1
|
Ertuglu LA, Mutchler AP, Jamison S, Laffer CL, Saleem M, Blackwell DJ, Kryshtal DO, Sahinoz M, Sheng Q, Wanjalla CN, Pakala S, Justin Y, Gutierrez OM, Kleyman TR, Knollmann BC, Ikizler TA, Kirabo A. Eicosanoid-Regulated Myeloid ENaC and Isolevuglandin Formation in Human Salt-Sensitive Hypertension. Hypertension 2024; 81:516-529. [PMID: 37675576 PMCID: PMC10918035 DOI: 10.1161/hypertensionaha.123.21285] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND The mechanisms by which salt increases blood pressure in people with salt sensitivity remain unclear. Our previous studies found that high sodium enters antigen-presenting cells (APCs) via the epithelial sodium channel and leads to the production of isolevuglandins and hypertension. In the current mechanistic clinical study, we hypothesized that epithelial sodium channel-dependent isolevuglandin-adduct formation in APCs is regulated by epoxyeicosatrienoic acids (EETs) and leads to salt-sensitive hypertension in humans. METHODS Salt sensitivity was assessed in 19 hypertensive subjects using an inpatient salt loading and depletion protocol. Isolevuglandin-adduct accumulation in APCs was analyzed using flow cytometry. Gene expression in APCs was analyzed using cellular indexing of transcriptomes and epitopes by sequencing analysis of blood mononuclear cells. Plasma and urine EETs were measured using liquid chromatography-mass spectrometry. RESULTS Baseline isolevuglandin+ APCs correlated with higher salt-sensitivity index. Isolevuglandin+ APCs significantly decreased from salt loading to depletion with an increasing salt-sensitivity index. We observed that human APCs express the epithelial sodium channel δ subunit, SGK1 (salt-sensing kinase serum/glucocorticoid kinase 1), and cytochrome P450 2S1. We found a direct correlation between baseline urinary 14,15 EET and salt-sensitivity index, whereas changes in urinary 14,15 EET negatively correlated with isolevuglandin+ monocytes from salt loading to depletion. Coincubation with 14,15 EET inhibited high-salt-induced increase in isolevuglandin+ APC. CONCLUSIONS Isolevuglandin formation in APCs responds to acute changes in salt intake in salt-sensitive but not salt-resistant people with hypertension, and this may be regulated by renal 14,15 EET. Baseline levels of isolevuglandin+ APCs or urinary 14,15 EET may provide diagnostic tools for salt sensitivity without a protocol of salt loading.
Collapse
Affiliation(s)
- Lale A. Ertuglu
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ashley Pitzer Mutchler
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| | - S Jamison
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
- Meharry Medical College Nashville, Nashville, TN, United States
| | - Cheryl L. Laffer
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Mohammad Saleem
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Daniel J. Blackwell
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Dmytro O. Kryshtal
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Melis Sahinoz
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Celestine N. Wanjalla
- Department of Internal Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center Nashville, TN, USA
| | - Suman Pakala
- Department of Internal Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center Nashville, TN, USA
| | - Yu Justin
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Orlando M Gutierrez
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Thomas R. Kleyman
- Departments of Medicine, Cell Biology, Pharmacology, and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Björn C. Knollmann
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
| | - T. Alp Ikizler
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, TN, USA
- Vanderbilt Center for Immunobiology (VCI)
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4)
- Vanderbilt Institute for Global Health (VIGH)
| |
Collapse
|
2
|
Zhao X, Sun Y, Zhang H, Zhang Y, Zhao H, Yao X, Zhang W. Effect of different iodide intake during pregnancy and lactation on thyroid and cardiovascular function in maternal and offspring rats. J Trace Elem Med Biol 2023; 79:127267. [PMID: 37506535 DOI: 10.1016/j.jtemb.2023.127267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
OBJECTIVE We aimed to investigate the impact of different iodide intake during pregnancy and lactation on iodine concentration in urine and serum, fatty acid metabolism, thyroid and cardiovascular function in maternal and offspring rats. METHODS Pregnant rats were randomly assigned to four groups: normal adult iodide intake (NAI, 7.5 μg/d), normal pregnant iodide intake (NPI, 12.5 μg/d), 5 times (5 HI, 62.5 μg/d) and 10 times higher-than-normal pregnant iodide intake (10 HI, 125 μg/d). The maternal rats were continuously administered potassium iodide until postnatal day 16 (PN16). Thyroid function was measured by enzyme-linked immunosorbent assay (ELISA). The iodine concentration in urine and serum were detected by inductively coupled plasma mass spectrometry (ICP-MS). The messenger ribonucleic acid (mRNA) expressions of Krüppel-like factor 9 (KLF9) and thioredoxin reductase 2 (Txnrd2) were measured using quantitative real-time polymerase chain reaction (RT-qPCR). Characteristic distribution of KLF9 expression and its interaction with TRβ was assessed by immunohistochemical and immunofluorescence staining. Serum fatty acids were analyzed by Liquid Chromatography-Mass Spectrometry (LC-MS). Cardiac function and blood pressure were measured by echocardiography and a non-invasive tail-cuff system. RESULTS High iodide intake (5 HI and 10 HI) during pregnancy and lactation results in increased urinary iodine concentration (UIC), serum total iodine concentration (STIC) and serum non-protein-bound iodine concentration (SNBIC) in both maternal and offspring rats, along with significantly increased FT3 and its target gene expression of KLF9. In maternal rats of both 5 HI and 10 HI groups, systolic blood pressure (SBP) was significantly higher, the increased SBP was significantly correlated with the increased UIC (r = 0.968, p = 0.002; r = 0.844, p = 0.035), KLF9 (r = 0.935, p = 0.006; r = 0.954, p = 0.003) and the decreased Txnrd2 (r = -0.909, p = 0.012; r = -0.912, p = 0.011). In maternal rats of 10 HI group, cardiac hyperfunction with increased LVEF, LVFS and decreased LVESD were observed. The increased LVEF and decreased LVESD were significantly correlated with UIC, STIC and SNBIC (r = 0.976, p = 0.001; r = 0.945, p = 0.005; r = 0.953, p = 0.003; r = -0.917, p = 0.01; r = -0.859, p = 0.028; r = -0.847, p = 0.033), LVEF, LVFS and LVESD were significant correlated with KLF9 (r = 0.950, p = 0.004; r = 0.963, p = 0.002; r = -0.990, p = 0.0002) and Txnrd2 expression (r = -0.979, p = 0.001; r = -0.915, p = 0.01; r = 0.933, p = 0.007), and the decreased LVESD was correlated with decreased epoxyeicosatrienoic acid (EET) metabolites: 5,6-EET, 8,9-DHET and 11,12-DHET (r = 0.999, p = 0.034; r = 1.000, p = 0.017; r = 1.000, p = 0.017). While in offspring rats, no significant change in SBP and cardiac function was found. STIC and SNBIC were much lower than those in maternal rats, and eicosapentaenoic acid (EPA) metabolites (9-HEPE, 15-HEPE and 14,15 DiHETE) were significantly increased. CONCLUSION In addition to thyroid hormones, STIC, SNBIC, KLF9, Txnrd2, EET and EPA metabolites might be promising biomarkers in high iodide intake-induced thyroid and cardiovascular function.
Collapse
Affiliation(s)
- Xiuxiu Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yue Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hexi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Yue Zhang
- Tianjin Key Laboratory of Ionic-Molecular of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Hailing Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaomei Yao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| | - Wanqi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
3
|
Nayeem MA, Geldenhuys WJ, Hanif A. Role of cytochrome P450-epoxygenase and soluble epoxide hydrolase in the regulation of vascular response. ADVANCES IN PHARMACOLOGY 2023; 97:37-131. [DOI: 10.1016/bs.apha.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Elbarbry F, Jones G, Ung A. Catechin Reduces Blood Pressure in Spontaneously Hypertensive Rats through Modulation of Arachidonic Acid Metabolism. Molecules 2022; 27:8432. [PMID: 36500525 PMCID: PMC9735775 DOI: 10.3390/molecules27238432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
(1) Background: hypertension affects approximately half of the adults in the United States (roughly 116 million). The cytochrome P450 (CYP)-mediated metabolism of arachidonic acid (AA) in the kidney has been found to play a major role in the pathogenesis of hypertension. This study examines the anti-hypertensive effect of the natural polyphenolic compound catechin (CAT) and investigates if it impacts the metabolism of AA in the kidney in comparison to captopril (CAP): a commonly used antihypertensive drug. (2) Methods: spontaneously hypertensive rats (SHR) were randomly divided into five groups. The treatment groups were administered CAT in drinking water at doses of 10 and 50 mg/kg. A positive control group received CAP at a dose of 10 mg/kg in the drinking water, and one group received both CAP and CAT at doses of 10 mg/kg and 50 mg/kg, respectively. Blood pressure was monitored weekly for five weeks. The activity of the two major enzymes involved in AA metabolism in the kidney, namely CYP4A and soluble epoxide hydrolase (sEH), were analyzed. (3) Results: CAP monotherapy was found to reduce blood pressure compared to the control untreated rats but did not demonstrate any effect on AA metabolism. Low- and high-dose CAT resisted the rise in blood pressure observed in the untreated SHR and significantly lowered blood pressure compared to the control group, respectively. Only rats treated with high CAT doses demonstrated significant inhibition of CYP4A and sEH enzyme activities. The coadministration of CAP and a high dose of CAT resulted in more pronounced blood pressure-lowering effects, but no more significant effects on AA metabolism were found compared to a high dose of CAT alone. (4) Conclusion: the modulation of AA metabolism in the kidney contributes, at least partially, to the blood pressure-lowering effect of CAT in SHR rats.
Collapse
Affiliation(s)
- Fawzy Elbarbry
- School of Pharmacy, Pacific University Oregon, Hillsboro, OR 97123, USA
| | | | | |
Collapse
|
5
|
Nayeem MA, Hanif A, Geldenhuys WJ, Agba S. Crosstalk between adenosine receptors and CYP450-derived oxylipins in the modulation of cardiovascular, including coronary reactive hyperemic response. Pharmacol Ther 2022; 240:108213. [PMID: 35597366 DOI: 10.1016/j.pharmthera.2022.108213] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Adenosine is a ubiquitous endogenous nucleoside or autacoid that affects the cardiovascular system through the activation of four G-protein coupled receptors: adenosine A1 receptor (A1AR), adenosine A2A receptor (A2AAR), adenosine A2B receptor (A2BAR), and adenosine A3 receptor (A3AR). With the rapid generation of this nucleoside from cellular metabolism and the widespread distribution of its four G-protein coupled receptors in almost all organs and tissues of the body, this autacoid induces multiple physiological as well as pathological effects, not only regulating the cardiovascular system but also the central nervous system, peripheral vascular system, and immune system. Mounting evidence shows the role of CYP450-enzymes in cardiovascular physiology and pathology, and the genetic polymorphisms in CYP450s can increase susceptibility to cardiovascular diseases (CVDs). One of the most important physiological roles of CYP450-epoxygenases (CYP450-2C & CYP2J2) is the metabolism of arachidonic acid (AA) and linoleic acid (LA) into epoxyeicosatrienoic acids (EETs) and epoxyoctadecaenoic acid (EpOMEs) which generally involve in vasodilation. Like an increase in coronary reactive hyperemia (CRH), an increase in anti-inflammation, and cardioprotective effects. Moreover, the genetic polymorphisms in CYP450-epoxygenases will change the beneficial cardiovascular effects of metabolites or oxylipins into detrimental effects. The soluble epoxide hydrolase (sEH) is another crucial enzyme ubiquitously expressed in all living organisms and almost all organs and tissues. However, in contrast to CYP450-epoxygenases, sEH converts EETs into dihydroxyeicosatrienoic acid (DHETs), EpOMEs into dihydroxyoctadecaenoic acid (DiHOMEs), and others and reverses the beneficial effects of epoxy-fatty acids leading to vasoconstriction, reducing CRH, increase in pro-inflammation, increase in pro-thrombotic and become less cardioprotective. Therefore, polymorphisms in the sEH gene (Ephx2) cause the enzyme to become overactive, making it more vulnerable to CVDs, including hypertension. Besides the sEH, ω-hydroxylases (CYP450-4A11 & CYP450-4F2) derived metabolites from AA, ω terminal-hydroxyeicosatetraenoic acids (19-, 20-HETE), lipoxygenase-derived mid-chain hydroxyeicosatetraenoic acids (5-, 11-, 12-, 15-HETEs), and the cyclooxygenase-derived prostanoids (prostaglandins: PGD2, PGF2α; thromboxane: Txs, oxylipins) are involved in vasoconstriction, hypertension, reduction in CRH, pro-inflammation and cardiac toxicity. Interestingly, the interactions of adenosine receptors (A2AAR, A1AR) with CYP450-epoxygenases, ω-hydroxylases, sEH, and their derived metabolites or oxygenated polyunsaturated fatty acids (PUFAs or oxylipins) is shown in the regulation of the cardiovascular functions. In addition, much evidence demonstrates polymorphisms in CYP450-epoxygenases, ω-hydroxylases, and sEH genes (Ephx2) and adenosine receptor genes (ADORA1 & ADORA2) in the human population with the susceptibility to CVDs, including hypertension. CVDs are the number one cause of death globally, coronary artery disease (CAD) was the leading cause of death in the US in 2019, and hypertension is one of the most potent causes of CVDs. This review summarizes the articles related to the crosstalk between adenosine receptors and CYP450-derived oxylipins in vascular, including the CRH response in regular salt-diet fed and high salt-diet fed mice with the correlation of heart perfusate/plasma oxylipins. By using A2AAR-/-, A1AR-/-, eNOS-/-, sEH-/- or Ephx2-/-, vascular sEH-overexpressed (Tie2-sEH Tr), vascular CYP2J2-overexpressed (Tie2-CYP2J2 Tr), and wild-type (WT) mice. This review article also summarizes the role of pro-and anti-inflammatory oxylipins in cardiovascular function/dysfunction in mice and humans. Therefore, more studies are needed better to understand the crosstalk between the adenosine receptors and eicosanoids to develop diagnostic and therapeutic tools by using plasma oxylipins profiles in CVDs, including hypertensive cases in the future.
Collapse
Affiliation(s)
- Mohammed A Nayeem
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA.
| | - Ahmad Hanif
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Werner J Geldenhuys
- Faculties of the Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Stephanie Agba
- Graduate student, Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
6
|
Charles R, Eaton P. Redox Regulation of Soluble Epoxide Hydrolase-Implications for Cardiovascular Health and Disease. Cells 2022; 11:cells11121932. [PMID: 35741062 PMCID: PMC9221603 DOI: 10.3390/cells11121932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/25/2022] Open
Abstract
Cell responses to changes in their redox state are significantly mediated by reversible oxido-reductive post-translational modifications of proteins, potentially altering their activities or interactions. These modifications are important for the homeostatic responses of cells to environmental changes that alter their redox state. Such redox regulatory mechanisms not only operate to maintain health, but can become dysregulated and contribute to pathophysiology. In this review, we focus on the redox control of soluble epoxide hydrolase (sEH), which is widely expressed, including in blood vessels and cardiomyocytes. We review the different types of oxidative modifications that regulate sEH and how they may alter cardiovascular physiology and affect disease progression during stress.
Collapse
|
7
|
Imig JD. Orally active epoxyeicosatrienoic acid analogs in hypertension and renal injury. ADVANCES IN PHARMACOLOGY 2022; 94:27-55. [PMID: 35659375 PMCID: PMC10105514 DOI: 10.1016/bs.apha.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites synthesized by cytochrome P450 epoxygenases. Biological activities for EETs include vasodilation, decreasing inflammation, opposing apoptosis, and inhibiting renal sodium reabsorption. These actions are beneficial in lowering blood pressure and slowing kidney disease progression. Furthermore, evidence in human and experimental animal studies have found that decreased EET levels contribute to hypertension and kidney diseases. Consequently, EET mimics/analogs have been developed as a potential therapeutic for hypertension and acute and chronic kidney diseases. Their development has resulted in EET analogs that are orally active with favorable pharmacological profiles. Analogs for 8,9-EET, 11,12-EET, and 14,15-EET have been tested in several hypertension and kidney disease animal models. More recently, kidney targeted EET analogs have been synthesized and tested against drug-induced nephrotoxicity. Experimental evidence has demonstrated compelling therapeutic potential for EET analogs to oppose cardiovascular and kidney diseases. These EET analogs lower blood pressure, decrease kidney inflammation, improve vascular endothelial function, and decrease kidney fibrosis and apoptosis. Overall, these preclinical studies support the likelihood that EET analogs will advance to clinical trials for hypertension and associated comorbidities or acute and chronic kidney diseases.
Collapse
Affiliation(s)
- John D Imig
- Drug Discovery Center, Medical College of Wisconsin, Milwaukee, WI, United States.
| |
Collapse
|
8
|
Salt-Sensitive Hypertension in GR +/- Rats Is Accompanied with Dysregulation in Adrenal Soluble Epoxide Hydrolase and Polyunsaturated Fatty Acid Pathways. Int J Mol Sci 2021; 22:ijms222413218. [PMID: 34948014 PMCID: PMC8708190 DOI: 10.3390/ijms222413218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/23/2023] Open
Abstract
Mutations within the glucocorticoid receptor (GR) gene locus lead to glucocorticoid resistance which is characterized by several clinical symptoms such as adrenal gland hyperplasia and salt-sensitive hypertension, although the underlying mechanisms are still unknown. We studied GR haploinsufficient (GR+/−) Sprague Dawley rats which, on a standard diet, showed significantly increased plasma aldosterone and corticosterone levels and an adrenocortex hyperplasia accompanied by a normal systolic blood pressure. Following a high salt diet, these rats developed salt-sensitive hypertension and maintained elevated enzyme-soluble epoxide hydrolase (sEH) in adrenal glands, while sEH was significantly decreased in wild-type rats. Furthermore, GR+/− rats showed dysregulation of the equilibrated linoleic and arachidonic acid pathways, with a significant increase of less active metabolites such as 8,9-DiHETrE. In Sprague Dawley rats, GR haploinsufficiency induced steroid disturbances, which provoked hypertension only in combination with high salt intake, which was accompanied by disturbances in sEH and fatty acid metabolism. Our results suggest that sEH inhibition could be a potential target to treat hypertension in patients with GR haploinsufficiency.
Collapse
|
9
|
Luo J, Hu S, Fu M, Luo L, Li Y, Li W, Cai Y, Dong R, Yang Y, Tu L, Xu X. Inhibition of soluble epoxide hydrolase alleviates insulin resistance and hypertension via downregulation of SGLT2 in the mouse kidney. J Biol Chem 2021; 296:100667. [PMID: 33864813 PMCID: PMC8131320 DOI: 10.1016/j.jbc.2021.100667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/09/2022] Open
Abstract
The epoxyeicosatrienoic acid (EET) exerts beneficial effects on insulin resistance and/or hypertension. EETs could be readily converted to less biological active diols by soluble epoxide hydrolase (sEH). However, whether sEH inhibition can ameliorate the comorbidities of insulin resistance and hypertension and the underlying mechanisms of this relationship are unclear. In this study, C57BL/6 mice were rendered hypertensive and insulin resistant through a high-fat and high-salt (HF–HS) diet. The sEH inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), was used to treat mice (1 mg/kg/day) for 8 weeks, followed by analysis of metabolic parameters. The expression of sEH and the sodium–glucose cotransporter 2 (SGLT2) was markedly upregulated in the kidneys of mice fed an HF–HS diet. We found that TPPU administration increased kidney EET levels, improved insulin resistance, and reduced hypertension. Furthermore, TPPU treatment prevented upregulation of SGLT2 and the associated increased urine volume and the excretion of urine glucose and urine sodium. Importantly, TPPU alleviated renal inflammation. In vitro, human renal proximal tubule epithelial cells (HK-2 cells) were used to further investigate the underlying mechanism. We observed that 14,15-EET or sEH knockdown or inhibition prevented the upregulation of SGLT2 upon treatment with palmitic acid or NaCl by inhibiting the inhibitory kappa B kinase α/β/NF-κB signaling pathway. In conclusion, sEH inhibition by TPPU alleviated insulin resistance and hypertension induced by an HF–HS diet in mice. The increased urine excretion of glucose and sodium was mediated by decreased renal SGLT2 expression because of inactivation of the inhibitory kappa B kinase α/β/NF-κB–induced inflammatory response.
Collapse
Affiliation(s)
- Jinlan Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiqing Hu
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Menglu Fu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liman Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Li
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhua Li
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueting Cai
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruolan Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Yang
- Division of Endocrinology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Tu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.
| | - Xizhen Xu
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.
| |
Collapse
|
10
|
The Antihypertensive Effect of Quercetin in Young Spontaneously Hypertensive Rats; Role of Arachidonic Acid Metabolism. Int J Mol Sci 2020; 21:ijms21186554. [PMID: 32911626 PMCID: PMC7555394 DOI: 10.3390/ijms21186554] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Hypertension affects almost 50% of the adult American population. Metabolites of arachidonic acid (AA) in the kidney play an important role in blood pressure regulation. The present study investigates the blood pressure-lowering potential of quercetin (QR), a naturally occurring polyphenol, and examines its correlation to the modulation of AA metabolism. Spontaneously hypertensive rats (SHR) were randomly divided into four groups. Treatment groups were administered QR in drinking water at concentrations of 10, 30, and 60 mg/L. Blood pressure was monitored at seven-day intervals. After a total of seven weeks of treatment, rats were killed and kidney tissues were collected to examine the activity of the two major enzymes involved in AA metabolism in the kidney, namely cytochrome P450 (CYP)4A and soluble epoxide hydrolase (sEH). Medium- and high-dose QR resisted the rise in blood pressure observed in the untreated SHR and significantly inhibited the activity of the CYP4A enzyme in renal cortical microsomes. The activity of the sEH enzyme in renal cortical cytosols was significantly inhibited only by the high QR dose. Our data not only demonstrate the antihypertensive effect of QR, but also provide a novel mechanism for its underlying cardioprotective properties.
Collapse
|
11
|
Wang MX, Wang LJ, Xiao Y, Zhang DD, Duan XP, Wang WH. Epoxyeicosatrienoic acid metabolites inhibit Kir4.1/Kir5.1 in the distal convoluted tubule. Am J Physiol Renal Physiol 2020; 318:F1369-F1376. [PMID: 32308018 PMCID: PMC7311705 DOI: 10.1152/ajprenal.00018.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/12/2020] [Accepted: 04/13/2020] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P-450 (Cyp) epoxygenase-dependent metabolites of arachidonic acid (AA) have been shown to inhibit renal Na+ transport, and inhibition of Cyp-epoxygenase is associated with salt-sensitive hypertension. We used the patch-clamp technique to examine whether Cyp-epoxygenase-dependent AA metabolites inhibited the basolateral 40-pS K+ channel (Kir4.1/Kir5.1) in the distal convoluted tubule (DCT). Application of AA inhibited the basolateral 40-pS K+ channel in the DCT. The inhibitory effect of AA on the 40-pS K+ channel was specific because neither linoleic nor oleic acid was able to mimic the effect of AA on the K+ channel. Inhibition of Cyp-monooxygenase with N-methylsulfonyl-12,12-dibromododec-11-enamide or inhibition of cyclooxygenase with indomethacin failed to abolish the inhibitory effect of AA on the 40-pS K+ channel. However, the inhibition of Cyp-epoxygenase with N-methylsulfonyl-6-(propargyloxyphenyl)hexanamide abolished the effect of AA on the 40-pS K+ channel in the DCT. Moreover, addition of either 11,12-epoxyeicosatrienoic acid (EET) or 14,15-EET also inhibited the 40-pS K+ channel in the DCT. Whole cell recording demonstrated that application of AA decreased, whereas N-methylsulfonyl-6-(propargyloxyphenyl)hexanamide treatment increased, Ba2+-sensitive K+ currents in the DCT. Finally, application of 14,15-EET but not AA was able to inhibit the basolateral 40-pS K+ channel in the DCT of Cyp2c44-/- mice. We conclude that Cyp-epoxygenase-dependent AA metabolites inhibit the basolateral Kir4.1/Kir5.1 in the DCT and that Cyp2c44-epoxygenase plays a role in the regulation of the basolateral K+ channel in the mouse DCT.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/metabolism
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Amides/pharmacology
- Animals
- Arachidonic Acid/metabolism
- Arachidonic Acid/pharmacology
- Cytochrome P450 Family 2/antagonists & inhibitors
- Cytochrome P450 Family 2/genetics
- Cytochrome P450 Family 2/metabolism
- Enzyme Inhibitors/pharmacology
- Kidney Tubules, Distal/drug effects
- Kidney Tubules, Distal/metabolism
- Male
- Membrane Potentials
- Mice, 129 Strain
- Mice, Knockout
- Potassium Channel Blockers/metabolism
- Potassium Channel Blockers/pharmacology
- Potassium Channels, Inwardly Rectifying/antagonists & inhibitors
- Potassium Channels, Inwardly Rectifying/metabolism
Collapse
Affiliation(s)
- Ming-Xiao Wang
- Department of Physiology, Zhuhai Campus of Zunyi Medical University, Zunyi, Guizhou, China
| | - Li-Jun Wang
- Department of Physiology, Harbin Medical University, Harbin, China
| | - Yu Xiao
- Department of Physiology, Qiqihar Medical College, Heilongjiang, China
| | - Dan-Dan Zhang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Xin-Peng Duan
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
12
|
Agba S, Hanif A, Edin ML, Zeldin DC, Nayeem MA. Cyp2j5-Gene Deletion Affects on Acetylcholine and Adenosine-Induced Relaxation in Mice: Role of Angiotensin-II and CYP-Epoxygenase Inhibitor. Front Pharmacol 2020; 11:27. [PMID: 32116704 PMCID: PMC7014568 DOI: 10.3389/fphar.2020.00027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/10/2020] [Indexed: 12/30/2022] Open
Abstract
Previously, we showed vascular endothelial overexpression of human-CYP2J2 enhances coronary reactive hyperemia in Tie2-CYP2J2 Tr mice, and eNOS−/− mice had overexpression of CYP2J-epoxygenase with adenosine A2A receptor-induced enhance relaxation, but we did not see the response in CYP2J-epoxygenase knockout mice. Therefore, we hypothesized that Cyp2j5-gene deletion affects acetylcholine- and 5'-N-ethylcarboxamidoadenosine (NECA) (adenosine)-induced relaxation and their response is partially inhibited by angiotensin-II (Ang-II) in mice. Acetylcholine (Ach)-induced response was tested with N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MS-PPOH, CYP-epoxygenase inhibitor; 10−5M) and Ang-II (10−6M). In Cyp2j5−/− mice, ACh-induced relaxation was different from C57Bl/6 mice, at 10−5 M (76.1 ± 3.3 vs. 58.3 ± 5.2, P < 0.05). However, ACh-induced relaxation was not blocked by MS-PPOH in Cyp2j5−/−: 58.5 ± 5.0%, P > 0.05, but blocked in C57Bl/6: 52.3 ± 7.5%, P < 0.05, and Ang-II reduces ACh-induced relaxation in both Cyp2j5−/− and C57Bl/6 mice (38.8 ± 3.9% and 45.9 ± 7.8, P <0.05). In addition, NECA-induced response was tested with Ang-II. In Cyp2j5−/− mice, NECA-induced response was not different from C57Bl/6 mice at 10−5M (23.1 ± 2.1 vs. 21.1 ± 3.8, P > 0.05). However, NECA-induced response was reduced by Ang-II in both Cyp2j5−/− and C57Bl/6 mice (−10.8 ± 2.3% and 3.2 ± 2.7, P < 0.05). Data suggest that ACh-induced relaxation in Cyp2j5−/− mice depends on nitric oxide (NO) but not CYP-epoxygenases, and the NECA-induced different response in male vs. female Cyp2j5−/− mice when Ang-II treated.
Collapse
Affiliation(s)
- Stephanie Agba
- Pharmaceutical Sciences, School of Pharmacy, Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV, United States
| | - Ahmad Hanif
- Pharmaceutical Sciences, School of Pharmacy, Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV, United States
| | - Matthew L Edin
- Division of Intramural Research, NIEHS/NIH, Durham, NC, United States
| | - Darryl C Zeldin
- Division of Intramural Research, NIEHS/NIH, Durham, NC, United States
| | - Mohammed A Nayeem
- Pharmaceutical Sciences, School of Pharmacy, Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
13
|
Hoff U, Bubalo G, Fechner M, Blum M, Zhu Y, Pohlmann A, Hentschel J, Arakelyan K, Seeliger E, Flemming B, Gürgen D, Rothe M, Niendorf T, Manthati VL, Falck JR, Haase M, Schunck W, Dragun D. A synthetic epoxyeicosatrienoic acid analogue prevents the initiation of ischemic acute kidney injury. Acta Physiol (Oxf) 2019; 227:e13297. [PMID: 31077555 DOI: 10.1111/apha.13297] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022]
Abstract
AIM Imbalances in cytochrome P450 (CYP)-dependent eicosanoid formation may play a central role in ischemic acute kidney injury (AKI). We reported previously that inhibition of 20-hydroxyeicosatetraenoic acid (20-HETE) action ameliorated ischemia/reperfusion (I/R)-induced AKI in rats. Now we tested the hypothesis that enhancement of epoxyeicosatrienoic acid (EET) actions may counteract the detrimental effects of 20-HETE and prevent the initiation of AKI. METHODS Male Lewis rats underwent right nephrectomy and ischemia was induced by 45 min clamping of the left renal pedicle followed by up to 48 h of reperfusion. Circulating CYP-eicosanoid profiles were compared in patients who underwent cardiac surgery with (n = 21) and without (n = 38) developing postoperative AKI. RESULTS Ischemia induced an about eightfold increase of renal 20-HETE levels, whereas free EETs were not accumulated. To compensate for this imbalance, a synthetic 14,15-EET analogue was administered by intrarenal infusion before ischemia. The EET analogue improved renal reoxygenation as monitored by in vivo parametric MRI during the initial 2 h reperfusion phase. The EET analogue improved PI3K- as well as mTORC2-dependent rephosphorylation of Akt, induced inactivation of GSK-3β, reduced the development of tubular apoptosis and attenuated inflammatory cell infiltration. The EET analogue also significantly alleviated the I/R-induced drop in creatinine clearance. Patients developing postoperative AKI featured increased preoperative 20-HETE and 8,9-EET levels. CONCLUSIONS Pharmacological interventions targeting the CYP-eicosanoid pathway could offer promising new options for AKI prevention. Individual differences in CYP-eicosanoid formation may contribute to the risk of developing AKI in clinical settings.
Collapse
Affiliation(s)
- Uwe Hoff
- Nephrology and Intensive Care Medicine, Center for Cardiovascular Research Charité‐Universitätsmedizin Berlin Berlin Germany
| | - Gordana Bubalo
- Nephrology and Intensive Care Medicine, Center for Cardiovascular Research Charité‐Universitätsmedizin Berlin Berlin Germany
| | - Mandy Fechner
- Nephrology and Intensive Care Medicine, Center for Cardiovascular Research Charité‐Universitätsmedizin Berlin Berlin Germany
| | | | - Ye Zhu
- Nephrology and Intensive Care Medicine, Center for Cardiovascular Research Charité‐Universitätsmedizin Berlin Berlin Germany
- Department of Nephrology The Fifth Affiliated Hospital of Sun Yat‐sun University Zhuhai China
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrueck Center for Molecular Medicine Berlin Germany
| | - Jan Hentschel
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrueck Center for Molecular Medicine Berlin Germany
| | - Karen Arakelyan
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrueck Center for Molecular Medicine Berlin Germany
- Center for Cardiovascular Research, Institute of Physiology Charité‐Universitätsmedizin Berlin Berlin Germany
| | - Erdmann Seeliger
- Center for Cardiovascular Research, Institute of Physiology Charité‐Universitätsmedizin Berlin Berlin Germany
| | - Bert Flemming
- Center for Cardiovascular Research, Institute of Physiology Charité‐Universitätsmedizin Berlin Berlin Germany
| | - Dennis Gürgen
- Nephrology and Intensive Care Medicine, Center for Cardiovascular Research Charité‐Universitätsmedizin Berlin Berlin Germany
| | | | - Thoralf Niendorf
- Max Delbrueck Center for Molecular Medicine Berlin Germany
- Berlin Ultrahigh Field Facility (B.U.F.F.) Max Delbrueck Center for Molecular Medicine Berlin Germany
| | | | - John R. Falck
- Biochemistry Department UT Southwestern Dallas Texas
| | - Michael Haase
- Medical Faculty Otto‐von‐Guericke University Magdeburg Germany
- Diaverum Deutschland Potsdam Germany
| | | | - Duska Dragun
- Nephrology and Intensive Care Medicine, Center for Cardiovascular Research Charité‐Universitätsmedizin Berlin Berlin Germany
| |
Collapse
|
14
|
Abstract
Epoxyeicosatrienoic acids (EETs) are also known as epoxyeicosanoids that have renal and cardiovascular actions. These renal and cardiovascular actions can be regulated by soluble epoxide hydrolase (sEH) that degrades and inactivates EETs. Extensive animal hypertension studies have determined that vascular, epithelial transport, and anti-inflammatory actions of EETs lower blood pressure and decrease renal and cardiovascular disease progression. Human studies have also supported the notion that increasing EET levels in hypertension could be beneficial. Pharmacological and genetic approaches to increase epoxyeicosanoids in several animal models and humans have found improved endothelial vascular function, increased sodium excretion, and decreased inflammation to oppose hypertension and associated renal and cardiovascular complications. These compelling outcomes support the concept that increasing epoxyeicosanoids via sEH inhibitors or EET analogs could be a valuable hypertension treatment.
Collapse
Affiliation(s)
- J D Imig
- Department of Pharmacology and Toxicology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
15
|
Wang W, Yang J, Edin ML, Wang Y, Luo Y, Wan D, Yang H, Song CQ, Xue W, Sanidad KZ, Song M, Bisbee HA, Bradbury JA, Nan G, Zhang J, Shih PAB, Lee KSS, Minter LM, Kim D, Xiao H, Liu JY, Hammock BD, Zeldin DC, Zhang G. Targeted Metabolomics Identifies the Cytochrome P450 Monooxygenase Eicosanoid Pathway as a Novel Therapeutic Target of Colon Tumorigenesis. Cancer Res 2019; 79:1822-1830. [PMID: 30803995 PMCID: PMC6467714 DOI: 10.1158/0008-5472.can-18-3221] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/08/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022]
Abstract
Colon cancer is the third most common cancer and the second leading cause of cancer-related death in the United States, emphasizing the need for the discovery of new cellular targets. Using a metabolomics approach, we report here that epoxygenated fatty acids (EpFA), which are eicosanoid metabolites produced by cytochrome P450 (CYP) monooxygenases, were increased in both the plasma and colon of azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon cancer mice. CYP monooxygenases were overexpressed in colon tumor tissues and colon cancer cells. Pharmacologic inhibition or genetic ablation of CYP monooxygenases suppressed AOM/DSS-induced colon tumorigenesis in vivo. In addition, treatment with 12,13-epoxyoctadecenoic acid (EpOME), which is a metabolite of CYP monooxygenase produced from linoleic acid, increased cytokine production and JNK phosphorylation in vitro and exacerbated AOM/DSS-induced colon tumorigenesis in vivo. Together, these results demonstrate that the previously unappreciated CYP monooxygenase pathway is upregulated in colon cancer, contributes to its pathogenesis, and could be therapeutically explored for preventing or treating colon cancer. SIGNIFICANCE: This study finds that the previously unappreciated CYP monooxygenase eicosanoid pathway is deregulated in colon cancer and contributes to colon tumorigenesis.
Collapse
Affiliation(s)
- Weicang Wang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
| | - Jun Yang
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, California
| | - Matthew L Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Yuxin Wang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Ying Luo
- Center for Nephrology and Metabolomics and Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Debin Wan
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, California
| | - Haixia Yang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
| | - Chun-Qing Song
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts
- Program in Molecular Medicine, Department of Molecular, Cell and Cancer Biology, and Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Katherine Z Sanidad
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts
| | - Mingyue Song
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Heather A Bisbee
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts
| | - Jennifer A Bradbury
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Guanjun Nan
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianan Zhang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
| | - Pei-An Betty Shih
- Department of Psychiatry, University of California, San Diego, La Jolla, California
| | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Lisa M Minter
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Daeyoung Kim
- Department of Mathematics & Statistics, University of Massachusetts, Amherst, Massachusetts
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts
| | - Jun-Yan Liu
- Center for Nephrology and Metabolomics and Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bruce D Hammock
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, California.
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina.
| | - Guodong Zhang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts.
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
16
|
Duflot T, Moreau-Grangé L, Roche C, Iacob M, Wils J, Rémy-Jouet I, Cailleux AF, Leuillier M, Renet S, Li D, Morisseau C, Lamoureux F, Richard V, Prévost G, Joannidès R, Bellien J. Altered bioavailability of epoxyeicosatrienoic acids is associated with conduit artery endothelial dysfunction in type 2 diabetic patients. Cardiovasc Diabetol 2019; 18:35. [PMID: 30885203 PMCID: PMC6423843 DOI: 10.1186/s12933-019-0843-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/08/2019] [Indexed: 01/04/2023] Open
Abstract
Background This pathophysiological study addressed the hypothesis that soluble epoxide hydrolase (sEH), which metabolizes the vasodilator and anti-inflammatory epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids (DHETs), contributes to conduit artery endothelial dysfunction in type 2 diabetes. Methods and results Radial artery endothelium-dependent flow-mediated dilatation in response to hand skin heating was reduced in essential hypertensive patients (n = 9) and type 2 diabetic subjects with (n = 19) or without hypertension (n = 10) compared to healthy subjects (n = 36), taking into consideration cardiovascular risk factors, flow stimulus and endothelium-independent dilatation to glyceryl trinitrate. Diabetic patients but not non-diabetic hypertensive subjects displayed elevated whole blood reactive oxygen species levels and loss of NO release during heating, assessed by measuring local plasma nitrite variation. Moreover, plasma levels of EET regioisomers increased during heating in healthy subjects, did not change in hypertensive patients and decreased in diabetic patients. Correlation analysis showed in the overall population that the less NO and EETs bioavailability increases during heating, the more flow-mediated dilatation is reduced. The expression and activity of sEH, measured in isolated peripheral blood mononuclear cells, was elevated in diabetic but not hypertensive patients, leading to increased EETs conversion to DHETs. Finally, hyperglycemic and hyperinsulinemic euglycemic clamps induced a decrease in flow-mediated dilatation in healthy subjects and this was associated with an altered EETs release during heating. Conclusions These results demonstrate that an increased EETs degradation by sEH and altered NO bioavailability are associated with conduit artery endothelial dysfunction in type 2 diabetic patients independently from their hypertensive status. The hyperinsulinemic and hyperglycemic state in these patients may contribute to these alterations. Trial registration NCT02311075. Registered December 8, 2014. Electronic supplementary material The online version of this article (10.1186/s12933-019-0843-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Duflot
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen Cedex, France.,Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000, Rouen, France.,Laboratory of Pharmacokinetics, Toxicology and Pharmacogenetics, Rouen University Hospital, 76000, Rouen, France
| | | | - Clothilde Roche
- Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000, Rouen, France
| | - Michèle Iacob
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen Cedex, France
| | - Julien Wils
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen Cedex, France.,Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000, Rouen, France
| | | | | | - Matthieu Leuillier
- Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000, Rouen, France
| | - Sylvanie Renet
- Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000, Rouen, France
| | - Dongyang Li
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, Davis, CA, 95616, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, Davis, CA, 95616, USA
| | - Fabien Lamoureux
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen Cedex, France.,Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000, Rouen, France.,Laboratory of Pharmacokinetics, Toxicology and Pharmacogenetics, Rouen University Hospital, 76000, Rouen, France
| | - Vincent Richard
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen Cedex, France.,Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000, Rouen, France
| | - Gaëtan Prévost
- Department of Endocrinology, Rouen University Hospital, 76000, Rouen, France.,Normandie Univ, UNIROUEN, INSERM U1239, 76000, Rouen, France
| | - Robinson Joannidès
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen Cedex, France.,Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000, Rouen, France.,Centre d'Investigation Clinique (CIC)-INSERM 1404, Rouen University Hospital, 76000, Rouen, France
| | - Jérémy Bellien
- Department of Pharmacology, Rouen University Hospital, 76000, Rouen Cedex, France. .,Normandie Univ, UNIROUEN, INSERM U1096, FHU REMOD-VHF, 76000, Rouen, France. .,Centre d'Investigation Clinique (CIC)-INSERM 1404, Rouen University Hospital, 76000, Rouen, France.
| |
Collapse
|
17
|
Abstract
Therapeutics for arachidonic acid pathways began with the development of non-steroidal anti-inflammatory drugs that inhibit cyclooxygenase (COX). The enzymatic pathways and arachidonic acid metabolites and respective receptors have been successfully targeted and therapeutics developed for pain, inflammation, pulmonary and cardiovascular diseases. These drugs target the COX and lipoxygenase pathways but not the third branch for arachidonic acid metabolism, the cytochrome P450 (CYP) pathway. Small molecule compounds targeting enzymes and CYP epoxy-fatty acid metabolites have evolved rapidly over the last two decades. These therapeutics have primarily focused on inhibiting soluble epoxide hydrolase (sEH) or agonist mimetics for epoxyeicosatrienoic acids (EET). Based on preclinical animal model studies and human studies, major therapeutic indications for these sEH inhibitors and EET mimics/analogs are renal and cardiovascular diseases. Novel small molecules that inhibit sEH have advanced to human clinical trials and demonstrate promise for cardiovascular diseases. Challenges remain for sEH inhibitor and EET analog drug development; however, there is a high likelihood that a drug that acts on this third branch of arachidonic acid metabolism will be utilized to treat a cardiovascular or kidney disease in the next decade.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
18
|
Yuan X, Wu Q, Liu X, Zhang H, Xiu R. Transcriptomic profile analysis of brain microvascular pericytes in spontaneously hypertensive rats by RNA-Seq. Am J Transl Res 2018; 10:2372-2386. [PMID: 30210677 PMCID: PMC6129547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Changes in the structure and function of micro-vessels is the pathogenic basis of organ damage in cardiovascular and cerebrovascular diseases. Microcirculation is primarily affected in hypertension, resulting in increased vascular resistance. Pericytes are contractile cells that are embedded in the basement membrane of capillaries, and regulate endothelial cell membrane maturation, capillary blood flow, cell debris removal, and stability of endothelial cells. However, the exact role of brain microvascular pericytes in the pathogenesis of hypertension has not been elucidated. METHODS Brain microvascular pericytes were isolated from spontaneously hypertensive rats (SHR) and wild type Wistar Kyoto (WKY) rats. The transcriptomes of SHR and WKY pericytes were analyzed by RNA-Seq, and the differentially expressed genes (DEGs) were screened by Ballgown, and Student's t test was used to be used to compare differences between groups. DAVID was used for the GO-enrichment analysis and KEGG pathway analysis of the DEGs, and an interaction network between the significant signaling pathways and DEGs was constructed. RESULTS A total of 1356 DEGs were identified between the WKY and the SHR group pericytes (P value < 0.05, Fold change > 1.5), of which 733 were upregulated and 623 downregulated. The genes with greatest betweenness centrality values were Itgb1, Vcam-1 and MMP-9. Based on KEGG analysis, 34 interacting signaling pathways and 43 interacting genes were screened, and MAPK, p53, Wnt, Jak-STAT, TGF-beta, VEGF and PPAR signaling pathways were the key nodes. CONCLUSIONS Several DEGs and signaling pathways were identified in the brain microvascular pericytes of SHR rats compared to the WKY rats. Our findings will lay the foundation to study the role of brain microvascular pericytes in the development of spontaneous hypertension.
Collapse
Affiliation(s)
- Xiaochen Yuan
- Key Laboratory for Microcirculation, Ministry of HealthBeijing, China
- Institute of Microcirculation, Chinese Academy Medical Sciences & Pecking Union Medical CollegeBeijing, China
| | - Qingbin Wu
- Key Laboratory for Microcirculation, Ministry of HealthBeijing, China
- Institute of Microcirculation, Chinese Academy Medical Sciences & Pecking Union Medical CollegeBeijing, China
| | - Xueting Liu
- Key Laboratory for Microcirculation, Ministry of HealthBeijing, China
- Institute of Microcirculation, Chinese Academy Medical Sciences & Pecking Union Medical CollegeBeijing, China
| | - Honggang Zhang
- Key Laboratory for Microcirculation, Ministry of HealthBeijing, China
- Institute of Microcirculation, Chinese Academy Medical Sciences & Pecking Union Medical CollegeBeijing, China
| | - Ruijuan Xiu
- Key Laboratory for Microcirculation, Ministry of HealthBeijing, China
- Institute of Microcirculation, Chinese Academy Medical Sciences & Pecking Union Medical CollegeBeijing, China
| |
Collapse
|
19
|
[Cardiovascular consequences of chronic kidney disease, impact of modulation of epoxyeicosatrienoic acids]. Ann Cardiol Angeiol (Paris) 2018; 67:141-148. [PMID: 29793671 DOI: 10.1016/j.ancard.2018.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 11/22/2022]
Abstract
Cardiovascular events are more prevalent in chronic kidney disease than in the general population, being the main cause of morbi-mortality. The physiopathology explaining this association remains complex. Thus, research for new therapies to prevent cardiovascular events in chronic kidney disease is a major issue. Epoxyeicosatrienoic acids, products of the arachidonic acid metabolism, are endothelium-derived hyperpolarizing factors with vasodilatory, anti-inflammatory, thrombolytic, pro-angiogenic and anti-apoptotic properties. A decrease in the bioavailability of epoxyeicosatrienoic acids has been observed in many cardiovascular diseases such as hypertension, myocardial infarction or diabetes. Moreover, human studies of genetic polymorphisms of soluble epoxide hydrolase, the enzyme degrading epoxyeicoatrienoic acids, have shown that allelic variants related to an increase in its activity is associated with higher risk of cardiovascular events. Modulation of epoxyeicosatrienoic acids by soluble epoxide hydrolase inhibitors in some cardiovascular diseases induces structural improvements in the heart, vessels and kidneys, including decrease in cardiomyocyte hypertrophy, reduction in cardiac and renal interstitial fibrosis, improvement in renal hemodynamics, and prevention of endothelial dysfunction. In this context, increasing the bioavailability of epoxyeicosatrienoic acids appears to be an interesting therapeutic option in the prevention of cardiovascular events related to chronic kidney disease.
Collapse
|
20
|
Duan L, Liu W, Zhang P, Liu S, Liu X, Sang M, Liu L, Lin H, Sang Z. Salt Intake of Lactating Women as Assessed by Modified Food Weighted Records. J Am Coll Nutr 2018; 37:614-619. [PMID: 29667517 DOI: 10.1080/07315724.2018.1454354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE High salt intake among lactating women can increase the risk of hypertension and cardiovascular disease in infants/offspring. However, considering the limited salt intake data in lactating women, the aims of this study were to compare the salt intake assessed by modified food weighted records (FWR) with that estimated by 24-h urinary sodium excretion and to investigate the salt intake of lactating women. METHODS In total, 30 lactating women aged 20-39 years who were 2 to 4 months postpartum were recruited from the cities of Tianjin and Luoyang in China. The household salt intakes of the lactating women were collected by modified FWR for 3 days. Information on the gender, age, eating behaviours and labour intensity of the family members and guests dining at home during the 3 days was recorded. Meanwhile, 24-h urine samples of lactating women were collected. RESULTS The salt intakes of the lactating women estimated by modified FWR and 24-h urinary sodium excretion were 8.50 ± 5.32 g/d and 9.34±3.74 g/d (t=-1.29, P=0.207), respectively, which exceeded the WHO recommendation of 5 g/d. There was a significant correlation (r=0.628, P < 0.001) between the salt intakes assessed by the two methods. A Bland-Altman plot showed no significant mean difference between the two methods (salt intake measured by 24-h urinary sodium excretion-salt intake assessed by modified FWR=0.46 g/d, P=0.207). CONCLUSIONS The modified FWR is a reliable tool to assess the salt intake of lactating women. The salt intake of lactating women in China remains higher than the WHO recommendation and should be restricted through further efforts.
Collapse
Affiliation(s)
- Lijun Duan
- a Department of endocrinology , Tianjin First Center Hospital , Tianjin , China
| | - Wendi Liu
- b Department of Nutrition and Food Hygiene , School of Public Health, Tianjin Medical University , Tianjin , China
| | - Peng Zhang
- b Department of Nutrition and Food Hygiene , School of Public Health, Tianjin Medical University , Tianjin , China
| | - Shiyan Liu
- b Department of Nutrition and Food Hygiene , School of Public Health, Tianjin Medical University , Tianjin , China
| | - Xiaotong Liu
- b Department of Nutrition and Food Hygiene , School of Public Health, Tianjin Medical University , Tianjin , China
| | - Maocheng Sang
- b Department of Nutrition and Food Hygiene , School of Public Health, Tianjin Medical University , Tianjin , China
| | - Lu Liu
- b Department of Nutrition and Food Hygiene , School of Public Health, Tianjin Medical University , Tianjin , China
| | - Haiyue Lin
- b Department of Nutrition and Food Hygiene , School of Public Health, Tianjin Medical University , Tianjin , China
| | - Zhongna Sang
- b Department of Nutrition and Food Hygiene , School of Public Health, Tianjin Medical University , Tianjin , China
| |
Collapse
|
21
|
Elijovich F, Milne GL, Brown NJ, Laniado-Schwartzman M, Laffer CL. Two Pools of Epoxyeicosatrienoic Acids in Humans: Alterations in Salt-Sensitive Normotensive Subjects. Hypertension 2017; 71:346-355. [PMID: 29279315 DOI: 10.1161/hypertensionaha.117.10392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/14/2017] [Accepted: 11/28/2017] [Indexed: 11/16/2022]
Abstract
We measured epoxyeicosatrienoic acids (EETs) and dihydroxyeicosatrienoic acids (DHETs) in 21 normotensive subjects classified as salt resistant (13) or salt sensitive (8) with an inpatient protocol of salt loading (460 mEq Na+/24 hours, HiNa) and depletion (10 mEq Na+/24 hours+furosemide 40 mg×3, LoNa). No urine EETs were detected; hence, enzyme linked innumosorbent assay 14,15-DHETs (dihydroxyeicosatrienoic acids) were considered the total converted 14,15-urine pool. We report ultra-performance liquid chromatography/tandem mass spectrometry plasma EETs, DHETs, and their sum (plasma total pool) for the 3 regioisomers (8,9-, 11,12-, 14,15-) and their sum (08,15-). In salt-resistant subjects, urine total pool was unchanged by HiNa, decreased by LoNa, and correlated with urine sodium excretion, fractional excretion of Na+, and Na+/K+ ratio for the 3 days of the experiment combined (P<0.03). In contrast, plasma total pool increased in LoNa and did not correlate with natriuresis or Na+/K+ ratio but showed correlations between EETs, blood pressures, and catecholamines and between DHETs and aldosterone (P<0.03). Urine total pool of salt-sensitive was lower than that of salt-resistant subjects in certain phases of the experiment, lacked responses to changes in salt balance, and exhibited limited correlations with natriuresis and Na+/K+ ratio during LoNa only. Plasma total pool of salt-sensitive was lower than in salt-resistant subjects and did not correlate with blood pressures or aldosterone but did with catecholamines. We conclude that the urine total pool reflects a renal pool involved in regulation of natriuresis, whereas the plasma total pools are of systemic origin, uninvolved in Na+ excretion, perhaps contributing to regulation of vascular tone. Data suggest that abnormalities in EETs in salt-sensitive subjects participate in their renal or vascular dysfunction, which has potential therapeutic implications.
Collapse
Affiliation(s)
- Fernando Elijovich
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (F.E., G.L.M., N.J.B., C.L.L.); and Department of Pharmacology, New York Medical College, Valhalla (M.L.-S.).
| | - Ginger L Milne
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (F.E., G.L.M., N.J.B., C.L.L.); and Department of Pharmacology, New York Medical College, Valhalla (M.L.-S.)
| | - Nancy J Brown
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (F.E., G.L.M., N.J.B., C.L.L.); and Department of Pharmacology, New York Medical College, Valhalla (M.L.-S.)
| | - Michal Laniado-Schwartzman
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (F.E., G.L.M., N.J.B., C.L.L.); and Department of Pharmacology, New York Medical College, Valhalla (M.L.-S.)
| | - Cheryl L Laffer
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (F.E., G.L.M., N.J.B., C.L.L.); and Department of Pharmacology, New York Medical College, Valhalla (M.L.-S.)
| |
Collapse
|
22
|
Pitynski-Miller D, Ross M, Schmill M, Schambow R, Fuller T, Flynn FW, Skinner DC. A high salt diet inhibits obesity and delays puberty in the female rat. Int J Obes (Lond) 2017; 41:1685-1692. [PMID: 28674441 PMCID: PMC5675756 DOI: 10.1038/ijo.2017.154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/30/2017] [Accepted: 06/22/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND/OBJECTIVES Processed foods are considered major contributors to the worldwide obesity epidemic. In addition to high sugar and fat contents, processed foods contain large amounts of salt. Owing to the correlations with rising adiposity, salt has recently been proposed to be obesogenic. This study investigated three hypotheses: (i) high salt contributes to weight gain and adiposity in juvenile female rats, (ii) puberty onset would be altered because salt is known to affect neuronal systems involved in activating the reproductive system, and (iii) enhanced adiposity will act synergistically with salt to drive early puberty onset. DESIGN Female weanling rats (post-natal day 21, n=105) were fed a low fat/low salt diet, low fat/high salt diet, high fat/low salt diet or a high salt/high fat diet for 24 days. Metabolic measures, including weight gain, food intake, fecal output, activity and temperature were recorded in subsets of animals. RESULTS Body weight, retroperitoneal and perirenal fat pad weight, and adipocyte size were all lower in animals fed high fat/high salt compared with animals fed high fat alone. Leptin levels were reduced in high fat/high salt fed animals compared with high fat/low salt-fed animals. Daily calorie intake was higher initially but declined with adjusted food intake and was not different among groups after 5 days. Osmolality and corticosterone were not different among groups. Fecal analysis showed excess fat excretion and a decreased digestive efficiency in animals fed high fat/low salt but not in animals fed high fat/high salt. Although respiratory exchange ratio was reduced by high dietary fat or salt, aerobic-resting metabolic rate was not affected by the diet. High salt delayed puberty onset, regardless of dietary fat content. CONCLUSIONS Salt delays puberty and prevents the obesogenic effect of a high fat diet. The reduced weight gain evident in high salt-fed animals is not due to differences in food intake or digestive efficiency.
Collapse
Affiliation(s)
- Dori Pitynski-Miller
- Neuroscience Program, 1000 E University Ave, University of Wyoming, Laramie, WY 82071
| | - Micah Ross
- Department of Zoology & Physiology, 1000 E University Ave, University of Wyoming, Laramie, WY 82071
| | - Margaret Schmill
- Department of Zoology & Physiology, 1000 E University Ave, University of Wyoming, Laramie, WY 82071
| | - Rachel Schambow
- Department of Zoology & Physiology, 1000 E University Ave, University of Wyoming, Laramie, WY 82071
| | - Teresa Fuller
- Department of Zoology & Physiology, 1000 E University Ave, University of Wyoming, Laramie, WY 82071
| | - Francis W. Flynn
- Neuroscience Program, 1000 E University Ave, University of Wyoming, Laramie, WY 82071
- Department of Zoology & Physiology, 1000 E University Ave, University of Wyoming, Laramie, WY 82071
| | - Donal C. Skinner
- Neuroscience Program, 1000 E University Ave, University of Wyoming, Laramie, WY 82071
- Department of Zoology & Physiology, 1000 E University Ave, University of Wyoming, Laramie, WY 82071
| |
Collapse
|
23
|
Fan F, Roman RJ. Effect of Cytochrome P450 Metabolites of Arachidonic Acid in Nephrology. J Am Soc Nephrol 2017; 28:2845-2855. [PMID: 28701518 DOI: 10.1681/asn.2017030252] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Thirty-five years ago, a third pathway for the metabolism of arachidonic acid by cytochrome P450 enzymes emerged. Subsequent work revealed that 20-hydroxyeicosatetraenoic and epoxyeicosatrienoic acids formed by these pathways have essential roles in the regulation of renal tubular and vascular function. Sequence variants in the genes that produce 20-hydroxyeicosatetraenoic acid are associated with hypertension in humans, whereas the evidence supporting a role for variants in the genes that alter levels of epoxyeicosatrienoic acids is less convincing. Studies in animal models suggest that changes in the production of cytochrome P450 eicosanoids alter BP. However, the mechanisms involved remain controversial, especially for 20-hydroxyeicosatetraenoic acid, which has both vasoconstrictive and natriuretic actions. Epoxyeicosatrienoic acids are vasodilators with anti-inflammatory properties that oppose the development of hypertension and CKD; 20-hydroxyeicosatetraenoic acid levels are elevated after renal ischemia and may protect against injury. Levels of this eicosanoid are also elevated in polycystic kidney disease and may contribute to cyst formation. Our review summarizes the emerging evidence that cytochrome P450 eicosanoids have a role in the pathogenesis of hypertension, polycystic kidney disease, AKI, and CKD.
Collapse
Affiliation(s)
- Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
24
|
Africa CWJ, Abrantes PMDS. Candida antifungal drug resistance in sub-Saharan African populations: A systematic review. F1000Res 2016; 5:2832. [PMID: 28154753 PMCID: PMC5247777 DOI: 10.12688/f1000research.10327.2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/17/2017] [Indexed: 01/16/2023] Open
Abstract
Background:
Candida infections are responsible for increased morbidity and mortality rates in at-risk patients, especially in developing countries where there is limited access to antifungal drugs and a high burden of HIV co-infection.
Objectives: This study aimed to identify antifungal drug resistance patterns within the subcontinent of Africa.
Methods: A literature search was conducted on published studies that employed antifungal susceptibility testing on clinical
Candida isolates from sub-Saharan African countries using Pubmed and Google Scholar.
Results: A total of 21 studies from 8 countries constituted this review. Only studies conducted in sub-Saharan Africa and employing antifungal drug susceptibility testing were included. Regional differences in
Candida species prevalence and resistance patterns were identified.
Discussion: The outcomes of this review highlight the need for a revision of antifungal therapy guidelines in regions most affected by
Candida drug resistance. Better controls in antimicrobial drug distribution and the implementation of regional antimicrobial susceptibility surveillance programmes are required in order to reduce the high
Candida drug resistance levels seen to be emerging in sub-Saharan Africa.
Collapse
Affiliation(s)
- Charlene Wilma Joyce Africa
- Microbial Endogenous Infections (MEnIS) Research Laboratories, Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| | - Pedro Miguel Dos Santos Abrantes
- Microbial Endogenous Infections (MEnIS) Research Laboratories, Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
25
|
Mao LM, Qi XW, Hao JH, Liu HF, Xu QH, Bu PL. In vitro, ex vivo and in vivo anti-hypertensive activity of Chrysophyllum cainito L. extract. Int J Clin Exp Med 2015; 8:17912-17921. [PMID: 26770385 PMCID: PMC4694285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 08/10/2015] [Indexed: 06/05/2023]
Abstract
Chrysophyllum cainito L., a traditional herbal medicine, could have the potential for management of hypertension due to presence of polyphenolic compounds. The extracts and fractions of the pulp of plant were evaluated for in vitro (inhibition of angiotensin I converting enzyme/ACE assay), ex vivo (isolated aorta relaxation assay) and in vivo (salt induced hypertensive rat assay). The alcoholic and aqueous extract (ALE and AQE respectively) of fruit of plant C. cainito was having 14.8 and 9.2% yield respectively. The fractionation with ethyl alcohol (EAF) and butanol (BTF) yielded 2.52 & 2.17% respectively from ALE and 0.46 & 0.31% respectively from AQE with respect to fruit pulp dry weight. More phenolic content was found in ALE (3.75±0.15 mg gallic acid equivalent or GAE g(-1) of dry power of fruit pulp) compared to AQE and maximum in ethyl acetate fraction of ALE (ALE-EAF) (2.32±0.21 mg GAE g(-1) of dry power of fruit pulp) among all fractions. ACE inhibition activity was found to be maximum in ALE-EAF 62.5±7.34%. While ex vivo study using isolated tissue of aorta showed again showed maximum activity (62.82±6.19 and 46.47±8.32% relaxation with 50 µg mL(-1) and 10 µg mL(-1) GAE concentration respectively). ALE-EAF reduced the elevated arterial pressure of salt induced hypertensive rat significantly to the level of normotensive animal group. Results of ALE-EAF have shown its potential as a source for novel constituent for the treatment hypertension and should further be studied for isolation of specific constituent for more effectiveness.
Collapse
Affiliation(s)
- Li-Mei Mao
- Department of Cardiology, Qilu Hospital of Shandong UniversityJinan 250012, Shandong Province, China
- Department of Health, Liaocheng People’s Hospital of Taishan Medical UniversityLiaocheng 252000, Shandong Province, China
| | - Xue-Wen Qi
- Department of Cardiology, Liaocheng People’s Hospital of Taishan Medical UniversityLiaocheng 252000, Shandong Province, China
| | - Ji-Heng Hao
- Department of Neurosurgery, Liaocheng People’s Hospital of Taishan Medical UniversityLiaocheng 252000, Shandong Province, China
| | - Hai-Feng Liu
- Department of Health, Liaocheng People’s Hospital of Taishan Medical UniversityLiaocheng 252000, Shandong Province, China
| | - Qing-Hua Xu
- Department of Health, Liaocheng People’s Hospital of Taishan Medical UniversityLiaocheng 252000, Shandong Province, China
| | - Pei-Li Bu
- Department of Cardiology, Qilu Hospital of Shandong UniversityJinan 250012, Shandong Province, China
| |
Collapse
|
26
|
Capdevila JH, Wang W, Falck JR. Arachidonic acid monooxygenase: Genetic and biochemical approaches to physiological/pathophysiological relevance. Prostaglandins Other Lipid Mediat 2015; 120:40-9. [PMID: 25986599 DOI: 10.1016/j.prostaglandins.2015.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/19/2015] [Accepted: 05/06/2015] [Indexed: 12/22/2022]
Abstract
Studies with rat genetic models of hypertension pointed to roles for the CYP2C and CYP4A arachidonic acid epoxygenases and ω-hydroxylases in tubular transport, hemodynamics, and blood pressure control. Further progress in defining their physiological functions and significance to human hypertension requires conclusive identifications of the relevant genes and proteins. Here we discuss unequivocal evidence of roles for the murine Cyp4a14, Cyp4a10, and Cyp2c44 genes in the pathophysiology of hypertension by showing that: (a) Cyp4a14(-/-) mice develop sexually dimorphic hypertension associated with renal vasoconstriction, and up-regulated expression of Cyp4a12a and pro-hypertensive 20-hydroxyeicosatetraenoic acid (20-HETE) levels, and b) Cyp4a10(-/-) and Cyp2c44(-/-) mice develop salt sensitive hypertension linked to downregulation or lack of the Cyp2c44 epoxygenase, reductions in anti-hypertensive epoxyeicosatrienoic acids (EETs), and increases in distal sodium reabsorption. Based on these studies, the human CYP4A11 and CYPs 2C8 and 2C9 genes and their products are identified as potential candidates for studies of the molecular basis of human hypertension.
Collapse
Affiliation(s)
- Jorge H Capdevila
- Department of Medicine, Vanderbilt University Medical School, Nashville, TN 37232, USA.
| | - Wenhui Wang
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | - John R Falck
- Department of Biochemistry, UT Southwestern Medical Center , Dallas, TX 75390, USA.
| |
Collapse
|
27
|
Maternal salt and fat intake causes hypertension and sustained endothelial dysfunction in fetal, weanling and adult male resistance vessels. Sci Rep 2015; 5:9753. [PMID: 25953742 PMCID: PMC4424661 DOI: 10.1038/srep09753] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 03/18/2015] [Indexed: 01/09/2023] Open
Abstract
Maternal salt and fat intake can independently programme adult cardiovascular status, increasing risk of cardiovascular disease in offspring. Despite its relevance to modern western-style dietary habits, the interaction between increased maternal salt and fat intake has not been examined. Female virgin Sprague-Dawley rats were fed, a standard control diet (CD) (10% kcal fat, 1% NaCl), High-fat diet (HF) (45% kcal fat, 1% NaCl), High-salt diet (SD) (10% kcal fat, 4% NaCl), High-fat high-salt diet (HFSD) (45% kcal fat, 4% NaCl) prior to pregnancy, during pregnancy and throughout lactation. Fetal, weanling and adult vessels were mounted on a pressure myograph at fetal day 18, weaning day 21 and day 135 of adulthood. Increased blood pressure in SD, HFD and HFSD male offspring at day 80 and 135 of age was consistent with perturbed vascular function in fetal, weanling and adult vessels. Maternal salt intake reduced EDHF and calcium-mediated vasodilation, maternal fat reduced NO pathways and maternal fat and salt intake, a combination of the two pathways. Adult offspring cardiovascular disease risk may, in part, relate to vascular adaptations caused by maternal salt and/or fat intake during pregnancy, leading to persistent vascular dysfunction and sustained higher resting blood pressure throughout life.
Collapse
|
28
|
Affiliation(s)
- John D Imig
- From the Department of Pharmacology and Toxicology, Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee.
| |
Collapse
|
29
|
Chen C, Wang DW. Cytochrome P450-CYP2 Family-Epoxygenase Role in Inflammation and Cancer. CYTOCHROME P450 FUNCTION AND PHARMACOLOGICAL ROLES IN INFLAMMATION AND CANCER 2015; 74:193-221. [DOI: 10.1016/bs.apha.2015.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Abstract
PURPOSE OF REVIEW Cytochrome (CYP) P450 metabolites of arachidonic acid, 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) contribute to the regulation of renal tubular and vascular function. This review highlights the results of the recent genetic studies in humans and rodent models, indicating that these eicosanoids participate in the control of blood pressure (BP), chronic kidney disease (CKD), renal ischemia-reperfusion injury (IRI) and polycystic kidney disease (PKD). RECENT FINDINGS Endogenous 20-HETE has been reported to play an essential role in the myogenic and tubuloglomerular feedback responses in the afferent arteriole, and a deficiency of 20-HETE contributes to the development of hypertension and renal injury in Dahl S rats. Mutations in CYP4A11 and CYP4F2 have been linked to elevated BP in humans. EETs have been shown to regulate epithelial sodium channel in the collecting duct, lower BP and have renoprotective properties. 20-HETE also opposes the development of CKD and IRI, and may play a role in PKD. SUMMARY These studies indicate that CYP P450 metabolites of arachidonic acid play an important role in the control of BP, CKD, AKI and PKD. Drugs targeting these pathways could be useful in the treatment of IRI and CKD.
Collapse
Affiliation(s)
- Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | | |
Collapse
|
31
|
Abstract
High salt (4% NaCl, HS) diet modulates adenosine-induced vascular response through adenosine A(2A) receptor (A(2A)AR). Evidence suggests that A(2A)AR stimulates cyp450-epoxygenases, leading to epoxyeicosatrienoic acids (EETs) generation. The aim of this study was to understand the vascular reactivity to HS and underlying signaling mechanism in the presence or absence of A(2A)AR. Therefore, we hypothesized that HS enhances adenosine-induced relaxation through EETs in A(2A)AR⁺/⁺, but exaggerates contraction in A(2A)AR⁻/⁻. Organ bath and Western blot experiments were conducted in HS and normal salt (NS, 0.18% NaCl)-fed A(2A)AR⁺/⁺ and A(2A)AR⁻/⁻ mice aorta. HS produced concentration-dependent relaxation to non-selective adenosine analog, NECA in A(2A)AR⁺/⁺, whereas contraction was observed in A(2A)AR⁻/⁻ mice and this was attenuated by A₁AR antagonist (DPCPX). CGS 21680 (selective A(2A)AR agonist) enhanced relaxation in HS-A(2A)AR⁺/⁺ versus NS-A(2A)AR⁺/⁺, which was blocked by EETs antagonist (14,15-EEZE). Compared with NS, HS significantly upregulated the expression of vasodilators A(2A)AR and cyp2c29, whereas vasoconstrictors A₁AR and cyp4a in A(2A)AR⁺/⁺ were downregulated. In A(2A)AR⁻/⁻ mice, however, HS significantly downregulated the expression of cyp2c29, whereas A₁AR and cyp4a were upregulated compared with A(2A)AR⁺/⁺ mice. Hence, our data suggest that in A(2A)AR⁺/⁺, HS enhances A(2A)AR-induced relaxation through increased cyp-expoxygenases-derived EETs and decreased A₁AR levels, whereas in A(2A)AR⁻/⁻, HS exaggerates contraction through decreased cyp-epoxygenases and increased A₁AR levels.
Collapse
|
32
|
Sato Y, Sato W, Maruyama S, Wilcox CS, Falck JR, Masuda T, Kosugi T, Kojima H, Maeda K, Furuhashi K, Ando M, Imai E, Matsuo S, Kadomatsu K. Midkine Regulates BP through Cytochrome P450-Derived Eicosanoids. J Am Soc Nephrol 2014; 26:1806-15. [PMID: 25377079 DOI: 10.1681/asn.2013121259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 09/22/2014] [Indexed: 01/25/2023] Open
Abstract
The effects of endothelium-derived hyperpolarizing factors have been attributed to cytochrome P450-derived epoxyeicosatrienoic acids (EETs), but the regulation and role of EETs in endothelial dysfunction remain largely unexplored. Hypertension is a primary risk factor for renal dysfunction, which is frequently accompanied by various systemic diseases induced by endothelial dysfunction in the microcirculation. We previously reported that the endothelial growth factor midkine (MK) enhances hypertension in a model of CKD. Here, we investigated the hypothesis that MK regulates EET activity and thereby BP. MK gene-deleted mice were resistant to hypertension and developed less glomerulosclerosis and proteinuria after administration of a nitric oxide synthase (NOS) inhibitor in the setting of uninephrectomy. The hypertension observed in uninephrectomized wild-type mice after NOS inhibition was ameliorated by anti-MK antibody. MK-deficient mice produced higher amounts of EETs, and EETs dominantly regulated BP in these mice. Furthermore, MK administration to MK-deficient mice recapitulated the BP control observed in wild-type mice. EETs also dominantly regulated renal blood flow, which may influence renal function, in MK-deficient mice. Taken together, these results suggest that the MK/EET pathway is physiologically engaged in BP control and could be a target for the treatment of hypertension complicated by endothelial dysfunction.
Collapse
Affiliation(s)
- Yuka Sato
- Departments of Biochemistry and Nephrology
| | | | | | - Christopher S Wilcox
- Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, DC; and
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | | | | | | | - Masahiko Ando
- Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | |
Collapse
|
33
|
Wang WH, Zhang C, Lin DH, Wang L, Graves JP, Zeldin DC, Capdevila JH. Cyp2c44 epoxygenase in the collecting duct is essential for the high K+ intake-induced antihypertensive effect. Am J Physiol Renal Physiol 2014; 307:F453-60. [PMID: 24966089 DOI: 10.1152/ajprenal.00123.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cytochrome P-450, family 2, subfamily c, polypeptide 44 (Cyp2c44) epoxygenase metabolizes arachidonic acid (AA) to epoxyeicosatrienoic acids (EETs) in kidney and vascular tissues. In the present study, we used real-time quantitative PCR techniques to examine the effect of high salt or high K(+) (HK) intake on the expression of Cyp2c44, a major Cyp2c epoxygenase in the mouse kidney. We detected Cyp2c44 in the proximal convoluted tubule, thick ascending limb, distal convoluted tubule (DCT)/connecting tubule (CNT), and collecting duct (CD). A high-salt diet increased the expression of Cyp2c44 in the thick ascending limb and DCT/CNT but not in the proximal convoluted tubule and CD. In contrast, an increase in dietary K(+) intake augmented Cyp2c44 expression only in the DCT/CNT and CD. Neither high salt nor HK intake had a significant effect on the blood pressure (BP) of wild-type mice. However, HK but not high salt intake increased BP in CD-specific, Cyp2c44 conditional knockout (KO) mice. Amiloride, an epithelial Na(+) channel (ENaC) inhibitor, normalized the BP of KO mice fed HK diets, suggesting that lack of Cyp2c44 in the CD enhances ENaC activity and increases Na(+) absorption in KO mice fed HK diets. This notion was supported by metabolic cage experiments demonstrating that renal Na(+) excretion was compromised in KO mice fed HK diets. Also, patch-clamp experiments demonstrated that 11,12-EET, a major Cyp2c44 product, but not AA inhibited ENaC activity in the cortical CD of KO mice. We conclude that Cyp2c44 in the CD is required for preventing the excessive Na(+) absorption induced by HK intake by inhibition of ENaC and facilitating renal Na(+) excretion.
Collapse
Affiliation(s)
- Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York;
| | - Chengbiao Zhang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Lijun Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Joan P Graves
- Division of Intramural Research, National Institute of Environmental Health Science, Research Triangle Park, North Carolina; and
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Science, Research Triangle Park, North Carolina; and
| | | |
Collapse
|
34
|
Elbarbry F, Vermehren-Schmaedick A, Balkowiec A. Modulation of arachidonic Acid metabolism in the rat kidney by sulforaphane: implications for regulation of blood pressure. ISRN PHARMACOLOGY 2014; 2014:683508. [PMID: 24734194 PMCID: PMC3964756 DOI: 10.1155/2014/683508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/09/2014] [Indexed: 06/03/2023]
Abstract
Background. We investigated the effects of sulforaphane (SF), the main active isothiocyanate in cruciferous vegetables, on arachidonic acid (AA) metabolism in the kidney and its effect on arterial blood pressure, using spontaneously hypertensive rats (SHR) as models. Methods. Rats were treated for 8 weeks with either drinking water alone (control) or SF (20 or 40 mg/kg) added to drinking water. Mean arterial pressure (MAP) was measured at 7-day intervals throughout the study. At the end of treatment rats were euthanized, and kidneys were harvested to prepare microsomes and measure enzymes involved in regulation of vasoactive metabolites: CYP4A, the key enzyme in the formation of 20-hydroxyeicosatetraenoic acid, and the soluble epoxide hydrolase, which is responsible for the degradation of the vasodilator metabolites such as epoxyeicosatetraenoic acids. Effect of SF on kidney expression of CYP4A was investigated by immunoblotting. Results. We found that treatment with SF leads to significant reductions in both, the expression and activity of renal CYP4A isozymes, as well as the activity of soluble epoxide hydrolase (sEH). Consistent with these data, we have found that treatment with SF resisted the progressive rise in MAP in the developing SHR in a dose-dependent manner. Conclusion. This is the first demonstration that SF modulates the metabolism of AA by both P450 enzymes and sEH in SHR rats. This may represent a novel mechanism by which SF protects SHR rats against the progressive rise in blood pressure.
Collapse
Affiliation(s)
- Fawzy Elbarbry
- School of Pharmacy, Pacific University Oregon, 222 SE 8th Avenue, Hillsboro, OR 97123, USA
| | - Anke Vermehren-Schmaedick
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Agnieszka Balkowiec
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
35
|
Xu M, Ju W, Hao H, Wang G, Li P. Cytochrome P450 2J2: distribution, function, regulation, genetic polymorphisms and clinical significance. Drug Metab Rev 2014; 45:311-52. [PMID: 23865864 DOI: 10.3109/03602532.2013.806537] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cytochrome P450 2J2 (CYP2J2) is an enzyme mainly found in human extrahepatic tissues, with predominant expression in the cardiovascular systems and lower levels in the intestine, kidney, lung, pancreas, brain, liver, etc. During the past 15 years, CYP2J2 has attracted much attention for its epoxygenase activity in arachidonic acid (AA) metabolism. It converts AA to four epoxyeicosatrienoic acids (EETs) that have various biological effects, especially in the cardiovascular systems. In recent publications, CYP2J2 is shown highly expressed in various human tumor cells, and its EET metabolites are demonstrated to implicate in the pathologic development of human cancers. CYP2J2 is also a human CYP that involved in phase I xenobiotics metabolism. Antihistamine drugs and many other compounds were identified as the substrates of CYP2J2, and studies have demonstrated that these substrates have a broad structural diversity. CYP2J2 is found not readily induced by known P450 inducers; however, its expression could be regulated in some pathological conditions, might through the activator protein-1(AP-1), the AP-1-like element and microRNA let-7b. Several genetic mutations in the CYP2J2 gene have been identified in humans, and some of them have been shown to have potential associations with some diseases. With the increasing awareness of its roles in cancer disease and drug metabolism, studies about CYP2J2 are still going on, and various inhibitors of CYP2J2 have been determined. Further studies are needed to delineate the roles of CYP2J2 in disease pathology, drug development and clinical practice.
Collapse
Affiliation(s)
- Meijuan Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | | | | | | | | |
Collapse
|
36
|
Capdevila JH, Pidkovka N, Mei S, Gong Y, Falck JR, Imig JD, Harris RC, Wang W. The Cyp2c44 epoxygenase regulates epithelial sodium channel activity and the blood pressure responses to increased dietary salt. J Biol Chem 2013; 289:4377-86. [PMID: 24368771 DOI: 10.1074/jbc.m113.508416] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hypertension is a major risk factor for cerebral, cardiovascular, and renal disease, and its prevalence and devastating consequences raises a need for new strategies for its early diagnosis and treatment. We show here that lack of a Cyp2c44 epoxygenase causes dietary salt-sensitive hypertension, a common form of the human disease. Cyp2c44(-/-) mice on normal salt diets are normotensive but become hypertensive when fed high salt. Hypertensive Cyp2c44(-/-) mice show a hyperactive kidney epithelial sodium channel (ENaC) and reductions in ERK1/2 and ENaC subunit phosphorylation. The demonstration that amiloride, an ENaC inhibitor, lowers the blood pressure of hypertensive Cyp2c44(-/-) mice identifies a role for the channel in the hypertensive phenotype of the animals. These studies: (a) identify an antihypertensive role for the kidney Cyp2c44 epoxygenase and for its epoxyeicosatrienoic acid (EET) metabolites in the in vivo control of ENaC activity and the activation of mitogenic kinase pathways; (b) provide evidence for a Cyp2c44 epoxygenase, EET-mediated mechanism of ENaC regulation involving an ERK1/2-catalyzed threonine phosphorylation of the channel γ subunit: and (c) characterize a common scientific platform that could explain the seemingly unrelated biological activities attributed to the epoxygenase metabolites in cell proliferation, angiogenesis, channel activity, and blood pressure control. It is expected that these results will serve as a basis for the development of novel strategies for the early diagnosis and treatment of hypertension and of pathophysiologies associated with dysfunctional mitogenic signaling.
Collapse
Affiliation(s)
- Jorge H Capdevila
- From the Department of Medicine, Vanderbilt University, Nashville Tennessee 37232
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Rowland A, Mangoni AA. Cytochrome P450 and ischemic heart disease: current concepts and future directions. Expert Opin Drug Metab Toxicol 2013; 10:191-213. [PMID: 24274646 DOI: 10.1517/17425255.2014.859675] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The P450 enzymes (P450s) mediate the biotransformation of several drugs, steroid hormones, eicosanoids, cholesterol, vitamins, fatty acids and bile acids, many of which affect cardiovascular homeostasis. Experimental studies have demonstrated that several P450s modulate important steps in the pathogenesis of ischemic heart disease (IHD). AREAS COVERED This article discusses the current knowledge on i) the expression of P450s in cardiovascular and renal tissues; ii) the role of P450s in the pathophysiology of IHD, in particular the modulation of blood pressure and cardiac hypertrophy, coronary arterial tone, ischemia-reperfusion injury and the metabolism of cardiovascular drugs; iii) the available evidence from observational studies on the association between P450 gene polymorphisms and risk of myocardial infarction (MI); and iv) suggestions for further research in this area. EXPERT OPINION P450s exert important modulatory effects in experimental models of IHD and MI. However, observational studies have provided conflicting results on the association between P450 genetic polymorphisms and MI. Further, adequately powered studies are required to ascertain the biological and clinical impact of P450s on clinical IHD end-points, that is, fatal and nonfatal MI, revascularization and long-term outcomes post MI. Pharmacogenetic substudies of recently completed cardiovascular clinical trials might represent an alternative strategy in this context.
Collapse
Affiliation(s)
- Andrew Rowland
- Flinders University, School of Medicine, Department of Clinical Pharmacology , Bedford Park, SA 5042 , Australia
| | | |
Collapse
|
38
|
Zhang MZ, Wang Y, Yao B, Gewin L, Wei S, Capdevila JH, Harris RC. Role of epoxyeicosatrienoic acids (EETs) in mediation of dopamine's effects in the kidney. Am J Physiol Renal Physiol 2013; 305:F1680-6. [PMID: 24154693 DOI: 10.1152/ajprenal.00409.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We have recently demonstrated that intrarenal dopamine plays an important role in preventing the development of systemic hypertension. Similarly, renal cytochrome P-450 (CYP)-epoxygenase-derived arachidonic acid metabolites, epoxyeicosatrienoic acids (EETs), also are antihypertensive through inhibiting sodium reabsorption and vasodilation. The potential interaction between renal dopamine and epoxygenase systems was investigated. Catechol-O-methyl-transferase (COMT)(-/-) mice with increased intrarenal dopamine levels and proximal tubule deletion of aromatic amino acid decarboxylase (ptAADC(-/-)) mice with renal dopamine deficiency were treated with a low-salt diet or high-salt diet for 2 wk. Wild-type or Cyp2c44(-/-) mice were treated with gludopa, which selectively increased renal dopamine levels. In low salt-treated mice, urinary EET levels were related to renal dopamine levels, being highest in COMT(-/-) mice and lowest in ptAADC(-/-) mice. In high salt-treated mice, total EET and individual EET levels in both the kidney and urine were also highest in COMT(-/-) mice and lowest in ptAADC(-/-) mice. Selective increases in renal dopamine in response to gludopa administration led to marked increases in both total and all individual EET levels in the kidney without any changes in blood levels. qRT-PCR and immunoblotting indicated that gludopa increased renal Cyp2c44 mRNA and protein levels. Gludopa induced marked increases in urine volume and urinary sodium excretion in wild-type mice. In contrast, gludopa did not induce significant increases in urine volume or urinary sodium excretion in Cyp2c44(-/-) mice. These studies demonstrate that renal EET levels are maintained by intrarenal dopamine, and Cyp2c44-derived EETs play an important role in intrarenal dopamine-induced natriuresis and diuresis.
Collapse
Affiliation(s)
- Ming-Zhi Zhang
- Div. of Nephrology, C3121 MCN, Vanderbilt Univ. School of Medicine and Nashville Veterans Affairs Hospital, Nashville, TN 37232.
| | | | | | | | | | | | | |
Collapse
|
39
|
Wu Z, Lee B, Song KS, Liu KH. Inhibitory Potential of Thelephoric Acid on CYP2J2 Activities in Human Liver Microsomes. ACTA ACUST UNITED AC 2013. [DOI: 10.5352/jls.2013.23.9.1126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Capdevila J, Wang W. Role of cytochrome P450 epoxygenase in regulating renal membrane transport and hypertension. Curr Opin Nephrol Hypertens 2013; 22:163-9. [PMID: 23302865 DOI: 10.1097/mnh.0b013e32835d911e] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Cytochrome P450 (CYP)-epoxygenase is highly expressed in the kidney and its metabolism of arachidonic acid plays important roles in regulating renal Na transport and in modulating vasoactivity in the kidney. In the past several years, progress has been made not only in characterizing the specific CYP-epoxygenases responsible for the regulation of membrane transport and vasoactivity in the kidney but also in exploring the mechanism by which they regulate renal Na transport and vasodilation of preglomerular arterioles. This review summarizes and updates recent progress in this area of research. RECENT FINDINGS CYP-epoxygenase metabolites of arachidonic acid inhibit epithelial Na channel (ENaC) in the cortical collecting duct (CCD), and 11,12-epoxyeicosatrienoic acid (11,12-EET) is mainly responsible for mediating the inhibitory effect on ENaC. Downregulation of CYP2C44 abolishes arachidonic acid mediated inhibition of ENaC and increases ENaC activity. In addition, 11,12-EET stimulates Ca-activated big conductance K channels in the CCD and afferent arterioles smooth muscles. Activation of big conductance K channels by 11,12-EET is responsible for EET-induced vasodilation in preglomerular arterioles. 11,12-EET-induced vasodilation is absent in preglomerular arterioles pretreated with okadaic acid. SUMMARY CYP-epoxygenase mediated suppression of renal Na transport is partially achieved by inhibition of ENaC activity in the CCD and CYP2C44-derived EETs are responsible for inhibition of ENaC. Stimulation of serine/threonine protein phosphatase 2A (PP2A) contributes to 11,12-EET-induced activation of big conductance K channels and vasodilation in preglomerular arterioles.
Collapse
Affiliation(s)
- Jorge Capdevila
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | | |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW The aldosterone/mineralocorticoid receptor system plays an important role in the long-term blood pressure control through Na homeostasis. Its overactivation has been implicated in salt-sensitive hypertension. Excessive salt intake augments the function of mineralocorticoid receptor, despite lowering circulating aldosterone levels, but the mechanism had long been elusive. Recently, Rac1, a member of Rho family small GTP-binding proteins, has emerged as a novel ligand-independent modulator of mineralocorticoid receptor activity. In this review, the roles of Rac1 in the pathogenesis of salt-sensitive hypertension and kidney injury have been summarized. RECENT FINDINGS Genetic engineering studies have highlighted the new aspects of Rac1 and its regulators in salt-sensitive hypertension and cardiac and renal disease. New evidence shows the essential roles of Rac1 in salt-evoked paradoxical mineralocorticoid receptor activation observed in salt-sensitive models and in renal tubular Na reabsorption through reduced nicotinamide-adenine dinucleotide phosphate oxidase-mediated oxidative stress or direct regulation of Na transporters. SUMMARY The emerging concept of 'ligand-independent aberrant mineralocorticoid receptor activation by Rac1' in the pathogenesis of salt-sensitive hypertension and kidney injury has been reviewed. Rac inhibition, in addition to mineralocorticoid receptor blockade and salt restriction, would be a new promising strategy for the treatment of salt-sensitive hypertension.
Collapse
|
42
|
Pidkovka N, Rao R, Mei S, Gong Y, Harris RC, Wang WH, Capdevila JH. Epoxyeicosatrienoic acids (EETs) regulate epithelial sodium channel activity by extracellular signal-regulated kinase 1/2 (ERK1/2)-mediated phosphorylation. J Biol Chem 2013; 288:5223-31. [PMID: 23283969 DOI: 10.1074/jbc.m112.407981] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The epithelial sodium channel (ENaC) participates in the regulation of plasma sodium and volume, and gain of function mutations in the human channel cause salt-sensitive hypertension. Roles for the arachidonic acid epoxygenase metabolites, the epoxyeicosatrienoic acids (EETs), in ENaC activity have been identified; however, their mechanisms of action remain unknown. In polarized M1 cells, 14,15-EET inhibited amiloride-sensitive apical to basolateral sodium transport as effectively as epidermal growth factor (EGF). The EET effects were associated with increased threonine phosphorylation of the ENaC β and γ subunits and abolished by inhibitors of (a) mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal regulated kinases 1 and 2 (MEK/ERK1/2) and (b) EGF receptor signaling. CYP2C44 epoxygenase knockdown blunted the sodium transport effects of EGF, and its 14,15-EET metabolite rescued the knockdown phenotype. The relevance of these findings is indicated by (a) the hypertension that results in mice administered cetuximab, an inhibitor of EGF receptor binding, and (b) immunological data showing an association between the pressure effects of cetuximab and reductions in ENaCγ phosphorylation. These studies (a) identify an ERK1/2-dependent mechanism for ENaC inhibition by 14,15-EET, (b) point to ENaC as a proximal target for EET-activated ERK1/2 mitogenic kinases, (c) characterize a mechanistic commonality between EGF and epoxygenase metabolites as ENaC inhibitors, and (d) suggest a CYP2C epoxygenase-mediated pathway for the regulation of distal sodium transport.
Collapse
Affiliation(s)
- Nataliya Pidkovka
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Imig JD. Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol Rev 2012; 92:101-30. [PMID: 22298653 DOI: 10.1152/physrev.00021.2011] [Citation(s) in RCA: 272] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites that importantly contribute to vascular and cardiac physiology. The contribution of EETs to vascular and cardiac function is further influenced by soluble epoxide hydrolase (sEH) that degrades EETs to diols. Vascular actions of EETs include dilation and angiogenesis. EETs also decrease inflammation and platelet aggregation and in general act to maintain vascular homeostasis. Myocyte contraction and increased coronary blood flow are the two primary EET actions in the heart. EET cell signaling mechanisms are tissue and organ specific and provide significant evidence for the existence of EET receptors. Additionally, pharmacological and genetic manipulations of EETs and sEH have demonstrated a contribution for this metabolic pathway to cardiovascular diseases. Given the impact of EETs to cardiovascular physiology, there is emerging evidence that development of EET-based therapeutics will be beneficial for cardiovascular diseases.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmacology and Toxicology, Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
44
|
Carroll MA. Role of the adenosine(2A) receptor-epoxyeicosatrienoic acid pathway in the development of salt-sensitive hypertension. Prostaglandins Other Lipid Mediat 2011; 98:39-47. [PMID: 22227265 DOI: 10.1016/j.prostaglandins.2011.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/29/2011] [Accepted: 12/09/2011] [Indexed: 01/07/2023]
Abstract
Activation of rat adenosine(2A) receptors (A(2A) R) dilates preglomerular microvessels, an effect mediated by epoxyeicosatrienoic acids (EETs). High salt (HS) intake increases epoxygenase activity and adenosine levels. A greater vasodilator response to a stable adenosine analog, 2-chloroadenosine (2-CA), was seen in kidneys obtained from HS-fed rats which was mediated by increased EET release. Because this pathway is antipressor, we examined the role of the A(2A) R-EET pathway in a genetic model of salt-sensitive hypertension, the Dahl salt-sensitive (SS) rats. Dahl salt resistant (SR) rats fed a HS diet demonstrated a greater renal vasodilator response to 2-CA. In contrast, Dahl SS rats did not exhibit a difference in the vasodilator response to 2-CA whether fed normal salt (NS) or HS diet. In Dahl SR but not Dahl SS rats, HS intake significantly increased purine flux, augmented the protein expression of A(2A) R and cytochrome P450 2C23 and 2C11 epoxygenases, and elevated the renal efflux of EETs. Thus the Dahl SR rat is able to respond to HS intake by recruiting EET formation, whereas the Dahl SS rat appears to have exhausted its ability to increase EET synthesis above the levels observed on NS intake. In vivo inhibition of the A(2A) R-EET pathway in Dahl SR rats fed a HS diet results in reduced renal EETs levels, diminished natriuretic capacity and hypertension, thus supporting a role for the A(2A) R-EET pathway in the adaptive natriuretic response to modulate blood pressure during salt loading. An inability of Dahl SS rats to upregulate the A(2A) R-EET pathway in response to salt loading may contribute to the development of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Mairéad A Carroll
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA. mairead
| |
Collapse
|
45
|
Sun P, Antoun J, Lin DH, Yue P, Gotlinger KH, Capdevila J, Wang WH. Cyp2c44 epoxygenase is essential for preventing the renal sodium absorption during increasing dietary potassium intake. Hypertension 2011; 59:339-47. [PMID: 22184322 DOI: 10.1161/hypertensionaha.111.178475] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aim of this study is to test whether the Cyp2c44 epoxygenase-dependent metabolism of arachidonic acid prevents the hypertensive effect of a high K (HK) intake by inhibiting the epithelial sodium channel (ENaC) activity. A HK intake elevated Cyp2c44 mRNA expression and 11,12-epoxyeicosatrienoic acid levels in the cortical collecting duct in Cyp2c44(+/+) mice (wild-type [wt]). However, an HK intake failed to increase 11,12-epoxyeicosatrienoic acid formation in the cortical collecting ducts of Cyp2c44(-/-) mice. Moreover, increasing K intake enhanced arachidonic acid-induced inhibition of ENaC in the wt but not in Cyp2c44(-/-) mice. In contrast, 11,12-epoxyeicosatrienoic acid, a Cyp2c44 metabolite, inhibited ENaC in the wt and Cyp2c44(-/-) mice. The notion that Cyp2c44 is the epoxygenase responsible for mediating the inhibitory effects of arachidonic acid on ENaC is further suggested by the observation that inhibiting Cyp-epoxygenase increased the whole-cell Na currents in principal cells of wt but not in Cyp2c44(-/-) mice. Feeding mice with an HK diet raised the systemic blood pressures of Cyp2c44(-/-) mice but was without an effect on wt mice. Moreover, application of amiloride abolished the HK-induced hypertension in Cyp2c44(-/-) mice. The HK-induced hypertension of Cyp2c44(-/-) mice was accompanied by decreasing 24-hour urinary Na excretion and increasing the plasma Na concentration, and the effects were absent in wt mice. In contrast, disruption of the Cyp2c44 gene did not alter K excretion. We conclude that Cyp2c44 epoxygenase mediates the inhibitory effect of arachidonic acid on ENaC and that Cyp2c44 functions as an HK-inducible antihypertensive enzyme responsible for inhibiting ENaC activity and Na absorption in the aldosterone-sensitive distal nephron.
Collapse
Affiliation(s)
- Peng Sun
- Department of Pharmacology, New York Medical College, 15 Dana Rd, Valhalla, NY 10595, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Xu X, Zhang XA, Wang DW. The roles of CYP450 epoxygenases and metabolites, epoxyeicosatrienoic acids, in cardiovascular and malignant diseases. Adv Drug Deliv Rev 2011; 63:597-609. [PMID: 21477627 DOI: 10.1016/j.addr.2011.03.006] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/03/2011] [Accepted: 03/19/2011] [Indexed: 12/11/2022]
Abstract
Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid to biologically active eicosanoids. The primary epoxidation products are four regioisomers of cis-epoxyeicosatrienoic acid (EET): 5,6-, 8,9-, 11,12-, and 14,15-EET. CYP2J2, CYP2C8, and CYP2C9 are the predominant epoxygenase isoforms involved in EET formation. CYP2J and CYP2C gene families in humans are abundantly expressed in the endothelium, myocardium, and kidney. The cardiovascular effects of CYP epoxygenases and EETs range from vasodilation, anti-hypertension, pro-angiogenesis, anti-atherosclerosis, and anti-inflammation to anti-injury caused by ischemia-reperfusion. Using transgenic animals for in vivo analyses of CYP epoxygenases revealed comprehensive and marked cardiovascular protective effects. In contrast, CYP epoxygenases and their metabolites, EETs, are upregulated in human tumors and promote tumor progression and metastasis. These biological effects result from the anti-apoptosis, pro-mitogenesis, and anti-migration roles of CYP epoxygenases and EETs at the cellular level. Importantly, soluble epoxide hydrolase (sEH) inhibitors are anti-hypertensive and anti-inflammatory and, therefore, protect the heart from damage, whereas the terfenadine-related, specific inhibitors of CYP2J2 exhibit strong anti-tumor activity in vitro and in vivo. Thus, CYP2J2 and arachidonic acid-derived metabolites likely play important roles in regulating cardiovascular functions and malignancy under physiological and/or pathological conditions. Moreover, although challenges remain to improving the drug-like properties of sEH inhibitors and identifying efficient ways to deliver sEH inhibitors, sEH will likely become an important therapeutic target for cardiovascular diseases. In addition, CYP2J2 may be a therapeutic target for treating human cancers and leukemia.
Collapse
|
47
|
Bellien J, Joannides R, Richard V, Thuillez C. Modulation of cytochrome-derived epoxyeicosatrienoic acids pathway: A promising pharmacological approach to prevent endothelial dysfunction in cardiovascular diseases? Pharmacol Ther 2011; 131:1-17. [DOI: 10.1016/j.pharmthera.2011.03.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 03/21/2011] [Indexed: 01/11/2023]
|
48
|
Pavlov TS, Ilatovskaya DV, Levchenko V, Mattson DL, Roman RJ, Staruschenko A. Effects of cytochrome P-450 metabolites of arachidonic acid on the epithelial sodium channel (ENaC). Am J Physiol Renal Physiol 2011; 301:F672-81. [PMID: 21697242 DOI: 10.1152/ajprenal.00597.2010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sodium reabsorption via the epithelial Na(+) channel (ENaC) in the aldosterone-sensitive distal nephron plays a central role in the regulation of body fluid volume. Previous studies have indicated that arachidonic acid (AA) and its metabolite 11,12-EET but not other regioisomers of EETs inhibit ENaC activity in the collecting duct. The goal of this study was to investigate the endogenous metabolism of AA in cultured mpkCCD(c14) principal cells and the effects of these metabolites on ENaC activity. Liquid chromatography/mass spectrometry analysis of the mpkCCD(c14) cells indicated that these cells produce prostaglandins, 8,9-EET, 11,12-EET, 14,15-EET, 5-HETE, 12/8-HETE, and 15-HETE, but not 20-HETE. Single-channel patch-clamp experiments revealed that 8,9-EET, 14,15-EET, and 11,12-EET all decrease ENaC activity. Neither 5-, 12-, nor 15-HETE had any effect on ENaC activity. Diclofenac and ibuprofen, inhibitors of cyclooxygenase, decreased transepithelial Na(+) transport in the mpkCCD(c14) cells. Inhibition of cytochrome P-450 (CYP450) with MS-PPOH activated ENaC-mediated sodium transport when cells were pretreated with AA and diclofenac. Coexpression of CYP2C8, but not CYP4A10, with ENaC in Chinese hamster ovary cells significantly decreased ENaC activity in whole-cell experiments, whereas 11,12-EET mimicked this effect. Thus both endogenously formed EETs and their exogenous application decrease ENaC activity. Downregulation of ENaC activity by overexpression of CYP2C8 was PKA dependent and was prevented by myristoylated PKI treatment. Biotinylation experiments and single-channel analysis revealed that long-term treatment with 11,12-EET and overexpression of CYP2C8 decreased the number of channels in the membrane. In contrast, the acute inhibitory effects are mediated by a decrease in the open probability of the ENaC. We conclude that 11,12-EET, 8,9-EET, and 14,15-EET are endogenously formed eicosanoids that modulate ENaC activity in the collecting duct.
Collapse
Affiliation(s)
- Tengis S Pavlov
- Dept. of Physiology, Medical College of Wisconsin, Milwaukee, 53226, USA
| | | | | | | | | | | |
Collapse
|
49
|
Jiang H, Quilley J, Doumad AB, Zhu AG, Falck JR, Hammock BD, Stier CT, Carroll MA. Increases in plasma trans-EETs and blood pressure reduction in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2011; 300:H1990-6. [PMID: 21398593 PMCID: PMC3119086 DOI: 10.1152/ajpheart.01267.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 03/09/2011] [Indexed: 12/30/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are vasodilator, natriuretic, and antiinflammatory lipid mediators. Both cis- and trans-EETs are stored in phospholipids and in red blood cells (RBCs) in the circulation; the maximal velocity (V(max)) of trans-EET hydrolysis by soluble epoxide hydrolase (sEH) is threefold that of cis-EETs. Because RBCs of the spontaneously hypertensive rat (SHR) exhibit increased sEH activity, a deficiency of trans-EETs in the SHR was hypothesized to increase blood pressure (BP). This prediction was fulfilled, since sEH inhibition with cis-4-[4-(3-adamantan-1-ylureido)cyclohexyloxy]benzoic acid (AUCB; 2 mg·kg(-1)·day(-1) for 7 days) in the SHR reduced mean BP from 176 ± 8 to 153 ± 5 mmHg (P < 0.05), whereas BP in the control Wistar-Kyoto rat (WKY) was unaffected. Plasma levels of EETs in the SHR were lower than in the age-matched control WKY (16.4 ± 1.6 vs. 26.1 ± 1.8 ng/ml; P < 0.05). The decrease in BP in the SHR treated with AUCB was associated with an increase in plasma EETs, which was mostly accounted for by increasing trans-EET from 4.1 ± 0.2 to 7.9 ± 1.5 ng/ml (P < 0.05). Consistent with the effect of increased plasma trans-EETs and reduced BP in the SHR, the 14,15-trans-EET was more potent (ED(50) 10(-10) M; maximum dilation 59 ± 15 μm) than the cis-isomer (ED(50) 10(-9) M; maximum dilation 30 ± 11 μm) in relaxing rat preconstricted arcuate arteries. The 11,12-EET cis- and trans-isomers were equipotent dilators as were the 8,9-EET isomers. In summary, inhibition of sEH resulted in a twofold increase in plasma trans-EETs and reduced mean BP in the SHR. The greater vasodilator potency of trans- vs. cis-EETs may contribute to the antihypertensive effects of sEH inhibitors.
Collapse
Affiliation(s)
- Houli Jiang
- Dept. of Pharmacology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
CYP2C9 variants and blood pressure response to salt: when salt sensitivity meets pharmacogenomics. J Hypertens 2011; 29:29-31. [DOI: 10.1097/hjh.0b013e32834091a5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|