1
|
Tuder RM, Gandjeva A, Williams S, Kumar S, Kheyfets VO, Hatton-Jones KM, Starr JR, Yun J, Hong J, West NP, Stenmark KR. Digital Spatial Profiling Identifies Distinct Molecular Signatures of Vascular Lesions in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2024; 210:329-342. [PMID: 38568479 PMCID: PMC11348978 DOI: 10.1164/rccm.202307-1310oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/03/2024] [Indexed: 06/09/2024] Open
Abstract
Rationale: Idiopathic pulmonary arterial hypertension (IPAH) is characterized by extensive pulmonary vascular remodeling caused by plexiform and obliterative lesions, media hypertrophy, inflammatory cell infiltration, and alterations of the adventitia. Objective: We sought to test the hypothesis that microscopic IPAH vascular lesions express unique molecular profiles, which collectively are different from control pulmonary arteries. Methods: We used digital spatial transcriptomics to profile the genomewide differential transcriptomic signature of key pathological lesions (plexiform, obliterative, intima+media hypertrophy, and adventitia) in IPAH lungs (n = 11) and compared these data with the intima+media hypertrophy and adventitia of control pulmonary artery (n = 5). Measurements and Main Results: We detected 8,273 transcripts in the IPAH lesions and control lung pulmonary arteries. Plexiform lesions and IPAH adventitia exhibited the greatest number of differentially expressed genes when compared with intima+media hypertrophy and obliterative lesions. Plexiform lesions in IPAH showed enrichment for 1) genes associated with transforming growth factor β signaling and 2) mutated genes affecting the extracellular matrix and endothelial-mesenchymal transformation. Plexiform lesions and IPAH adventitia showed upregulation of genes involved in immune and IFN signaling, coagulation, and complement pathways. Cellular deconvolution indicated variability in the number of vascular and inflammatory cells between IPAH lesions, which underlies the differential transcript profiling. Conclusions: IPAH lesions express unique molecular transcript profiles enriched for pathways involving pathogenetic pathways, including genetic disease drivers, innate and acquired immunity, hypoxia sensing, and angiogenesis signaling. These data provide a rich molecular-structural framework in IPAH vascular lesions that inform novel biomarkers and therapeutic targets in this highly morbid disease.
Collapse
Affiliation(s)
- Rubin M. Tuder
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Department of Medicine
- Program in Translational Lung Research, Division of Pulmonary and Critical Care Sciences, Department of Medicine
| | - Aneta Gandjeva
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Department of Medicine
- Program in Translational Lung Research, Division of Pulmonary and Critical Care Sciences, Department of Medicine
| | - Sarah Williams
- Queensland Cyber Infrastructure Foundation, St. Lucia, Queensland, Australia
- Griffith Institute for Drug Discovery
| | - Sushil Kumar
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Department of Medicine
| | - Vitaly O. Kheyfets
- Program in Translational Lung Research, Division of Pulmonary and Critical Care Sciences, Department of Medicine
- Division of Pediatric Critical Care Medicine and Cardiovascular Pulmonary Research Laboratory, and
- Department of Biomedical Informatics, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado
| | | | - Jacqueline R. Starr
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts; and
| | - Jeong Yun
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts; and
| | - Jason Hong
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California
| | - Nicholas P. West
- Menzies Health Institute, and
- School of Pharmacy and Medical Science, Griffith University, Nathan, Queensland, Australia
| | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Department of Medicine
- Division of Pediatric Critical Care Medicine and Cardiovascular Pulmonary Research Laboratory, and
| |
Collapse
|
2
|
Mocumbi A, Humbert M, Saxena A, Jing ZC, Sliwa K, Thienemann F, Archer SL, Stewart S. Pulmonary hypertension. Nat Rev Dis Primers 2024; 10:1. [PMID: 38177157 DOI: 10.1038/s41572-023-00486-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
Pulmonary hypertension encompasses a range of conditions directly or indirectly leading to elevated pressures within the pulmonary arteries. Five main groups of pulmonary hypertension are recognized, all defined by a mean pulmonary artery pressure of >20 mmHg: pulmonary arterial hypertension (rare), pulmonary hypertension associated with left-sided heart disease (very common), pulmonary hypertension associated with lung disease (common), pulmonary hypertension associated with pulmonary artery obstructions, usually related to thromboembolic disease (rare), and pulmonary hypertension with unclear and/or multifactorial mechanisms (rare). At least 1% of the world's population is affected, with a greater burden more likely in low-income and middle-income countries. Across all its forms, pulmonary hypertension is associated with adverse vascular remodelling with obstruction, stiffening and vasoconstriction of the pulmonary vasculature. Without proactive management this leads to hypertrophy and ultimately failure of the right ventricle, the main cause of death. In older individuals, dyspnoea is the most common symptom. Stepwise investigation precedes definitive diagnosis with right heart catheterization. Medical and surgical treatments are approved for pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. There are emerging treatments for other forms of pulmonary hypertension; but current therapy primarily targets the underlying cause. There are still major gaps in basic, clinical and translational knowledge; thus, further research, with a focus on vulnerable populations, is needed to better characterize, detect and effectively treat all forms of pulmonary hypertension.
Collapse
Affiliation(s)
- Ana Mocumbi
- Faculdade de Medicina, Universidade Eduardo Mondlane, Maputo, Moçambique.
- Instituto Nacional de Saúde, EN 1, Marracuene, Moçambique.
| | - Marc Humbert
- Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital Bicêtre (Assistance Publique Hôpitaux de Paris), Université Paris-Saclay, INSERM UMR_S 999, Paris, France
- ERN-LUNG, Le Kremlin Bicêtre, Paris, France
| | - Anita Saxena
- Sharma University of Health Sciences, Haryana, New Delhi, India
| | - Zhi-Cheng Jing
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Karen Sliwa
- Cape Heart Institute, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | - Friedrich Thienemann
- Department of Medicine, Groote Schuur Hospital, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
- Department of Internal Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Simon Stewart
- Institute of Health Research, University of Notre Dame, Fremantle, Western Australia, Australia
| |
Collapse
|
3
|
Welch CL, Aldred MA, Balachandar S, Dooijes D, Eichstaedt CA, Gräf S, Houweling AC, Machado RD, Pandya D, Prapa M, Shaukat M, Southgate L, Tenorio-Castano J, Chung WK. Defining the clinical validity of genes reported to cause pulmonary arterial hypertension. Genet Med 2023; 25:100925. [PMID: 37422716 PMCID: PMC10766870 DOI: 10.1016/j.gim.2023.100925] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023] Open
Abstract
PURPOSE Pulmonary arterial hypertension (PAH) is a rare, progressive vasculopathy with significant cardiopulmonary morbidity and mortality. Genetic testing is currently recommended for adults diagnosed with heritable, idiopathic, anorexigen-, hereditary hemorrhagic telangiectasia-, and congenital heart disease-associated PAH, PAH with overt features of venous/capillary involvement, and all children diagnosed with PAH. Variants in at least 27 genes have putative evidence for PAH causality. Rigorous assessment of the evidence is needed to inform genetic testing. METHODS An international panel of experts in PAH applied a semi-quantitative scoring system developed by the NIH Clinical Genome Resource to classify the relative strength of evidence supporting PAH gene-disease relationships based on genetic and experimental evidence. RESULTS Twelve genes (BMPR2, ACVRL1, ATP13A3, CAV1, EIF2AK4, ENG, GDF2, KCNK3, KDR, SMAD9, SOX17, and TBX4) were classified as having definitive evidence and 3 genes (ABCC8, GGCX, and TET2) with moderate evidence. Six genes (AQP1, BMP10, FBLN2, KLF2, KLK1, and PDGFD) were classified as having limited evidence for causal effects of variants. TOPBP1 was classified as having no known PAH relationship. Five genes (BMPR1A, BMPR1B, NOTCH3, SMAD1, and SMAD4) were disputed because of a paucity of genetic evidence over time. CONCLUSION We recommend that genetic testing includes all genes with definitive evidence and that caution be taken in the interpretation of variants identified in genes with moderate or limited evidence. Genes with no known evidence for PAH or disputed genes should not be included in genetic testing.
Collapse
Affiliation(s)
- Carrie L Welch
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Micheala A Aldred
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, IN
| | - Srimmitha Balachandar
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, IN
| | - Dennis Dooijes
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Christina A Eichstaedt
- Center for Pulmonary Hypertension, Thoraxklinik-Heidelberg gGmbH, at Heidelberg University Hospital and Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany; Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Stefan Gräf
- NIHR BioResource for Translational Research - Rare Diseases, Department of Haemotology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom; Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Arjan C Houweling
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rajiv D Machado
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Divya Pandya
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Matina Prapa
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom; St. George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Memoona Shaukat
- Center for Pulmonary Hypertension, Thoraxklinik-Heidelberg gGmbH, at Heidelberg University Hospital and Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany; Laboratory for Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Laura Southgate
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, United Kingdom
| | - Jair Tenorio-Castano
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IDiPAZ, Universidad Autonoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain; ITHACA, European Reference Network, Brussels, Belgium
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY; Department of Medicine, Columbia University Irving Medical Center, New York, NY.
| |
Collapse
|
4
|
Role of Ion Channel Remodeling in Endothelial Dysfunction Induced by Pulmonary Arterial Hypertension. Biomolecules 2022; 12:biom12040484. [PMID: 35454073 PMCID: PMC9031742 DOI: 10.3390/biom12040484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial dysfunction is a key player in advancing vascular pathology in pulmonary arterial hypertension (PAH), a disease essentially characterized by intense remodeling of the pulmonary vasculature, vasoconstriction, endothelial dysfunction, inflammation, oxidative stress, and thrombosis in situ. These vascular features culminate in an increase in pulmonary vascular resistance, subsequent right heart failure, and premature death. Over the past years, there has been a great development in our understanding of pulmonary endothelial biology related to the genetic and molecular mechanisms that modulate the endothelial response to direct or indirect injury and how their dysregulation can promote PAH pathogenesis. Ion channels are key regulators of vasoconstriction and proliferative/apoptotic phenotypes; however, they are poorly studied at the endothelial level. The current review will describe and categorize different expression, functions, regulation, and remodeling of endothelial ion channels (K+, Ca2+, Na+, and Cl− channels) in PAH. We will focus on the potential pathogenic role of ion channel deregulation in the onset and progression of endothelial dysfunction during the development of PAH and its potential therapeutic role.
Collapse
|
5
|
Roger I, Milara J, Belhadj N, Cortijo J. Senescence Alterations in Pulmonary Hypertension. Cells 2021; 10:3456. [PMID: 34943963 PMCID: PMC8700581 DOI: 10.3390/cells10123456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is the arrest of normal cell division and is commonly associated with aging. The interest in the role of cellular senescence in lung diseases derives from the observation of markers of senescence in chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (IPF), and pulmonary hypertension (PH). Accumulation of senescent cells and the senescence-associated secretory phenotype in the lung of aged patients may lead to mild persistent inflammation, which results in tissue damage. Oxidative stress due to environmental exposures such as cigarette smoke also promotes cellular senescence, together with additional forms of cellular stress such as mitochondrial dysfunction and endoplasmic reticulum stress. Growing recent evidence indicate that senescent cell phenotypes are observed in pulmonary artery smooth muscle cells and endothelial cells of patients with PH, contributing to pulmonary artery remodeling and PH development. In this review, we analyze the role of different senescence cell phenotypes contributing to the pulmonary artery remodeling process in different PH clinical entities. Different molecular pathway activation and cellular functions derived from senescence activation will be analyzed and discussed as promising targets to develop future senotherapies as promising treatments to attenuate pulmonary artery remodeling in PH.
Collapse
Affiliation(s)
- Inés Roger
- Centro de Investigación en Red Enfermedades Respiratorias CIBERES, Health Institute Carlos III, 28029 Valencia, Spain;
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Javier Milara
- Centro de Investigación en Red Enfermedades Respiratorias CIBERES, Health Institute Carlos III, 28029 Valencia, Spain;
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
- Pharmacy Unit, University General Hospital Consortium of Valencia, 46014 Valencia, Spain
| | - Nada Belhadj
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Julio Cortijo
- Centro de Investigación en Red Enfermedades Respiratorias CIBERES, Health Institute Carlos III, 28029 Valencia, Spain;
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain;
- Research and Teaching Unit, University General Hospital Consortium, 46014 Valencia, Spain
| |
Collapse
|
6
|
Santamaria S, Martin DR, Dong X, Yamamoto K, Apte SS, Ahnström J. Post-translational regulation and proteolytic activity of the metalloproteinase ADAMTS8. J Biol Chem 2021; 297:101323. [PMID: 34687701 PMCID: PMC8577114 DOI: 10.1016/j.jbc.2021.101323] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/21/2022] Open
Abstract
A disintegrin-like and metalloprotease domain with thrombospondin type 1 motifs (ADAMTS)8 is a secreted protease, which was recently implicated in pathogenesis of pulmonary arterial hypertension (PAH). However, the substrate repertoire of ADAMTS8 and regulation of its activity are incompletely understood. Although considered a proteoglycanase because of high sequence similarity and close phylogenetic relationship to the proteoglycan-degrading proteases ADAMTS1, 4, 5, and 15, as well as tight genetic linkage with ADAMTS15 on human chromosome 11, its aggrecanase activity was reportedly weak. Several post-translational factors are known to regulate ADAMTS proteases such as autolysis, inhibition by endogenous inhibitors, and receptor-mediated endocytosis, but their impacts on ADAMTS8 are unknown. Here, we show that ADAMTS8 undergoes autolysis at six different sites within its spacer domain. We also found that in contrast to ADAMTS4 and 5, ADAMTS8 levels were not regulated through low-density lipoprotein receptor-related protein 1 (LRP1)-mediated endocytosis. Additionally, ADAMTS8 lacked significant activity against the proteoglycans aggrecan, versican, and biglycan. Instead, we found that ADAMTS8 cleaved osteopontin, a phosphoprotein whose expression is upregulated in PAH. Multiple ADAMTS8 cleavage sites were identified using liquid chromatography–tandem mass spectrometry. Osteopontin cleavage by ADAMTS8 was efficiently inhibited by TIMP-3, an endogenous inhibitor of ADAMTS1, 4, and 5, as well as by TIMP-2, which has no previously reported inhibitory activity against other ADAMTS proteases. These differences in post-translational regulation and substrate repertoire differentiate ADAMTS8 from other family members and may help to elucidate its role in PAH.
Collapse
Affiliation(s)
| | - Daniel R Martin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Xiangyi Dong
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Josefin Ahnström
- Department of Immunology and Inflammation, Imperial College London, London, UK
| |
Collapse
|
7
|
PPARγ and TGFβ-Major Regulators of Metabolism, Inflammation, and Fibrosis in the Lungs and Kidneys. Int J Mol Sci 2021; 22:ijms221910431. [PMID: 34638771 PMCID: PMC8508998 DOI: 10.3390/ijms221910431] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 01/06/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a type II nuclear receptor, initially recognized in adipose tissue for its role in fatty acid storage and glucose metabolism. It promotes lipid uptake and adipogenesis by increasing insulin sensitivity and adiponectin release. Later, PPARγ was implicated in cardiac development and in critical conditions such as pulmonary arterial hypertension (PAH) and kidney failure. Recently, a cluster of different papers linked PPARγ signaling with another superfamily, the transforming growth factor beta (TGFβ), and its receptors, all of which play a major role in PAH and kidney failure. TGFβ is a multifunctional cytokine that drives inflammation, fibrosis, and cell differentiation while PPARγ activation reverses these adverse events in many models. Such opposite biological effects emphasize the delicate balance and complex crosstalk between PPARγ and TGFβ. Based on solid experimental and clinical evidence, the present review summarizes connections and their implications for PAH and kidney failure, highlighting the similarities and differences between lung and kidney mechanisms as well as discussing the therapeutic potential of PPARγ agonist pioglitazone.
Collapse
|
8
|
Zolty R. Novel Experimental Therapies for Treatment of Pulmonary Arterial Hypertension. J Exp Pharmacol 2021; 13:817-857. [PMID: 34429666 PMCID: PMC8380049 DOI: 10.2147/jep.s236743] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and devastating disease characterized by pulmonary artery vasoconstriction and vascular remodeling leading to vascular rarefaction with elevation of pulmonary arterial pressures and pulmonary vascular resistance. Often PAH will cause death from right heart failure. Current PAH-targeted therapies improve functional capacity, pulmonary hemodynamics and reduce hospitalization. Nevertheless, today PAH still remains incurable and is often refractory to medical therapy, underscoring the need for further research. Over the last three decades, PAH has evolved from a disease of unknown pathogenesis devoid of effective therapy to a condition whose cellular, genetic and molecular underpinnings are unfolding. This article provides an update on current knowledge and summarizes the progression in recent advances in pharmacological therapy in PAH.
Collapse
Affiliation(s)
- Ronald Zolty
- Pulmonary Hypertension Program, University of Nebraska Medical Center, Lied Transplant Center, Omaha, NE, USA
| |
Collapse
|
9
|
Mumby S, Perros F, Hui C, Xu BL, Xu W, Elyasigomari V, Hautefort A, Manaud G, Humbert M, Chung KF, Wort SJ, Adcock IM. Extracellular matrix degradation pathways and fatty acid metabolism regulate distinct pulmonary vascular cell types in pulmonary arterial hypertension. Pulm Circ 2021; 11:2045894021996190. [PMID: 34408849 PMCID: PMC8366141 DOI: 10.1177/2045894021996190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension describes a group of diseases characterised by raised pulmonary vascular resistance, resulting from vascular remodelling in the pre-capillary resistance arterioles. Left untreated, patients die from right heart failure. Pulmonary vascular remodelling involves all cell types but to date the precise roles of the different cells is unknown. This study investigated differences in basal gene expression between pulmonary arterial hypertension and controls using both human pulmonary microvascular endothelial cells and human pulmonary artery smooth muscle cells. Human pulmonary microvascular endothelial cells and human pulmonary artery smooth muscle cells from pulmonary arterial hypertension patients and controls were cultured to confluence, harvested and RNA extracted. Whole genome sequencing was performed and after transcript quantification and normalisation, we examined differentially expressed genes and applied gene set enrichment analysis to the differentially expressed genes to identify putative activated pathways. Human pulmonary microvascular endothelial cells displayed 1008 significant (p ≤ 0.0001) differentially expressed genes in pulmonary arterial hypertension samples compared to controls. In human pulmonary artery smooth muscle cells, there were 229 significant (p ≤ 0.0001) differentially expressed genes between pulmonary arterial hypertension and controls. Pathway analysis revealed distinctive differences: human pulmonary microvascular endothelial cells display down-regulation of extracellular matrix organisation, collagen formation and biosynthesis, focal- and cell-adhesion molecules suggesting severe endothelial barrier dysfunction and vascular permeability in pulmonary arterial hypertension pathogenesis. In contrast, pathways in human pulmonary artery smooth muscle cells were mainly up-regulated, including those for fatty acid metabolism, biosynthesis of unsaturated fatty acids, cell–cell and adherens junction interactions suggesting a more energy-driven proliferative phenotype. This suggests that the two cell types play different mechanistic roles in pulmonary arterial hypertension pathogenesis and further studies are required to fully elucidate the role each plays and the interactions between these cell types in vascular remodelling in disease progression.
Collapse
Affiliation(s)
- Sharon Mumby
- Respiratory Science, NHLI, Imperial College London, London, UK
| | - F Perros
- UMRS 999, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, INSERM and Paris-Sud, Le Plessis Robinson, France.,Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, Canada
| | - C Hui
- Centre for Respiratory & Critical Care Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - B L Xu
- Centre for Respiratory & Critical Care Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - W Xu
- Centre for Respiratory & Critical Care Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - V Elyasigomari
- Department of Computing, Data Science Institute, Imperial College London, London, UK
| | - A Hautefort
- UMRS 999, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, INSERM and Paris-Sud, Le Plessis Robinson, France
| | - G Manaud
- UMRS 999, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique, INSERM and Paris-Sud, Le Plessis Robinson, France
| | - M Humbert
- Département Hospitalo-Universitaire Thorax Innovation, Centre de Référence de l'Hypertension Pulmonaire Sévère, Service de Pneumologie et Réanimation Respiratoire, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - K F Chung
- Respiratory Science, NHLI, Imperial College London, London, UK
| | - S J Wort
- Respiratory Science, NHLI, Imperial College London, London, UK.,National Pulmonary Hypertension Service, Royal Brompton Hospital, London, UK
| | - I M Adcock
- Respiratory Science, NHLI, Imperial College London, London, UK
| |
Collapse
|
10
|
Cui X, Pan G, Chen Y, Guo X, Liu T, Zhang J, Yang X, Cheng M, Gao H, Jiang F. The p53 pathway in vasculature revisited: A therapeutic target for pathological vascular remodeling? Pharmacol Res 2021; 169:105683. [PMID: 34019981 DOI: 10.1016/j.phrs.2021.105683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 02/08/2023]
Abstract
Pathological vascular remodeling contributes to the development of restenosis following intraluminal interventions, transplant vasculopathy, and pulmonary arterial hypertension. Activation of the tumor suppressor p53 may counteract vascular remodeling by inhibiting aberrant proliferation of vascular smooth muscle cells and repressing vascular inflammation. In particular, the development of different lines of small-molecule p53 activators ignites the hope of treating remodeling-associated vascular diseases by targeting p53 pharmacologically. In this review, we discuss the relationships between p53 and pathological vascular remodeling, and summarize current experimental data suggesting that drugging the p53 pathway may represent a novel strategy to prevent the development of vascular remodeling.
Collapse
Affiliation(s)
- Xiaopei Cui
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Guopin Pan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Ye Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xiaosun Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Tengfei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Jing Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xiaofan Yang
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Mei Cheng
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Haiqing Gao
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Fan Jiang
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
11
|
Fazal S, Bisserier M, Hadri L. Molecular and Genetic Profiling for Precision Medicines in Pulmonary Arterial Hypertension. Cells 2021; 10:cells10030638. [PMID: 33805595 PMCID: PMC7999465 DOI: 10.3390/cells10030638] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare and chronic lung disease characterized by progressive occlusion of the small pulmonary arteries, which is associated with structural and functional alteration of the smooth muscle cells and endothelial cells within the pulmonary vasculature. Excessive vascular remodeling is, in part, responsible for high pulmonary vascular resistance and the mean pulmonary arterial pressure, increasing the transpulmonary gradient and the right ventricular “pressure overload”, which may result in right ventricular (RV) dysfunction and failure. Current technological advances in multi-omics approaches, high-throughput sequencing, and computational methods have provided valuable tools in molecular profiling and led to the identification of numerous genetic variants in PAH patients. In this review, we summarized the pathogenesis, classification, and current treatments of the PAH disease. Additionally, we outlined the latest next-generation sequencing technologies and the consequences of common genetic variants underlying PAH susceptibility and disease progression. Finally, we discuss the importance of molecular genetic testing for precision medicine in PAH and the future of genomic medicines, including gene-editing technologies and gene therapies, as emerging alternative approaches to overcome genetic disorders in PAH.
Collapse
|
12
|
Type I interferon activation and endothelial dysfunction in caveolin-1 insufficiency-associated pulmonary arterial hypertension. Proc Natl Acad Sci U S A 2021; 118:2010206118. [PMID: 33836561 DOI: 10.1073/pnas.2010206118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interferonopathies, interferon (IFN)-α/β therapy, and caveolin-1 (CAV1) loss-of-function have all been associated with pulmonary arterial hypertension (PAH). Here, CAV1-silenced primary human pulmonary artery endothelial cells (PAECs) were proliferative and hypermigratory, with reduced cytoskeletal stress fibers. Signal transducers and activators of transcription (STAT) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) were both constitutively activated in these cells, resulting in a type I IFN-biased inflammatory signature. Cav1 -/- mice that spontaneously develop pulmonary hypertension were found to have STAT1 and AKT activation in lung homogenates and increased circulating levels of CXCL10, a hallmark of IFN-mediated inflammation. PAH patients with CAV1 mutations also had elevated serum CXCL10 levels and their fibroblasts mirrored phenotypic and molecular features of CAV1-deficient PAECs. Moreover, immunofluorescence staining revealed endothelial CAV1 loss and STAT1 activation in the pulmonary arterioles of patients with idiopathic PAH, suggesting that this paradigm might not be limited to rare CAV1 frameshift mutations. While blocking JAK/STAT or AKT rescued aspects of CAV1 loss, only AKT inhibitors suppressed activation of both signaling pathways simultaneously. Silencing endothelial nitric oxide synthase (NOS3) prevented STAT1 and AKT activation induced by CAV1 loss, implicating CAV1/NOS3 uncoupling and NOS3 dysregulation in the inflammatory phenotype. Exogenous IFN reduced CAV1 expression, activated STAT1 and AKT, and altered the cytoskeleton of PAECs, implicating these mechanisms in PAH associated with autoimmune and autoinflammatory diseases, as well as IFN therapy. CAV1 insufficiency elicits an IFN inflammatory response that results in a dysfunctional endothelial cell phenotype and targeting this pathway may reduce pathologic vascular remodeling in PAH.
Collapse
|
13
|
Abstract
Advances in high-throughput biotechnologies have facilitated omics profiling, a key component of precision phenotyping, in patients with pulmonary vascular disease. Omics provides comprehensive information pertaining to genes, transcripts, proteins, and metabolites. The resulting omics big datasets may be integrated for more robust results and are amenable to analysis using machine learning or newer analytical methodologies, such as network analysis. Results from fully integrated multi-omics datasets combined with clinical data are poised to provide novel insight into pulmonary vascular disease as well as diagnose the presence of disease and prognosticate outcomes.
Collapse
Affiliation(s)
- Jane A Leopold
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, NRB0630K, Boston, MA 02115, USA.
| | - Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, T1218 Medical Center North, 1161 21st Avenue South, Nashville, TN 37232, USA
| |
Collapse
|
14
|
Kalchiem-Dekel O, Yao X, Barochia AV, Kaler M, Figueroa DM, Karkowsky WB, Gordon EM, Gao M, Fergusson MM, Qu X, Liu P, Li Y, Seifuddin F, Pirooznia M, Levine SJ. Apolipoprotein E Signals via TLR4 to Induce CXCL5 Secretion by Asthmatic Airway Epithelial Cells. Am J Respir Cell Mol Biol 2020; 63:185-197. [PMID: 32338995 DOI: 10.1165/rcmb.2019-0209oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The primary function of APOE (apolipoprotein E) is to mediate the transport of cholesterol- and lipid-containing lipoprotein particles into cells by receptor-mediated endocytosis. APOE also has pro- and antiinflammatory effects, which are both context and concentration dependent. For example, Apoe-/- mice exhibit enhanced airway remodeling and hyperreactivity in experimental asthma, whereas increased APOE levels in lung epithelial lining fluid induce IL-1β secretion from human asthmatic alveolar macrophages. However, APOE-mediated airway epithelial cell inflammatory responses and signaling pathways have not been defined. Here, RNA sequencing of human asthmatic bronchial brushing cells stimulated with APOE identified increased expression of mRNA transcripts encoding multiple proinflammatory genes, including CXCL5 (C-X-C motif chemokine ligand 5), an epithelial-derived chemokine that promotes neutrophil activation and chemotaxis. We subsequently characterized the APOE signaling pathway that induces CXCL5 secretion by human asthmatic small airway epithelial cells (SAECs). Neutralizing antibodies directed against TLR4 (Toll-like receptor 4), but not TLR2, attenuated APOE-mediated CXCL5 secretion by human asthmatic SAECs. Inhibition of TAK1 (transforming growth factor-β-activated kinase 1), IκKβ (inhibitor of nuclear factor κ B kinase subunit β), TPL2 (tumor progression locus 2), and JNK (c-Jun N-terminal kinase), but not p38 MAPK (mitogen-activated protein kinase) or MEK1/2 (MAPK kinase 1/2), attenuated APOE-mediated CXCL5 secretion. The roles of TAK1, IκKβ, TPL2, and JNK in APOE-mediated CXCL5 secretion were verified by RNA interference. Furthermore, RNA interference showed that after APOE stimulation, both NF-κB p65 and TPL2 were downstream of TAK1 and IκKβ, whereas JNK was downstream of TPL2. In summary, elevated levels of APOE in the airway may activate a TLR4/TAK1/IκKβ/NF-κB/TPL2/JNK signaling pathway that induces CXCL5 secretion by human asthmatic SAECs. These findings identify new roles for TLR4 and TPL2 in APOE-mediated proinflammatory responses in asthma.
Collapse
Affiliation(s)
| | - Xianglan Yao
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch
| | | | - Maryann Kaler
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch
| | | | | | | | - Meixia Gao
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch
| | | | - Xuan Qu
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch
| | - Poching Liu
- DNA Sequencing and Genomics Core Facility, and
| | - Yuesheng Li
- DNA Sequencing and Genomics Core Facility, and
| | - Fayaz Seifuddin
- Bioinformatics and Computational Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Mehdi Pirooznia
- Bioinformatics and Computational Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
15
|
Mutgan AC, Jandl K, Kwapiszewska G. Endothelial Basement Membrane Components and Their Products, Matrikines: Active Drivers of Pulmonary Hypertension? Cells 2020; 9:cells9092029. [PMID: 32899187 PMCID: PMC7563239 DOI: 10.3390/cells9092029] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 12/19/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a vascular disease that is characterized by elevated pulmonary arterial pressure (PAP) due to progressive vascular remodeling. Extracellular matrix (ECM) deposition in pulmonary arteries (PA) is one of the key features of vascular remodeling. Emerging evidence indicates that the basement membrane (BM), a specialized cluster of ECM proteins underlying the endothelium, may be actively involved in the progression of vascular remodeling. The BM and its steady turnover are pivotal for maintaining appropriate vascular functions. However, the pathologically elevated turnover of BM components leads to an increased release of biologically active short fragments, which are called matrikines. Both BM components and their matrikines can interfere with pivotal biological processes, such as survival, proliferation, adhesion, and migration and thus may actively contribute to endothelial dysfunction. Therefore, in this review, we summarize the emerging role of the BM and its matrikines on the vascular endothelium and further discuss its implications on lung vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
- Ayse Ceren Mutgan
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, 8010 Graz, Austria;
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Grazyna Kwapiszewska
- Otto Loewi Research Center, Division of Physiology, Medical University of Graz, 8010 Graz, Austria;
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria;
- Correspondence:
| |
Collapse
|
16
|
Shi XF, Su YC. Vascular Metabolic Mechanisms of Pulmonary Hypertension. Curr Med Sci 2020; 40:444-454. [PMID: 32681249 DOI: 10.1007/s11596-020-2198-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/10/2020] [Indexed: 02/07/2023]
Abstract
Pulmonary hypertension (PH) is a severe and progressive disease characterized by increased pulmonary vascular resistance leading to right heart failure and death. In PH, the cellular metabolisms including those of the three major nutrients (carbohydrate, lipid and protein) are aberrant in pulmonary vascular cells. Glucose uptake, glycolysis, insulin resistance, sphingolipid S1P, PGE2, TXA2, leukotrienes and glutaminolysis are upregulated, and phospholipid-prostacyclin and L-arginine-nitric oxide pathway are compromised in lung vascular cells. Fatty acid metabolism is disordered in lung endothelial cells and smooth muscle cells. These molecular mechanisms are integrated to promote PH-specific abnormal vascular cell proliferation and vascular remodeling. This review summarizes the recent advances in the metabolic reprogramming of glucose, fatty acid, and amino acid metabolism in pulmonary vascular remodeling in PH and the mechanisms for how these alterations affect vascular cell fate and impact the course of PH.
Collapse
Affiliation(s)
- Xiao-Fan Shi
- Department of Pharmacology & Toxicology, Augusta University, Augusta, GA, 30912, USA
| | - Yun-Chao Su
- Department of Pharmacology & Toxicology, Augusta University, Augusta, GA, 30912, USA. .,Department of Medicine, Augusta University, Augusta, GA, 30912, USA. .,Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
17
|
PPARγ is a gatekeeper for extracellular matrix and vascular cell homeostasis: beneficial role in pulmonary hypertension and renal/cardiac/pulmonary fibrosis. Curr Opin Nephrol Hypertens 2020; 29:171-179. [PMID: 31815758 DOI: 10.1097/mnh.0000000000000580] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE OF REVIEW Pulmonary arterial hypertension (PAH) is characterized by pulmonary arterial endothelial cell (PAEC) dysfunction and apoptosis, pulmonary arterial smooth muscle cell (PASMC) proliferation, inflammation, vasoconstriction, and metabolic disturbances that include disrupted bone morphogenetic protein receptor (BMPR2)-peroxisome proliferator-activated receptor gamma (PPARγ) axis and DNA damage. Activation of PPARγ improves many of these mechanisms, although erroneous reports on potential adverse effects of thiazolidinedione (TZD)-class PPARγ agonists reduced their clinical use in the past decade. Here, we review recent findings in heart, lung, and kidney research related to the pathobiology of vascular remodeling and tissue fibrosis, and also potential therapeutic effects of the PPARγ agonist pioglitazone. RECENT FINDINGS Independent of its metabolic effects (improved insulin sensitivity and fatty acid handling), PPARγ activation rescues BMPR2 dysfunction, inhibits TGFβ/Smad3/CTGF and TGFβ/pSTAT3/pFoxO1 pathways, and induces the PPARγ/apoE axis, inhibiting vascular remodeling. PPARγ activation dampens mtDNA damage via PPARγ/UBR5/ATM pathway, improves function of endothelial progenitor cells (EPCs), and decrease renal fibrosis by repressing TGFβ/pSTAT3 and TGFβ/EGR1. SUMMARY Pharmacological PPARγ activation improves many hallmarks of PAH, including dysfunction of BMPR2-PPARγ axis, PAEC, PASMC, EPC, mitochondria/metabolism, and inflammation. Recent randomized controlled trials, including IRIS (Insulin Resistance Intervention After Stroke Trial), emphasize the beneficial effects of PPARγ agonists in PAH patients, leading to recent revival for clinical use.
Collapse
|
18
|
Mair KM, Gaw R, MacLean MR. Obesity, estrogens and adipose tissue dysfunction - implications for pulmonary arterial hypertension. Pulm Circ 2020; 10:2045894020952019. [PMID: 32999709 PMCID: PMC7506791 DOI: 10.1177/2045894020952023] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a prevalent global public health issue characterized by excess body fat. Adipose tissue is now recognized as an important endocrine organ releasing an abundance of bioactive adipokines including, but not limited to, leptin, adiponectin and resistin. Obesity is a common comorbidity amongst pulmonary arterial hypertension patients, with 30% to 40% reported as obese, independent of other comorbidities associated with pulmonary arterial hypertension (e.g. obstructive sleep apnoea). An 'obesity paradox' has been observed, where obesity has been associated with subclinical right ventricular dysfunction but paradoxically may confer a protective effect on right ventricular function once pulmonary hypertension develops. Obesity and pulmonary arterial hypertension share multiple pathophysiological mechanisms including inflammation, oxidative stress, elevated leptin (proinflammatory) and reduced adiponectin (anti-inflammatory). The female prevalence of pulmonary arterial hypertension has instigated the hypothesis that estrogens may play a causative role in its development. Adipose tissue, a major site for storage and metabolism of sex steroids, is the primary source of estrogens and circulating estrogens levels which are elevated in postmenopausal women and men with pulmonary arterial hypertension. This review discusses the functions of adipose tissue in both health and obesity and the links between obesity and pulmonary arterial hypertension. Shared pathophysiological mechanisms and the contribution of specific fat depots, metabolic and sex-dependent differences are discussed.
Collapse
Affiliation(s)
- Kirsty M. Mair
- Strathclyde Institute of Pharmacy and Biomedical
Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| | - Rosemary Gaw
- Strathclyde Institute of Pharmacy and Biomedical
Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| | - Margaret R. MacLean
- Strathclyde Institute of Pharmacy and Biomedical
Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| |
Collapse
|
19
|
Cool CD, Kuebler WM, Bogaard HJ, Spiekerkoetter E, Nicolls MR, Voelkel NF. The hallmarks of severe pulmonary arterial hypertension: the cancer hypothesis-ten years later. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1115-L1130. [PMID: 32023082 PMCID: PMC9847334 DOI: 10.1152/ajplung.00476.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 01/25/2023] Open
Abstract
Severe forms of pulmonary arterial hypertension (PAH) are most frequently the consequence of a lumen-obliterating angiopathy. One pathobiological model is that the initial pulmonary vascular endothelial cell injury and apoptosis is followed by the evolution of phenotypically altered, apoptosis-resistant, proliferating cells and an inflammatory vascular immune response. Although there may be a vasoconstrictive disease component, the increased pulmonary vascular shear stress in established PAH is caused largely by the vascular wall pathology. In this review, we revisit the "quasi-malignancy concept" of severe PAH and examine to what extent the hallmarks of PAH can be compared with the hallmarks of cancer. The cancer model of severe PAH, based on the growth of abnormal vascular and bone marrow-derived cells, may enable the emergence of novel cell-based PAH treatment strategies.
Collapse
Affiliation(s)
- Carlyne D Cool
- Department of Pathology, University of Colorado, Anschuetz Campus, Aurora, Colorado
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitaetsmedizin, Berlin, Germany
| | - Harm Jan Bogaard
- Amsterdam University Medical Centers, Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Edda Spiekerkoetter
- Division of Pulmonary and Critical Care Medicine, Stanford University, Palo Alto, California
| | - Mark R Nicolls
- Division of Pulmonary and Critical Care Medicine, Stanford University, Palo Alto, California
| | - Norbert F Voelkel
- Amsterdam University Medical Centers, Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Harbaum L, Rhodes CJ, Otero-Núñez P, Wharton J, Wilkins MR. The application of 'omics' to pulmonary arterial hypertension. Br J Pharmacol 2020; 178:108-120. [PMID: 32201940 DOI: 10.1111/bph.15056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/03/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022] Open
Abstract
Recent genome-wide analyses of rare and common sequence variations have brought greater clarity to the genetic architecture of pulmonary arterial hypertension and implicated novel genes in disease development. Transcriptional signatures have been reported in whole lung tissue, pulmonary vascular cells and peripheral circulating cells. High-throughput platforms for plasma proteomics and metabolomics have identified novel biomarkers associated with clinical outcomes and provided molecular instruments for risk assessment. There are methodological challenges to integrating these datasets, coupled to statistical power limitations inherent to the study of a rare disease, but the expectation is that this approach will reveal novel druggable targets and biomarkers that will open the way to personalized medicine. Here, we review the current state-of-the-art and future promise of 'omics' in the field of translational medicine in pulmonary arterial hypertension. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Lars Harbaum
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Pablo Otero-Núñez
- National Heart and Lung Institute, Imperial College London, London, UK
| | - John Wharton
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Martin R Wilkins
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
21
|
Hansmann G, Calvier L, Risbano MG, Chan SY. Activation of the Metabolic Master Regulator PPARγ: A Potential PIOneering Therapy for Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 2020; 62:143-156. [PMID: 31577451 PMCID: PMC6993553 DOI: 10.1165/rcmb.2019-0226ps] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/02/2019] [Indexed: 12/24/2022] Open
Abstract
Translational research is essential to the development of reverse-remodeling strategies for the treatment of pulmonary vascular disease, pulmonary hypertension, and heart failure via mechanistic in vivo studies using animal models resembling human pulmonary arterial hypertension (PAH), cardiovascular remodeling, and progressive right heart failure. Since 2007, peroxisome proliferator-activated receptor γ (PPARγ) agonists have emerged as promising novel, antiproliferative, antiinflammatory, insulin-sensitizing, efficient medications for the treatment of PAH. However, early diabetes study results, their subsequent misinterpretations, errors in published review articles, and rumors regarding potential adverse effects in the literature have dampened enthusiasm for considering pharmacological PPARγ activation for the treatment of cardiovascular diseases, including PAH. Most recently, the thiazolidinedione class PPARγ agonist pioglitazone underwent a clinical revival, especially based on the IRIS (Insulin Resistance Intervention After Stroke) study, a randomized controlled trial in 3,876 patients without diabetes status post-transient ischemic attack/ischemic stroke who were clinically followed for 4.8 years. We discuss preclinical basic translational findings and randomized controlled trials related to the beneficial and adverse effects of PPARγ agonists of the thiazolidinedione class, with a particular focus on the last 5 years. The objective is a data-driven approach to set the preclinical and clinical study record straight. The convincing recent clinical trial data on the lack of significant toxicity in high-risk populations justify the timely conduct of clinical studies to achieve "repurposing" or "repositioning" of pioglitazone for the treatment of clinical PAH.
Collapse
Affiliation(s)
- Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany; and
| | - Laurent Calvier
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany; and
| | - Michael G. Risbano
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, and
| | - Stephen Y. Chan
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, and
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
22
|
Egger AN, Rajabi‐Estarabadi A, Williams NM, Resnik SR, Fox JD, Wong LL, Jozic I. The importance of caveolins and caveolae to dermatology: Lessons from the caves and beyond. Exp Dermatol 2020; 29:136-148. [PMID: 31845391 PMCID: PMC7028117 DOI: 10.1111/exd.14068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022]
Abstract
Caveolae are flask-shaped invaginations of the cell membrane rich in cholesterol and sphingomyelin, with caveolin proteins acting as their primary structural components that allow compartmentalization and orchestration of various signalling molecules. In this review, we discuss how pleiotropic functions of caveolin-1 (Cav1) and its intricate roles in numerous cellular functions including lipid trafficking, signalling, cell migration and proliferation, as well as cellular senescence, infection and inflammation, are integral for normal development and functioning of skin and its appendages. We then examine how disruption of the homeostatic levels of Cav1 can lead to development of various cutaneous pathophysiologies including skin cancers, cutaneous fibroses, psoriasis, alopecia, age-related changes in skin and aberrant wound healing and propose how levels of Cav1 may have theragnostic value in skin physiology/pathophysiology.
Collapse
Affiliation(s)
- Andjela N. Egger
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Ali Rajabi‐Estarabadi
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Natalie M. Williams
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Sydney R. Resnik
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Joshua D. Fox
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Lulu L. Wong
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Ivan Jozic
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| |
Collapse
|
23
|
Spiekerkoetter E, Goncharova EA, Guignabert C, Stenmark K, Kwapiszewska G, Rabinovitch M, Voelkel N, Bogaard HJ, Graham B, Pullamsetti SS, Kuebler WM. Hot topics in the mechanisms of pulmonary arterial hypertension disease: cancer-like pathobiology, the role of the adventitia, systemic involvement, and right ventricular failure. Pulm Circ 2019; 9:2045894019889775. [PMID: 31798835 PMCID: PMC6868582 DOI: 10.1177/2045894019889775] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
In order to intervene appropriately and develop disease-modifying therapeutics for pulmonary arterial hypertension, it is crucial to understand the mechanisms of disease pathogenesis and progression. We herein discuss four topics of disease mechanisms that are currently highly debated, yet still unsolved, in the field of pulmonary arterial hypertension. Is pulmonary arterial hypertension a cancer-like disease? Does the adventitia play an important role in the initiation of pulmonary vascular remodeling? Is pulmonary arterial hypertension a systemic disease? Does capillary loss drive right ventricular failure? While pulmonary arterial hypertension does not replicate all features of cancer, anti-proliferative cancer therapeutics might still be beneficial in pulmonary arterial hypertension if monitored for safety and tolerability. It was recognized that the adventitia as a cell-rich compartment is important in the disease pathogenesis of pulmonary arterial hypertension and should be a therapeutic target, albeit the data are inconclusive as to whether the adventitia is involved in the initiation of neointima formation. There was agreement that systemic diseases can lead to pulmonary arterial hypertension and that pulmonary arterial hypertension can have systemic effects related to the advanced lung pathology, yet there was less agreement on whether idiopathic pulmonary arterial hypertension is a systemic disease per se. Despite acknowledging the limitations of exactly assessing vascular density in the right ventricle, it was recognized that the failing right ventricle may show inadequate vascular adaptation resulting in inadequate delivery of oxygen and other metabolites. Although the debate was not meant to result in a definite resolution of the specific arguments, it sparked ideas about how we might resolve the discrepancies by improving our disease modeling (rodent models, large-animal studies, studies of human cells, tissues, and organs) as well as standardization of the models. Novel experimental approaches, such as lineage tracing and better three-dimensional imaging of experimental as well as human lung and heart tissues, might unravel how different cells contribute to the disease pathology.
Collapse
Affiliation(s)
- Edda Spiekerkoetter
- Division of Pulmonary and Critical Care Medicine, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Elena A. Goncharova
- Pittsburgh Heart, Blood and Vascular Medicine Institute, Pulmonary, Allergy & Critical Care Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christophe Guignabert
- INSERM UMR_S 999, Université Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Kurt Stenmark
- Department of Pediatrics, School of Medicine, University of Colorado, Denver, CO, USA
- Cardio Vascular Pulmonary Research Lab, University of Colorado, Denver, CO, USA
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute, Lung Vascular Research, Medical University of Graz, Graz, Austria
| | - Marlene Rabinovitch
- Division of Pediatric Cardiology, Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Norbert Voelkel
- Department of Pulmonary Medicine, Vrije Universiteit MC, Amsterdam, The Netherlands
| | - Harm J. Bogaard
- Department of Pulmonary Medicine, Vrije Universiteit MC, Amsterdam, The Netherlands
| | - Brian Graham
- Pulmonary Sciences and Critical Care, School of Medicine, University of Colorado, Denver, CO, USA
| | - Soni S. Pullamsetti
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité – Universitaetsmedizin Berlin, Berlin, Germany
- The Keenan Research Centre for Biomedical Science at St. Michael's, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Legchenko E, Chouvarine P, Borchert P, Fernandez-Gonzalez A, Snay E, Meier M, Maegel L, Mitsialis SA, Rog-Zielinska EA, Kourembanas S, Jonigk D, Hansmann G. PPARγ agonist pioglitazone reverses pulmonary hypertension and prevents right heart failure via fatty acid oxidation. Sci Transl Med 2019; 10:10/438/eaao0303. [PMID: 29695452 DOI: 10.1126/scitranslmed.aao0303] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/18/2017] [Accepted: 03/12/2018] [Indexed: 12/13/2022]
Abstract
Right ventricular (RV) heart failure is the leading cause of death in pulmonary arterial hypertension (PAH). Peroxisome proliferator-activated receptor γ (PPARγ) acts as a vasoprotective metabolic regulator in smooth muscle and endothelial cells; however, its role in the heart is unclear. We report that deletion of PPARγ in cardiomyocytes leads to biventricular systolic dysfunction and intramyocellular lipid accumulation in mice. In the SU5416/hypoxia (SuHx) rat model, oral treatment with the PPARγ agonist pioglitazone completely reverses severe PAH and vascular remodeling and prevents RV failure. Failing RV cardiomyocytes exhibited mitochondrial disarray and increased intramyocellular lipids (lipotoxicity) in the SuHx heart, which was prevented by pioglitazone. Unbiased ventricular microRNA (miRNA) arrays, mRNA sequencing, and lipid metabolism studies revealed dysregulation of cardiac hypertrophy, fibrosis, myocardial contractility, fatty acid transport/oxidation (FAO), and transforming growth factor-β signaling in the failing RV. These epigenetic, transcriptional, and metabolic alterations were modulated by pioglitazone through miRNA/mRNA networks previously not associated with PAH/RV dysfunction. Consistently, pre-miR-197 and pre-miR-146b repressed genes that drive FAO (Cpt1b and Fabp4) in primary cardiomyocytes. We recapitulated our major pathogenic findings in human end-stage PAH: (i) in the pressure-overloaded failing RV (miR-197 and miR-146b up-regulated), (ii) in peripheral pulmonary arteries (miR-146b up-regulated, miR-133b down-regulated), and (iii) in plexiform vasculopathy (miR-133b up-regulated, miR-146b down-regulated). Together, PPARγ activation can normalize epigenetic and transcriptional regulation primarily related to disturbed lipid metabolism and mitochondrial morphology/function in the failing RV and the hypertensive pulmonary vasculature, representing a therapeutic approach for PAH and other cardiovascular/pulmonary diseases.
Collapse
Affiliation(s)
- Ekaterina Legchenko
- Department of Pediatric Cardiology and Critical Care, Pulmonary Vascular Research Center, Hannover Medical School, Hannover, Germany
| | - Philippe Chouvarine
- Department of Pediatric Cardiology and Critical Care, Pulmonary Vascular Research Center, Hannover Medical School, Hannover, Germany
| | - Paul Borchert
- Department of Pediatric Cardiology and Critical Care, Pulmonary Vascular Research Center, Hannover Medical School, Hannover, Germany
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Erin Snay
- Division of Nuclear Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Martin Meier
- Small Animal Imaging Center, Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Lavinia Maegel
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Hannover, Germany.,The German Center for Lung Research (Deutsches Zentrum für Lungenforschung DZL), Giessen, Germany
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Eva A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center, Medical Center-University of Freiburg, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Hannover, Germany.,The German Center for Lung Research (Deutsches Zentrum für Lungenforschung DZL), Giessen, Germany
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Pulmonary Vascular Research Center, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
25
|
Hamid R, Austin ED. End Stage Takes Center Stage in Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 2019; 60:607-608. [PMID: 30726110 PMCID: PMC6543743 DOI: 10.1165/rcmb.2019-0022ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Rizwan Hamid
- 1 Department of Pediatrics Vanderbilt University Medical Center Nashville, Tennessee
| | - Eric D Austin
- 1 Department of Pediatrics Vanderbilt University Medical Center Nashville, Tennessee
| |
Collapse
|
26
|
Chowdhury HM, Sharmin N, Yuzbasioglu Baran M, Long L, Morrell NW, Trembath RC, Nasim MT. BMPRII deficiency impairs apoptosis via the BMPRII-ALK1-BclX-mediated pathway in pulmonary arterial hypertension. Hum Mol Genet 2019; 28:2161-2173. [PMID: 30809644 DOI: 10.1093/hmg/ddz047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 02/02/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating cardiovascular disorder characterized by the remodelling of pre-capillary pulmonary arteries. The vascular remodelling observed in PAH patients results from excessive proliferation and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs) and pulmonary arterial endothelial cells (PAECs). We have previously demonstrated that mutations in the type II receptor for bone morphogenetic protein (BMPRII) underlie the majority of the familial and inherited forms of the disease. We have further demonstrated that BMPRII deficiency promotes excessive proliferation and attenuates apoptosis in PASMCs, but the underlying mechanisms remain unclear. The major objective of this study is to investigate how BMPRII deficiency impairs apoptosis in PAH. Using multidisciplinary approaches, we demonstrate that deficiency in the expression of BMPRII impairs apoptosis by modulating the alternative splicing of the apoptotic regulator, B-cell lymphoma X (Bcl-x) transcripts: a finding observed in circulating leukocytes and lungs of PAH subjects, hypoxia-induced PAH rat lungs as well as in PASMCs and PAECs. BMPRII deficiency elicits cell specific effects: promoting the expression of Bcl-xL transcripts in PASMCs while inhibiting it in ECs, thus exerting differential apoptotic effects in these cells. The pro-survival effect of BMPRII receptor is mediated through the activin receptor-like kinase 1 (ALK1) but not the ALK3 receptor. Finally, we show that BMPRII interacts with the ALK1 receptor and pathogenic mutations in the BMPR2 gene abolish this interaction. Taken together, dysfunctional BMPRII responsiveness impairs apoptosis via the BMPRII-ALK1-Bcl-xL pathway in PAH. We suggest Bcl-xL as a potential biomarker and druggable target.
Collapse
Affiliation(s)
- H M Chowdhury
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | - N Sharmin
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, United Kingdom.,Department of Pharmaceutical Technology, University of Dhaka, Dhaka, Bangladesh
| | - Merve Yuzbasioglu Baran
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, United Kingdom.,Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - L Long
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - N W Morrell
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - R C Trembath
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom.,National Institute for Health Research (NIHR), Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust and King's College London, London, United Kingdom
| | - Md Talat Nasim
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom.,School of Pharmacy and Medical Sciences, University of Bradford, Bradford, United Kingdom.,National Institute for Health Research (NIHR), Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust and King's College London, London, United Kingdom.,Centre for Health Agricultural and Socio-economic Advancements (CHASA), Lalmonirhat, Bangladesh
| |
Collapse
|
27
|
Caglayan E, Trappiel M, Behringer A, Berghausen EM, Odenthal M, Wellnhofer E, Kappert K. Pulmonary arterial remodelling by deficiency of peroxisome proliferator-activated receptor-γ in murine vascular smooth muscle cells occurs independently of obesity-related pulmonary hypertension. Respir Res 2019; 20:42. [PMID: 30813929 PMCID: PMC6391752 DOI: 10.1186/s12931-019-1003-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/11/2019] [Indexed: 11/30/2022] Open
Abstract
Background Obesity is associated with cardiovascular complications, including pulmonary hypertension (PH). Reports suggest that peroxisome proliferator-activated receptor-γ (PPARγ) has direct action in preventing vascular remodelling in PH. Here we dissected the specific role of high-fat-diet (HFD)-induced obesity and vascular smooth muscle cell (VSMC)-PPARγ for remodelling of small pulmonary arteries. Methods Wild-type (WT) and VSMC-specific PPARγ-knockout (SmPparγ−/−) mice were fed a low-fat-diet (LFD, 10% kcal from fat) or HFD (60% kcal from fat) for 24 weeks. Mice were metabolically phenotyped (e.g. weight development, insulin/glucose tolerance) at the beginning, and after 12 and 24 weeks, respectively. At 24 weeks additionally pulmonary pressure, heart structure, pulmonary vascular muscularization together with gene and protein expression in heart and lung tissues were determined. Results HFD increased right ventricular systolic pressure (RVSP) to a similar extent in WT and SmPparγ−/− mice. HFD decreased glucose tolerance and insulin sensitivity in both WT and SmPparγ−/− mice. Importantly, the increase in RVSP correlated with the degree of insulin resistance. However, VSMC-PPARγ deficiency increased pulmonary vascular muscularization independently of the diet-induced rise in RVSP. This increase was associated with elevated expression of early growth response protein 1 in heart and osteopontin in lung tissue. Conclusions Here we demonstrate a correlation of insulin resistance and pulmonary pressure. Further, deficiency of PPARγ in VSMCs diet-independently leads to increased pulmonary vascular muscularization.
Collapse
Affiliation(s)
- Evren Caglayan
- Klinik III für Innere Medizin, University of Cologne Heart Center, Cologne, Germany.,Center for Molecular Medine Cologne (CMMC), Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany.,Department of Cardiology, University Medicine Rostock, Rostock, Germany
| | - Manuela Trappiel
- Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Center for Cardiovascular Research (CCR), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Arnica Behringer
- Klinik III für Innere Medizin, University of Cologne Heart Center, Cologne, Germany.,Center for Molecular Medine Cologne (CMMC), Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
| | - Eva Maria Berghausen
- Klinik III für Innere Medizin, University of Cologne Heart Center, Cologne, Germany
| | | | - Ernst Wellnhofer
- Department of Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Kai Kappert
- Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Center for Cardiovascular Research (CCR), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
| |
Collapse
|
28
|
Polysaccharides from the Edible Mushroom Agaricus bitorquis (Quél.) Sacc. Chaidam Show Anti-hypoxia Activities in Pulmonary Artery Smooth Muscle Cells. Int J Mol Sci 2019; 20:ijms20030637. [PMID: 30717240 PMCID: PMC6387285 DOI: 10.3390/ijms20030637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/17/2019] [Accepted: 01/25/2019] [Indexed: 01/02/2023] Open
Abstract
Three kinds of new water-soluble polysaccharides (FA, FB and FC) were isolated from wild mushroom Agaricus bitorquis (Quél.) Sacc. Chaidam by the classical method “water extraction and alcohol precipitation” and purified by column chromatography. The Mw of FA, FB and FC ranged from 5690 Da to 38,340 Da. The three polysaccharide fractions in the fruiting body were mainly composed of 4 kinds of monosaccharides, including glucose, galactose, mannose, and arabinose, among which glucose and galactose were the major monosaccharides. The FTIR and NMR spectroscopy indicated that the skeleton of three fractions composed of a (1→4)-α-D-glycosidic backbone containing α-D-mannopyranose. In vitro anti-hypoxia activity data showed that three polysaccharide fractions possessed a significant effect on inhibiting PASM cells apoptosis under hypoxia. Among them, FC at the concentration of 200 µg/mL revealed a significant anti-hypoxia effect. These results revealed that the intracellular polysaccharides possessed potent anti-hypoxic activity, which might be related to inhibiting LDH and NADPH oxidase expression and promoting the formation of 5-hydroxytryptamine, dopamine, endothelins, acetylcholine. More importantly, FC showed good performance inducing KV1.5 expression and prohibiting KIR6.2 formation at protein level.
Collapse
|
29
|
Willson C, Watanabe M, Tsuji-Hosokawa A, Makino A. Pulmonary vascular dysfunction in metabolic syndrome. J Physiol 2018; 597:1121-1141. [PMID: 30125956 DOI: 10.1113/jp275856] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome is a critically important precursor to the onset of many diseases, such as cardiovascular disease, and cardiovascular disease is the leading cause of death worldwide. The primary risk factors of metabolic syndrome include hyperglycaemia, abdominal obesity, dyslipidaemia, and high blood pressure. It has been well documented that metabolic syndrome alters vascular endothelial and smooth muscle cell functions in the heart, brain, kidney and peripheral vessels. However, there is less information available regarding how metabolic syndrome can affect pulmonary vascular function and ultimately increase an individual's risk of developing various pulmonary vascular diseases, such as pulmonary hypertension. Here, we review in detail how metabolic syndrome affects pulmonary vascular function.
Collapse
Affiliation(s)
- Conor Willson
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Makiko Watanabe
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | | | - Ayako Makino
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
30
|
Rol N, Kurakula KB, Happé C, Bogaard HJ, Goumans MJ. TGF-β and BMPR2 Signaling in PAH: Two Black Sheep in One Family. Int J Mol Sci 2018; 19:ijms19092585. [PMID: 30200294 PMCID: PMC6164161 DOI: 10.3390/ijms19092585] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022] Open
Abstract
Knowledge pertaining to the involvement of transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) signaling in pulmonary arterial hypertension (PAH) is continuously increasing. There is a growing understanding of the function of individual components involved in the pathway, but a clear synthesis of how these interact in PAH is currently lacking. Most of the focus has been on signaling downstream of BMPR2, but it is imperative to include the role of TGF-β signaling in PAH. This review gives a state of the art overview of disturbed signaling through the receptors of the TGF-β family with respect to vascular remodeling and cardiac effects as observed in PAH. Recent (pre)-clinical studies in which these two pathways were targeted will be discussed with an extended view on cardiovascular research fields outside of PAH, indicating novel future perspectives.
Collapse
Affiliation(s)
- Nina Rol
- Department of Pulmonology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081HV Amsterdam, The Netherlands.
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081HV Amsterdam, The Netherlands.
| | - Konda Babu Kurakula
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands.
| | - Chris Happé
- Department of Pulmonology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081HV Amsterdam, The Netherlands.
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081HV Amsterdam, The Netherlands.
| | - Harm Jan Bogaard
- Department of Pulmonology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, 1081HV Amsterdam, The Netherlands.
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333ZA Leiden, The Netherlands.
| |
Collapse
|
31
|
Pulmonary Vascular Platform Models the Effects of Flow and Pressure on Endothelial Dysfunction in BMPR2 Associated Pulmonary Arterial Hypertension. Int J Mol Sci 2018; 19:ijms19092561. [PMID: 30158434 PMCID: PMC6164056 DOI: 10.3390/ijms19092561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 12/15/2022] Open
Abstract
Endothelial dysfunction is a known consequence of bone morphogenetic protein type II receptor (BMPR2) mutations seen in pulmonary arterial hypertension (PAH). However, standard 2D cell culture models fail to mimic the mechanical environment seen in the pulmonary vasculature. Hydrogels have emerged as promising platforms for 3D disease modeling due to their tunable physical and biochemical properties. In order to recreate the mechanical stimuli seen in the pulmonary vasculature, we have created a novel 3D hydrogel-based pulmonary vasculature model (“artificial arteriole”) that reproduces the pulsatile flow rates and pressures seen in the human lung. Using this platform, we studied both Bmpr2R899X and WT endothelial cells to better understand how the addition of oscillatory flow and physiological pressure influenced gene expression, cell morphology, and cell permeability. The addition of oscillatory flow and pressure resulted in several gene expression changes in both WT and Bmpr2R899X cells. However, for many pathways with relevance to PAH etiology, Bmpr2R899X cells responded differently when compared to the WT cells. Bmpr2R899X cells were also found not to elongate in the direction of flow, and instead remained stagnant in morphology despite mechanical stimuli. The increased permeability of the Bmpr2R899X layer was successfully reproduced in our artificial arteriole, with the addition of flow and pressure not leading to significant changes in permeability. Our artificial arteriole is the first to model many mechanical properties seen in the lung. Its tunability enables several new opportunities to study the endothelium in pulmonary vascular disease with increased control over environmental parameters.
Collapse
|
32
|
Sysol JR, Machado RF. Classification and pathophysiology of pulmonary hypertension. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/cce2.71] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- J. R. Sysol
- Department of Medicine; Division of Pulmonary, Critical Care, Sleep and Allergy; University of Illinois at Chicago; Chicago, 60612 Illinois
- Department of Pharmacology; University of Illinois at Chicago; Chicago, 60612 Illinois
| | - R. F. Machado
- Department of Medicine; Division of Pulmonary, Critical Care, Sleep and Allergy; University of Illinois at Chicago; Chicago, 60612 Illinois
- Department of Pharmacology; University of Illinois at Chicago; Chicago, 60612 Illinois
- Division of Pulmonary; Critical Care; Sleep, and Occupational Medicine; Indiana University Department of Medicine; Indianapolis, 46202 Indiana
| |
Collapse
|
33
|
Hemnes AR. Using Omics to Understand and Treat Pulmonary Vascular Disease. Front Med (Lausanne) 2018; 5:157. [PMID: 29881726 PMCID: PMC5976753 DOI: 10.3389/fmed.2018.00157] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/04/2018] [Indexed: 01/12/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease for which there is no cure. Presently this condition is differentiated from other diseases of the pulmonary vasculature by a practitioner's history, physical examination, and clinical studies with clinical markers of disease severity primarily guiding therapeutic choices. New technologies such as next generation DNA sequencing, high throughput RNA sequencing, metabolomics and proteomics have greatly enhanced the amount of data that can be studied efficiently in patients with PAH and other rare diseases. There is emerging data on the use of these “Omics” for pulmonary vascular disease classification and diagnosis and also new work that suggests molecular markers, including Omics, may be used to more efficiently match patients to their own most effective therapies. This review focuses on the state of knowledge on molecular classification and treatment of PAH. Strengths and weaknesses of current Omic technologies are discussed and how these new technologies can be used in the future to improve diagnosis of pulmonary vascular disease, more effectively treat patients with existing and future drugs, and generate new understanding of disease pathogenesis and mechanisms underlying treatment success or failure. Bioinformatic methods to analyze the large volumes of data are developing rapidly, but still present major challenges to interpretation of potential Omic findings in pulmonary vascular disease, with low numbers of patients studied and a potentially high false discovery rate. With more experience, precise and established drug response definitions, this field with move forward and will likely be a major component of the clinical care of PH patients in the future.
Collapse
Affiliation(s)
- Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
34
|
Up-regulation of caveolin-1 by DJ-1 attenuates rat pulmonary arterial hypertension by inhibiting TGFβ/Smad signaling pathway. Exp Cell Res 2017; 361:192-198. [PMID: 29069575 DOI: 10.1016/j.yexcr.2017.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 01/02/2023]
Abstract
Pulmonary arterial hypertension (PAH), characterized by excessive proliferation and apoptosis resistance of pulmonary artery smooth muscle cells (PASMCs), is closely associated with the imbalance in vasoactive mediators and massive remodeling of pulmonary vasculature. DJ-1/park7, a multifunctional protein, plays a critical defense role in several cytobiological activity, such as transcriptional regulation, anti-oxidative stress and tumor formation. In this study, we investigated the effects of DJ-1 on hypoxia-induced PAH model rats and PASMCs, as well as its possible molecular mechanism. First, the low expressions of DJ-1 and caveolin-1 (Cav-1) were synchronously detected in lung tissue of PAH model rats and hypoxia-induced PASMCs by Western blot. Then, the DJ-1 wild type (WT) or Knock out (KO) rats were exposed to chronic hypoxia to mimic a hypoxic PAH condition. The protein level of Cav-1 was markedly decreased in the tissue of DJ-1 KO rats, and additionally lower in tissue of the hypoxia group than that in the normoxia group for DJ-1 WT and KO rats. In vivo, hemodynamic data showed that the pulmonary arterial pressure (mPAP), right ventricle systolic pressure (RVSP) and pulmonary arterial systolic pressure (PASP), as well as the weight of the right ventricle/left ventricle plus septum (RV/LV+S) ratio of PAH model rats were higher in the DJ-1 KO group than those in the DJ-1 WT group. Moreover, knockout of DJ-1 also results in the phenotype switch from contractile to synthetic PASMC, which is reflected by reduced calponin and SM22α expressions. In vitro, DJ-1 overexpression reversed hypoxia-induced elevation of PASMC cell proliferation, migration and Ca2+ concentration, which were not obviously observed in Cav-1 shRNA (sh-Cav-1) and DJ-1 co-transfected cells. Then the increased levels of calponin and SM22α were detected in the DJ-1 group; similarly those levels were not changed in the DJ-1+sh-Cav-1 group. Finally, the expression of TGFβ1, p-Smad2 and p-Smad3 were obviously decreased in the ad-DJ-1 group, however those were all elevated in the DJ-1 and sh-Cav-1 co-transfected groups. In conclusion, these results indicate that DJ-1 may alleviate hypoxia-induced PASMCs injury by Cav-1 through inhibiting the TGFβ/Smad signaling pathway.
Collapse
|
35
|
Rhodes CJ, Wharton J, Ghataorhe P, Watson G, Girerd B, Howard LS, Gibbs JSR, Condliffe R, Elliot CA, Kiely DG, Simonneau G, Montani D, Sitbon O, Gall H, Schermuly RT, Ghofrani HA, Lawrie A, Humbert M, Wilkins MR. Plasma proteome analysis in patients with pulmonary arterial hypertension: an observational cohort study. THE LANCET. RESPIRATORY MEDICINE 2017; 5:717-726. [PMID: 28624389 PMCID: PMC5573768 DOI: 10.1016/s2213-2600(17)30161-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Idiopathic and heritable pulmonary arterial hypertension form a rare but molecularly heterogeneous disease group. We aimed to measure and validate differences in plasma concentrations of proteins that are associated with survival in patients with idiopathic or heritable pulmonary arterial hypertension to improve risk stratification. METHODS In this observational cohort study, we enrolled patients with idiopathic or heritable pulmonary arterial hypertension from London (UK; cohorts 1 and 2), Giessen (Germany; cohort 3), and Paris (France; cohort 4). Blood samples were collected at routine clinical appointment visits, clinical data were collected within 30 days of blood sampling, and biochemical data were collected within 7 days of blood sampling. We used an aptamer-based assay of 1129 plasma proteins, and patient clinical details were concealed to the technicians. We identified a panel of prognostic proteins, confirmed with alternative targeted assays, which we evaluated against the established prognostic risk equation for pulmonary arterial hypertension derived from the REVEAL registry. All-cause mortality was the primary endpoint. FINDINGS 20 proteins differentiated survivors and non-survivors in 143 consecutive patients with idiopathic or heritable pulmonary arterial hypertension with 2 years' follow-up (cohort 1) and in a further 75 patients with 2·5 years' follow-up (cohort 2). Nine proteins were both prognostic independent of plasma NT-proBNP concentrations and confirmed by targeted assays. The functions of these proteins relate to myocardial stress, inflammation, pulmonary vascular cellular dysfunction and structural dysregulation, iron status, and coagulation. A cutoff-based score using the panel of nine proteins provided prognostic information independent of the REVEAL equation, improving the C statistic from area under the curve 0·83 (for REVEAL risk score, 95% CI 0·77-0·89; p<0·0001) to 0·91 (for panel and REVEAL 0·87-0·96; p<0·0001) and improving reclassification indices without detriment to calibration. Poor survival was preceded by an adverse change in panel score in paired samples from 43 incident patients with pulmonary arterial hypertension in cohort 3 (p=0·0133). The protein panel was validated in 93 patients with idiopathic or heritable pulmonary arterial hypertension in cohort 4, with 4·4 years' follow-up and improved risk estimates, providing complementary information to the clinical risk equation. INTERPRETATION A combination of nine circulating proteins identifies patients with pulmonary arterial hypertension with a high risk of mortality, independent of existing clinical assessments, and might have a use in clinical management and the evaluation of new therapies. FUNDING National Institute for Health Research, Wellcome Trust, British Heart Foundation, Assistance Publique-Hôpitaux de Paris, Inserm, Université Paris-Sud, and Agence Nationale de la Recherche.
Collapse
Affiliation(s)
| | - John Wharton
- Department of Medicine, Imperial College London, Hammersmith Campus, London, UK
| | - Pavandeep Ghataorhe
- Department of Medicine, Imperial College London, Hammersmith Campus, London, UK
| | - Geoffrey Watson
- Department of Medicine, Imperial College London, Hammersmith Campus, London, UK
| | - Barbara Girerd
- University Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, Paris, France,AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, Paris, France,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, Paris, France
| | - Luke S Howard
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, London, UK,National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - J Simon R Gibbs
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, London, UK,National Pulmonary Hypertension Service, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, UK
| | - Robin Condliffe
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | - Charles A Elliot
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | - David G Kiely
- Sheffield Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, UK
| | - Gerald Simonneau
- University Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, Paris, France,AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, Paris, France,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, Paris, France
| | - David Montani
- University Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, Paris, France,AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, Paris, France,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, Paris, France
| | - Olivier Sitbon
- University Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, Paris, France,AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, Paris, France,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, Paris, France
| | - Henning Gall
- University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ralph T Schermuly
- University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - H Ardeschir Ghofrani
- University of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Marc Humbert
- University Paris-Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, Paris, France,AP-HP, Service de Pneumologie, Hôpital Bicêtre, Le Kremlin-Bicêtre, Paris, France,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, Paris, France
| | - Martin R Wilkins
- Department of Medicine, Imperial College London, Hammersmith Campus, London, UK.
| |
Collapse
|
36
|
Kan M, Shumyatcher M, Himes BE. Using omics approaches to understand pulmonary diseases. Respir Res 2017; 18:149. [PMID: 28774304 PMCID: PMC5543452 DOI: 10.1186/s12931-017-0631-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/26/2017] [Indexed: 12/24/2022] Open
Abstract
Omics approaches are high-throughput unbiased technologies that provide snapshots of various aspects of biological systems and include: 1) genomics, the measure of DNA variation; 2) transcriptomics, the measure of RNA expression; 3) epigenomics, the measure of DNA alterations not involving sequence variation that influence RNA expression; 4) proteomics, the measure of protein expression or its chemical modifications; and 5) metabolomics, the measure of metabolite levels. Our understanding of pulmonary diseases has increased as a result of applying these omics approaches to characterize patients, uncover mechanisms underlying drug responsiveness, and identify effects of environmental exposures and interventions. As more tissue- and cell-specific omics data is analyzed and integrated for diverse patients under various conditions, there will be increased identification of key mechanisms that underlie pulmonary biological processes, disease endotypes, and novel therapeutics that are efficacious in select individuals. We provide a synopsis of how omics approaches have advanced our understanding of asthma, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), idiopathic pulmonary fibrosis (IPF), and pulmonary arterial hypertension (PAH), and we highlight ongoing work that will facilitate pulmonary disease precision medicine.
Collapse
Affiliation(s)
- Mengyuan Kan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall 423 Guardian Drive, Philadelphia, PA 19104 USA
| | - Maya Shumyatcher
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall 423 Guardian Drive, Philadelphia, PA 19104 USA
| | - Blanca E. Himes
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, 402 Blockley Hall 423 Guardian Drive, Philadelphia, PA 19104 USA
| |
Collapse
|
37
|
Tojais NF, Cao A, Lai YJ, Wang L, Chen PI, Alcazar MAA, de Jesus Perez VA, Hopper RK, Rhodes CJ, Bill MA, Sakai LY, Rabinovitch M. Codependence of Bone Morphogenetic Protein Receptor 2 and Transforming Growth Factor-β in Elastic Fiber Assembly and Its Perturbation in Pulmonary Arterial Hypertension. Arterioscler Thromb Vasc Biol 2017; 37:1559-1569. [PMID: 28619995 DOI: 10.1161/atvbaha.117.309696] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/26/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE We determined in patients with pulmonary arterial (PA) hypertension (PAH) whether in addition to increased production of elastase by PA smooth muscle cells previously reported, PA elastic fibers are susceptible to degradation because of their abnormal assembly. APPROACH AND RESULTS Fibrillin-1 and elastin are the major components of elastic fibers, and fibrillin-1 binds bone morphogenetic proteins (BMPs) and the large latent complex of transforming growth factor-β1 (TGFβ1). Thus, we considered whether BMPs like TGFβ1 contribute to elastic fiber assembly and whether this process is perturbed in PAH particularly when the BMP receptor, BMPR2, is mutant. We also assessed whether in mice with Bmpr2/1a compound heterozygosity, elastic fibers are susceptible to degradation. In PA smooth muscle cells and adventitial fibroblasts, TGFβ1 increased elastin mRNA, but the elevation in elastin protein was dependent on BMPR2; TGFβ1 and BMP4, via BMPR2, increased extracellular accumulation of fibrillin-1. Both BMP4- and TGFβ1-stimulated elastic fiber assembly was impaired in idiopathic (I) PAH-PA adventitial fibroblast versus control cells, particularly those with hereditary (H) PAH and a BMPR2 mutation. This was related to profound reductions in elastin and fibrillin-1 mRNA. Elastin protein was increased in IPAH PA adventitial fibroblast by TGFβ1 but only minimally so in BMPR2 mutant cells. Fibrillin-1 protein increased only modestly in IPAH or HPAH PA adventitial fibroblasts stimulated with BMP4 or TGFβ1. In Bmpr2/1a heterozygote mice, reduced PA fibrillin-1 was associated with elastic fiber susceptibility to degradation and more severe pulmonary hypertension. CONCLUSIONS Disrupting BMPR2 impairs TGFβ1- and BMP4-mediated elastic fiber assembly and is of pathophysiologic significance in PAH.
Collapse
MESH Headings
- Animals
- Bone Morphogenetic Protein 4/pharmacology
- Bone Morphogenetic Protein Receptors, Type I/deficiency
- Bone Morphogenetic Protein Receptors, Type I/genetics
- Bone Morphogenetic Protein Receptors, Type II/deficiency
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Case-Control Studies
- Cells, Cultured
- Disease Models, Animal
- Elastic Tissue/metabolism
- Elastic Tissue/pathology
- Elastic Tissue/physiopathology
- Elastin/genetics
- Elastin/metabolism
- Familial Primary Pulmonary Hypertension/genetics
- Familial Primary Pulmonary Hypertension/metabolism
- Familial Primary Pulmonary Hypertension/pathology
- Familial Primary Pulmonary Hypertension/physiopathology
- Fibrillin-1/genetics
- Fibrillin-1/metabolism
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Genetic Predisposition to Disease
- Humans
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- RNA Interference
- Transfection
- Transforming Growth Factor beta/pharmacology
- Vascular Remodeling
Collapse
Affiliation(s)
- Nancy F Tojais
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Aiqin Cao
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Ying-Ju Lai
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Lingli Wang
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Pin-I Chen
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Miguel A Alejandre Alcazar
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Vinicio A de Jesus Perez
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Rachel K Hopper
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Christopher J Rhodes
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Matthew A Bill
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Lynn Y Sakai
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.)
| | - Marlene Rabinovitch
- From the Department of Pediatrics (N.F.T., A.C., Y.-J.L., L.W., P.I.C., M.A.A.A., R.K.H., C.J.R., M.R.) and Department of Medicine (V.A.d.J.P., M.A.B.), the Vera Moulton Wall Center for Pulmonary Vascular Disease and the Cardiovascular Institute, Stanford University School of Medicine, CA; and Shriners Hospital for Children, Oregon Health & Science University, Portland (L.Y.S.).
| |
Collapse
|
38
|
Deidda M, Piras C, Cadeddu Dessalvi C, Locci E, Barberini L, Orofino S, Musu M, Mura MN, Manconi PE, Finco G, Atzori L, Mercuro G. Distinctive metabolomic fingerprint in scleroderma patients with pulmonary arterial hypertension. Int J Cardiol 2017; 241:401-406. [PMID: 28476520 DOI: 10.1016/j.ijcard.2017.04.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/29/2017] [Accepted: 04/07/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) in systemic sclerosis (SS) identifies a poor prognosis subset of patients. Recent studies suggested a "metabolic theory" on the development of pulmonary arterial hypertension. On this basis we performed a metabolomic study in order to evaluate whether differences in pulmonary arterial blood metabolites were identifiable in SS patients with increased pulmonary vascular resistance (PVR). METHODS We studied 18 SS patients (age 58.7±15.6years) free of pulmonary fibrosis who underwent a right heart catheterization (RHC). A blood sample was collected during the RHC in the distal peripheral circulation of the pulmonary arteries to perform the metabolomic analysis. RESULTS Based on PVR we divided the population into Group A (n=8; PVR=1.16±0.23WU) and Group B (n=10; PVR=2.67±0.67WU; p<0.001 vs Group A). No significant differences were identified in terms of anthropometric, clinical, echo and therapeutic characteristics. At RHC the 2 groups showed a difference in mean pulmonary pressure values (Group A: 20±4mmHg; Group B: 27±3.4mmHg; p=0.03), with mild PAH in Group B. We applied an OSC-PLS-DA with a clear clusterization; SSc patients with PAH showed an increase in acetate, alanine, lactate, and lipoprotein levels and a decrease in γ-aminobutyrate, arginine, betaine, choline, creatine, creatinine, glucose, glutamate, glutamine, glycine, histidine, phenylalanine, and tyrosine levels CONCLUSIONS: Our results suggest that, despite similar clinical and disease-related parameters, SSc patients who develop PAH have an unfavorable metabolic profile able to cause an impaired production of metabolites with protective effects on endothelial cells.
Collapse
Affiliation(s)
- Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Cristina Piras
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Christian Cadeddu Dessalvi
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Emanuela Locci
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Luigi Barberini
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Susanne Orofino
- Intensive Care Unit, Azienda Ospedaliero-Universitaria di Cagliari, 09128, Cagliari, Italy
| | - Mario Musu
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Mario Nicola Mura
- Department of Internal Medicine, AOU di Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Paolo Emilio Manconi
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Gabriele Finco
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Luigi Atzori
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Cagliari, Italy.
| |
Collapse
|
39
|
Frump AL, Albrecht ME, McClintick JN, Lahm T. Estrogen receptor-dependent attenuation of hypoxia-induced changes in the lung genome of pulmonary hypertension rats. Pulm Circ 2017; 7:232-243. [PMID: 28680582 PMCID: PMC5448529 DOI: 10.1177/2045893217702055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/27/2016] [Indexed: 12/19/2022] Open
Abstract
17β-estradiol (E2) exerts complex and context-dependent effects in pulmonary hypertension. In hypoxia-induced pulmonary hypertension (HPH), E2 attenuates lung vascular remodeling through estrogen receptor (ER)-dependent effects; however, ER target genes in the hypoxic lung remain unknown. In order to identify the genome regulated by the E2-ER axis in the hypoxic lung, we performed a microarray analysis in lungs from HPH rats treated with E2 (75 mcg/kg/day) ± ER-antagonist ICI182,780 (3 mg/kg/day). Untreated HPH rats and normoxic rats served as controls. Using a false discovery rate of 10%, we identified a significantly differentially regulated genome in E2-treated versus untreated hypoxia rats. Genes most upregulated by E2 encoded matrix metalloproteinase 8, S100 calcium binding protein A8, and IgA Fc receptor; genes most downregulated by E2 encoded olfactory receptor 63, secreted frizzled-related protein 2, and thrombospondin 2. Several genes affected by E2 changed in the opposite direction after ICI182,780 co-treatment, indicating an ER-regulated genome in HPH lungs. The bone morphogenetic protein antagonist Grem1 (gremlin 1) was upregulated by hypoxia, but found to be among the most downregulated genes after E2 treatment. Gremlin 1 protein was reduced in E2-treated versus untreated hypoxic animals, and ER-blockade abolished the inhibitory effect of E2 on Grem1 mRNA and protein. In conclusion, E2 ER-dependently regulates several genes involved in proliferative and inflammatory processes during hypoxia. Gremlin 1 is a novel target of the E2-ER axis in HPH. Understanding the mechanisms of E2 gene regulation in HPH may allow for selectively harnessing beneficial transcriptional activities of E2 for therapeutic purposes.
Collapse
Affiliation(s)
- Andrea L Frump
- Department of Medicine; Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marjorie E Albrecht
- Department of Medicine; Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jeanette N McClintick
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tim Lahm
- Department of Medicine; Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA
| |
Collapse
|
40
|
Umar S, Partow-Navid R, Ruffenach G, Iorga A, Moazeni S, Eghbali M. Severe pulmonary hypertension in aging female apolipoprotein E-deficient mice is rescued by estrogen replacement therapy. Biol Sex Differ 2017; 8:9. [PMID: 28344760 PMCID: PMC5360087 DOI: 10.1186/s13293-017-0129-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/03/2017] [Indexed: 12/12/2022] Open
Abstract
Background Apolipoprotein E (ApoE) is a multifunctional protein, and its deficiency leads to the development of atherosclerosis in mice. Patients with pulmonary hypertension (PH) have reduced expression of ApoE in lung tissue. ApoE is known to inhibit endothelial and smooth muscle cell proliferation and has anti-inflammatory and anti-platelet aggregation properties. Young ApoE-deficient mice have been shown to develop PH on high fat diet. The combined role of female sex and aging in the development of PH has not been investigated before. Here, we investigated the development of PH in young and middle-aged (MA) female ApoE-deficient mice and explored the role of exogenous estrogen (E2) replacement therapy for the aging females. Methods Wild type (WT) and ApoE-deficient female mice (Young and MA) were injected with a single intraperitoneal dose of monocrotaline (MCT, 60 mg/kg). Some ApoE-deficient MA female mice that received MCT were also treated with subcutaneous E2 pellets (0.03 mg/kg/day) from day 21 to 30 after MCT injection. Direct cardiac catheterization was performed terminally to record right ventricular systolic pressure (RVSP). Right ventricular (RV), left ventricular (LV), and interventricular septum (IVS) were dissected and weighed. Lung sections were examined using trichrome and immunofluorescence staining. Western blot analyses of lung and RV lysates were performed. Results In WT female mice, the severity of PH was similar between young and MA mice as RVSP was not significantly different (RVSP = 38.2 ± 1.2 in young vs. 40.5 ± 8.3 mmHg in MA, p < 0.05). In ApoE-deficient mice, MA females developed significantly severe PH (RVSP = 63 ± 10 mmHg) compared to young females (RVSP; 36 ± 3 mmHg, p < 0.05 vs. MA female). ApoE-deficient MA females also developed more severe RV hypertrophy compared to young females (RV hypertrophy index (RV/[LV + IVS]) = 0.53 ± 0.06 vs. 0.33 ± 0.01, p < 0.05). ApoE-deficient MA female mice manifested increased peripheral pulmonary artery muscularization and pulmonary fibrosis. E2 treatment of MA female ApoE-deficient mice resulted in a significant decrease in RVSP, reversal of pulmonary vascular remodeling, and RV hypertrophy. In MA female ApoE-deficient mice with PH, only the expression of ERβ in the lungs, but not in RV, was significantly downregulated, and it was restored by E2 treatment. The expression of ERα was not affected in either lungs or RV by PH. GPR30 was only detected in the RV, and it was not affected by PH in MA female ApoE-deficient mice. Conclusions Our results suggest that only aging female ApoE-deficient but not WT mice develop severe PH compared to younger females. Exogenous estrogen therapy rescued PH and RV hypertrophy in aging female ApoE-deficient mice possibly through restoration of lung ERβ.
Collapse
Affiliation(s)
- Soban Umar
- Department of Anaesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at UCLA, BH-160 CHS, 650 Charles E Young Dr. South, Los Angeles, CA 90095-7115 USA
| | - Rod Partow-Navid
- Department of Anaesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at UCLA, BH-160 CHS, 650 Charles E Young Dr. South, Los Angeles, CA 90095-7115 USA
| | - Gregoire Ruffenach
- Department of Anaesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at UCLA, BH-160 CHS, 650 Charles E Young Dr. South, Los Angeles, CA 90095-7115 USA
| | - Andrea Iorga
- Department of Anaesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at UCLA, BH-160 CHS, 650 Charles E Young Dr. South, Los Angeles, CA 90095-7115 USA
| | - Shayan Moazeni
- Department of Anaesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at UCLA, BH-160 CHS, 650 Charles E Young Dr. South, Los Angeles, CA 90095-7115 USA
| | - Mansoureh Eghbali
- Department of Anaesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at UCLA, BH-160 CHS, 650 Charles E Young Dr. South, Los Angeles, CA 90095-7115 USA
| |
Collapse
|
41
|
Xu M, Xu M, Han L, Yuan C, Mei Y, Zhang H, Chen S, Sun K, Zhu B. Role for Functional SOD2 Polymorphism in Pulmonary Arterial Hypertension in a Chinese Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14030266. [PMID: 28272301 PMCID: PMC5369102 DOI: 10.3390/ijerph14030266] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 02/23/2017] [Indexed: 12/19/2022]
Abstract
The superoxide dismutase 2 (SOD2) gene is a pivotal part of oxidative stress system, which could induce the onset of pulmonary arterial hypertension (PAH). In this study, we quantified the influence of a SOD2 exonic polymorphism (rs4880) on PAH susceptibility. We genotyped this single nucleotide polymorphism (SNP) by TaqMan, and evaluated its association with PAH susceptibility in a case-control study of 460 patients and 530 controls in China. There were significant differences between PAH cases and controls in both CC and TC+CC genotypes (p = 0.013 and p = 0.010, respectively). Furthermore, the number of variant alleles followed a dose-response manner (p trend was 0.023). Besides, the mRNA level and protein expression also indicated that the C allele of this variant decreased the expression of SOD2 gene (p = 0.004 in mRNA level and p = 0.012 in protein level) after the transfection of plasmids containing the different genotype of rs4480. There is significant association between SOD rs4880 polymorphism and the PAH susceptibility, and this polymorphism influenced PAH susceptibility by altering the expression of SOD2.
Collapse
Affiliation(s)
- Ming Xu
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing 210009, China.
| | - Min Xu
- Jiangsu Province Official Hospital, Nanjing 210009, China.
| | - Lei Han
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing 210009, China.
| | - Chao Yuan
- Department of Emergency, the First Affiliated Hospital with Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China.
| | - Yong Mei
- Department of Emergency, the First Affiliated Hospital with Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China.
| | - Hengdong Zhang
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing 210009, China.
| | - Shi Chen
- Department of Public Health Sciences, University of North Carolina Charlotte, Charlotte, NC 28223, USA.
| | - Kai Sun
- Department of Emergency, the First Affiliated Hospital with Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China.
| | - Baoli Zhu
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, No. 172 Jiangsu Road, Nanjing 210009, China.
| |
Collapse
|
42
|
Pullamsetti SS, Savai R, Seeger W, Goncharova EA. Translational Advances in the Field of Pulmonary Hypertension. From Cancer Biology to New Pulmonary Arterial Hypertension Therapeutics. Targeting Cell Growth and Proliferation Signaling Hubs. Am J Respir Crit Care Med 2017; 195:425-437. [PMID: 27627135 PMCID: PMC5803657 DOI: 10.1164/rccm.201606-1226pp] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/08/2016] [Indexed: 12/21/2022] Open
Affiliation(s)
- Soni Savai Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, member of the DZL, Giessen, Germany
- Justus Liebig University, Giessen, Germany; and
| | - Rajkumar Savai
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, member of the DZL, Giessen, Germany
- Justus Liebig University, Giessen, Germany; and
| | - Werner Seeger
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, member of the DZL, Giessen, Germany
- Justus Liebig University, Giessen, Germany; and
| | - Elena A. Goncharova
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
43
|
Evans CE, Zhao YY. Molecular Basis of Nitrative Stress in the Pathogenesis of Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 967:33-45. [PMID: 29047079 DOI: 10.1007/978-3-319-63245-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pulmonary hypertension (PH) is a lung vascular disease with marked increases in pulmonary vascular resistance and pulmonary artery pressure (>25 mmHg at rest). In PH patients, increases in pulmonary vascular resistance lead to impaired cardiac output and reduced exercise tolerance. If untreated, PH progresses to right heart failure and premature lethality. The mechanisms that control the pathogenesis of PH are incompletely understood, but evidence from human and animal studies implicate nitrative stress in the development of PH. Increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) result in nitrative stress, which in turn induces posttranslational modification of key proteins important for maintaining pulmonary vascular homeostasis. This affects their functions and thereby contributes to the pathogenesis of PH. In this chapter, molecular mechanisms underlying nitrative stress-induced PH are reviewed, molecular sources of ROS and RNS are delineated, and evidence of nitrative stress in PH patients is described. A better understanding of such mechanisms could lead to the development of novel treatments for PH.
Collapse
Affiliation(s)
- Colin E Evans
- Department of Pharmacology, University of Illinois College of Medicine, 835 South Wolcott Avenue, E403-MSB, M/C 868, Chicago, IL, 60612, USA.,Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA.,British Heart Foundation Center of Research Excellence, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - You-Yang Zhao
- Department of Pharmacology, University of Illinois College of Medicine, 835 South Wolcott Avenue, E403-MSB, M/C 868, Chicago, IL, 60612, USA. .,Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL, USA.
| |
Collapse
|
44
|
Hayabuchi Y. The Action of Smooth Muscle Cell Potassium Channels in the Pathology of Pulmonary Arterial Hypertension. Pediatr Cardiol 2017; 38:1-14. [PMID: 27826710 DOI: 10.1007/s00246-016-1491-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 10/25/2016] [Indexed: 01/05/2023]
Abstract
Many different types of potassium channels with various functions exist in pulmonary artery smooth muscle cells, contributing to many physiological actions and pathological conditions. The deep involvement of these channels in the onset and exacerbation of pulmonary arterial hypertension (PAH) also continues to be revealed. In 2013, KCNK3 (TASK1), which encodes a type of two-pore domain potassium channel, was shown to be a predisposing gene for PAH by genetic mutation, and it was added to the PAH classification at the Fifth World Symposium on Pulmonary Hypertension (Nice International Conference). Decreased expression and inhibited activity of voltage-gated potassium channels, particularly KCNA5 (Kv1.5), are also seen in PAH, regardless of the cause, and facilitation of pulmonary arterial contraction and vascular remodeling has been shown. The calcium-activated potassium channels seen in smooth muscle cells also change from BKca (Kca1.1) to IKca (Kca3.1) predominance in PAH due to transformation and have effects including the facilitation of smooth muscle cell migration, enhancement of proliferation, and inhibition of apoptosis. Elucidation of these roles for potassium channels in pulmonary vasoconstriction and remodeling may help bring new therapeutic strategies into view.
Collapse
Affiliation(s)
- Yasunobu Hayabuchi
- Department of Pediatrics, Tokushima University, Kuramoto-cho-3, Tokushima, 770-8503, Japan.
| |
Collapse
|
45
|
Benza RL, Williams G, Wu C, Shields KJ, Raina A, Murali S, Passineau MJ. In situ expression of Bcl-2 in pulmonary artery endothelial cells associates with pulmonary arterial hypertension relative to heart failure with preserved ejection fraction. Pulm Circ 2016; 6:551-556. [PMID: 28090298 PMCID: PMC5210070 DOI: 10.1086/688774] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/06/2016] [Indexed: 12/21/2022] Open
Abstract
We have previously reported that pulmonary artery endothelial cells (PAECs) can be harvested from the tips of discarded Swan-Ganz catheters after right heart catheterization (RHC). In this study, we tested the hypothesis that the existence of an antiapoptotic phenotype in PAECs obtained during RHC is a distinctive feature of pulmonary arterial hypertension (PAH; World Health Organization group 1) and might be used to differentiate PAH from other etiologies of pulmonary hypertension. Specifically, we developed a flow cytometry-based measure of Bcl-2 activity, referred to as the normalized endothelial Bcl-2 index (NEBI). We report that higher NEBI values are associated with PAH to the exclusion of heart failure with preserved ejection fraction (HFpEF) and that this simple diagnostic measurement is capable of differentiating PAH from HFpEF without presenting addition risk to the patient. If validated in a larger, multicenter study, the NEBI has the potential to assist physicians in the selection of appropriate therapeutic interventions in the common and dangerous scenario wherein patients present a clinical and hemodynamic phenotype that makes it difficult to confidently differentiate between PAH and HFpEF.
Collapse
Affiliation(s)
- Raymond L. Benza
- Cardiovascular Institute, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Gretchen Williams
- Cardiovascular Institute, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Changgong Wu
- Cardiovascular Institute, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Kelly J. Shields
- Autoimmunity Institute, Lupus Center of Excellence, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Amresh Raina
- Cardiovascular Institute, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Srinivas Murali
- Cardiovascular Institute, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Michael J. Passineau
- Cardiovascular Institute, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
46
|
Baeten JT, Lilly B. Notch Signaling in Vascular Smooth Muscle Cells. ADVANCES IN PHARMACOLOGY 2016; 78:351-382. [PMID: 28212801 DOI: 10.1016/bs.apha.2016.07.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Notch signaling pathway is a highly conserved pathway involved in cell fate determination in embryonic development and also functions in the regulation of physiological processes in several systems. It plays an especially important role in vascular development and physiology by influencing angiogenesis, vessel patterning, arterial/venous specification, and vascular smooth muscle biology. Aberrant or dysregulated Notch signaling is the cause of or a contributing factor to many vascular disorders, including inherited vascular diseases, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, associated with degeneration of the smooth muscle layer in cerebral arteries. Like most signaling pathways, the Notch signaling axis is influenced by complex interactions with mediators of other signaling pathways. This complexity is also compounded by different members of the Notch family having both overlapping and unique functions. Thus, it is vital to fully understand the roles and interactions of each Notch family member in order to effectively and specifically target their exact contributions to vascular disease. In this chapter, we will review the Notch signaling pathway in vascular smooth muscle cells as it relates to vascular development and human disease.
Collapse
Affiliation(s)
- J T Baeten
- The Center for Cardiovascular Research and The Heart Center at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, United States
| | - B Lilly
- The Center for Cardiovascular Research and The Heart Center at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
47
|
Hoffmann J, Wilhelm J, Olschewski A, Kwapiszewska G. Microarray analysis in pulmonary hypertension. Eur Respir J 2016; 48:229-41. [PMID: 27076594 PMCID: PMC5009873 DOI: 10.1183/13993003.02030-2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/15/2016] [Indexed: 12/21/2022]
Abstract
Microarrays are a powerful and effective tool that allows the detection of genome-wide gene expression differences between controls and disease conditions. They have been broadly applied to investigate the pathobiology of diverse forms of pulmonary hypertension, namely group 1, including patients with idiopathic pulmonary arterial hypertension, and group 3, including pulmonary hypertension associated with chronic lung diseases such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. To date, numerous human microarray studies have been conducted to analyse global (lung homogenate samples), compartment-specific (laser capture microdissection), cell type-specific (isolated primary cells) and circulating cell (peripheral blood) expression profiles. Combined, they provide important information on development, progression and the end-stage disease. In the future, system biology approaches, expression of noncoding RNAs that regulate coding RNAs, and direct comparison between animal models and human disease might be of importance. Comprehensive overview of compartment-specific microarray studies of material from pulmonary hypertension patientshttp://ow.ly/YEFO2
Collapse
Affiliation(s)
- Julia Hoffmann
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Jochen Wilhelm
- Dept of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria Dept of Experimental Anaesthesiology, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria Dept of Experimental Anaesthesiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
48
|
Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M, Morgan KG. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharmacol Rev 2016; 68:476-532. [PMID: 27037223 PMCID: PMC4819215 DOI: 10.1124/pr.115.010652] [Citation(s) in RCA: 321] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smooth muscle cell directly drives the contraction of the vascular wall and hence regulates the size of the blood vessel lumen. We review here the current understanding of the molecular mechanisms by which agonists, therapeutics, and diseases regulate contractility of the vascular smooth muscle cell and we place this within the context of whole body function. We also discuss the implications for personalized medicine and highlight specific potential target molecules that may provide opportunities for the future development of new therapeutics to regulate vascular function.
Collapse
Affiliation(s)
- F V Brozovich
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C J Nicholson
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - C V Degen
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - Yuan Z Gao
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - M Aggarwal
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| | - K G Morgan
- Department of Health Sciences, Boston University, Boston, Massachusetts (C.J.N., Y.Z.G., M.A., K.G.M.); Department of Medicine, Mayo Clinic, Rochester, Minnesota (F.V.B.); and Paracelsus Medical University Salzburg, Salzburg, Austria (C.V.D.)
| |
Collapse
|
49
|
Zhang S, Liu B, Fan Z, Wang D, Liu Y, Li J, Wang N, Liu Y, Zhang B. Targeted inhibition of survivin with YM155 promotes apoptosis of hypoxic human pulmonary arterial smooth muscle cells via the upregulation of voltage-dependent K⁺ channels. Mol Med Rep 2016; 13:3415-22. [PMID: 26957114 PMCID: PMC4805101 DOI: 10.3892/mmr.2016.4977] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 11/18/2015] [Indexed: 11/06/2022] Open
Abstract
Hypoxic pulmonary hypertension (PH) is a common disease characterized by a disturbance to the balance of apoptosis and cell proliferation in pulmonary artery smooth muscle cells (PASMCs). The anti-apoptotic protein, survivin, has been observed to be upregulated in pulmonary arteries (PAs) of chronic hypoxia-induced PH rats. The present study aimed to investigate the therapeutic potential of sepantronium bromide (YM155), a selective survivin inhibitor, on hypoxic human PASMCs and examine the potential underlying mechanisms. Cultured human PASMCs (HPASMCs) were randomly divided into the following groups: i) Normoxia (N); ii) normoxia + 100 nmol/l YM155 (NY100); iii) hypoxia (H); iv) hypoxia + 1 nmol/l YM155 (HY1); v) hypoxia + 10 nmol/l YM155 (HY10); and hypoxia + 100 nmol/l YM155 (HY100) groups. The cells were exposed to the different conditions for 24 h, according to the group. Cell viability was then determined using a Cell Counting Kit-8 assay, and apoptosis was detected using a terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assay. The expression levels of survivin were determined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), immunocytochemistry and Western blot analyses. The expression levels of the voltage-dependent K+ (Kv) channels, Kv1.5 and Kv2.1, were measured using RT-qPCR and Western blotting. Cell proliferation in the hypoxic PASMCs was significantly increased by hypoxia, however, apoptosis of the HPASMCs was suppressed, the expression of survivin were upregulated and the expression levels of Kv1.5 and Kv2.1 were downregulated. YM155 treatment ameliorated the hypoxia-induced increase in cell proliferation and expression of survivin in a concentration-dependent manner, increased apoptosis, and increased the expression levels of Kv1.5 and Kv2.1 (P<0.05). By contrast, YM155 treatment in normoxic HPASMCs had no significant effects on proliferation, apop-tosis, or the expression levels of survivin and Kv channels in the PASMCs. The present study is the first, to the best of our knowledge, to demonstrate that YM155, a selective survivin inhibitor, has a beneficial therapeutic effect on hypoxic HPASMCs, and that YM155 induces a pro-apoptotic effect by downregulating the apoptosis inhibitor, survivin, possibly through a Kv channel-mediated mechanism.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Respiratory Medicine, General Hospital of PLA Air Force, Beijing 100142, P.R. China
| | - Bo Liu
- Department of Respiratory Medicine, General Hospital of PLA Air Force, Beijing 100142, P.R. China
| | - Zaiwen Fan
- Department of Respiratory Medicine, General Hospital of PLA Air Force, Beijing 100142, P.R. China
| | - Dong Wang
- Department of Respiratory Medicine, General Hospital of PLA Air Force, Beijing 100142, P.R. China
| | - Ying Liu
- Department of Respiratory Medicine, General Hospital of PLA Air Force, Beijing 100142, P.R. China
| | - Jian Li
- Department of Respiratory Medicine, General Hospital of PLA Air Force, Beijing 100142, P.R. China
| | - Ning Wang
- Department of Respiratory Medicine, General Hospital of PLA Air Force, Beijing 100142, P.R. China
| | - Yi Liu
- Department of Respiratory Medicine, General Hospital of PLA Air Force, Beijing 100142, P.R. China
| | - Bo Zhang
- Department of Respiratory Medicine, General Hospital of PLA Air Force, Beijing 100142, P.R. China
| |
Collapse
|
50
|
Abstract
Previously considered a disease isolated to the pulmonary circulation, pulmonary arterial hypertension is now being recognized as a systemic disorder that is associated with significant metabolic dysfunction. Numerous animal models have demonstrated the development of pulmonary arterial hypertension following the onset of insulin resistance, indicating that insulin resistance may be causal. Recent publications highlighting alterations in aerobic glycolysis, fatty acid oxidation, and the tricarboxylic acid cycle in the pulmonary circulation and right ventricle have expanded our understanding of the complex pathobiology of this disease. By targeting these derangements in metabolism, numerous researchers are investigating noninvasive techniques to monitor disease activity and therapeutics that address the underlying metabolic condition. In the following review, we will explore pre-clinical and clinical studies investigating the metabolic dysfunction seen in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Tufik R Assad
- Division of Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, T1218 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232, USA
| | | |
Collapse
|