fluid and protein found within the blood, and the surrounding tissue. Following tissue injury or infection, the microvascular barrier is often disrupted due to activation and dysfunction of the MVEC. Multiple mechanisms promote MVEC activation and dysfunction, including stimulation by cytokines, mechanical interaction with activated leukocytes, and exposure to harmful leukocyte-derived molecules, which collectively result in a loss of MVEC barrier function. However, MVEC activation is also critical to facilitate recruitment of inflammatory cells, such as neutrophils (PMNs) and monocytes, into the injured or infected tissue. Metalloproteinases, including the matrix metalloproteinases (MMPs) and the closely related, a disintegrin and metalloproteinases (ADAMs), have been implicated in regulating both MVEC barrier function, through cleavage of adherens and tight junctions proteins between adjacent MVEC and through degradation of the extracellular matrix, as well as PMN-MVEC interaction, through shedding of cell surface PMN receptors. Moreover, the tissue inhibitors of metalloproteinases (TIMPs), which collectively inhibit most MMPs and ADAMs, are critical regulators of MVEC activation and dysfunction through their ability to inhibit metalloproteinases and thereby promote MVEC stability. However, TIMPs have been also found to modulate MVEC function through metalloproteinase-independent mechanisms, such as regulation of vascular endothelial growth factor signaling. This chapter is focused on examining the role of the metalloproteinases and TIMPs in regulation of MVEC function in both health and disease.
Collapse
Affiliation(s)
- Marcello G Masciantonio
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Christopher K S Lee
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Valerie Arpino
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Sanjay Mehta
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada
| | - Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada; Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| |
Collapse
|
38
|
Yousuf MA, Lee JS, Zhou X, Ramke M, Lee JY, Chodosh J, Rajaiya J. Protein Kinase C Signaling in Adenoviral Infection. Biochemistry 2016; 55:5938-5946. [PMID: 27700064 DOI: 10.1021/acs.biochem.6b00858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Activation of protein kinase C (PKC), a serine/threonine protein kinase, ubiquitously influences cellular signal transduction and has been shown to play a role in viral entry. In this study, we explored a role for PKC in human adenovirus type 37 infection of primary human corneal fibroblasts, a major target cell for infection. We sought evidence for an interaction between PKC activation and two potential downstream targets: cSrc kinase, shown previously to play a critical role in adenovirus signaling in these cells, and caveolin-1, reported earlier to be important to entry of adenovirus type 37. Infection of fibroblasts increased PKCα phosphorylation and translocation of PKCα from the cytosol to caveolin-1 containing vesicles. Virus-induced phosphorylation of both cSrc and AKT was abolished in cell lysates pretreated with calphostin C, a chemical inhibitor of PKC. Inhibition of PKC also reduced virus associated phosphorylation of caveolin-1, while inhibition of cSrc by the chemical inhibitor PP2 reduced only caveolin-1 phosphorylation, but not PKCα phosphorylation, in lipid rafts. These results suggest a role for PKCα upstream to both cSrc and caveolin-1. Phosphorylated PKCα was found in the same endosomal fractions as phosphorylated cSrc, and PKCα was present to a greater degree in caveolin-1 pull downs from virus infected than mock infected cell lysates. Calphostin C also reduced early viral gene expression, indicating that PKCα activity may be required for viral entry. PKCα plays a central role in adenovirus infection of corneal fibroblasts and regulation of downstream molecules, including the important lipid raft component caveolin-1.
Collapse
Affiliation(s)
- Mohammad A Yousuf
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Ji Sun Lee
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Xiaohong Zhou
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Mirja Ramke
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Jeong Yoon Lee
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - James Chodosh
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Jaya Rajaiya
- Howe Laboratory, Mass Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School , Boston, Massachusetts 02114, United States
| |
Collapse
|
39
|
Cai RP, Xue YX, Huang J, Wang JH, Wang JH, Zhao SY, Guan TT, Zhang Z, Gu YT. NS1619 regulates the expression of caveolin-1 protein in a time-dependent manner via ROS/PI3K/PKB/FoxO1 signaling pathway in brain tumor microvascular endothelial cells. J Neurol Sci 2016; 369:109-118. [PMID: 27653874 DOI: 10.1016/j.jns.2016.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 12/28/2022]
Abstract
NS1619, a calcium-activated potassium channel (Kca channel) activator, can selectively and time-dependently accelerate the formation of transport vesicles in both the brain tumor capillary endothelium and tumor cells within 15min of treatment and then increase the permeability of the blood-brain tumor barrier (BTB). However, the mechanism involved is still under investigation. Using a rat brain glioma (C6) model, the expression of caveolin-1, FoxO1 and p-FoxO1 protein were examined at different time points after intracarotid infusion of NS1619 at a dose of 30μg/kg/min. Internalization of Cholera toxin subunit (CTB) labeled fluorescently was monitored by flow cytometry. The expression of caveolin-1 and FoxO1 protein at tumor microvessels was enhanced and caveolae-mediated CTB endocytosis was increased by NS1619 infusion for 15min. Compared with the 15min group, the expression of caveolin-1 protein was significantly decreased and the level of phosphorylation of FoxO1 was significantly increased in the NS1619 2h group. In addition, inhibitors of reactive oxygen species (ROS) or PI3K or PKB significantly attenuated the level of FoxO1 phosphorylation and also increased the expression of caveolin-1 protein in Human Brain Microvascular Endothelial Cells (HBMECs) cocultured with human glioma cells (U87) 2h after NS1619 treatment. This led to the conclusion that NS1619-mediated transport vesicle increase is, at least partly, related to the ROS/PI3K/PKB/FoxO1 signaling pathway.
Collapse
Affiliation(s)
- Rui-Ping Cai
- Department of Physiology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Yi-Xue Xue
- Department of Neurobiology, College Basic of Medicine, China Medical University, Shenyang, 110001, Liaoning Province, PR China
| | - Jian Huang
- Department of Phytochemistry, Chinese Materia Medica Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Jin-Hui Wang
- Department of Phytochemistry, Chinese Materia Medica Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Jia-Hong Wang
- Department of Physiology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Song-Yan Zhao
- Department of Pharmacology Experiment Center, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Ting-Ting Guan
- Department of Physiology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China
| | - Zhou Zhang
- Department of Physiology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China.
| | - Yan-Ting Gu
- Department of Physiology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, PR China.
| |
Collapse
|
40
|
Yang K, Lu W, Jiang Q, Yun X, Zhao M, Jiang H, Wang J. Peroxisome Proliferator-Activated Receptor γ-Mediated Inhibition on Hypoxia-Triggered Store-Operated Calcium Entry. A Caveolin-1-Dependent Mechanism. Am J Respir Cell Mol Biol 2016; 53:882-92. [PMID: 26020612 DOI: 10.1165/rcmb.2015-0002oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Our previous publication demonstrated that peroxisome proliferator-activated receptor γ (PPARγ) inhibits the pathogenesis of chronic hypoxia (CH)-induced pulmonary hypertension by targeting store-operated calcium entry (SOCE) in rat distal pulmonary arterial smooth muscle cells (PASMCs). In this study, we aim to determine the role of a membrane scaffolding protein, caveolin-1, during the suppressive process of PPARγ on SOCE. Adult (6-8 weeks) male Wistar rats (200-250 g) were exposed to CH (10% O2) for 21 days to establish CH-induced pulmonary hypertension. Primary cultured rat distal PASMCs were applied for the molecular biological experiments. First, hypoxic exposure led to 2.5-fold and 1-fold increases of caveolin-1 protein expression in the distal pulmonary arteries and PASMCs, respectively. Second, effective knockdown of caveolin-1 significantly reduced hypoxia-induced SOCE for 58.2% and 41.5%, measured by Mn(2+) quenching and extracellular Ca(2+) restoration experiments, respectively. These results suggested that caveolin-1 acts as a crucial regulator of SOCE, and hypoxia-up-regulated caveolin-1 largely accounts for hypoxia-elevated SOCE in PASMCs. Then, by using a high-potency PPARγ agonist, GW1929, we detected that PPARγ activation inhibited SOCE and caveolin-1 protein for 62.5% and 59.8% under hypoxia, respectively, suggesting that caveolin-1 also acts as a key target during the suppressive process of PPARγ on SOCE in PASMCs. Moreover, by using effective small interfering RNAs against PPARγ and caveolin-1, and PPARγ antagonist, T0070907, we observed that PPARγ plays an inhibitory role on caveolin-1 protein by promoting its lysosomal degradation, without affecting the messenger RNA level. PPARγ inhibits SOCE, at least partially, by suppressing cellular caveolin-1 protein in PASMCs.
Collapse
Affiliation(s)
- Kai Yang
- 1 State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,2 Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Wenju Lu
- 1 State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,2 Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Qian Jiang
- 1 State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,2 Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Xin Yun
- 1 State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,2 Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Mingming Zhao
- 3 Laboratory of Molecular Biology and Immunology, National Institute on Aging, Baltimore, Maryland
| | - Haiyang Jiang
- 2 Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Jian Wang
- 1 State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,4 Division of Pulmonary, the People's Hospital of Inner Mongolia, Hohhot, Inner Mongolia, China.,2 Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
41
|
Kusters YHAM, Barrett EJ. Muscle microvasculature's structural and functional specializations facilitate muscle metabolism. Am J Physiol Endocrinol Metab 2016; 310:E379-87. [PMID: 26714849 PMCID: PMC4888529 DOI: 10.1152/ajpendo.00443.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/18/2015] [Indexed: 12/29/2022]
Abstract
We review the evolving findings from studies that examine the relationship between the structural and functional properties of skeletal muscle's vasculature and muscle metabolism. Unique aspects of the organization of the muscle microvasculature are highlighted. We discuss the role of vasomotion at the microscopic level and of flowmotion at the tissue level as modulators of perfusion distribution in muscle. We then consider in some detail how insulin and exercise each modulate muscle perfusion at both the microvascular and whole tissue level. The central role of the vascular endothelial cell in modulating both perfusion and transendothelial insulin and nutrient transport is also reviewed. The relationship between muscle metabolic insulin resistance and the vascular action of insulin in muscle continues to indicate an important role for the microvasculature as a target for insulin action and that impairing insulin's microvascular action significantly affects body glucose metabolism.
Collapse
Affiliation(s)
- Yvo H A M Kusters
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands; Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands; and
| | - Eugene J Barrett
- Department of Medicine, Pediatrics, and Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
42
|
Andrews AM, Rizzo V. Microparticle-Induced Activation of the Vascular Endothelium Requires Caveolin-1/Caveolae. PLoS One 2016; 11:e0149272. [PMID: 26891050 PMCID: PMC4758735 DOI: 10.1371/journal.pone.0149272] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/30/2016] [Indexed: 12/29/2022] Open
Abstract
Microparticles (MPs) are small membrane fragments shed from normal as well as activated, apoptotic or injured cells. Emerging evidence implicates MPs as a causal and/or contributing factor in altering normal vascular cell phenotype through initiation of proinflammatory signal transduction events and paracrine delivery of proteins, mRNA and miRNA. However, little is known regarding the mechanism by which MPs influence these events. Caveolae are important membrane microdomains that function as centers of signal transduction and endocytosis. Here, we tested the concept that the MP-induced pro-inflammatory phenotype shift in endothelial cells (ECs) depends on caveolae. Consistent with previous reports, MP challenge activated ECs as evidenced by upregulation of intracellular adhesion molecule-1 (ICAM-1) expression. ICAM-1 upregulation was mediated by activation of NF-κB, Poly [ADP-ribose] polymerase 1 (PARP-1) and the epidermal growth factor receptor (EGFR). This response was absent in ECs lacking caveolin-1/caveolae. To test whether caveolae-mediated endocytosis, a dynamin-2 dependent process, is a feature of the proinflammatory response, EC’s were pretreated with the dynamin-2 inhibitor dynasore. Similar to observations in cells lacking caveolin-1, inhibition of endocytosis significantly attenuated MPs effects including, EGFR phosphorylation, activation of NF-κB and upregulation of ICAM-1 expression. Thus, our results indicate that caveolae play a role in mediating the pro-inflammatory signaling pathways which lead to EC activation in response to MPs.
Collapse
Affiliation(s)
- Allison M. Andrews
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
| | - Victor Rizzo
- Independence Blue Cross Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
43
|
Zhang J, Jiang Z, Bao C, Mei J, Zhu J. Cardiopulmonary bypass increases pulmonary microvascular permeability through the Src kinase pathway: Involvement of caveolin-1 and vascular endothelial cadherin. Mol Med Rep 2016; 13:2918-24. [PMID: 26847917 PMCID: PMC4768976 DOI: 10.3892/mmr.2016.4831] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 01/12/2016] [Indexed: 11/22/2022] Open
Abstract
Changes in pulmonary microvascular permeability following cardiopulmonary bypass (CPB) and the underlying mechanisms have not yet been established. Therefore, the aim of the present study was to elucidate the alterations in pulmonary microvascular permeability following CPB and the underlying mechanism. The pulmonary microvascular permeability was measured using Evans Blue dye (EBD) exclusion, and the neutrophil infiltration and proinflammatory cytokine secretion was investigated. In addition, the activation of Src kinase and the phosphorylation of caveolin-1 and vascular endothelial cadherin (VE-cadherin) was examined. The results revealed that CPB increased pulmonary microvascular leakage, neutrophil count and proinflammatory cytokines in the bronchoalveolar lavage fluid, and activated Src kinase. The administration of PP2, an inhibitor of Src kinase, decreased the activation of Src kinase and attenuated the increase in pulmonary microvascular permeability observed following CPB. Two important proteins associated with vascular permeability, caveolin-1 and VE-cadherin, were significantly activated at 24 h in the lung tissues following CPB, which correlated with the alterations in pulmonary microvascular permeability and Src kinase. PP2 administration inhibited their activation, suggesting that they are downstream factors of Src kinase activation. The data indicated that the Src kinase pathway increased pulmonary microvascular permeability following CPB, and the activation of caveolin-1 and VE-cadherin may be involved. Inhibition of this pathway may provide a potential therapy for acute lung injury following cardiac surgery.
Collapse
Affiliation(s)
- Junwen Zhang
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Zhaolei Jiang
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Chunrong Bao
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Ju Mei
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| | - Jiaquan Zhu
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, P.R. China
| |
Collapse
|
44
|
Desai A, Xu J, Aysola K, Akinbobuyi O, White M, Reddy VE, Okoli J, Clark C, Partridge EE, Childs E, Beech DJ, Rice MV, Reddy E, Rao VN. Molecular Mechanism Linking BRCA1 Dysfunction to High Grade Serous Epithelial Ovarian Cancers with Peritoneal Permeability and Ascites. ACTA ACUST UNITED AC 2015; 1. [PMID: 26665166 DOI: 10.15744/2454-3284.1.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ovarian cancer constitutes the second most common gynecological cancer with a five-year survival rate of 40%. Among the various histotypes associated with hereditary ovarian cancer, high-grade serous epithelial ovarian carcinoma (HGSEOC) is the most predominant and women with inherited mutations in BRCA1 have a lifetime risk of 40-60%. HGSEOC is a challenge for clinical oncologists, due to late presentation of patient, diagnosis and high rate of relapse. Ovarian tumors have a wide range of clinical presentations including development of ascites as a result of deregulated endothelial function thereby causing increased vascular permeability of peritoneal vessels. The molecular mechanisms remain elusive. Studies have shown that fallopian tube cancers develop in women with BRCA1 gene mutations more often than previously suspected. Recent studies suggest that many primary peritoneal cancers and some high-grade serous epithelial ovarian carcinomas actually start in the fallopian tubes. In this article we have addressed the molecular pathway of a recently identified potential biomarker Ubc9 whose deregulated expression due to BRCA1 dysfunction can result in HGSEOC with peritoneal permeability and formation of ascites. We also discuss the role of downstream targets Caveolin-1 and Vascular Endothelial Growth Factor (VEGF) in the pathogenesis of ascites in ovarian carcinomas. Finally we hypothesize a signaling axis between Ubc9 over expression, loss of Caveolin-1 and induction of VEGF in BRCA1 mutant HGSEOC cells. We suggest that Ubc9-mediated stimulation of VEGF as a novel mechanism underlying ovarian cancer aggressiveness and ascites formation. Agents that target Ubc9 and VEGF signaling may represent a novel therapeutic strategy to impede peritoneal growth and spread of HGSEOC.
Collapse
Affiliation(s)
- A Desai
- Cancer Biology Program, Department of OB/GYN, School of Medicine, Georgia Cancer Center for Excellence, Grady Health System, Atlanta, USA
| | - J Xu
- Department of Internal Medicine, School of Medicine, Georgia Cancer Center for Excellence, Grady Health System, Atlanta, USA
| | - K Aysola
- Department of Surgery, Morehouse, School of Medicine, Georgia Cancer Center for Excellence, Grady Health System, Atlanta, USA
| | - O Akinbobuyi
- Department of Internal Medicine, University of Buffalo, Erie County Medical Center, Buffalo NY
| | - M White
- Philadelphia College of Osteopathic Medicine, Suwanee GA
| | - V E Reddy
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Machado RD, Southgate L, Eichstaedt CA, Aldred MA, Austin ED, Best DH, Chung WK, Benjamin N, Elliott CG, Eyries M, Fischer C, Gräf S, Hinderhofer K, Humbert M, Keiles SB, Loyd JE, Morrell NW, Newman JH, Soubrier F, Trembath RC, Viales RR, Grünig E. Pulmonary Arterial Hypertension: A Current Perspective on Established and Emerging Molecular Genetic Defects. Hum Mutat 2015; 36:1113-27. [PMID: 26387786 DOI: 10.1002/humu.22904] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/04/2015] [Indexed: 12/20/2022]
Abstract
Pulmonary arterial hypertension (PAH) is an often fatal disorder resulting from several causes including heterogeneous genetic defects. While mutations in the bone morphogenetic protein receptor type II (BMPR2) gene are the single most common causal factor for hereditary cases, pathogenic mutations have been observed in approximately 25% of idiopathic PAH patients without a prior family history of disease. Additional defects of the transforming growth factor beta pathway have been implicated in disease pathogenesis. Specifically, studies have confirmed activin A receptor type II-like 1 (ACVRL1), endoglin (ENG), and members of the SMAD family as contributing to PAH both with and without associated clinical phenotypes. Most recently, next-generation sequencing has identified novel, rare genetic variation implicated in the PAH disease spectrum. Of importance, several identified genetic factors converge on related pathways and provide significant insight into the development, maintenance, and pathogenetic transformation of the pulmonary vascular bed. Together, these analyses represent the largest comprehensive compilation of BMPR2 and associated genetic risk factors for PAH, comprising known and novel variation. Additionally, with the inclusion of an allelic series of locus-specific variation in BMPR2, these data provide a key resource in data interpretation and development of contemporary therapeutic and diagnostic tools.
Collapse
Affiliation(s)
- Rajiv D Machado
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | - Laura Southgate
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Division of Genetics & Molecular Medicine, King's College London, London, United Kingdom
| | - Christina A Eichstaedt
- Centre for Pulmonary Hypertension, Thoraxclinic at the University Hospital Heidelberg, Heidelberg, Germany.,Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Eric D Austin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - D Hunter Best
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah.,ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, New York
| | - Nicola Benjamin
- Centre for Pulmonary Hypertension, Thoraxclinic at the University Hospital Heidelberg, Heidelberg, Germany
| | - C Gregory Elliott
- Departments of Medicine, Intermountain Medical Center and the University of Utah School of Medicine, Salt Lake City, Utah
| | - Mélanie Eyries
- Unité Mixte de Recherche en Santé (UMR_S 1166), Université Pierre and Marie Curie Université Paris 06 (UPMC) and Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Genetics Department, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Institute for Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Christine Fischer
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | | | - Marc Humbert
- Université Paris-Sud, Faculté de Médecine, Paris, France.,Département Hospitalo-Universitaire (DHU) Thorax Innovation (TORINO), Service de Pneumologie, Hôpital Bicêtre, AP-HP, Paris, France.,INSERM UMR_S 999, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Centre Chirurgical Marie Lannelongue, Paris, France
| | - Steven B Keiles
- Quest Diagnostics, Action from Insight, San Juan Capistrano, California
| | - James E Loyd
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Addenbrooke's & Papworth Hospitals, Cambridge, United Kingdom
| | - John H Newman
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Florent Soubrier
- Unité Mixte de Recherche en Santé (UMR_S 1166), Université Pierre and Marie Curie Université Paris 06 (UPMC) and Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Genetics Department, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Institute for Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Richard C Trembath
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Rebecca Rodríguez Viales
- Centre for Pulmonary Hypertension, Thoraxclinic at the University Hospital Heidelberg, Heidelberg, Germany.,Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Ekkehard Grünig
- Centre for Pulmonary Hypertension, Thoraxclinic at the University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
46
|
Cheng CT, Chu YY, Yeh CN, Huang SC, Chen MH, Wang SY, Tsai CY, Chiang KC, Chen YY, Ma MC, Liu CT, Chen TW, Yeh TS. Peritumoral SPARC expression and patient outcome with resectable intrahepatic cholangiocarcinoma. Onco Targets Ther 2015; 8:1899-907. [PMID: 26251613 PMCID: PMC4524580 DOI: 10.2147/ott.s78728] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background and objectives Cholangiocarcinoma (CCA) affects thousands worldwide with increasing incidence. SPARC (secreted protein acidic and rich in cysteine) plays an important role in cellular matrix interactions, wound repair, and cellular migration, and has been reported to prevent malignancy from growth. SPARC undergoes epigenetic silencing in pancreatic malignancy, but is frequently expressed by stromal fibroblasts adjacent to infiltrating pancreatic adenocarcinomas. CCA is also a desmoplastic tumor, similar to pancreatic adenocarcinoma. SPARC’s clinical influence on clinicopathological characteristics of mass-forming (MF)-CCA still remains unclear. In this study, we evaluate the expression of SPARC in tumor and stromal tissue to clarity its relation with prognosis. Methods Seventy-eight MF-CCA patients who underwent hepatectomy with curative intent were enrolled for an immunohistochemical study of SPARC. The expression of immunostaining of SPARC was characterized for both tumor and stromal tissues. We conducted survival analysis with 16 clinicopathological variables. The overall survival (OS) was analyzed by Kaplan–Meier analysis and Cox proportional hazards regression modeling. Results Thirty-three men and 45 women with MF-CCA were studied. Within total 78 subjects, 12 (15.4%) were classified as tumor negative/stroma negative, 37 (47.4%) as tumor positive/stroma negative, four (5.1%) as tumor negative/stroma positive, and 25 (32.1%) as tumor positive/stroma positive. With a median follow-up of 13.6 months, the 5-year OS was 14.9%. Cox proportional hazard analysis revealed that SPARC tumor positive and stromal negative immunostaining and curative hepatectomy predicted favorable OS in patients with MF-CCA after hepatectomy. Conclusion MF-CCA patients with SPARC tumor positive and stromal negative expression may have favorable OS rates after curative hepatectomy.
Collapse
Affiliation(s)
- Chi-Tung Cheng
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Yin-Yi Chu
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Nan Yeh
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Chiang Huang
- Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Ming Huang Chen
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shang-Yu Wang
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Yi Tsai
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Kun-Chun Chiang
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Keelung, Taiwan
| | - Yen-Yang Chen
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan ; Chang Gung University, Taoyuan, Taiwan
| | - Ming-Chun Ma
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan ; Chang Gung University, Taoyuan, Taiwan
| | - Chien-Ting Liu
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan ; Chang Gung University, Taoyuan, Taiwan
| | - Tsung-Wen Chen
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Ta-Sen Yeh
- Department of Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
47
|
Pojoga LH, Yao TM, Opsasnick LA, Siddiqui WT, Reslan OM, Adler GK, Williams GH, Khalil RA. Cooperative Role of Mineralocorticoid Receptor and Caveolin-1 in Regulating the Vascular Response to Low Nitric Oxide-High Angiotensin II-Induced Cardiovascular Injury. J Pharmacol Exp Ther 2015; 355:32-47. [PMID: 26183312 DOI: 10.1124/jpet.115.226043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/14/2015] [Indexed: 12/22/2022] Open
Abstract
Aldosterone interacts with mineralocorticoid receptor (MR) to stimulate sodium reabsorption in renal tubules and may also affect the vasculature. Caveolin-1 (cav-1), an anchoring protein in plasmalemmal caveolae, binds steroid receptors and also endothelial nitric oxide synthase, thus limiting its translocation and activation. To test for potential MR/cav-1 interaction in the vasculature, we investigated if MR blockade in cav-1-replete or -deficient states would alter vascular function in a mouse model of low nitric oxide (NO)-high angiotensin II (AngII)-induced cardiovascular injury. Wild-type (WT) and cav-1 knockout mice (cav-1(-/-)) consuming a high salt diet (4% NaCl) received Nω-nitro-l-arginine methyl ester (L-NAME) (0.1-0.2 mg/ml in drinking water at days 1-11) plus AngII (0.7-2.8 mg/kg per day via an osmotic minipump at days 8-11) ± MR antagonist eplerenone (EPL) 100 mg/kg per day in food. In both genotypes, blood pressure increased with L-NAME + AngII. EPL minimally changed blood pressure, although its dose was sufficient to block MR and reverse cardiac expression of the injury markers cluster of differentiation 68 and plasminogen activator inhibitor-1 in L-NAME+AngII treated mice. In aortic rings, phenylephrine and KCl contraction was enhanced with EPL in L-NAME+AngII treated WT mice, but not cav-1(-/-) mice. AngII-induced contraction was not different, and angiotensin type 1 receptor expression was reduced in L-NAME + AngII treated WT and cav-1(-/-) mice. In WT mice, acetylcholine-induced relaxation was enhanced with L-NAME + AngII treatment and reversed with EPL. Acetylcholine relaxation in cav-1(-/-) mice was greater than in WT mice, not modified by L-NAME + AngII or EPL, and blocked by ex vivo L-NAME, 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), or endothelium removal, suggesting the role of NO-cGMP. Cardiac endothelial NO synthase was increased in cav-1(-/-) versus WT mice, further increased with L-NAME + AngII, and not affected by EPL. Vascular relaxation to the NO donor sodium nitroprusside was increased with L-NAME + AngII in WT mice but not in cav-1(-/-) mice. Plasma aldosterone levels increased and cardiac MR expression decreased in L-NAME + AngII treated WT and cav-1(-/-) mice and did not change with EPL. Thus, during L-NAME + AngII induced hypertension, MR blockade increases contraction and alters vascular relaxation via NO-cGMP, and these changes are absent in cav-1 deficiency states. The data suggest a cooperative role of MR and cav-1 in regulating vascular contraction and NO-cGMP-mediated relaxation during low NO-high AngII-dependent cardiovascular injury.
Collapse
Affiliation(s)
- Luminita H Pojoga
- Cardiovascular Endocrinology Section, Endocrinology, Diabetes, and Hypertension Division (L.H.P., T.M.Y., G.K.A., G.H.W.), and Division of Vascular and Endovascular Surgery (L.A.O., W.T.S., O.M.R., R.A.K.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tham M Yao
- Cardiovascular Endocrinology Section, Endocrinology, Diabetes, and Hypertension Division (L.H.P., T.M.Y., G.K.A., G.H.W.), and Division of Vascular and Endovascular Surgery (L.A.O., W.T.S., O.M.R., R.A.K.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Lauren A Opsasnick
- Cardiovascular Endocrinology Section, Endocrinology, Diabetes, and Hypertension Division (L.H.P., T.M.Y., G.K.A., G.H.W.), and Division of Vascular and Endovascular Surgery (L.A.O., W.T.S., O.M.R., R.A.K.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Waleed T Siddiqui
- Cardiovascular Endocrinology Section, Endocrinology, Diabetes, and Hypertension Division (L.H.P., T.M.Y., G.K.A., G.H.W.), and Division of Vascular and Endovascular Surgery (L.A.O., W.T.S., O.M.R., R.A.K.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ossama M Reslan
- Cardiovascular Endocrinology Section, Endocrinology, Diabetes, and Hypertension Division (L.H.P., T.M.Y., G.K.A., G.H.W.), and Division of Vascular and Endovascular Surgery (L.A.O., W.T.S., O.M.R., R.A.K.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gail K Adler
- Cardiovascular Endocrinology Section, Endocrinology, Diabetes, and Hypertension Division (L.H.P., T.M.Y., G.K.A., G.H.W.), and Division of Vascular and Endovascular Surgery (L.A.O., W.T.S., O.M.R., R.A.K.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Gordon H Williams
- Cardiovascular Endocrinology Section, Endocrinology, Diabetes, and Hypertension Division (L.H.P., T.M.Y., G.K.A., G.H.W.), and Division of Vascular and Endovascular Surgery (L.A.O., W.T.S., O.M.R., R.A.K.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Cardiovascular Endocrinology Section, Endocrinology, Diabetes, and Hypertension Division (L.H.P., T.M.Y., G.K.A., G.H.W.), and Division of Vascular and Endovascular Surgery (L.A.O., W.T.S., O.M.R., R.A.K.), Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
48
|
Garza AE, Pojoga LH, Moize B, Hafiz WM, Opsasnick LA, Siddiqui WT, Horenstein M, Adler GK, Williams GH, Khalil RA. Critical Role of Striatin in Blood Pressure and Vascular Responses to Dietary Sodium Intake. Hypertension 2015; 66:674-80. [PMID: 26169051 DOI: 10.1161/hypertensionaha.115.05600] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/17/2015] [Indexed: 12/12/2022]
Abstract
Striatin is a protein regulator of vesicular trafficking in neurons that also binds caveolin-1 and Ca(2+)-calmodulin and could activate endothelial nitric oxide synthase. We have shown that striatin colocalizes with the mineralocorticoid receptor and that mineralocorticoid receptor activation increases striatin levels in vascular cells. To test whether striatin is a regulator of vascular function, wild-type and heterozygous striatin-deficient mice (Strn(+/-)) were randomized in crossover intervention to restricted (0.03%) and liberal sodium (1.6%) diets for 7 days on each diet, and blood pressure and aortic vascular function were measured. Compared with wild-type, sodium restriction significantly reduced blood pressure in Strn(+/-). On liberal salt intake, phenylephrine and high KCl caused a greater vascular contraction in Strn(+/-) than wild-type, and endothelium removal, nitric oxide synthase inhibitor L-NAME, and guanylate cyclase inhibitor ODQ enhanced phenylephrine contraction to a smaller extent in Strn(+/-) than wild-type. On liberal salt, acetylcholine relaxation was less in Strn(+/-) than in wild-type, and endothelium removal, L-NAME, and ODQ blocked acetylcholine relaxation, suggesting changes in endothelial NO-cGMP. On liberal salt, endothelial nitric oxide synthase mRNA expression and the ratio of endothelial nitric oxide synthase activator pAkt/total Akt were decreased in Strn(+/-) versus wild-type. Vascular relaxation to NO donor sodium nitroprusside was not different among groups. Thus, striatin deficiency is associated with salt sensitivity of blood pressure, enhanced vasoconstriction, and decreased vascular relaxation, suggesting a critical role for striatin, through modulation of endothelial NO-cGMP, in regulation of vascular function and BP during changes in sodium intake.
Collapse
Affiliation(s)
- Amanda E Garza
- From the Cardiovascular Endocrine Section, Division of Endocrinology, Diabetes and Hypertension (A.E.G., L.H.P., B.M., W.M.H., G.K.A., G.H.W.), and Division of Vascular Surgery (L.A.O., W.T.S., M.H., R.A.K.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Luminita H Pojoga
- From the Cardiovascular Endocrine Section, Division of Endocrinology, Diabetes and Hypertension (A.E.G., L.H.P., B.M., W.M.H., G.K.A., G.H.W.), and Division of Vascular Surgery (L.A.O., W.T.S., M.H., R.A.K.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Burhanuddin Moize
- From the Cardiovascular Endocrine Section, Division of Endocrinology, Diabetes and Hypertension (A.E.G., L.H.P., B.M., W.M.H., G.K.A., G.H.W.), and Division of Vascular Surgery (L.A.O., W.T.S., M.H., R.A.K.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Wan M Hafiz
- From the Cardiovascular Endocrine Section, Division of Endocrinology, Diabetes and Hypertension (A.E.G., L.H.P., B.M., W.M.H., G.K.A., G.H.W.), and Division of Vascular Surgery (L.A.O., W.T.S., M.H., R.A.K.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Lauren A Opsasnick
- From the Cardiovascular Endocrine Section, Division of Endocrinology, Diabetes and Hypertension (A.E.G., L.H.P., B.M., W.M.H., G.K.A., G.H.W.), and Division of Vascular Surgery (L.A.O., W.T.S., M.H., R.A.K.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Waleed T Siddiqui
- From the Cardiovascular Endocrine Section, Division of Endocrinology, Diabetes and Hypertension (A.E.G., L.H.P., B.M., W.M.H., G.K.A., G.H.W.), and Division of Vascular Surgery (L.A.O., W.T.S., M.H., R.A.K.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Michael Horenstein
- From the Cardiovascular Endocrine Section, Division of Endocrinology, Diabetes and Hypertension (A.E.G., L.H.P., B.M., W.M.H., G.K.A., G.H.W.), and Division of Vascular Surgery (L.A.O., W.T.S., M.H., R.A.K.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Gail K Adler
- From the Cardiovascular Endocrine Section, Division of Endocrinology, Diabetes and Hypertension (A.E.G., L.H.P., B.M., W.M.H., G.K.A., G.H.W.), and Division of Vascular Surgery (L.A.O., W.T.S., M.H., R.A.K.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Gordon H Williams
- From the Cardiovascular Endocrine Section, Division of Endocrinology, Diabetes and Hypertension (A.E.G., L.H.P., B.M., W.M.H., G.K.A., G.H.W.), and Division of Vascular Surgery (L.A.O., W.T.S., M.H., R.A.K.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Raouf A Khalil
- From the Cardiovascular Endocrine Section, Division of Endocrinology, Diabetes and Hypertension (A.E.G., L.H.P., B.M., W.M.H., G.K.A., G.H.W.), and Division of Vascular Surgery (L.A.O., W.T.S., M.H., R.A.K.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
49
|
Sequence-specific transport of oligonucleotides into human endothelial cells. Russ Chem Bull 2015. [DOI: 10.1007/s11172-015-1033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Zou R, Wu Z, Cui S. Electroacupuncture pretreatment attenuates blood‑brain barrier disruption following cerebral ischemia/reperfusion. Mol Med Rep 2015; 12:2027-34. [PMID: 25936438 DOI: 10.3892/mmr.2015.3672] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 03/18/2015] [Indexed: 11/06/2022] Open
Abstract
Disruption of the blood-brain barrier (BBB) and subsequent brain edema are major contributors to the pathogenesis of ischemic stroke, however, current clinical therapeutic methods remains unsatisfactory. Electroacupuncture (EA) pretreatment has a protective effect against cerebral ischemia/reperfusion (I/R). However, the underlying mechanisms remain to be fully elucidated. In the present study, the effect of EA pretreatment on BBB disruption was investigated in a focal I/R rat model. Male Sprague-Dawley rats (280-320 g) were pretreated with EA at the acupoint 'Baihui' (GV20) 30 min/day, for five days consecutively prior to focal cerebral I/R, which was induced by middle cerebral artery occlusion (MCAO) for 2 h. The results demonstrated that the infarction volume, brain water content and neurological deficits increased in the MCAO model rats at 3 h and 24 h post-reperfusion, and were attenuated significantly by EA pretreatment. Furthermore, electron microscopy examination confirmed a reduction in brain edema reduction in the EA pretreated rats. Western blot analysis revealed that the tight junction proteins between endothelial cells, including claudin-5, occludin, were significantly degraded, while the protein expression of phosphorylated (p-)caveolin-1 and p-Akt increased following reperfusion, all of which were alleviated by EA pretreatment. However, no significant differences were observed in the expression of caveolin-1 or Akt. Overall, the results demonstrated that EA pretreatment significantly reduced BBB permeability and brain edema, which were correlated with alleviation of the degradation of tight junction proteins and inhibition of the expression of p-caveolin-1 in the endothelial cells.
Collapse
Affiliation(s)
- Rong Zou
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Zhouquan Wu
- First Clinical College, Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Suyang Cui
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|