1
|
He J, Wu J, Tan J, Yang P, Bai T, Song J, Hou X, Zhang L. Role of declined electrogenic Na +/HCO 3- cotransporter NBCe1 in mucus barrier impairment and colonic inflammation. Int Immunopharmacol 2025; 150:114282. [PMID: 39946770 DOI: 10.1016/j.intimp.2025.114282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/24/2025] [Accepted: 02/08/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Electrogenic Na+/HCO3- co-transporter 1 (NBCe1) plays a pivotal role in epithelial bicarbonate transport involved in the maintenance of the intestinal mucus barrier. However, the specific role of NBCe1 in colitis remains unknown. METHODS NBCe1 was identified by bioinformatics analysis methods including GO/KEGG/GSEA, protein-protein interaction (PPI) network analysis, immune infiltration analysis, and Mendelian randomization (MR) analysis. Expression level of NBCe1 was detected in patients with IBD and in DSS-induced colitis mice. The role of NBCe1 in intestinal mucus barrier and colitis was accessed by S0859 pretreatment in DSS model. The function of NBCe1 and related bicarbonate secretion were evaluated using short-circuit current (Isc) measurements in Ussing chamber system. RESULTS Bioinformatic analyses indicated that SLC4A4 (NBCe1) was a signature gene in bicarbonate transport implicated in ulcerative colitis (UC) development and was negatively associated with the risk of UC. NBCe1's expression was significantly diminished in colonic mucosa of UC patients and DSS-treated mice. More severe intestinal inflammation and impaired mucus barrier were observed in S0859-treated mice. Moreover, S0859 administration led a significant decrease in mucus secretion rate and an significant increase in Isc of colonic mucosa. The forskolin-induced ΔIsc was also suppressed by S0859 pretreatment. CONCLUSION NBCe1 has been identified as a valuable signature gene may have a protective effect against the onset of colitis. Function of NBCe1 is diminished in colitis, which is associated with impaired mucus barrier and declined HCO3- secretion both contributing to the development of IBD.
Collapse
Affiliation(s)
- Jing He
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Jiacheng Wu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Jun Tan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Pengcheng Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Jun Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China.
| | - Lei Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China.
| |
Collapse
|
2
|
Botía M, Muñoz-Prieto A, Martínez-Subiela S, Martín-Cuervo M, Hansen S, Manteca X, Cerón JJ, López-Arjona M. Oxytocin in horse saliva: validation of a highly sensitive assay and a pilot report about changes in equine gastric ulcer syndrome. BMC Vet Res 2025; 21:90. [PMID: 39987089 PMCID: PMC11847335 DOI: 10.1186/s12917-025-04569-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 02/05/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Equine gastric ulcer syndrome (EGUS) is a frequent disease in horses that comprises two different entities: equine squamous gastric disease (ESGD) and equine glandular gastric disease (EGGD). This disease considerably reduces the quality of life of affected horses and can negatively affect performance. Saliva contains biomarkers, such as oxytocin, that have been used as a welfare indicator and can develop a function as a protective factor against stress-induced changes in gastric function due to its gastric antisecretory and antiulcer effects. The objective of this work was to evaluate changes in salivary oxytocin concentrations in healthy and EGUS horses. For this purpose, an immunoassay based on AlphaLISA technology was validated for the quantification of salivary oxytocin and applied in a total of 102 horses divided into 5 groups: 25 with both EGUS, 23 with only EGGD, 21 with only ESGD, 19 horses with other diseases, and 14 healthy horses. RESULTS The analytical validation of the method showed good precision and linearity under dilution. Salivary oxytocin concentrations in healthy horses were higher compared to horses with both ESGD and EGGD and only EGGD. Salivary oxytocin concentrations in horses with only ESGD were higher compared to horses with both ESGD and EGGD and horses with only EGGD. In addition, salivary oxytocin concentrations in horses with other diseases different from ESGD were significantly increased compared to horses with both ESGD and EGGD and horses with only EGGD. CONCLUSIONS This report validates a new assay that can measure oxytocin in saliva in horses in a precise and accurate way. The lower oxytocin values in horses with EGGD and both EGGD and ESGD than in horses with ESGD, horses with other diseases, and healthy horses could indicate a possible relation of oxytocin with this disease.
Collapse
Affiliation(s)
- María Botía
- Interdisciplinary Laboratory of Clinical Analysis (INTERLAB-UMU), Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Mare Nostrum, University of Murcia, 30100, Murcia, Spain
| | - Alberto Muñoz-Prieto
- Interdisciplinary Laboratory of Clinical Analysis (INTERLAB-UMU), Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Mare Nostrum, University of Murcia, 30100, Murcia, Spain.
| | - Silvia Martínez-Subiela
- Interdisciplinary Laboratory of Clinical Analysis (INTERLAB-UMU), Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Mare Nostrum, University of Murcia, 30100, Murcia, Spain
| | - María Martín-Cuervo
- Department of Animal Medicine, Faculty of Veterinary Medicine of Cáceres, University of Extremadura, Av. de La Universidad S-N, Cáceres, 10005, Spain
| | - Sanni Hansen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Xavier Manteca
- Department of Animal and Food Science, Autonomous University of Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis (INTERLAB-UMU), Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Mare Nostrum, University of Murcia, 30100, Murcia, Spain
| | - Marina López-Arjona
- Department of Animal and Food Science, Autonomous University of Barcelona, Cerdanyola del Vallès, Barcelona, 08193, Spain
| |
Collapse
|
3
|
Caterbi S, Buttarini C, Garetto S, Franco Moscardini I, Ughetto S, Guerrini A, Panizzi E, Rumio C, Mattioli L, Perfumi M, Maidecchi A, Cossu A, des Varannes SB, Regula J, Malfertheiner P, Sardi C, Lucci J. A Non-Pharmacological Paradigm Captures the Complexity in the Mechanism of Action of Poliprotect Against Gastroesophageal Reflux Disease and Dyspepsia. Int J Mol Sci 2025; 26:1181. [PMID: 39940951 PMCID: PMC11818618 DOI: 10.3390/ijms26031181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
When the protective mechanisms of the gastroesophageal mucosa are overwhelmed by injurious factors, the structural and functional mucosal integrity is compromised, resulting in a wide spectrum of disorders. Poliprotect has recently been shown to be non-inferior to standard-dose omeprazole for the treatment of endoscopy-negative patients with heartburn and/or epigastric pain or burning. Here, we provide preclinical data describing the mechanism of action of the Poliprotect formulation, a 100% natural, biodegradable, and environmental friendly medical device according to EU 2017/745 and containing UVCB (unknown or variable composition, complex-reaction products, or biological materials) substances of botanical and mineral origin, according to the REACH and European Chemical Agency definitions. Different in vitro assays demonstrated the capability of Poliprotect to adhere to mucus-secreting gastric cells and concomitantly deliver a local barrier with buffering and antioxidant activity. In studies conducted in accordance with systems biology principles, we evaluated the effects of this barrier on human gastric cells exposed to acidic stress. Biological functions identified via Ingenuity Pathway Analysis highlighted the product's ability to create a microenvironment that supports the mucosal structural and functional integrity, promotes healing, and restores a balanced mucosal inflammatory status. Additionally, transepithelial electrical resistance and an Ussing chamber showed the product's capability of preserving the integrity of the gastric and esophageal epithelial barriers when exposed to an acid solution. Two in vivo models of erosive gastropathy further highlighted its topical protection against ethanol- and drug-induced mucosal injury. Overall, our findings sustain the feasibility of a paradigm shift in therapeutics R&D by depicting a very innovative and desirable mode of interaction with the human body based on the emerging biophysical, rather than the pharmacological properties of these therapeutic agents.
Collapse
Affiliation(s)
- Sara Caterbi
- Bios-Therapy, Physiological Systems for Health S.p.A., Località Aboca 20, 52037 Sansepolcro, Italy; (S.C.); (C.B.); (S.G.); (I.F.M.); (S.U.); (A.G.); (E.P.); (C.S.)
| | - Claudio Buttarini
- Bios-Therapy, Physiological Systems for Health S.p.A., Località Aboca 20, 52037 Sansepolcro, Italy; (S.C.); (C.B.); (S.G.); (I.F.M.); (S.U.); (A.G.); (E.P.); (C.S.)
| | - Stefano Garetto
- Bios-Therapy, Physiological Systems for Health S.p.A., Località Aboca 20, 52037 Sansepolcro, Italy; (S.C.); (C.B.); (S.G.); (I.F.M.); (S.U.); (A.G.); (E.P.); (C.S.)
| | - Isabelle Franco Moscardini
- Bios-Therapy, Physiological Systems for Health S.p.A., Località Aboca 20, 52037 Sansepolcro, Italy; (S.C.); (C.B.); (S.G.); (I.F.M.); (S.U.); (A.G.); (E.P.); (C.S.)
| | - Stefano Ughetto
- Bios-Therapy, Physiological Systems for Health S.p.A., Località Aboca 20, 52037 Sansepolcro, Italy; (S.C.); (C.B.); (S.G.); (I.F.M.); (S.U.); (A.G.); (E.P.); (C.S.)
| | - Angela Guerrini
- Bios-Therapy, Physiological Systems for Health S.p.A., Località Aboca 20, 52037 Sansepolcro, Italy; (S.C.); (C.B.); (S.G.); (I.F.M.); (S.U.); (A.G.); (E.P.); (C.S.)
| | - Elena Panizzi
- Bios-Therapy, Physiological Systems for Health S.p.A., Località Aboca 20, 52037 Sansepolcro, Italy; (S.C.); (C.B.); (S.G.); (I.F.M.); (S.U.); (A.G.); (E.P.); (C.S.)
| | - Cristiano Rumio
- Department of Pharmacology and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy;
| | - Laura Mattioli
- Department of Experimental Medicine and Public Health, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (L.M.); (M.P.)
| | - Marina Perfumi
- Department of Experimental Medicine and Public Health, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (L.M.); (M.P.)
| | - Anna Maidecchi
- Aboca S.p.A, Società Agricola, Località Aboca 20, 52037 Sansepolcro, Italy; (A.M.); (A.C.)
| | - Andrea Cossu
- Aboca S.p.A, Società Agricola, Località Aboca 20, 52037 Sansepolcro, Italy; (A.M.); (A.C.)
| | - Stanislas Bruley des Varannes
- Department of Gastroenterology Hepatology and Clinical Oncology, Institut des Maladies de l’Appareil Digestif, Universitary Hospital, 44000 Nantes, France;
| | - Jaroslaw Regula
- Department of Oncological Gastroenterology, Maria Sklodowska-Curie National Research Institute of Oncology, 00-001 Warsaw, Poland;
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Peter Malfertheiner
- LMU Klinikum Medizinische Klinik und Poliklinik II, Campus Großhadern, Marchioninistr. 15, 81377 München, Germany;
- Otto-von-Guericke Universität Magdeburg Klinik für Gastroenterologie, Hepatologie und Infektiologie, 39120 Magdeburg, Germany
| | - Claudia Sardi
- Bios-Therapy, Physiological Systems for Health S.p.A., Località Aboca 20, 52037 Sansepolcro, Italy; (S.C.); (C.B.); (S.G.); (I.F.M.); (S.U.); (A.G.); (E.P.); (C.S.)
| | - Jacopo Lucci
- Bios-Therapy, Physiological Systems for Health S.p.A., Località Aboca 20, 52037 Sansepolcro, Italy; (S.C.); (C.B.); (S.G.); (I.F.M.); (S.U.); (A.G.); (E.P.); (C.S.)
| |
Collapse
|
4
|
Ghorbani M, Dehghan G, Allahverdi A. Insight into the effect of ibuprofen on the permeability of the membrane: a molecular dynamic simulation study. J Biomol Struct Dyn 2025; 43:560-570. [PMID: 37982256 DOI: 10.1080/07391102.2023.2283151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Studying interactions between drugs and cell membranes is of great interest to designing novel drugs, optimizing drug delivery, and discerning drug mechanism action. In this study, we investigated the physical properties of the bilayer membrane model of POPC upon interaction with ibuprofen (IBU) using molecular dynamics simulations. The area per lipid (APL) was calculated to describe the effect of ibuprofen on the packing properties of the lipid bilayer. The APL was 0.58 nm2 and 0.63 nm2 for the membrane in low and high IBU respectively, and 0.57 nm2 for the membrane without IBU. Our finding showed that the mean square deviation (MSD) increased with increased ibuprofen content. In addition, the order parameter for the hydrocarbon chain of lipids increased with increased ibuprofen content. There was an increment in the transfer free energy after the head group region while it was maximum in the hydrophobic core for hydrogen peroxide (H2O2) (∼6.2 kcal.mol-1) and H2O (∼3.4 kcal.mol-1) which then decreased to respective values of (∼4.6 kcal.mol-1), and (∼2.3 kcal.mol-1) at the center of the bilayer in the presence of IBU. It seems that in the presence of ibuprofen, the free energy profile of the permeability of water and H2O2 significantly decreased. These findings show that ibuprofen significantly influences the physical properties of the bilayer by decreasing the packing and intermolecular interaction in the hydrocarbon chain region and increasing the water permeability of the bilayer. These results may provide insights into the local cytotoxic side effects of ibuprofen and its underlying molecular mechanisms.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Abdollah Allahverdi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Li H, Shi Q, Chen C, Li J, Wang K. Smoking-attributable peptic ulcer disease mortality worldwide: trends from 1990 to 2021 and projections to 2046 based on the global burden of disease study. Front Public Health 2024; 12:1465452. [PMID: 39741932 PMCID: PMC11685204 DOI: 10.3389/fpubh.2024.1465452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/05/2024] [Indexed: 01/03/2025] Open
Abstract
Objective Smoking is a major risk factor for peptic ulcer disease (PUD) mortality. This study aims to analyze global trends in smoking-attributable PUD mortality from 1990 to 2021 and project future trends to 2046. Methods Data were obtained from the Global Burden of Disease Study 2021. We calculated age-standardized mortality rates (ASMR) and estimated annual percentage changes (EAPC) for smoking-attributable PUD mortality. Bayesian Age-Period-Cohort models were used to project future trends. Results From 1990 to 2021, global smoking-attributable PUD deaths decreased from 48,900 to 29,400, with the ASMR declining from 1.2 to 0.3 per 100,000 (EAPC: -4.25%). High-income regions showed faster declines, while some low- and middle-income countries experienced slower progress or even increases. Projections suggest a continued global decline in smoking-attributable PUD mortality to 2046, with persistent regional disparities. By 2046, the global ASMR is expected to decrease to approximately 0.1 per 100,000, with higher rates persisting in certain regions such as the Solomon Islands (3.7 per 100,000) and Cambodia (1.6 per 100,000). Conclusion While global smoking-attributable PUD mortality has significantly decreased and is projected to continue declining, substantial regional disparities persist. These findings underscore the need for targeted tobacco control interventions, particularly in high-risk regions, to further reduce the global burden of smoking-attributable PUD mortality.
Collapse
Affiliation(s)
- Hao Li
- Department of Scientific Research, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Qi Shi
- Department of Digestive, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Caiyun Chen
- Department of Scientific Research, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Ju Li
- Department of Rheumatology and Immunology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Kai Wang
- Department of Rheumatology and Immunology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| |
Collapse
|
6
|
Vakil N. Peptic Ulcer Disease: A Review. JAMA 2024; 332:1832-1842. [PMID: 39466269 DOI: 10.1001/jama.2024.19094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Importance In the US, peptic ulcer disease affects 1% of the population and approximately 54 000 patients are admitted to the hospital annually for bleeding peptic ulcers. Observations Approximately 10% of patients presenting with upper abdominal pain in a primary care setting have a peptic ulcer as the cause of their symptoms. The principal causes of peptic ulcer disease are Helicobacter pylori infection, which affects approximately 42% of patients with peptic ulcer disease, and aspirin or nonsteroidal anti-inflammatory drug (NSAID) use, which are etiologic factors in approximately 36% of people with peptic ulcer disease. Complications of peptic ulcer include bleeding (73% of patients), perforation (9% of patients), and pyloric obstruction (3% of patients). Annually, 10 000 people die of peptic ulcer disease in the US. Endoscopy definitively diagnoses peptic ulcer disease. Acid blockers, such as omeprazole, can heal peptic ulcers in approximately 80% to 100% of patients within 4 weeks, but gastric ulcers larger than 2 cm may require 8 weeks of treatment. Eradication of H pylori decreases peptic ulcer recurrence rates from approximately 50% to 60% to 0% to 2%. Discontinuing NSAIDs heals 95% of ulcers identified on endoscopy and reduces recurrence from 40% to 9%. When discontinuing an NSAID is not desirable, changing the NSAID (eg, from ketorolac to ibuprofen), adding a proton pump inhibitor such as omeprazole or lansoprazole, and eradicating H pylori with treatment such as bismuth, metronidazole, and tetracycline combined with omeprazole can reduce recurrence rates. Conclusions and Relevance Peptic ulcer disease is associated with increased hospitalization rates and mortality. Acid blocking with proton pump inhibitors, such as omeprazole or lansoprazole, is the primary treatment. Recurrence of ulcers can be prevented by eradicating H pylori if present and discontinuing aspirin or NSAIDs if applicable.
Collapse
Affiliation(s)
- Nimish Vakil
- University of Wisconsin School of Medicine and Public Health, Madison
| |
Collapse
|
7
|
László SB, Hutka B, Tóth AS, Hegyes T, Demeter ZO, Haghighi A, Wachtl G, Kelemen Á, Jakab A, Gyires K, Zádori ZS. Celecoxib and rofecoxib have different effects on small intestinal ischemia/reperfusion injury in rats. Front Pharmacol 2024; 15:1468579. [PMID: 39584137 PMCID: PMC11582421 DOI: 10.3389/fphar.2024.1468579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
Introduction Intestinal ischemia/reperfusion (I/R) injury is associated with high mortality and there is an unmet need for novel therapies. The intestinal expression of cyclooxygenase-2 (COX-2) increases rapidly after mesenteric I/R, but it is still a question of debate whether selective COX-2 inhibitors can mitigate I/R-induced gut injury. Here we aimed to compare the effect of celecoxib and rofecoxib, two selective COX-2 inhibitors, on intestinal I/R-induced injury in rats. Methods Wistar rats were treated with celecoxib (10 and 100 mg/kg), rofecoxib (5 and 50 mg/kg), or vehicle for 8 days via gavage and then were subjected to sham operation or mesenteric I/R. Small intestinal inflammation and tissue damage were assessed by histology and quantification of inflammatory and tight junction proteins. The intestinal activity of COX enzymes was determined by a COX activity assay. Results The higher dose of celecoxib reduced the I/R-associated increase in inflammatory mediators (myeloperoxidase, pentraxin 3, COX-2, interleukin-1β) and loss of tight junction proteins (claudin-1, occludin), whereas the lower dose of celecoxib was only marginally effective. However, even high-dose celecoxib failed to prevent the histological injury of the mucosa. In contrast to celecoxib, rofecoxib did not affect intestinal inflammation and injury at any of the tested doses. Neither celecoxib nor rofecoxib affected the I/R-induced changes of HO-1 and PPAR-γ, known off-targets of COX-inhibitors, but celecoxib increased the I/R-induced elevation of Bax/Bcl-2, a marker of apoptosis, whereas rofecoxib reduced the elevation of phospho-Akt. Importantly, high-dose celecoxib, but not rofecoxib, has already reduced intestinal COX-1 activity. Conclusion Our study provides evidence for the higher anti-inflammatory efficacy of celecoxib compared to rofecoxib in mesenteric I/R injury, which is likely due to its lower selectivity for COX-2. However, even high-dose celecoxib was unable to reduce the mucosal damage. Our results suggest that selective COX-2 inhibitors have only limited therapeutic value in intestinal I/R injury.
Collapse
Affiliation(s)
- Szilvia B. László
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Barbara Hutka
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmacological and Drug Safety Research, Gedeon Richter Plc, Budapest, Hungary
| | - András S. Tóth
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Department of Histopathology, Central Hospital of Northern Pest – Military Hospital, Budapest, Hungary
| | - Tamás Hegyes
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Zsuzsanna O. Demeter
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research and Development, Semmelweis University, Budapest, Hungary
| | - Arezoo Haghighi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research and Development, Semmelweis University, Budapest, Hungary
| | - Gerda Wachtl
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research and Development, Semmelweis University, Budapest, Hungary
| | - Ágnes Kelemen
- Department of Histopathology, Central Hospital of Northern Pest – Military Hospital, Budapest, Hungary
| | - Anna Jakab
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Klára Gyires
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research and Development, Semmelweis University, Budapest, Hungary
| | - Zoltán S. Zádori
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research and Development, Semmelweis University, Budapest, Hungary
| |
Collapse
|
8
|
Metuge JA, Betow JY, Bekono BD, Tjegbe MJM, Ndip RN, Ntie-Kang F. Effects of some anti-ulcer and anti-inflammatory natural products on cyclooxygenase and lipoxygenase enzymes: insights from in silico analysis. In Silico Pharmacol 2024; 12:97. [PMID: 39498163 PMCID: PMC11531464 DOI: 10.1007/s40203-024-00269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
Gastric and duodenal ulcers are increasingly becoming global health burdens. The side effects of conventional treatments such as non-steroid anti-inflammatory drugs (NSAIDs), proton pump inhibitors (PPIs), antibiotics, and cytoprotective agents have necessitated the search for new medications. Plants are a rich source of active metabolites and herbal medicines have been used in the treatment of ulcers and cancers. In this study, we used in silico methods like molecular docking and MM-GBSA calculations to evaluate the effects of some anti-ulcer and anti-inflammatory phytochemicals on some key enzymes, cyclooxygenase (COX), and lipoxygenase (LOX), which are implicated in the protection and destruction of the gastric mucosa. The phytochemicals were retrieved from the literature and docked toward the binding sites of the three enzymes (COX-1, COX-2, and 5-LOX). Five compounds, rhamnetin, kaempferol, rutin, rosmarinic acid, and chlorogenic acid were observed to putatively bind to cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LOX) but not to cyclooxygenase 1 (COX-1). The interaction mechanisms between these phytochemicals and the target proteins are discussed. The compounds' drug metabolism, pharmacokinetics, and toxicity have been evaluated to assess their suitability as potential next-generation anti-ulcer and anti-inflammatory drugs. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00269-2.
Collapse
Affiliation(s)
- Jonathan A. Metuge
- Department of Natural Resources and Environmental Sciences, Alabama A&M University, Huntsville, USA
| | - Jude Y. Betow
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
| | - Boris D. Bekono
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
- Department of Physics, Ecole Normale Supérieure, University of Yaoundé I, Yaoundé, Cameroon
| | | | - Roland N. Ndip
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Fidele Ntie-Kang
- Center for Drug Discovery, Faculty of Science, University of Buea, Buea, Cameroon
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany
| |
Collapse
|
9
|
Zhang Z, Xie H, Farag MA, Li Z, Wu Q, Shao P. Dendrobium officinale flowers flavonoids enriched extract protects against acute ethanol-induced gastric ulcers
via AMPK/PI3K signaling pathways. FOOD SCIENCE AND HUMAN WELLNESS 2024; 13:3661-3679. [DOI: 10.26599/fshw.2023.9250048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Stoyanova M, Milusheva M, Gledacheva V, Stefanova I, Todorova M, Kircheva N, Angelova S, Pencheva M, Stojnova K, Tsoneva S, Nikolova S. Spasmolytic Activity and Anti-Inflammatory Effect of Novel Mebeverine Derivatives. Biomedicines 2024; 12:2321. [PMID: 39457637 PMCID: PMC11505310 DOI: 10.3390/biomedicines12102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/28/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Irritable bowel syndrome (IBS) has a major negative influence on quality of life, causing cramps, stomach pain, bloating, constipation, etc. Antispasmodics have varying degrees of efficacy. Mebeverine, for example, works by controlling bowel movements and relaxing the muscles of the intestines but has side effects. Therefore, more efficient medication is required. Methods: In the current study, we investigated the synthesis of novel mebeverine analogs and determined ex vivo their spasmolytic and in vitro and ex vivo anti-inflammatory properties. The ability to influence both contractility and inflammation provides a dual-action approach, offering a comprehensive solution for the prevention and treatment of both conditions. Results: The results showed that all the compounds have better spasmolytic activity than mebeverine and good anti-inflammatory potential. Among the tested compounds, 3, 4a, and 4b have been pointed out as the most active in all the studies conducted. To understand their mechanism of activity, molecular docking simulation was investigated. The docking analysis explained the biological activities with their calculated Gibbs energies and possibilities for binding both centers of albumin. Moreover, the calculations showed that molecules can bind also the two muscarinic receptors and interleukin-β, hence these structures would exert a positive therapeutic effect owed to interaction with these specific receptors/cytokine. Conclusions: Three of the tested compounds have emerged as the most active and effective in all the studies conducted. Future in vivo and preclinical experiments will contribute to the establishment of these novel mebeverine derivatives as potential drug candidates against inflammatory diseases in the gastrointestinal tract.
Collapse
Affiliation(s)
- Mihaela Stoyanova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.S.); (M.M.); (M.T.)
| | - Miglena Milusheva
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.S.); (M.M.); (M.T.)
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Vera Gledacheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Iliyana Stefanova
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Mina Todorova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.S.); (M.M.); (M.T.)
| | - Nikoleta Kircheva
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (S.A.)
| | - Silvia Angelova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (N.K.); (S.A.)
- University of Chemical Technology and Metallurgy, 8 St. Kliment Ohridski Blvd, 1756 Sofia, Bulgaria
| | - Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Kirila Stojnova
- Department of General and Inorganic Chemistry with Methodology of Chemistry Education, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Slava Tsoneva
- Department of Analytical Chemistry and Computer Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria; (M.S.); (M.M.); (M.T.)
| |
Collapse
|
11
|
Miorando D, Steffler AM, Vecchia CAD, Simomura VL, Veloso JJ, Buzatto MV, Nunes RKS, Somensi LB, Gutiérrez MV, Melim LISH, Pontes FMM, Silva LM, Veselinova A, González-Sánchez L, Jambrina PG, Junior WAR. Gastroprotective role of a flavonoid-rich subfraction from Fridericia chica (Bonpl.) L. G. Lohmann: a medicinal plant used in the Amazon region. Inflammopharmacology 2024:10.1007/s10787-024-01544-6. [PMID: 39126568 DOI: 10.1007/s10787-024-01544-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
Fridericia chica is an Amazonian plant used to treat stomach disorders. However, the pharmacological activity of flavonoids in the extract has yet to be investigated. Therefore, we considered that a flavonoid-rich F. chica subfraction (FRS) has gastroprotective functions. For this, before the induction of gastric ulcers with ethanol or piroxicam, the rats received vehicle (water), omeprazole (30 mg/kg), or FRS (30 mg/kg), and the ulcer area was measured macro and microscopically, and the antisecretory action was investigated in pylorus-ligated rats. In addition, the roles of nitric oxide (NO) and nonprotein sulfhydryl compounds (NP-SH) in the gastroprotective effects of FRS were studied. FRS reduced ethanol- and piroxicam-induced ulcerations by 81% and 77%, respectively, as confirmed histologically. Antioxidant effects were observed for FRS through the maintenance of GSH and LPO levels, and the SOD and CAT activity similar to those found in the nonulcerated group. Moreover, FRS avoided the increase in MPO activity and TNF, IL-6, IL-4 and IL-10 levels. Moreover, mucin staining increased in ulcerated rats receiving FRS, and the pharmacological mechanism gastroprotective seems to involve the NO and NP-SH in addition to antisecretory actions. The chemical study by mass spectrometry confirmed the presence of flavonoids in FRS, and molecular docking studies have shown that these compounds interact with cyclooxygenase-1 and NO synthase. Furthermore, there was no indication that FRS had cytotoxic effects. Our results support the popular use of F. chica, and we conclude that the gastroprotection effect promoted by FRS can be attributed to the combined effect of the flavonoids.
Collapse
Affiliation(s)
- Daniela Miorando
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Amanda M Steffler
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Cristian A Dalla Vecchia
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Viviane L Simomura
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil
| | - Jaqueline J Veloso
- Laboratory of Pharmacognosy, Community University of the Chapecó Region, Chapecó, SC, Brazil
| | - Maike V Buzatto
- Laboratory of Pharmacognosy, Community University of the Chapecó Region, Chapecó, SC, Brazil
| | - Ruan K S Nunes
- Postgraduate Program in Pharmaceutical Sciences, University of Vale Do Itajaí, Itajaí, SC, Brazil
| | - Lincon B Somensi
- Postgraduate Program in Development and Society, University of Alto Vale Do Rio Do Peixe, Caçador, SC, Brazil
| | - Max V Gutiérrez
- Department of Chemical, Biological and Agricultural Sciences, Universidad de Sonora, Navojoa Sonora, Mexico
| | | | | | - Luisa M Silva
- Laboratory of TGI Pharmacology and Interactions, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Anzhela Veselinova
- Department of Physical Chemistry, Faculty of Chemical Sciences, University of Salamanca, Salamanca, Spain
| | - Lola González-Sánchez
- Department of Physical Chemistry, Faculty of Chemical Sciences, University of Salamanca, Salamanca, Spain
| | - Pablo G Jambrina
- Department of Physical Chemistry, Faculty of Chemical Sciences, University of Salamanca, Salamanca, Spain
| | - Walter A Roman Junior
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, Chapecó, SC, Brazil.
- Laboratory of Pharmacognosy, Community University of the Chapecó Region, Chapecó, SC, Brazil.
| |
Collapse
|
12
|
Brown ND, Vomhof-DeKrey EE. Focal Adhesion Kinase and Colony Stimulating Factors: Intestinal Homeostasis and Innate Immunity Crosstalk. Cells 2024; 13:1178. [PMID: 39056760 PMCID: PMC11274384 DOI: 10.3390/cells13141178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Thousands struggle with acute and chronic intestinal injury due to various causes. Epithelial intestinal healing is dependent on phenotypic transitions to a mobile phenotype. Focal adhesion kinase (FAK) is a ubiquitous protein that is essential for cell mobility. This phenotype change is mediated by FAK activation and proves to be a promising target for pharmaceutical intervention. While FAK is crucial for intestinal healing, new evidence connects FAK with innate immunity and the importance it plays in macrophage/monocyte chemotaxis, as well as other intracellular signaling cascades. These cascades play a part in macrophage/monocyte polarization, maturation, and inflammation that is associated with intestinal injury. Colony stimulating factors (CSFs) such as macrophage colony stimulating factor (M-CSF/CSF-1) and granulocyte macrophage colony stimulating factor (GM-CSF/CSF-2) play a critical role in maintaining homeostasis within intestinal mucosa by crosstalk capabilities between macrophages and epithelial cells. The communication between these cells is imperative in orchestrating healing upon injury. Diving deeper into these connections may allow us a greater insight into the role that our immune system plays in healing, as well as a better comprehension of inflammatory diseases of the gut.
Collapse
Affiliation(s)
- Nicholas D. Brown
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA;
| | - Emilie E. Vomhof-DeKrey
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA;
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
13
|
Li YF, Chen T, Chen LH, Zhao RN, Wang XC, Wu D, Hu JN. Construction of diallyltrisulfide nanoparticles for alleviation of ethanol-induced acute gastric injury. Int J Pharm 2024; 657:124143. [PMID: 38663641 DOI: 10.1016/j.ijpharm.2024.124143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Gastric ulcer, a significant health issue characterized by the degradation of the gastric mucosa, often arises from excessive gastric acid secretion and poses a challenge in current medical treatments due to the limited efficacy and side effects of first-line drugs. Addressing this, our study develops a novel therapeutic strategy leveraging gas therapy, specifically targeting the release of hydrogen sulfide (H2S) in the treatment of gastric ulcers. We successfully developed a composite nanoparticle, named BSA·SH-DATS, through a two-step process. Initially, bovine serum albumin (BSA) was sulfhydrated to generate BSA·SH nanoparticles via a mercaptosylation method. Subsequently, these nanoparticles were further functionalized by incorporating diallyltrisulfide (DATS) through a precise Michael addition reaction. This sequential modification resulted in the creation of BSA·SH-DATS nanoparticles. Our comprehensive in vitro and in vivo investigations demonstrate that these nanoparticles possess an exceptional ability for site-specific action on gastric mucosal cells under the controlled release of H2S in response to endogenous glutathione (GSH), markedly diminishing the production of pro-inflammatory cytokines, thereby alleviating inflammation and apoptosis. Moreover, the BSA·SH-DATS nanoparticles effectively regulate critical inflammatory proteins, including NF-κB and Caspase-3. Our study underscores their potential as a transformative approach for gastric ulcer treatment.
Collapse
Affiliation(s)
- Yan-Fei Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Li-Hang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ru-Nan Zhao
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xin-Chuang Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiang-Ning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
14
|
Al Ramahi R, Tumeh D. The prevalence and severity of upper gastrointestinal complications among patients with chronic diseases: a cross-sectional study from Palestine. BMC Gastroenterol 2024; 24:175. [PMID: 38773426 PMCID: PMC11106898 DOI: 10.1186/s12876-024-03267-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Many old people have at least one chronic disease. As a result, multiple drugs should be used. Gastrointestinal complications may occur because of the harmful effects of these chronic drugs on the stomach. The study aimed to assess the prevalence of upper gastrointestinal complications in patients taking chronic medications, the severity of these symptoms, and whether they take any gastro-protective drugs or not. METHODOLOGY This was a cross-sectional study through face-to-face questionnaires from internal outpatient clinics at a specialized hospital. Patients with chronic diseases who were taking at least one chronic medication were included in the study. Data Collection Form was used to gather information. The Short-Form Leeds Dyspepsia Questionnaire (SF-LDQ) was used to evaluate the severity of the upper gastrointestinal symptoms. Statistical analysis was performed using the Statistical Package for Social Sciences (SPSS) version 21. RESULTS A total of 400 patients with chronic diseases and using multiple medications were included. Among them, 53.8% were females and 56% were married, 58.5% were unemployed, 70% were not smokers, the mean age was 54.7 ± 17.5 years. The most common comorbid diseases among the patients were diabetes, hypertension, and arthritis, with percentages of 44.3%, 38%, and 27.3%, respectively. The mean number of chronic medications used was 3.36 ± 1.6 with a range of 1 to 9. The most commonly used was aspirin with a percentage of 50%, followed by atorvastatin, bisoprolol, and insulin with percentages of 29.5%, 25%, and 20.3%, respectively. Among the 400 participants, 362 (90.5%) suffered from upper gastrointestinal side effects like indigestion (65.8%), heartburn (78.3%), nausea (48.8%), and regurgitation (52.0%). Based on SF-LDQ scoring, of the 400 respondents, 235(58.8%), 109(27.3%) and 18(4.5%) suffered from mild, moderate and severe dyspepsia, respectively. A high percentage 325 (81.3%) of participants were prescribed gastro-protective medications. Proton pump inhibitors were the most prescribed group in 209 (52.3%) patients. Dyspepsia was significantly associated with older age (p-value = 0.001), being educated (p-value = 0.031), not being single (p-value < 0.001), having health insurance (p-value = 0.021), being a smoker (p-value = 0.003), and using ≥ 5 medications (p-value < 0.001). CONCLUSION Upper gastrointestinal complications among patients with chronic diseases were very common. Fortunately, the symptoms were mild in most cases. The risk increased with age and using a higher number of medications. It is important to review patients' medications and avoid overuse of them, in addition to use gastro-protective agents when needed.
Collapse
Affiliation(s)
- Rowa Al Ramahi
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O.Box 7, Nablus, Palestine.
| | - Deema Tumeh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O.Box 7, Nablus, Palestine
| |
Collapse
|
15
|
Kashnik AS, Baranov DS, Dzuba SA. Spatial Arrangement of the Drug Ibuprofen in a Model Membrane in the Presence of Lipid Rafts. J Phys Chem B 2024; 128:3652-3661. [PMID: 38576273 DOI: 10.1021/acs.jpcb.4c01507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Many pharmaceutical drugs are known to interact with lipid membranes through nonspecific molecular interactions, which affect their therapeutic effect. Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) and one of the most commonly prescribed. In the presence of cholesterol, lipid bilayers can separate into nanoscale liquid-disordered and liquid-ordered structures, the latter known as lipid rafts. Here, we study spin-labeled ibuprofen (ibuprofen-SL) in the model membrane consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol in the molar ratio of (0.5-0.5xchol)/(0.5-0.5xchol)/xchol. Electron paramagnetic resonance (EPR) spectroscopy is employed, along with its pulsed version of double electron-electron resonance (DEER, also known as PELDOR). The data obtained indicate lateral lipid-mediated clustering of ibuprofen-SL molecules with a local surface density noticeably larger than that expected for random lateral distribution. In the absence of cholesterol, the data can be interpreted as indicating alternating clustering in two opposing leaflets of the bilayer. In the presence of cholesterol, for xchol ≥ 20 mol %, the results show that ibuprofen-SL molecules have a quasi-regular lateral distribution, with a "superlattice" parameter of ∼3.0 nm. This regularity can be explained by the entrapment of ibuprofen-SL molecules by lipid rafts known to exist in this system with the additional assumption that lipid rafts have a nanoscale substructure.
Collapse
Affiliation(s)
- Anna S Kashnik
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Denis S Baranov
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Sergei A Dzuba
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
16
|
Alfadil A. Gastroprotective Effect of 2,3-Dimethylquinoxaline Against Indomethacin-Induced Gastric Ulcer in Rat. J Inflamm Res 2024; 17:1983-1994. [PMID: 38566982 PMCID: PMC10986627 DOI: 10.2147/jir.s453425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Background Gastric ulcers pose a significant health risk due to an imbalance between protective and aggressive factors on the mucous membrane. Nonsteroidal anti-inflammatory drug (NSAID)-induced gastric damage affects 25% of users. Quinoxaline compounds, known for their diverse biological properties, have potential applications in cancer therapy and as antimicrobial agents targeting various pathogens. Objective Our study aimed to investigate the impact of DMQ on gastroprotective mechanisms in an experimental model of indomethacin-induced gastric ulcer. Methods Thirty male Wistar rats were randomly assigned to five groups. Group 1 served as the control, while Group 2 received a single oral dose of IND (30 mg/kg). Groups 3 and 4 received oral DMQ (30 mg/kg and 60 mg/kg, respectively) for three days, with the final dose administered intragastrically one hour before IND administration. Group 5 received esomeprazole (30 mg/kg) orally for three days, with the final dose given one hour before IND administration. Rats were sacrificed four hours after IND induction. Results Indomethacin-induced ulcers were associated with epithelial damage and blood streaks on the gastric mucosa. However, DMQ significantly decreased levels of inflammatory biomarkers (TNF-α, IL-6, Cox-2, IFN-γ, and IL-β1) while increasing gastroprotective mediator prostaglandin E2 (PGE2) and mucin levels. Histopathological analysis revealed a significant reduction in ulcer-induced pathological alterations and upregulation of tumor suppressor genes (NF-κB levels) following DMQ treatment. Rats treated with Indo+DMQ showed a significant decrease in ulcer index compared to the Indo group, with mild injuries observed. Conclusion DMQ demonstrated promising gastroprotective effects against IND-induced gastric ulcers, as evidenced by alterations in histopathological data and upregulation of gene expression.
Collapse
Affiliation(s)
- Abdelbagi Alfadil
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Research Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Zhao M, Qiao C, Yang S, Tang Y, Sun W, Sun S, Guo Q, Du F, Zhang N, Ning T, Wu J, Xu J, Li P. Hinokitiol protects gastric injury from ethanol exposure via its iron sequestration capacity. Eur J Pharmacol 2024; 966:176340. [PMID: 38244759 DOI: 10.1016/j.ejphar.2024.176340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Hinokitiol is a natural bioactive tropolone derivative isolated from Chamaecyparis obtusa and Thuja plicata, which exhibits promising potential in terms of antioxidant and anti-inflammatory properties and possesses potent iron-binding capacity. In this study, we aimed to investigate the potential role of hinokitiol in protecting against ethanol-induced gastric injury and elucidate the underlying mechanism. Our results demonstrated that hinokitiol effectively attenuated hemorrhagic gastric lesions, epithelial cell loss, and inflammatory response in mice with ethanol-induced gastric injury. Intriguingly, we found that ethanol exposure affects iron levels both in vivo and in vitro. Moreover, the disturbed iron homeostasis was involved in the development of ethanol-induced injury. Iron depletion was found to enhance defense against ethanol-induced damage, while iron repletion showed the opposite effect. To further explore the role of iron sequestration in the protective effects of hinokitiol, we synthesized methylhinokitiol, a compound that shields the iron binding capacity of hinokitiol with a methyl group. Interestingly, this compound significantly diminishes the protective effect against ethanol-induced injury. These findings collectively demonstrated that hinokitiol could potentially be used to prevent or improve gastric injury induced by ethanol through regulating cellular iron homeostasis.
Collapse
Affiliation(s)
- Mengran Zhao
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Chen Qiao
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Shuyue Yang
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Yefeng Tang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Wenjing Sun
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Shanshan Sun
- National Institute of Food and Drug Control (NIFDC), Beijing, 100050, China
| | - Qingdong Guo
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Feng Du
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Nan Zhang
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China
| | - TingTing Ning
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Jing Wu
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China
| | - Junxuan Xu
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China.
| | - Peng Li
- State Key Laboratory of Digestive Health, Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing, 100050, China.
| |
Collapse
|
18
|
Simomura VL, Miorando D, de Oliveira BMM, Mânica A, Bohnen LC, Buzatto MV, Kunst FM, Ansolin LD, Somensi LB, Vidal Gutiérrez M, Venzon L, de Queiroz E Silva TF, Mota da Silva L, Roman Junior WA. Aqueous extract of the bark of Uncaria tomentosa, an amazonian medicinal plant, promotes gastroprotection and accelerates gastric healing in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117542. [PMID: 38056537 DOI: 10.1016/j.jep.2023.117542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
ETHNOPHARMACOLOGICAL IMPORTANCE Uncaria tomentosa Willd. DC., is used in the Amazonian region of South America, wherein ethnic groups use the plant to treat diseases, including gastric disorders. However, despite its widespread popular use, this species has yet to be assessed for its anti-ulcer effects. AIM OF THE STUDY In this study, we aimed to evaluate the in vivo gastroprotective and gastric healing activities of an aqueous extract of the bark of Uncaria tomentosa (AEUt) and sought to gain an understanding of the pharmacological mechanisms underlying these biological effects. MATERIALS AND METHODS To verify the gastroprotective properties rats were treated with AEUt (30, 60, or 120 mg/kg) prior to inducing gastric ulceration with ethanol or piroxicam. Additionally, the involvement of nitric oxide, non-protein sulfhydryl compounds (NP-SH), α-2 adrenergic receptors, and prostaglandins was investigated. Furthermore, a pylorus ligature model was employed to investigate the antisecretory activity of AEUt. The gastric healing effects of AEUt (60 mg/kg) were examined in rats in which ulceration had been induced with 80% acetic acid, whereas the quality of healing was evaluated in mice with interleukin-induced recurrent ulcers. We also evaluated the in vivo thickness of the gastric wall using ultrasonography. Moreover, the levels of reduced glutathione (GSH) and malondialdehyde (MDA) were evaluated in ulcerated mucosa, and we determined the activities of the enzymes myeloperoxidase (MPO), N-acetyl-β-D-glycosaminidase, superoxide dismutase, catalase, and glutathione S-transferase. In addition, we assessed the effects of AEUt on cell viability and subjected the AEUt to phytochemical analyses. RESULTS Administration of the AEUt (60 or 120 mg/kg) prevented ethanol- and piroxicam-induced ulceration, which was also confirmed histologically. Moreover, we observed that pre-treatment with NEM and indomethacin abolished the gastroprotective effects of AEUt, thereby indicating the involvement of NP-SH and prostaglandins in these protective effects. In addition, we found that the administration of AEUt had no appreciable effects on the volume, acidity, or peptic activity of gastric juice. Furthermore, the AEUt (60 mg/kg) accelerated the gastric healing of acetic acid-induced ulcers by 46.2% and ultrasonographic findings revealed a reduction in the gastric wall thickness in this group. The gastric healing effect of AEUt was also accompanied by a reduction in MPO activity. The AEUt (60 mg/kg) also minimized ulcer recurrence in mice exposed to IL-1β and was associated with the maintenance of GSH levels and a reduction in MDA contents. We deduce that the biological effects of AEUt could be associated with the activities of polyphenols and the alkaloids isomitraphylline and mitraphylline, identified as predominant constituents of the AEUt. Furthermore, we found no evidence to indicate that AEUt would have any cytotoxic effects. CONCLUSION Collectively, our findings provide compelling evidence indicating the therapeutic efficacy of U. tomentosa. Our data indicate that compounds in AEUt confer gastroprotection and that this preventive effect of AEUt was accompanied by gastric healing and a reduction in gastric ulcer recurrence. Moreover, we provide evidence to indicate that the gastroprotective and gastric healing effects involve the antioxidant system and anti-inflammatory responses that contribute to preserving the gastric mucosa.
Collapse
Affiliation(s)
- Viviane Lazari Simomura
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, CEP 89809-900, Chapecó, SC, Brazil.
| | - Daniela Miorando
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, CEP 89809-900, Chapecó, SC, Brazil.
| | | | - Aline Mânica
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, CEP 89809-900, Chapecó, SC, Brazil.
| | - Lilian Caroline Bohnen
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, CEP 89809-900, Chapecó, SC, Brazil.
| | - Maike Valentin Buzatto
- Laboratory of Pharmacognosy, Community University of the Chapecó Region, CEP 89809-900, Chapecó, SC, Brazil.
| | - Francine Mantelli Kunst
- Laboratory of Pharmacognosy, Community University of the Chapecó Region, CEP 89809-900, Chapecó, SC, Brazil.
| | - Lucas Damo Ansolin
- Laboratory of Pharmacognosy, Community University of the Chapecó Region, CEP 89809-900, Chapecó, SC, Brazil.
| | - Lincon Bordignon Somensi
- Postgraduate Program in Development and Society, Alto Vale do Rio do Peixe University, CEP 89500-199, Caçador, SC, Brazil.
| | - Max Vidal Gutiérrez
- Department of Chemistry, Biology and Agricultural Sciences, Universidad de Sonora, Navojoa Sonora, Mexico.
| | - Larissa Venzon
- Postgraduate Program in Pharmaceutical Sciences, University of Vale do Itajaí, CEP 88302-202, Itajaí, SC, Brazil.
| | | | - Luisa Mota da Silva
- Postgraduate Program in Pharmaceutical Sciences, University of Vale do Itajaí, CEP 88302-202, Itajaí, SC, Brazil; TGI Pharmacology and its interactions Laboratory, Department of Pharmacology, UFSC, SC, Brazil.
| | - Walter Antônio Roman Junior
- Postgraduate Program in Health Sciences, Community University of Chapecó Region, CEP 89809-900, Chapecó, SC, Brazil; Laboratory of Pharmacognosy, Community University of the Chapecó Region, CEP 89809-900, Chapecó, SC, Brazil.
| |
Collapse
|
19
|
Liang Y, Wang C, Yang L, Yang K, Zhang S, Xie W. Nonsurgical risk factors for marginal ulcer following Roux-en-Y gastric bypass for obesity: a systematic review and meta-analysis of 14 cohort studies. Int J Surg 2024; 110:1793-1799. [PMID: 38320087 PMCID: PMC10942228 DOI: 10.1097/js9.0000000000001042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUNDS Marginal ulcer (MU) is a common complication of Roux-en-Y Gastric Bypass (RYGB). The primary goal of this meta-analysis was to identify potential risk factors for MU post-RYGB. METHODS A comprehensive literature search was conducted on four databases (PubMed, Embase, Web of Science, and the Cochrane Library) to identify articles published from inception to 23 May 2023 that reported risk factors linked to ulcer occurrence post-RYGB. Hazard Ratio (HR) and Odds Ratio (OR) with respective 95% CI were calculated to estimate the impact of selected risk factors on MU. The risk factors were evaluated through multivariate analyses. The estimated risk factors were subjected to a random-effects model. Subgroup analysis based on study baseline characteristics and leave-one-out sensitivity analysis were also performed to investigate the potential sources of heterogeneity and assess the robustness of the findings. RESULT Herein, 14 observational studies involving 77 250 patients were included. Diabetes, smoking, and steroid use were identified to be risk factors of MU, with pooled ORs of (1.812; 95% CI: 1.226-2.676; P =0.003), (3.491; 95% CI: 2.204-5.531; P< 0.001), and (2.804; 95% CI: 1.383-5.685; P =0.004), respectively. Other risk factors, such as alcohol consumption, male sex, and PPI use, were deemed not significant due to differences in data acquisition and effect estimates. CONCLUSION Diabetes, smoking, and steroid use were identified as independent risk factors of MU. Enhancing awareness of these identified risk factors will lead to more effective preoperative prevention and targeted postoperative interventions for patients undergoing RYGB.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenbiao Xie
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang City, Hunan Province, People’s Republic of China
| |
Collapse
|
20
|
Xu J, Yang XW. LC-MS-Based Metabolomics Reveals the Mechanism of Protection of Berberine against Indomethacin-Induced Gastric Injury in Rats. Molecules 2024; 29:1055. [PMID: 38474567 DOI: 10.3390/molecules29051055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Berberine is a natural isoquinoline alkaloid with low toxicity, which exists in a wide variety of medicinal plants. Berberine has been demonstrated to exhibit potent prevention of indomethacin-induced gastric injury (GI) but the related mechanism remains unclear. In the present study, liquid chromatography-mass spectrometry (LC-MS)-based metabolomics was applied for the first time to investigate the alteration of serum metabolites in the protection of berberine against indomethacin-induced gastric injury in rats. Subsequently, bioinformatics was utilized to analyze the potential metabolic pathway of the anti-GI effect of berberine. The pharmacodynamic data indicated that berberine could ameliorate gastric pathological damage, inhibit the level of proinflammatory factors in serum, and increase the level of antioxidant factors in serum. The LC-MS-based metabolomics analysis conducted in this study demonstrated the presence of 57 differential metabolites in the serum of rats with induced GI caused by indomethacin, which was associated with 29 metabolic pathways. Moreover, the study revealed that berberine showed a significant impact on the differential metabolites, with 45 differential metabolites being reported between the model group and the group treated with berberine. The differential metabolites were associated with 24 metabolic pathways, and berberine administration regulated 14 of the 57 differential metabolites, affecting 14 of the 29 metabolic pathways. The primary metabolic pathways affected were glutathione metabolism and arachidonic acid metabolism. Based on the results, it can be concluded that berberine has a gastroprotective effect on the GI. This study is particularly significant since it is the first to elucidate the mechanism of berberine's action on GI. The results suggest that berberine's action may be related to energy metabolism, oxidative stress, and inflammation regulation. These findings may pave the way for the development of new therapeutic interventions for the prevention and management of NSAID-induced GI disorders.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiu-Wei Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
21
|
Hutka B, Várallyay A, László SB, Tóth AS, Scheich B, Paku S, Vörös I, Pós Z, Varga ZV, Norman DD, Balogh A, Benyó Z, Tigyi G, Gyires K, Zádori ZS. A dual role of lysophosphatidic acid type 2 receptor (LPAR2) in nonsteroidal anti-inflammatory drug-induced mouse enteropathy. Acta Pharmacol Sin 2024; 45:339-353. [PMID: 37816857 PMCID: PMC10789874 DOI: 10.1038/s41401-023-01175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/21/2023] [Indexed: 10/12/2023]
Abstract
Lysophosphatidic acid (LPA) is a bioactive phospholipid mediator that has been found to ameliorate nonsteroidal anti-inflammatory drug (NSAID)-induced gastric injury by acting on lysophosphatidic acid type 2 receptor (LPAR2). In this study, we investigated whether LPAR2 signaling was implicated in the development of NSAID-induced small intestinal injury (enteropathy), another major complication of NSAID use. Wild-type (WT) and Lpar2 deficient (Lpar2-/-) mice were treated with a single, large dose (20 or 30 mg/kg, i.g.) of indomethacin (IND). The mice were euthanized at 6 or 24 h after IND treatment. We showed that IND-induced mucosal enteropathy and neutrophil recruitment occurred much earlier (at 6 h after IND treatment) in Lpar2-/- mice compared to WT mice, but the tissue levels of inflammatory mediators (IL-1β, TNF-α, inducible COX-2, CAMP) remained at much lower levels. Administration of a selective LPAR2 agonist DBIBB (1, 10 mg/kg, i.g., twice at 24 h and 30 min before IND treatment) dose-dependently reduced mucosal injury and neutrophil activation in enteropathy, but it also enhanced IND-induced elevation of several proinflammatory chemokines and cytokines. By assessing caspase-3 activation, we found significantly increased intestinal apoptosis in IND-treated Lpar2-/- mice, but it was attenuated after DBIBB administration, especially in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice. Finally, we showed that IND treatment reduced the plasma activity and expression of autotaxin (ATX), the main LPA-producing enzyme, and also reduced the intestinal expression of Lpar2 mRNA, which preceded the development of mucosal damage. We conclude that LPAR2 has a dual role in NSAID enteropathy, as it contributes to the maintenance of mucosal integrity after NSAID exposure, but also orchestrates the inflammatory responses associated with ulceration. Our study suggests that IND-induced inhibition of the ATX-LPAR2 axis is an early event in the pathogenesis of enteropathy.
Collapse
Affiliation(s)
- Barbara Hutka
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmacological and Drug Safety Research, Gedeon Richter Plc, Budapest, Hungary
| | - Anett Várallyay
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Szilvia B László
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - András S Tóth
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bálint Scheich
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Sándor Paku
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Imre Vörös
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
- MTA-SE System Pharmacology Research Group, Budapest, Hungary
| | - Zoltán Pós
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, Budapest, Hungary
| | - Derek D Norman
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
| | - Andrea Balogh
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, Budapest, Hungary
| | - Gábor Tigyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Klára Gyires
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
22
|
Feng Z, Wei Y, Zhang Z, Li M, Gu R, Lu L, Liu W, Qin H. Wheat peptides inhibit the activation of MAPK and NF-κB inflammatory pathways and maintain epithelial barrier integrity in NSAID-induced intestinal epithelial injury. Food Funct 2024; 15:823-837. [PMID: 38131381 DOI: 10.1039/d3fo03954d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The use of non-steroidal anti-inflammatory drugs (NSAIDs) has negative effects on the gastrointestinal tract, but the proton pump inhibitors currently in use only protect against gastrointestinal disease and may even make NSAID-induced enteropathy worse. Therefore, new approaches to treating enteropathy are required. This study aimed to investigate the protective effect of wheat peptides (WPs) against NSAID-induced intestinal damage in mice and their mechanism. Here, an in vivo mouse model was built to investigate the protective and reparative effects of different concentrations of WPs on NSAID-induced intestinal injury. WPs ameliorated NSAID-induced weight loss and small intestinal tissue damage in mice. WP treatment inhibited NSAID-induced injury leading to increased levels of oxidative stress and expression levels of inflammatory factors. WPs protected and repaired the integrity and permeability injury of the intestinal tight junction induced by NSAIDs. An in vitro Caco-2 cell model was built with lipopolysaccharide (LPS). WP pretreatment inhibited LPS-induced changes in the Caco-2 cell permeability and elevated the levels of oxidative stress. WPs inhibited LPS-induced phosphorylation of NF-κB p65 and mitogen-activated protein kinase (MAPK) signaling pathways and reduced the expression of inflammatory factors. In addition, WPs increased tight junction protein expression, which contributed to improved intestinal epithelial dysfunction. Our results suggest that WPs can ameliorate NSAID-induced impairment of intestinal barrier functional integrity by improving intestinal oxidative stress levels and reducing inflammatory factor expression through inhibition of NF-κB p65 and MAPK signaling pathway activation. WPs can therefore be used as potential dietary supplements to reduce NSAID-induced injury of the intestine.
Collapse
Affiliation(s)
- Zhiyuan Feng
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area, Tianjin, China.
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, 100015, China
| | - Ying Wei
- Department of Food Science and Engineering, Beijing University of Agriculture, Beijing, China.
| | - Zhuoran Zhang
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, 100015, China
| | - Mingliang Li
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, 100015, China
| | - Ruizeng Gu
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, 100015, China
| | - Lu Lu
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food and Fermentation Industries, Beijing, 100015, China
| | - Wenying Liu
- Department of Food Science and Engineering, Beijing University of Agriculture, Beijing, China.
| | - Huimin Qin
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area, Tianjin, China.
| |
Collapse
|
23
|
Brackman LC, Dixon BREA, Bernard M, Revetta F, Cowell RP, Meenderink LM, Washington MK, Piazuelo MB, Algood HMS. IL-17 receptor A functions to help maintain barrier integrity and limit activation of immunopathogenic response to H. pylori infection. Infect Immun 2024; 92:e0029223. [PMID: 38014948 PMCID: PMC10790819 DOI: 10.1128/iai.00292-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/29/2023] [Indexed: 11/29/2023] Open
Abstract
Activation of Th17 cell responses, including the production of IL-17A and IL-21, contributes to host defense and inflammatory responses by coordinating adaptive and innate immune responses. IL-17A and IL-17F signal through a multimeric receptor, which includes the IL-17 receptor A (IL-17RA) subunit and the IL-17RC subunit. IL-17RA is expressed by many cell types, and data from previous studies suggest that loss of IL-17 receptor is required to limit immunopathology in the Helicobacter pylori model of infection. Here, an Il17ra-/- mouse was generated on the FVB/n background, and the role of IL-17 signaling in the maintenance of barrier responses to H. pylori was investigated. Generating the Il17ra-/- on the FVB/n background allowed for the examination of responses in the paragastric lymph node and will allow for future investigation into carcinogenesis. While uninfected Il17ra-/- mice do not develop spontaneous gastritis following H. pylori infection, Il17ra-/- mice develop severe gastric inflammation accompanied by lymphoid follicle production and exacerbated production of Th17 cytokines. Increased inflammation in the tissue, increased IgA levels in the lumen, and reduced production of Muc5ac in the corpus correlate with increased H. pylori-induced paragastric lymph node activation. These data suggest that the cross talk between immune cells and epithelial cells regulates mucin production, IgA production, and translocation, impacting the integrity of the gastric mucosa and therefore activating of the adaptive immune response.
Collapse
Affiliation(s)
- Lee C. Brackman
- Division of Infectious Disease, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Beverly R. E. A. Dixon
- Division of Infectious Disease, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Margaret Bernard
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Frank Revetta
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rebecca P. Cowell
- Division of Infectious Disease, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Leslie M. Meenderink
- Division of Infectious Disease, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - M. Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Blanca Piazuelo
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute of Infection, Immunity, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Holly M. Scott Algood
- Division of Infectious Disease, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute of Infection, Immunity, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
24
|
Venturini CL, Damazo AS, Silva MJD, Muller JDAI, Oliveira DM, Figueiredo FDF, Serio BFD, Arunachalam K, Martins DTDO. Antiulcer activity and mechanism of action of the hydroethanolic extract of leaves of Terminalia argentea Mart. In different in vivo and in vitro experimental models. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116972. [PMID: 37517568 DOI: 10.1016/j.jep.2023.116972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Terminalia argentea Mart. (Combretaceae) is a deciduous tree commonly found in Brazil, Bolivia, and Paraguay. It occurs in all regions of Brazil and is widespread in the Amazon, Cerrado, Pantanal, Atlantic Rain Forest, and Caatinga Biomes. In the traditional medicine of Brazil, people widely use tea or decoction of its leaf materials for treating gastritis, ulcers, wound healing, and inflammation. AIM OF THE STUDY The current study aims to evaluate the gastroprotective and ulcer-healing activities of the hydroethanolic extract of T. argentea leaves (HETa) and investigate the underlying mechanisms of action through in vivo and in vitro experiments. METHODS We extracted the leaves of T. argentea with a 70% hydroethanolic solution (HETa) and performed phytochemical analysis using high-performance liquid chromatography (HPLC) and electrospray ionization mass spectrometry (ESI-MSn). We researched the antiulcer activity using in vivo and in vitro experiments, administering three doses (2, 10, and 50 mg/kg) and different concentrations of 1, 5, and 20 μg/mL, respectively. We verified the acute antiulcer activity using chemical models (acidified ethanol (EtOH/HCl) and indomethacin (IND)) and physiological models (water-immersion stress (WRS)). To induce chronic ulcers, used acetic acid and treated the animals for seven days. To investigate the mechanism of action, conducted assays of antioxidant activity, measured the dosage of inflammatory cytokines, quantified mucus, treated with inhibitors (IND, L-NAME, glibenclamide, and yohimbine), performed histopathological analysis, and measured gastric acid secretion. Furthermore, we performed in vitro experiments on murine macrophage cell lines (RAW 264-7 cells) to quantify nitrite/nitrate and cytokine production and on V79-4 cells to verify cell proliferation/migration. RESULTS We conducted HPLC and ESI-MSn analyses to obtain a fingerprint of the chemical composition of the HETa, revealing the presence of phenolics (caffeoyl ellagic acid), flavonoids (rutin, quercetin xyloside, quercetin rhamnoside, quercetin glucoside, quercetin galloyl xyloside, quercetin), and tannins (terminalin), respectively. The three doses of HETa reduced acute and chronic ulcers in different models. The mechanism of action involves increasing mucus production and angiogenesis, and it partially involves prostaglandins, nitric oxide, K+ATP channels, and α2-adrenergic receptors. HETa also exhibited antioxidant potential, reducing myeloperoxidase (MPO) activity, and increasing glutathione (GSH) levels. Moreover, it demonstrated anti-inflammatory action by reducing nitrite/nitrate levels and pro-inflammatory cytokine concentrations in vivo, and it increased in vitro proliferation/migration of fibroblasts. CONCLUSIONS The study shows that HETa presents a potent preventive and curative antiulcer effect in different ulcer models, supporting the popular use of homemade preparations of T. argentea leaves. The preventive and gastric healing ulcer activity of HETa involves multiple targets, including increasing the gastric mucus barrier, antioxidant defenses, and anti-inflammatory effects on gastric mucosa repair. Phytochemical analysis identified the presence of phenolic compounds, flavonoids, and tannins in HETa, and the antiulcer activity may be attributable to the combined effect of these constituents.
Collapse
Affiliation(s)
- Claudio Luis Venturini
- Pharmacology Laboratory, Post-Graduate Program in Health Sciences, Federal University of Mato Grosso (UFMT), Cuiabá, MT, Brazil; Pharmacology Laboratory, Department of Basic Sciences in Health, Federal University of Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| | - Amilcar Sabino Damazo
- Histology Laboratory, Department of Basic Sciences in Health, Federal University of Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| | - Marcelo José Dias Silva
- Laboratory of Medicinal Plants and Herbal Medicines, Federal University of Alfenas (UNIFAL-MG), Rua Gabriel Monteiro da Silva, 700, Centro, Alfenas, Minas Gerais, Brazil.
| | - Jessica de Araujo Isaias Muller
- Pharmacology Laboratory, Post-Graduate Program in Health Sciences, Federal University of Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| | - Darley Maria Oliveira
- Institute of Health Sciences, Federal University of Mato Grosso (UFMT), Sinop Campus, Mato Grosso, Brazil.
| | - Fabiana de Freitas Figueiredo
- Pharmacology Laboratory, Post-Graduate Program in Health Sciences, Federal University of Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| | - Bruna Fioravante Di Serio
- Pharmacology Laboratory, Post-Graduate Program in Health Sciences, Federal University of Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| | - Karuppusamy Arunachalam
- Center for Studies in Stem Cells, Cell Therapy and Toxicological Genetics (CeTroGen), Faculty of Medicine, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, 79070-900, MS, Brazil; Post-Graduate Program in Health and Development of the Midwest Region, Federal University of Mato Grosso Do Sul (UFMS), Campo Grande, 79070-900, MS, Brazil.
| | - Domingos Tabajara de Oliveira Martins
- Pharmacology Laboratory, Post-Graduate Program in Health Sciences, Federal University of Mato Grosso (UFMT), Cuiabá, MT, Brazil; Pharmacology Laboratory, Department of Basic Sciences in Health, Federal University of Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| |
Collapse
|
25
|
Loe AKH, Rao-Bhatia A, Wei Z, Kim JE, Guan B, Qin Y, Hong M, Kwak HS, Liu X, Zhang L, Wrana JL, Guo H, Kim TH. YAP targetome reveals activation of SPEM in gastric pre-neoplastic progression and regeneration. Cell Rep 2023; 42:113497. [PMID: 38041813 DOI: 10.1016/j.celrep.2023.113497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/25/2023] [Accepted: 11/09/2023] [Indexed: 12/04/2023] Open
Abstract
Peptic ulcer disease caused by environmental factors increases the risk of developing gastric cancer (GC), one of the most common and deadly cancers in the world. However, the mechanisms underlying this association remain unclear. A major type of GC uniquely undergoes spasmolytic polypeptide-expressing metaplasia (SPEM) followed by intestinal metaplasia. Notably, intestinal-type GC patients with high levels of YAP signaling exhibit a lower survival rate and poor prognosis. YAP overexpression in gastric cells induces atrophy, metaplasia, and hyperproliferation, while its deletion in a Notch-activated gastric adenoma model suppresses them. By defining the YAP targetome genome-wide, we demonstrate that YAP binds to active chromatin elements of SPEM-related genes, which correlates with the activation of their expression in both metaplasia and ulcers. Single-cell analysis combined with our YAP signature reveals that YAP signaling is activated during SPEM, demonstrating YAP as a central regulator of SPEM in gastric neoplasia and regeneration.
Collapse
Affiliation(s)
- Adrian K H Loe
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Abilasha Rao-Bhatia
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zhao Wei
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| | - Jung-Eun Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Bingxin Guan
- Department of Pathology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China
| | - Yan Qin
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Minji Hong
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hyo Sang Kwak
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xiaoyu Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan 250033, Shandong, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan 250033, Shandong, China
| | - Leyi Zhang
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jeffrey L Wrana
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Haiyang Guo
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan 250033, Shandong, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan 250033, Shandong, China.
| | - Tae-Hee Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
26
|
Boccella S, De Filippis L, Giorgio C, Brandolini L, Jones M, Novelli R, Amorizzo E, Leoni MLG, Terranova G, Maione S, Luongo L, Leone M, Allegretti M, Minnella EM, Aramini A. Combination Drug Therapy for the Management of Chronic Neuropathic Pain. Biomolecules 2023; 13:1802. [PMID: 38136672 PMCID: PMC10741625 DOI: 10.3390/biom13121802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic neuropathic pain (NP) is an increasingly prevalent disease and leading cause of disability which is challenging to treat. Several distinct classes of drugs are currently used for the treatment of chronic NP, but each drug targets only narrow components of the underlying pathophysiological mechanisms, bears limited efficacy, and comes with dose-limiting side effects. Multimodal therapies have been increasingly proposed as potential therapeutic approaches to target the multiple mechanisms underlying nociceptive transmission and modulation. However, while preclinical studies with combination therapies showed promise to improve efficacy over monotherapy, clinical trial data on their efficacy in specific populations are lacking and increased risk for adverse effects should be carefully considered. Drug-drug co-crystallization has emerged as an innovative pharmacological approach which can combine two or more different active pharmaceutical ingredients in a single crystal, optimizing pharmacokinetic and physicochemical characteristics of the native molecules, thus potentially capitalizing on the synergistic efficacy between classes of drugs while simplifying adherence and minimizing the risk of side effects by reducing the doses. In this work, we review the current pharmacological options for the treatment of chronic NP, focusing on combination therapies and their ongoing developing programs and highlighting the potential of co-crystals as novel approaches to chronic NP management.
Collapse
Affiliation(s)
- Serena Boccella
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via De Amicis, 80131 Naples, Italy; (S.B.); (C.G.)
| | - Lidia De Filippis
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via S. Lucia, 20122 Milan, Italy; (L.D.F.); (R.N.); (M.L.); (E.M.M.)
| | - Cristina Giorgio
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via De Amicis, 80131 Naples, Italy; (S.B.); (C.G.)
| | - Laura Brandolini
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via Campo di Pile, 67100 L’Aquila, Italy; (L.B.); (M.A.)
| | - Meghan Jones
- Research & Early Development (R&D), Dompé US, 181 2nd Avenue, STE 600, San Mateo, CA 94401, USA;
| | - Rubina Novelli
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via S. Lucia, 20122 Milan, Italy; (L.D.F.); (R.N.); (M.L.); (E.M.M.)
| | - Ezio Amorizzo
- Pain Unit, San Paolo Hospital, 00053 Civitavecchia, Italy;
- Pain Clinic Roma, 00191 Rome, Italy
| | - Matteo Luigi Giuseppe Leoni
- Azienda USL di Piacenza, 29121 Piacenza, Italy;
- Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University, 00185 Rome, Italy
| | | | - Sabatino Maione
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.M.); (L.L.)
| | - Livio Luongo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (S.M.); (L.L.)
| | - Manuela Leone
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via S. Lucia, 20122 Milan, Italy; (L.D.F.); (R.N.); (M.L.); (E.M.M.)
| | - Marcello Allegretti
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via Campo di Pile, 67100 L’Aquila, Italy; (L.B.); (M.A.)
| | - Enrico Maria Minnella
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via S. Lucia, 20122 Milan, Italy; (L.D.F.); (R.N.); (M.L.); (E.M.M.)
| | - Andrea Aramini
- Research & Early Development (R&D), Dompé Farmaceutici S.p.A, Via Campo di Pile, 67100 L’Aquila, Italy; (L.B.); (M.A.)
| |
Collapse
|
27
|
Cho HS, Kwon TW, Kim JH, Lee R, Bae CS, Kim HC, Kim JH, Choi SH, Cho IH, Nah SY. Gintonin Alleviates HCl/Ethanol- and Indomethacin-Induced Gastric Ulcers in Mice. Int J Mol Sci 2023; 24:16721. [PMID: 38069044 PMCID: PMC10705886 DOI: 10.3390/ijms242316721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Gintonin, newly extracted from ginseng, is a glycoprotein that acts as an exogenous lysophosphatidic acid (LPA) receptor ligand. This study aimed to demonstrate the in vivo preventive effects of gintonin on gastric damage. ICR mice were randomly assigned to five groups: a normal group (received saline, 0.1 mL/10 g, p.o.); a control group (administered 0.3 M HCl/ethanol, 0.1 mL/10 g, p.o.) or indomethacin (30 mg/kg, p.o.); gintonin at two different doses (50 mg/kg or 100 mg/kg, p.o.) with either 0.3 M HCl/ethanol or indomethacin; and a positive control (Ranitidine, 40 mg/kg, p.o.). After gastric ulcer induction, the gastric tissue was examined to calculate the ulcer index. The expression of gastric damage markers, such as tumor necrosis factor (TNF)-α, cyclooxygenase 2 (COX-2), and LPA2 and LPA5 receptors, were measured by Western blotting. Interleukin-6 (IL-6) and prostaglandin E2 (PGE2) levels were measured by enzyme-linked immunosorbent assay. The platelet endothelial cell adhesion molecule (PECAM-1), Evans blue, and occludin levels in gastric tissues were measured using immunofluorescence analysis. Both HCl/ethanol- and indomethacin-induced gastric ulcers showed increased TNF-α, IL-6, Evans blue permeation, and PECAM-1, and decreased COX-2, PGE2, occludin, and LPA5 receptor expression levels. However, oral administration of gintonin alleviated the gastric ulcer index induced by HCl/ethanol and indomethacin in a dose-dependent manner. Gintonin suppressed TNF-α and IL-6 expression, but increased COX-2 expression and PGE2 levels in mouse gastric tissues. Gintonin intake also increased LPA5 receptor expression in mouse gastric tissues. These results indicate that gintonin can play a role in gastric protection against gastric damage induced by HCl/ethanol or indomethacin.
Collapse
Affiliation(s)
- Han-Sung Cho
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (J.-H.K.)
| | - Tae Woo Kwon
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Ji-Hun Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (J.-H.K.)
| | - Rami Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (J.-H.K.)
| | - Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Iksan-City 54596, Republic of Korea
| | - Sun-Hye Choi
- Department of Animal Health, College of Health and Medical Services, Osan University, Osan-si 18119, Republic of Korea
| | - Ik-Hyun Cho
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (H.-S.C.); (J.-H.K.)
| |
Collapse
|
28
|
Branstetter JW, Woods G, Zaki H, Coolidge N, Zinyandu T, Shashidharan S, Aljiffry A. Novel Dosing and Monitoring of Aspirin in Infants With Systemic-to-Pulmonary Artery Shunt Physiology: the SOPRANO Study. J Pediatr Pharmacol Ther 2023; 28:610-617. [PMID: 38025153 PMCID: PMC10681076 DOI: 10.5863/1551-6776-28.7.610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/10/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVES Provision of pulmonary blood flow with a systemic-to-pulmonary artery shunt is essential in some patients with cyanotic congenital heart disease. Traditionally, aspirin (ASA) has been used to prevent thrombosis. We evaluated ASA dosing with 2 separate antiplatelet monitoring tests for accuracy and reliability. METHODS This is a retrospective, pre-post intervention single center study. Two cohorts were evaluated; the pre-intervention group used thromboelastography platelet mapping (TPM) and post-intervention used VerifyNow aspirin reactivity unit (ARU) monitoring. The primary endpoint was to compare therapeutic effect of TPM and ARU with regard to platelet inhibition. Inadequate platelet inhibition was defined as TPM <50% inhibition and ARU >550. RESULTS Data from 49 patients were analyzed: 25 in the TPM group and 24 in the ARU group. Baseline characteristics were similar amongst the cohorts. The TPM group had significantly more patients with inadequate platelet inhibition (14 [56%] vs 2 [8%]; p = 0.0006) and required escalation with additional thromboprophylaxis (15 [60%] vs 5 [21%]). There was no difference in shunt thrombosis (1 [2%] vs 0 [0%]; p = 0.32), cyanosis requiring early re-intervention (9 [36%] vs 14 [58%]; p = 0.11), or bleeding (15 [60%] vs 14 [58%]; p = 0.66). CONCLUSION With similar cohorts and the same ASA-dosing nomogram, ARU monitoring resulted in a reduced need for escalation of care and concomitant thromboprophylaxis with no difference in adverse outcomes. Our study suggests ARU monitoring compared with TPM may be a more reliable therapeutic platelet inhibition test for determining ASA sensitivity in children with congenital heart disease requiring systemic-to-pulmonary artery shunt.
Collapse
Affiliation(s)
| | - Gary Woods
- Children's Healthcare of Atlanta (GW), Aflac Caner and Blood Disorders Center, Atlanta, GA
| | - Hania Zaki
- Department of Pharmacy (JWB, HZ), Children's Healthcare of Atlanta, Atlanta, GA
| | - Nicole Coolidge
- Children's Healthcare of Atlanta (NC, TZ), Pediatric Cardiology, Atlanta, GA
| | - Tawanda Zinyandu
- Children's Healthcare of Atlanta (NC, TZ), Pediatric Cardiology, Atlanta, GA
| | - Subhadra Shashidharan
- Department of Surgery (SS), Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA
| | - Alaa Aljiffry
- Department of Pediatrics (AA), Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA
| |
Collapse
|
29
|
Huang S, Li Z, You W, Zheng G, Zhang H, Jiang Y, Sun H. A new dual functional H 2S donor for fluorescence imaging and anti-inflammatory application. Chem Commun (Camb) 2023; 59:13703-13706. [PMID: 37905349 DOI: 10.1039/d3cc03881e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
This study explored FL-H2S, a novel fluorescein-based H2S donor, as an anti-inflammatory agent. The results demonstrated the efficient release of H2S by FL-H2S, along with its biocompatibility, real-time intracellular H2S release and imaging capability. In vivo experiments using a rat model confirmed the anti-inflammatory effects of FL-H2S, evidenced by reduced foot swelling. We also successfully elucidated the anti-inflammatory mechanism through ELISA and WB analysis.
Collapse
Affiliation(s)
- Shumei Huang
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Zejun Li
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Wenhui You
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Guansheng Zheng
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Yin Jiang
- School of Chemical Engineering and Light Industry and School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Hongyan Sun
- Department of Chemistry and COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, P. R. China
| |
Collapse
|
30
|
Flood J, Byrne D, Bauquier J, Agne GF, Wise JC, Medina‐Torres CE, Wood K, Sullivan O, Stewart AJ. Right dorsal colitis in horses: A multicenter retrospective study of 35 cases. J Vet Intern Med 2023; 37:2535-2543. [PMID: 37800408 PMCID: PMC10658563 DOI: 10.1111/jvim.16884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Right dorsal colitis (RDC) is a nonsteroidal anti-inflammatory drug (NSAID) induced, protein losing enteropathy in horses associated with a high case fatality rate. OBJECTIVES To describe signalment, NSAID usage, clinical presentations, clinical pathology, ultrasonographic findings, treatments, outcomes, and factors associated with survival in horses diagnosed with RDC. ANIMALS Thirty-five horses from 7 Australian equine hospitals diagnosed with RDC. METHODS Retrospective case series. Clinical records of cases were accepted if definitively or presumptively diagnosed by an internist with RDC and had ≥3 of: hypoproteinemia or hypoalbuminemia; diarrhea with negative test results for infectious diseases; colic for which other diseases were excluded or right dorsal colon thickening on ultrasound. Descriptive data analysis was performed for categorical and continuous variables. Univariate binominal logistic regressions were used to assess factors associated with survival. RESULTS An overdose of NSAIDs occurred in 84% (21/25) cases where dose was known. Common clinical presentations included diarrhea (69%; 22/32), colic (61%; 20/33), and tachycardia (53%, 17/32). Common clinicopathological findings included hypoalbuminemia (83%; 26/31), hypocalcaemia (79%, 23/29), and hyperlactatemia (77%, 14/18). The right dorsal colon wall appeared subjectively thickened in 77% (24/31) cases using ultrasonography. Case fatality rate was 43% (15/35). Odds of survival significantly decreased with increasing heart rate (odds 0.84, 95% CI = 0.71-0.92, P = .01), packed cell volume (odds 0.91, 95% CI 0.82-0.98, P = .05) and abnormal appearance of mucous membranes (odds 0.05, 95% CI 0.005-0.28, P = .001) on hospital presentation. CONCLUSIONS AND CLINICAL IMPORTANCE An overdose of NSAIDs is common in horses diagnosed with RDC. Serum albumin concentrations should be monitored in horses receiving a prolonged course of NSAIDs. Overall prognosis for RDC remains fair.
Collapse
Affiliation(s)
- Jordan Flood
- School of Veterinary ScienceUniversity of QueenslandGattonQueenslandAustralia
- Present address:
Scone Equine HospitalSconeNew South WalesAustralia
| | - David Byrne
- School of Veterinary MedicineMurdoch UniversityPerthWestern AustraliaAustralia
| | - Jennifer Bauquier
- Melbourne Veterinary SchoolUniversity of MelbourneMelbourneVictoriaAustralia
| | - Gustavo Ferlini Agne
- School of Animal and Veterinary SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Jessica C. Wise
- School of Animal and Veterinary SciencesCharles Sturt UniversityWagga WaggaNew South WalesAustralia
| | - Carlos E. Medina‐Torres
- School of Veterinary ScienceUniversity of QueenslandGattonQueenslandAustralia
- Present address:
Pferdeklinik SaarLorLux GmbHUeberherrnGermany
| | - Kelly Wood
- School of Veterinary ScienceUniversity of QueenslandGattonQueenslandAustralia
- Present address:
NSW Department of Primary IndustriesGoulburnNew South WalesAustralia
| | - Olivia Sullivan
- Melbourne Veterinary SchoolUniversity of MelbourneMelbourneVictoriaAustralia
- Present address:
Yarra Ranges Animal HospitalLilydaleVictoriaAustralia
| | - Allison J. Stewart
- School of Veterinary ScienceUniversity of QueenslandGattonQueenslandAustralia
| |
Collapse
|
31
|
Heeba GH, Morsy MA, Mahmoud ME, Abdel-Latif R. Gastro-protective effect of l-arginine against nitric oxide deficiency-related mucosal injury induced by indomethacin: Does age matter? J Biochem Mol Toxicol 2023; 37:e23479. [PMID: 37483153 DOI: 10.1002/jbt.23479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Gastric ulcer is a common disease with increased prevalence in the aged population. Aged gastric mucosa has increased susceptibility to injury along with nonsteroidal anti-inflammatory drugs use due to impaired mucosal defense and decreased vasodilator release. We investigated whether l-arginine could protect against age-related gastric ulceration induced by indomethacin. Aged and adult male Wistar rats were administered sole and combined treatment of l-arginine and Nω -nitro-l-arginine methyl ester ( l-NAME) before induction of gastric ulceration by indomethacin. The gastroprotective effect of l-arginine was displayed only in adult rats with indomethacin-induced gastric ulceration, as evidenced by a significant decrease in ulcer index, oxidative stress parameters, and mucosal myeloperoxidase activity along with increased mucosal PGE2 levels. Interestingly, the mucosal gene expressions of NF-кB, iNOS, and COX-2 were significantly suppressed by l-arginine pretreatment and aggregated upon pretreatment with l-NAME in both adult and aged rats treated with indomethacin. In conclusion, l-arginine protected the rats' gastric mucosa against indomethacin-induced gastric ulceration, possibly, at least in part, by enhancement of mucosal nitric oxide/PGE2 content along with suppressing gastric inflammation and oxidative stress. This study supposed that the gastroprotective effect of l-arginine depends on aging, and even so, the adoption of a new approach to gastric ulcer treatment for the aged population is warranted.
Collapse
Affiliation(s)
- Gehan H Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Magda E Mahmoud
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, El-Minia, Egypt
| | - Rania Abdel-Latif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| |
Collapse
|
32
|
Maher S, Geoghegan C, Brayden DJ. Safety of surfactant excipients in oral drug formulations. Adv Drug Deliv Rev 2023; 202:115086. [PMID: 37739041 DOI: 10.1016/j.addr.2023.115086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Surfactants are a diverse group of compounds that share the capacity to adsorb at the boundary between distinct phases of matter. They are used as pharmaceutical excipients, food additives, emulsifiers in cosmetics, and as household/industrial detergents. This review outlines the interaction of surfactant-type excipients present in oral pharmaceutical dosage forms with the intestinal epithelium of the gastrointestinal (GI) tract. Many surfactants permitted for human consumption in oral products reduce intestinal epithelial cell viability in vitro and alter barrier integrity in epithelial cell monolayers, isolated GI tissue mucosae, and in animal models. This suggests a degree of mis-match for predicting safety issues in humans from such models. Recent controversial preclinical research also infers that some widely used emulsifiers used in oral products may be linked to ulcerative colitis, some metabolic disorders, and cancers. We review a wide range of surfactant excipients in oral dosage forms regarding their interactions with the GI tract. Safety data is reviewed across in vitro, ex vivo, pre-clinical animal, and human studies. The factors that may mitigate against some of the potentially abrasive effects of surfactants on GI epithelia observed in pre-clinical studies are summarised. We conclude with a perspective on the overall safety of surfactants in oral pharmaceutical dosage forms, which has relevance for delivery system development.
Collapse
Affiliation(s)
- Sam Maher
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland.
| | - Caroline Geoghegan
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
33
|
Lee DY, Song MY, Hong KS, Yun SM, Han YM, Kim EH. Low dose administration of mature silkworm powder induces gastric mucosal defense factors in ethanol-induced gastric injury rat model. Food Sci Biotechnol 2023; 32:1551-1559. [PMID: 37637840 PMCID: PMC10449703 DOI: 10.1007/s10068-023-01278-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/18/2023] [Accepted: 02/08/2023] [Indexed: 04/07/2023] Open
Abstract
Gastric mucosa is important to protect the gastric damage against external factors. We previously reported the gastro-protective effects of steamed and freeze-dried mature silkworm larval powder (SMSP) in ethanol-treated rats. However, the factors that promote mucosal formation still remain unclarified. In this study, we evaluated the effect of SMSP on the restoration and maintenance of gastric mucosal layer as well as anti-inflammatory response in ethanol-induced stomach injury in rats. A significant decrease of ulcer indexes, histopathological scores and pro-inflammatory cytokine levels was observed in SMSP-treated group. In addition, SMSP protected the mucosal layer from ethanol-induced gastric damage by increasing the expression of nitric oxide synthases and heat shock proteins, along with promoting genes related gastric mucosal protection and biosynthesis including mucin 5AC and trefoil factors. These results demonstrate that SMSP attenuates the pro-inflammatory responses and strengthens the gastric mucosal layer, thus exhibiting gastro-protective effect against ethanol-induced gastric injury in rats.
Collapse
Affiliation(s)
- Da-Young Lee
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488 Republic of Korea
| | - Moon-Young Song
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488 Republic of Korea
| | - Kyung-Sook Hong
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488 Republic of Korea
| | - Sun-Mi Yun
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488 Republic of Korea
| | - Young-Min Han
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488 Republic of Korea
| | - Eun-Hee Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488 Republic of Korea
| |
Collapse
|
34
|
Jalil AT, Hassan MM, Ziyad RA, Jasim I, Zabibah R, Fadhil A. PDE5 inhibitors and gastric mucosa: implications for the management of peptic ulcer disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2261-2267. [PMID: 37119288 DOI: 10.1007/s00210-023-02503-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/16/2023] [Indexed: 05/01/2023]
Abstract
Peptic ulcer disease (PUD) continues to be a cause of significant morbidity and mortality worldwide. Almost two-thirds of PUD cases are asymptomatic. In symptomatic patients, epigastric pain is the most common presenting symptom of PUD, which is manifested by nausea, abdominal fullness, bloating, and dyspepsia. Most PUD cases are associated with the use of COX inhibitors or Helicobacter pylori infection, or both. The traditional management of PUD includes the use of proton pump inhibitors to reduce the gastric acid secretion and antibacterial drugs to combat H. pylori. Timely diagnosis and treatment of PUD are vital to reduce the risk of associated morbidity and mortality, as is prevention of PUD among patients at high risk, including COX inhibitors users and those infected with H. pylori. PDE5 inhibitors have been used for the management of erectile dysfunction and pulmonary hypertension for decades. In recent years, studies have mentioned tremendous pleiotropic effects of PDE5 inhibitors on gastrointestinal, urogenital, musculoskeletal, reproductive, cutaneous, and neurologic disorders. Recent data shows that PDE5 inhibition augments gastric mucosa protection, and here, we review the most recent findings regarding the use of PDE5 inhibitors for the prevention and management of PUD.
Collapse
Affiliation(s)
- Abduladheem Turki Jalil
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hillah, Babylon, Iraq.
| | | | - Rand Ali Ziyad
- National University of Science and Technology, Nasiriyah, Dhi-Qar, Iraq
| | - Ihsan Jasim
- Department of Pharmacology, Al-Turath University College, Baghdad, Iraq
| | - Rahman Zabibah
- Depaetment of Medical Laboratory Technology, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ali Fadhil
- College of Medical Technology, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
35
|
Zhou Z, Zhang D, Wang Y, Liu C, Wang L, Yuan Y, Xu X, Jiang Y. Urinary exosomes: a promising biomarker of drug-induced nephrotoxicity. Front Med (Lausanne) 2023; 10:1251839. [PMID: 37809338 PMCID: PMC10556478 DOI: 10.3389/fmed.2023.1251839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Drug-induced nephrotoxicity (DIN) is a big concern for clinical medication, but the clinical use of certain nephrotoxic drugs is still inevitable. Current testing methods make it hard to detect early renal injury accurately. In addition to understanding the pathogenesis and risk factors of drug-induced nephrotoxicity, it is crucial to identify specific renal injury biomarkers for early detection of DIN. Urine is an ideal sample source for biomarkers related to kidney disease, and urinary exosomes have great potential as biomarkers for predicting DIN, which has attracted the attention of many scholars. In the present paper, we will first introduce the mechanism of DIN and the biogenesis of urinary exosomes. Finally, we will discuss the changes in urinary exosomes in DIN and compare them with other predictive indicators to enrich and boost the development of biomarkers of DIN.
Collapse
Affiliation(s)
- Zunzhen Zhou
- Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Dailiang Zhang
- Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Yongjing Wang
- Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Chongzhi Liu
- Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Limei Wang
- Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Yi Yuan
- Orthopedic Department, Dazhou Integrated TCM and Western Medicine Hospital, Dazhou Second People’s Hospital, Dazhou, China
| | - Xiaodan Xu
- Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Yuan Jiang
- Clinical Medical College, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
36
|
Burley CV, Casey AN, Jones MD, Wright KE, Parmenter BJ. Nonpharmacological approaches for pain and symptoms of depression in people with osteoarthritis: systematic review and meta-analyses. Sci Rep 2023; 13:15449. [PMID: 37723233 PMCID: PMC10507102 DOI: 10.1038/s41598-023-41709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023] Open
Abstract
People with osteoarthritis often experience pain and depression. These meta-analyses examined and compared nonpharmacological randomized controlled trials (RCTs) for pain and symptoms of depression in people living with osteoarthritis. RCTs published up until April 2022 were sourced by searching electronic databases EMBASE, PUBMED & MEDLINE, Web of Science, CINAHL and PEDro. Random-effects meta-analyses were performed to calculate pooled effect sizes (ES) and 95% confidence intervals (CI) for pain and depression. Subgroup analyses examined intervention subtypes. For pain, 29 interventions (n = 4382; 65 ± 6.9 years; 70% female), revealed a significant effect on reducing pain (ES = 0.43, 95% CI [0.25, 0.61], p < 0.001). Effect sizes were significant (p < 0.001) for movement meditation (ES = 0.52; 95% CI [0.35, 0.69]), multimodal approaches (ES = 0.37; 95% CI [0.22, 0.51]), and psychological therapy (ES = 0.21; 95% CI [0.11, 0.31]), and significant (p = 0.046) for resistance exercise (ES = 0.43, 95% CI [- 0.07, 0.94]. Aerobic exercise alone did not improve pain. For depression, 28 interventions (n = 3377; 63 ± 7.0 years; 69% female), revealed a significant effect on reducing depressive symptoms (ES = 0.29, 95% CI [0.08, 0.49], p < 0.001). Effect sizes were significant for movement meditation (ES = 0.30; 95% CI [0.06, 0.55], p = 0.008) and multimodal interventions (ES = 0.12; 95% CI [0.07, 0.18], p < 0.001). Resistance/aerobic exercise or therapy alone did not improve depressive symptoms. Mind-body approaches were more effective than aerobic/resistance exercise or therapy alone for reducing pain and depression in people with osteoarthritis.Systematic review registration: PROSPERO CRD42022338051.
Collapse
Affiliation(s)
- Claire V Burley
- UNSW Medicine & Health Lifestyle Clinic, School of Health Sciences, University of New South Wales, Sydney, Australia.
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, Australia.
| | - Anne-Nicole Casey
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, Australia
| | - Matthew D Jones
- Department of Exercise Physiology, School of Health Sciences, University of New South Wales, Sydney, Australia
- Centre for Pain IMPACT, Neuroscience Research Australia, Sydney, Australia
| | - Kemi E Wright
- Department of Exercise Physiology, School of Health Sciences, University of New South Wales, Sydney, Australia
| | - Belinda J Parmenter
- UNSW Medicine & Health Lifestyle Clinic, School of Health Sciences, University of New South Wales, Sydney, Australia
- Department of Exercise Physiology, School of Health Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
37
|
García-Merino B, Bringas E, Ortiz I. Fast and reliable analysis of pH-responsive nanocarriers for drug delivery using microfluidic tools. Int J Pharm 2023; 643:123232. [PMID: 37460049 DOI: 10.1016/j.ijpharm.2023.123232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
During the last decades, there has been growing interest in the application of functionalized mesoporous nanomaterials as stimuli-responsive carriers for drug delivery. However, at present there is not a standardized methodology to evaluate their performance. The limitations of the different techniques reported in literature give rise to the necessity for new, simple, and cost-effective alternatives. This work constitutes a step forward in the development of advanced in vitro procedures for testing the behavior of nanocarriers, proposing a novel microfluidic platform. To test the capacity of the reported tool, the performance of amino-functionalized MCM-41 nanoparticles has been assessed. These materials show a pH-responsive mechanism, which prevents the drug release at acidic conditions, maximizing its distribution at neutral pH, thus, the selected release medium mimicked gastrointestinal conditions. As a first approximation, the delivery of Ru(bipy)32+ was evaluated, proving the advantages of the proposed microfluidic system: i) continuous flow of particles and media, ii) rigorous control of the residence time, temperature and pH, iii) enhanced mixing, iv) possibility to simulate different human body conditions and, v) possible integration with the continuous synthesis of nanocarriers. Finally, the microfluidic tool was used to analyze the delivery of the anti-inflammatory drug ibuprofen.
Collapse
Affiliation(s)
- Belén García-Merino
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Eugenio Bringas
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
| | - Inmaculada Ortiz
- Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain.
| |
Collapse
|
38
|
Wang W, Song L, Yang L, Li C, Ma Y, Xue M, Shi D. Panax quinquefolius saponins combined with dual antiplatelet therapy enhanced platelet inhibition with alleviated gastric injury via regulating eicosanoids metabolism. BMC Complement Med Ther 2023; 23:289. [PMID: 37596586 PMCID: PMC10436642 DOI: 10.1186/s12906-023-04112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 08/01/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Panax quinquefolius saponin (PQS) was shown beneficial against platelet adhesion and for gastroprotection. This study aimed to investigate the integrated efficacy of PQS with dual antiplatelet therapy (DAPT) on platelet aggregation, myocardial infarction (MI) expansion and gastric injury in a rat model of acute MI (AMI) and to explore the mechanism regarding arachidonic acid (AA)-derived eicosanoids metabolism. METHODS Wistar rats were subjected to left coronary artery occlusion to induce AMI model followed by treatment with DAPT, PQS or the combined therapy. Platelet aggregation was measured by light transmission aggregometry. Infarct size, myocardial histopathology was evaluated by TTC and H&E staining, respectively. Gastric mucosal injury was examined by scanning electron microscope (SEM). A comprehensive eicosanoids profile in plasma and gastric mucosa was characterized by liquid chromatography-mass spectrometer-based lipidomic analysis. RESULTS PQS+DAPT further decreased platelet aggregation, lessened infarction and attenuated cardiac injury compared with DAPT. Plasma lipidomic analysis revealed significantly increased synthesis of epoxyeicosatrienoic acid (EET) and prostaglandin (PG) I2 (potent inhibitors for platelet adhesion and aggregation) while markedly decreased thromboxane (TX) A2 (an agonist for platelet activation and thrombosis) by PQS+DAPT, relative to DAPT. DAPT induced overt gastric mucosal damage, which was attenuated by PQS co-administration. Mucosal gastroprotective PGs (PGE2, PGD2 and PGI2) were consistently increased after supplementation of PQS+DAPT. CONCLUSIONS Collectively, PQS+DAPT showed synergistic effect in platelet inhibition with ameliorated MI expansion partially through upregulation of AA/EET and AA/PGI2 synthesis while suppression of AA/TXA2 metabolism. PQS attenuated DAPT-induced gastric injury, which was mechanistically linked to increased mucosal PG production.
Collapse
Affiliation(s)
- Wenting Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lei Song
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Center of Cardiovascular Disease, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Lin Yang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Center of Cardiovascular Disease, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Changkun Li
- Shimadzu (China) Co., LTD Beijing Branch, Beijing, 100020, China
| | - Yan Ma
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology & Immunology, Vienna General Hospital, Medical University of Vienna, 1090, Vienna, Austria
| | - Mei Xue
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
- Center of Cardiovascular Disease, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Dazhuo Shi
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
- Center of Cardiovascular Disease, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
39
|
Liu J, Sun P, Qi X. Reversible and Non-Competitive Inhibition of Cyclooxygenase by Indobufen for Efficient Antiplatelet Action and Relief of Gastrointestinal Irritation. Pharmaceutics 2023; 15:2135. [PMID: 37631348 PMCID: PMC10458679 DOI: 10.3390/pharmaceutics15082135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Clinically, indobufen is widely used for the treatment of antiplatelet aggregation and anticoagulation. Prior studies have discovered that abnormal platelet function can be promptly restored to normal when the drug is stopped. Herein, through the study of the enzyme reaction kinetics, we demonstrated that the inhibitory effect of indobufen on cyclooxygenase-1 (COX-1) was reversible and non-competitive. Specifically, the cyclooxygenase inhibition experiment showed that the level of 6-keto-PGF1α in the gastric mucosa of the indobufen-treated groups was significantly higher than that of the aspirin group (###p < 0.001), indicating a higher level of PGI2 in and a better physiological state of the gastric mucosa. Moreover, the rat gastric ulcer index and mucosal section experiments further confirmed the relief of gastrointestinal irritation and the adverse reaction rate of the indobufen-treated group compared to those of the aspirin group. Furthermore, indobufen was verified to exert reversible inhibitory activity on the heme group of COX-1 and thus reversibly inhibit COX-1 activity. In general, compared with aspirin, the long-term oral administration of indobufen yields a lower risk of gastrointestinal symptoms, such as ulcers.
Collapse
Affiliation(s)
- Jia Liu
- School of International Pharmaceutical Business, China Pharmaceutical University, #639 Longmian Dadao, Jiangning District, Nanjing 211189, China;
| | - Peng Sun
- School of Pharmacy, China Pharmaceutical University, #639 Longmian Dadao, Jiangning District, Nanjing 210009, China;
| | - Xiaole Qi
- School of Pharmacy, China Pharmaceutical University, #639 Longmian Dadao, Jiangning District, Nanjing 210009, China;
| |
Collapse
|
40
|
Baranov DS, Kashnik AS, Atnyukova AN, Dzuba SA. Spin-Labeled Diclofenac: Synthesis and Interaction with Lipid Membranes. Molecules 2023; 28:5991. [PMID: 37630243 PMCID: PMC10458756 DOI: 10.3390/molecules28165991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Diclofenac is a non-steroidal anti-inflammatory drug (NSAID) from the group of phenylacetic acid derivatives, which has analgesic, anti-inflammatory and antipyretic properties. The interaction of non-steroidal anti-inflammatory drugs with cell membranes can affect their physicochemical properties, which, in turn, can cause a number of side effects in the use of these drugs. Electron paramagnetic resonance (EPR) spectroscopy could be used to study the interaction of diclofenac with a membrane, if its spin-labeled analogs existed. This paper describes the synthesis of spin-labeled diclofenac (diclofenac-SL), which consists of a simple sequence of transformations such as iodination, esterification, Sonogashira cross-coupling, oxidation and saponification. EPR spectra showed that diclofenac-SL binds to a lipid membrane composed of palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). 2H electron spin echo spectroscopy (ESEEM) was used to determine the position of the diclofenac-SL relative to the membrane surface. It was established that its average depth of immersion corresponds to the 5th position of the carbon atom in the lipid chain.
Collapse
Affiliation(s)
- Denis S. Baranov
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.S.B.); (A.S.K.)
| | - Anna S. Kashnik
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.S.B.); (A.S.K.)
| | | | - Sergei A. Dzuba
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.S.B.); (A.S.K.)
| |
Collapse
|
41
|
Meurer M, Felisbino F, Müller FB, Somensi LB, Cury BJ, Jerônimo DT, Venzon L, França TCS, Mariott M, Santos AC, Nunes RKS, Boeing T, Bella-Cruz A, Souza PDE, Roman-Junior WA, Arunachalam K, Oliveira RG, Silva LM. Antiulcer mechanisms of the hydroalcoholic extract from Aztec marigolds' medicinal and edible flowers (Tagetes erecta L.). AN ACAD BRAS CIENC 2023; 95:e20220427. [PMID: 37556712 DOI: 10.1590/0001-3765202320220427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/15/2022] [Indexed: 08/11/2023] Open
Abstract
The antiulcer mechanisms of the dry extract of T. erecta flowers (DETe) were studied here. The acute ulcers induced by acidified ethanol or indomethacin were reproduced in mice pretreated with DETe (3 - 300 mg/kg). The antiulcer activity of DETe was also verified in mice pretreated with NEM, L-NAME, indomethacin, or yohimbine. The antisecretory effect of DETe was verified in rats, and its anti-Helicobacter pylori activity was determined in vitro. DETe (300 mg/kg, p.o) reduced the ethanol- or indomethacin-induced ulcer by 49 and 93%, respectively. The pre-treatment with L-NAME, NEM or yohimbine abolished the gastroprotective effect of DETe. However, DETe did not change the volume, acidity, or peptic activity in rats and did not affect H. pylori. This study expands knowledge about the antiulcerogenic potential of DETe, evidencing the role of nitric oxide, non-protein sulfhydryl groups, α2 adrenergic receptors, and prostaglandins, but not antisecretory or anti-H. pylori properties.
Collapse
Affiliation(s)
- Mariane Meurer
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
| | - Fabiula Felisbino
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
| | - Fabiana B Müller
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
| | - Lincon B Somensi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
- Programa de Pós-Graduação em Desenvolvimento e Sociedade, Universidade Alto Vale do Rio do Peixe, Rua Victor Baptista Adami, 800, Centro, 89500-000 Caçador, SC, Brazil
| | - Benhur J Cury
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
| | - Daniele T Jerônimo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
| | - Larissa Venzon
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
| | - Tauani C S França
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
| | - Marihá Mariott
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
| | - Ana C Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
| | - Ruan Kaio S Nunes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
| | - Thaise Boeing
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
| | - Alexandre Bella-Cruz
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
| | - Priscila DE Souza
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
| | - Walter A Roman-Junior
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Efapi, 89809-900 Chapecó, SC, Brazil
| | - Karuppusamy Arunachalam
- Chinese Academy of Sciences, Kunming Institute of Botany, Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, People's Republic of China
| | - Ruberlei G Oliveira
- Universidade Federal de Mato Grosso, Escola de Educação Física (Programa de Pós-Graduação), Avenida Universitária, 3500, Parque Universitário, 78060-900 Cuiabá, MT, Brazil
| | - Luisa M Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Vale do Itajaí, Núcleo de Pesquisas Farmacêuticas Químicas (NIQFAR), Rua Uruguai, 458, Centro, 89809-900 Itajaí, SC, Brazil
| |
Collapse
|
42
|
Elmore KK, Chibisa GE. Graduate Student Literature Review: Reducing mortality and morbidity in transported preweaning dairy calves: Colostrum management and pretransport nonsteroidal anti-inflammatory drug administration. J Dairy Sci 2023:S0022-0302(23)00360-0. [PMID: 37414600 DOI: 10.3168/jds.2022-22707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/27/2023] [Indexed: 07/08/2023]
Abstract
Currently, mortality and morbidity rates for preweaning calves in the US dairy industry are high, with the major cause being digestive disorders and respiratory diseases. One of the most important management practices that can reduce calf mortalities and morbidities is the feeding of colostrum, provided its quantity, quality, and cleanliness, and timing of feeding are according to recommendations. However, other management practices similar to transportation, can also compromise calf health and production performance. When preweaning calves are transported, stressors similar to physical restraint, commingling, dehydration, bruising, and pain may lead to an inflammatory response and immunosuppression, which has been seen in older cattle, and could increase susceptibility to digestive disorders and respiratory diseases. One strategy that could potentially reduce transport-related negative outcomes is the pretransport administration of nonsteroidal anti-inflammatory drugs, such as meloxicam. This review provides a brief background on preweaning mortality and morbidity, colostrum management, transport-related stress, use of nonsteroidal anti-inflammatory drugs in transported calves, and highlights some of the current knowledge gaps.
Collapse
Affiliation(s)
- K K Elmore
- Animal, Veterinary, and Food Sciences Department, University of Idaho, Moscow, ID 83844.
| | - G E Chibisa
- Animal, Veterinary, and Food Sciences Department, University of Idaho, Moscow, ID 83844.
| |
Collapse
|
43
|
Gemici B, Birsen İ, İzgüt-Uysal VN. The Apelin-Apela Receptor APJ is Necessary for Formation and Healing of Ischemia Reperfusion-Induced Gastric Ulcer in Rats. Peptides 2023; 166:171027. [PMID: 37245722 DOI: 10.1016/j.peptides.2023.171027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/06/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
The apelinergic system, widely expressed and regulates hormone-enzyme secretion, motility, and protective mechanisms of the stomach. This system consists of the apelin receptor (APJ) and two peptides known as apela and apelin. The IR-induced experimental gastric ulcer model, is a well-known and commonly used one that induces hypoxia and causes the release of proinflammatory cytokines. Expressions of apelin and its receptor APJ are induced by hypoxia and inflammation in the gastrointestinal tract. Apelin has been shown to affect angiogenesis positively, considered the most critical component of the healing process. Although it is known that apelin and AJP expressions are induced by inflammatory stimuli and hypoxia, stimulate endothelial cell proliferation and have a role in regenerative angiogenesis, no information or has been found in the literature regarding the role of APJ in the formation and healing of gastric mucosal lesions induced by I/R. So, we conducted a study to clarify the role of APJ in formation and healing mechanisms of IR-induced gastric lesions. Male Wistar rats were divided into five groups; control, sham-operated, IR, APJ antagonist treated-IR group (F13A+IR), and the healing groups. F13A was intravenously given to the animals. Gastric lesion index, mucosal blood flow, PGE2, NOx, 4-HNE-MDA, HO activity, and protein expressions of VEGF and HO-1 were measured. F13A application before the IR increased the mucosal injury, F13A application following the ischemia delayed the mucosal healing during the reperfusion period. Consequently, blocking apelin receptors may worsen gastric injury due to the IR and delay mucosal healing.
Collapse
Affiliation(s)
- Burcu Gemici
- Yeditepe University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey.
| | - İlknur Birsen
- Akdeniz University, Faculty of Science, Department of Chemistry, 07070 Antalya, Turkey
| | - V Nimet İzgüt-Uysal
- Akdeniz University, Faculty of Medicine, Department of Physiology, 07070 Antalya, Turkey
| |
Collapse
|
44
|
Aramini A, Bianchini G, Lillini S, Tomassetti M, Pacchiarotti N, Canestrari D, Cocchiaro P, Novelli R, Dragani MC, Palmerio F, Mattioli S, Bordignon S, d'Angelo M, Castelli V, d'Egidio F, Maione S, Luongo L, Boccella S, Cimini A, Brandolini L, Chierotti MR, Allegretti M. Ketoprofen, lysine and gabapentin co-crystal magnifies synergistic efficacy and tolerability of the constituent drugs: Pre-clinical evidences towards an innovative therapeutic approach for neuroinflammatory pain. Biomed Pharmacother 2023; 163:114845. [PMID: 37167730 DOI: 10.1016/j.biopha.2023.114845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
Chronic pain is an enormous public health concern, and its treatment is still an unmet medical need. Starting from data highlighting the promising effects of some nonsteroidal anti-inflammatory drugs in combination with gabapentin in pain treatment, we sought to combine ketoprofen lysine salt (KLS) and gabapentin to obtain an effective multimodal therapeutic approach for chronic pain. Using relevant in vitro models, we first demonstrated that KLS and gabapentin have supra-additive effects in modulating key pathways in neuropathic pain and gastric mucosal damage. To leverage these supra-additive effects, we then chemically combined the two drugs via co-crystallization to yield a new compound, a ternary drug-drug co-crystal of ketoprofen, lysine and gabapentin (KLS-GABA co-crystal). Physicochemical, biodistribution and pharmacokinetic studies showed that within the co-crystal, ketoprofen reaches an increased gastrointestinal solubility and permeability, as well as a higher systemic exposure in vivo compared to KLS alone or in combination with gabapentin, while both the constituent drugs have increased central nervous system permeation. These unique characteristics led to striking, synergistic anti-nociceptive and anti-inflammatory effects of KLS-GABA co-crystal, as well as significantly reduced spinal neuroinflammation, in translational inflammatory and neuropathic pain rat models, suggesting that the synergistic therapeutic effects of the constituent drugs are further boosted by the co-crystallization. Notably, while strengthening the therapeutic effects of ketoprofen, KLS-GABA co-crystal showed remarkable gastrointestinal tolerability in both inflammatory and chronic neuropathic pain rat models. In conclusion, these results allow us to propose KLS-GABA co-crystal as a new drug candidate with high potential clinical benefit-to-risk ratio for chronic pain treatment.
Collapse
Affiliation(s)
- Andrea Aramini
- R&D, Dompé Farmaceutici S.p.A, Via Campo di Pilel, 67100 L'Aquila, Italy.
| | - Gianluca Bianchini
- R&D, Dompé Farmaceutici S.p.A, Via Campo di Pilel, 67100 L'Aquila, Italy
| | - Samuele Lillini
- R&D, Dompé Farmaceutici S.p.A, Via De Amicis, 80131 Naples, Italy
| | - Mara Tomassetti
- R&D, Dompé Farmaceutici S.p.A, Via De Amicis, 80131 Naples, Italy
| | | | - Daniele Canestrari
- R&D, Dompé Farmaceutici S.p.A, Via Campo di Pilel, 67100 L'Aquila, Italy
| | | | - Rubina Novelli
- R&D, Dompé Farmaceutici S.p.A, Via S. Lucia, 20122 Milan, Italy
| | | | | | - Simone Mattioli
- R&D, Dompé Farmaceutici S.p.A, Via De Amicis, 80131 Naples, Italy
| | - Simone Bordignon
- Department of Chemistry and NIS Centre, University of Torino, 10124 Torino, Italy
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesco d'Egidio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Serena Boccella
- R&D, Dompé Farmaceutici S.p.A, Via De Amicis, 80131 Naples, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy; Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Laura Brandolini
- R&D, Dompé Farmaceutici S.p.A, Via Campo di Pilel, 67100 L'Aquila, Italy
| | | | | |
Collapse
|
45
|
Haghbin H, Zakirkhodjaev N, Husain FF, Lee-Smith W, Aziz M. Risk of Gastrointestinal Bleeding with Concurrent Use of NSAID and SSRI: A Systematic Review and Network Meta-Analysis. Dig Dis Sci 2023; 68:1975-1982. [PMID: 36526813 DOI: 10.1007/s10620-022-07788-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/05/2022] [Indexed: 04/27/2023]
Abstract
INTRODUCTION Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used over-the-counter medications that can increase the risk of gastrointestinal (GI) bleeding through antiplatelet effects and loss of GI protection. Selective serotonin reuptake inhibitors (SSRIs), commonly used for mental and behavioral health, are another group of medications that can cause platelet dysfunction. Previous literature has shown a possible increased risk of GI bleeding with concurrent use of SSRIs and NSAIDs. We performed a network meta-analysis comparing NSAIDs, SSRIs, and combined SSRI/NSAIDs to assess the risk of GI bleeding. METHODS The following databases were searched: MEDLINE, Embase, Web of Science Core Collection, SciELO, KCI, and Cochrane database. All comparative studies, i.e., case-control, cohort, and randomized controlled trials were included. Direct and network meta-analysis was conducted using DerSimonian-Laird approach and random effect. For binary outcomes, odds ratio (OR) with 95% confidence interval (CI) and p value were calculated. RESULTS After a comprehensive search through November 10th, 2021, 15 studies with 82,605 patients were identified. 11 studies reported higher rates of GI bleeds in SSRI/NSAID than SSRI users (36.9% vs 22.8%, OR 2.14, 95% CI 1.52-3.02, p < 0.001, I2 = 86.1%). 10 studies compared SSRI/NSAID to NSAID users with higher rates of bleeds in SSRI/NSAID group (40.9% vs 34.2%, OR 1.49, 95% CI 1.20-1.84, p < 0.001, I2 = 68.8%). The results were consistent using network meta-analysis as well. CONCLUSION Given higher risk of bleeding with concurrent NSAIDs and SSRIs, prescribers should exercise caution when administering NSAIDs and SSRIs concurrently especially in patients with higher risks of GI bleeding.
Collapse
Affiliation(s)
- Hossein Haghbin
- Division of Gastroenterology, Ascension Providence Hospital, Southfield, MI, USA.
| | | | | | - Wade Lee-Smith
- University of Toledo Libraries, University of Toledo, Toledo, OH, USA
| | - Muhammad Aziz
- Division of Gastroenterology and Hepatology, University of Toledo, Toledo, OH, USA
| |
Collapse
|
46
|
Pessoa RT, Alcântara IS, da Silva LYS, da Costa RHS, Silva TM, de Morais Oliveira-Tintino CD, Ramos AGB, de Oliveira MRC, Martins AOBPB, de Lacerda BCGV, de Andrade EM, Ribeiro-Filho J, Gonçalves Lima CM, Coutinho HDM, Menezes IRAD. Ximenia americana L.: Chemical Characterization and Gastroprotective Effect. ANALYTICA 2023; 4:141-158. [DOI: 10.3390/analytica4020012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
Abstract
Ximenia americana L., popularly known in Brazil as “ameixa do-mato, ameixa-brava, and ameixa-do-sertão,” is widely used in folk medicine to treat several intestinal disorders. The present study assessed the potential mechanisms of action underlying the gastroprotective activity of the hydroethanolic extract of Ximenia americana L. (EHXA) stem bark. The acute toxicity of EHXA was estimated, and later, the gastroprotective effect in mice was assessed through acute models of gastric lesions induced by acidified or absolute ethanol and indomethacin, where the following mechanisms were pharmacologically analyzed: the involvement of prostaglandins (PG), histamine (H2) receptors, ATP-dependent potassium channels, sulfhydryl groups (SH), α2 adrenergic receptors, nitric oxide (NO), myeloperoxidase (MPO), gastric mucus production, and acetylcholine-mediated intestinal motility. Regarding toxicity, EHXA did not cause deaths or signs of toxicity (LD50 greater than or equal to 2000 mg/kg/p.o.). When the gastroprotective effect was assessed, EHXA (50, 100, and 200 mg/kg/p.o.) reduced the rate of lesions induced by acidified ethanol by 65.63; 53.66, and 58.02% in absolute ethanol at 88.91, 78.82, and 74.68%, respectively, when compared to the negative control group. In the indomethacin-induced gastric injury model, the reductions were 84.69, 55.99, 55.99, and 42.50%, respectively. The study revealed that EHXA might stimulate mucus production and reduce intestinal motility through SH groups, NO production, and activation of α2 adrenergic receptors. The results indicated that EHXA had significant gastroprotective activity in the evaluated models. However, further investigation is required to elucidate the cellular and molecular events underlying the action of EHXA components and to correlate them with the modulation of the signaling pathways, as demonstrated by the current pharmacological approach. Therefore, the results demonstrated in the present study, as well as previously reported findings, support the recommendation of using this species in traditional communities in Brazil.
Collapse
Affiliation(s)
- Renata Torres Pessoa
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| | - Isabel Sousa Alcântara
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| | - Lucas Yure Santos da Silva
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| | - Roger Henrique Souza da Costa
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| | - Tarcísio Mendes Silva
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| | - Cícera Datiane de Morais Oliveira-Tintino
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| | - Andreza Guedes Barbosa Ramos
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| | - Maria Rayane Correia de Oliveira
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
- Graduate Program in Biotechnology-Northeast Biotechnology Network (RENORBIO), State University of Ceará (UECE), Av. Dr. Silas Munguba, 1700, Fortaleza 60741-000, CE, Brazil
| | - Anita Oliveira Brito Pereira Bezerra Martins
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| | | | | | - Jaime Ribeiro-Filho
- Department of Biotechnology, Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio, Fortaleza 60180-190, CE, Brazil
| | | | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| | - Irwin Rose Alencar de Menezes
- Laboratory of Pharmacology and Molecular Chemistry, Department of Biological Chemistry, Regional University of Cariri, Rua Coronel Antônio Luis 1161, Crato 63105-000, CE, Brazil
| |
Collapse
|
47
|
Ailani J, Nahas SJ, Friedman DI, Kunkel T. The Safety of Celecoxib as an Acute Treatment for Migraine: A Narrative Review. Pain Ther 2023; 12:655-669. [PMID: 37093356 PMCID: PMC10199993 DOI: 10.1007/s40122-023-00501-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 04/25/2023] Open
Abstract
INTRODUCTION Nonsteroidal anti-inflammatory drugs (NSAIDs) have been the first-line choice for the acute treatment of migraine attacks for decades; however, the safety of a particular NSAID is related to its treatment dose, duration, and mechanism of action. Although adverse event (AE) risks differ substantially among individual migraine treatments, increased or prolonged exposure to any NSAID elevates risks and severity of AEs. METHODS For this narrative review, we conducted a literature search of PubMed until July 2022, focusing on the history, mechanism of action, and treatment guidelines informing the safety and efficacy of celecoxib oral solution for the acute treatment of migraine attacks. RESULTS Here we discuss the mechanisms of action of nonselective NSAIDs vs. cyclooxygenase-2 (COX-2) inhibitors, and how these mechanisms underlie the AEs associated with these treatments. We review the clinical trials that influenced the regulatory history of NSAIDs, specifically COX-2 inhibitors, the role of traditional and new formulations of NSAIDs including celecoxib oral solution, and special considerations in the acute treatment of migraine attacks. CONCLUSIONS Low-dose formulations of NSAIDs, such as celecoxib oral solution, provide acute migraine analgesia with similar or fewer associated cardiovascular and gastrointestinal events than previous formulations.
Collapse
Affiliation(s)
| | | | | | - Todd Kunkel
- Collegium Pharmaceutical, Inc, 100 Technology Center Drive, Suite 300, Stoughton, MA, 02072, USA.
| |
Collapse
|
48
|
Molecular docking and anti-ulcerative potential of Cucumis (L. Inodorous) on ibuprofen induced gastric ulceration in male wistar animals. Biomed Pharmacother 2023; 161:114531. [PMID: 36934555 DOI: 10.1016/j.biopha.2023.114531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND The use of NSAIDs have caused stomach injury by inhibiting endogenous mucosal prostaglandin production. Cucumis melo is reported to possess antiulcer potential. This study investigates the mechanism underlying the antiulcer potentials of Cucumis melo (CUM). METHODS Thirty-five male Wistar rat were randomly assigned to each of seven groups; A(control given water and rat pellets), B(gastric ulcer induced with ibuprofen 400 mg/kg), C (Misoprotol 200 μg/kg), D to G (pretreated with different variation of CUM extract; 25 %, 50 %, 75 % and 100 % at a dose of 1 ml/kg for 3 weeks prior to gastric ulcer induction). Ulcer score, ulcer index and percentage inhibition, total gastric acidity was measured. Antioxidant activities, Malondialdehyde, H+/K+ ATPase, PGE2, TNF-α was done by spectrophotometry. Molecular docking investigation of Cucumis melo compounds against Prostaglandin E2 was carried out. Level of significance was tested at P ≤ 0.05 using Tukey post hoc. RESULT Total gastric acidity, ulcer score, ulcer index, MDA, TNF-α significantly decreased after CUM treatment when compared to group B. The percentage inhibition, antioxidant activities, PGE2 concentration was significantly increased in all treatment groups compared to group B. Interactions of selected compounds of CUM with Prostaglandin E2 at various docking pockets showed folic acid has highest binding affinity followed by delta7-avenasterol and codisterol to PGE2 receptor. this study shows that one of the mechanisms by which CUM exhibits its antiulcer potential by enhancing Prostaglandin synthesis and antioxidant capacity. Therefore, Cucumis melo can therefore be explored as novel antiulcer agents.
Collapse
|
49
|
Pratiwi F, Fardah Athiyyah A, Darma A, Gunadi Ranuh R, Widjiati W, Riawan W, Rizky Sumitro K, Marto Sudarmo S. Lactobacillus plantarum IS-10506 Accelerates Healing of Gastric Injury Induced by Ketorolac in Wistar Rats. RESEARCH JOURNAL OF PHARMACY AND TECHNOLOGY 2023:307-313. [DOI: 10.52711/0974-360x.2023.00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Gastric injury is an event that often occurs due to many factors, such as the use of drugs, stress factors, infections, chemicals, etc. The use of histamin 2(H2) receptor antagonist drugs and pump inhibitors have become the choice for gastric injury treatment so far and requires a relatively long time. The widespread use of probiotics has been shown to affect the healing process of digestive tract disorders, for example in the small intestine. This study aimed to investigate the effect of Lactobacillus plantarumIS-10506 in acceleratingthe healing of gastric injury induced by ketorolac in the rat. The experimental study used 64 Wistar rats divided into 4 groups, group 1 (control), group 2(ketorolac administration), group 3 (ketorolac and probiotic administration), and group 4(preventive treatment with probiotic before, ketorolac administration, and treatment with probiotic). Each group was divided into 4 subgroups based on the day of sacrifice, days 1, 5, 7, 10. The healing of gastric injury evaluating by epithelial defects improvement and fibroblast cells by hematoxylin and eosin (HE) staining.The group induced by ketorolac (group 2) showed the highest epithelial defect score (p=0.048) on day 1. The repair of the epithelial defect in group 3 and group 4 were significantly increased on day 5, while group 2remains defectiveon day 5(p=0.019). Fibroblast cells of groups 3 and 4 decreased significantly more than others on day 10(p=0.024). Lactobacillus plantarum IS-10506 influences the healing acceleration of gastric injury by ketorolac by enhancing epithelial regenerationand fibroblast cells.
Collapse
Affiliation(s)
- Fauziah Pratiwi
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr.Moestopo No. 6-8, Surabaya, Indonesia
| | - Alpha Fardah Athiyyah
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr.Moestopo No. 6-8, Surabaya, Indonesia
| | - Andy Darma
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr.Moestopo No. 6-8, Surabaya, Indonesia
| | - Reza Gunadi Ranuh
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr.Moestopo No. 6-8, Surabaya, Indonesia
| | - Widjiati Widjiati
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr.Moestopo No. 6-8, Surabaya, Indonesia
| | - Wibi Riawan
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr.Moestopo No. 6-8, Surabaya, Indonesia
| | - Khadijah Rizky Sumitro
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr.Moestopo No. 6-8, Surabaya, Indonesia
| | - Subijanto Marto Sudarmo
- Department of Child Health, Dr. Soetomo Hospital, Faculty of Medicine, Universitas Airlangga, Jl. Prof. Dr.Moestopo No. 6-8, Surabaya, Indonesia
| |
Collapse
|
50
|
Incidence and Risk Factors of Feeding Intolerance in Adult Patients Given Enteral Nutrition Therapy After Liver Transplant. TOP CLIN NUTR 2023. [DOI: 10.1097/tin.0000000000000305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|