1
|
Hao J, Huang Z, Zhang S, Song K, Wang J, Gao C, Fang Z, Zhang N. Deciphering the multifaceted roles and clinical implications of 2-hydroxyglutarate in cancer. Pharmacol Res 2024; 209:107437. [PMID: 39349213 DOI: 10.1016/j.phrs.2024.107437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Increasing evidence indicates that 2-hydroxyglutarate (2HG) is an oncometabolite that drives tumour formation and progression. Due to mutations in isocitrate dehydrogenase (IDH) and the dysregulation of other enzymes, 2HG accumulates significantly in tumour cells. Due to its structural similarity to α-ketoglutarate (αKG), accumulated 2HG leads to the competitive inhibition of αKG-dependent dioxygenases (αKGDs), such as KDMs, TETs, and EGLNs. This inhibition results in epigenetic alterations in both tumour cells and the tumour microenvironment. This review comprehensively discusses the metabolic pathways of 2HG and the subsequent pathways influenced by elevated 2HG levels. We will delve into the molecular mechanisms by which 2HG exerts its oncogenic effects, particularly focusing on epigenetic modifications. This review will also explore the various methods available for the detection of 2HG, emphasising both current techniques and emerging technologies. Furthermore, 2HG shows promise as a biomarker for clinical diagnosis and treatment. By integrating these perspectives, this review aims to provide a comprehensive overview of the current understanding of 2HG in cancer biology, highlight the importance of ongoing research, and discuss future directions for translating these findings into clinical applications.
Collapse
Affiliation(s)
- Jie Hao
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Ziyi Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Siyue Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Kefan Song
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Juncheng Wang
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Ning Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
2
|
Abecunas C, Kidd AD, Jiang Y, Zong H, Fallahi-Sichani M. Multivariate analysis of metabolic state vulnerabilities across diverse cancer contexts reveals synthetically lethal associations. Cell Rep 2024; 43:114775. [PMID: 39305483 PMCID: PMC11511630 DOI: 10.1016/j.celrep.2024.114775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/10/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Targeting the distinct metabolic needs of tumor cells has recently emerged as a promising strategy for cancer therapy. The heterogeneous, context-dependent nature of cancer cell metabolism, however, poses challenges to identifying effective therapeutic interventions. Here, we utilize various unsupervised and supervised multivariate modeling approaches to systematically pinpoint recurrent metabolic states within hundreds of cancer cell lines, elucidate their association with tumor lineage and growth environments, and uncover vulnerabilities linked to their metabolic states across diverse genetic and tissue contexts. We validate key findings via analysis of data from patient-derived tumors and pharmacological screens and by performing genetic and pharmacological experiments. Our analysis uncovers synthetically lethal associations between the tumor metabolic state (e.g., oxidative phosphorylation), driver mutations (e.g., loss of tumor suppressor PTEN), and actionable biological targets (e.g., mitochondrial electron transport chain). Investigating the mechanisms underlying these relationships can inform the development of more precise and context-specific, metabolism-targeted cancer therapies.
Collapse
Affiliation(s)
- Cara Abecunas
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Audrey D Kidd
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Ying Jiang
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Hui Zong
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA; UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Mohammad Fallahi-Sichani
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
3
|
Waarts MR, Mowla S, Boileau M, Benitez ARM, Sango J, Bagish M, Fernández-Maestre I, Shan Y, Eisman SE, Park YC, Wereski M, Csete I, O’Connor K, Romero-Vega AC, Miles LA, Xiao W, Wu X, Koche RP, Armstrong SA, Shih AH, Papapetrou EP, Butler JM, Cai SF, Bowman RL, Levine RL. CRISPR Dependency Screens in Primary Hematopoietic Stem Cells Identify KDM3B as a Genotype-specific Vulnerability in IDH2- and TET2-mutant Cells. Cancer Discov 2024; 14:1860-1878. [PMID: 38819218 PMCID: PMC11452290 DOI: 10.1158/2159-8290.cd-23-1092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/26/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
Clonal hematopoiesis (CH) is a common premalignant state in the blood and confers an increased risk of blood cancers and all-cause mortality. Identification of therapeutic targets in CH has been hindered by the lack of an ex vivo platform amenable for studying primary hematopoietic stem and progenitor cells (HSPCs). Here, we utilize an ex vivo co-culture system of HSPCs with bone marrow endothelial cells to perform CRISPR/Cas9 screens in mutant HSPCs. Our data reveal that loss of the histone demethylase family members Kdm3b and Jmjd1c specifically reduces the fitness of Idh2- and Tet2-mutant HSPCs. Kdm3b loss in mutant cells leads to decreased expression of critical cytokine receptors including Mpl, rendering mutant HSPCs preferentially susceptible to inhibition of downstream JAK2 signaling. Our study nominates an epigenetic regulator and an epigenetically regulated receptor signaling pathway as genotype-specific therapeutic targets and provides a scalable platform to identify genetic dependencies in mutant HSPCs. Significance: Given the broad prevalence, comorbidities, and risk of malignant transformation associated with CH, there is an unmet need to identify therapeutic targets. We develop an ex vivo platform to perform CRISPR/Cas9 screens in primary HSPCs. We identify KDM3B and downstream signaling components as genotype-specific dependencies in CH and myeloid malignancies. See related commentary by Khabusheva and Goodell, p. 1768.
Collapse
Affiliation(s)
- Michael R. Waarts
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shoron Mowla
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Meaghan Boileau
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Junya Sango
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai
| | - Maya Bagish
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Inés Fernández-Maestre
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yufan Shan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Shira E. Eisman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Young C. Park
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Matthew Wereski
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Isabelle Csete
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Kavi O’Connor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Angelica C. Romero-Vega
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Linde A. Miles
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Wenbin Xiao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Xiaodi Wu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Richard P. Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott A. Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Alan H. Shih
- Department of Medicine, Division of Hematology Oncology and Tisch Cancer Institute (TCI), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eirini P. Papapetrou
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Advancement of Blood Cancer Therapies, Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai
| | - Jason M. Butler
- Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Sheng F. Cai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert L. Bowman
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| |
Collapse
|
4
|
Piva R, Gharari N, Labrador M, Mader S. IDH2 Inhibitors Gain a Wildcard Status in the Cancer Therapeutics Competition. Cancers (Basel) 2024; 16:3280. [PMID: 39409901 PMCID: PMC11476114 DOI: 10.3390/cancers16193280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
The metabolic reprogramming characteristic of cancer cells, including the Warburg effect, has long been recognized as a hallmark of malignancy. This commentary explores three recent investigations focusing on the role of wild-type IDH2 in cancer and immune cell function. The first publication identifies wild-type IDH2 as a crucial factor in the survival of triple-negative breast cancer (TNBC) cells, with its inhibition leading to disrupted energy metabolism, reduced tumor growth, and enhanced apoptosis. The second analysis examines the role of IDH2 in CD8+ T cells, revealing that its inhibition promotes the differentiation of memory T cells, thereby enhancing the efficacy of cell-based immunotherapies like CAR T cells. A third investigation supports these findings, demonstrating that IDH2 inhibition in CAR T cells reduces exhaustion, enhances memory T cell formation, and improves anti-tumor efficacy. Collectively, these reports highlight wild-type IDH2 as a promising therapeutic target, with potential applications as a two-edged sword in both cancer treatment and immunotherapy. The development of specific wild-type IDH2 inhibitors could offer new avenues for therapy, particularly in tumors reliant on IDH2 activity as well as in enhancing the effectiveness of CAR T cell therapies.
Collapse
Affiliation(s)
- Roberto Piva
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (N.G.); (M.L.)
- Città della Salute e della Scienza Hospital, 10126 Turin, Italy
| | - Nariman Gharari
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (N.G.); (M.L.)
| | - Maria Labrador
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (N.G.); (M.L.)
| | - Sylvie Mader
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC H3T 1J4, Canada;
| |
Collapse
|
5
|
Blanco MJ, Buskes MJ, Govindaraj RG, Ipsaro JJ, Prescott-Roy JE, Padyana AK. Allostery Illuminated: Harnessing AI and Machine Learning for Drug Discovery. ACS Med Chem Lett 2024; 15:1449-1455. [PMID: 39291033 PMCID: PMC11403745 DOI: 10.1021/acsmedchemlett.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
In the past several years there has been rapid adoption of artificial intelligence (AI) and machine learning (ML) tools for drug discovery. In this Microperspective, we comment on recent AI/ML applications to the discovery of allosteric modulators, focusing on breakthroughs with AlphaFold, structure-based drug discovery (SBDD), and medicinal chemistry applications. We discuss how these technologies are facilitating drug discovery and the remaining challenges to identify allosteric binding sites and ligands.
Collapse
Affiliation(s)
- Maria-Jesus Blanco
- Atavistik Bio, 101 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Melissa J Buskes
- Atavistik Bio, 101 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Rajiv G Govindaraj
- Atavistik Bio, 101 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Jonathan J Ipsaro
- Atavistik Bio, 101 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Joann E Prescott-Roy
- Atavistik Bio, 101 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| | - Anil K Padyana
- Atavistik Bio, 101 Cambridgepark Drive, Cambridge, Massachusetts 02140, United States
| |
Collapse
|
6
|
Bello RO, Okunlola ST, Kumar N, Victor O, Jimoh TO, Abdulsalam ZN, Kehinde IO, Umar HI. An integrative computational approach for the identification of dual inhibitors of isocitrate dehydrogenase 1 and 2 from phytocompounds of Phyllantus amarus. J Biomol Struct Dyn 2024; 42:7272-7288. [PMID: 37559488 DOI: 10.1080/07391102.2023.2245494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/16/2023] [Indexed: 08/11/2023]
Abstract
Genetic alterations of the genes encoding the isocitrate dehydrogenase (IDH) enzymes have been identified in about 20% of acute myeloid leukemia (AML) cases as well as many other forms of cancers. Notable among these alterations are the neomorphic IDH1_R132H and IDH2_R140Q mutations which lead to the production of an oncometabolite. Hence, their inhibition is widely considered a therapeutic strategy in the treatment of many cancers. While many inhibitors of the mutant enzymes have been developed, an inhibitor that is capable of co-inhibiting both enzymes are currently lacking while drug resistance has also limited the clinical usage of previously identified mono inhibitors. Consequently, this study employed molecular modeling approaches, such as molecular docking, molecular mechanics generalized Born Surface area (MM/GBSA), molecular dynamics (MD) simulation, and density functional theory (DFT) analysis to identify potential dual inhibitors of the previously mentioned mutant IDH1/2 from the phytocompounds of Phyllantus amarus. Of the 31 phytocompounds identified, 20 showed good binding affinities for both IDH1 _R132H and IDH2 _R140Q (ranging from -5.2 Kca/mol to -9.6 Kcal/mol) and had desirable pharmacokinetic properties. However, ellagic acid and pinoresinol possessed better pharmacokinetic properties, rendering suitable hits. Investigation of the behavior of the IDH1_R132H and IDH2_R140Q complexes with ellagic acid and pinoresinol via the RMSD, RMSF, and contact map analyses showed that all the complexes-maintained stability throughout the simulation time. Ultimately, ellagic acid and pinoresinol were identified as promising hits for the development of IDH1_R132H and IDH2_R140Q dual inhibitors. However, further experimental studies are needed to confirm their potential as therapies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ridwan Opeyemi Bello
- Department of Biotechnology, School of Life Sciences (SLS), Federal University of Technology Akure, Akure, Ondo State, Nigeria
- Computer-Aided Therapeutic Discovery and Design Platform (CAT2D), School of Life Sciences (SLS), Federal University of Technology Akure, Akure, Ondo State, Nigeria
| | - Salihaat Toyin Okunlola
- Computer-Aided Therapeutic Discovery and Design Platform (CAT2D), School of Life Sciences (SLS), Federal University of Technology Akure, Akure, Ondo State, Nigeria
- Department of Physiology, School of Basic Medical Sciences, Federal University of Technology Akure, Akure, Ondo State, Nigeria
| | - Neeraj Kumar
- Department of Pharmaceutical Chemistry, Bhupal Nobles' College of Pharmacy, Udaipur, Rajasthan, India
| | - Omoboyede Victor
- Computer-Aided Therapeutic Discovery and Design Platform (CAT2D), School of Life Sciences (SLS), Federal University of Technology Akure, Akure, Ondo State, Nigeria
- Department of Biochemistry, School of Life Sciences (SLS), Federal University of Technology Akure, Akure, Ondo State, Nigeria
| | - Tajudeen O Jimoh
- Department of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Islamic University in Uganda, Kampala, Uganda
| | - Zainab Naeem Abdulsalam
- Computer-Aided Therapeutic Discovery and Design Platform (CAT2D), School of Life Sciences (SLS), Federal University of Technology Akure, Akure, Ondo State, Nigeria
| | - Idayat Oyinkansola Kehinde
- Computer-Aided Therapeutic Discovery and Design Platform (CAT2D), School of Life Sciences (SLS), Federal University of Technology Akure, Akure, Ondo State, Nigeria
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Haruna Isiyaku Umar
- Computer-Aided Therapeutic Discovery and Design Platform (CAT2D), School of Life Sciences (SLS), Federal University of Technology Akure, Akure, Ondo State, Nigeria
- Department of Biochemistry, School of Life Sciences (SLS), Federal University of Technology Akure, Akure, Ondo State, Nigeria
| |
Collapse
|
7
|
Shukla M, Abdul-Hay M, Choi JH. Molecular Features and Treatment Paradigms of Acute Myeloid Leukemia. Biomedicines 2024; 12:1768. [PMID: 39200232 PMCID: PMC11351617 DOI: 10.3390/biomedicines12081768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Acute myeloid leukemia (AML) is a common hematologic malignancy that is considered to be a disease of aging, and traditionally has been treated with induction chemotherapy, followed by consolidation chemotherapy and/or allogenic hematopoietic stem cell transplantation. More recently, with the use of next-generation sequencing and access to molecular information, targeted molecular approaches to the treatment of AML have been adopted. Molecular targeting is gaining prominence, as AML mostly afflicts the elderly population, who often cannot tolerate traditional chemotherapy. Understanding molecular changes at the gene level is also important for accurate disease classification, risk stratification, and prognosis, allowing for more personalized medicine. Some mutations are well studied and have an established gene-specific therapy, including FLT3 and IDH1/2, while others are being investigated in clinical trials. However, data on most known mutations in AML are still minimal and therapeutic studies are in pre-clinical stages, highlighting the importance of further research and elucidation of the pathophysiology involving these genes. In this review, we aim to highlight the key molecular alterations and chromosomal changes that characterize AML, with a focus on pathophysiology, presently available treatment approaches, and future therapeutic options.
Collapse
Affiliation(s)
| | | | - Jun H. Choi
- Department of Hematology and Medical Oncology, NYU Langone Health, Perlmutter Cancer Center, New York, NY 10016, USA; (M.S.)
| |
Collapse
|
8
|
Carosi F, Broseghini E, Fabbri L, Corradi G, Gili R, Forte V, Roncarati R, Filippini DM, Ferracin M. Targeting Isocitrate Dehydrogenase (IDH) in Solid Tumors: Current Evidence and Future Perspectives. Cancers (Basel) 2024; 16:2752. [PMID: 39123479 PMCID: PMC11311780 DOI: 10.3390/cancers16152752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
The isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) enzymes are involved in key metabolic processes in human cells, regulating differentiation, proliferation, and oxidative damage response. IDH mutations have been associated with tumor development and progression in various solid tumors such as glioma, cholangiocarcinoma, chondrosarcoma, and other tumor types and have become crucial markers in molecular classification and prognostic assessment. The intratumoral and serum levels of D-2-hydroxyglutarate (D-2-HG) could serve as diagnostic biomarkers for identifying IDH mutant (IDHmut) tumors. As a result, an increasing number of clinical trials are evaluating targeted treatments for IDH1/IDH2 mutations. Recent studies have shown that the focus of these new therapeutic strategies is not only the neomorphic activity of the IDHmut enzymes but also the epigenetic shift induced by IDH mutations and the potential role of combination treatments. Here, we provide an overview of the current knowledge about IDH mutations in solid tumors, with a particular focus on available IDH-targeted treatments and emerging results from clinical trials aiming to explore IDHmut tumor-specific features and to identify the clinical benefit of IDH-targeted therapies and their combination strategies. An insight into future perspectives and the emerging roles of circulating biomarkers and radiomic features is also included.
Collapse
Affiliation(s)
- Francesca Carosi
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (L.F.); (G.C.)
| | | | - Laura Fabbri
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (L.F.); (G.C.)
| | - Giacomo Corradi
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (L.F.); (G.C.)
| | - Riccardo Gili
- Medical Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Valentina Forte
- Diagnostic Imaging Unit, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Roberta Roncarati
- Istituto di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), 40136 Bologna, Italy;
| | - Daria Maria Filippini
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.C.); (L.F.); (G.C.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Manuela Ferracin
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
9
|
Tawfik HO, Mousa MHA, Zaky MY, El-Dessouki AM, Sharaky M, Abdullah O, El-Hamamsy MH, Al-Karmalawy AA. Rationale design of novel substituted 1,3,5-triazine candidates as dual IDH1(R132H)/ IDH2(R140Q) inhibitors with high selectivity against acute myeloid leukemia: In vitro and in vivo preclinical investigations. Bioorg Chem 2024; 149:107483. [PMID: 38805913 DOI: 10.1016/j.bioorg.2024.107483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
In this study, novel substituted 1,3,5-triazine candidates (4a-d, 5a-j, and 6a-d) were designed as second-generation small molecules to act as dual IDH1 and IDH2 inhibitors according to the pharmacophoric features of both vorasidenib and enasidenib. Compounds 6a and 6b for leukemia cell lines showed from low to sub-micromolar GI50. Moreover, compounds 4c, 5f, and 6b described the frontier antitumor activity against THP1 and Kasumi Leukemia cancer cells with IC50 values of (10 and 12), (10.5 and 7), and (6.2 and 5.9) µg/mL, which were superior to those of cisplatin (25 and 28) µg/mL, respectively. Interestingly, compounds 4c, 6b, and 6d represented the best dual IDH1(R132H)/IDH2(R140Q) inhibitory potentials with IC50 values of (0.72 and 1.22), (0.12 and 0.93), and (0.50 and 1.28) µg/mL, respectively, compared to vorasidenib (0.02 and 0.08) µg/mL and enasidenib (0.33 and 1.80) µg/mL. Furthermore, the most active candidate (6b) has very promising inhibitory potentials towards HIF-1α, VEGF, and SDH, besides, a marked increase of ROS was observed as well. Besides, compound 6b induced the upregulation of P53, BAX, Caspases 3, 6, 8, and 9 proteins by 3.70, 1.99, 2.06, 1.73, 1.75, and 1.85-fold changes, respectively, and the downregulation for the BCL-2 protein by 0.55-fold change compared to the control. Besides, the in vivo behavior of compound 6b as an antitumor agent was evaluated in female mice bearing solid Ehrlich carcinoma tumors. Notably, compound 6b administration resulted in a prominent decrease in the weight and volume of the tumors, accompanied by improvements in biochemical, hematological, and histological parameters.
Collapse
Affiliation(s)
- Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Mai H A Mousa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | - Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Omeima Abdullah
- Pharmaceutical Sciences Department, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mervat H El-Hamamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt.
| |
Collapse
|
10
|
Lindahl E, Arvidsson E, Friedman R. Trans vs. cis: a computational study of enasidenib resistance due to IDH2 mutations. Phys Chem Chem Phys 2024; 26:18989-18996. [PMID: 38953374 DOI: 10.1039/d4cp01571a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Isocitrate dehydrogenase 2 (IDH2) is a homodimeric enzyme that plays an important role in energy production. A mutation R140Q in one monomer makes the enzyme tumourigenic. Enasidenib is an effective inhibitor of IDH2/R140Q. A secondary mutation Q316E leads to enasidenib resistance. This mutation was hitherto only found in trans, i.e. where one monomer has the R140Q mutation and the other carries the Q316E mutation. It is not clear if the mutation only leads to resistance when in trans or if it has been discovered in trans only by chance, since it was only reported in two patients. Using molecular dynamics (MD) simulations we show that the binding of enasidenib to IDH2 is indeed much weaker when the Q316E mutation takes place in trans not in cis, which provides a molecular explanation for the clinical finding. This is corroborated by non-covalent interaction (NCI) analysis and DFT calculations. Whereas the MD simulations show a loss of one hydrogen bond upon the resistance mutation, NCI and energy decomposition analysis (EDA) reveal that a multitude of interactions are weakened.
Collapse
Affiliation(s)
- Erik Lindahl
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden.
| | - Erik Arvidsson
- Program in Medicine, Linköping University, Sandbäcksgatan 7, 582 25 Linköping, Sweden
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden.
| |
Collapse
|
11
|
Abecunas C, Kidd AD, Jiang Y, Zong H, Fallahi-Sichani M. Multivariate analysis of metabolic state vulnerabilities across diverse cancer contexts reveals synthetically lethal associations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.28.569098. [PMID: 38076921 PMCID: PMC10705426 DOI: 10.1101/2023.11.28.569098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Targeting the distinct metabolic needs of tumor cells has recently emerged as a promising strategy for cancer therapy. The heterogeneous, context-dependent nature of cancer cell metabolism, however, poses challenges in identifying effective therapeutic interventions. Here, we utilize various unsupervised and supervised multivariate modeling approaches to systematically pinpoint recurrent metabolic states within hundreds of cancer cell lines, elucidate their association with tumor lineage and growth environments, and uncover vulnerabilities linked to their metabolic states across diverse genetic and tissue contexts. We validate key findings via analysis of data from patient-derived tumors and pharmacological screens, and by performing new genetic and pharmacological experiments. Our analysis uncovers new synthetically lethal associations between the tumor metabolic state (e.g., oxidative phosphorylation), driver mutations (e.g., loss of tumor suppressor PTEN), and actionable biological targets (e.g., mitochondrial electron transport chain). Investigating the mechanisms underlying these relationships can inform the development of more precise and context-specific, metabolism-targeted cancer therapies.
Collapse
Affiliation(s)
- Cara Abecunas
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Present address: Novartis Institutes for BioMedical Research, Cambridge, MA 02139
| | - Audrey D. Kidd
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
| | - Ying Jiang
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908
| | - Hui Zong
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908
- UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908
| | - Mohammad Fallahi-Sichani
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908
- UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908
- Lead contact
| |
Collapse
|
12
|
Ivanov S, Nano O, Hana C, Bonano-Rios A, Hussein A. Molecular Targeting of the Isocitrate Dehydrogenase Pathway and the Implications for Cancer Therapy. Int J Mol Sci 2024; 25:7337. [PMID: 39000443 PMCID: PMC11242572 DOI: 10.3390/ijms25137337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The advent of comprehensive genomic profiling using next-generation sequencing (NGS) has unveiled an abundance of potentially actionable genetic aberrations that have shaped our understanding of the cancer biology landscape. Isocitrate dehydrogenase (IDH) is an enzyme present in the cytosol (IDH1) and mitochondria (IDH2 and IDH3). In the mitochondrion, it catalyzes the irreversible oxidative decarboxylation of isocitrate, yielding the production of α-ketoglutarate and nicotinamide adenine dinucleotide phosphate (NADPH) as well as carbon dioxide (CO2). In the cytosol, IDH catalyzes the decarboxylation of isocitrate to α-ketoglutarate as well as the reverse reductive carboxylation of α-ketoglutarate to isocitrate. These rate-limiting steps in the tricarboxylic acid cycle, as well as the cytoplasmic response to oxidative stress, play key roles in gene regulation, cell differentiation, and tissue homeostasis. Mutations in the genes encoding IDH1 and IDH2 and, less commonly, IDH3 have been found in a variety of cancers, most commonly glioma, acute myeloid leukemia (AML), chondrosarcoma, and intrahepatic cholangiocarcinoma. In this paper, we intend to elucidate the theorized pathophysiology behind IDH isomer mutation, its implication in cancer manifestation, and discuss some of the available clinical data regarding the use of novel IDH inhibitors and their role in therapy.
Collapse
Affiliation(s)
- Stanislav Ivanov
- Memorial Cancer Institute, Memorial Healthcare System, Pembroke Pines, FL 33028, USA; (O.N.); (A.B.-R.); (A.H.)
| | | | | | | | | |
Collapse
|
13
|
San José-Enériz E, Gimenez-Camino N, Rabal O, Garate L, Miranda E, Gómez-Echarte N, García F, Charalampopoulou S, Sáez E, Vilas-Zornoza A, San Martín-Uriz P, Valcárcel LV, Barrena N, Alignani D, Tamariz-Amador LE, Pérez-Ruiz A, Hilscher S, Schutkowski M, Alfonso-Pierola A, Martinez-Calle N, Larrayoz MJ, Paiva B, Calasanz MJ, Muñoz J, Isasa M, Martin-Subero JI, Pineda-Lucena A, Oyarzabal J, Agirre X, Prósper F. Epigenetic-based differentiation therapy for Acute Myeloid Leukemia. Nat Commun 2024; 15:5570. [PMID: 38956053 PMCID: PMC11219871 DOI: 10.1038/s41467-024-49784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Despite the development of novel therapies for acute myeloid leukemia, outcomes remain poor for most patients, and therapeutic improvements are an urgent unmet need. Although treatment regimens promoting differentiation have succeeded in the treatment of acute promyelocytic leukemia, their role in other acute myeloid leukemia subtypes needs to be explored. Here we identify and characterize two lysine deacetylase inhibitors, CM-444 and CM-1758, exhibiting the capacity to promote myeloid differentiation in all acute myeloid leukemia subtypes at low non-cytotoxic doses, unlike other commercial histone deacetylase inhibitors. Analyzing the acetylome after CM-444 and CM-1758 treatment reveals modulation of non-histone proteins involved in the enhancer-promoter chromatin regulatory complex, including bromodomain proteins. This acetylation is essential for enhancing the expression of key transcription factors directly involved in the differentiation therapy induced by CM-444/CM-1758 in acute myeloid leukemia. In summary, these compounds may represent effective differentiation-based therapeutic agents across acute myeloid leukemia subtypes with a potential mechanism for the treatment of acute myeloid leukemia.
Collapse
Affiliation(s)
- Edurne San José-Enériz
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, IDISNA, CCUN, Avenida Pío XII 55, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Naroa Gimenez-Camino
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, IDISNA, CCUN, Avenida Pío XII 55, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Obdulia Rabal
- Small-Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, Avenida Pío XII 55, 31008, Pamplona, Spain
| | - Leire Garate
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, IDISNA, CCUN, Avenida Pío XII 55, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Estibaliz Miranda
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, IDISNA, CCUN, Avenida Pío XII 55, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Nahia Gómez-Echarte
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, IDISNA, CCUN, Avenida Pío XII 55, 31008, Pamplona, Spain
| | - Fernando García
- ProteoRed-ISCIII, Unidad de Proteómica, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Stella Charalampopoulou
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Casanova 143, 08036, Barcelona, Spain
| | - Elena Sáez
- Small-Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, Avenida Pío XII 55, 31008, Pamplona, Spain
| | - Amaia Vilas-Zornoza
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, IDISNA, CCUN, Avenida Pío XII 55, 31008, Pamplona, Spain
| | - Patxi San Martín-Uriz
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, IDISNA, CCUN, Avenida Pío XII 55, 31008, Pamplona, Spain
| | - Luis V Valcárcel
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, IDISNA, CCUN, Avenida Pío XII 55, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029, Madrid, Spain
- TECNUN, Universidad de Navarra, Manuel de Lardizábal 13, 20018, San Sebastián, Spain
| | - Naroa Barrena
- TECNUN, Universidad de Navarra, Manuel de Lardizábal 13, 20018, San Sebastián, Spain
| | - Diego Alignani
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, IDISNA, CCUN, Avenida Pío XII 55, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Luis Esteban Tamariz-Amador
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, IDISNA, CCUN, Avenida Pío XII 55, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029, Madrid, Spain
- Departmento de Hematología, Clínica Universidad de Navarra, and CCUN, Universidad de Navarra, Avenida Pío XII 36, 31008, Pamplona, Spain
| | - Ana Pérez-Ruiz
- Biomedical Engineering Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, IDISNA, Avenida Pío XII 55, 31008, Pamplona, Spain
| | - Sebastian Hilscher
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120, Halle, Germany
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120, Halle, Germany
| | - Mike Schutkowski
- Department of Enzymology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120, Halle, Germany
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120, Halle, Germany
| | - Ana Alfonso-Pierola
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, IDISNA, CCUN, Avenida Pío XII 55, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029, Madrid, Spain
- Departmento de Hematología, Clínica Universidad de Navarra, and CCUN, Universidad de Navarra, Avenida Pío XII 36, 31008, Pamplona, Spain
| | - Nicolás Martinez-Calle
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, IDISNA, CCUN, Avenida Pío XII 55, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029, Madrid, Spain
- Departmento de Hematología, Clínica Universidad de Navarra, and CCUN, Universidad de Navarra, Avenida Pío XII 36, 31008, Pamplona, Spain
| | - María José Larrayoz
- CIMA LAB Diagnostics, Universidad de Navarra, Avenida Pío XII 55, 31008, Pamplona, Spain
| | - Bruno Paiva
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, IDISNA, CCUN, Avenida Pío XII 55, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029, Madrid, Spain
| | - María José Calasanz
- CIMA LAB Diagnostics, Universidad de Navarra, Avenida Pío XII 55, 31008, Pamplona, Spain
| | - Javier Muñoz
- Biocruces Bizkaia Health Research Institute, Cruces Plaza, 48903, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| | - Marta Isasa
- ProteoRed-ISCIII, Unidad de Proteómica, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - José Ignacio Martin-Subero
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029, Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Casanova 143, 08036, Barcelona, Spain
- Departamento de Fundamentos Clínicos, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys 23, 08010, Barcelona, Spain
| | - Antonio Pineda-Lucena
- Small-Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, Avenida Pío XII 55, 31008, Pamplona, Spain
| | - Julen Oyarzabal
- Small-Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, Avenida Pío XII 55, 31008, Pamplona, Spain.
| | - Xabier Agirre
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, IDISNA, CCUN, Avenida Pío XII 55, 31008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029, Madrid, Spain.
| | - Felipe Prósper
- Hemato-Oncology Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, IDISNA, CCUN, Avenida Pío XII 55, 31008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029, Madrid, Spain.
- Departmento de Hematología, Clínica Universidad de Navarra, and CCUN, Universidad de Navarra, Avenida Pío XII 36, 31008, Pamplona, Spain.
| |
Collapse
|
14
|
Zhang Y, Yan H, Wei Y, Wei X. Decoding mitochondria's role in immunity and cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189107. [PMID: 38734035 DOI: 10.1016/j.bbcan.2024.189107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
The functions of mitochondria, including energy production and biomolecule synthesis, have been known for a long time. Given the rising incidence of cancer, the role of mitochondria in cancer has become increasingly popular. Activated by components released by mitochondria, various pathways interact with each other to induce immune responses to protect organisms from attack. However, mitochondria play dual roles in the progression of cancer. Abnormalities in proteins, which are the elementary structures of mitochondria, are closely linked with oncogenesis. Both the aberrant accumulation of intermediates and mutations in enzymes result in the generation and progression of cancer. Therefore, targeting mitochondria to treat cancer may be a new strategy. Several drugs aimed at inhibiting mutated enzymes and accumulated intermediates have been tested clinically. Here, we discuss the current understanding of mitochondria in cancer and the interactions between mitochondrial functions, immune responses, and oncogenesis. Furthermore, we discuss mitochondria as hopeful targets for cancer therapy, providing insights into the progression of future therapeutic strategies.
Collapse
Affiliation(s)
- Yu Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan, PR China
| | - Hong Yan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan, PR China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan, PR China.
| |
Collapse
|
15
|
Choi HS, Kim BS, Yoon S, Oh SO, Lee D. Leukemic Stem Cells and Hematological Malignancies. Int J Mol Sci 2024; 25:6639. [PMID: 38928344 PMCID: PMC11203822 DOI: 10.3390/ijms25126639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The association between leukemic stem cells (LSCs) and leukemia development has been widely established in the context of genetic alterations, epigenetic pathways, and signaling pathway regulation. Hematopoietic stem cells are at the top of the bone marrow hierarchy and can self-renew and progressively generate blood and immune cells. The microenvironment, niche cells, and complex signaling pathways that regulate them acquire genetic mutations and epigenetic alterations due to aging, a chronic inflammatory environment, stress, and cancer, resulting in hematopoietic stem cell dysregulation and the production of abnormal blood and immune cells, leading to hematological malignancies and blood cancer. Cells that acquire these mutations grow at a faster rate than other cells and induce clone expansion. Excessive growth leads to the development of blood cancers. Standard therapy targets blast cells, which proliferate rapidly; however, LSCs that can induce disease recurrence remain after treatment, leading to recurrence and poor prognosis. To overcome these limitations, researchers have focused on the characteristics and signaling systems of LSCs and therapies that target them to block LSCs. This review aims to provide a comprehensive understanding of the types of hematopoietic malignancies, the characteristics of leukemic stem cells that cause them, the mechanisms by which these cells acquire chemotherapy resistance, and the therapies targeting these mechanisms.
Collapse
Affiliation(s)
- Hee-Seon Choi
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea;
| | - Sik Yoon
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.); (S.-O.O.)
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (S.Y.); (S.-O.O.)
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea;
- Transplantation Research Center, Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| |
Collapse
|
16
|
Zhang Z, Huang J, Zhang Z, Shen H, Tang X, Wu D, Bao X, Xu G, Chen S. Application of omics in the diagnosis, prognosis, and treatment of acute myeloid leukemia. Biomark Res 2024; 12:60. [PMID: 38858750 PMCID: PMC11165883 DOI: 10.1186/s40364-024-00600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is the most frequent leukemia in adults with a high mortality rate. Current diagnostic criteria and selections of therapeutic strategies are generally based on gene mutations and cytogenetic abnormalities. Chemotherapy, targeted therapies, and hematopoietic stem cell transplantation (HSCT) are the major therapeutic strategies for AML. Two dilemmas in the clinical management of AML are related to its poor prognosis. One is the inaccurate risk stratification at diagnosis, leading to incorrect treatment selections. The other is the frequent resistance to chemotherapy and/or targeted therapies. Genomic features have been the focus of AML studies. However, the DNA-level aberrations do not always predict the expression levels of genes and proteins and the latter is more closely linked to disease phenotypes. With the development of high-throughput sequencing and mass spectrometry technologies, studying downstream effectors including RNA, proteins, and metabolites becomes possible. Transcriptomics can reveal gene expression and regulatory networks, proteomics can discover protein expression and signaling pathways intimately associated with the disease, and metabolomics can reflect precise changes in metabolites during disease progression. Moreover, omics profiling at the single-cell level enables studying cellular components and hierarchies of the AML microenvironment. The abundance of data from different omics layers enables the better risk stratification of AML by identifying prognosis-related biomarkers, and has the prospective application in identifying drug targets, therefore potentially discovering solutions to the two dilemmas. In this review, we summarize the existing AML studies using omics methods, both separately and combined, covering research fields of disease diagnosis, risk stratification, prognosis prediction, chemotherapy, as well as targeted therapy. Finally, we discuss the directions and challenges in the application of multi-omics in precision medicine of AML. Our review may inspire both omics researchers and clinical physicians to study AML from a different angle.
Collapse
Affiliation(s)
- Zhiyu Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Jiayi Huang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhibo Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongjie Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China.
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
17
|
Darlami O, Pun R, Ahn SH, Kim SH, Shin D. Macrocyclization strategy for improving candidate profiles in medicinal chemistry. Eur J Med Chem 2024; 272:116501. [PMID: 38754142 DOI: 10.1016/j.ejmech.2024.116501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Macrocycles are defined as cyclic compounds with 12 or more members. In medicinal chemistry, they are categorized based on their core chemistry into cyclic peptides and macrocycles. Macrocycles are advantageous because of their structural diversity and ability to achieve high affinity and selectivity towards challenging targets that are often not addressable by conventional small molecules. The potential of macrocyclization to optimize drug-like properties while maintaining adequate bioavailability and permeability has been emphasized as a key innovation in medicinal chemistry. This review provides a detailed case study of the application of macrocyclization over the past 5 years, starting from the initial analysis of acyclic active compounds to optimization of the resulting macrocycles for improved efficacy and drug-like properties. Additionally, it illustrates the strategic value of macrocyclization in contemporary drug discovery efforts.
Collapse
Affiliation(s)
- Om Darlami
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea
| | - Rabin Pun
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea
| | - Sung-Hoon Ahn
- College of Pharmacy, Kangwon National University, Gangwondaehak-gil 1, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Seok-Ho Kim
- College of Pharmacy, Kangwon National University, Gangwondaehak-gil 1, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| | - Dongyun Shin
- College of Pharmacy, Gachon University, Hambakmoe-ro 191, Yeunsu-gu, Incheon, 21935, Republic of Korea.
| |
Collapse
|
18
|
Gao X, Zuo X, Min T, Wan Y, He Y, Jiang B. Traditional Chinese medicine for acute myelocytic leukemia therapy: exploiting epigenetic targets. Front Pharmacol 2024; 15:1388903. [PMID: 38895633 PMCID: PMC11183326 DOI: 10.3389/fphar.2024.1388903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy with historically high mortality rates. The treatment strategies for AML is still internationally based on anthracyclines and cytarabine, which remained unchanged for decades. With the rapid advance on sequencing technology, molecular targets of leukemogenesis and disease progression related to epigenetics are constantly being discovered, which are important for the prognosis and treatment of AML. Traditional Chinese medicine (TCM) is characterized by novel pharmacological mechanisms, low toxicity and limited side effects. Several biologically active ingredients of TCM are effective against AML. This review focuses on bioactive compounds in TCM targeting epigenetic mechanisms to address the complexities and heterogeneity of AML.
Collapse
Affiliation(s)
- Xinlong Gao
- Naval Medical Center of PLA, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xu Zuo
- Naval Medical Center of PLA, Shanghai, China
| | | | - Yu Wan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ying He
- Naval Medical Center of PLA, Shanghai, China
| | - Beier Jiang
- Naval Medical Center of PLA, Shanghai, China
| |
Collapse
|
19
|
Tecik M, Adan A. Emerging DNA Methylome Targets in FLT3-ITD-Positive Acute Myeloid Leukemia: Combination Therapy with Clinically Approved FLT3 Inhibitors. Curr Treat Options Oncol 2024; 25:719-751. [PMID: 38696033 PMCID: PMC11222205 DOI: 10.1007/s11864-024-01202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 07/04/2024]
Abstract
OPINION STATEMENT The internal tandem duplication (ITD) mutation of the FMS-like receptor tyrosine kinase 3 (FLT3-ITD) is the most common mutation observed in approximately 30% of acute myeloid leukemia (AML) patients. It represents poor prognosis due to continuous activation of downstream growth-promoting signaling pathways such as STAT5 and PI3K/AKT. Hence, FLT3 is considered an attractive druggable target; selective small FLT3 inhibitors (FLT3Is), such as midostaurin and quizartinib, have been clinically approved. However, patients possess generally poor remission rates and acquired resistance when FLT3I used alone. Various factors in patients could cause these adverse effects including altered epigenetic regulation, causing mainly abnormal gene expression patterns. Epigenetic modifications are required for hematopoietic stem cell (HSC) self-renewal and differentiation; however, critical driver mutations have been identified in genes controlling DNA methylation (such as DNMT3A, TET2, IDH1/2). These regulators cause leukemia pathogenesis and affect disease diagnosis and prognosis when they co-occur with FLT3-ITD mutation. Therefore, understanding the role of different epigenetic alterations in FLT3-ITD AML pathogenesis and how they modulate FLT3I's activity is important to rationalize combinational treatment approaches including FLT3Is and modulators of methylation regulators or pathways. Data from ongoing pre-clinical and clinical studies will further precisely define the potential use of epigenetic therapy together with FLT3Is especially after characterized patients' mutational status in terms of FLT3 and DNA methlome regulators.
Collapse
Affiliation(s)
- Melisa Tecik
- Bioengineering Program, Graduate School of Engineering and Science, Abdullah Gul University, Kayseri, Turkey
| | - Aysun Adan
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey.
| |
Collapse
|
20
|
Tang Y, Cui G, Liu H, Han Y, Cai C, Feng Z, Shen H, Zeng S. Converting "cold" to "hot": epigenetics strategies to improve immune therapy effect by regulating tumor-associated immune suppressive cells. Cancer Commun (Lond) 2024; 44:601-636. [PMID: 38715348 PMCID: PMC11194457 DOI: 10.1002/cac2.12546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 06/26/2024] Open
Abstract
Significant developments in cancer treatment have been made since the advent of immune therapies. However, there are still some patients with malignant tumors who do not benefit from immunotherapy. Tumors without immunogenicity are called "cold" tumors which are unresponsive to immunotherapy, and the opposite are "hot" tumors. Immune suppressive cells (ISCs) refer to cells which can inhibit the immune response such as tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), regulatory T (Treg) cells and so on. The more ISCs infiltrated, the weaker the immunogenicity of the tumor, showing the characteristics of "cold" tumor. The dysfunction of ISCs in the tumor microenvironment (TME) may play essential roles in insensitive therapeutic reaction. Previous studies have found that epigenetic mechanisms play an important role in the regulation of ISCs. Regulating ISCs may be a new approach to transforming "cold" tumors into "hot" tumors. Here, we focused on the function of ISCs in the TME and discussed how epigenetics is involved in regulating ISCs. In addition, we summarized the mechanisms by which the epigenetic drugs convert immunotherapy-insensitive tumors into immunotherapy-sensitive tumors which would be an innovative tendency for future immunotherapy in "cold" tumor.
Collapse
Affiliation(s)
- Yijia Tang
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Guangzu Cui
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Haicong Liu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Ying Han
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Changjing Cai
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Ziyang Feng
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Hong Shen
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Resaerch Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Shan Zeng
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| |
Collapse
|
21
|
Montesinos P, Fathi AT, de Botton S, Stein EM, Zeidan AM, Zhu Y, Prebet T, Vigil CE, Bluemmert I, Yu X, DiNardo CD. Differentiation syndrome associated with treatment with IDH2 inhibitor enasidenib: pooled analysis from clinical trials. Blood Adv 2024; 8:2509-2519. [PMID: 38507688 PMCID: PMC11131052 DOI: 10.1182/bloodadvances.2023011914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
ABSTRACT Treatment with enasidenib, a selective mutant isocitrate dehydrogenase isoform 2 (IDH2) inhibitor, has been associated with the development of differentiation syndrome (DS) in patients with acute myeloid leukemia (AML). Studies on the incidence and clinical features of DS are limited in this setting, and diagnosis is challenging because of nonspecific symptoms. This study assessed the incidence, diagnostic criteria, risk factors, and correlation with clinical response of DS based on the pooled analysis of 4 clinical trials in patients with IDH2-mutated AML treated with enasidenib as monotherapy, or in combination with azacitidine or with chemotherapy. Across the total AML population, 67 of 643 (10.4%) had ≥1 any-grade DS event, with highest incidence in patients who received enasidenib plus azacitidine and lowest incidence in patients who received enasidenib plus chemotherapy (13/74 [17.6%] and 2/93 [2.2%]). The most common symptoms of DS were dyspnea/hypoxia (80.6%) and pulmonary infiltrate (73.1%). Median time to onset of first DS event across all studies was 32 days (range, 4-129). Most patients (88.1%) received systemic steroids for treatment of DS. Evaluation of baseline risk factors for DS identified higher levels of bone marrow blasts and lactate dehydrogenase as independent factors associated with increased grade 3 to 5 DS risk. Overall, these results suggest that DS associated with IDH inhibition is manageable, given the benefits of enasidenib treatment in IDH2-mutated AML. We further characterized enasidenib-related DS in these patients and identified risk factors, which could be used for DS management in clinical practice. These trials were registered at www.ClinicalTrials.gov as # NCT01915498, NCT02577406, NCT02677922, and NCT02632708.
Collapse
Affiliation(s)
- Pau Montesinos
- Department of Hematology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Amir T. Fathi
- Leukemia Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Eytan M. Stein
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Amer M. Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University and Yale Cancer Center, New Haven, CT
| | - Yue Zhu
- Bristol Myers Squibb, Philadelphia, PA
| | | | | | | | - Xin Yu
- Bristol Myers Squibb, Summit, NJ
| | - Courtney D. DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
22
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
23
|
Nayarisseri A, Bandaru S, Khan A, Sharma K, Bhrdwaj A, Kaur M, Ghosh D, Chopra I, Panicker A, Kumar A, Saravanan P, Belapurkar P, Mendonça Junior FJB, Singh SK. Epigenetic dysregulation in cancers by isocitrate dehydrogenase 2 (IDH2). ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:223-253. [PMID: 38960475 DOI: 10.1016/bs.apcsb.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Recent advances in genome-wide studies have revealed numerous epigenetic regulations brought about by genes involved in cellular metabolism. Isocitrate dehydrogenase (IDH), an essential enzyme, that converts isocitrate into -ketoglutarate (KG) predominantly in the tricarboxylic acid (TCA) cycle, has gained particular importance due to its cardinal role in the metabolic pathway in cells. IDH1, IDH2, and IDH3 are the three isomeric IDH enzymes that have been shown to regulate cellular metabolism. Of particular importance, IDH2 genes are associated with several cancers, including gliomas, oligodendroglioma, and astrocytomas. These mutations lead to the production of oncometabolite D-2-hydroxyglutarate (D-2-HG), which accumulates in cells promoting tumor growth. The enhanced levels of D-2-HG competitively inhibit α-KG dependent enzymes, inhibiting cell TCA cycle, upregulating the cell growth and survival relevant HIF-1α pathway, promoting DNA hypermethylation related epigenetic activity, all of which synergistically contribute to carcinogenesis. The present review discusses epigenetic mechanisms inIDH2 regulation in cells and further its clinical implications.
Collapse
Affiliation(s)
- Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India; Bioinformatics Research Laboratory, LeGene Biosciences Pvt Ltd, Indore, Madhya Pradesh, India.
| | - Srinivas Bandaru
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India; Department of Biotechnology, Koneru Lakshmaiah Educational Foundation (KLEF), Green Fields, Vaddeswaram, Andhra Pradesh, India
| | - Arshiya Khan
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India; Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Khushboo Sharma
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India; Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Anushka Bhrdwaj
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India; Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Manmeet Kaur
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Dipannita Ghosh
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Ishita Chopra
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India; School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Aravind Panicker
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Abhishek Kumar
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India; Department of Biosciences, Acropolis Institute, Indore, Madhya Pradesh, India
| | - Priyadevi Saravanan
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Pranoti Belapurkar
- Department of Biosciences, Acropolis Institute, Indore, Madhya Pradesh, India
| | | | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
24
|
Gunn K, Losman JA. Isocitrate Dehydrogenase Mutations in Cancer: Mechanisms of Transformation and Metabolic Liability. Cold Spring Harb Perspect Med 2024; 14:a041537. [PMID: 38191174 PMCID: PMC11065172 DOI: 10.1101/cshperspect.a041537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are metabolic enzymes that interconvert isocitrate and 2-oxoglutarate (2OG). Gain-of-function mutations in IDH1 and IDH2 occur in a number of cancers, including acute myeloid leukemia, glioma, cholangiocarcinoma, and chondrosarcoma. These mutations cripple the wild-type activity of IDH and cause the enzymes to catalyze a partial reverse reaction in which 2OG is reduced but not carboxylated, resulting in production of the (R)-enantiomer of 2-hydroxyglutarate ((R)-2HG). (R)-2HG accumulation in IDH-mutant tumors results in profound dysregulation of cellular metabolism. The most well-characterized oncogenic effects of (R)-2HG involve the dysregulation of 2OG-dependent epigenetic tumor-suppressor enzymes. However, (R)-2HG has many other effects in IDH-mutant cells, some that promote transformation and others that induce metabolic dependencies. Herein, we review how cancer-associated IDH mutations impact epigenetic regulation and cellular metabolism and discuss how these effects can potentially be leveraged to therapeutically target IDH-mutant tumors.
Collapse
Affiliation(s)
- Kathryn Gunn
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Julie-Aurore Losman
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| |
Collapse
|
25
|
Fruchtman H, Avigan ZM, Waksal JA, Brennan N, Mascarenhas JO. Management of isocitrate dehydrogenase 1/2 mutated acute myeloid leukemia. Leukemia 2024; 38:927-935. [PMID: 38600315 PMCID: PMC11073971 DOI: 10.1038/s41375-024-02246-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
The emergence of next generation sequencing and widespread use of mutational profiling in acute myeloid leukemia (AML) has broadened our understanding of the heterogeneous molecular basis of the disease. Since genetic sequencing has become a standard practice, several driver mutations have been identified. Accordingly, novel targeted therapeutic agents have been developed and are now approved for the treatment of subsets of patients that carry mutations in FLT3, IDH1, and IDH2 [1, 2]. The emergence of these novel agents in AML offers patients a new modality of therapy, and shifts treatment paradigms toward individualized medicine. In this review, we outline the role of IDH mutations in malignant transformation, focus in on a novel group of targeted therapeutic agents directed toward IDH1- and IDH2-mutant AML, and explore their impact on prognosis in patients with AML.
Collapse
Affiliation(s)
| | - Zachary M Avigan
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julian A Waksal
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - John O Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
26
|
Yang T, Ke H, Liu J, An X, Xue J, Ning J, Hao F, Xiong L, Chen C, Wang Y, Zheng J, Gao B, Bao Z, Gong K, Zhang L, Zhang F, Guo S, Li QX. Narazaciclib, a novel multi-kinase inhibitor with potent activity against CSF1R, FLT3 and CDK6, shows strong anti-AML activity in defined preclinical models. Sci Rep 2024; 14:9032. [PMID: 38641704 PMCID: PMC11031590 DOI: 10.1038/s41598-024-59650-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 04/12/2024] [Indexed: 04/21/2024] Open
Abstract
CSF1R is a receptor tyrosine kinase responsible for the growth/survival/polarization of macrophages and overexpressed in some AML patients. We hypothesized that a novel multi-kinase inhibitor (TKi), narazaciclib (HX301/ON123300), with high potency against CSF1R (IC50 ~ 0.285 nM), would have anti-AML effects. We tested this by confirming HX301's high potency against CSF1R (IC50 ~ 0.285 nM), as well as other kinases, e.g. FLT3 (IC50 of ~ 19.77 nM) and CDK6 (0.53 nM). An in vitro proliferation assay showed that narazaciclib has a high growth inhibitory effect in cell cultures where CSF1R or mutant FLT3-ITD variants that may be proliferation drivers, including primary macrophages (IC50 of 72.5 nM) and a subset of AML lines (IC50 < 1.5 μM). In vivo pharmacology modeling of narazaciclib using five AML xenografts resulted in: inhibition of MV4-11 (FLT3-ITD) subcutaneous tumor growth and complete suppression of AM7577-PDX (FLT3-ITD/CSF1Rmed) systemic growth, likely due to the suppression of FLT3-ITD activity; complete suppression of AM8096-PDX (CSF1Rhi/wild-type FLT3) growth, likely due to the inhibition of CSF1R ("a putative driver"); and nonresponse of both AM5512-PDX and AM7407-PDX (wild-type FLT3/CSF1Rlo). Significant leukemia load reductions in bone marrow, where disease originated, were also achieved in both responders (AM7577/AM8096), implicating that HX301 might be a potentially more effective therapy than those only affecting peripheral leukemic cells. Altogether, narazaciclib can potentially be a candidate treatment for a subset of AML with CSF1Rhi and/or mutant FLT3-ITD variants, particularly second generation FLT3 inhibitor resistant variants.
Collapse
Affiliation(s)
- Tao Yang
- Hanx Biopharmaceuticals, Ltd., Wuhan, Hubei, PRC, China
| | - Hang Ke
- Hanx Biopharmaceuticals, Ltd., Wuhan, Hubei, PRC, China
| | - Jinping Liu
- Crown Bioscience, Inc., Taicang, Jiangsu, PRC, USA
| | - Xiaoyu An
- Crown Bioscience, Inc., Taicang, Jiangsu, PRC, USA
| | - Jia Xue
- Crown Bioscience, Inc., Taicang, Jiangsu, PRC, USA
| | | | - Feng Hao
- Kyinno Biotechnology, Ltd., Beijing, PRC, China
| | | | - Cen Chen
- Hanx Biopharmaceuticals, Ltd., Wuhan, Hubei, PRC, China
| | - Yueying Wang
- Crown Bioscience, Inc., Taicang, Jiangsu, PRC, USA
| | - Jia Zheng
- Crown Bioscience, Inc., Taicang, Jiangsu, PRC, USA
| | - Bing Gao
- Crown Bioscience, Inc., Taicang, Jiangsu, PRC, USA
| | | | - Kefeng Gong
- Crown Bioscience, Inc., Taicang, Jiangsu, PRC, USA
| | - Lei Zhang
- Hanx Biopharmaceuticals, Ltd., Wuhan, Hubei, PRC, China
| | - Faming Zhang
- Hanx Biopharmaceuticals, Ltd., Wuhan, Hubei, PRC, China
| | - Sheng Guo
- Crown Bioscience, Inc., Taicang, Jiangsu, PRC, USA
| | - Qi-Xiang Li
- Hanx Biopharmaceuticals, Ltd., Wuhan, Hubei, PRC, China.
| |
Collapse
|
27
|
Rey V, Tornín J, Alba-Linares JJ, Robledo C, Murillo D, Rodríguez A, Gallego B, Huergo C, Viera C, Braña A, Astudillo A, Heymann D, Szuhai K, Bovée JVMG, Fernández AF, Fraga MF, Alonso J, Rodríguez R. A personalized medicine approach identifies enasidenib as an efficient treatment for IDH2 mutant chondrosarcoma. EBioMedicine 2024; 102:105090. [PMID: 38547578 PMCID: PMC10990714 DOI: 10.1016/j.ebiom.2024.105090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Sarcomas represent an extensive group of malignant diseases affecting mesodermal tissues. Among sarcomas, the clinical management of chondrosarcomas remains a complex challenge, as high-grade tumours do not respond to current therapies. Mutations in the isocitrate dehydrogenase (IDH) 1 and 2 genes are among the most common mutations detected in chondrosarcomas and may represent a therapeutic opportunity. The presence of mutated IDH (mIDH) enzymes results in the accumulation of the oncometabolite 2-HG leading to molecular alterations that contribute to drive tumour growth. METHODS We developed a personalized medicine strategy based on the targeted NGS/Sanger sequencing of sarcoma samples (n = 6) and the use of matched patient-derived cell lines as a drug-testing platform. The anti-tumour potential of IDH mutations found in two chondrosarcoma cases was analysed in vitro, in vivo and molecularly (transcriptomic and DNA methylation analyses). FINDINGS We treated several chondrosarcoma models with specific mIDH1/2 inhibitors. Among these treatments, only the mIDH2 inhibitor enasidenib was able to decrease 2-HG levels and efficiently reduce the viability of mIDH2 chondrosarcoma cells. Importantly, oral administration of enasidenib in xenografted mice resulted in a complete abrogation of tumour growth. Enasidenib induced a profound remodelling of the transcriptomic landscape not associated to changes in the 5 mC methylation levels and its anti-tumour effects were associated with the repression of proliferative pathways such as those controlled by E2F factors. INTERPRETATION Overall, this work provides preclinical evidence for the use of enasidenib to treat mIDH2 chondrosarcomas. FUNDING Supported by the Spanish Research Agency/FEDER (grants PID2022-142020OB-I00; PID2019-106666RB-I00), the ISC III/FEDER (PI20CIII/00020; DTS18CIII/00005; CB16/12/00390; CB06/07/1009; CB19/07/00057); the GEIS group (GEIS-62); and the PCTI (Asturias)/FEDER (IDI/2021/000027).
Collapse
Affiliation(s)
- Verónica Rey
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; CIBER en oncología (CIBERONC), 28029, Madrid, Spain
| | - Juan Tornín
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Juan Jose Alba-Linares
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Cristina Robledo
- Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220, Madrid, Spain
| | - Dzohara Murillo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Aida Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Borja Gallego
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain
| | - Carmen Huergo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; CIBER en oncología (CIBERONC), 28029, Madrid, Spain
| | - Cristina Viera
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain
| | - Alejandro Braña
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Department of Traumatology, University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Aurora Astudillo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Department of Pathology, University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Dominique Heymann
- Nantes Université, CNRS, US2B, UMR 6286, 44000, Nantes, France; Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Lab. Université de Nantes, 44805, Saint-Herblain, France; Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Agustín F Fernández
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Mario F Fraga
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Javier Alonso
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029, Madrid, Spain; Unidad de Tumores Sólidos Infantiles, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III (ISCIII), 28220, Madrid, Spain
| | - René Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n, 33011, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, 33011, Oviedo, Spain; CIBER en oncología (CIBERONC), 28029, Madrid, Spain.
| |
Collapse
|
28
|
Lee G, Lee SM, Lee S, Jeong CW, Song H, Lee SY, Yun H, Koh Y, Kim HU. Prediction of metabolites associated with somatic mutations in cancers by using genome-scale metabolic models and mutation data. Genome Biol 2024; 25:66. [PMID: 38468344 PMCID: PMC11290261 DOI: 10.1186/s13059-024-03208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Oncometabolites, often generated as a result of a gene mutation, show pro-oncogenic function when abnormally accumulated in cancer cells. Identification of such mutation-associated metabolites will facilitate developing treatment strategies for cancers, but is challenging due to the large number of metabolites in a cell and the presence of multiple genes associated with cancer development. RESULTS Here we report the development of a computational workflow that predicts metabolite-gene-pathway sets. Metabolite-gene-pathway sets present metabolites and metabolic pathways significantly associated with specific somatic mutations in cancers. The computational workflow uses both cancer patient-specific genome-scale metabolic models (GEMs) and mutation data to generate metabolite-gene-pathway sets. A GEM is a computational model that predicts reaction fluxes at a genome scale and can be constructed in a cell-specific manner by using omics data. The computational workflow is first validated by comparing the resulting metabolite-gene pairs with multi-omics data (i.e., mutation data, RNA-seq data, and metabolome data) from acute myeloid leukemia and renal cell carcinoma samples collected in this study. The computational workflow is further validated by evaluating the metabolite-gene-pathway sets predicted for 18 cancer types, by using RNA-seq data publicly available, in comparison with the reported studies. Therapeutic potential of the resulting metabolite-gene-pathway sets is also discussed. CONCLUSIONS Validation of the metabolite-gene-pathway set-predicting computational workflow indicates that a decent number of metabolites and metabolic pathways appear to be significantly associated with specific somatic mutations. The computational workflow and the resulting metabolite-gene-pathway sets will help identify novel oncometabolites and also suggest cancer treatment strategies.
Collapse
Affiliation(s)
- GaRyoung Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Sang Mi Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Sungyoung Lee
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University College of Medicine, and Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Hyojin Song
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
- Graduate School of Engineering Biology, BioProcess Engineering Research Center, and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea
| | - Hongseok Yun
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea.
- Graduate School of Engineering Biology, BioProcess Engineering Research Center, and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
29
|
Yang J, Chen J, Chang J, Sun X, Wei Q, Cai X, Cao P. IDH2/R140Q mutation confers cytokine-independent proliferation of TF-1 cells by activating constitutive STAT3/5 phosphorylation. Cell Commun Signal 2024; 22:116. [PMID: 38347540 PMCID: PMC10863291 DOI: 10.1186/s12964-023-01367-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/26/2023] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND R140Q mutation in isocitrate dehydrogenase 2 (IDH2) promotes leukemogenesis. Targeting IDH2/R140Q yields encouraging therapeutic effects in the clinical setting. However, therapeutic resistance occurs in 12% of IDH2/R140Q inhibitor treated patients. The IDH2/R140Q mutant converted TF-1 cells to proliferate in a cytokine-independent manner. This study investigated the signaling pathways involved in TF-1(R140Q) cell proliferation conversion as alternative therapeutic strategies to improve outcomes in patients with acute myeloid leukemia (AML) harboring IDH2/R140Q. METHODS The effects of IDH2/R140Q mutation on TF-1 cell survival induced by GM-CSF withdrawal were evaluated using flow cytometry assay. The expression levels of apoptosis-related proteins, total or phosphorylated STAT3/5, ERK, and AKT in wild-type TF-1(WT) or TF-1(R140Q) cells under different conditions were evaluated using western blot analysis. Cell viability was tested using MTT assay. The mRNA expression levels of GM-CSF, IL-3, IL-6, G-CSF, leukemia inhibitory factor (LIF), oncostatin M (OSM), and IL-11 in TF-1(WT) and TF-1(R140Q) cells were quantified via RT-PCR. The secretion levels of GM-CSF, OSM, and LIF were determined using ELISA. RESULTS Our results showed that STAT3 and STAT5 exhibited aberrant constitutive phosphorylation in TF-1(R140Q) cells compared with TF-1(WT) cells. Inhibition of STAT3/5 phosphorylation suppressed the cytokine-independent proliferation of TF-1(R140Q) cells. Moreover, the autocrine GM-CSF, LIF and OSM levels increased, which is consistent with constitutive STAT5/3 activation in TF-1(R140Q) cells, as compared with TF-1(WT) cells. CONCLUSIONS The autocrine cytokines, including GM-CSF, LIF, and OSM, contribute to constitutive STAT3/5 activation in TF-1(R140Q) cells, thereby modulating IDH2/R140Q-mediated malignant proliferation in TF-1 cells. Targeting STAT3/5 phosphorylation may be a novel strategy for the treatment of AML in patients harboring the IDH2/R140Q mutation. Video Abstract.
Collapse
Affiliation(s)
- Jie Yang
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Jiao Chen
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Jingjie Chang
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Xiaoyan Sun
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Qingyun Wei
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Xueting Cai
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Peng Cao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, 212002, China.
| |
Collapse
|
30
|
Miller JW, Faubert BM, Mathews TP, Waters JK, DeBerardinis RJ, Kernstine KH. Metabolic signatures of thymomas: potential biomarkers and treatment targets. Eur J Cardiothorac Surg 2024; 65:ezad394. [PMID: 38011656 PMCID: PMC10882262 DOI: 10.1093/ejcts/ezad394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
OBJECTIVES A study of tumour metabolic reprogramming has revealed disease biomarkers and avenues for therapeutic intervention. Metabolic reprogramming in thymoma is currently understudied and largely unknown. This study utilized metabolomics and isotope tracing with 13C-glucose to metabolically investigate thymomas, adjacent thymic tissue and benign thymic lesions. METHODS From 2017 to 2021, 20 patients with a suspected thymoma were recruited to this prospective Institutional Review Board approved clinical trial. At the time of surgery, 11 patients were infused with 13C-glucose, a stable, non-radioactive tracer which reports the flow of carbon through metabolic pathways. Samples were analysed by mass spectrometry to measure the abundance of >200 metabolites.13C enrichment was measured in patients who received 13C-glucose infusions. RESULTS Histological analysis showed that 9 patients had thymomas of diverse subtypes and 11 patients had benign cysts. In our metabolomic analysis, thymomas could be distinguished from both adjacent thymus tissue and benign lesions by metabolite abundances. Metabolites in pyrimidine biosynthesis and glycerophospholipid metabolism were differentially expressed across these tissues.13C-glucose infusions revealed differential labelling patterns in thymoma compared to benign cysts and normal thymus tissue. The lactate/3PG labelling ratio, a metabolic marker in aggressive lung tumours correlated with lactate uptake, was increased in thymomas (1.579) compared to normal thymus (0.945) and benign masses (0.807) (thymic tissue versus tumour P = 0.021, tumour versus benign P = 0.013). CONCLUSIONS We report metabolic biomarkers, including differential 13C labelling of metabolites from central metabolism, that distinguish thymomas from benign tissues. Altered glucose and lactate metabolism warrant further investigation and may provide novel therapeutic targets for thymoma.
Collapse
Affiliation(s)
- James W Miller
- School of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Brandon M Faubert
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Thomas P Mathews
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John K Waters
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph J DeBerardinis
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kemp H Kernstine
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
31
|
Nardozza AM, Guarnera L, Travaglini S, Ottone T, Divona M, De Bellis E, Savi A, Banella C, Noguera NI, Di Fusco D, Monteleone I, Voso MT. Characterization of a novel IDH2-R159H mutation in acute myeloid leukaemia: Effects on cell metabolism and differentiation. Br J Haematol 2024; 204:719-723. [PMID: 38009542 DOI: 10.1111/bjh.19216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Affiliation(s)
- Anna Maria Nardozza
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Luca Guarnera
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Serena Travaglini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Mariadomenica Divona
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Eleonora De Bellis
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
- SC Ematologia, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Arianna Savi
- Department of clinical and biological sciences, University of Turin, Turin, Italy
| | - Cristina Banella
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Nelida Ines Noguera
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Davide Di Fusco
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Neuro-Oncohematology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
32
|
Bracken AK, Gekko CE, Suss NO, Lueders EE, Cui Q, Fu Q, Lui ACW, Anderson ET, Zhang S, Abbasov ME. Biomimetic Synthesis and Chemical Proteomics Reveal the Mechanism of Action and Functional Targets of Phloroglucinol Meroterpenoids. J Am Chem Soc 2024; 146:2524-2548. [PMID: 38230968 PMCID: PMC11000255 DOI: 10.1021/jacs.3c10741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Natural products perennially serve as prolific sources of drug leads and chemical probes, fueling the development of numerous therapeutics. Despite their scarcity, natural products that modulate protein function through covalent interactions with lysine residues hold immense potential to unlock new therapeutic interventions and advance our understanding of the biological processes governed by these modifications. Phloroglucinol meroterpenoids constitute one of the most expansive classes of natural products, displaying a plethora of biological activities. However, their mechanism of action and cellular targets have, until now, remained elusive. In this study, we detail the concise biomimetic synthesis, computational mechanistic insights, physicochemical attributes, kinetic parameters, molecular mechanism of action, and functional cellular targets of several phloroglucinol meroterpenoids. We harness synthetic clickable analogues of natural products to probe their disparate proteome-wide reactivity and subcellular localization through in-gel fluorescence scanning and cell imaging. By implementing sample multiplexing and a redesigned lysine-targeting probe, we streamline a quantitative activity-based protein profiling, enabling the direct mapping of global reactivity and ligandability of proteinaceous lysines in human cells. Leveraging this framework, we identify numerous lysine-meroterpenoid interactions in breast cancer cells at tractable protein sites across diverse structural and functional classes, including those historically deemed undruggable. We validate that phloroglucinol meroterpenoids perturb biochemical functions through stereoselective and site-specific modification of lysines in proteins vital for breast cancer metabolism, including lipid signaling, mitochondrial respiration, and glycolysis. These findings underscore the broad potential of phloroglucinol meroterpenoids for targeting functional lysines in the human proteome.
Collapse
Affiliation(s)
- Amy K Bracken
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Colby E Gekko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Nina O Suss
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Emma E Lueders
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Qi Cui
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Qin Fu
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States
| | - Andy C W Lui
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States
| | - Elizabeth T Anderson
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States
| | | |
Collapse
|
33
|
Cai SF, Huang Y, Lance JR, Mao HC, Dunbar AJ, McNulty SN, Druley T, Li Y, Baer MR, Stock W, Kovacsovics T, Blum WG, Schiller GJ, Olin RL, Foran JM, Litzow M, Lin T, Patel P, Foster MC, Boyiadzis M, Collins RH, Chervin J, Shoben A, Vergilio JA, Heerema NA, Rosenberg L, Chen TL, Yocum AO, Druggan F, Marcus S, Stefanos M, Druker BJ, Mims AS, Borate U, Burd A, Byrd JC, Levine RL, Stein EM. A study to assess the efficacy of enasidenib and risk-adapted addition of azacitidine in newly diagnosed IDH2-mutant AML. Blood Adv 2024; 8:429-440. [PMID: 37871309 PMCID: PMC10827405 DOI: 10.1182/bloodadvances.2023010563] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 10/25/2023] Open
Abstract
ABSTRACT Enasidenib (ENA) is an inhibitor of isocitrate dehydrogenase 2 (IDH2) approved for the treatment of patients with IDH2-mutant relapsed/refractory acute myeloid leukemia (AML). In this phase 2/1b Beat AML substudy, we applied a risk-adapted approach to assess the efficacy of ENA monotherapy for patients aged ≥60 years with newly diagnosed IDH2-mutant AML in whom genomic profiling demonstrated that mutant IDH2 was in the dominant leukemic clone. Patients for whom ENA monotherapy did not induce a complete remission (CR) or CR with incomplete blood count recovery (CRi) enrolled in a phase 1b cohort with the addition of azacitidine. The phase 2 portion assessing the overall response to ENA alone demonstrated efficacy, with a composite complete response (cCR) rate (CR/CRi) of 46% in 60 evaluable patients. Seventeen patients subsequently transitioned to phase 1b combination therapy, with a cCR rate of 41% and 1 dose-limiting toxicity. Correlative studies highlight mechanisms of clonal elimination with differentiation therapy as well as therapeutic resistance. This study demonstrates both efficacy of ENA monotherapy in the upfront setting and feasibility and applicability of a risk-adapted approach to the upfront treatment of IDH2-mutant AML. This trial is registered at www.clinicaltrials.gov as #NCT03013998.
Collapse
Affiliation(s)
- Sheng F. Cai
- Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ying Huang
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Jennie R. Lance
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Hsiaoyin Charlene Mao
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Andrew J. Dunbar
- Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Yan Li
- Bristol Myers Squibb, New York, NY
| | - Maria R. Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | - Wendy Stock
- Department of Hematology and Oncology, University of Chicago Medical Center, Chicago, IL
| | | | - William G. Blum
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA
| | - Gary J. Schiller
- David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA
| | - Rebecca L. Olin
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA
| | | | - Mark Litzow
- Department of Hematology, Mayo Clinic, Rochester, MN
| | - Tara Lin
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas, Kansas City, KS
| | - Prapti Patel
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Michael Boyiadzis
- Division of Hematolog/Oncology, Department of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | - Robert H. Collins
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jordan Chervin
- Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Abigail Shoben
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Nyla A. Heerema
- Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Timothy L. Chen
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Franchesca Druggan
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Mona Stefanos
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | | - Alice S. Mims
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Uma Borate
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Amy Burd
- Leukemia and Lymphoma Society, Rye Brook, NY
| | - John C. Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Ross L. Levine
- Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Eytan M. Stein
- Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
34
|
Si X, Shao M, Teng X, Huang Y, Meng Y, Wu L, Wei J, Liu L, Gu T, Song J, Jing R, Zhai X, Guo X, Kong D, Wang X, Cai B, Shen Y, Zhang Z, Wang D, Hu Y, Qian P, Xiao G, Huang H. Mitochondrial isocitrate dehydrogenase impedes CAR T cell function by restraining antioxidant metabolism and histone acetylation. Cell Metab 2024; 36:176-192.e10. [PMID: 38171332 DOI: 10.1016/j.cmet.2023.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
The efficacy of chimeric antigen receptor (CAR) T cell therapy is hampered by relapse in hematologic malignancies and by hyporesponsiveness in solid tumors. Long-lived memory CAR T cells are critical for improving tumor clearance and long-term protection. However, during rapid ex vivo expansion or in vivo tumor eradication, metabolic shifts and inhibitory signals lead to terminal differentiation and exhaustion of CAR T cells. Through a mitochondria-related compound screening, we find that the FDA-approved isocitrate dehydrogenase 2 (IDH2) inhibitor enasidenib enhances memory CAR T cell formation and sustains anti-leukemic cytotoxicity in vivo. Mechanistically, IDH2 impedes metabolic fitness of CAR T cells by restraining glucose utilization via the pentose phosphate pathway, which alleviates oxidative stress, particularly in nutrient-restricted conditions. In addition, IDH2 limits cytosolic acetyl-CoA levels to prevent histone acetylation that promotes memory cell formation. In combination with pharmacological IDH2 inhibition, CAR T cell therapy is demonstrated to have superior efficacy in a pre-clinical model.
Collapse
Affiliation(s)
- Xiaohui Si
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Mi Shao
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Xinyi Teng
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Yue Huang
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Ye Meng
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Longyuan Wu
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Jieping Wei
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Lianxuan Liu
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianning Gu
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junzhe Song
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruirui Jing
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Xingyuan Zhai
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Xin Guo
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Delin Kong
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Xiujian Wang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Bohan Cai
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Shen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaoru Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Dongrui Wang
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Pengxu Qian
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Center for Stem Cell and Regenerative Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Gang Xiao
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.
| | - He Huang
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| |
Collapse
|
35
|
Morishima T, Takahashi K, Chin DWL, Wang Y, Tokunaga K, Arima Y, Matsuoka M, Suda T, Takizawa H. Phospholipid metabolic adaptation promotes survival of IDH2 mutant acute myeloid leukemia cells. Cancer Sci 2024; 115:197-210. [PMID: 37882467 PMCID: PMC10823289 DOI: 10.1111/cas.15994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023] Open
Abstract
Genetic mutations in the isocitrate dehydrogenase (IDH) gene that result in a pathological enzymatic activity to produce oncometabolite have been detected in acute myeloid leukemia (AML) patients. While specific inhibitors that target mutant IDH enzymes and normalize intracellular oncometabolite level have been developed, refractoriness and resistance has been reported. Since acquisition of pathological enzymatic activity is accompanied by the abrogation of the crucial WT IDH enzymatic activity in IDH mutant cells, aberrant metabolism in IDH mutant cells can potentially persist even after the normalization of intracellular oncometabolite level. Comparisons of isogenic AML cell lines with and without IDH2 gene mutations revealed two mutually exclusive signalings for growth advantage of IDH2 mutant cells, STAT phosphorylation associated with intracellular oncometabolite level and phospholipid metabolic adaptation. The latter came to light after the oncometabolite normalization and increased the resistance of IDH2 mutant cells to arachidonic acid-mediated apoptosis. The release of this metabolic adaptation by FDA-approved anti-inflammatory drugs targeting the metabolism of arachidonic acid could sensitize IDH2 mutant cells to apoptosis, resulting in their eradication in vitro and in vivo. Our findings will contribute to the development of alternative therapeutic options for IDH2 mutant AML patients who do not tolerate currently available therapies.
Collapse
Affiliation(s)
- Tatsuya Morishima
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
- Laboratory of Hematopoietic Stem Cell Engineering, IRCMSKumamoto UniversityKumamotoJapan
| | - Koichi Takahashi
- Departments of Leukemia and Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Desmond Wai Loon Chin
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Yuxin Wang
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
- Department of Hematology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Kenji Tokunaga
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Yuichiro Arima
- Laboratory of Developmental Cardiology, IRCMSKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy Aging (CMHA)Kumamoto UniversityKumamotoJapan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical SciencesKumamoto UniversityKumamotoJapan
| | - Toshio Suda
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
- Laboratory of Stem Cell Regulation, IRCMSKumamoto UniversityKumamotoJapan
| | - Hitoshi Takizawa
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS)Kumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy Aging (CMHA)Kumamoto UniversityKumamotoJapan
| |
Collapse
|
36
|
Zhang Q, Yin L, Lai Q, Zhao Y, Peng H. Advances in the pathogenesis and therapeutic strategies of angioimmunoblastic T-cell lymphoma. Clin Exp Med 2023; 23:4219-4235. [PMID: 37759042 DOI: 10.1007/s10238-023-01197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) is an aggressive subtype of peripheral T-cell lymphomas with its cell origin determined to be follicular helper T-cells. AITL is characterized by a prominent tumor microenvironment involving dysregulation of immune cells, signaling pathways, and extracellular matrix. Significant progress has been made in the molecular pathophysiology of AITL, including genetic mutations, immune metabolism, hematopoietic-derived microenvironment, and non-hematopoietic microenvironment cells. Early diagnosis, detection of severe complications, and timely effective treatment are crucial for managing AITL. Treatment typically involves various combination chemotherapies, but the prognosis is often poor, and relapsed and refractory AITL remains challenging, necessitating improved treatment strategies. Therefore, this article provides an overview of the pathogenesis and latest advances in the treatment of AITL, with a focus on potential therapeutic targets, novel treatment strategies, and emerging immunotherapeutic approaches.
Collapse
Affiliation(s)
- Qingyang Zhang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Le Yin
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qinqiao Lai
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yan Zhao
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, 410011, Hunan, China.
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, 410011, Hunan, China.
| |
Collapse
|
37
|
Papadopoulou V, Schoumans J, Basset V, Solly F, Pasquier J, Blum S, Spertini O. Single-center, observational study of AML/MDS-EB with IDH1/2 mutations: genetic profile, immunophenotypes, mutational kinetics and outcomes. Hematology 2023; 28:2180704. [PMID: 36815747 DOI: 10.1080/16078454.2023.2180704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVE IDH1/2 mutations, intervening in epigenetic procedures, are frequently encountered in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). Knowledge of the genetics, immunophenotypes, and mutational kinetics of IDH1/2-mutated AML can contribute to the understanding of AML clonal architecture and inform therapeutics and monitoring. METHODS We retrospectively analyzed 50 IDH1/2-mutated AML/MDS-EB cases of our institution, to identify recurrent co-mutations, immunophenotypes, patterns of co-variance of IDH1/2 allele burdens with those of recurrent co-mutations, frequency of persistent IDH1/2 mutation as clonal hematopoiesis of indeterminate potential (CHIP) in remission and response to hypomethylating agents. RESULTS Most frequently co-mutated genes were DNMT3A, SRSF2 and NPM1. Most cases with co-existent IDH1/2 and NPM1 mutations (11/13) showed an 'APL-like' immunophenotype (CD34-HLADR-). Allele burdens of mutated IDH1/2 were identical to mutated SRSF2 allele burdens at diagnosis and remission, but not always to mutated NPM1 allele burden in remission. We show persistence of significant mutIDH1/2 allele burden in approximately one-fourth of patients with deep remissions. IDH1/2 mutations were significantly more frequent among responders to first-line HMA-based regimens than among non-responders, in patients treated for myeloid neoplasms with excess blasts. CONCLUSIONS IDH1/2 mutations are most frequently accompanied by DNMT3A, SRSF2 and NPM1 mutations. NPM1-IDH1/2 mutated AML has a mature phenotype possibly amenable to differentiation therapies. IDH1/2 and SRSF2 mutations probably arise at the same developmental stage of the disease, as their allele burdens covariate. IDH1/2 mutation represents CHIP in a substantial proportion of cases and is therefore no reliable residual disease marker. The preferential presence of IDH1/2 mutations among HMA-responders could inform therapeutic decisions if confirmed in larger series.
Collapse
Affiliation(s)
- Vasiliki Papadopoulou
- Service and Laboratory of Hematology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Jacqueline Schoumans
- Service and Laboratory of Hematology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Valentin Basset
- Service and Laboratory of Hematology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Françoise Solly
- Service and Laboratory of Hematology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Jérôme Pasquier
- Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Sabine Blum
- Service and Laboratory of Hematology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Olivier Spertini
- Service and Laboratory of Hematology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
38
|
Khalil AF, El-Moselhy TF, El-Bastawissy EA, Abdelhady R, Younis NS, El-Hamamsy MH. Discovery of novel enasidenib analogues targeting inhibition of mutant isocitrate dehydrogenase 2 as antileukaemic agents. J Enzyme Inhib Med Chem 2023; 38:2157411. [PMID: 36629449 PMCID: PMC9848300 DOI: 10.1080/14756366.2022.2157411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mutant isocitrate dehydrogenase (IDH) 2 "IDH2m" acquires a neo-enzymatic activity reducing α-ketoglutarate to an oncometabolite, D-2-hydroxyglutarate (2-HG). Three s-triazine series were designed and synthesised using enasidenib as a lead compound. In vitro anticancer screening via National Cancer Institute "NCI" revealed that analogues 6a, 6c, 6d, 7g, and 7l were most potent, with mean growth inhibition percentage "GI%" = 66.07, 66.00, 53.70, 35.10, and 81.15, respectively, followed by five-dose screening. Compounds 6c, 6e, and 7c were established as the best IDH2R140Q inhibitors compared to enasidenib, reporting IC50 = 101.70, 67.01, 88.93, and 75.51 nM, respectively. More importantly, 6c, 6e, and 7c displayed poor activity against the wild-type IDH2, IC50 = 2928, 2295, and 3128 nM, respectively, which implementing high selectivity and accordingly safety. Furthermore, 6c was screened for cell cycle arrest, apoptosis induction, and western blot analysis. Finally, computational tools were applied to predict physicochemical properties and binding poses in IDH2R140Q allosteric site.
Collapse
Affiliation(s)
- Ahmed F. Khalil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt,CONTACT A. F. Khalil Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Tarek F. El-Moselhy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Eman A. El-Bastawissy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Rasha Abdelhady
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Nancy S. Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Hofuf, Saudi Arabia
| | - Mervat H. El-Hamamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
39
|
Tateishi K, Miyake Y, Nakamura T, Iwashita H, Hayashi T, Oshima A, Honma H, Hayashi H, Sugino K, Kato M, Satomi K, Fujii S, Komori T, Yamamoto T, Cahill DP, Wakimoto H. Genetic alterations that deregulate RB and PDGFRA signaling pathways drive tumor progression in IDH2-mutant astrocytoma. Acta Neuropathol Commun 2023; 11:186. [PMID: 38012788 PMCID: PMC10680361 DOI: 10.1186/s40478-023-01683-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023] Open
Abstract
In IDH-mutant astrocytoma, IDH2 mutation is quite rare and biological mechanisms underlying tumor progression in IDH2-mutant astrocytoma remain elusive. Here, we report a unique case of IDH2 mutant astrocytoma, CNS WHO grade 3 that developed tumor progression. We performed a comprehensive genomic and epigenomic analysis for primary and recurrent tumors and found that both tumors harbored recurrent IDH2R172K and TP53R248W mutation with CDKN2A/B hemizygous deletion. We also found amplifications of CDK4 and MDM2 with PDGFRA gain in the recurrent tumor and upregulated protein expressions of these genes. We further developed, for the first time, a xenograft mouse model of IDH2R172K and TP53R248W mutant astrocytoma from the recurrent tumor, but not from the primary tumor. Consistent with parent recurrent tumor cells, amplifications of CDK4 and MDM2 and PDGFRA gain were found, while CDKN2A/B was identified as homozygous deletion in the xenografts, qualifying for integrated diagnosis of astrocytoma, IDH2-mutant, CNS WHO grade 4. Cell viability assay found that CDK4/6 inhibitor and PDGFR inhibitor potently decreased cell viability in recurrent tumor cells, as compared to primary tumor cells. These findings suggest that gene alterations that activate retinoblastoma (RB) signaling pathways and PDGFR may drive tumor progression and xenograft formation in IDH2-mutant astrocytoma, which is equivalent to progressive IDH1-mutant astrocytoma. Also, our findings suggest that these genomic alterations may represent therapeutic targets in IDH2-mutant astrocytoma.
Collapse
Affiliation(s)
- Kensuke Tateishi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan.
- Laboratory of Biopharmaceutical and Regenerative Science, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan.
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan.
| | - Yohei Miyake
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Taishi Nakamura
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Hiromichi Iwashita
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
- Department of Diagnostic Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Takahiro Hayashi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Akito Oshima
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Hirokuni Honma
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Hiroaki Hayashi
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kyoka Sugino
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
- Laboratory of Biopharmaceutical and Regenerative Science, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Miyui Kato
- Laboratory of Biopharmaceutical and Regenerative Science, Graduate School of Medical Science, Yokohama City University, Yokohama, Japan
- Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Kaishi Satomi
- Department of Pathology, Kyorin University School of Medicine, Tokyo, Japan
| | - Satoshi Fujii
- Department of Diagnostic Pathology, Yokohama City University Hospital, Yokohama, Japan
- Department of Molecular Pathology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Takashi Komori
- Department of Laboratory Medicine and Pathology (Neuropathology), Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 2360004, Japan
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Translational-Neurooncology Laboratory, Brain Tumor Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Translational-Neurooncology Laboratory, Brain Tumor Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Herold RA, Schofield CJ, Armstrong FA. Electrochemical Nanoreactor Provides a Comprehensive View of Isocitrate Dehydrogenase Cancer-drug Kinetics. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202309149. [PMID: 38529044 PMCID: PMC10962547 DOI: 10.1002/ange.202309149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Indexed: 03/27/2024]
Abstract
The ability to control enzyme cascades entrapped in a nanoporous electrode material (the "Electrochemical Leaf", e-Leaf) has been exploited to gain detailed kinetic insight into the mechanism of an anti-cancer drug. Ivosidenib, used to treat acute myeloid leukemia, acts on a common cancer-linked variant of isocitrate dehydrogenase 1 (IDH1 R132H) inhibiting its "gain-of-function" activity-the undesired reduction of 2-oxoglutarate (2OG) to the oncometabolite 2-hydroxyglutarate (2HG). The e-Leaf quantifies the kinetics of IDH1 R132H inhibition across a wide and continuous range of conditions, efficiently revealing factors underlying the inhibitor residence time. Selective inhibition of IDH1 R132H by Ivosidenib and another inhibitor, Novartis 224, is readily resolved as a two-stage process whereby initial rapid non-inhibitory binding is followed by a slower step to give the inhibitory complex. These kinetic features are likely present in other allosteric inhibitors of IDH1/2. Such details, essential for understanding inhibition mechanisms, are not readily resolved in conventional steady-state kinetics or by techniques that rely only on measuring binding. Extending the new method and analytical framework presented here to other enzyme systems will be straightforward and should rapidly reveal insight that is difficult or often impossible to obtain using other methods.
Collapse
Affiliation(s)
- Ryan A. Herold
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Christopher J. Schofield
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordMansfield RoadOxfordOX1 3QYUK
| | - Fraser A. Armstrong
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| |
Collapse
|
41
|
Herold RA, Schofield CJ, Armstrong FA. Electrochemical Nanoreactor Provides a Comprehensive View of Isocitrate Dehydrogenase Cancer-drug Kinetics. Angew Chem Int Ed Engl 2023; 62:e202309149. [PMID: 37607127 PMCID: PMC10962598 DOI: 10.1002/anie.202309149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
The ability to control enzyme cascades entrapped in a nanoporous electrode material (the "Electrochemical Leaf", e-Leaf) has been exploited to gain detailed kinetic insight into the mechanism of an anti-cancer drug. Ivosidenib, used to treat acute myeloid leukemia, acts on a common cancer-linked variant of isocitrate dehydrogenase 1 (IDH1 R132H) inhibiting its "gain-of-function" activity-the undesired reduction of 2-oxoglutarate (2OG) to the oncometabolite 2-hydroxyglutarate (2HG). The e-Leaf quantifies the kinetics of IDH1 R132H inhibition across a wide and continuous range of conditions, efficiently revealing factors underlying the inhibitor residence time. Selective inhibition of IDH1 R132H by Ivosidenib and another inhibitor, Novartis 224, is readily resolved as a two-stage process whereby initial rapid non-inhibitory binding is followed by a slower step to give the inhibitory complex. These kinetic features are likely present in other allosteric inhibitors of IDH1/2. Such details, essential for understanding inhibition mechanisms, are not readily resolved in conventional steady-state kinetics or by techniques that rely only on measuring binding. Extending the new method and analytical framework presented here to other enzyme systems will be straightforward and should rapidly reveal insight that is difficult or often impossible to obtain using other methods.
Collapse
Affiliation(s)
- Ryan A. Herold
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Christopher J. Schofield
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial ResearchUniversity of OxfordMansfield RoadOxfordOX1 3QYUK
| | - Fraser A. Armstrong
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| |
Collapse
|
42
|
Du D, Qin M, Shi L, Liu C, Jiang J, Liao Z, Wang H, Zhang Z, Sun L, Fan H, Liu Z, Yu H, Li H, Peng J, Yuan S, Yang M, Xiong J. RNA binding motif protein 45-mediated phosphorylation enhances protein stability of ASCT2 to promote hepatocellular carcinoma progression. Oncogene 2023; 42:3127-3141. [PMID: 37658192 DOI: 10.1038/s41388-023-02795-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 09/03/2023]
Abstract
Targeting metabolic remodeling represents a potentially promising strategy for hepatocellular carcinoma (HCC) therapy. In-depth understanding on the regulation of the glutamine transporter alanine-serine-cysteine transporter 2 (ASCT2) contributes to the development of novel promising therapeutics. As a developmentally regulated RNA binding protein, RBM45 is capable to shuttle between nucleus and cytoplasm, and directly interacts with proteins. By bioinformatics analysis, we screened out that RBM45 was elevated in the HCC patient specimens and positively correlated with poor prognosis. RBM45 promoted cell proliferation, boosted xenograft tumorigenicity and accelerated HCC progression. Using untargeted metabolomics, it was found that RBM45 interfered with glutamine metabolism. Further results demonstrated that RBM45 positively associated with ASCT2 in human and mouse specimens. Moreover, RBM45 enhanced ASCT2 protein stability by counteracting autophagy-independent lysosomal degradation. Significantly, wild-type ASCT2, instead of phospho-defective mutants, rescued siRBM45-suppressed HCC cell proliferation. Using molecular docking approaches, we found AG-221, a mutant isocitrate dehydrogenase 2 (mIDH2) inhibitor for acute myeloid leukemia therapy, pharmacologically perturbed RBM45-ASCT2 interaction, decreased ASCT2 stability and suppressed HCC progression. These findings provide evidence that RBM45 plays a crucial role in HCC progression via interacting with and counteracting the degradation of ASCT2. Our findings suggest a novel alternative structural sites for the design of ASCT2 inhibitors and the agents interfering with RBM45-ASCT2 interaction may be a potential direction for HCC drug development.
Collapse
Affiliation(s)
- Danyu Du
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, China
| | - Mengyao Qin
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, China
| | - Li Shi
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chan Liu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, China
| | - Jingwei Jiang
- Shuangyun BioMed Sci & Tech Co., Ltd., Suzhou, 215000, China
| | - Zhengguang Liao
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, China
| | - Hongxv Wang
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhibo Zhang
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, China
| | - Li Sun
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, China
| | - Hui Fan
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhengrui Liu
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, China
| | - Hong Yu
- Department of Pathology, Taizhou People's Hospital Affiliated to Dalian Medical University, Taizhou, 225300, Jiangsu, China
| | - Hongyang Li
- Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, 210042, China
| | - Jun Peng
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, China
| | - Shengtao Yuan
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, China.
| | - Mei Yang
- Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jing Xiong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
43
|
Wei Q, Yao K, Yang J, Zhou Q, Liu P, Chen J, Liu H, Lai Y, Cao P. Structure-Based Drug Design of Novel Triaminotriazine Derivatives as Orally Bioavailable IDH2 R140Q Inhibitors with High Selectivity and Reduced hERG Inhibitory Activity for the Treatment of Acute Myeloid Leukemia. J Med Chem 2023; 66:12894-12910. [PMID: 37706660 DOI: 10.1021/acs.jmedchem.3c00835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Neomorphic IDH2R140Q mutation is commonly found in acute myeloid leukemia (AML), and inhibiting its activity has been validated as an effective treatment for AML. Herein, we report a series of highly potent and selective IDH2R140Q inhibitors. Among them, compound 36 was identified as the most promising inhibitor, with an IC50 value of 29 nM and more than 490-fold selectivity over wild-type IDH2. The compound significantly suppressed D2HG production (IC50 = 10 nM) and induced differentiation in TF-1/IDH2R140Q cells. Furthermore, it showed reasonable pharmacokinetic properties with high bioavailability (F = 90.3%) and an appropriate half-life (T1/2 = 6.4 h). In vivo, oral administration of compound 36 at a dose of 25 mg/kg effectively reduced D2HG levels in the tumor of TF-1/IDH2R140Q xenograft mouse model. Besides, compound 36 displayed little effect on the hERG current. These results suggest that compound 36 has the potential to be an efficacious treatment for AML.
Collapse
Affiliation(s)
- Qingyun Wei
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Kun Yao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Yang
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Qian Zhou
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Pengyu Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Jiao Chen
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Haipeng Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Yisheng Lai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, China
| | - Peng Cao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
44
|
Lang TJL, Damm F, Bullinger L, Frick M. Mechanisms of Resistance to Small Molecules in Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:4573. [PMID: 37760544 PMCID: PMC10526197 DOI: 10.3390/cancers15184573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, great progress has been made in the therapy of AML by targeting cellular processes associated with specific molecular features of the disease. Various small molecules inhibiting FLT3, IDH1/IDH2, and BCL2 have already gained approval from the respective authorities and are essential parts of personalized therapeutic regimens in modern therapy of AML. Unfortunately, primary and secondary resistance to these inhibitors is a frequent problem. Here, we comprehensively review the current state of knowledge regarding molecular processes involved in primary and secondary resistance to these agents, covering both genetic and nongenetic mechanisms. In addition, we introduce concepts and strategies for how these resistance mechanisms might be overcome.
Collapse
Affiliation(s)
- Tonio Johannes Lukas Lang
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353 Berlin, Germany
| | - Frederik Damm
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353 Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353 Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mareike Frick
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353 Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
45
|
Humphries S, Bond DR, Germon ZP, Keely S, Enjeti AK, Dun MD, Lee HJ. Crosstalk between DNA methylation and hypoxia in acute myeloid leukaemia. Clin Epigenetics 2023; 15:150. [PMID: 37705055 PMCID: PMC10500762 DOI: 10.1186/s13148-023-01566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Acute myeloid leukaemia (AML) is a deadly disease characterised by the uncontrolled proliferation of immature myeloid cells within the bone marrow. Altered regulation of DNA methylation is an important epigenetic driver of AML, where the hypoxic bone marrow microenvironment can help facilitate leukaemogenesis. Thus, interactions between epigenetic regulation and hypoxia signalling will have important implications for AML development and treatment. MAIN BODY This review summarises the importance of DNA methylation and the hypoxic bone marrow microenvironment in the development, progression, and treatment of AML. Here, we focus on the role hypoxia plays on signalling and the subsequent regulation of DNA methylation. Hypoxia is likely to influence DNA methylation through altered metabolic pathways, transcriptional control of epigenetic regulators, and direct effects on the enzymatic activity of epigenetic modifiers. DNA methylation may also prevent activation of hypoxia-responsive genes, demonstrating bidirectional crosstalk between epigenetic regulation and the hypoxic microenvironment. Finally, we consider the clinical implications of these interactions, suggesting that reduced cell cycling within the hypoxic bone marrow may decrease the efficacy of hypomethylating agents. CONCLUSION Hypoxia is likely to influence AML progression through complex interactions with DNA methylation, where the therapeutic efficacy of hypomethylating agents may be limited within the hypoxic bone marrow. To achieve optimal outcomes for AML patients, future studies should therefore consider co-treatments that can promote cycling of AML cells within the bone marrow or encourage their dissociation from the bone marrow.
Collapse
Affiliation(s)
- Sam Humphries
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Danielle R Bond
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Zacary P Germon
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Anoop K Enjeti
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- Department of Haematology, Calvary Mater Hospital, Waratah, NSW, 2298, Australia
- New South Wales Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Heather J Lee
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia.
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.
| |
Collapse
|
46
|
Abdel-Aziz AK. Advances in acute myeloid leukemia differentiation therapy: A critical review. Biochem Pharmacol 2023; 215:115709. [PMID: 37506924 DOI: 10.1016/j.bcp.2023.115709] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Acute myeloid leukemia (AML) is characterized by impaired differentiation and indefinite proliferation of abnormal myeloid progenitors. Although differentiating agents were deemed to revolutionize AML therapy, most treated non-APL AML patients are refractory or relapse. According to cancer stem cell model, leukemia-initiating cells are the root cause of relapse given their unidirectional potential to generate differentiated AML blasts. Nonetheless, accumulating evidences emphasize the de-differentiation plasticity and leukemogenic potential of mature AML blasts and the frailty of targeting leukemic stem cells per se. This review critically discusses the potential and challenges of (lessons learnt from) conventional and novel differentiating agents in AML therapy. Although differentiating agents might hold promise, they should be exploited within the context of a rationale combination regimen eradicating all maturation/differentiation states of AML cells. The results of the routinely used immunophenotypic markers and/or morphological analyses of differentiation should be carefully interpreted given their propensity to underestimate AML burden.
Collapse
Affiliation(s)
- Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Smart Health Initiative, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudia Arabia.
| |
Collapse
|
47
|
Jaccard A, Wyss T, Maldonado-Pérez N, Rath JA, Bevilacqua A, Peng JJ, Lepez A, Von Gunten C, Franco F, Kao KC, Camviel N, Martín F, Ghesquière B, Migliorini D, Arber C, Romero P, Ho PC, Wenes M. Reductive carboxylation epigenetically instructs T cell differentiation. Nature 2023; 621:849-856. [PMID: 37730993 DOI: 10.1038/s41586-023-06546-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 08/15/2023] [Indexed: 09/22/2023]
Abstract
Protective immunity against pathogens or cancer is mediated by the activation and clonal expansion of antigen-specific naive T cells into effector T cells. To sustain their rapid proliferation and effector functions, naive T cells switch their quiescent metabolism to an anabolic metabolism through increased levels of aerobic glycolysis, but also through mitochondrial metabolism and oxidative phosphorylation, generating energy and signalling molecules1-3. However, how that metabolic rewiring drives and defines the differentiation of T cells remains unclear. Here we show that proliferating effector CD8+ T cells reductively carboxylate glutamine through the mitochondrial enzyme isocitrate dehydrogenase 2 (IDH2). Notably, deletion of the gene encoding IDH2 does not impair the proliferation of T cells nor their effector function, but promotes the differentiation of memory CD8+ T cells. Accordingly, inhibiting IDH2 during ex vivo manufacturing of chimeric antigen receptor (CAR) T cells induces features of memory T cells and enhances antitumour activity in melanoma, leukaemia and multiple myeloma. Mechanistically, inhibition of IDH2 activates compensating metabolic pathways that cause a disequilibrium in metabolites regulating histone-modifying enzymes, and this maintains chromatin accessibility at genes that are required for the differentiation of memory T cells. These findings show that reductive carboxylation in CD8+ T cells is dispensable for their effector response and proliferation, but that it mainly produces a pattern of metabolites that epigenetically locks CD8+ T cells into a terminal effector differentiation program. Blocking this metabolic route allows the increased formation of memory T cells, which could be exploited to optimize the therapeutic efficacy of CAR T cells.
Collapse
Affiliation(s)
- Alison Jaccard
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Épalinges, Switzerland
| | - Tania Wyss
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Translational Data Science (TDS) Group, AGORA Cancer Research Center, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Noelia Maldonado-Pérez
- Department of Genomic Medicine, Pfizer-University of Granada-Junta de Andalucía, Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Jan A Rath
- Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Épalinges, Switzerland
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Alessio Bevilacqua
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Épalinges, Switzerland
| | - Jhan-Jie Peng
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Épalinges, Switzerland
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Anouk Lepez
- AGORA Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
- Brain Tumor and Immune Cell Engineering Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland
| | - Christine Von Gunten
- Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Épalinges, Switzerland
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Fabien Franco
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Épalinges, Switzerland
| | - Kung-Chi Kao
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Épalinges, Switzerland
| | - Nicolas Camviel
- Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Épalinges, Switzerland
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Francisco Martín
- Department of Genomic Medicine, Pfizer-University of Granada-Junta de Andalucía, Centre for Genomics and Oncological Research (GENYO), Granada, Spain
| | - Bart Ghesquière
- Metabolomics Expertise Center, Center for Cancer Biology, VIB, KU Leuven, Leuven, Belgium
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Denis Migliorini
- AGORA Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
- Brain Tumor and Immune Cell Engineering Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Caroline Arber
- Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Épalinges, Switzerland
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Pedro Romero
- Department of Oncology, University of Lausanne, Lausanne, Switzerland.
| | - Ping-Chih Ho
- Department of Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Épalinges, Switzerland.
| | - Mathias Wenes
- Department of Oncology, University of Lausanne, Lausanne, Switzerland.
- AGORA Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman, Lausanne, Switzerland.
- Brain Tumor and Immune Cell Engineering Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
48
|
Palau A, Segerberg F, Lidschreiber M, Lidschreiber K, Naughton AJ, Needhamsen M, Jung LA, Jagodic M, Cramer P, Lehmann S, Carlsten M, Lennartsson A. Perturbed epigenetic transcriptional regulation in AML with IDH mutations causes increased susceptibility to NK cells. Leukemia 2023; 37:1830-1841. [PMID: 37495775 PMCID: PMC10457197 DOI: 10.1038/s41375-023-01972-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/05/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023]
Abstract
Isocitrate dehydrogenase (IDH) mutations are found in 20% of acute myeloid leukemia (AML) patients. However, only 30-40% of the patients respond to IDH inhibitors (IDHi). We aimed to identify a molecular vulnerability to tailor novel therapies for AML patients with IDH mutations. We characterized the transcriptional and epigenetic landscape with the IDH2i AG-221, using an IDH2 mutated AML cell line model and AML patient cohorts, and discovered a perturbed transcriptional regulatory network involving myeloid transcription factors that were partly restored after AG-221 treatment. In addition, hypermethylation of the HLA cluster caused a down-regulation of HLA class I genes, triggering an enhanced natural killer (NK) cell activation and an increased susceptibility to NK cell-mediated responses. Finally, analyses of DNA methylation data from IDHi-treated patients showed that non-responders still harbored hypermethylation in HLA class I genes. In conclusion, this study provides new insights suggesting that IDH mutated AML is particularly sensitive to NK cell-based personalized immunotherapy.
Collapse
Affiliation(s)
- Anna Palau
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Filip Segerberg
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Michael Lidschreiber
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katja Lidschreiber
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Aonghus J Naughton
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Maria Needhamsen
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Lisa Anna Jung
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Solna, Sweden
| | - Patrick Cramer
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sören Lehmann
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
- Hematology Centre, Karolinska University Hospital, Stockholm, Sweden.
- Hematology Unit, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| | - Mattias Carlsten
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
- Center for Cell Therapy and Allogeneic Stem Cell Transplantation, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden.
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
49
|
Gruber E, Kats LM. The curious case of IDH mutant acute myeloid leukaemia: biochemistry and therapeutic approaches. Biochem Soc Trans 2023; 51:1675-1686. [PMID: 37526143 PMCID: PMC10586776 DOI: 10.1042/bst20230017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Of the many genetic alterations that occur in cancer, relatively few have proven to be suitable for the development of targeted therapies. Mutations in isocitrate dehydrogenase (IDH) 1 and -2 increase the capacity of cancer cells to produce a normally scarce metabolite, D-2-hydroxyglutarate (2-HG), by several orders of magnitude. The discovery of the unusual biochemistry of IDH mutations spurred a flurry of activity that revealed 2-HG as an 'oncometabolite' with pleiotropic effects in malignant cells and consequences for anti-tumour immunity. Over the next decade, we learned that 2-HG dysregulates a wide array of molecular pathways, among them a large family of dioxygenases that utilise the closely related metabolite α-ketoglutarate (α-KG) as an essential co-substrate. 2-HG not only contributes to malignant transformation, but some cancer cells become addicted to it and sensitive to inhibitors that block its synthesis. Moreover, high 2-HG levels and loss of wild-type IDH1 or IDH2 activity gives rise to synthetic lethal vulnerabilities. Herein, we review the biology of IDH mutations with a particular focus on acute myeloid leukaemia (AML), an aggressive disease where selective targeting of IDH-mutant cells is showing significant promise.
Collapse
Affiliation(s)
- Emily Gruber
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Lev M. Kats
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
50
|
Pang H, Hu Z. Metabolomics in drug research and development: The recent advances in technologies and applications. Acta Pharm Sin B 2023; 13:3238-3251. [PMID: 37655318 PMCID: PMC10465962 DOI: 10.1016/j.apsb.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/21/2023] [Accepted: 04/28/2023] [Indexed: 09/02/2023] Open
Abstract
Emerging evidence has demonstrated the vital role of metabolism in various diseases or disorders. Metabolomics provides a comprehensive understanding of metabolism in biological systems. With advanced analytical techniques, metabolomics exhibits unprecedented significant value in basic drug research, including understanding disease mechanisms, identifying drug targets, and elucidating the mode of action of drugs. More importantly, metabolomics greatly accelerates the drug development process by predicting pharmacokinetics, pharmacodynamics, and drug response. In addition, metabolomics facilitates the exploration of drug repurposing and drug-drug interactions, as well as the development of personalized treatment strategies. Here, we briefly review the recent advances in technologies in metabolomics and update our knowledge of the applications of metabolomics in drug research and development.
Collapse
Affiliation(s)
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| |
Collapse
|