1
|
Manoharan S, Santhakumar A, Perumal E. Targeting STAT3, FOXO3a, and Pim-1 kinase by FDA-approved tyrosine kinase inhibitor-Radotinib: An in silico and in vitro approach. Arch Pharm (Weinheim) 2024:e2400429. [PMID: 39428846 DOI: 10.1002/ardp.202400429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/22/2024] [Accepted: 09/14/2024] [Indexed: 10/22/2024]
Abstract
Cancer, a multifactorial pathological condition, is primarily caused due to mutations in multiple genes. Hepatocellular carcinoma (HCC) is a form of primary liver cancer that is often diagnosed at the advanced stage. Current treatment strategies for advanced HCC involve systemic therapies which are often hindered due to the emergence of resistance and toxicity. Therefore, a multitarget approach might prove more effective in HCC treatment. The present study focuses on targeting signal transducer and activator of transcription 3 (STAT3), forkhead box class O3a (FOXO3a), and proviral integration site for Moloney murine leukemia virus-1 (Pim-1) kinase, using a Food and Drug Administration (FDA)-approved anticancer drug library. Two compounds, namely, radotinib and capmatinib, were identified as top compounds using molecular docking. Among the two compounds, radotinib exhibited significant binding values towards the targeted proteins and their heterodimers. Furthermore, in vitro experiments involving 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), live/dead, 4',6-diamidino-2-phenylindole, and clonogenic assays were performed to evaluate the effect of radotinib in human hepatoblastoma cell line/hepatocellular carcinoma cells. The gene expression data indicated reduced expression of FOXO3a and Pim-1, but no basal-level alteration of STAT3. The Western blot analysis assay showed that the phosphorylation level of STAT3 was significantly decreased upon radotinib treatment. Taken together, our findings suggest that radotinib, which is currently used in the treatment of chronic myeloid leukemia (CML), could be considered as a potential candidate for repurposing in the treatment of HCC.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | | | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
2
|
Han Y, Xi J, Zhang P, Gong M, Luo T, Shao F, Li Y, Zhong L, Quan H. 5(S)-5-Carboxystrictosidine from the Root of Mappianthus iodoides Ameliorates H2O2-induced Apoptosis in H9c2 Cardiomyocytes via PI3K/AKT and ERK Pathways. PLANTA MEDICA 2024; 90:885-895. [PMID: 38857860 DOI: 10.1055/a-2341-6175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
5(S)-5-carboxystrictosidine (5-CS) is a compound found in the root of Mappianthus iodoides, a traditional Chinese medicine used for the treatment of coronary artery disease. The aim of the present study was to investigate the protective effect of 5-CS against oxidative stress-induced apoptosis in H9c2 cardiomyocytes and the underlying mechanisms. 5-CS pretreatment significantly protected against H2O2-induced cell death, LDH leakage, and malondialdehyde (MDA) production, which are indicators for oxidative stress injury. 5-CS also enhanced the activity of SOD and CAT. In addition, 5-CS pretreatment significantly inhibited H2O2-induced apoptosis, as determined by flow cytometer, suppressed the activity of caspase-3 and caspase-9, and attenuated the activation of cleaved caspase-3 and caspase-9. 5-CS also increased Akt and ERK activation altered by H2O2 using Western blot analysis. The PI3K-specific inhibitor LY294002 abolished 5-CS-induced Akt activation. The ERK-specific inhibitor PD98059 abolished 5-CS-induced ERK activation. Both LY294002 and PD98059 attenuated the protective effect of 5-CS on H9c2 cardiomyocytes against H2O2-induced apoptosis and cell death. Taken together, these results demonstrate that 5-CS prevents H2O2-induced oxidative stress injury in H9c2 cells by enhancing the activity of the endogenous antioxidant enzymes, inhibiting apoptosis, and modulating PI3K/Akt and ERK signaling pathways.
Collapse
Affiliation(s)
- Ying Han
- Department of Physiology, College of Chinese Medicine and Life Science, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi Province, China
- Key Laboratory of Psychology of TCM and Brain Science, Jiangxi Administration of traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi Province, China
| | - Junli Xi
- Department of Physiology, College of Chinese Medicine and Life Science, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi Province, China
| | - Puzhao Zhang
- Key Laboratory of Innovation Drug and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi Province, China
| | - Ming Gong
- Department of Physiology, College of Chinese Medicine and Life Science, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi Province, China
| | - Tao Luo
- Blood Purification Center of the First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| | - Feng Shao
- Key Laboratory of Innovation Drug and Efficient Energy-saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi Province, China
| | - Yongxin Li
- Department of Physiology, College of Chinese Medicine and Life Science, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi Province, China
| | - Lingyun Zhong
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi Province, China
| | - Hexiu Quan
- Department of Physiology, College of Chinese Medicine and Life Science, Jiangxi University of Chinese Medicine, Nanchang City, Jiangxi Province, China
| |
Collapse
|
3
|
Ye Y, Li M, Chen W, Wang H, He X, Liu N, Guo Z, Zheng C. Natural polysaccharides as promising reno-protective agents for the treatment of various kidney injury. Pharmacol Res 2024; 207:107301. [PMID: 39009291 DOI: 10.1016/j.phrs.2024.107301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/13/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Renal injury, a prevalent clinical outcome with multifactorial etiology, imposes a substantial burden on society. Currently, there remains a lack of effective management and treatments. Extensive research has emphasized the diverse biological effects of natural polysaccharides, which exhibit promising potential for mitigating renal damage. This review commences with the pathogenesis of four common renal diseases and the shared mechanisms underlying renal injury. The renoprotective roles of polysaccharides in vivo and in vitro are summarized in the following five aspects: anti-oxidative stress effects, anti-apoptotic effects, anti-inflammatory effects, anti-fibrotic effects, and gut modulatory effects. Furthermore, we explore the structure-activity relationship and bioavailability of polysaccharides in relation to renal injury, as well as investigate their utility as biomaterials for alleviating renal injury. The clinical experiments of polysaccharides applied to patients with chronic kidney disease are also reviewed. Broadly, this review provides a comprehensive perspective on the research direction of natural polysaccharides in the context of renal injury, with the primary aim to serve as a reference for the clinical development of polysaccharides as pharmaceuticals and prebiotics for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Yufei Ye
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China; Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Maoting Li
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China; Department of Nephrology, Naval Medical Center of PLA, Second Military Medical University/Naval Medical University, 338 West Huaihai Road, Shanghai 200052, China
| | - Wei Chen
- Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Nanmei Liu
- Department of Nephrology, Naval Medical Center of PLA, Second Military Medical University/Naval Medical University, 338 West Huaihai Road, Shanghai 200052, China.
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|
4
|
Rathi A, Chaudhury A, Anjum F, Ahmad S, Haider S, Khan ZF, Taiyab A, Chakrabarty A, Islam A, Hassan MI, Haque MM. Targeting prostate cancer via therapeutic targeting of PIM-1 kinase by Naringenin and Quercetin. Int J Biol Macromol 2024; 276:133882. [PMID: 39019373 DOI: 10.1016/j.ijbiomac.2024.133882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
PIM-1 kinase belongs to the Ser/Thr kinases family, an attractive therapeutic target for prostate cancer. Here, we screened about 100 natural substances to find potential PIM-1 inhibitors. Two natural compounds, Naringenin and Quercetin, were finally selected based on their PIM-1 inhibitory potential and binding affinities. The docking score of Naringenin and Quercetin with PIM-1 is -8.4 and - 8.1 kcal/mol, respectively. Fluorescence binding studies revealed a strong affinity (Ka values, 3.1 × 104 M-1 and 4.6 × 107 M-1 for Naringenin and Quercetin, respectively) with excellent IC50 values for Naringenin and Quercetin (28.6 μM and 34.9 μM, respectively). Both compounds inhibited the growth of prostate cancer cells (LNCaP) in a dose-dependent manner, with the IC50 value of Naringenin at 17.5 μM and Quercetin at 8.88 μM. To obtain deeper insights into the PIM-1 inhibitory effect of Naringenin and Quercetin, we performed extensive molecular dynamics simulation studies, which provided insights into the binding mechanisms of PIM-1 inhibitors. Finally, Naringenin and Quercetin were suggested to serve as potent PIM-1 inhibitors, offering targeted treatments of prostate cancer. In addition, our findings may help to design novel Naringenin and Quercetin derivatives that could be effective in therapeutic targeting of prostate cancer.
Collapse
Affiliation(s)
- Aanchal Rathi
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Arunabh Chaudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, 21944 Taif, Saudi Arabia
| | - Shahbaz Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shaista Haider
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, NH91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Zeba Firdos Khan
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Anindita Chakrabarty
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, NH91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Mohammad Mahfuzul Haque
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
5
|
Zhao W, Yao Y, Li Q, Xue Y, Gao X, Liu X, Zhang Q, Zheng J, Sun S. Molecular mechanism of co-stimulatory domains in promoting CAR-T cell anti-tumor efficacy. Biochem Pharmacol 2024; 227:116439. [PMID: 39032532 DOI: 10.1016/j.bcp.2024.116439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Chimeric antigen receptor (CAR)-engineered T cells have been defined as 'living drug'. Adding a co-stimulatory domain (CSD) has enhanced the anti-hematological effects of CAR-T cells, thereby elevating their viability for medicinal applications. Various CSDs have helped prepare CAR-T cells to study anti-tumor efficacy. Previous studies have described and summarized the anti-tumor efficacy of CAR-T cells obtained from different CSDs. However, the underlying molecular mechanisms by which different CSDs affect CAR-T function have been rarely reported. The role of CSDs in T cells has been significantly studied, but whether they can play a unique role as a part of the CAR structure remains undetermined. Here, we summarized the effects of CSDs on CAR-T signaling pathways based on the limited references and speculated the possible mechanism depending on the specific characteristics of CAR-T cells. This review will help understand the molecular mechanism of CSDs in CAR-T cells that exert different anti-tumor effects while providing potential guidance for further interventions to enhance anti-tumor efficacy in immunotherapy.
Collapse
Affiliation(s)
- Wanxin Zhao
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yizhou Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qihong Li
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Xue
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoge Gao
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qing Zhang
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Shishuo Sun
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
6
|
Sharma A, Dubey R, Gupta S, Asati V, Kumar V, Kumar D, Mahapatra DK, Jaiswal M, Jain SK, Bharti SK. PIM kinase inhibitors: an updated patent review (2016-present). Expert Opin Ther Pat 2024; 34:365-382. [PMID: 38842051 DOI: 10.1080/13543776.2024.2365411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION PIM Kinases (PIM-1, PIM-2, and PIM-3) have been reported to play crucial role in signaling cascades that govern cell survival, proliferation, and differentiation. Over-expression of these kinases leads to hematological malignancies such as diffuse large B cell lymphomas (DLBCL), multiple myeloma, leukemia, lymphoma and prostate cancer etc. PIM kinases as biomarkers and potential therapeutic targets have shown promise toward precision cancer therapy. The selective PIM-1, PIM-2, and/or PIM-3 isoform inhibitors have shown significant results in patients with advanced stages of cancer including relapsed/refractory cancer. AREAS COVERED A comprehensive literature review of PIM Kinases (PIM-1, PIM-2, and PIM-3) in oncogenesis, the patented PIM kinase inhibitors (2016-Present), and their pharmacological and structural insights have been highlighted. EXPERT OPINION Recently, PIM kinases viz. PIM-1, PIM-2, and PIM-3 (members of the serine/threonine protein kinase family) as therapeutic targets have attracted considerable interest in oncology especially in hematological malignancies. The patented PIM kinase inhibitors comprised of heterocyclic (fused)ring structure(s) like indole, pyridine, pyrazine, pyrazole, pyridazine, piperazine, thiazole, oxadiazole, quinoline, triazolo-pyridine, pyrazolo-pyridine, imidazo-pyridazine, oxadiazole-thione, pyrazolo-pyrimidine, triazolo-pyridazine, imidazo-pyridazine, pyrazolo-quinazoline and pyrazolo-pyridine etc. showed promising results in cancer chemotherapy.
Collapse
Affiliation(s)
- Anushka Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Rahul Dubey
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Shankar Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Vipul Kumar
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth University, Pune, India
| | - Debarshi Kar Mahapatra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Meenakshi Jaiswal
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Sanmati Kumar Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Sanjay Kumar Bharti
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| |
Collapse
|
7
|
Shi Y, Yuan Q, Chen Y, Li X, Zhou Y, Zhou H, Peng F, Jiang Y, Qiao Y, Zhao J, Zhang C, Wang J, Liu K, Dong Z. Corynoline inhibits esophageal squamous cell carcinoma growth via targeting Pim-3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155235. [PMID: 38128397 DOI: 10.1016/j.phymed.2023.155235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is an aggressive and deadly malignancy characterized by late-stage diagnosis, therapy resistance, and a poor 5-year survival rate. Finding novel therapeutic targets and their inhibitors for ESCC prevention and therapy is urgently needed. METHODS We investigated the proviral integration site for maloney murine leukemia virus 3 (Pim-3) protein levels using immunohistochemistry. Using Methyl Thiazolyl Tetrazolium and clone formation assay, we verified the function of Pim-3 in cell proliferation. The binding and inhibition of Pim-3 by corynoline were verified by computer docking, pull-down assay, cellular thermal shift assay, and kinase assay. Cell proliferation, Western blot, and a patient-derived xenograft tumor model were performed to elucidate the mechanism of corynoline inhibiting ESCC growth. RESULTS Pim-3 was highly expressed in ESCC and played an oncogenic role. The augmentation of Pim-3 enhanced cell proliferation and tumor development by phosphorylating mitogen-activated protein kinase 1 (MAPK1) at T185 and Y187. The deletion of Pim-3 induced apoptosis with upregulated cleaved caspase-9 and lower Bcl2 associated agonist of cell death (BAD) phosphorylation at S112. Additionally, binding assays demonstrated corynoline directly bound with Pim-3, inhibiting its activity, and suppressing ESCC growth. CONCLUSIONS Our findings suggest that Pim-3 promotes ESCC progression. Corynoline inhibits ESCC progression through targeting Pim-3.
Collapse
Affiliation(s)
- Yunshu Shi
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China; Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan 450052, China
| | - Qiang Yuan
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China; Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan 450052, China
| | - Yingying Chen
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Xiaoyu Li
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Yujuan Zhou
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Hao Zhou
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Feng Peng
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Yanan Jiang
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China; Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan 450052, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan 450000, China; Center for Basic Medical Research, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yan Qiao
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Jimin Zhao
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan 450000, China; Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan 450000, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan 450000, China
| | - Chi Zhang
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Junyong Wang
- Center for Basic Medical Research, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Kangdong Liu
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China; Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan 450052, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan 450000, China; Center for Basic Medical Research, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China; Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan 450000, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan 450000, China.
| | - Zigang Dong
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China; Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan 450052, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan 450000, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan 450000, China.
| |
Collapse
|
8
|
Zhang Z, Xie S, Qian J, Gao F, Jin W, Wang L, Yan L, Chen H, Yao W, Li M, Wang X, Zhu L. Targeting macrophagic PIM-1 alleviates osteoarthritis by inhibiting NLRP3 inflammasome activation via suppressing mitochondrial ROS/Cl - efflux signaling pathway. J Transl Med 2023; 21:452. [PMID: 37422640 PMCID: PMC10329339 DOI: 10.1186/s12967-023-04313-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA), in which macrophage-driven synovitis is considered closely related to cartilage destruction and could occur at any stage, is an inflammatory arthritis. However, there are no effective targets to cure the progression of OA. The NOD-, LRR-,and pyrin domain-containing protein 3 (NLRP3) inflammasome in synovial macrophages participates in the pathological inflammatory process and treatment strategies targeting it are considered to be an effective approach for OA. PIM-1 kinase, as a downstream effector of many cytokine signaling pathways, plays a pro-inflammatory role in inflammatory disease. METHODS In this study, we evaluated the expression of the PIM-1 and the infiltration of synovial macrophages in the human OA synovium. The effects and mechanism of PIM-1 were investigated in mice and human macrophages stimulated by lipopolysaccharide (LPS) and different agonists such as nigericin, ATP, Monosodium urate (MSU), and Aluminum salt (Alum). The protective effects on chondrocytes were assessed by a modified co-culture system induced by macrophage condition medium (CM). The therapeutic effect in vivo was confirmed by the medial meniscus (DMM)-induced OA in mice. RESULTS The expression of PIM-1 was increased in the human OA synovium which was accompanied by the infiltration of synovial macrophages. In vitro experiments, suppression of PIM-1 by SMI-4a, a specific inhibitor, rapidly inhibited the NLRP3 inflammasome activation in mice and human macrophages and gasdermin-D (GSDME)-mediated pyroptosis. Furthermore, PIM-1 inhibition specifically blocked the apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization in the assembly stage. Mechanistically, PIM-1 inhibition alleviated the mitochondrial reactive oxygen species (ROS)/chloride intracellular channel proteins (CLICs)-dependent Cl- efflux signaling pathway, which eventually resulted in the blockade of the ASC oligomerization and NLRP3 inflammasome activation. Furthermore, PIM-1 suppression showed chondroprotective effects in the modified co-culture system. Finally, SMI-4a significantly suppressed the expression of PIM-1 in the synovium and reduced the synovitis scores and the Osteoarthritis Research Society International (OARSI) score in the DMM-induced OA model. CONCLUSIONS Therefore, PIM-1 represented a new class of promising targets as a treatment of OA to target these mechanisms in macrophages and widened the road to therapeutic strategies for OA.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China
| | - Shujun Xie
- Department of Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Cancer Center, Zhejiang University, 310006, Hangzhou, China
| | - Jin Qian
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China
| | - Fengqiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjian Jin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Lingqiao Wang
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China
| | - Lili Yan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Chen
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China
| | - Wangxiang Yao
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China
| | - Maoqiang Li
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China
| | - Xuepeng Wang
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China
| | - Liulong Zhu
- Department of Orthopedics Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 31000, Zhejiang, China.
| |
Collapse
|
9
|
Dadas O, Ertay A, Cragg MS. Delivering co-stimulatory tumor necrosis factor receptor agonism for cancer immunotherapy: past, current and future perspectives. Front Immunol 2023; 14:1147467. [PMID: 37180119 PMCID: PMC10167284 DOI: 10.3389/fimmu.2023.1147467] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 05/15/2023] Open
Abstract
The tumor necrosis factor superfamily (TNFSF) and their receptors (TNFRSF) are important regulators of the immune system, mediating proliferation, survival, differentiation, and function of immune cells. As a result, their targeting for immunotherapy is attractive, although to date, under-exploited. In this review we discuss the importance of co-stimulatory members of the TNFRSF in optimal immune response generation, the rationale behind targeting these receptors for immunotherapy, the success of targeting them in pre-clinical studies and the challenges in translating this success into the clinic. The efficacy and limitations of the currently available agents are discussed alongside the development of next generation immunostimulatory agents designed to overcome current issues, and capitalize on this receptor class to deliver potent, durable and safe drugs for patients.
Collapse
Affiliation(s)
- Osman Dadas
- Antibody and Vaccine Group, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ayse Ertay
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Mark S. Cragg
- Antibody and Vaccine Group, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
10
|
Yang J, Niu H, Pang S, Liu M, Chen F, Li Z, He L, Mo J, Yi H, Xiao J, Huang Y. MARK3 kinase: Regulation and physiologic roles. Cell Signal 2023; 103:110578. [PMID: 36581219 DOI: 10.1016/j.cellsig.2022.110578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Microtubule affinity-regulating kinase 3 (MARK3), a member of the MARK family, regulates several essential pathways, including the cell cycle, ciliated cell differentiation, and osteoclast differentiation. It is important to understand the control of their activities as MARK3 contains an N-terminal serine/threonine kinase domain, ubiquitin-associated domain, and C-terminal kinase-associated domain, which perform multiple regulatory functions. These functions include post-translational modification (e.g., phosphorylation) and interaction with scaffolding and other proteins. Differences in the amino acid sequence and domain position result in different three-dimensional protein structures and affect the function of MARK3, which distinguish it from the other MARK family members. Recent data indicate a potential role of MARK3 in several pathological conditions, including congenital blepharophimosis syndrome, osteoporosis, and tumorigenesis. The present review focuses on the physiological and pathological role of MARK3, its regulation, and recent developments in the small molecule inhibitors of the MARK3 signalling cascade.
Collapse
Affiliation(s)
- Jingyu Yang
- Surgery of Mammary Gland and Thyroid Gland, the First People's Hospital of Yunnan Province, Panlong Campus, 157 Jinbi Road, Kunming 650032, Yunnan, People's Republic of China
| | - Heng Niu
- Surgery of Mammary Gland and Thyroid Gland, the First People's Hospital of Yunnan Province, Panlong Campus, 157 Jinbi Road, Kunming 650032, Yunnan, People's Republic of China
| | - ShiGui Pang
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Mignlong Liu
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Feng Chen
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Zhaoxin Li
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Lifei He
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Jianmei Mo
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Huijun Yi
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Juanjuan Xiao
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China
| | - Yingze Huang
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Xiufeng Campus, 15 Lequn Road, Guilin 541001, Guangxi, People's Republic of China.
| |
Collapse
|
11
|
PIM1 attenuates renal ischemia-reperfusion injury by inhibiting ASK1-JNK/P38. Int Immunopharmacol 2023; 114:109563. [PMID: 36513021 DOI: 10.1016/j.intimp.2022.109563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Renal ischemia-reperfusion injury (IRI) is the main cause of acute kidney injury (AKI), yet therapeutic approaches to alleviate IRI remain limited. PIM1 (provirus integration site for Moloney murine leukemia virus 1) is a constitutive serine threonine kinase that phosphorylates various substrates to regulate cell death and survival. However, the role of PIM1 in renal IRI remains unclear. This study aims to investigate the effect of PIM1 on renal IRI and explore its downstream regulatory mechanism. In this study, we inhibited or overexpressed PIM1 in mice and cultured proximal tubular cells, and then induced renal IRI model in vivo and hypoxia reoxygenation (HR) model in vitro. Renal function, renal structure injuries and cellular death were assessed to reflect the extent of IRI. The expression of PIM1 and the levels of ASK1, MAPK and their phosphorylated forms were detected by immunoblot. RNA sequencing of kidney cortex was performed to analyze downstream pathway of PIM1 in renal IRI. The results showed that PIM1 expression was significantly upregulated in renal IRI mouse model and in renal tubular cell HR model. AZD1208 (a PIM1 inhibitor) aggravated renal IRI, while PIM1 overexpression ameliorated renal IRI. This was involved in the regulation of the ASK1-MAPK pathway. Moreover, results demonstrated that ASK1 was a downstream target of PIM1 by administering Selonsertib (an inhibitor of ASK1 activity), and inhibiting ASK1 alleviated cell death after HR in PIM1 knockdown cells by reducing JNK/P38 activation. In conclusion, this study elucidated the protective effect of PIM1 on renal IRI, and the underlying mechanism may be related to ASK1-JNK/P38 signaling pathway. Taken together, PIM1 may be a potential therapeutic target for renal IRI.
Collapse
|
12
|
Koike A, Becker F, Sennhenn P, Kim J, Zhang J, Hannus S, Brehm K. Targeting Echinococcus multilocularis PIM kinase for improving anti-parasitic chemotherapy. PLoS Negl Trop Dis 2022; 16:e0010483. [PMID: 36190997 PMCID: PMC9560627 DOI: 10.1371/journal.pntd.0010483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/13/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The potentially lethal zoonosis alveolar echinococcosis (AE) is caused by the metacestode larval stage of the tapeworm Echinococcus multilocularis. Current AE treatment options are limited and rely on surgery as well as on chemotherapy involving benzimidazoles (BZ). BZ treatment, however, is mostly parasitostatic only, must be given for prolonged time periods, and is associated with adverse side effects. Novel treatment options are thus urgently needed. METHODOLOGY/PRINCIPAL FINDINGS By applying a broad range of kinase inhibitors to E. multilocularis stem cell cultures we identified the proto-oncogene PIM kinase as a promising target for anti-AE chemotherapy. The gene encoding the respective E. multilocularis ortholog, EmPim, was characterized and in situ hybridization assays indicated its expression in parasite stem cells. By yeast two-hybrid assays we demonstrate interaction of EmPim with E. multilocularis CDC25, indicating an involvement of EmPim in parasite cell cycle regulation. Small molecule compounds SGI-1776 and CX-6258, originally found to effectively inhibit human PIM kinases, exhibited detrimental effects on in vitro cultured parasite metacestode vesicles and prevented the formation of mature vesicles from parasite stem cell cultures. To improve compound specificity for EmPim, we applied a high throughput in silico modelling approach, leading to the identification of compound Z196138710. When applied to in vitro cultured metacestode vesicles and parasite cell cultures, Z196138710 proved equally detrimental as SGI-1776 and CX-6258 but displayed significantly reduced toxicity towards human HEK293T and HepG2 cells. CONCLUSIONS/SIGNIFICANCE Repurposing of kinase inhibitors initially designed to affect mammalian kinases for helminth disease treatment is often hampered by adverse side effects of respective compounds on human cells. Here we demonstrate the utility of high throughput in silico approaches to design small molecule compounds of higher specificity for parasite cells. We propose EmPim as a promising target for respective approaches towards AE treatment.
Collapse
Affiliation(s)
- Akito Koike
- University of Würzburg, Institute of Hygiene and Microbiology, Consultant Laboratory for Echinococcosis, Würzburg, Germany
| | | | | | - Jason Kim
- Immuneering Corporation, Cambridge, Massachusetts, United States of America
| | - Jenny Zhang
- Immuneering Corporation, Cambridge, Massachusetts, United States of America
| | | | - Klaus Brehm
- University of Würzburg, Institute of Hygiene and Microbiology, Consultant Laboratory for Echinococcosis, Würzburg, Germany
| |
Collapse
|
13
|
Yin F, Zhao R, Gorja DR, Fu X, Lu N, Huang H, Xu B, Chen H, Shim JH, Liu K, Li Z, Laster KV, Dong Z, Lee MH. Novel dual inhibitor for targeting PIM1 and FGFR1 kinases inhibits colorectal cancer growth in vitro and patient-derived xenografts in vivo. Acta Pharm Sin B 2022; 12:4122-4137. [PMID: 36386480 PMCID: PMC9643289 DOI: 10.1016/j.apsb.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer-related death in the world. The pro-viral integration site for Moloney murine leukemia virus 1 (PIM1) is a proto-oncogene and belongs to the serine/threonine kinase family, which are involved in cell proliferation, migration, and apoptosis. Fibroblast growth factor receptor 1 (FGFR1) is a tyrosine kinase that has been implicated in cell proliferation, differentiation and migration. Small molecule HCI-48 is a derivative of chalcone, a class of compounds known to possess anti-tumor, anti-inflammatory and antibacterial effects. However, the underlying mechanism of chalcones against colorectal cancer remains unclear. This study reports that HCI-48 mainly targets PIM1 and FGFR1 kinases, thereby eliciting antitumor effects on colorectal cancer growth in vitro and in vivo. HCI-48 inhibited the activity of both PIM1 and FGFR1 kinases in an ATP-dependent manner, as revealed by computational docking models. Cell-based assays showed that HCI-48 inhibited cell proliferation in CRC cells (HCT-15, DLD1, HCT-116 and SW620), and induced cell cycle arrest in the G2/M phase through modulation of cyclin A2. HCI-48 also induced cellular apoptosis, as evidenced by an increase in the expression of apoptosis biomarkers such as cleaved PARP, cleaved caspase 3 and cleaved caspase 7. Moreover, HCI-48 attenuated the activation of downstream components of the PIM1 and FGFR1 signaling pathways. Using patient-derived xenograft (PDX) murine tumor models, we found that treatment with HCI-48 diminished the PDX tumor growth of implanted CRC tissue expressing high protein levels of PIM1 and FGFR1. This study suggests that the inhibitory effect of HCI-48 on colorectal tumor growth is mainly mediated through the dual-targeting of PIM1 and FGFR1 kinases. This work provides a theoretical basis for the future application of HCI-48 in the treatment of clinical CRC.
Collapse
|
14
|
Szczepański J, Tuszewska H, Trotsko N. Anticancer Profile of Rhodanines: Structure-Activity Relationship (SAR) and Molecular Targets-A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123750. [PMID: 35744873 PMCID: PMC9231410 DOI: 10.3390/molecules27123750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
The rhodanine core is a well-known privileged heterocycle in medicinal chemistry. The rhodanines, as subtypes of thiazolidin-4-ones, show a broad spectrum of biological activity, including anticancer properties. This review aims to analyze the anticancer features of the rhodanines described over the last decade in the scientific literature. The structure–activity relationship of rhodanine derivatives, as well as some of the molecular targets, were discussed. The information contained in this review could be of benefit to the design of new, effective small molecules with anticancer potential among rhodanine derivatives or their related heterocycles.
Collapse
|
15
|
Tin Arslan Y, Yenisey Ç. Investigation of the Reparative and Regenerative Effects of Human Adipose Tissue Mesenchymal Stem Cells on Epidermal Cells Exposed to UVB Ray. MEANDROS MEDICAL AND DENTAL JOURNAL 2022. [DOI: 10.4274/meandros.galenos.2021.87004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Leenutaphong P, Tancharoen S, Nararatwanchai T, Phruksaniyom C, Sarikaphuti A, Palungwachira P, Chaichalotornkul S. Induction of Human Oral Squamous Carcinoma Apoptosis by Derris scandens Benth and Elephantopus scaber Linn Extracts. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221107970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
D scandens ( Derris scandens Benth.) and E scaber ( Elephantopus scaber Linn.) contain flavonoids and phenolic acids, which have antitumor activity in various cancer cell lines. Oral cancer is among the most common cancers in Southeast Asia, and the survival rate remains low. Thus, this study screened 2 ethanolic plant extracts for cytotoxicity on the oral human squamous carcinoma cell line (HSC-2), and compared the mechanisms of action. Extracts of D scandens and E scaber showed cytotoxicity against HSC-2 cells in a dose-dependent manner. Observation of nuclear morphology by Hoechst 33342 staining revealed chromatin condensation. Apoptosis was confirmed by Annexin V-FITC staining and cell sorting (fluorescence-activated cell sorting) analysis. We demonstrated that cancer apoptosis was accompanied by changes in the expression of procaspase 3 and that D scandens-mediated apoptosis in HSC-2 cells was potentiated by protein kinase B (Akt) and B-cell lymphoma-2 (Bcl-2), while E scaber apoptosis was mediated by mitogen-activated protein kinase (MAPK) pathways, involving stress-activated protein kinases/jun amino-terminal kinase (SAPK/JNK) and p38-MAPK. Further investigation into targets for apoptosis induction by these plant extracts may have potential in oral cancer therapy.
Collapse
Affiliation(s)
| | - Salunya Tancharoen
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | | | | | - Ariya Sarikaphuti
- School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Pakhawadee Palungwachira
- Department of Emergency Medicine, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | | |
Collapse
|
17
|
Gnawali GR, Okumura K, Perez K, Gallagher R, Wulfkuhle J, Petricoin EF, Padi SKR, Bearss J, He Z, Wang W, Kraft AS. Synthesis of 2-oxoquinoline derivatives as dual pim and mTORC protein kinase inhibitors. Med Chem Res 2022; 31:1154-1175. [DOI: 10.1007/s00044-022-02904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Walhekar V, Bagul C, Kumar D, Muthal A, Achaiah G, Kulkarni R. Topical advances in PIM kinases and their inhibitors: Medicinal chemistry perspectives. Biochim Biophys Acta Rev Cancer 2022; 1877:188725. [DOI: 10.1016/j.bbcan.2022.188725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/28/2022]
|
19
|
Kalhor S, Fattahi A. In silico design of novel anticancer drugs with amino acid and carbohydrate building blocks to inhibit PIM kinases. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2030862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sepideh Kalhor
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Alireza Fattahi
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
20
|
Bass AKA, Nageeb ESM, El-Zoghbi MS, Mohamed MFA, Badr M, Abuo-Rahma GEDA. Utilization of cyanopyridine in design and synthesis of first-in-class anticancer dual acting PIM-1 kinase/HDAC inhibitors. Bioorg Chem 2021; 119:105564. [PMID: 34959179 DOI: 10.1016/j.bioorg.2021.105564] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 12/14/2022]
Abstract
Herein, we report design and synthesis of twenty-one dual PIM-1/HDAC inhibitors utilizing 3-cyanopyridines as a novel cap moiety linked with aliphatic /aromatic linker bearing carboxylic acid 3a-g, hydroxamic acid 4a-g or 2-aminoanilide moieties 5a-g as zinc-binding group. Most of the target hybrids revealed promising growth inhibition according to one dose NCI protocol against 60 cancer cell lines. Meanwhile, hydroxamic acids 4b, 4d and 4e displayed strong and broad-spectrum activity against nine tumor subpanels tested (GI50 0.176-8.87 μM); 4d displayed strong antiproliferative activity with GI50 ≤ 3 μM against different cancer cell lines (GI50 range from 0.325 to 2.9 μM). Furthermore, 4a, 4d-4g and 5f manifested a high inhibitory activity against HDACs 1 and 6 isozymes; 4g, displayed potent HDAC 1 and 6 inhibitory activity (45.01 ± 2.1 and 19.78 ± 1.1 nM) more than the reference SAHA (51.54 ± 2.4 and 21.38 ± 1.2 nM, respectively), while 4f was more potent (30.09 ± 1.4 nM) than SAHA against HDAC 1 and less potent (30.29 ± 1.7 nM) than SAHA against HDAC 6. Hybrids 4b, 4d, 4e and 4f exhibited potent PIM-1 inhibitory activity; 4d showed comparable activity to quercetin (IC50 of 343.87 ± 16.6 and 353.76 ± 17.1 nM, respectively); it exhibited pre G1 apoptosis and arrest cell cycle at G2/M phase. Moreover, it revealed good binding into pocket of HDACs 1,6 and PIM-1 kinase enzymes with good correlation with biological results. Moreover, 4b, 4d and 4e had reasonable drug-likeness properties according to Lipinski's rule. However, multitarget inhibitor of PIM-1/HDAC is a promising strategy in anticancer drug discovery; the most potent hybrids require further in vivo and clinical investigations.
Collapse
Affiliation(s)
- Amr K A Bass
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - El-Shimaa M Nageeb
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Mona S El-Zoghbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, 82524 Sohag, Egypt
| | - Mohamed Badr
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New Minia, Minia, Egypt.
| |
Collapse
|
21
|
Imidazo[1,2-b]pyridazine as privileged scaffold in medicinal chemistry: An extensive review. Eur J Med Chem 2021; 226:113867. [PMID: 34607244 DOI: 10.1016/j.ejmech.2021.113867] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023]
Abstract
Imidazo[1,2-b]pyridazine scaffold represents an important class of heterocyclic nucleus which provides various bioactives molecules. Among them, the successful kinase inhibitor ponatinib led to a resurgence of interest in exploring new imidazo[1,2-b]pyridazine-containing derivatives for their putative therapeutic applications in medicine. This present review intends to provide a state-of-the-art of this framework in medicinal chemistry from 1966 to nowadays, unveiling different aspects of its structure-activity relationships (SAR). This extensive literature surveil may guide medicinal chemists for the quest of novel imidazo[1,2-b]pyridazine compounds with enhanced pharmacokinetics profile and efficiency.
Collapse
|
22
|
Rathi A, Kumar D, Hasan GM, Haque MM, Hassan MI. Therapeutic targeting of PIM KINASE signaling in cancer therapy: Structural and clinical prospects. Biochim Biophys Acta Gen Subj 2021; 1865:129995. [PMID: 34455019 DOI: 10.1016/j.bbagen.2021.129995] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/28/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND PIM kinases are well-studied drug targets for cancer, belonging to Serine/Threonine kinases family. They are the downstream target of various signaling pathways, and their up/down-regulation affects various physiological processes. PIM family comprises three isoforms, namely, PIM-1, PIM-2, and PIM-3, on alternative initiation of translation and they have different levels of expression in different types of cancers. Its structure shows a unique ATP-binding site in the hinge region which makes it unique among other kinases. SCOPE OF REVIEW PIM kinases are widely reported in hematological malignancies along with prostate and breast cancers. Currently, many drugs are used as inhibitors of PIM kinases. In this review, we highlighted the physiological significance of PIM kinases in the context of disease progression and therapeutic targeting. We comprehensively reviewed the PIM kinases in terms of their expression and regulation of different physiological roles. We further predicted functional partners of PIM kinases to elucidate their role in the cellular physiology of different cancer and mapped their interaction network. MAJOR CONCLUSIONS A deeper mechanistic insight into the PIM signaling involved in regulating different cellular processes, including transcription, apoptosis, cell cycle regulation, cell proliferation, cell migration and senescence, is provided. Furthermore, structural features of PIM have been dissected to understand the mechanism of inhibition and subsequent implication of designed inhibitors towards therapeutic management of prostate, breast and other cancers. GENERAL SIGNIFICANCE Being a potential drug target for cancer therapy, available drugs and PIM inhibitors at different stages of clinical trials are discussed in detail.
Collapse
Affiliation(s)
- Aanchal Rathi
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Dhiraj Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
23
|
Palkina KA, Ipatova DA, Shakhova ES, Balakireva AV, Markina NM. Therapeutic Potential of Hispidin-Fungal and Plant Polyketide. J Fungi (Basel) 2021; 7:jof7050323. [PMID: 33922000 PMCID: PMC8143579 DOI: 10.3390/jof7050323] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
There is a large number of bioactive polyketides well-known for their anticancer, antibiotic, cholesterol-lowering, and other therapeutic functions, and hispidin is among them. It is a highly abundant secondary plant and fungal metabolite, which is investigated in research devoted to cancer, metabolic syndrome, cardiovascular, neurodegenerative, and viral diseases. This review summarizes over 20 years of hispidin studies of its antioxidant, anti-inflammatory, anti-apoptotic, antiviral, and anti-cancer cell activity.
Collapse
Affiliation(s)
- Kseniia A. Palkina
- Department of Biomolecular Chemistry, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (K.A.P.); (D.A.I.); (E.S.S.); (A.V.B.)
- Planta LLC, 121205 Moscow, Russia
| | - Daria A. Ipatova
- Department of Biomolecular Chemistry, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (K.A.P.); (D.A.I.); (E.S.S.); (A.V.B.)
- School of Pharmacy, Faculty of Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Ekaterina S. Shakhova
- Department of Biomolecular Chemistry, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (K.A.P.); (D.A.I.); (E.S.S.); (A.V.B.)
- Planta LLC, 121205 Moscow, Russia
| | - Anastasia V. Balakireva
- Department of Biomolecular Chemistry, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (K.A.P.); (D.A.I.); (E.S.S.); (A.V.B.)
- Planta LLC, 121205 Moscow, Russia
| | - Nadezhda M. Markina
- Department of Biomolecular Chemistry, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (K.A.P.); (D.A.I.); (E.S.S.); (A.V.B.)
- Planta LLC, 121205 Moscow, Russia
- Correspondence: ; Tel.: +7-9161342855
| |
Collapse
|
24
|
Xie W, Zhang L, Luo W, Zhai Z, Wang C, Shen YH. AKT2 regulates endothelial-mediated coagulation homeostasis and promotes intrathrombotic recanalization and thrombus resolution in a mouse model of venous thrombosis. J Thromb Thrombolysis 2021; 50:98-111. [PMID: 32358666 DOI: 10.1007/s11239-020-02112-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Venous thromboembolism (VTE) carries a high risk of morbidity and mortality. Understanding the mechanisms of venous thrombus formation and resolution is critical for improving VTE management. AKT2 kinase is essential for platelet activation and arterial thrombosis. In this study, we examined the role of AKT2 in venous thrombosis in a mouse model of venous thrombosis induced by inferior vena cava (IVC) ligation. We observed an induction of AKT2 expression in the ligated IVC of wild-type (WT) mice. Interestingly, although the initial thrombus size of the ligated IVC was similar between Akt2-/- mice and WT mice, thrombus resolution was delayed in the ligated IVC of Akt2-/- mice. Compared with the ligated IVC of WT mice, the ligated IVC of Akt2-/- mice displayed decreased levels of thrombomodulin (TM) and increased levels of tissue factor (TF), apoptosis, and necroptosis. In addition, intrathrombotic endothelial cells in the ligated IVC of Akt2-/- mice failed to form small vessels, resulting in impaired recanalization and thrombus resolution. TGF-β signaling activation and fibrotic remodeling were increased in the thrombus and vein wall of the ligated IVC of Akt2-/- mice. We further investigated the AKT2-mediated regulation of coagulation factors in endothelial cells and found that forkhead box protein O1 (FOXO1), a target of AKT, enhanced TF and inhibited TM expression. By inhibiting FOXO1, AKT2 suppressed TF expression while increasing TM expression. Our findings indicate that AKT2 may protect endothelial cells against cell death, regulate endothelial-mediated coagulation homeostasis, and promote intrathrombotic recanalization and thrombus resolution in venous thrombosis. These observations suggest dynamic roles of AKT2 in venous thrombus formation and resolution.
Collapse
Affiliation(s)
- Wanmu Xie
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, BCM 390, Houston, TX, 77030, USA.,National Clinical Research Center for Respiratory Diseases, Beijing, China
| | - Lin Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, BCM 390, Houston, TX, 77030, USA.,Texas Heart Institute, Houston, TX, USA
| | - Wei Luo
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, BCM 390, Houston, TX, 77030, USA.,Texas Heart Institute, Houston, TX, USA
| | - Zhenguo Zhai
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, 2 Yinghua Dongjie, Hepingli, Beijing, 100029, China.,Department of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Chen Wang
- National Clinical Research Center for Respiratory Diseases, Beijing, China. .,Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, 2 Yinghua Dongjie, Hepingli, Beijing, 100029, China. .,Department of Respiratory Medicine, Capital Medical University, Beijing, China.
| | - Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, BCM 390, Houston, TX, 77030, USA. .,Texas Heart Institute, Houston, TX, USA.
| |
Collapse
|
25
|
KAP1 silencing relieves OxLDL-induced vascular endothelial dysfunction by down-regulating LOX-1. Biosci Rep 2021; 40:225915. [PMID: 32725144 PMCID: PMC7414520 DOI: 10.1042/bsr20200821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/18/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
KRAB domain-associated protein 1 (KAP1) is highly expressed in atherosclerotic plaques. Here, we studied the role of KAP1 in atherosclerosis development using a cell model of endothelial dysfunction induced by oxidative low-density lipoprotein (OxLDL). The phosphorylation and protein levels of KAP1 were similar between OxLDL-treated and non-treated endothelial cells (ECs). KAP1 depletion significantly inhibited the production of OxLDL-enhanced reactive oxygen species and the expression of adhesion molecules in ECs. Treatment with OxLDL promoted the proliferation and migration of ECs, which was also confirmed by the elevated levels of the proliferative markers c-Myc and PCNA, as well as the migratory marker MMP-9. However, these effects were also abrogated by KAP1 depletion. Moreover, the depletion of KAP1 in OxLDL-treated ECs resulted in decreases in the LOX-1 level and increases in eNOS expression. Generally, the data suggest that strategies targeting KAP1 depletion might be particularly useful for the prevention or treatment of atherosclerosis.
Collapse
|
26
|
Abstract
The stereotype of ROS produced by NADPH oxidases as cause of malignant diseases persists in a generalized manner. In fact, high levels of ROS formation could be harmful in the context of a disease process. This study demonstrates that loss of the NADPH oxidase Nox4, as a constitutive source of ROS, promotes cancerogen-induced formation of solid tumors. Accordingly, a certain tonic, constitutive low level of Nox4-derived hydrogen peroxide appears to reduce the risk of cancerogen-induced tumor formation. Reactive oxygen species (ROS) can cause cellular damage and promote cancer development. Besides such harmful consequences of overproduction of ROS, all cells utilize ROS for signaling purposes and stabilization of cell homeostasis. In particular, the latter is supported by the NADPH oxidase 4 (Nox4) that constitutively produces low amounts of H2O2. By that mechanism, Nox4 forces differentiation of cells and prevents inflammation. We hypothesize a constitutive low level of H2O2 maintains basal activity of cellular surveillance systems and is unlikely to be cancerogenic. Utilizing two different murine models of cancerogen-induced solid tumors, we found that deletion of Nox4 promotes tumor formation and lowers recognition of DNA damage. Nox4 supports phosphorylation of H2AX (γH2AX), a prerequisite of DNA damage recognition, by retaining a sufficiently low abundance of the phosphatase PP2A in the nucleus. The underlying mechanism is continuous oxidation of AKT by Nox4. Interaction of oxidized AKT and PP2A captures the phosphatase in the cytosol. Absence of Nox4 facilitates nuclear PP2A translocation and dephosphorylation of γH2AX. Simultaneously AKT is left phosphorylated. Thus, in the absence of Nox4, DNA damage is not recognized and the increased activity of AKT supports proliferation. The combination of both events results in genomic instability and promotes tumor formation. By identifying Nox4 as a protective source of ROS in cancerogen-induced cancer, we provide a piece of knowledge for understanding the role of moderate production of ROS in preventing the initiation of malignancies.
Collapse
|
27
|
Xin G, Chen Y, Topchyan P, Kasmani MY, Burns R, Volberding PJ, Wu X, Cohn A, Chen Y, Lin CW, Ho PC, Silverstein R, Dwinell MB, Cui W. Targeting PIM1-Mediated Metabolism in Myeloid Suppressor Cells to Treat Cancer. Cancer Immunol Res 2021; 9:454-469. [PMID: 33579728 DOI: 10.1158/2326-6066.cir-20-0433] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/18/2020] [Accepted: 02/10/2021] [Indexed: 12/24/2022]
Abstract
There is a strong correlation between myeloid-derived suppressor cells (MDSC) and resistance to immune checkpoint blockade (ICB), but the detailed mechanisms underlying this correlation are largely unknown. Using single-cell RNA sequencing analysis in a bilateral tumor model, we found that immunosuppressive myeloid cells with characteristics of fatty acid oxidative metabolism dominate the immune-cell landscape in ICB-resistant subjects. In addition, we uncovered a previously underappreciated role of a serine/threonine kinase, PIM1, in regulating lipid oxidative metabolism via PPARγ-mediated activities. Enforced PPARγ expression sufficiently rescued metabolic and functional defects of Pim1 -/- MDSCs. Consistent with this, pharmacologic inhibition of PIM kinase by AZD1208 treatment significantly disrupted the myeloid cell-mediated immunosuppressive microenvironment and unleashed CD8+ T-cell-mediated antitumor immunity, which enhanced PD-L1 blockade in preclinical cancer models. PIM kinase inhibition also sensitized nonresponders to PD-L1 blockade by selectively targeting suppressive myeloid cells. Overall, we have identified PIM1 as a metabolic modulator in MDSCs that is associated with ICB resistance and can be therapeutically targeted to overcome ICB resistance.
Collapse
Affiliation(s)
- Gang Xin
- Versiti Blood Research Institute, Milwaukee, Wisconsin. .,Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio.,Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Yao Chen
- Versiti Blood Research Institute, Milwaukee, Wisconsin.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Paytsar Topchyan
- Versiti Blood Research Institute, Milwaukee, Wisconsin.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Moujtaba Y Kasmani
- Versiti Blood Research Institute, Milwaukee, Wisconsin.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Robert Burns
- Versiti Blood Research Institute, Milwaukee, Wisconsin
| | - Peter J Volberding
- Versiti Blood Research Institute, Milwaukee, Wisconsin.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xiaopeng Wu
- Versiti Blood Research Institute, Milwaukee, Wisconsin
| | - Alexandra Cohn
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yiliang Chen
- Versiti Blood Research Institute, Milwaukee, Wisconsin
| | - Chien-Wei Lin
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ping-Chih Ho
- Department of Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Roy Silverstein
- Versiti Blood Research Institute, Milwaukee, Wisconsin.,Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael B Dwinell
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Weiguo Cui
- Versiti Blood Research Institute, Milwaukee, Wisconsin. .,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
28
|
Darici S, Alkhaldi H, Horne G, Jørgensen HG, Marmiroli S, Huang X. Targeting PI3K/Akt/mTOR in AML: Rationale and Clinical Evidence. J Clin Med 2020; 9:E2934. [PMID: 32932888 PMCID: PMC7563273 DOI: 10.3390/jcm9092934] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematopoietic malignancy characterized by excessive proliferation and accumulation of immature myeloid blasts in the bone marrow. AML has a very poor 5-year survival rate of just 16% in the UK; hence, more efficacious, tolerable, and targeted therapy is required. Persistent leukemia stem cell (LSC) populations underlie patient relapse and development of resistance to therapy. Identification of critical oncogenic signaling pathways in AML LSC may provide new avenues for novel therapeutic strategies. The phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) signaling pathway, is often hyperactivated in AML, required to sustain the oncogenic potential of LSCs. Growing evidence suggests that targeting key components of this pathway may represent an effective treatment to kill AML LSCs. Despite this, accruing significant body of scientific knowledge, PI3K/Akt/mTOR inhibitors have not translated into clinical practice. In this article, we review the laboratory-based evidence of the critical role of PI3K/Akt/mTOR pathway in AML, and outcomes from current clinical studies using PI3K/Akt/mTOR inhibitors. Based on these results, we discuss the putative mechanisms of resistance to PI3K/Akt/mTOR inhibition, offering rationale for potential candidate combination therapies incorporating PI3K/Akt/mTOR inhibitors for precision medicine in AML.
Collapse
Affiliation(s)
- Salihanur Darici
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Hazem Alkhaldi
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Gillian Horne
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Heather G. Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Sandra Marmiroli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| |
Collapse
|
29
|
Leflunomide regulates c-Myc expression in myeloma cells through PIM targeting. Blood Adv 2020; 3:1027-1032. [PMID: 30940637 DOI: 10.1182/bloodadvances.2018027227] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Key Points
Teriflunomide, the active metabolite of leflunomide, downregulates c-Myc expression through inhibition of PIM kinases. Leflunomide together with lenalidomide significantly extended survival in an in vivo MM model.
Collapse
|
30
|
Liu X, Long MJC, Hopkins BD, Luo C, Wang L, Aye Y. Precision Targeting of pten-Null Triple-Negative Breast Tumors Guided by Electrophilic Metabolite Sensing. ACS CENTRAL SCIENCE 2020; 6:892-902. [PMID: 32607436 PMCID: PMC7318068 DOI: 10.1021/acscentsci.9b00893] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Indexed: 06/11/2023]
Abstract
Off-target effects continue to impede disease interventions, particularly when targeting a specific protein within a family of similar proteins, such as kinase isoforms that play tumor-subtype-specific roles in cancers. Exploiting the specific electrophilic-metabolite-sensing capability of Akt3, versus moderate or no sensing, respectively, by Akt2 and Akt1, we describe a first-in-class functionally Akt3-selective covalent inhibitor [MK-H(F)NE], wherein the electrophilic core is derived from the native reactive lipid metabolite HNE. Mechanistic profiling and pathway interrogations point to retention of the metabolite's structure-as opposed to implicit electrophilicity-as being essential for biasing isoform preference, which we found translates to tumor-subtype specificity against pten-null triple-negative breast cancers (TNBCs). MK-H(F)NE further enables novel downstream target identification specific to Akt3-function in disease. In TNBC xenografts, MK-H(F)NE fares better than reversible pan-Akt-inhibitors and does not show commonly observed side-effects associated with Akt1-inhibition. Inhibitors derived from native-metabolite sensing are thus an enabling plan-of-action for unmasking kinase-isoform-biased molecular targets and tumor-subtype-specific interventions.
Collapse
Affiliation(s)
- Xuyu Liu
- School
of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- The
Heart Research Institute, Newtown, New South Wales 2042, Australia
| | - Marcus J. C. Long
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14850, United States
| | - Benjamin D. Hopkins
- Department
of Genetics and Genomic Sciences, Icahn
School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chaosheng Luo
- Swiss
Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Lingxi Wang
- Swiss
Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Yimon Aye
- Swiss
Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
31
|
Luszczak S, Kumar C, Sathyadevan VK, Simpson BS, Gately KA, Whitaker HC, Heavey S. PIM kinase inhibition: co-targeted therapeutic approaches in prostate cancer. Signal Transduct Target Ther 2020; 5:7. [PMID: 32296034 PMCID: PMC6992635 DOI: 10.1038/s41392-020-0109-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 01/09/2023] Open
Abstract
PIM kinases have been shown to play a role in prostate cancer development and progression, as well as in some of the hallmarks of cancer, especially proliferation and apoptosis. Their upregulation in prostate cancer has been correlated with decreased patient overall survival and therapy resistance. Initial efforts to inhibit PIM with monotherapies have been hampered by compensatory upregulation of other pathways and drug toxicity, and as such, it has been suggested that co-targeting PIM with other treatment approaches may permit lower doses and be a more viable option in the clinic. Here, we present the rationale and basis for co-targeting PIM with inhibitors of PI3K/mTOR/AKT, JAK/STAT, MYC, stemness, and RNA Polymerase I transcription, along with other therapies, including androgen deprivation, radiotherapy, chemotherapy, and immunotherapy. Such combined approaches could potentially be used as neoadjuvant therapies, limiting the development of resistance to treatments or sensitizing cells to other therapeutics. To determine which drugs should be combined with PIM inhibitors for each patient, it will be key to develop companion diagnostics that predict response to each co-targeted option, hopefully providing a personalized medicine pathway for subsets of prostate cancer patients in the future.
Collapse
Affiliation(s)
- Sabina Luszczak
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Christopher Kumar
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | | | - Benjamin S Simpson
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Kathy A Gately
- Trinity Translational Medicine Institute, St. James's Hospital Dublin, Dublin 8, Dublin, Ireland
| | - Hayley C Whitaker
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Susan Heavey
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK.
| |
Collapse
|
32
|
Peddi SR, Peddi SR, Sivan S, Veerati R, Manga V. Integrated molecular docking, 3D QSAR and molecular dynamics simulation studies on indole derivatives for designing new Pim-1 inhibitors. J Recept Signal Transduct Res 2020; 40:1-14. [DOI: 10.1080/10799893.2020.1713809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Sudhir Reddy Peddi
- Molecular Modeling and Medicinal Chemistry Group, Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Saikiran Reddy Peddi
- Molecular Modeling and Medicinal Chemistry Group, Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| | - Sreekanth Sivan
- Department of Chemistry, Nizam College, Osmania University, Hyderabad
| | - Radhika Veerati
- Department of Chemistry, S R Engineering College, Ananthasagar, India
| | - Vijjulatha Manga
- Molecular Modeling and Medicinal Chemistry Group, Department of Chemistry, University College of Science, Osmania University, Hyderabad, India
| |
Collapse
|
33
|
Lee GH, Lee WJ, Hur J, Kim E, Lee HG, Seo HG. Ginsenoside Re Mitigates 6-Hydroxydopamine-Induced Oxidative Stress through Upregulation of GPX4. Molecules 2020; 25:molecules25010188. [PMID: 31906464 PMCID: PMC6983050 DOI: 10.3390/molecules25010188] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 12/31/2022] Open
Abstract
Ginsenosides are active components found abundantly in ginseng which has been used as a medicinal herb to modify disease status for thousands of years. However, the pharmacological activity of ginsenoside Re in the neuronal system remains to be elucidated. Neuroprotective activity of ginsenoside Re was investigated in SH-SY5Y cells exposed to 6-hydroxydopamine (6-OHDA) to induce cellular injury. Ginsenoside Re significantly inhibited 6-OHDA-triggered cellular damage as judged by analysis of tetrazolium dye reduction and lactose dehydrogenase release. In addition, ginsenoside Re induced the expression of the antioxidant protein glutathione peroxidase 4 (GPX4) but not catalase, glutathione peroxidase 1, glutathione reductase, or superoxide dismutase-1. Furthermore, upregulation of GPX4 by ginsenoside Re was mediated by phosphoinositide 3-kinase and extracellular signal-regulated kinase but not by p38 mitogen-activated protein kinase or c-Jun N-terminal kinase. Ginsenoside Re also suppressed 6-OHDA-triggered cellular accumulation of reactive oxygen species and peroxidation of membrane lipids. The GPX4 inhibitor (1S,3R)-RSL3 reversed ginsenoside Re-mediated inhibition of cellular damage in SH-SY5Y cells exposed to 6-OHDA, indicating that the neuronal activity of ginsenoside Re is due to upregulation of GPX4. These findings suggest that ginsenoside Re-dependent upregulation of GPX4 reduces oxidative stress and thereby alleviates 6-OHDA-induced neuronal damage.
Collapse
Affiliation(s)
- Gyeong Hee Lee
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Science, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea
| | - Won Jin Lee
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Science, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea
| | - Jinwoo Hur
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Science, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea
| | - Eunsu Kim
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Science, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea
| | - Hyuk Gyoon Lee
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Science, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea
| | - Han Geuk Seo
- Department of Food Science and Biotechnology of Animal Resources, College of Sang-Huh Life Science, Konkuk University, 120 Neungdong-ro, Gwangjin-Gu, Seoul 05029, Korea
| |
Collapse
|
34
|
Ismail MM, Farrag AM, Harras MF, Ibrahim MH, Mehany AB. Apoptosis: A target for anticancer therapy with novel cyanopyridines. Bioorg Chem 2020; 94:103481. [DOI: 10.1016/j.bioorg.2019.103481] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
|
35
|
Reversible phosphorylation of Rpn1 regulates 26S proteasome assembly and function. Proc Natl Acad Sci U S A 2019; 117:328-336. [PMID: 31843888 DOI: 10.1073/pnas.1912531117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The fundamental importance of the 26S proteasome in health and disease suggests that its function must be finely controlled, and yet our knowledge about proteasome regulation remains limited. Posttranslational modifications, especially phosphorylation, of proteasome subunits have been shown to impact proteasome function through different mechanisms, although the vast majority of proteasome phosphorylation events have not been studied. Here, we have characterized 1 of the most frequently detected proteasome phosphosites, namely Ser361 of Rpn1, a base subunit of the 19S regulatory particle. Using a variety of approaches including CRISPR/Cas9-mediated gene editing and quantitative mass spectrometry, we found that loss of Rpn1-S361 phosphorylation reduces proteasome activity, impairs cell proliferation, and causes oxidative stress as well as mitochondrial dysfunction. A screen of the human kinome identified several kinases including PIM1/2/3 that catalyze S361 phosphorylation, while its level is reversibly controlled by the proteasome-resident phosphatase, UBLCP1. Mechanistically, Rpn1-S361 phosphorylation is required for proper assembly of the 26S proteasome, and we have utilized a genetic code expansion system to directly demonstrate that S361-phosphorylated Rpn1 more readily forms a precursor complex with Rpt2, 1 of the first steps of 19S base assembly. These findings have revealed a prevalent and biologically important mechanism governing proteasome formation and function.
Collapse
|
36
|
Phosphorylation of DEPDC5, a component of the GATOR1 complex, releases inhibition of mTORC1 and promotes tumor growth. Proc Natl Acad Sci U S A 2019; 116:20505-20510. [PMID: 31548394 DOI: 10.1073/pnas.1904774116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Pim and AKT serine/threonine protein kinases are implicated as drivers of cancer. Their regulation of tumor growth is closely tied to the ability of these enzymes to mainly stimulate protein synthesis by activating mTORC1 (mammalian target of rapamycin complex 1) signaling, although the exact mechanism is not completely understood. mTORC1 activity is normally suppressed by amino acid starvation through a cascade of multiple regulatory protein complexes, e.g., GATOR1, GATOR2, and KICSTOR, that reduce the activity of Rag GTPases. Bioinformatic analysis revealed that DEPDC5 (DEP domain containing protein 5), a component of GATOR1 complex, contains Pim and AKT protein kinase phosphorylation consensus sequences. DEPDC5 phosphorylation by Pim and AKT kinases was confirmed in cancer cells through the use of phospho-specific antibodies and transfection of phospho-inactive DEPDC5 mutants. Consistent with these findings, during amino acid starvation the elevated expression of Pim1 overcame the amino acid inhibitory protein cascade and activated mTORC1. In contrast, the knockout of DEPDC5 partially blocked the ability of small molecule inhibitors against Pim and AKT kinases both singly and in combination to suppress tumor growth and mTORC1 activity in vitro and in vivo. In animal experiments knocking in a glutamic acid (S1530E) in DEPDC5, a phospho mimic, in tumor cells induced a significant level of resistance to Pim and the combination of Pim and AKT inhibitors. Our results indicate a phosphorylation-dependent regulatory mechanism targeting DEPDC5 through which Pim1 and AKT act as upstream effectors of mTORC1 to facilitate proliferation and survival of cancer cells.
Collapse
|
37
|
Yang T, Ren C, Lu C, Qiao P, Han X, Wang L, Wang D, Lv S, Sun Y, Yu Z. Phosphorylation of HSF1 by PIM2 Induces PD-L1 Expression and Promotes Tumor Growth in Breast Cancer. Cancer Res 2019; 79:5233-5244. [PMID: 31409638 DOI: 10.1158/0008-5472.can-19-0063] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/17/2019] [Accepted: 08/07/2019] [Indexed: 11/16/2022]
Abstract
Heat shock transcription factor 1 (HSF1) is the master regulator of the proteotoxic stress response, which plays a key role in breast cancer tumorigenesis. However, the mechanisms underlying regulation of HSF1 protein stability are still unclear. Here, we show that HSF1 protein stability is regulated by PIM2-mediated phosphorylation of HSF1 at Thr120, which disrupts the binding of HSF1 to the E3 ubiquitin ligase FBXW7. In addition, HSF1 Thr120 phosphorylation promoted proteostasis and carboplatin-induced autophagy. Interestingly, HSF1 Thr120 phosphorylation induced HSF1 binding to the PD-L1 promoter and enhanced PD-L1 expression. Furthermore, HSF1 Thr120 phosphorylation promoted breast cancer tumorigenesis in vitro and in vivo. PIM2, pThr120-HSF1, and PD-L1 expression positively correlated with each other in breast cancer tissues. Collectively, these findings identify PIM2-mediated HSF1 phosphorylation at Thr120 as an essential mechanism that regulates breast tumor growth and potential therapeutic target for breast cancer. SIGNIFICANCE: These findings identify heat shock transcription factor 1 as a new substrate for PIM2 kinase and establish its role in breast tumor progression.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Chao Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Pengyun Qiao
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Xue Han
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Li Wang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Dan Wang
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Shijun Lv
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Yonghong Sun
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P.R. China.
| |
Collapse
|
38
|
Bollaert E, de Rocca Serra A, Demoulin JB. The HMG box transcription factor HBP1: a cell cycle inhibitor at the crossroads of cancer signaling pathways. Cell Mol Life Sci 2019; 76:1529-1539. [PMID: 30683982 PMCID: PMC11105191 DOI: 10.1007/s00018-019-03012-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/20/2018] [Accepted: 01/15/2019] [Indexed: 12/19/2022]
Abstract
HMG box protein 1 (HBP1) is a transcription factor and a potent cell cycle inhibitor in normal and cancer cells. HBP1 activates or represses the expression of different cell cycle genes (such as CDKN2A, CDKN1A, and CCND1) through direct DNA binding, cofactor recruitment, chromatin remodeling, or neutralization of other transcription factors. Among these are LEF1, TCF4, and MYC in the WNT/beta-catenin pathway. HBP1 also contributes to oncogenic RAS-induced senescence and terminal cell differentiation. Collectively, these activities suggest a tumor suppressor function. However, HBP1 is not listed among frequently mutated cancer driver genes. Nevertheless, HBP1 expression is lower in several tumor types relative to matched normal tissues. Several micro-RNAs, such as miR-155, miR-17-92, and miR-29a, dampen HBP1 expression in cancer cells of various origins. The phosphatidylinositol-3 kinase (PI3K)/AKT pathway also inhibits HBP1 transcription by preventing FOXO binding to the HBP1 promoter. In addition, AKT directly phosphorylates HBP1, thereby inhibiting its transcriptional activity. Taken together, these findings place HBP1 at the center of a network of micro-RNAs and oncoproteins that control cell proliferation. In this review, we discuss our current understanding of HBP1 function in human physiology and diseases.
Collapse
Affiliation(s)
- Emeline Bollaert
- Université Catholique de Louvain, de Duve Institute, Avenue Hippocrate 75, 1200, Brussels, Belgium
| | - Audrey de Rocca Serra
- Université Catholique de Louvain, de Duve Institute, Avenue Hippocrate 75, 1200, Brussels, Belgium
| | - Jean-Baptiste Demoulin
- Université Catholique de Louvain, de Duve Institute, Avenue Hippocrate 75, 1200, Brussels, Belgium.
| |
Collapse
|
39
|
Bjørnstad R, Aesoy R, Bruserud Ø, Brenner AK, Giraud F, Dowling TH, Gausdal G, Moreau P, Døskeland SO, Anizon F, Herfindal L. A Kinase Inhibitor with Anti-Pim Kinase Activity is a Potent and Selective Cytotoxic Agent Toward Acute Myeloid Leukemia. Mol Cancer Ther 2019; 18:567-578. [PMID: 30679386 DOI: 10.1158/1535-7163.mct-17-1234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/05/2018] [Accepted: 01/14/2019] [Indexed: 11/16/2022]
Abstract
More than 40 years ago, the present standard induction therapy for acute myeloid leukemia (AML) was developed. This consists of the metabolic inhibitor cytarabine (AraC) and the cytostatic topoisomerase 2 inhibitor daunorubucin (DNR). In light of the high chance for relapse, as well as the large heterogeneity, novel therapies are needed to improve patient outcome. We have tested the anti-AML activity of 15 novel compounds based on the scaffolds pyrrolo[2,3-a]carbazole-3-carbaldehyde, pyrazolo[3,4-c]carbazole, pyrazolo[4,3-a]phenanthridine, or pyrrolo[2,3-g]indazole. The compounds were inhibitors of Pim kinases, but could also have inhibitory activity against other protein kinases. Ser/Thr kinases like the Pim kinases have been identified as potential drug targets for AML therapy. The compound VS-II-173 induced AML cell death with EC50 below 5 μmol/L, and was 10 times less potent against nonmalignant cells. It perturbed Pim-kinase-mediated AML cell signaling, such as attenuation of Stat5 or MDM2 phosphorylation, and synergized with DNR to induce AML cell death. VS-II-173 induced cell death also in patients with AML blasts, including blast carrying high-risk FLT3-ITD mutations. Mutation of nucleophosmin-1 was associated with good response to VS-II-173. In conclusion new scaffolds for potential AML drugs have been explored. The selective activity toward patient AML blasts and AML cell lines of the pyrazolo-analogue VS-II-173 make it a promising drug candidate to be further tested in preclinical animal models for AML.
Collapse
Affiliation(s)
- Ronja Bjørnstad
- Department of Clinical Science, Centre for Pharmacy, University of Bergen, Bergen, Norway.,Hospital Pharmacy in western Norway, Bergen
| | - Reidun Aesoy
- Department of Clinical Science, Centre for Pharmacy, University of Bergen, Bergen, Norway
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Annette K Brenner
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Francis Giraud
- Université Clermont Auvergne, CNRS, Sigma Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Tara Helen Dowling
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Pascale Moreau
- Université Clermont Auvergne, CNRS, Sigma Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | | | - Fabrice Anizon
- Université Clermont Auvergne, CNRS, Sigma Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Lars Herfindal
- Department of Clinical Science, Centre for Pharmacy, University of Bergen, Bergen, Norway.
| |
Collapse
|
40
|
Serrano-Saenz S, Palacios C, Delgado-Bellido D, López-Jiménez L, Garcia-Diaz A, Soto-Serrano Y, Casal JI, Bartolomé RA, Fernández-Luna JL, López-Rivas A, Oliver FJ. PIM kinases mediate resistance of glioblastoma cells to TRAIL by a p62/SQSTM1-dependent mechanism. Cell Death Dis 2019; 10:51. [PMID: 30718520 PMCID: PMC6362213 DOI: 10.1038/s41419-018-1293-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/07/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022]
Abstract
Glioblastoma (GBM) is the most common and aggressive brain tumor and is associated with poor prognosis. GBM cells are frequently resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and finding new combinatorial therapies to sensitize glioma cells to TRAIL remains an important challenge. PIM kinases are serine/threonine kinases that promote cell survival and proliferation and are highly expressed in different tumors. In this work, we studied the role of PIM kinases as regulators of TRAIL sensitivity in GBM cells. Remarkably, PIM inhibition or knockdown facilitated activation by TRAIL of a TRAIL-R2/DR5-mediated and mitochondria-operated apoptotic pathway in TRAIL-resistant GBM cells. The sensitizing effect of PIM knockdown on TRAIL-induced apoptosis was mediated by enhanced caspase-8 recruitment to and activation at the death-inducing signaling complex (DISC). Interestingly, TRAIL-induced internalization of TRAIL-R2/DR5 was significantly reduced in PIM knockdown cells. Phospho-proteome profiling revealed a decreased phosphorylation of p62/SQSTM1 after PIM knockdown. Our results also showed an interaction between p62/SQSTM1 and the DISC that was reverted after PIM knockdown. In line with this, p62/SQSTM1 ablation increased TRAIL-R2/DR5 levels and facilitated TRAIL-induced caspase-8 activation, revealing an inhibitory role of p62/SQSTM1 in TRAIL-mediated apoptosis in GBM. Conversely, upregulation of TRAIL-R2/DR5 upon PIM inhibition and apoptosis induced by the combination of PIM inhibitor and TRAIL were abrogated by a constitutively phosphorylated p62/SQSTM1S332E mutant. Globally, our data represent the first evidence that PIM kinases regulate TRAIL-induced apoptosis in GBM and identify a specific role of p62/SQSTM1Ser332 phosphorylation in the regulation of the extrinsic apoptosis pathway activated by TRAIL.
Collapse
Affiliation(s)
- Santiago Serrano-Saenz
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, CIBERONC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18100, Armilla, Granada, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Carlos III Health Institute, Madrid, Spain
| | - Carmen Palacios
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Carlos III Health Institute, Madrid, Spain.,Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, CIBERONC, Avda Américo Vespucio 24, 41092, Sevilla, Spain
| | - Daniel Delgado-Bellido
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, CIBERONC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18100, Armilla, Granada, Spain
| | - Laura López-Jiménez
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, CIBERONC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18100, Armilla, Granada, Spain
| | - Angel Garcia-Diaz
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, CIBERONC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18100, Armilla, Granada, Spain
| | - Yolanda Soto-Serrano
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, CIBERONC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18100, Armilla, Granada, Spain
| | - J Ignacio Casal
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039, Madrid, Spain
| | - Rubén A Bartolomé
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039, Madrid, Spain
| | - José Luis Fernández-Luna
- HUMV-Hospital Universitario Marqués de Valdecilla Avenida Valdecilla, 25, 39008, Santander, Cantabria, Spain
| | - Abelardo López-Rivas
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Carlos III Health Institute, Madrid, Spain. .,Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, CIBERONC, Avda Américo Vespucio 24, 41092, Sevilla, Spain.
| | - F Javier Oliver
- Instituto de Parasitología y Biomedicina López-Neyra, CSIC, CIBERONC, Parque Tecnológico Ciencias de la Salud, Avenida del Conocimiento, s/n, 18100, Armilla, Granada, Spain. .,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
41
|
Yuan X, Wu H, Bu H, Zhou J, Zhang H. Targeting the immunity protein kinases for immuno-oncology. Eur J Med Chem 2018; 163:413-427. [PMID: 30530193 DOI: 10.1016/j.ejmech.2018.11.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 01/09/2023]
Abstract
With the rise of immuno-oncology, small-molecule modulators targeting immune system and inflammatory processes are becoming a research hotspot. This work mainly focuses on key kinases acting as central nodes in immune signaling pathways. Although over thirty small-molecule kinase inhibitors have been approved by FDA for the treatment of various cancers, only a few are associated with immuno-oncology. With the going deep of the research work, more and more immunity protein kinase inhibitors are approved for clinical trials to treat solid tumors and hematologic malignancies by FDA, which remain good prospects. Meanwhile, in-depth understanding of biological function of immunity protein kinases in immune system is pushing the field forward. This article focuses on the development of safe and effective small-molecule immunity protein kinase inhibitors and further work needs to keep the promises of these inhibitors for patients' welfare.
Collapse
Affiliation(s)
- Xinrui Yuan
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Hanshu Wu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Hong Bu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, China.
| |
Collapse
|
42
|
Sundaram R L, Sali VK, Vasanthi HR. Protective effect of rutin isolated from Spermococe hispida against cobalt chloride-induced hypoxic injury in H9c2 cells by inhibiting oxidative stress and inducing apoptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 51:196-204. [PMID: 30466617 DOI: 10.1016/j.phymed.2018.09.229] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/18/2018] [Accepted: 09/30/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cardiovascular disease and its related deaths are increasing in the modern world. Therefore, there is a need to identify a plant based nutraceutical supplement with potent activity. HYPOTHESIS/PURPOSE Reportedly, the protective effect of the rutin in hypoxia-induced cardiomyocytes is due to the activation of molecular networks related to programmed cell death. STUDY DESIGN-METHODS Phytochemical methods and advanced analytical methods were employed to isolate natural products from Spermococe hispida their effects in cardiomyocyets. RESULTS We reports herein that CoCl2-induced hypoxic condition significantly decreased cell viability as evidenced by MTT assay and cell cycle analysis. Western blot studies revealed an up-regulation of HIF-1α, BAX and caspase and down-regulation of BCl-2 expression, followed by modulation of Akt, p-Akt, p38 and p-p38. The oxidative abnormalities were ameliorated by rutin pretreatment, as deduced by the reduced CoCl2-induced cytotoxicity, MDA concentration and LDH activity and the enhanced levels of GSH and SOD in a dose-dependent manner. Rutin protects H9c2 cells from CoCl2-induced hypoxic damage by mitigating oxidative stress and preserving cell viability by modulating the antiapoptotic proteins. CONCLUSION The overall findings reinforce the cardioprotective action of rutin, a potential source of antioxidant of natural origin, which may help in mitigating the progress of oxidative stress in hypoxic conditions such as myocardial infarction and stroke.
Collapse
Affiliation(s)
- Lakshmi Sundaram R
- Central Research Facility, Sri Ramachandra Medical College and Research Institute, Porur, Chennai 600 116, Tamil Nadu, India
| | - Veeresh Kumar Sali
- Deparment of Biotechnology, Pondicherry University, Pondicherry 605 014, India
| | - Hannah R Vasanthi
- Deparment of Biotechnology, Pondicherry University, Pondicherry 605 014, India.
| |
Collapse
|
43
|
Chatterjee S, Chakraborty P, Daenthanasanmak A, Iamsawat S, Andrejeva G, Luevano LA, Wolf M, Baliga U, Krieg C, Beeson CC, Mehrotra M, Hill EG, Rathmell JC, Yu XZ, Kraft AS, Mehrotra S. Targeting PIM Kinase with PD1 Inhibition Improves Immunotherapeutic Antitumor T-cell Response. Clin Cancer Res 2018; 25:1036-1049. [PMID: 30327305 DOI: 10.1158/1078-0432.ccr-18-0706] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/29/2018] [Accepted: 10/10/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE Adoptive T-cell therapy (ACT) of cancer, which involves the infusion of ex vivo-engineered tumor epitope reactive autologous T cells into the tumor-bearing host, is a potential treatment modality for cancer. However, the durable antitumor response following ACT is hampered either by loss of effector function or survival of the antitumor T cells. Therefore, strategies to improve the persistence and sustain the effector function of the antitumor T cells are of immense importance. Given the role of metabolism in determining the therapeutic efficacy of T cells, we hypothesize that inhibition of PIM kinases, a family of serine/threonine kinase that promote cell-cycle transition, cell growth, and regulate mTORC1 activity, can improve the potency of T cells in controlling tumor. EXPERIMENTAL DESIGN The role of PIM kinases in T cells was studied either by genetic ablation (PIM1-/-PIM2-/-PIM3-/-) or its pharmacologic inhibition (pan-PIM kinase inhibitor, PimKi). Murine melanoma B16 was established subcutaneously and treated by transferring tumor epitope gp100-reactive T cells along with treatment regimen that involved inhibiting PIM kinases, anti-PD1 or both. RESULTS With inhibition of PIM kinases, T cells had significant reduction in their uptake of glucose, and upregulated expression of memory-associated genes that inversely correlate with glycolysis. In addition, the expression of CD38, which negatively regulates the metabolic fitness of the T cells, was also reduced in PimKi-treated cells. Importantly, the efficacy of antitumor T-cell therapy was markedly improved by inhibiting PIM kinases in tumor-bearing mice receiving ACT, and further enhanced by adding anti-PD1 antibody to this combination. CONCLUSIONS This study highlights the potential therapeutic significance of combinatorial strategies where ACT and inhibition of signaling kinase with checkpoint blockade could improve tumor control.
Collapse
Affiliation(s)
- Shilpak Chatterjee
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Paramita Chakraborty
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Anusara Daenthanasanmak
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Supinya Iamsawat
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Gabriela Andrejeva
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Libia A Luevano
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Melissa Wolf
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Uday Baliga
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Carsten Krieg
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Craig C Beeson
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Meenal Mehrotra
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Elizabeth G Hill
- Department of Public Health, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Jeffery C Rathmell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Xue-Zhong Yu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Andrew S Kraft
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
44
|
Bishop GA, Stunz LL, Hostager BS. TRAF3 as a Multifaceted Regulator of B Lymphocyte Survival and Activation. Front Immunol 2018; 9:2161. [PMID: 30319624 PMCID: PMC6165887 DOI: 10.3389/fimmu.2018.02161] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022] Open
Abstract
The adaptor protein TNF receptor-associated factor 3 (TRAF3) serves as a powerful negative regulator in multiple aspects of B cell biology. Early in vitro studies in transformed cell lines suggested the potential of TRAF3 to inhibit signaling by its first identified binding receptor, CD40. However, because the canonical TRAF3 binding site on many receptors also mediates binding of other TRAFs, and whole-mouse TRAF3 deficiency is neonatally lethal, an accurate understanding of TRAF3's specific functions was delayed until conditional TRAF3-deficient mice were produced. Studies of B cell-specific TRAF3-deficient mice, complemented by investigations in normal and malignant mouse and human B cells, reveal that TRAF3 has powerful regulatory roles that are unique to this TRAF, as well as functions context-specific to the B cell. This review summarizes the current state of knowledge of these roles and functions. These include inhibition of signaling by plasma membrane receptors, negative regulation of intracellular receptors, and restraint of cytoplasmic NF- κB pathways. TRAF3 is also now known to function as a resident nuclear protein, and to impact B cell metabolism. Through these and additional mechanisms TRAF3 exerts powerful restraint upon B cell survival and activation. It is thus perhaps not surprising that TRAF3 has been revealed as an important tumor suppressor in B cells. The many and varied functions of TRAF3 in B cells, and new directions to pursue in future studies, are summarized and discussed here.
Collapse
Affiliation(s)
- Gail A. Bishop
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, United States
- Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
- Iowa City VA Health Care System, Iowa City, Iowa City, IA, United States
| | - Laura L. Stunz
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, United States
| | - Bruce S. Hostager
- Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
45
|
Zajkowicz A, Krześniak M, Gdowicz-Kłosok A, Łasut B, Rusin M. PIM2 survival kinase is upregulated in a p53-dependent manner in cells treated with camptothecin or co-treated with actinomycin D and nutlin-3a. Arch Biochem Biophys 2018; 655:26-36. [PMID: 30096294 DOI: 10.1016/j.abb.2018.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/17/2018] [Accepted: 08/06/2018] [Indexed: 12/28/2022]
Abstract
The p53 protein is an inducer of apoptosis, acting as a transcriptional regulator of apoptotic genes. In a previous study, we found that actinomycin D and nutlin-3a (A + N) synergistically activate p53. To better understand the molecular consequences of this synergism, we incubated arrays of antibodies against apoptotic proteins with extracts of A549 cells in which p53 had been activated. We found that strong activation of p53, marked by serine 46 and 392 phosphorylation, was associated with inactivating phosphorylation of proapoptotic BAD protein on serine 136. Investigation of the source of this phosphorylation revealed that activation of p53 was associated with accumulation of PIM2, a survival kinase. The accumulation of PIM2 following treatment with A + N was suppressed in p53-knockdown cells. Others discovered that PIM2 was activated by cooperatively acting p53 molecules. Our results are consistent with this finding. Moreover, we found that in A549 cells, the treatment with A + N stimulated in p53-dependent fashion the expression of other high cooperativity p53 target genes, DRAXIN and H19. Activation of antiapoptotic H19 can mechanistically explain relatively low rate of apoptosis of A549 cells exposed to A + N. We conclude that PIM2, DRAXIN and H19 are efficiently stimulated by strongly activated p53 molecules, probably acting cooperatively.
Collapse
Affiliation(s)
- Artur Zajkowicz
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute Oncology Center, Gliwice Branch, 44-101, Gliwice, Poland
| | - Małgorzata Krześniak
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute Oncology Center, Gliwice Branch, 44-101, Gliwice, Poland
| | - Agnieszka Gdowicz-Kłosok
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute Oncology Center, Gliwice Branch, 44-101, Gliwice, Poland
| | - Barbara Łasut
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute Oncology Center, Gliwice Branch, 44-101, Gliwice, Poland
| | - Marek Rusin
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie Institute Oncology Center, Gliwice Branch, 44-101, Gliwice, Poland.
| |
Collapse
|
46
|
Qiao S, Zheng N, Sun L, Pang G, Wang S, Jia P, Uzonna JE, Bai H, Yang X. The p110δ isoforme of phosphatidylinositol 3-kinase plays an important role in host defense against chlamydial lung infection through influencing CD4+ T-cell function. Pathog Dis 2018; 76:5035814. [PMID: 29893841 DOI: 10.1093/femspd/fty053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/08/2018] [Indexed: 11/13/2022] Open
Abstract
PI3Ks display integrant significance in T-cell development and differentiation, which is related to host defense against infections. Here, we investigated the role of p110δ isoform of PI3Ks in host defense against chlamydial lung infection in a mouse model. Our data showed that lung infection with Chlamydia muridarum (Cm) activated PI3K/AKT signaling pathway. Compared to WT mice, p110δD910A mice, mice with an inactivating knockin mutation in the p110δ Isoform of PI3Ks, showed more sever disease phenotype and slower recovery, which was associated with reduced Chlamydia-specific Th1 and Th17 immune responses following infection. Further adoptive transfer experiment showed that mice which received CD4+ T cells from infected p110δD910A mice exhibited greater body weight loss and higher bacterial loads in the lung than those which received CD4+ T cells from WT mice following challenge infection. These results provide in vivo evidence that p110δ isoform of PI3Ks plays an important role in host defense against chlamydial infection by promoting CD4+ T-cell immunity.
Collapse
Affiliation(s)
- Sai Qiao
- Department of Immunology, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E0T5, Canada.,Department of Immunology, Tianjin Medical University, 300070 Tianjin, P.R. China
| | - Ningbo Zheng
- Department of Immunology, Tianjin Medical University, 300070 Tianjin, P.R. China
| | - Lida Sun
- Department of Immunology, Tianjin Medical University, 300070 Tianjin, P.R. China
| | - Gaoju Pang
- Department of Immunology, Tianjin Medical University, 300070 Tianjin, P.R. China
| | - Shuhe Wang
- Department of Immunology, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E0T5, Canada
| | - Ping Jia
- Department of Immunology, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E0T5, Canada
| | - Jude Ezeh Uzonna
- Department of Immunology, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E0T5, Canada
| | - Hong Bai
- Department of Immunology, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E0T5, Canada.,Department of Immunology, Tianjin Medical University, 300070 Tianjin, P.R. China
| | - Xi Yang
- Department of Immunology, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E0T5, Canada
| |
Collapse
|
47
|
Lee M, Lee KH, Min A, Kim J, Kim S, Jang H, Lim JM, Kim SH, Ha DH, Jeong WJ, Suh KJ, Yang YW, Kim TY, Oh DY, Bang YJ, Im SA. Pan-Pim Kinase Inhibitor AZD1208 Suppresses Tumor Growth and Synergistically Interacts with Akt Inhibition in Gastric Cancer Cells. Cancer Res Treat 2018; 51:451-463. [PMID: 29879757 PMCID: PMC6473293 DOI: 10.4143/crt.2017.341] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 05/30/2018] [Indexed: 12/13/2022] Open
Abstract
Purpose Pim kinases are highly conserved serine/threonine kinases, and different expression patterns of each isoform (Pim-1, Pim-2, and Pim-3) have been observed in various types of human cancers, including gastric cancer. AZD1208 is a potent and selective inhibitor that affects all three isoforms of Pim. We investigated the effects of AZD1208 as a single agent and in combination with an Akt inhibitor in gastric cancer cells. Materials and Methods The antitumor activity of AZD1208 with/without an Akt inhibitor was evaluated in a large panel of gastric cancer cell lines through growth inhibition assays. The underlying mechanism was also examined by western blotting, immunofluorescence assay, and cell cycle analysis. Results AZD1208 treatment decreased gastric cancer cell proliferation rates and induced autophagy only in long-term culture systems. Light chain 3B (LC3B), a marker of autophagy, was increased in sensitive cells in a dose-dependent manner with AZD1208 treatment, which suggested that the growth inhibition effect of AZD1208 was achieved through autophagy, not apoptosis. Moreover, we found that cells damaged by Pim inhibition were repaired by activation of the DNA damage repair pathway, which promoted cell survival and led the cells to become resistant to AZD1208. We also confirmed that the combination of an Akt inhibitor with AZD1208 produced a highly synergistic effect in gastric cancer cell lines. Conclusion Treatment with AZD1208 alone induced considerable cell death through autophagy in gastric cancer cells. Moreover, the combination of AZD1208 with an Akt inhibitor showed synergistic antitumor effects through regulation of the DNA damage repair pathway.
Collapse
Affiliation(s)
- Miso Lee
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Kyung-Hun Lee
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ahrum Min
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jeongeun Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Seongyeong Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Hyemin Jang
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Jee Min Lim
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - So Hyeon Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Dong-Hyeon Ha
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Won Jae Jeong
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Koung Jin Suh
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yae-Won Yang
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Tae Yong Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yung-Jue Bang
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Seock-Ah Im
- Cancer Research Institute, Seoul National University, Seoul, Korea.,Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
48
|
Fisetin protects H9c2 cardiomyoblast cells against H2O2-induced apoptosis through Akt and ERK1/2 signaling pathways. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0020-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
49
|
Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms. Eur J Med Chem 2018; 150:9-29. [DOI: 10.1016/j.ejmech.2018.02.065] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/13/2018] [Accepted: 02/20/2018] [Indexed: 12/25/2022]
|
50
|
Lim R, Barker G, Lappas M. Inhibition of PIM1 kinase attenuates inflammation-induced pro-labour mediators in human foetal membranes in vitro. Mol Hum Reprod 2018; 23:428-440. [PMID: 28333279 DOI: 10.1093/molehr/gax013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/06/2017] [Indexed: 01/29/2023] Open
Abstract
STUDY QUESTION Does proviral integration site for Moloney murine leukaemic virus (PIM)1 kinase play a role in regulating the inflammatory processes of human labour and delivery? SUMMARY ANSWER PIM1 kinase plays a critical role in foetal membranes in regulating pro-inflammatory and pro-labour mediators. WHAT IS KNOWN ALREADY Infection and inflammation have strong causal links to preterm delivery by stimulating pro-inflammatory cytokines and collagen degrading enzymes, which can lead to rupture of membranes. PIM1 has been shown to have a role in immune regulation and inflammation in non-gestational tissues; however, its role has not been explored in the field of human labour. STUDY DESIGN, SIZE, DURATION PIM1 expression was analysed in myometrium and/or foetal membranes obtained at term and preterm (n = 8-9 patients per group). Foetal membranes, freshly isolated amnion cells and primary myometrial cells were used to investigate the effect of PIM1 inhibition on pro-labour mediators (n = 5 patients per treatment group). PARTICIPANTS/MATERIALS, SETTING AND METHODS Foetal membranes, from term and preterm, were obtained from non-labouring and labouring women, and from preterm pre-labour rupture of membranes (PPROM) (n = 9 per group). Amnion was collected from women with and without preterm chorioamnionitis (n = 8 per group). Expression of PIM1 kinase was determined by qRT-PCR and western blotting. To determine the effect of PIM1 kinase inhibition on the expression of pro-inflammatory and pro-labour mediators induced by bacterial products lipopolysaccharide (LPS) (10 μg/ml) and flagellin (1 μg/ml) and pro-inflammatory cytokine tumour necrosis factor (TNF) (10 ng/ml), chemical inhibitors SMI-4a (20 μM) and AZD1208 (50 μM) were used in foetal membrane explants and siRNA against PIM1 was used in primary amnion cells. Statistical significance was set at P < 0.05. MAIN RESULTS AND THE ROLE OF CHANCE PIM1 expression was significantly increased in foetal membranes after spontaneous term labour compared to no labour at term and in amnion with preterm chorioamnionitis compared to preterm with no chorioamnionitis. There was no change in PIM1 expression with preterm labour or PPROM compared to preterm with no labour or PPROM. In human foetal membranes, PIM1 inhibitors SMI-4a and AZD1208 significantly decreased the expression of pro-inflammatory cytokine interleukin-6 (IL6) and chemokines CXCL8 and CCL2 mRNA and release, prostaglandin prostaglandin F2α (PGF2α) release, adhesion molecule intercellular adhesion molecule 1 mRNA expression and release, and oxidative stress marker 8-isoprostane release after stimulation with either LPS or flagellin. Primary amnion cells transfected with PIM1 siRNA also showed decreased expression of IL6, CXCL8 and CCL2, PTGS2 mRNA and PGF2α release, and matrix metalloproteinase-9 (MMP9) expression, when stimulated with TNF. LARGE SCALE DATA None. LIMITATIONS, REASONS FOR CAUTION The conclusions were drawn from in vitro experiments using foetal membrane explants and primary cells isolated from amnion. Animal models are necessary to determine whether PIM1 kinase inhibitors can prevent spontaneous preterm birth in vivo. WIDER IMPLICATIONS OF THE FINDINGS PIM1 kinase inhibitors may provide a novel therapeutic approach for preventing spontaneous preterm birth. STUDY FUNDING/COMPETING INTEREST(S) Associate Professor Martha Lappas is supported by a Career Development Fellowship from the National Health and Medical Research Council (NHMRC; grant no. 1047025). Funding for this study was provided by the NHMRC (grant no. 1058786), Norman Beischer Medical Research Foundation and the Mercy Research Foundation. The authors have no conflict of interest.
Collapse
Affiliation(s)
- Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Level 4/163 Studley Road, Heidelberg, Victoria 3084, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Level 4/163 Studley Road, Heidelberg, Victoria 3084, Australia
| | - Gillian Barker
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Level 4/163 Studley Road, Heidelberg, Victoria 3084, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Level 4/163 Studley Road, Heidelberg, Victoria 3084, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Level 4/163 Studley Road, Heidelberg, Victoria 3084, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Level 4/163 Studley Road, Heidelberg, Victoria 3084, Australia
| |
Collapse
|