1
|
Svedung Wettervik TM, Hånell A, Howells T, Ronne-Engström E, Lewén A, Enblad P. Individualized Autoregulation-Derived Cerebral Perfusion Targets in Aneurysmal Subarachnoid Hemorrhage: A New Therapeutic Avenue? J Intensive Care Med 2024; 39:1083-1092. [PMID: 38706245 PMCID: PMC11490071 DOI: 10.1177/08850666241252415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Background: Cerebral perfusion pressure (CPP) is an important target in aneurysmal subarachnoid hemorrhage (aSAH), but it does not take into account autoregulatory disturbances. The pressure reactivity index (PRx) and the CPP with the optimal PRx (CPPopt) are new variables that may capture these pathomechanisms. In this study, we investigated the effect on the outcome of certain combinations of CPP or ΔCPPopt (actual CPP-CPPopt) with the concurrent autoregulatory status (PRx) after aSAH. Methods: This observational study included 432 aSAH patients, treated in the neurointensive care unit, at Uppsala University Hospital, Sweden. Functional outcome (GOS-E) was assessed 1-year postictus. Heatmaps of the percentage of good monitoring time (%GMT) of PRx/CPP and PRx/ΔCPPopt combinations in relation to GOS-E were created to visualize the association between these variables and outcome. Results: In the heatmap of the %GMT of PRx/CPP, the combination of lower CPP with higher PRx values was more strongly associated with lower GOS-E. The tolerance for lower CPP values increased with lower PRx values until a threshold of -0.50. However, for decreasing PRx below -0.50, there was a gradual reduction in the tolerance for lower CPP. In the heatmap of the %GMT of PRx/ΔCPPopt, the combination of negative ΔCPPopt with higher PRx values was strongly associated with lower GOS-E. In particular, negative ΔCPPopt together with PRx above +0.50 correlated with worse outcomes. In addition, there was a transition toward an unfavorable outcome when PRx went below -0.50, particularly if ΔCPPopt was negative. Conclusions: The PRx levels influenced the association between CPP/ΔCPPopt and outcome. Thus, this variable could be used to individualize a safe CPP-/ΔCPPopt-range.
Collapse
Affiliation(s)
| | - Anders Hånell
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Timothy Howells
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | | | - Anders Lewén
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Prasad A, Gilmore EJ, Kim JA, Begunova L, Olexa M, Beekman R, Falcone GJ, Matouk C, Ortega-Gutierrez S, Temkin NR, Barber J, Diaz-Arrastia R, de Havenon A, Petersen NH. Impact of Therapeutic Interventions on Cerebral Autoregulatory Function Following Severe Traumatic Brain Injury: A Secondary Analysis of the BOOST-II Study. Neurocrit Care 2024; 41:91-99. [PMID: 38158481 PMCID: PMC11285118 DOI: 10.1007/s12028-023-01896-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The Brain Oxygen Optimization in Severe Traumatic Brain Injury Phase II randomized controlled trial used a tier-based management protocol based on brain tissue oxygen (PbtO2) and intracranial pressure (ICP) monitoring to reduce brain tissue hypoxia after severe traumatic brain injury. We performed a secondary analysis to explore the relationship between brain tissue hypoxia, blood pressure (BP), and interventions to improve cerebral perfusion pressure (CPP). We hypothesized that BP management below the lower limit of autoregulation would lead to cerebral hypoperfusion and brain tissue hypoxia that could be improved with hemodynamic augmentation. METHODS Of the 119 patients enrolled in the Brain Oxygen Optimization in Severe Traumatic Brain Injury Phase II trial, 55 patients had simultaneous recordings of arterial BP, ICP, and PbtO2. Autoregulatory function was measured by interrogating changes in ICP and PbtO2 in response to fluctuations in CPP using time-correlation analysis. The resulting autoregulatory indices (pressure reactivity index and oxygen reactivity index) were used to identify the "optimal" CPP and limits of autoregulation for each patient. Autoregulatory function and percent time with CPP outside personalized limits of autoregulation were calculated before, during, and after all interventions directed to optimize CPP. RESULTS Individualized limits of autoregulation were computed in 55 patients (mean age 38 years, mean monitoring time 92 h). We identified 35 episodes of brain tissue hypoxia (PbtO2 < 20 mm Hg) treated with CPP augmentation. Following each intervention, mean CPP increased from 73 ± 14 mm Hg to 79 ± 17 mm Hg (p = 0.15), and mean PbtO2 improved from 18.4 ± 5.6 mm Hg to 21.9 ± 5.6 mm Hg (p = 0.01), whereas autoregulatory function trended toward improvement (oxygen reactivity index 0.42 vs. 0.37, p = 0.14; pressure reactivity index 0.25 vs. 0.21, p = 0.2). Although optimal CPP and limits remained relatively unchanged, there was a significant decrease in the percent time with CPP below the lower limit of autoregulation in the 60 min after compared with before an intervention (11% vs. 23%, p = 0.05). CONCLUSIONS Our analysis suggests that brain tissue hypoxia is associated with cerebral hypoperfusion characterized by increased time with CPP below the lower limit of autoregulation. Interventions to increase CPP appear to improve autoregulation. Further studies are needed to validate the importance of autoregulation as a modifiable variable with the potential to improve outcomes.
Collapse
Affiliation(s)
- Ayush Prasad
- Division of Neurocritical Care and Emergency, Department of Neurology, Yale University School of Medicine, 15 York St, LCI 1003, New Haven, CT, CT 06510, USA
| | - Emily J Gilmore
- Division of Neurocritical Care and Emergency, Department of Neurology, Yale University School of Medicine, 15 York St, LCI 1003, New Haven, CT, CT 06510, USA
| | - Jennifer A Kim
- Division of Neurocritical Care and Emergency, Department of Neurology, Yale University School of Medicine, 15 York St, LCI 1003, New Haven, CT, CT 06510, USA
| | - Liza Begunova
- Division of Neurocritical Care and Emergency, Department of Neurology, Yale University School of Medicine, 15 York St, LCI 1003, New Haven, CT, CT 06510, USA
| | - Madelynne Olexa
- Division of Neurocritical Care and Emergency, Department of Neurology, Yale University School of Medicine, 15 York St, LCI 1003, New Haven, CT, CT 06510, USA
| | - Rachel Beekman
- Division of Neurocritical Care and Emergency, Department of Neurology, Yale University School of Medicine, 15 York St, LCI 1003, New Haven, CT, CT 06510, USA
| | - Guido J Falcone
- Division of Neurocritical Care and Emergency, Department of Neurology, Yale University School of Medicine, 15 York St, LCI 1003, New Haven, CT, CT 06510, USA
| | - Charles Matouk
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | | | - Nancy R Temkin
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jason Barber
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Adam de Havenon
- Division of Neurocritical Care and Emergency, Department of Neurology, Yale University School of Medicine, 15 York St, LCI 1003, New Haven, CT, CT 06510, USA
| | - Nils H Petersen
- Division of Neurocritical Care and Emergency, Department of Neurology, Yale University School of Medicine, 15 York St, LCI 1003, New Haven, CT, CT 06510, USA.
| |
Collapse
|
3
|
Pedrosa L, Hoyos J, Reyes L, Mosteiro A, Zattera L, Topczewski T, Rodríguez-Hernández A, Amaro S, Torné R, Enseñat J. Brain metabolism response to intrahospital transfers in neurocritical ill patients and the impact of microdialysis probe location. Sci Rep 2024; 14:7388. [PMID: 38548829 PMCID: PMC10978944 DOI: 10.1038/s41598-024-57217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
Intrahospital transfer (IHT), a routine in the management of neurocritical patients requiring imaging or interventions, might affect brain metabolism. Studies about IHT effects using microdialysis (MD) have produced conflicting results. In these studies, only the most damaged hemisphere was monitored, and those may not reflect the impact of IHT on overall brain metabolism, nor do they address differences between the hemispheres. Herein we aimed to quantify the effect of IHT on brain metabolism by monitoring both hemispheres with bilateral MD. In this study, 27 patients with severe brain injury (10 traumatic brain injury and 17 subarachnoid hemorrhage patients) were included, with a total of 67 IHT. Glucose, glycerol, pyruvate and lactate were measured by MD in both hemispheres for 10 h pre- and post-IHT. Alterations in metabolite levels after IHT were observed on both hemispheres; although these changes were more marked in hemisphere A (most damaged) than B (less damaged). Our results suggest that brain metabolism is altered after an IHT of neurocritical ill patients particularly but not limited to the damaged hemisphere. Bilateral monitorization may be more sensitive than unilateral monitorization for detecting metabolic disturbances not directly related to the course of the disease.
Collapse
Affiliation(s)
- Leire Pedrosa
- Department of Neurosurgery, Hospital Clinic of Barcelona, 08036, Barcelona, Spain
- IDIBAPS Biomedical Research Institute, 08036, Barcelona, Spain
| | - Jhon Hoyos
- Department of Neurosurgery, Hospital Clinic of Barcelona, 08036, Barcelona, Spain
| | - Luis Reyes
- Department of Neurosurgery, Hospital Clinic of Barcelona, 08036, Barcelona, Spain
| | - Alejandra Mosteiro
- Department of Neurosurgery, Hospital Clinic of Barcelona, 08036, Barcelona, Spain
| | - Luigi Zattera
- Department of Anesthesiology and Critical Care, Hospital Clinic of Barcelona, 08036, Barcelona, Spain
| | - Thomaz Topczewski
- Department of Neurosurgery, Hospital Clinic of Barcelona, 08036, Barcelona, Spain
| | - Ana Rodríguez-Hernández
- Department of Neurosurgery, Germans Trias i Pujol University Hospital, 08916, Badalona, Spain
| | - Sergio Amaro
- IDIBAPS Biomedical Research Institute, 08036, Barcelona, Spain
- Comprehensive Stroke Unit, Neurology, Hospital Clinic of Barcelona, 08036, Barcelona, Spain
| | - Ramon Torné
- Department of Neurosurgery, Hospital Clinic of Barcelona, 08036, Barcelona, Spain.
- IDIBAPS Biomedical Research Institute, 08036, Barcelona, Spain.
- Comprehensive Stroke Unit, Neurology, Hospital Clinic of Barcelona, 08036, Barcelona, Spain.
| | - Joaquim Enseñat
- Department of Neurosurgery, Hospital Clinic of Barcelona, 08036, Barcelona, Spain
| |
Collapse
|
4
|
O'Brien NF, Chetcuti K, Fonseca Y, Vidal L, Raghavan P, Postels DG, Chimalizeni Y, Ray S, Seydel KB, Taylor TE. Cerebral Metabolic Crisis in Pediatric Cerebral Malaria. J Pediatr Intensive Care 2023; 12:278-288. [PMID: 37970136 PMCID: PMC10631841 DOI: 10.1055/s-0041-1732444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/12/2021] [Indexed: 10/20/2022] Open
Abstract
Cerebral metabolic energy crisis (CMEC), often defined as a cerebrospinal fluid (CSF) lactate: pyruvate ratio (LPR) >40, occurs in various diseases and is associated with poor neurologic outcomes. Cerebral malaria (CM) causes significant mortality and neurodisability in children worldwide. Multiple factors that could lead to CMEC are plausible in these patients, but its frequency has not been explored. Fifty-three children with CM were enrolled and underwent analysis of CSF lactate and pyruvate levels. All 53 patients met criteria for a CMEC (median CSF LPR of 72.9 [interquartile range [IQR]: 58.5-93.3]). Half of children met criteria for an ischemic CMEC (median LPR of 85 [IQR: 73-184]) and half met criteria for a nonischemic CMEC (median LPR of 60 [IQR: 54-79]. Children also underwent transcranial doppler ultrasound investigation. Cerebral blood flow velocities were more likely to meet diagnostic criteria for low flow (<2 standard deviation from normal) or vasospasm in children with an ischemic CMEC (73%) than in children with a nonischemic CMEC (20%, p = 0.04). Children with an ischemic CMEC had poorer outcomes (pediatric cerebral performance category of 3-6) than those with a nonischemic CMEC (46 vs. 22%, p = 0.03). CMEC was ubiquitous in this patient population and the processes underlying the two subtypes (ischemic and nonischemic) may represent targets for future adjunctive therapies.
Collapse
Affiliation(s)
- Nicole F. O'Brien
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, United States
| | - Karen Chetcuti
- Department of Radiology, College of Medicine, Chichiri, Blantyre, Malawi
| | - Yudy Fonseca
- Division of Critical Care Medicine, Department of Pediatrics, University of Maryland Medical Center, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Lorenna Vidal
- Division of Neuroradiology, Department of Radiology Children's Hospital of Philadelphia, Clinical Instructor at Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Prashant Raghavan
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Douglas G. Postels
- Department of Neurology, George Washington University/Children's National Medical Center, Washington, District of Columbia, United States
| | - Yamikani Chimalizeni
- Department of Pediatrics and Child Health, University of Malawi, Malawi College of Medicine, Chichiri, Blantyre, Malawi
| | - Stephen Ray
- Department of Paediatric, Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Karl B. Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States
- Blantyre Malaria Project, Blantyre, Malawi
| | - Terrie E. Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States
| |
Collapse
|
5
|
Abdulazim A, Heilig M, Rinkel G, Etminan N. Diagnosis of Delayed Cerebral Ischemia in Patients with Aneurysmal Subarachnoid Hemorrhage and Triggers for Intervention. Neurocrit Care 2023; 39:311-319. [PMID: 37537496 PMCID: PMC10542310 DOI: 10.1007/s12028-023-01812-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023]
Abstract
INTRODUCTION Delayed cerebral ischemia (DCI) is a major determinant for poor neurological outcome after aneurysmal subarachnoid hemorrhage (aSAH). Detection and treatment of DCI is a key component in the neurocritical care of patients with aSAH after initial aneurysm repair. METHODS Narrative review of the literature. RESULTS Over the past 2 decades, there has been a paradigm shift away from macrovascular (angiographic) vasospasm as a main diagnostic and therapeutic target. Instead, the pathophysiology of DCI is hypothesized to derive from several proischemic pathomechanisms. Clinical examination remains the most reliable means for monitoring and treatment of DCI, but its value is limited in comatose patients. In such patients, monitoring of DCI is usually based on numerous neurophysiological and/or radiological diagnostic modalities. Catheter angiography remains the gold standard for the detection of macrovascular spasm. Computed tomography (CT) angiography is increasingly used instead of catheter angiography because it is less invasive and may be combined with CT perfusion imaging. CT perfusion permits semiquantitative cerebral blood flow measurements, including the evaluation of the microcirculation. It may be used for prediction, early detection, and diagnosis of DCI, with yet-to-prove benefit on clinical outcome when used as a screening modality. Transcranial Doppler may be considered as an additional noninvasive screening tool for flow velocities in the middle cerebral artery, with limited accuracy in other cerebral arteries. Continuous electroencephalography enables detection of early signs of ischemia at a reversible stage prior to clinical manifestation. However, its widespread use is still limited because of the required infrastructure and expertise in data interpretation. Near-infrared spectroscopy, a noninvasive and continuous modality for evaluation of cerebral blood flow dynamics, has shown conflicting results and needs further validation. Monitoring techniques beyond neurological examinations may help in the detection of DCI, especially in comatose patients. However, these techniques are limited because of their invasive nature and/or restriction of measurements to focal brain areas. CONCLUSION The current literature review underscores the need for incorporating existing modalities and developing new methods to evaluate brain perfusion, brain metabolism, and overall brain function more accurately and more globally.
Collapse
Affiliation(s)
- Amr Abdulazim
- Department of Neurosurgery, Medical Faculty Mannheim, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Marina Heilig
- Department of Neurosurgery, Medical Faculty Mannheim, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Gabriel Rinkel
- Department of Neurosurgery, Medical Faculty Mannheim, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Nima Etminan
- Department of Neurosurgery, Medical Faculty Mannheim, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
6
|
Leppert J, Ditz C, Souayah N, Behrens C, Tronnier VM, Küchler J. Limitations of prone positioning in patients with aneurysmal subarachnoid hemorrhage and concomitant respiratory failure. Clin Neurol Neurosurg 2023; 232:107878. [PMID: 37423091 DOI: 10.1016/j.clineuro.2023.107878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVE Prone positioning (PP) is an established treatment modality for respiratory failure. After aneurysmal subarachnoid hemorrhage (aSAH), PP is rarely performed considering the risk of intracranial hypertension. The aim of this study was to analyze the effects of PP on intracranial pressure (ICP), cerebral perfusion pressure (CPP) and cerebral oxygenation following aSAH. PATIENTS AND METHODS Demographic and clinical data of aSAH patients admitted over a 6-year period and treated with PP due to respiratory insufficiency were retrospectively analyzed. ICP, CPP, brain tissue oxygenation (pBrO2), respiratory parameters and ventilator settings were analyzed before and during PP. RESULTS Thirty patients receiving invasive multimodal neuromonitoring were included. Overall, 97 PP sessions were performed. Mean arterial oxygenation and pBrO2 increased significantly during PP. We found a significant increase in median ICP compared to the baseline level in supine position. No significant changes in CPP were observed. Five PP sessions had to be terminated early due to medically refractory ICP-crisis. The affected patients were younger (p = 0.02) with significantly higher baseline ICP values (p = 0.009). Baseline ICP correlates significantly (p < 0.001) with ICP 1 h (R: 0.57) and 4 h (R: 0.55) after onset of PP. CONCLUSION PP in aSAH patients with respiratory insufficiency is an effective therapeutic option improving arterial and global cerebral oxygenation without compromising CPP. The significant increase in ICP was moderate in most sessions. However, as some patients experience intolerable ICP crises during PP, continuous ICP-Monitoring is considered mandatory. Patients with elevated baseline ICP and reduced intracranial compliance should not be considered for PP.
Collapse
Affiliation(s)
- Jan Leppert
- Department of Neurosurgery, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Claudia Ditz
- Department of Neurosurgery, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany.
| | - Noura Souayah
- Department of Neurosurgery, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Carianne Behrens
- Department of Neurosurgery, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Volker M Tronnier
- Department of Neurosurgery, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Jan Küchler
- Department of Neurosurgery, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| |
Collapse
|
7
|
Olsen MH, Capion T, Riberholt CG, Bache S, Ebdrup SR, Rasmussen R, Mathiesen T, Berg RMG, Møller K. Effect of controlled blood pressure increase on cerebral blood flow velocity and oxygenation in patients with subarachnoid haemorrhage. Acta Anaesthesiol Scand 2023; 67:1054-1060. [PMID: 37192754 DOI: 10.1111/aas.14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/24/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Patients with aneurysmal subarachnoid haemorrhage (SAH) might have impaired cerebral autoregulation, that is, CBF - and thereby oxygen delivery - passively increase with an increase in CPP. This physiological study aimed to investigate the cerebral haemodynamic effects of controlled blood pressure increase in the early phase after SAH before any signs of delayed cerebral ischaemia (DCI) occurred. METHODS The study was carried out within 5 days after ictus. Data were recorded at baseline and after 20 min of noradrenaline infusion to increase mean arterial blood pressure (MAP) by a maximum of 30 mmHg and to an absolute level of no more than 130 mmHg. The primary outcome was the difference in middle cerebral artery blood flow velocity (MCAv) measured by transcranial Doppler (TCD), while differences in intracranial pressure (ICP), brain tissue oxygen tension (PbtO2 ), and microdialysis markers of cerebral oxidative metabolism and cell injury were assessed as exploratory outcomes. Data were analysed using Wilcoxon signed-rank test with correction for multiplicity for the exploratory outcomes using the Benjamini-Hochberg correction. RESULTS Thirty-six participants underwent the intervention 4 (median, IQR: 3-4.75) days after ictus. MAP was increased from 82 (IQR: 76-85) to 95 (IQR: 88-98) mmHg (p-value: <.001). MCAv remained stable (baseline, median 57, IQR: 46-70 cm/s; controlled blood pressure increase, median: 55, IQR: 48-71 cm/s; p-value: .054), whereas PbtO2 increased significantly (baseline, median: 24, 95%CI: 19-31 mmHg; controlled blood pressure increase, median: 27, 95%CI: 24-33 mmHg; p-value <.001). The remaining exploratory outcomes were unchanged. CONCLUSION In this study of patients with SAH, MCAv was not significantly affected by a brief course of controlled blood pressure increase; despite this, PbtO2 increased. This suggests that autoregulation might not be impaired in these patients or other mechanisms could mediate the increase in brain oxygenation. Alternatively, a CBF increase did occur that, in turn, increased cerebral oxygenation, but was not detected by TCD. TRIAL REGISTRATION clinicaltrials.gov (NCT03987139; 14 June 2019).
Collapse
Affiliation(s)
- Markus Harboe Olsen
- Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Tenna Capion
- Department of Neurosurgery, The Neuroscience Centre, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Christian Gunge Riberholt
- Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital, Rigshospitalet, Denmark
- Department of Brain and Spinal Cord Injury, The Neuroscience Centre, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Søren Bache
- Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Søren Røddik Ebdrup
- Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Rune Rasmussen
- Department of Neurosurgery, The Neuroscience Centre, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Tiit Mathiesen
- Department of Neurosurgery, The Neuroscience Centre, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Ronan M G Berg
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Denmark
- Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Kirsten Møller
- Department of Neuroanaesthesiology, The Neuroscience Centre, Copenhagen University Hospital, Rigshospitalet, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
8
|
Gouvea Bogossian E, Battaglini D, Fratino S, Minini A, Gianni G, Fiore M, Robba C, Taccone FS. The Role of Brain Tissue Oxygenation Monitoring in the Management of Subarachnoid Hemorrhage: A Scoping Review. Neurocrit Care 2023; 39:229-240. [PMID: 36802011 DOI: 10.1007/s12028-023-01680-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/19/2023] [Indexed: 02/19/2023]
Abstract
Monitoring of brain tissue oxygenation (PbtO2) is an important component of multimodal monitoring in traumatic brain injury. Over recent years, use of PbtO2 monitoring has also increased in patients with poor-grade subarachnoid hemorrhage (SAH), particularly in those with delayed cerebral ischemia. The aim of this scoping review was to summarize the current state of the art regarding the use of this invasive neuromonitoring tool in patients with SAH. Our results showed that PbtO2 monitoring is a safe and reliable method to assess regional cerebral tissue oxygenation and that PbtO2 represents the oxygen available in the brain interstitial space for aerobic energy production (i.e., the product of cerebral blood flow and the arterio-venous oxygen tension difference). The PbtO2 probe should be placed in the area at risk of ischemia (i.e., in the vascular territory in which cerebral vasospasm is expected to occur). The most widely used PbtO2 threshold to define brain tissue hypoxia and initiate specific treatment is between 15 and 20 mm Hg. PbtO2 values can help identify the need for or the effects of various therapies, such as hyperventilation, hyperoxia, induced hypothermia, induced hypertension, red blood cell transfusion, osmotic therapy, and decompressive craniectomy. Finally, a low PbtO2 value is associated with a worse prognosis, and an increase of the PbtO2 value in response to treatment is a marker of good outcome.
Collapse
Affiliation(s)
- Elisa Gouvea Bogossian
- Department of Intensive Care, Université Libre de Bruxelles, Erasme Hospital, Route de Lennik, 808, 1070, Brussels, Belgium.
| | - Denise Battaglini
- Anesthesia and Intensive Care, Instituto di Ricovero e Cura a carattere scientifico for Oncology and Neuroscience, San Martino Policlinico Hospital, Genoa, Italy
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Sara Fratino
- Department of Intensive Care, Université Libre de Bruxelles, Erasme Hospital, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Andrea Minini
- Department of Intensive Care, Université Libre de Bruxelles, Erasme Hospital, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Giuseppina Gianni
- Department of Intensive Care, Université Libre de Bruxelles, Erasme Hospital, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Marco Fiore
- Department of Women, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, Instituto di Ricovero e Cura a carattere scientifico for Oncology and Neuroscience, San Martino Policlinico Hospital, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Fabio Silvio Taccone
- Department of Intensive Care, Université Libre de Bruxelles, Erasme Hospital, Route de Lennik, 808, 1070, Brussels, Belgium
| |
Collapse
|
9
|
Rass V, Kindl P, Lindner A, Kofler M, Altmann K, Putnina L, Ianosi BA, Schiefecker AJ, Beer R, Pfausler B, Helbok R. Blood Pressure Changes in Association with Nimodipine Therapy in Patients with Spontaneous Subarachnoid Hemorrhage. Neurocrit Care 2023; 39:104-115. [PMID: 37308727 PMCID: PMC10499738 DOI: 10.1007/s12028-023-01760-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/16/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Nimodipine is recommended to prevent delayed cerebral ischemia in patients with spontaneous subarachnoid hemorrhage (SAH). Here, we studied hemodynamic side effects of different nimodipine formulations (per os [PO] and intravenous [IV]) in patients with SAH undergoing continuous blood pressure monitoring. METHODS This observational cohort study includes consecutive patients with SAH (271 included in the IV group, 49 in the PO group) admitted to a tertiary care center between 2010 and 2021. All patients received prophylactic IV or PO nimodipine. Hemodynamic responses were evaluated based on median values within the first hour after continuous IV nimodipine initiation or PO nimodipine application (601 intakes within 15 days). Significant changes were defined as > 10% drop in systolic blood pressure (SBP) or diastolic blood pressure from baseline (median values 30 min before nimodipine application). With the use of multivariable logistic regression, risk factors associated with SBP drops were identified. RESULTS Patients were admitted with a median Hunt & Hess score of 3 (2-5; IV 3 [2-5], PO 1 [1-2], p < 0.001) and were 58 (49-69) years of age. Initiation of IV nimodipine was associated with a > 10% SBP drop in 30% (81/271) of patients, with a maximum effect after 15 min. A start or increase in noradrenaline was necessary in 136/271 (50%) patients, and colloids were administered in 25/271 (9%) patients within 1 h after IV nimodipine initiation. SBP drops > 10% occurred after 53/601 (9%) PO nimodipine intakes, with a maximum effect after 30-45 min in 28/49 (57%) patients. Noradrenaline application was uncommon (3% before and 4% after nimodipine PO intake). Hypotensive episodes to an SBP < 90 mm Hg were not observed after IV or PO nimodipine application. In multivariable analysis, only a higher SBP at baseline was associated with a > 10% drop in SBP after IV (p < 0.001) or PO (p = 0.001) nimodipine application, after adjusting for the Hunt & Hess score on admission, age, sex, mechanical ventilation, days after intensive care unit admission, and delayed cerebral ischemia. CONCLUSIONS Significant drops in SBP occur in one third of patients after the start of IV nimodipine and after every tenth PO intake. Early recognition and counteracting with vasopressors or fluids seems necessary to prevent hypotensive episodes.
Collapse
Affiliation(s)
- Verena Rass
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Philipp Kindl
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Anna Lindner
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Mario Kofler
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Klaus Altmann
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Lauma Putnina
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Bogdan-Andrei Ianosi
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Alois J Schiefecker
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Ronny Beer
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Bettina Pfausler
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Raimund Helbok
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
- Department of Neurology, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
10
|
Yu Y, Gong Y, Hu B, Ouyang B, Pan A, Liu J, Liu F, Shang XL, Yang XH, Tu G, Wang C, Ma S, Fang W, Liu L, Liu J, Chen D. Expert consensus on blood pressure management in critically ill patients. JOURNAL OF INTENSIVE MEDICINE 2023; 3:185-203. [PMID: 37533806 PMCID: PMC10391579 DOI: 10.1016/j.jointm.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 08/04/2023]
Affiliation(s)
- Yuetian Yu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Ye Gong
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bo Hu
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Bin Ouyang
- Department of Critical Care Medicine, The First Affiliated Hospital of SunYatsen University, Guangzhou 510080, Guangdong, China
| | - Aijun Pan
- Department of Critical Care Medicine, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Jinglun Liu
- Department of Emergency Medicine and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fen Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi, China
| | - Xiu-Ling Shang
- Department of Critical Care Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Center for Critical Care Medicine, Fujian Provincial Key Laboratory of Critical Care Medicine, Fuzhou 350001 Fujian, China
| | - Xiang-Hong Yang
- Department of Intensive Care Unit, Emergency & Intensive Care Unit Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014 Zhejiang, China
| | - Guowei Tu
- Cardiac Intensive Care Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Changsong Wang
- Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Shaolin Ma
- Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Wei Fang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, 250014 Shandong, China
| | - Ling Liu
- Department of Critical Care Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009 Jiangsu, China
| | - Jiao Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dechang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
11
|
Moser M, Schwarz Y, Herta J, Plöchl W, Reinprecht A, Zeitlinger M, Brugger J, Ramazanova D, Rössler K, Hosmann A. The Effect of Oral Nimodipine on Cerebral Metabolism and Hemodynamic Parameters in Patients Suffering Aneurysmal Subarachnoid Hemorrhage. J Neurosurg Anesthesiol 2023:00008506-990000000-00074. [PMID: 37501395 PMCID: PMC11377055 DOI: 10.1097/ana.0000000000000928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION Nimodipine is routinely administered to aneurysmal subarachnoid hemorrhage patients to improve functional outcomes. Nimodipine can induce marked systemic hypotension, which might impair cerebral perfusion and brain metabolism. METHODS Twenty-seven aneurysmal subarachnoid hemorrhage patients having multimodality neuromonitoring and oral nimodipine treatment as standard of care were included in this retrospective study. Alterations in mean arterial blood pressure (MAP), cerebral perfusion pressure (CPP), brain tissue oxygen tension (pbtO2), and brain metabolism (cerebral microdialysis), were investigated up to 120 minutes after oral administration of nimodipine (60 mg or 30 mg), using mixed linear models. RESULTS Three thousand four hundred twenty-five oral nimodipine administrations were investigated (126±59 administrations/patient). After 60 mg of oral nimodipine, there was an immediate statistically significant (but clinically irrelevant) drop in MAP (relative change, 0.97; P<0.001) and CPP (relative change: 0.97; P<0.001) compared with baseline, which lasted for the whole 120 minutes observation period (P<0.001). Subsequently, pbtO2 significantly decreased 50 minutes after administration (P=0.04) for the rest of the observation period; the maximum decrease was -0.6 mmHg after 100 minutes (P<0.001). None of the investigated cerebral metabolites (glucose, lactate, pyruvate, lactate/pyruvate ratio, glutamate, glycerol) changed after 60 mg nimodipine. Compared with 60 mg nimodipine, 30 mg induced a lower reduction in MAP (relative change, 1.01; P=0.02) and CPP (relative change, 1.01; P=0.03) but had similar effects on pbtO2 and cerebral metabolism (P>0.05). CONCLUSIONS Oral nimodipine reduced MAP, which translated into a reduction in cerebral perfusion and oxygenation. However, these changes are unlikely to be clinically relevant, as the absolute changes were minimal and did not impact cerebral metabolism.
Collapse
Affiliation(s)
| | | | | | - Walter Plöchl
- Department of Anesthesia, General Intensive Care Medicine and Pain Management
| | | | | | - Jonas Brugger
- Center for Medical Data Science, Medical University of Vienna, Austria
| | - Dariga Ramazanova
- Center for Medical Data Science, Medical University of Vienna, Austria
| | | | | |
Collapse
|
12
|
Petersen NH, Sheth KN, Jha RM. Precision Medicine in Neurocritical Care for Cerebrovascular Disease Cases. Stroke 2023; 54:1392-1402. [PMID: 36789774 PMCID: PMC10348371 DOI: 10.1161/strokeaha.122.036402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 12/22/2022] [Indexed: 02/16/2023]
Abstract
Scientific advances have informed many aspects of acute stroke care but have also highlighted the complexity and heterogeneity of cerebrovascular diseases. While practice guidelines are essential in supporting the clinical decision-making process, they may not capture the nuances of individual cases. Personalized stroke care in ICU has traditionally relied on integrating clinical examinations, neuroimaging studies, and physiologic monitoring to develop a treatment plan tailored to the individual patient. However, to realize the potential of precision medicine in stroke, we need advances and evidence in several critical areas, including data capture, clinical phenotyping, serum biomarker development, neuromonitoring, and physiology-based treatment targets. Mathematical tools are being developed to analyze the multitude of data and provide clinicians with real-time information and personalized treatment targets for the critical care management of patients with cerebrovascular diseases. This review summarizes research advances in these areas and outlines principles for translating precision medicine into clinical practice.
Collapse
Affiliation(s)
- Nils H Petersen
- Departments of Neurology (N.H.P., K.N.S., R.M.J.), Yale University School of Medicine, New Haven, CT
| | - Kevin N Sheth
- Departments of Neurology (N.H.P., K.N.S., R.M.J.), Yale University School of Medicine, New Haven, CT
- Neurosurgery (K.N.S., R.M.J.), Yale University School of Medicine, New Haven, CT
- Departments of Neurology, Neurosurgery and Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ (K.N.S., R.M.J.)
| | - Ruchira M Jha
- Departments of Neurology (N.H.P., K.N.S., R.M.J.), Yale University School of Medicine, New Haven, CT
- Neurosurgery (K.N.S., R.M.J.), Yale University School of Medicine, New Haven, CT
- Departments of Neurology, Neurosurgery and Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ (K.N.S., R.M.J.)
| |
Collapse
|
13
|
Svedung Wettervik T, Lewén A, Enblad P. Fine tuning of neurointensive care in aneurysmal subarachnoid hemorrhage: From one-size-fits-all towards individualized care. World Neurosurg X 2023; 18:100160. [PMID: 36818739 PMCID: PMC9932216 DOI: 10.1016/j.wnsx.2023.100160] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a severe type of acute brain injury with high mortality and burden of neurological sequelae. General management aims at early aneurysm occlusion to prevent re-bleeding, cerebrospinal fluid drainage in case of increased intracranial pressure and/or acute hydrocephalus, and cerebral blood flow augmentation in case of delayed ischemic neurological deficits. In addition, the brain is vulnerable to physiological insults in the acute phase and neurointensive care (NIC) is important to optimize the cerebral physiology to avoid secondary brain injury. NIC has led to significantly better neurological recovery following aSAH, but there is still great room for further improvements. First, current aSAH NIC management protocols are to some extent extrapolated from those in traumatic brain injury, notwithstanding important disease-specific differences. Second, the same NIC management protocols are applied to all aSAH patients, despite great patient heterogeneity. Third, the main variables of interest, intracranial pressure and cerebral perfusion pressure, may be too superficial to fully detect and treat several important pathomechanisms. Fourth, there is a lack of understanding not only regarding physiological, but also cellular and molecular pathomechanisms and there is a need to better monitor and treat these processes. This narrative review aims to discuss current state-of-the-art NIC of aSAH, knowledge gaps in the field, and future directions towards a more individualized care in the future.
Collapse
Affiliation(s)
- Teodor Svedung Wettervik
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Anders Lewén
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Per Enblad
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, SE-751 85, Uppsala, Sweden
| |
Collapse
|
14
|
Svedung Wettervik T, Hånell A, Howells T, Ronne Engström E, Lewén A, Enblad P. ICP, CPP, and PRx in traumatic brain injury and aneurysmal subarachnoid hemorrhage: association of insult intensity and duration with clinical outcome. J Neurosurg 2023; 138:446-453. [PMID: 35901752 DOI: 10.3171/2022.5.jns22560] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The primary aim of this study was to determine the combined effect of insult intensity and duration of intracranial pressure (ICP), cerebral perfusion pressure (CPP), and pressure reactivity index (PRx) on outcome measured with the Glasgow Outcome Scale-Extended (GOS-E) in patients with traumatic brain injury (TBI) or aneurysmal subarachnoid hemorrhage (aSAH). METHODS This observational study included all TBI and aSAH patients treated in the neurointensive care unit in Uppsala, Sweden, 2008-2018, with at least 24 hours of ICP monitoring during the first 10 days following injury and available long-term clinical outcome data. ICP, CPP, and PRx insults were visualized as 2D plots to highlight the effects of both insult intensity and duration on patient outcome. RESULTS Of 950 included patients, 436 were TBI and 514 aSAH patients. The TBI patients were younger, more often male, and exhibited worse neurological status at admission, but recovered more favorably than the aSAH patients. There was a transition from good to poor outcome with ICP above 15-20 mm Hg in both TBI and aSAH. The two diagnoses had opposite CPP patterns. In TBI patients, CPP episodes at or below 80 mm Hg were generally favorable, whereas CPP episodes above 80 mm Hg were favorable in the aSAH patients. In the TBI patients there was a transition from good to poor outcome when PRx exceeded zero, but no evident transition was found in the aSAH cohort. CONCLUSIONS The insult intensity and duration plots formulated in this study illustrate the similarities and differences between TBI and aSAH patients. In particular, aSAH patients may benefit from much higher CPP targets than TBI patients.
Collapse
Affiliation(s)
| | - Anders Hånell
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Timothy Howells
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | | | - Anders Lewén
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Falcone JA, Chen JW. Technical notes on the placement of cerebral microdialysis: A single center experience. Front Neurol 2023; 13:1041952. [PMID: 36698903 PMCID: PMC9868911 DOI: 10.3389/fneur.2022.1041952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Background Cerebral microdialysis enables monitoring of brain metabolism and can be an important part of multimodal monitoring strategies in a variety of brain injuries. Microdialysis catheters can be placed in brain parenchyma through a burr hole, a cranial bolt, or directly at the time of an open craniotomy or craniectomy. The location of catheters in relation to brain pathology is important to the interpretation of data and guidance of interventions. Methods Here we retrospectively review the use of cerebral microdialysis at a US Regional Medical Center between March 2018 and February 2022 and provide detailed descriptions and technical nuances of the different methods to place microdialysis catheters. Results Eighty two unique microdialysis catheters were utilized in 52 patients. 35 (42.68%) were placed via a quad-lumen bolt and 47 (57.32%) were placed through craniotomies. 27 catheters (32.93%) were placed in a perilesional location, 50 (60.98%) were located in healthy tissue, and 6 (7.32%) were mispositioned. No significant difference was seen between placement by bolt or craniotomy in regard to perilesional location, mispositioning, or complications. Conclusion With careful planning and thoughtful execution, cerebral microdialysis catheters can be successfully placed though a variety of strategies to optimize and individualize brain monitoring in different clinical settings. This paper provides a detailed guide for the various methods of catheter placement to help providers begin or expand their use of cerebral microdialysis.
Collapse
|
16
|
Megjhani M, Weiss M, Ford J, Terilli K, Kastenholz NCM, Nametz D, Kwon SB, Velazquez A, Agarwal S, Roh DJ, Conzen-Dilger C, Albanna W, Veldeman M, Connolly ES, Claassen J, Aries M, Schubert GA, Park S. Optimal Cerebral Perfusion Pressure and Brain Tissue Oxygen in Aneurysmal Subarachnoid Hemorrhage. Stroke 2023; 54:189-197. [PMID: 36314124 PMCID: PMC9780174 DOI: 10.1161/strokeaha.122.040339] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Targeting a cerebral perfusion pressure optimal for cerebral autoregulation (CPPopt) has been gaining more attention to prevent secondary damage after acute neurological injury. Brain tissue oxygenation (PbtO2) can identify insufficient cerebral blood flow and secondary brain injury. Defining the relationship between CPPopt and PbtO2 after aneurysmal subarachnoid hemorrhage may result in (1) mechanistic insights into whether and how CPPopt-based strategies might be beneficial and (2) establishing support for the use of PbtO2 as an adjunctive monitor for adequate or optimal local perfusion. METHODS We performed a retrospective analysis of a prospectively collected 2-center dataset of patients with aneurysmal subarachnoid hemorrhage with or without later diagnosis of delayed cerebral ischemia (DCI). CPPopt was calculated as the cerebral perfusion pressure (CPP) value corresponding to the lowest pressure reactivity index (moving correlation coefficient of mean arterial and intracranial pressure). The relationship of (hourly) deltaCPP (CPP-CPPopt) and PbtO2 was investigated using natural spline regression analysis. Data after DCI diagnosis were excluded. Brain tissue hypoxia was defined as PbtO2 <20 mmHg. RESULTS One hundred thirty-one patients were included with a median of 44.0 (interquartile range, 20.8-78.3) hourly CPPopt/PbtO2 datapoints. The regression plot revealed a nonlinear relationship between PbtO2 and deltaCPP (P<0.001) with PbtO2 decrease with deltaCPP <0 mmHg and stable PbtO2 with deltaCPP ≥0mmHg, although there was substantial individual variation. Brain tissue hypoxia (34.6% of all measurements) was more frequent with deltaCPP <0 mmHg. These dynamics were similar in patients with or without DCI. CONCLUSIONS We found a nonlinear relationship between PbtO2 and deviation of patients' CPP from CPPopt in aneurysmal subarachnoid hemorrhage patients in the pre-DCI period. CPP values below calculated CPPopt were associated with lower PbtO2. Nevertheless, the nature of PbtO2 measurements is complex, and the variability is high. Combined multimodality monitoring with CPP/CPPopt and PbtO2 should be recommended to redefine individual pressure targets (CPP/CPPopt) and retain the option to detect local perfusion deficits during DCI (PbtO2), which cannot be fulfilled by both measurements interchangeably.
Collapse
Affiliation(s)
- Murad Megjhani
- Department of Neurology, Columbia University, New York, USA
| | - Miriam Weiss
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland
| | - Jenna Ford
- Program in Hospital and Intensive Care Informatics, Department of Neurology, Columbia University, New York, USA
| | | | | | - Daniel Nametz
- Department of Neurology, Columbia University, New York, USA
| | - Soon Bin Kwon
- Department of Neurology, Columbia University, New York, USA
| | - Angela Velazquez
- Program in Hospital and Intensive Care Informatics, Department of Neurology, Columbia University, New York, USA
| | - Sachin Agarwal
- Program in Hospital and Intensive Care Informatics, Department of Neurology, Columbia University, New York, USA
- NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, New York, USA
| | - David J. Roh
- Program in Hospital and Intensive Care Informatics, Department of Neurology, Columbia University, New York, USA
- NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, New York, USA
| | | | - Walid Albanna
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Michael Veldeman
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - E. Sander Connolly
- NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, New York, USA
- Department of Neurosurgery, Columbia University, New York, USA
| | - Jan Claassen
- Program in Hospital and Intensive Care Informatics, Department of Neurology, Columbia University, New York, USA
- NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, New York, USA
| | - Marcel Aries
- Department of Intensive Care, Maastricht University Medical Center, Maastricht University, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNS), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Gerrit A. Schubert
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland
| | - Soojin Park
- Department of Neurology, Columbia University, New York, USA
- Program in Hospital and Intensive Care Informatics, Department of Neurology, Columbia University, New York, USA
- NewYork-Presbyterian Hospital, Columbia University Irving Medical Center, New York, USA
- Department of Biomedical Informatics, Columbia University, New York, USA
| |
Collapse
|
17
|
Gelormini C, Caricato A, Pastorino R, Guerino Biasucci D, Ioannoni E, Montano N, Stival E, Signorelli F, Melchionda I, Albanese A, Marchese E, Silva S, Antonelli M. Brain tissue oxygenation monitoring in subarachnoid hemorrhage for the detection of delayed ischemia: a systematic review and meta-analysis. Minerva Anestesiol 2023; 89:96-103. [PMID: 36745118 DOI: 10.23736/s0375-9393.22.16468-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Subarachnoid hemorrhage (SAH) is a severe subtype of stroke which can be caused by the rupture of an intracranial aneurysm. Following SAH, about 30% of patients develop a late neurologic deterioration due to a delayed cerebral ischemia (DCI). This is a metanalysis and systematic review on the association between values of brain tissue oxygenation (PbtO2) and DCI in patients with SAH. EVIDENCE ACQUISITION The protocol was written according to the PRISMA-P (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines and approved by the International Prospective Register of Systematic Reviews (PROSPERO registration number CRD42021229338). Relevant literature published up to August 1, 2022 was systematically searched throughout the databases MEDLINE, WEB OF SCIENCE, SCOPUS. A systematic review and metanalysis was carried out. The studies considered eligible were those published in English; that enrolled adult patients (≥18years) admitted to neurointensive care units with aneurysmal SAH (aSAH); that reported presence of multimodality monitoring including PbtO2 and detection of DCI during the period of monitoring. EVIDENCE SYNTHESIS We founded 286 studies, of which six considered eligible. The cumulative mean of PbtO2 was 19.5 mmHg in the ischemic group and 24.1mmHg in the non ischemic group. The overall mean difference of the values of PbtO2 between the patients with or without DCI resulted significantly different (-4.32 mmHg [IC 95%: -5.70, -2.94], without heterogeneity, I2 = 0%, and a test for overall effect with P<0.00001). CONCLUSIONS PbtO2 values were significantly lower in patients with DCI. Waiting for definitive results, monitoring of PbtO2 should be considered as a complementary parameter for multimodal monitoring of the risk of DCI in patients with SAH.
Collapse
Affiliation(s)
- Camilla Gelormini
- Unit of Neurointensive Care, Department of Anesthesiology, Intensive Care and Emergency Medicine, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy -
| | - Anselmo Caricato
- Unit of Neurointensive Care, Department of Anesthesiology, Intensive Care and Emergency Medicine, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Roberta Pastorino
- Department of Woman, Child, and Public Health, Gemelli University Hospital IRCCS, Rome, Italy
| | - Daniele Guerino Biasucci
- Unit of Neurointensive Care, Department of Anesthesiology, Intensive Care and Emergency Medicine, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Eleonora Ioannoni
- Unit of Neurointensive Care, Department of Anesthesiology, Intensive Care and Emergency Medicine, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Nicola Montano
- Section of Neurosurgery, Department of Neuroscience, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Eleonora Stival
- Unit of Neurointensive Care, Department of Anesthesiology, Intensive Care and Emergency Medicine, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Francesco Signorelli
- Section of Neurosurgery, Department of Neuroscience, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Isabella Melchionda
- Unit of Neurointensive Care, Department of Anesthesiology, Intensive Care and Emergency Medicine, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Alessio Albanese
- Section of Neurosurgery, Department of Neuroscience, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Enrico Marchese
- Section of Neurosurgery, Department of Neuroscience, IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy
| | - Serena Silva
- Unit of Neurointensive Care, Department of Anesthesiology, Intensive Care and Emergency Medicine, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Massimo Antonelli
- Department of Anesthesiology, Intensive Care and Emergency Medicine, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| |
Collapse
|
18
|
Yang X, Cao L, Zhang T, Qu X, Chen W, Cheng W, Qi M, Wang N, Song W, Wang N. More is less: Effect of ICF-based early progressive mobilization on severe aneurysmal subarachnoid hemorrhage in the NICU. Front Neurol 2022; 13:951071. [PMID: 36588882 PMCID: PMC9794623 DOI: 10.3389/fneur.2022.951071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Aneurysmal subarachnoid hemorrhage (aSAH) is a type of stroke that occurs due to a ruptured intracranial aneurysm. Although advanced therapies have been applied to treat aSAH, patients still suffer from functional impairment leading to prolonged stays in the NICU. The effect of early progressive mobilization as an intervention implemented in the ICU setting for critically ill patients remains unclear. Methods This retrospective study evaluated ICF-based early progressive mobilization's validity, safety, and feasibility in severe aSAH patients. Sixty-eight patients with aSAH with Hunt-Hess grades III-IV were included. They were divided into two groups-progressive mobilization and passive movement. Patients in the progressive mobilization group received progressive ICF-based mobilization intervention, and those in the passive movement group received passive joint movement training. The incidence of pneumonia, duration of mechanical ventilation, length of NICU stay, and incidence of deep vein thrombosis were evaluated for validity. In contrast, the incidence of cerebral vasospasm, abnormally high ICP, and other safety events were assessed for safety. We also described the feasibility of the early mobilization initiation time and the rate of participation at each level for patients in the progressive mobilization group. Results The results showed that the incidence of pneumonia, duration of mechanical ventilation, and length of NICU stay were significantly lower among patients in the progressive mobilization group than in the passive movement group (P = 0.031, P = 0.004, P = 0.012), but the incidence of deep vein thrombosis did not significantly differ between the two groups. Regarding safety, patients in the progressive mobilization group had a lower incidence of cerebral vasospasm than those in the passive movement group. Considering the effect of an external ventricular drain on cerebral vasospasm (P = 0.015), we further analyzed those patients in the progressive mobilization group who had a lower incidence of cerebral vasospasm in patients who did not have an external ventricular drain (P = 0.011). Although we found 2 events of abnormally increased intracranial pressure in the progressive mobilization group, there was no abnormal decrease in cerebral perfusion pressure in the 2 events. In addition, among other safety events, there was no difference in the occurrence of adverse events between the two groups (P = 0.073), but the number of potential adverse events was higher in the progressive mobilization group (P = 0.001). Regarding feasibility, patients in the progressive mobilization group were commonly initiated 72 h after admission to the NICU, and 47.06% were in the third level of the mobilization protocol. Discussion We conclude that the ICF-based early progressive mobilization protocol is an effective and feasible intervention tool. For validity, more mobilization interventions might lead to less pneumonia, duration of mechanical ventilation and length of stay for patients with severe aSAH in the NICU, Moreover, it is necessary to pay attention over potential adverse events (especially line problems), although we did not find serious safety events.
Collapse
Affiliation(s)
- Xiaolong Yang
- Department of Rehabilitation Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lei Cao
- Department of Rehabilitation Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tiantian Zhang
- Department of Rehabilitation Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xin Qu
- Intensive Care Unit, Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenjin Chen
- Intensive Care Unit, Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weitao Cheng
- Intensive Care Unit, Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Meng Qi
- Intensive Care Unit, Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Na Wang
- Intensive Care Unit, Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weiqun Song
- Department of Rehabilitation Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China,*Correspondence: Weiqun Song
| | - Ning Wang
- Intensive Care Unit, Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China,Ning Wang
| |
Collapse
|
19
|
Abstract
Subarachnoid haemorrhage (SAH) is the third most common subtype of stroke. Incidence has decreased over past decades, possibly in part related to lifestyle changes such as smoking cessation and management of hypertension. Approximately a quarter of patients with SAH die before hospital admission; overall outcomes are improved in those admitted to hospital, but with elevated risk of long-term neuropsychiatric sequelae such as depression. The disease continues to have a major public health impact as the mean age of onset is in the mid-fifties, leading to many years of reduced quality of life. The clinical presentation varies, but severe, sudden onset of headache is the most common symptom, variably associated with meningismus, transient or prolonged unconsciousness, and focal neurological deficits including cranial nerve palsies and paresis. Diagnosis is made by CT scan of the head possibly followed by lumbar puncture. Aneurysms are commonly the underlying vascular cause of spontaneous SAH and are diagnosed by angiography. Emergent therapeutic interventions are focused on decreasing the risk of rebleeding (ie, preventing hypertension and correcting coagulopathies) and, most crucially, early aneurysm treatment using coil embolisation or clipping. Management of the disease is best delivered in specialised intensive care units and high-volume centres by a multidisciplinary team. Increasingly, early brain injury presenting as global cerebral oedema is recognised as a potential treatment target but, currently, disease management is largely focused on addressing secondary complications such as hydrocephalus, delayed cerebral ischaemia related to microvascular dysfunction and large vessel vasospasm, and medical complications such as stunned myocardium and hospital acquired infections.
Collapse
Affiliation(s)
- Jan Claassen
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA.
| | - Soojin Park
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
20
|
Winberg J, Holm I, Cederberg D, Rundgren M, Kronvall E, Marklund N. Cerebral Microdialysis-Based Interventions Targeting Delayed Cerebral Ischemia Following Aneurysmal Subarachnoid Hemorrhage. Neurocrit Care 2022; 37:255-266. [PMID: 35488171 PMCID: PMC9283139 DOI: 10.1007/s12028-022-01492-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/14/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Delayed cerebral ischemia (DCI), a complication of subarachnoid hemorrhage (SAH), is linked to cerebral vasospasm and associated with poor long-term outcome. We implemented a structured cerebral microdialysis (CMD) based protocol using the lactate/pyruvate ratio (LPR) as an indicator of the cerebral energy metabolic status in the neurocritical care decision making, using an LPR ≥ 30 as a cutoff suggesting an energy metabolic disturbance. We hypothesized that CMD monitoring could contribute to active, protocol-driven therapeutic interventions that may lead to the improved management of patients with SAH. METHODS Between 2018 and 2020, 49 invasively monitored patients with SAH, median Glasgow Coma Scale 11 (range 3-15), and World Federation of Neurosurgical Societies scale 4 (range 1-5) on admission receiving CMD were included. We defined a major CMD event as an LPR ≥ 40 for ≥ 2 h and a minor CMD event as an LPR ≥ 30 for ≥ 2 h. RESULTS We analyzed 7,223 CMD samples over a median of 6 days (5-8). Eight patients had no CMD events. In 41 patients, 113 minor events were recorded, and in 23 patients 42 major events were recorded. Our local protocols were adhered to in 40 major (95%) and 98 minor events (87%), with an active intervention in 32 (76%) and 71 (63%), respectively. Normalization of energy metabolic status (defined as four consecutive samples with LPR < 30 for minor and LPR < 40 for major events) was seen after 69% of major and 59% of minor events. The incidence of DCI-related infarcts was 10% (five patients), with only two observed in a CMD-monitored brain region. CONCLUSIONS Active interventions were initiated in a majority of LPR events based on CMD monitoring. A low DCI incidence was observed, which may be associated with the active interventions. The potential aid of CMD in the clinical decision-making targeting DCI needs confirmation in additional SAH studies.
Collapse
Affiliation(s)
- Jakob Winberg
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Isabella Holm
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - David Cederberg
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Malin Rundgren
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Erik Kronvall
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Niklas Marklund
- Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Neurosurgery, EA-blocket plan 4, Entrégatan 7, 222 42, Lund, Sweden.
| |
Collapse
|
21
|
Picetti E, Barbanera A, Bernucci C, Bertuccio A, Bilotta F, Boccardi EP, Cafiero T, Caricato A, Castioni CA, Cenzato M, Chieregato A, Citerio G, Gritti P, Lanterna L, Menozzi R, Munari M, Panni P, Rossi S, Stocchetti N, Sturiale C, Zoerle T, Zona G, Rasulo F, Robba C. Early management of patients with aneurysmal subarachnoid hemorrhage in a hospital with neurosurgical/neuroendovascular facilities: a consensus and clinical recommendations of the Italian Society of Anesthesia and Intensive Care (SIAARTI)-Part 1. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2022; 2:13. [PMID: 37386557 PMCID: PMC10245531 DOI: 10.1186/s44158-022-00042-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Issues remain on the optimal management of subarachnoid hemorrhage (SAH) patients once they are admitted to the referring center, before and after the aneurysm treatment. To address these issues, we created a consensus of experts endorsed by the Italian Society of Anesthesia and Intensive Care (SIAARTI). In this manuscript, we aim to provide a list of experts' recommendations regarding the early management of SAH patients from hospital admission, in a center with neurosurgical/neuro-endovascular facilities, until securing of the bleeding aneurysm. METHODS A multidisciplinary consensus panel composed of 24 physicians selected for their established clinical and scientific expertise in the acute management of SAH patients with different background (anesthesia/intensive care, neurosurgery, and interventional neuroradiology) was created. A modified Delphi approach was adopted. RESULTS Among 19 statements discussed. The consensus was reached on 18 strong recommendations. In one case, consensus could not be agreed upon and no recommendation was provided. CONCLUSIONS This consensus provides practical recommendations for the management of SAH patients in hospitals with neurosurgical/neuroendovascular facilities until aneurysm securing. It is intended to support clinician's decision-making and not to mandate a standard of practice.
Collapse
Affiliation(s)
- Edoardo Picetti
- Department of Anesthesia and Intensive Care, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | - Andrea Barbanera
- Department of Neurosurgery, "SS Antonio e Biagio e Cesare Arrigo" Hospital, Alessandria, Italy
| | - Claudio Bernucci
- Department of Neuroscience and Surgery of the Nervous System, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Alessandro Bertuccio
- Department of Neurosurgery, "SS Antonio e Biagio e Cesare Arrigo" Hospital, Alessandria, Italy
| | - Federico Bilotta
- Department of Anesthesiology and Critical Care, Policlinico Umberto I Hospital, La Sapienza University of Rome, Rome, Italy
| | - Edoardo Pietro Boccardi
- Department of Interventional Neuroradiology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Tullio Cafiero
- Department of Anesthesia and Intensive Care Unit, AORN Cardarelli, Naples, Italy
| | - Anselmo Caricato
- Department of Anesthesia and Critical Care, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
| | - Carlo Alberto Castioni
- Department of Anesthesia and Intensive Care, IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - Marco Cenzato
- Department of Neurosurgery, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Arturo Chieregato
- Neurointensive Care Unit, Department of Neuroscience and Department of Anesthesiology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giuseppe Citerio
- School of Medicine and Surgery, University Milano-Bicocca, Milan, Italy
| | - Paolo Gritti
- Department of Anesthesia and Critical Care Medicine, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Luigi Lanterna
- Department of Neuroscience and Surgery of the Nervous System, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Roberto Menozzi
- Interventional Neuroradiology Unit, University Hospital of Parma, Parma, Italy
| | - Marina Munari
- Anesthesia and Intensive Care, Padua University Hospital, Padua, Italy
| | - Pietro Panni
- Department of Neuroradiology, San Raffaele Hospital, Milan, Italy
| | - Sandra Rossi
- Department of Anesthesia and Intensive Care, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Nino Stocchetti
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Carmelo Sturiale
- Neurosurgery Unit, IRCCS Istituto delle Scienze Neurologiche Ospedale Bellaria di Bologna, Bologna, Italy
| | - Tommaso Zoerle
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gianluigi Zona
- Department of Neurosurgery, Policlinico San Martino Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Frank Rasulo
- Department of Anesthesia, Intensive Care and Emergency Medicine, Spedali Civili University Hospital, Brescia, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| |
Collapse
|
22
|
Labak CM, Shammassian BH, Zhou X, Alkhachroum A. Multimodality Monitoring for Delayed Cerebral Ischemia in Subarachnoid Hemorrhage: A Mini Review. Front Neurol 2022; 13:869107. [PMID: 35493831 PMCID: PMC9043346 DOI: 10.3389/fneur.2022.869107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/14/2022] [Indexed: 12/13/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage is a disease with high mortality and morbidity due in large part to delayed effects of the hemorrhage, including vasospasm, and delayed cerebral ischemia. These two are now recognized as overlapping yet distinct entities, and supportive therapies for delayed cerebral ischemia are predicated on identifying DCI as quickly as possible. The purpose of this overview is to highlight diagnostic tools that are being used in the identification of DCI in the neurocritical care settings.
Collapse
Affiliation(s)
- Collin M. Labak
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Neurosurgery, University Hospitals Cleveland Medicine Center, Cleveland, OH, United States
| | - Berje Haroutuon Shammassian
- Department of Neurology, Division of Neurocritical Care, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
- Department of Neurology, Jackson Memorial Hospital, Miami, FL, United States
| | - Xiaofei Zhou
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Neurosurgery, University Hospitals Cleveland Medicine Center, Cleveland, OH, United States
| | - Ayham Alkhachroum
- Department of Neurology, Division of Neurocritical Care, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
- Department of Neurology, Jackson Memorial Hospital, Miami, FL, United States
- *Correspondence: Ayham Alkhachroum
| |
Collapse
|
23
|
Al-Mufti F, Mayer SA, Kaur G, Bassily D, Li B, Holstein ML, Ani J, Matluck NE, Kamal H, Nuoman R, Bowers CA, S Ali F, Al-Shammari H, El-Ghanem M, Gandhi C, Amuluru K. Neurocritical care management of poor-grade subarachnoid hemorrhage: Unjustified nihilism to reasonable optimism. Neuroradiol J 2021; 34:542-551. [PMID: 34476991 PMCID: PMC8649190 DOI: 10.1177/19714009211024633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Historically, overall outcomes for patients with high-grade subarachnoid hemorrhage (SAH) have been poor. Generally, between physicians, either reluctance to treat, or selectivity in treating such patients has been the paradigm. Recent studies have shown that early and aggressive care leads to significant improvement in survival rates and favorable outcomes of grade V SAH patients. With advancements in both neurocritical care and end-of-life care, non-treatment or selective treatment of grade V SAH patients is rarely justified. Current paradigm shifts towards early and aggressive care in such cases may lead to improved outcomes for many more patients. MATERIALS AND METHODS We performed a detailed review of the current literature regarding neurointensive management strategies in high-grade SAH, discussing multiple aspects. We discussed the neurointensive care management protocols for grade V SAH patients. RESULTS Acutely, intracranial pressure control is of utmost importance with external ventricular drain placement, sedation, optimization of cerebral perfusion pressure, osmotherapy and hyperventilation, as well as cardiopulmonary support through management of hypotension and hypertension. CONCLUSIONS Advancements of care in SAH patients make it unethical to deny treatment to poor Hunt and Hess grade patients. Early and aggressive treatment results in a significant improvement in survival rate and favorable outcome in such patients.
Collapse
Affiliation(s)
- Fawaz Al-Mufti
- Department of Neurology, Westchester Medical Center, Westchester Medical Center, Valhalla, USA
- Department of Neurosurgery, Westchester Medical Center, Westchester Medical Center, Valhalla, USA
| | - Stephan A Mayer
- Department of Neurosurgery, Westchester Medical Center, Westchester Medical Center, Valhalla, USA
| | - Gurmeen Kaur
- Department of Neurology, Westchester Medical Center, Westchester Medical Center, Valhalla, USA
- Department of Neurosurgery, Westchester Medical Center, Westchester Medical Center, Valhalla, USA
| | - Daniel Bassily
- School of Medicine, New York Medical College, New York Medical College, Valhalla, USA
| | - Boyi Li
- School of Medicine, New York Medical College, New York Medical College, Valhalla, USA
| | - Matthew L Holstein
- School of Medicine, New York Medical College, New York Medical College, Valhalla, USA
| | - Jood Ani
- School of Medicine, New York Medical College, New York Medical College, Valhalla, USA
| | - Nicole E Matluck
- School of Medicine, New York Medical College, New York Medical College, Valhalla, USA
| | - Haris Kamal
- Department of Neurosurgery, Westchester Medical Center, Westchester Medical Center, Valhalla, USA
| | - Rolla Nuoman
- Department of Neurology, Westchester Medical Center, Maria Fareri Children’s Hospital, Westchester Medical Center, Valhalla, USA
| | | | - Faizan S Ali
- Department of Neurology, Westchester Medical Center, Westchester Medical Center, Valhalla, USA
| | - Hussein Al-Shammari
- Department of Neurology, Westchester Medical Center, Westchester Medical Center, Valhalla, USA
| | - Mohammad El-Ghanem
- Department of Neurology, Neurosurgery and Medical Imaging, University of Arizona, Tucson, USA
| | - Chirag Gandhi
- Department of Neurosurgery, Westchester Medical Center, Westchester Medical Center, Valhalla, USA
| | - Krishna Amuluru
- Goodman Campbell Brain and Spine, Ascension St. Vincent Medical Center, Indianapolis, USA
| |
Collapse
|
24
|
Lindner A, Rass V, Ianosi BA, Schiefecker AJ, Kofler M, Gaasch M, Addis A, Rhomberg P, Pfausler B, Beer R, Schmutzhard E, Thomé C, Helbok R. Individualized blood pressure targets in the postoperative care of patients with intracerebral hemorrhage. J Neurosurg 2021; 135:1656-1665. [PMID: 33836501 DOI: 10.3171/2020.9.jns201024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/14/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Recent guidelines recommend targeting a systolic blood pressure (SBP) < 140 mm Hg in the early management of patients with spontaneous intracerebral hemorrhage (ICH). The optimal SBP targets for ICH patients after hematoma evacuation (HE) remain unclear. Here, the authors aimed to define the optimal SBP range based on multimodal neuromonitoring data. METHODS Forty poor-grade ICH patients who had undergone HE and then monitoring of intracerebral pressure, brain tissue oxygen tension (PbtO2), and cerebral metabolism (via cerebral microdialysis [CMD]) were prospectively included. Episodes of brain tissue hypoxia (BTH) (1-hour averaged PbtO2 < 20 mm Hg) and metabolic distress (CMD-lactate/pyruvate ratio [LPR] ≥ 40) were identified and linked to corresponding parameters of hemodynamic monitoring (SBP and cerebral perfusion pressure [CPP]). Multivariable regression analysis was performed using generalized estimating equations to identify associations between SBP levels, PbtO2, and brain metabolism. RESULTS The mean patient age was 60 (range 51-66) years and the median [IQR] initial ICH volume was 47 [29-60] ml. In multivariable models adjusted for Glasgow Coma Scale score, probe location, ICH volume, and age, lower SBP was independently associated with a higher risk of BTH (≤ 120 mm Hg: adjusted OR 2.9, p = 0.007; 120-130 mm Hg: adj OR 2.4, p = 0.002; 130-140 mm Hg: adj OR 1.6, p = 0.017) compared to a reference range of 140-150 mm Hg at the level of the foramen interventriculare Monroi, which corresponded to a CPP of 70-80 mm Hg and SBP levels between 150 and 160 mm Hg at the heart level. After exclusion of episodes with mitochondrial dysfunction, SBP targets < 140 mm Hg were associated with higher odds of cerebral metabolic distress (≤ 130 mm Hg: OR 2.5, p = 0.041; 130-140 mm Hg: OR 2.3, p = 0.033). Patients with a modified Rankin Scale score ≥ 5 at neurological ICU discharge more often exhibited BTH than patients with better outcomes (51% vs 10%, p = 0.003). CONCLUSIONS These data suggest that lower SPB and CPP levels are associated with a higher risk for BTH. Further studies are needed to evaluate whether a higher SPB target may prevent BTH and improve outcomes.
Collapse
Affiliation(s)
- Anna Lindner
- 1Neurological Intensive Care Unit, Department of Neurology, and
| | - Verena Rass
- 1Neurological Intensive Care Unit, Department of Neurology, and
| | - Bogdan-Andrei Ianosi
- 1Neurological Intensive Care Unit, Department of Neurology, and
- 2Institute of Medical Informatics, UMIT: University for Health Sciences, Medical Informatics and Technology, Tyrol, Austria; and
| | | | - Mario Kofler
- 1Neurological Intensive Care Unit, Department of Neurology, and
| | - Max Gaasch
- 1Neurological Intensive Care Unit, Department of Neurology, and
| | - Alberto Addis
- 3School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | | | - Ronny Beer
- 1Neurological Intensive Care Unit, Department of Neurology, and
| | | | | | - Raimund Helbok
- 1Neurological Intensive Care Unit, Department of Neurology, and
| |
Collapse
|
25
|
Xiao ZP, Lv T, Hou PP, Manaenko A, Liu Y, Jin Y, Gao L, Jia F, Tian Y, Li P, Zhang JH, Hu Q, Zhang X. Sirtuin 5-Mediated Lysine Desuccinylation Protects Mitochondrial Metabolism Following Subarachnoid Hemorrhage in Mice. Stroke 2021; 52:4043-4053. [PMID: 34807744 DOI: 10.1161/strokeaha.121.034850] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Sirt5 (Sirtuin 5) desuccinylates multiple metabolic enzymes and plays an important role in maintaining energy homeostasis. The goal of this study was to determine whether Sirt5-mediated desuccinylation restores the energy metabolism and protects brain against subarachnoid hemorrhage (SAH). METHODS Male C57BL/6 or Sirt5-/- mice were used. The endovascular perforation SAH model was applied. Protein lysine succinylation in the brain cortex was examined using liquid chromatography-tandem mass spectrometry analysis. The brain metabolism was evaluated by measurement of brain pH as well as ATP and reactive oxygen species level. Neuronal cell death and neurobehavioral deficits were assessed 24 hours after SAH. The expression and desuccinylation activity of Sirt5, lysine succinylation of citrate synthase and ATP synthase subunits were investigated by Western blot, immunohistochemistry, and ELISA in SAH mice and patients. Furthermore, the benefits of resveratrol-mediated Sirt5 activation were investigated. RESULTS A total of 211 lysine succinylation sites were differentially expressed on 170 proteins in mice brain after SAH. Thirty-nine percent of these succinylated proteins were localized in mitochondria and they are related to energy metabolism. SAH caused a decrease of Sirt5 expression and succinylated citrate synthase as well as the subunits of ATP synthase, subsequently lowered brain pH, reduced ATP and increased reactive oxygen species production, leading to neuronal cell death, and neurological deficits. Knockdown of Sirt5 aggravated SAH-induced effects, mentioned above. Administration of resveratrol resulted in activation of Sirt5. The activation was accompanied both with restoration of the mitochondrial metabolism and alleviation of early brain injury as well as with desuccinylating citrate synthase and ATP synthase. CONCLUSIONS Protein lysine succinylation is a biochemical hallmark of metabolic crisis after SAH, and disruption of lysine succinylation through activation of Sirt5 might be a promising therapeutic strategy for the treatment of SAH.
Collapse
Affiliation(s)
- Zhi-Peng Xiao
- Department of Neurosurgery (Z.-P.X., T.L., Y.J., F.J., Q.H., X.Z.), Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Tao Lv
- Department of Neurosurgery (Z.-P.X., T.L., Y.J., F.J., Q.H., X.Z.), Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Pin-Pin Hou
- Central Laboratory (P.-P.H., L.G., Q.H.), Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Anatol Manaenko
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, China (A.M.)
| | - Yuandong Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University, China (Y.L., Y.T.)
| | - Yichao Jin
- Department of Neurosurgery (Z.-P.X., T.L., Y.J., F.J., Q.H., X.Z.), Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Li Gao
- Central Laboratory (P.-P.H., L.G., Q.H.), Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Feng Jia
- Department of Neurosurgery (Z.-P.X., T.L., Y.J., F.J., Q.H., X.Z.), Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering East China Normal University, China (Y.L., Y.T.)
| | - Peiying Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, China (P.L.)
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, CA (J.H.Z.)
| | - Qin Hu
- Department of Neurosurgery (Z.-P.X., T.L., Y.J., F.J., Q.H., X.Z.), Renji Hospital, Shanghai Jiao Tong University School of Medicine, China.,Central Laboratory (P.-P.H., L.G., Q.H.), Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Xiaohua Zhang
- Department of Neurosurgery (Z.-P.X., T.L., Y.J., F.J., Q.H., X.Z.), Renji Hospital, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
26
|
Hosmann A, Angelmayr C, Hopf A, Rauscher S, Brugger J, Ritscher L, Bohl I, Schnackenburg P, Engel A, Plöchl W, Zeitlinger M, Reinprecht A, Rössler K, Gruber A. Detrimental effects of intrahospital transport on cerebral metabolism in patients suffering severe aneurysmal subarachnoid hemorrhage. J Neurosurg 2021; 135:1377-1384. [PMID: 33711812 DOI: 10.3171/2020.8.jns202280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/31/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Intrahospital transport for CT scans is routinely performed for neurosurgical patients. Particularly in the sedated and mechanically ventilated patient, intracranial hypertension and blood pressure fluctuations that might impair cerebral perfusion are frequently observed during these interventions. This study quantifies the impact of intrahospital patient transport on multimodality monitoring measurements, with a particular focus on cerebral metabolism. METHODS Forty intrahospital transports in 20 consecutive patients suffering severe aneurysmal subarachnoid hemorrhage (SAH) under continuous intracranial pressure (ICP), brain tissue oxygen tension (pbtO2), and cerebral microdialysis monitoring were prospectively included. Changes in multimodality neuromonitoring data during intrahospital transport to the CT scanner and the subsequent 10 hours were evaluated using linear mixed models. Furthermore, the impact of risk factors at transportation, such as cerebral vasospasm, cerebral hypoxia (pbtO2 < 15 mm Hg), metabolic crisis (lactate-pyruvate ratio [LPR] > 40), and transport duration on cerebral metabolism, was analyzed. RESULTS During the transport, the mean ICP significantly increased from 7.1 ± 3.9 mm Hg to 13.5 ± 6.0 mm Hg (p < 0.001). The ICP exceeded 20 mm Hg in 92.5% of patients; pbtO2 showed a parallel rise from 23.1 ± 13.3 mm Hg to 28.5 ± 23.6 mm Hg (p = 0.02) due to an increase in the fraction of inspired oxygen during the transport. Both ICP and pbtO2 returned to baseline values thereafter. Cerebral glycerol significantly increased from 71.0 ± 54.9 µmol/L to 75.3 ± 56.0 µmol/L during the transport (p = 0.01) and remained elevated for the following 9 hours. In contrast, cerebral pyruvate and lactate levels were stable during the transport but showed a significant secondary increase 1-8 hours and 2-9 hours, respectively, thereafter (p < 0.05). However, the LPR remained stable over the entire observation period. Patients with extended transport duration (more than 25 minutes) were found to have significantly higher levels of cerebral pyruvate and lactate as well as lower glutamate concentrations in the posttransport period. CONCLUSIONS Intrahospital transport and horizontal positioning during CT scans induce immediate intracranial hypertension and an increase in cerebral glycerol, suggesting neuronal injury. Afterward, sustained impairment of neuronal metabolism for several hours could be observed, which might increase the risk of secondary ischemic events. Therefore, intrahospital transport for neuroradiological imaging should be strongly reconsidered and only indicated if the expected benefit of imaging results outweighs the risks of transportation.
Collapse
Affiliation(s)
- Arthur Hosmann
- 1Department of Neurosurgery, Medical University of Vienna, Austria
| | - Carmen Angelmayr
- 1Department of Neurosurgery, Medical University of Vienna, Austria
| | - Andreas Hopf
- 1Department of Neurosurgery, Medical University of Vienna, Austria
- 2Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn
| | - Steffen Rauscher
- 1Department of Neurosurgery, Medical University of Vienna, Austria
- 3Department of Neurosurgery, University Hospital Essen, Germany
| | - Jonas Brugger
- 4Institute for Medical Statistics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Austria
| | - Lavinia Ritscher
- 1Department of Neurosurgery, Medical University of Vienna, Austria
| | - Isabelle Bohl
- 1Department of Neurosurgery, Medical University of Vienna, Austria
| | | | - Adrian Engel
- 1Department of Neurosurgery, Medical University of Vienna, Austria
- 5Department of Neurosurgery, University Hospital Düsseldorf, Germany
| | - Walter Plöchl
- Departments of6Anesthesia, General Intensive Care Medicine and Pain Management and
| | | | | | - Karl Rössler
- 1Department of Neurosurgery, Medical University of Vienna, Austria
| | - Andreas Gruber
- 8Department of Neurosurgery, Johannes Kepler University, Linz, Austria
| |
Collapse
|
27
|
Lozada-Martínez ID, Camargo-Martínez W, Agrawal A, Mishra R, Murlimanju BV, Shrivastava A, Moscote-Salazar LR. Letter to the Editor. Intrahospital transport and SAH: possible impact on low- and middle-income countries. J Neurosurg 2021; 135:1587-1588. [PMID: 34243162 DOI: 10.3171/2021.3.jns21734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ivan David Lozada-Martínez
- 1Medical and Surgical Research Center, University of Cartagena, Colombia
- 2Latinamerican Council of Neurocritical Care (CLaNi), Cartagena, Colombia
- 3Colombian Clinical Research Group in Neurocritical Care, University of Cartagena, Colombia
| | | | - Amit Agrawal
- 4All India Institute of Medical Sciences, Saket Nagar, Bhopal, Madhya Pradesh, India
| | - Rakesh Mishra
- 5Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Bukkambudhi V Murlimanju
- 6Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Adesh Shrivastava
- 4All India Institute of Medical Sciences, Saket Nagar, Bhopal, Madhya Pradesh, India
| | - Luis Rafael Moscote-Salazar
- 1Medical and Surgical Research Center, University of Cartagena, Colombia
- 2Latinamerican Council of Neurocritical Care (CLaNi), Cartagena, Colombia
- 3Colombian Clinical Research Group in Neurocritical Care, University of Cartagena, Colombia
| |
Collapse
|
28
|
Skåre C, Karlsen H, Strand-Amundsen RJ, Eriksen M, Skulberg VM, Sunde K, Tønnessen TI, Olasveengen TM. Cerebral perfusion and metabolism with mean arterial pressure 90 vs. 60 mmHg in a porcine post cardiac arrest model with and without targeted temperature management. Resuscitation 2021; 167:251-260. [PMID: 34166747 DOI: 10.1016/j.resuscitation.2021.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022]
Abstract
AIM To determine whether targeting a mean arterial pressure of 90 mmHg (MAP90) would yield improved cerebral blood flow and less ischaemia compared to MAP 60 mmHg (MAP60) with and without targeted temperature management at 33 °C (TTM33) in a porcine post-cardiac arrest model. METHODS After 10 min of cardiac arrest, 41 swine of either sex were resuscitated until return of spontaneous circulation (ROSC). They were randomised to TTM33 or no-TTM, and MAP60 or MAP90; yielding four groups. Temperatures were managed with intravasal cooling and blood pressure targets with noradrenaline, vasopressin and nitroprusside, as appropriate. After 30 min of stabilisation, animals were observed for two hours. Cerebral perfusion pressure (CPP), cerebral blood flow (CBF), pressure reactivity index (PRx), brain tissue pCO2 (PbtCO2) and tissue intermediary metabolites were measured continuously and compared using mixed models. RESULTS Animals randomised to MAP90 had higher CPP (p < 0.001 for both no-TTM and TTM33) and CBF (no-TTM, p < 0.03; TH, p < 0.001) compared to MAP60 during the 150 min observational period post-ROSC. We also observed higher lactate and pyruvate in MAP60 irrespective of temperature, but no significant differences in PbtCO2 and lactate/pyruvate-ratio. We found lower PRx (indicating more intact autoregulation) in MAP90 vs. MAP60 (no-TTM, p = 0.04; TTM33, p = 0.03). CONCLUSION In this porcine cardiac arrest model, targeting MAP90 led to better cerebral perfusion and more intact autoregulation, but without clear differences in ischaemic markers, compared to MAP60. INSTITUTIONAL PROTOCOL NUMBER FOTS, id 8442.
Collapse
Affiliation(s)
- Christiane Skåre
- Norwegian National Advisory Unit for Prehospital Emergency Care (NAKOS), Oslo, Norway; Department of Anaesthesiology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Hilde Karlsen
- Department of Research and Development and Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
| | | | - Morten Eriksen
- Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
| | - Vidar M Skulberg
- Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
| | - Kjetil Sunde
- Department of Anaesthesiology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tor Inge Tønnessen
- Department of Anaesthesiology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Theresa M Olasveengen
- Department of Anaesthesiology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
29
|
Helbok R, Rass V, Kofler M, Talasz H, Schiefecker A, Gaasch M, Scherfler C, Pfausler B, Thomé C, Beer R, Lindner HH, Schmutzhard E. Intracerebral Iron Accumulation may be Associated with Secondary Brain Injury in Patients with Poor Grade Subarachnoid Hemorrhage. Neurocrit Care 2021; 36:171-179. [PMID: 34374002 PMCID: PMC8813702 DOI: 10.1007/s12028-021-01278-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/17/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND The amount of intracranial blood is a strong predictor of poor outcome after subarachnoid hemorrhage (SAH). Here, we aimed to measure iron concentrations in the cerebral white matter, using the cerebral microdialysis (CMD) technique, and to associate iron levels with the local metabolic profile, complications, and functional outcome. METHODS For the observational cohort study, 36 patients with consecutive poor grade SAH (Hunt & Hess grade of 4 or 5, Glasgow Coma Scale Score ≤ 8) undergoing multimodal neuromonitoring were analyzed for brain metabolic changes, including CMD iron levels quantified by graphite furnace atomic absorption spectrometry. The study time encompassed 14 days after admission. Statistical analysis was performed using generalized estimating equations. RESULTS Patients were admitted in a poor clinical grade (n = 26, 72%) or deteriorated within 24 h (n = 10, 28%). The median blood volume in the subarachnoid space was high (SAH sum score = 26, interquartile range 20-28). Initial CMD iron was 44 µg/L (25-65 µg/L), which significantly decreased to a level of 25 µg/L (14-30 µg/L) at day 4 and then constantly increased over the remaining neuromonitoring days (p < 0.01). A higher intraventricular hemorrhage sum score (≥ 5) was associated with higher CMD iron levels (Wald-statistic = 4.1, df = 1, p = 0.04) but not with the hemorrhage load in the subarachnoid space (p = 0.8). In patients developing vasospasm, the CMD iron load was higher, compared with patients without vasospasm (Wald-statistic = 4.1, degree of freedom = 1, p = 0.04), which was not true for delayed cerebral infarction (p = 0.4). Higher iron concentrations in the brain extracellular fluid (34 µg/L, 36-56 µg/L vs. 23 µg/L, 15-37 µg/L) were associated with mitochondrial dysfunction (CMD lactate to pyruvate ratio > 30 and CMD-pyruvate > 70 µM/L, p < 0.001). Brain extracellular iron load was not associated with functional outcome after 3 months (p > 0.5). CONCLUSIONS This study suggests that iron accumulates in the cerebral white matter in patients with poor grade SAH. These findings may support trials aiming to scavenger brain extracellular iron based on the hypothesis that iron-mediated neurotoxicity may contribute to acute and secondary brain injury following SAH.
Collapse
Affiliation(s)
- Raimund Helbok
- Neurological Intensive Care Unit, Department of Neurology, Innsbruck Medical University, Innsbruck, Austria.
| | - Verena Rass
- Neurological Intensive Care Unit, Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Mario Kofler
- Neurological Intensive Care Unit, Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Heribert Talasz
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Alois Schiefecker
- Neurological Intensive Care Unit, Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Max Gaasch
- Neurological Intensive Care Unit, Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Christoph Scherfler
- Neurological Intensive Care Unit, Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Bettina Pfausler
- Neurological Intensive Care Unit, Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Innsbruck Medical University, Innsbruck, Austria
| | - Ronny Beer
- Neurological Intensive Care Unit, Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Herbert H Lindner
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Erich Schmutzhard
- Neurological Intensive Care Unit, Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
30
|
Guntner AS, Buchberger W, Hosmann A, Mercea PA, Koren J, Reinprecht A, Zeitlinger M, Herta J. Quantitative analysis of human brain microdialysate for target site pharmacokinetics of major anesthetics ketamine, midazolam and propofol. J Pharm Biomed Anal 2021; 205:114289. [PMID: 34365190 DOI: 10.1016/j.jpba.2021.114289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 02/02/2023]
Abstract
Brain microdialysis samples of intensive care patients treated with the essential anesthetics ketamine, midazolam and propofol were investigated. Importantly, despite decades of clinical use, comprehensive human cerebral pharmacokinetic data of these drugs is still missing. To encounter this apparent lack of knowledge, we combined cerebral microdialysis with leading-edge analytical instrumentation to monitor the neurochemistry of living human patients. For the quantitative analysis, high performing analytical approaches were developed that can handle minute sample volumes and possible ultralow target analyte levels. The developed methods provided detection limits below 100 ng L-1 for all target analytes and high precision (below 4% RSD intraday). Methods were linear between LODs and 100 μg L-1 for ketamine, 75 μg L-1 for midazolam and 10 μg L-1 for propofol respectively, with coefficients of determination R2≥ 0.999. Further, being aware of the error-prone and demanding translation of microdialysis levels to interstitial concentrations, in vitro approaches for recovery testing of microdialysis probes as well as internal normalization approaches were conducted. Thus, we herein report the first cerebral pharmacokinetic data of ketamine, midazolam and propofol determined in microdialysis samples of 15 neurointensive care patients. We could prove blood-brain barrier penetration of all of the investigated anesthetics and could correlate applied dosages and actual brain exposition of ketamine. However, we emphasize the need of an expanded prospective study including individual microdialysis recovery testing as well as matched serum and/or cerebrospinal fluid collection for a more comprehensive cerebral pharmacokinetic understanding.
Collapse
Affiliation(s)
| | - Wolfgang Buchberger
- Institute of Analytical Chemistry, Johannes Kepler University Linz, Linz, Austria
| | - Arthur Hosmann
- Department of Neurosurgery, Medical University Vienna, Vienna, Austria
| | | | - Johannes Koren
- Department of Neurology, Clinic Hietzing, Vienna, Austria; Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Andrea Reinprecht
- Department of Neurosurgery, Medical University Vienna, Vienna, Austria
| | - Markus Zeitlinger
- Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria; Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Johannes Herta
- Department of Neurosurgery, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
31
|
Veldeman M, Albanna W, Weiss M, Park S, Hoellig A, Clusmann H, Helbok R, Temel Y, Alexander Schubert G. Invasive Multimodal Neuromonitoring in Aneurysmal Subarachnoid Hemorrhage: A Systematic Review. Stroke 2021; 52:3624-3632. [PMID: 34304602 DOI: 10.1161/strokeaha.121.034633] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Aneurysmal subarachnoid hemorrhage is a devastating disease leaving surviving patients often severely disabled. Delayed cerebral ischemia (DCI) has been identified as one of the main contributors to poor clinical outcome after subarachnoid hemorrhage. The objective of this review is to summarize existing clinical evidence assessing the diagnostic value of invasive neuromonitoring (INM) in detecting DCI and provide an update of evidence since the 2014 consensus statement on multimodality monitoring in neurocritical care. METHODS Three invasive monitoring techniques were targeted in the data collection process: brain tissue oxygen tension (ptiO2), cerebral microdialysis, and electrocorticography. Prospective and retrospective studies as well as case series (≥10 patients) were included as long as monitoring was used to detect DCI or guide DCI treatment. RESULTS Forty-seven studies reporting INM in the context of DCI were included (ptiO2: N=21; cerebral microdialysis: N=22; electrocorticography: N=4). Changes in brain oxygen tension are associated with angiographic vasospasm or reduction in regional cerebral blood flow. Metabolic monitoring with trend analysis of the lactate to pyruvate ratio using cerebral microdialysis, identifies patients at risk for DCI. Clusters of cortical spreading depolarizations are associated with clinical neurological worsening and cerebral infarction in selected patients receiving electrocorticography monitoring. CONCLUSIONS Data supports the use of INM for the detection of DCI in selected patients. Generalizability to all subarachnoid hemorrhage patients is limited by design bias of available studies and lack of randomized trials. Continuous data recording with trend analysis and the combination of INM modalities can provide tailored treatment support in patients at high risk for DCI. Future trials should test interventions triggered by INM in relation to cerebral infarctions.
Collapse
Affiliation(s)
- Michael Veldeman
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany (M.A., W.A., M.W., A.H., H.C., G.A.S.)
| | - Walid Albanna
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany (M.A., W.A., M.W., A.H., H.C., G.A.S.)
| | - Miriam Weiss
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany (M.A., W.A., M.W., A.H., H.C., G.A.S.)
| | - Soojin Park
- Department of Neurology, Columbia University Irving Medical Center, NY (S.P.)
| | - Anke Hoellig
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany (M.A., W.A., M.W., A.H., H.C., G.A.S.)
| | - Hans Clusmann
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany (M.A., W.A., M.W., A.H., H.C., G.A.S.)
| | - Raimund Helbok
- Department of Neurology, Medical University of Innsbruck, Austria (R.H.)
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Centre, the Netherlands (Y.T)
| | - Gerrit Alexander Schubert
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany (M.A., W.A., M.W., A.H., H.C., G.A.S.).,Department of Neurosurgery, Kantonsspital Aarau, Switzerland (G.A.S.)
| |
Collapse
|
32
|
Svedung Wettervik T, Howells T, Lewén A, Ronne-Engström E, Enblad P. Temporal Dynamics of ICP, CPP, PRx, and CPPopt in High-Grade Aneurysmal Subarachnoid Hemorrhage and the Relation to Clinical Outcome. Neurocrit Care 2021; 34:390-402. [PMID: 33420669 PMCID: PMC8128752 DOI: 10.1007/s12028-020-01162-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/18/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND High intracranial pressure (ICP) and low cerebral perfusion pressure (CPP) may induce secondary brain injury following aneurysmal subarachnoid hemorrhage (aSAH). In the current study, we aimed to determine the temporal incidence of insults above/below certain ICP/CPP thresholds, the role of pressure autoregulation in CPP management (PRx and CPPopt), and the relation to clinical outcome. METHODS In this retrospective study, 242 patients were included with aSAH, who were treated in the neurointensive care unit, Uppsala University Hospital, Sweden, 2008-2018, with ICP monitoring the first 10 days post-ictus. Data from ICP, pressure autoregulation (PRx), CPP, and CPPopt (the CPP with the lowest/optimal PRx) were analyzed the first 10 days. The percentage of good monitoring time (GMT) above/below various ICP and CPP thresholds was calculated, e.g., ICP > 20 mm Hg (%), CPP < 60 mm Hg (%), and ∆CPPopt (CPP-CPPopt) < - 10 mm Hg (%). RESULTS Of the 242 patients, 63 (26%) had favorable (GOS-E 5-8) and 179 (74%) had unfavorable (GOS-E 1-4) outcome at 12 months. Higher proportion (GMT) of ICP insults above 20 mm Hg was most common the first 3 days post-ictus and was then independently associated with unfavorable outcome. CPP gradually increased throughout the 10 days post-ictus, and higher proportion of GMT with CPP < 90 mm Hg was independently associated with unfavorable outcome in the late vasospasm phase (days 6.5-10). PRx was above 0 throughout the 10 days and deteriorated in the late vasospasm phase. Higher values were then independently associated with unfavorable outcome. There was no difference in GMT of CPP deviations from CPPopt between the outcome groups. CONCLUSIONS Avoiding intracranial hypertension early and maintaining a high CPP in the vasospasm phase when the pressure autoregulation is most disturbed may improve clinical outcome after aSAH.
Collapse
Affiliation(s)
- Teodor Svedung Wettervik
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, 751 85, Uppsala, Sweden.
| | - Timothy Howells
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, 751 85, Uppsala, Sweden
| | - Anders Lewén
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, 751 85, Uppsala, Sweden
| | - Elisabeth Ronne-Engström
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, 751 85, Uppsala, Sweden
| | - Per Enblad
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, 751 85, Uppsala, Sweden
| |
Collapse
|
33
|
Rass V, Helbok R. How to diagnose delayed cerebral ischaemia and symptomatic vasospasm and prevent cerebral infarction in patients with subarachnoid haemorrhage. Curr Opin Crit Care 2021; 27:103-114. [PMID: 33405414 DOI: 10.1097/mcc.0000000000000798] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Delayed cerebral ischaemia (DCI) complicates the clinical course of patients with subarachnoid haemorrhage (SAH) in 20--30% and substantially worsens outcome. In this review, we describe a multimodal diagnostic approach based on underlying mechanisms of DCI and provide treatment options with a special focus on the most recently published literature. RECENT FINDINGS Symptomatic vasospasm refers to clinical deterioration in the presence of vasospasm whereas DCI constitutes multiple causes. Pathophysiologic mechanisms underlying DCI range beyond large vessel vasospasm from neuroinflammation, to microthromboembolism, impaired cerebral autoregulation, cortical spreading depolarizations and many others. The current definition of DCI can be challenged by these mechanisms. We propose a pragmatic approach using a combination of clinical examination, cerebral ultrasonography, neuroimaging modalities and multimodal neuromonitoring to trigger therapeutic interventions in the presence of DCI. In addition to prophylactic nimodipine and management principles to improve oxygen delivery and decrease the brain metabolic demand, other specific interventions include permissive hypertension, intra-arterial application of calcium channel blockers and in selected patients angioplasty. SUMMARY The complex pathophysiology underlying DCI urges for a multimodal diagnostic approach triggering targeted interventions. Novel treatment concepts still have to be proven in large trials.
Collapse
Affiliation(s)
- Verena Rass
- Department of Neurology, Medical University of Innsbruck, Anichstrasse, Innsbruck, Austria
| | | |
Collapse
|
34
|
Addis A, Gaasch M, Schiefecker AJ, Kofler M, Ianosi B, Rass V, Lindner A, Broessner G, Beer R, Pfausler B, Thomé C, Schmutzhard E, Helbok R. Brain temperature regulation in poor-grade subarachnoid hemorrhage patients - A multimodal neuromonitoring study. J Cereb Blood Flow Metab 2021; 41:359-368. [PMID: 32151225 PMCID: PMC7812508 DOI: 10.1177/0271678x20910405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Elevated body temperature (Tcore) is associated with poor outcome after subarachnoid hemorrhage (SAH). Brain temperature (Tbrain) is usually higher than Tcore. However, the implication of this difference (Tdelta) remains unclear. We aimed to study factors associated with higher Tdelta and its association with outcome. We included 46 SAH patients undergoing multimodal neuromonitoring, for a total of 7879 h of averaged data of Tcore, Tbrain, cerebral blood flow, cerebral perfusion pressure, intracranial pressure and cerebral metabolism (CMD). Three-months good functional outcome was defined as modified Rankin Scale ≤2. Tbrain was tightly correlated with Tcore (r = 0.948, p < 0.01), and was higher in 73.7% of neuromonitoring time (Tdelta +0.18°C, IQR -0.01 - 0.37°C). A higher Tdelta was associated with better metabolic state, indicated by lower CMD-glutamate (p = 0.003) and CMD-lactate (p < 0.001), and lower risk of mitochondrial dysfunction (MD) (OR = 0.2, p < 0.001). During MD, Tdelta was significantly lower (0°C, IQR -0.2 - 0.1; p < 0.001). A higher Tdelta was associated with improved outcome (OR = 7.7, p = 0.002). Our study suggests that Tbrain is associated with brain metabolic activity and exceeds Tcore when mitochondrial function is preserved. Further studies are needed to understand how Tdelta may serve as a surrogate marker for brain function and predict clinical course and outcome after SAH.
Collapse
Affiliation(s)
- Alberto Addis
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.,Neurology, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy.,School of Medicine, University of Milan-Bicocca, Milano, Italy
| | - Maxime Gaasch
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alois J Schiefecker
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Mario Kofler
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bogdan Ianosi
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Rass
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Lindner
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor Broessner
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ronny Beer
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bettina Pfausler
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Erich Schmutzhard
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Raimund Helbok
- Neuro-Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
35
|
Optimal Hemodynamic Parameters for Brain-injured Patients in the Clinical Setting: A Narrative Review of the Evidence. J Neurosurg Anesthesiol 2021; 34:288-299. [PMID: 33443353 DOI: 10.1097/ana.0000000000000752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/07/2020] [Indexed: 11/25/2022]
Abstract
Defining optimal hemodynamic targets for brain-injured patients is a challenging undertaking. The physiological interference observed in various intracranial pathologies can have varying effects on cerebral physiology at different time points. This narrative review provides an overview of cerebral autoregulatory physiology and common misconceptions, and examines the physiological considerations and clinical evidence for determining optimal hemodynamic parameters in acutely brain-injured patients with relevance to modern neuroanesthesia and neurocritical care practice.
Collapse
|
36
|
The Role of Urine F2-ISOPROSTANE CONcentration in Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Haemorrhage-A Poor Prognostic Factor. Diagnostics (Basel) 2020; 11:diagnostics11010005. [PMID: 33375060 PMCID: PMC7822020 DOI: 10.3390/diagnostics11010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/09/2020] [Accepted: 12/19/2020] [Indexed: 12/21/2022] Open
Abstract
Background: The pathophysiology of delayed cerebral ischemia (DCI) remains unclear. One of the hypotheses suggests that reactive oxygen species play a role in its onset. Thus, we studied F2-isoprostanes (F2-IsoPs)—oxidative stress biomarkers. Our goal was to improve the early diagnosis of DCI in a non-invasive way. Methods: We conducted a prospective single center analysis of 38 aneurysmal subarachnoid hemorrhage patients. We assessed urine F2-IsoP concentration using immunoenzymatic arrays between the first and fifth day after bleeding. A correlation between urine F2-IsoP concentration and DCI occurrence was examined regarding clinical conditions and outcomes. Results: The urine F2-IsoP concentrations were greater than those in the control groups (p < 0.001). The 3rd day urine F2-IsoPs concentrations were correlated with DCI occurrence (p < 0.001) and long term outcomes after 12 months (p < 0.001). Conclusions: High levels of urine F2-IsoPs on day 3 can herald DCI.
Collapse
|
37
|
Abstract
Aneurysmal subarachnoid hemorrhage is an acute neurologic emergency. Prompt definitive treatment of the aneurysm by craniotomy and clipping or endovascular intervention with coils and/or stents is needed to prevent rebleeding. Extracranial manifestations of aneurysmal subarachnoid hemorrhage include cardiac dysfunction, neurogenic pulmonary edema, fluid and electrolyte imbalances, and hyperglycemia. Data on the impact of anesthesia on long-term neurologic outcomes of aneurysmal subarachnoid hemorrhage do not exist. Perioperative management should therefore focus on optimizing systemic physiology, facilitating timely definitive treatment, and selecting an anesthetic technique based on patient characteristics, severity of aneurysmal subarachnoid hemorrhage, and the planned intervention and monitoring. Anesthesiologists should be familiar with evoked potential monitoring, electroencephalographic burst suppression, temporary clipping, management of external ventricular drains, adenosine-induced cardiac standstill, and rapid ventricular pacing to effectively care for these patients.
Collapse
|
38
|
Cerebral Microdialysis in Aneurismal Subarachnoid Hemorrhage Patient Reveals a Detrimental Shift in Brain Energy Metabolism, Despite Normal Perfusion Pressure. Metabolites 2020; 10:metabo10090341. [PMID: 32846990 PMCID: PMC7569876 DOI: 10.3390/metabo10090341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 11/16/2022] Open
Abstract
The present case study concerns a patient admitted to our neuro-intensive care unit with a severe aneurismal subarachnoid hemorrhage rebleeding. The patient was equipped with multimodal neuromonitoring, including cerebral microdialysis. During the neuro-intensive care unit, there was a gradual decrease in cerebral perfusion pressure, which was within normally accepted levels, correlated to a detrimental shift in cerebral metabolism, from mitochondrial dysfunction to an ischemic pattern. Subsequently, the clinical and paraclinical status of the patient worsened. The present case highlights how the dynamic assessment of cerebral metabolic patterns and the concept of mitochondrial dysfunction can be relevant in the day-to-day clinical setting, to evaluate and optimize basic, well-known physiological parameters, such as cerebral perfusion pressure.
Collapse
|
39
|
Tageldeen MK, Gowers SAN, Leong CL, Boutelle MG, Drakakis EM. Traumatic brain injury neuroelectrochemical monitoring: behind-the-ear micro-instrument and cloud application. J Neuroeng Rehabil 2020; 17:114. [PMID: 32825829 PMCID: PMC7441655 DOI: 10.1186/s12984-020-00742-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 08/04/2020] [Indexed: 01/15/2023] Open
Abstract
Background Traumatic Brain Injury (TBI) is a leading cause of fatality and disability worldwide, partly due to the occurrence of secondary injury and late interventions. Correct diagnosis and timely monitoring ensure effective medical intervention aimed at improving clinical outcome. However, due to the limitations in size and cost of current ambulatory bioinstruments, they cannot be used to monitor patients who may still be at risk of secondary injury outside the ICU. Methods We propose a complete system consisting of a wearable wireless bioinstrument and a cloud-based application for real-time TBI monitoring. The bioinstrument can simultaneously record up to ten channels including both ECoG biopotential and neurochemicals (e.g. potassium, glucose and lactate), and supports various electrochemical methods including potentiometry, amperometry and cyclic voltammetry. All channels support variable gain programming to automatically tune the input dynamic range and address biosensors’ falling sensitivity. The instrument is flexible and can be folded to occupy a small space behind the ear. A Bluetooth Low-Energy (BLE) receiver is used to wirelessly connect the instrument to a cloud application where the recorded data is stored, processed and visualised in real-time. Bench testing has been used to validate device performance. Results The instrument successfully monitored spreading depolarisations (SDs) - reproduced using a signal generator - with an SNR of 29.07 dB and NF of 0.26 dB. The potentiostat generates a wide voltage range from -1.65V to +1.65V with a resolution of 0.8mV and the sensitivity of the amperometric AFE was verified by recording 5 pA currents. Different potassium, glucose and lactate concentrations prepared in lab were accurately measured and their respective working curves were constructed. Finally,the instrument achieved a maximum sampling rate of 1.25 ksps/channel with a throughput of 105 kbps. All measurements were successfully received at the cloud. Conclusion The proposed instrument uniquely positions itself by presenting an aggressive optimisation of size and cost while maintaining high measurement accuracy. The system can effectively extend neuroelectrochemical monitoring to all TBI patients including those who are mobile and those who are outside the ICU. Finally, data recorded in the cloud application could be used to help diagnosis and guide rehabilitation.
Collapse
Affiliation(s)
- Momen K Tageldeen
- Bioinspired VLSI Circuits and Systems Group, Department of Bioengineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Sally A N Gowers
- Biomedical Sensors Group, Department of Bioengineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Chi L Leong
- Biomedical Sensors Group, Department of Bioengineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Martyn G Boutelle
- Biomedical Sensors Group, Department of Bioengineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Emmanuel M Drakakis
- Bioinspired VLSI Circuits and Systems Group, Department of Bioengineering, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| |
Collapse
|
40
|
Brain Tissue Oxygen Response as Indicator for Cerebral Lactate Levels in Aneurysmal Subarachnoid Hemorrhage Patients. J Neurosurg Anesthesiol 2020; 34:193-200. [PMID: 32701532 DOI: 10.1097/ana.0000000000000713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/05/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Early detection of cerebral ischemia and metabolic crisis is crucial in critically ill subarachnoid hemorrhage (SAH) patients. Variable increases in brain tissue oxygen tension (PbtO2) are observed when the fraction of inspired oxygen (FiO2) is increased to 1.0. The aim of this prospective study was to evaluate whether a 3-minute hyperoxic challenge can identify patients at risk for cerebral ischemia detected by cerebral microdialysis. METHODS Twenty consecutive severe SAH patients undergoing continuous cerebral PbtO2 and microdialysis monitoring were included. FiO2 was increased to 1.0 for 3 minutes (the FiO2 challenge) twice a day and PbtO2 responses during the FiO2 challenges were related to cerebral microdialysis-measures, ie, lactate, the lactate-pyruvate ratio, and glycerol. Multivariable linear and logistic regression models were created for each outcome parameter. RESULTS After predefined exclusions, 274 of 400 FiO2 challenges were included in the analysis. Lower absolute increases in PbtO2 ([INCREMENT]PbtO2) during FiO2 challenges were significantly associated with higher cerebral lactate concentration (P<0.001), and patients were at higher risk for ischemic lactate levels >4 mmol/L (odds ratio 0.947; P=0.04). Median (interquartile range) [INCREMENT]PbtO2 was 7.1 (4.6 to 12.17) mm Hg when cerebral lactate was >4 mmol/L and 10.2 (15.76 to 14.24) mm Hg at normal lactate values (≤4 mmol/L). Median [INCREMENT]PbtO2 was significantly lower during hypoxic than during hyperglycolytic lactate elevations (4.6 vs. 10.6 mm Hg, respectively; P<0.001). Lactate-pyruvate ratio and glycerol levels were mainly determined by baseline characteristics. CONCLUSIONS A 3-minute FiO2 challenge is an easy to perform and feasible bedside diagnostic tool in SAH patients. The absolute increase in PbtO2 during the FiO2 challenge might be a useful surrogate marker to estimate cerebral lactate concentrations and might be used to identify patients at risk for impending ischemia.
Collapse
|
41
|
Rass V, Solari D, Ianosi B, Gaasch M, Kofler M, Schiefecker AJ, Miroz JP, Morelli P, Thomé C, Beer R, Pfausler B, Oddo M, Helbok R. Protocolized Brain Oxygen Optimization in Subarachnoid Hemorrhage. Neurocrit Care 2020; 31:263-272. [PMID: 31218640 PMCID: PMC6757026 DOI: 10.1007/s12028-019-00753-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Brain tissue hypoxia (PbtO2 < 20 mmHg) is common after subarachnoid hemorrhage (SAH) and associated with poor outcome. Recent data suggest that brain oxygen optimization is feasible and reduces the time spent with PbtO2 < 20 mmHg from 45 to 16% in patients with severe traumatic brain injury. Here, we intended to quantify the brain tissue hypoxia burden despite implementation of a protocolized treatment approach in poor-grade SAH patients and to identify the simultaneous occurrence of pathologic values potentially amenable to treatment. METHODS We present a bi-centric observational cohort study including 100 poor-grade SAH patients admitted to two tertiary care centers who underwent multimodal brain monitoring and were managed with a PbtO2-targeted protocolized approach. PbtO2 optimization (≥ 20 mmHg) included a stepwise neuro-intensive care approach, aiming to prevent low cerebral perfusion pressure (CPP), and blood hemoglobin, and to keep normocapnia, normoxemia, and normothermia. Based on routine blood gas analysis, hemoglobin, PaCO2, and PaO2 data were matched to 2-h averaged data of continuous CPP, PbtO2, core temperature, and to hourly cerebral microdialysis (CMD) samples over the first 11 days. RESULTS Patients had a Glasgow Coma Scale of 3 (IQR 3-4) and were 58 years old (IQR 48-66). Overall incidence of brain tissue hypoxia was 25%, which was not different between both sites despite differences in the treatment approach. During brain tissue hypoxia, episodes of CPP < 70 mmHg (27%), PaCO2 < 35 mmHg (19%), PaO2 < 80 mmHg (14%), Hb < 9 g/dL (11%), metabolic crisis (CMD-lactate/pyruvate ratio > 40, and CMD-glucose < 0.7 mmol/L; 7%), and temperature > 38.3 °C (4%) were common. CONCLUSIONS Our results demonstrate that brain tissue hypoxia remains common despite implementation of a PbtO2-targeted therapy in poor-grade SAH patients, suggesting room for further optimization.
Collapse
Affiliation(s)
- Verena Rass
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Daria Solari
- Neuroscience Critical Care Research Group, Department of Intensive Care Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Bogdan Ianosi
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.,Institute of Medical Informatics, UMIT: University for Health Sciences, Medical Informatics and Technology, Eduard Wallnoefer-Zentrum 1, 6060, Hall, Austria
| | - Max Gaasch
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Mario Kofler
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Alois J Schiefecker
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - John-Paul Miroz
- Neuroscience Critical Care Research Group, Department of Intensive Care Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Paola Morelli
- Neuroscience Critical Care Research Group, Department of Intensive Care Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Ronny Beer
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Bettina Pfausler
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Mauro Oddo
- Neuroscience Critical Care Research Group, Department of Intensive Care Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | - Raimund Helbok
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
42
|
Mechanical Ventilation, Sedation and Neuromonitoring of Patients with Aneurysmal Subarachnoid Hemorrhage in Germany: Results of a Nationwide Survey. Neurocrit Care 2020; 34:236-247. [PMID: 32583194 PMCID: PMC7314429 DOI: 10.1007/s12028-020-01029-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Objective Current evidence-based guidelines for the management of aneurysmal subarachnoid hemorrhage (aSAH) focus primarily on timing, modality and technique of aneurysm occlusion, and on prevention and treatment of delayed cerebral ischemia. Significant aspects of management in the intensive care unit (ICU) during the later course of aSAH such as ventilation and sedation (VST) remain unaddressed. aSAH patients present unique challenges not accounted for in general ICU recommendations and guidelines, which is why we attempted to further characterize ICU practices in aSAH patients in Germany. Methods We conducted a nationwide survey on ICU practices in aSAH in Germany. Secondarily, we assessed the existence of and compliance with current guidelines regarding ICU practices. The questionnaire was designed in interdisciplinary fashion and distributed online through the kwiksurvey® platform (Bristol, UK). Results A total of 50 responses were received, accounting for a response rate of 49%. Twenty-one were university hospitals (UH), 23 high-volume centers (HVC), 6 low-volume centers (LVC). Half of the participating centers do not take into consideration WFNS at presentation to indicate ventilation. While 42% of centers rely on the P/F ratio to indicate ventilation, 62% of them have a cutoff value of < 200, and 38% of < 100. While most UH and HVC used propofol for the first phase of sedation (95%), LVC employed benzodiazepines (100%). Sedation deepening was done with ketamine in UH (75%) and HVC (60%), whereas LVC used predominantly clonidine (100%). Conclusions Our study clearly demonstrates that attitudes and practices pertaining to ICU management in aSAH are enormously heterogeneous, reflecting the lack of good quality evidence and differing interpretations thereof. Electronic supplementary material The online version of this article (10.1007/s12028-020-01029-8) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Torné R, Culebras D, Sanchez-Etayo G, García-García S, Muñoz G, Llull L, Amaro S, Heering C, Blasco J, Zavala E, Enseñat J. Double hemispheric Microdialysis study in poor-grade SAH patients. Sci Rep 2020; 10:7466. [PMID: 32366972 PMCID: PMC7198586 DOI: 10.1038/s41598-020-64543-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
Delayed cerebral ischemia (DCI) is a dreadful complication present in 30% of subarachnoid hemorrhage (SAH) patients. DCI prediction and prevention are burdensome in poor grade SAH patients (WFNS 4-5). Therefore, defining an optimal neuromonitoring strategy might be cumbersome. Cerebral microdialysis (CMD) offers near-real-time regional metabolic data of the surrounding brain. However, unilateral neuromonitoring strategies obviate the diffuse repercussions of SAH. To assess the utility, indications and therapeutic implications of bilateral CMD in poor grade SAH patients. Poor grade SAH patients eligible for multimodal neuromonitoring were prospectively collected. Aneurysm location and blood volume were assessed on initial Angio-CT scans. CMD probes were bilaterally implanted and maintained, at least, for 48 hours (h). Ischemic events were defined as a Lactate/Pyruvate ratio >40 and Glucose concentration <0.7 mmol/L. 16 patients were monitored for 1725 h, observing ischemic events during 260 h (15.1%). Simultaneous bilateral ischemic events were rare (5 h, 1.9%). The established threshold of ≥7 ischemic events displayed a specificity and sensitivity for DCI of 96.2% and 83.3%, respectively. Bilateral CMD is a safe and useful strategy to evaluate areas at risk of suffering DCI in SAH patients. Metabolic crises occur bilaterally but rarely simultaneously. Hence, unilateral neuromonitoring strategies underestimate the risk of infarction and the possibility to offset its consequences.
Collapse
Affiliation(s)
- Ramon Torné
- Neurological Surgery Department, Hospital Clinic of Barcelona, Barcelona, Spain.
| | - Diego Culebras
- Neurological Surgery Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | | | - Sergio García-García
- Neurological Surgery Department, Hospital Clinic of Barcelona, Barcelona, Spain. .,Neurological Surgery Department, Hospital Sant Joan de Deu, Barcelona, Spain.
| | - Guido Muñoz
- Intensive Care Unit, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Laura Llull
- Neurology Department, Comprehensive Stroke Unit, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Sergio Amaro
- Neurology Department, Comprehensive Stroke Unit, Hospital Clinic of Barcelona, Barcelona, Spain
| | | | - Jordi Blasco
- Radiology Department, Angioradiology Section, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Elizabeth Zavala
- Intensive Care Unit, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Joaquim Enseñat
- Neurological Surgery Department, Hospital Clinic of Barcelona, Barcelona, Spain
| |
Collapse
|
44
|
Khatibi K, Szeder V, Blanco MB, Tateshima S, Jahan R, Duckwiler G, Vespa P. Role of Bedside Multimodality Monitoring in the Detection of Cerebral Vasospasm Following Subarachnoid Hemorrhage. ACTA NEUROCHIRURGICA SUPPLEMENT 2020; 127:141-144. [DOI: 10.1007/978-3-030-04615-6_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
Consenso internacional sobre la monitorización de la presión tisular cerebral de oxígeno en pacientes neurocríticos. Neurocirugia (Astur) 2020; 31:24-36. [DOI: 10.1016/j.neucir.2019.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/11/2019] [Indexed: 01/20/2023]
|
46
|
Hosmann A, Klenk S, Wang WT, Koren J, Sljivic S, Reinprecht A. Endogenous arterial blood pressure increase after aneurysmal subarachnoid hemorrhage. Clin Neurol Neurosurg 2019; 190:105639. [PMID: 31874423 DOI: 10.1016/j.clineuro.2019.105639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/10/2019] [Accepted: 12/14/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Spontaneous blood pressure rise is a frequently observed phenomenon following aneurysmal subarachnoid hemorrhage (SAH). Facing the risk of aneurysmal rebleeding and the occurrence of delayed cerebral ischemia it is unclear how to react to these endogenous-driven blood pressure changes, as their predictive value for clinical course and functional outcome is still unknown. PATIENTS AND METHODS Endogenous blood pressure characteristics within 21 days after SAH were retrospectively analyzed in 93 patients. Any use of vasopressors for active induction of hypertension marked the end of data collection. Mean arterial blood pressure (MAP) was related to the onset of cerebral vasospasm and patient characteristics (Hunt&Hess, age, pre-existing hypertension, antihypertensive therapy, sedation). Predictors for cerebral infarction and functional outcome were calculated using a logistic regression model. RESULTS A significant MAP increase was observed in all patients from day 3 to day 7. Patients developing cerebral vasospasm had an overall steeper increase of MAP during this period (11.1 ± 11.4 mmHg vs. 6.5 ± 8.9 mmHg, p = 0.04). MAP rise started already 3 days before detection of vasospasm. Lower MAP values were recorded in patients with poor Hunt&Hess grade, under sedation and thus in patients with poor outcome. MAP had no impact on the development of cerebral infarction. In univariate analysis MAP on day 5 (OR 0.95, 95 %-CI: 0.89-0.99), MAP on day 6 (OR 0.95, 95 %-CI: 0.91-1.00), Hunt&Hess grade (OR 1.72, 95 %-CI: 1.14-2.60), sedation (OR 17.04, 95 %-CI: 2.08-139.51) and stroke (OR 5.82, 95 %-CI: 1.63-20.82) were predictors for poor outcome. In multivariable analysis, only sedation (OR 13.72, 95 %-CI: 1.62-115.94) and ischemic stroke (OR 4.48, 95 %-CI: 1.16-17.31) remained significant. CONCLUSION Spontaneous MAP increase occured in all patients following SAH. It was highly influenced by clinical parameters, thereby limiting its prognostic value for functional outcome. However, a steep increase of MAP might be an early clinical marker to identify patients at risk for developing cerebral vasospasm.
Collapse
Affiliation(s)
- Arthur Hosmann
- Department of Neurosurgery, Medical University of Vienna, Austria
| | - Sarah Klenk
- Department of Neurosurgery, Medical University of Vienna, Austria
| | - Wei-Te Wang
- Department of Neurosurgery, Medical University of Vienna, Austria
| | - Johannes Koren
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria; Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Samir Sljivic
- Department of Anaesthesia, General Intensive Care Medicine and Pain Management, Medical University of Vienna, Austria
| | | |
Collapse
|
47
|
A National Trial on Differences in Cerebral Perfusion Pressure Values by Measurement Location. Neurocrit Care 2019; 28:221-228. [PMID: 29067632 DOI: 10.1007/s12028-017-0467-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Cerebral perfusion pressure (CPP) is a key parameter in management of brain injury with suspected impaired cerebral autoregulation. CPP is calculated by subtracting intracranial pressure (ICP) from mean arterial pressure (MAP). Despite consensus on importance of CPP monitoring, substantial variations exist on anatomical reference points used to measure arterial MAP when calculating CPP. This study aimed to identify differences in CPP values based on measurement location when using phlebostatic axis (PA) or tragus (Tg) as anatomical reference points. The secondary study aim was to determine impact of differences on patient outcomes at discharge. METHODS This was a prospective, repeated measures, multi-site national trial. Adult ICU patients with neurological injury necessitating ICP and CPP monitoring were consecutively enrolled from seven sites. Daily MAP/ICP/CPP values were gathered with the arterial transducer at the PA, followed by the Tg as anatomical reference points. RESULTS A total of 136 subjects were enrolled, resulting in 324 paired observations. There were significant differences for CPP when comparing values obtained at PA and Tg reference points (p < 0.000). Differences remained significant in repeated measures model when controlling for clinical factors (mean CPP-PA = 80.77, mean CPP-Tg = 70.61, p < 0.000). When categorizing CPP as binary endpoint, 18.8% of values were identified as adequate with PA values, yet inadequate with CPP values measured at the Tg. CONCLUSION Findings identify numerical differences for CPP based on anatomical reference location and highlight importance of a standard reference point for both clinical practice and future trials to limit practice variations and heterogeneity of findings.
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Over the last years, the focus of clinical and animal research in subarachnoid hemorrhage (SAH) shifted towards the early phase after the bleeding based on the association of the early injury pattern (first 72 h) with secondary complications and poor outcome. This phase is commonly referenced as early brain injury (EBI). In this clinical review, we intended to overview commonly used definitions of EBI, underlying mechanisms, and potential treatment implications. RECENT FINDINGS We found a large heterogeneity in the definition used for EBI comprising clinical symptoms, neuroimaging parameters, and advanced neuromonitoring techniques. Although specific treatments are currently not available, therapeutic interventions are aimed at ameliorating EBI by improving the energy/supply mismatch in the early phase after SAH. Future research integrating brain-derived biomarkers is warranted to improve our pathophysiologic understanding of EBI in order to ameliorate early injury patterns and improve patients' outcomes.
Collapse
Affiliation(s)
- Verena Rass
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Raimund Helbok
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
49
|
Baker WB, Balu R, He L, Kavuri VC, Busch DR, Amendolia O, Quattrone F, Frangos S, Maloney-Wilensky E, Abramson K, Mahanna Gabrielli E, Yodh AG, Andrew Kofke W. Continuous non-invasive optical monitoring of cerebral blood flow and oxidative metabolism after acute brain injury. J Cereb Blood Flow Metab 2019; 39:1469-1485. [PMID: 31088234 PMCID: PMC6681541 DOI: 10.1177/0271678x19846657] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Rapid detection of ischemic conditions at the bedside can improve treatment of acute brain injury. In this observational study of 11 critically ill brain-injured adults, we employed a monitoring approach that interleaves time-resolved near-infrared spectroscopy (TR-NIRS) measurements of cerebral oxygen saturation and oxygen extraction fraction (OEF) with diffuse correlation spectroscopy (DCS) measurement of cerebral blood flow (CBF). Using this approach, we demonstrate the clinical promise of non-invasive, continuous optical monitoring of changes in CBF and cerebral metabolic rate of oxygen (CMRO2). In addition, the optical CBF and CMRO2 measures were compared to invasive brain tissue oxygen tension (PbtO2), thermal diffusion flowmetry CBF, and cerebral microdialysis measures obtained concurrently. The optical CBF and CMRO2 information successfully distinguished between ischemic, hypermetabolic, and hyperemic conditions that arose spontaneously during patient care. Moreover, CBF monitoring during pressor-induced changes of mean arterial blood pressure enabled assessment of cerebral autoregulation. In total, the findings suggest that this hybrid non-invasive neurometabolic optical monitor (NNOM) can facilitate clinical detection of adverse physiological changes in brain injured patients that are otherwise difficult to measure with conventional bedside monitoring techniques.
Collapse
Affiliation(s)
- Wesley B Baker
- 1 Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA.,2 Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ramani Balu
- 3 Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lian He
- 4 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Venkaiah C Kavuri
- 4 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - David R Busch
- 4 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA.,5 Department of Anesthesiology & Pain Management and Neurology & Neurotherapeutics, University of Texas Southwestern, Dallas, TX, USA
| | - Olivia Amendolia
- 6 Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Francis Quattrone
- 6 Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Suzanne Frangos
- 6 Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Kenneth Abramson
- 4 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Arjun G Yodh
- 4 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - W Andrew Kofke
- 1 Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
50
|
Szatala A, Young B. Implementation of a Data Acquisition and Integration Device in the Neurologic Intensive Care Unit. AACN Adv Crit Care 2019; 30:40-47. [PMID: 30842072 DOI: 10.4037/aacnacc2019188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The neurologic intensive care unit has evolved into a data-rich, complex arena. Various neurologic monitors, collectively referred to as multimodality monitoring, provide clinicians with a plethora of real-time information about a comatose patient's condition. The time and cognitive burden required to synthesize the available data and reach meaningful clinical conclusions can be overwhelming. The Moberg Component Neuromonitoring System (Moberg Research, Inc) is a data acquisition and integration device that collects data from multiple monitors, displaying them on a single screen in a way that highlights physiological trends throughout a patient's clinical course. Implementation of the Moberg Component Neuromonitoring System in the neurologic intensive care unit can improve understanding of a patient's neurophysiology, enhance clinical decision-making, and improve quality of care. Use of a staged process of implementation including exploration, installation, initial implementation, and full implementation can bring technology to the bedside in a sustainable fashion.
Collapse
Affiliation(s)
- Amanda Szatala
- Amanda Szatala is Clinical Nurse Specialist, Neurointensive and Progressive Care Unit, Penn Presbyterian Medical Center, 51 N 39th St, Philadelphia, PA 19104 . Bethany Young is Clinical Nurse Specialist, Neurointensive Care Unit, Hospital of the University of Pennsylvania, Philadelphia
| | - Bethany Young
- Amanda Szatala is Clinical Nurse Specialist, Neurointensive and Progressive Care Unit, Penn Presbyterian Medical Center, 51 N 39th St, Philadelphia, PA 19104 . Bethany Young is Clinical Nurse Specialist, Neurointensive Care Unit, Hospital of the University of Pennsylvania, Philadelphia
| |
Collapse
|