1
|
Xu Y, Hu J, Bi D, Su W, Hu L, Ma Y, Zhu M, Wu M, Huang Y, Yu E, Zhang B, Xu K, Chen J, Wei P. A bioactive xyloglucan polysaccharide hydrogel mechanically enhanced by Pluronic F127 micelles for promoting chronic wound healing. Int J Biol Macromol 2024; 277:134102. [PMID: 39047998 DOI: 10.1016/j.ijbiomac.2024.134102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Chronic wounds represent a formidable global healthcare challenge due to the bacteria infections and uncontrollable inflammation responses, while developing wound healing materials capable of resolving these issues remains a challenge. In this study, we integrated xyloglucan (XG) with Pluronic F127 diacrylate (F127DA)to develop a composite hydrogel for wound healing, where the XG introduced anti-inflammation and anti-bacterial properties to the construct, and F127DA provides the photocurable properties essential for hydrogel formation and robust mechanical characteristics to achieve physical strength that matches tissue regeneration. The material characterizations suggested that XG/F127DA hydrogels had great biostability, blood compatibility and antibacterial effects, which was suitable to be used as a wound healing material. The in vitro analysis by culturing L929 fibroblasts on the hydrogel surface demonstrated that the inclusion of XG could promote the cellular proliferation rate, migration rate, and re-epithelialization-related marker expression, while downregulate the inflammation process. The XG/F127DA hydrogel was further used for the full-thickness skin wound healing test on mice, where the inclusion of XG significantly increased the wound closure rate through reducing the inflammation responses, and promote re-epithelialization and angiogenesis. These results indicated that XG/F127DA hydrogel has great potential to be used for wound healing in future clinical translation.
Collapse
Affiliation(s)
- Yongqi Xu
- Department of Plastic and Reconstructive Surgery, the First Affiliated Hospital of Ningbo University, Ningbo 315010, China; Health Science Center, Ningbo University, Ningbo 315211, China
| | - Jingyin Hu
- Department of Plastic and Reconstructive Surgery, the First Affiliated Hospital of Ningbo University, Ningbo 315010, China; Health Science Center, Ningbo University, Ningbo 315211, China
| | - De Bi
- Department of Plastic and Reconstructive Surgery, the First Affiliated Hospital of Ningbo University, Ningbo 315010, China; Health Science Center, Ningbo University, Ningbo 315211, China
| | - Wei Su
- Department of Plastic and Reconstructive Surgery, the First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Liqing Hu
- Department of Clinical Laboratory, the First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Yuxi Ma
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengxiang Zhu
- Center for Medical and Engineering Innovation, Central Laboratory, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China; Department of Medical Research Center, the First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Miaoben Wu
- Department of Plastic and Reconstructive Surgery, the First Affiliated Hospital of Ningbo University, Ningbo 315010, China; Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yuye Huang
- Department of Plastic and Reconstructive Surgery, the First Affiliated Hospital of Ningbo University, Ningbo 315010, China; Center for Medical and Engineering Innovation, Central Laboratory, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China
| | - Enxing Yu
- Department of Plastic and Reconstructive Surgery, the First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Bing Zhang
- Department of Hand and Foot Microsurgery, Yuyao People Hospital, Yuyao, Zhejiang 315400, China
| | - Kailei Xu
- Department of Plastic and Reconstructive Surgery, the First Affiliated Hospital of Ningbo University, Ningbo 315010, China; Center for Medical and Engineering Innovation, Central Laboratory, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, China.
| | - Jing Chen
- Institute of Medical Sciences, The Second Hospital, Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan 250033, China.
| | - Peng Wei
- Department of Plastic and Reconstructive Surgery, the First Affiliated Hospital of Ningbo University, Ningbo 315010, China.
| |
Collapse
|
2
|
Tong D, Gobert S, Reuzeau A, Farges JC, Leveque M, Bolon M, Costantini A, Pasdeloup M, Lafont J, Ducret M, Bekhouche M. Dental pulp mesenchymal stem cells-response to fibrin hydrogel reveals ITGA2 and MMPs expression. Heliyon 2024; 10:e32891. [PMID: 39027533 PMCID: PMC11255596 DOI: 10.1016/j.heliyon.2024.e32891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Regenerative endodontic procedures (REP) aim at reestablishing tooth vitality by replacing the irreversibly damaged dental pulp removed by the dental practitioner with a new functional one. The current treatment of advanced caries relies on the replacement of the inflamed or necrosed dental pulp with an inert filling material. This leads to a functional but non-vital tooth, which lacks the ability to sense dental tissue damage, and to protect from further bacterial attack. Therapeutic strategies inspired by tissue engineering called REP propose to regenerate a fully functional dental pulp directly in the canal space. Promising results were obtained using dental pulp mesenchymal stem cells (DP-MSCs) in combination with bio-inspired artificial and temporary 3D hydrogels made of extracellular matrix molecules such as collagen and fibrin biomacromolecules. However, the uncontrolled mechanisms of DP regeneration from DP-MSCs in 3D biomacromolecules fail to regenerate a fully functional DP and can induce fibrotic scarring or mineralized tissue formation to a non-negligible extent. The lack of knowledge regarding the early molecular mechanisms initiated by DP-MSCs seeded in ECM-made hydrogels is a scientific lock for REP. In this study, we investigated the early DP-MSC-response in a 3D fibrin hydrogel. DP-MSCs isolated from human third molars were cultured for 24 h in the fibrin hydrogel. The differential transcript levels of extracellular and cell surface genes were screened with 84-gene PCR array. Out of the 84 genes screened, 9 were found to be overexpressed, including those coding for the integrin alpha 2 subunit, the collagenase MMP1 and stromelysins MMP3, MMP10 and MMP12. Over-expression of ITGA2 was confirmed by RT-qPCR. The expression of alpha 2 integrin subunit protein was assessed over time by immunoblot and immunofluorescence staining. The increase in the transcript level of MMP1, MMP3, MM10 and MMP12 was confirmed by RT-qPCR. The overexpression of MMP1 and 3 at the protein level was assessed by immunoblot. MMP3 expression by DP-MSCs was observed by immunofluorescence staining. This work demonstrates overexpression of ITGA2 and of MMP1, 3, 10 and 12 by DP-MSCs cultured in a fibrin hydrogel. The main preliminary extracellular and cell surface response of the DP-MSCs to fibrin hydrogel seems to rely on a ITGA2/MMP3 axis. Further investigations are needed to precisely decipher the role of this axis in dental pulp tissue building. Nevertheless, this work identifies extracellular and cell surface molecules that could be potential checkpoints to be targeted to guide proper dental pulp tissue regeneration.
Collapse
Affiliation(s)
- David Tong
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Stéphanie Gobert
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Alicia Reuzeau
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Jean-Christophe Farges
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
- Odontology Faculty of Lyon, University Lyon 1, France
- Hospices Civils de Lyon, France
| | - Marianne Leveque
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Marie Bolon
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Arthur Costantini
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
- Hospices Civils de Lyon, France
| | - Marielle Pasdeloup
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Jérôme Lafont
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Maxime Ducret
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
- Odontology Faculty of Lyon, University Lyon 1, France
| | - Mourad Bekhouche
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| |
Collapse
|
3
|
Lin P, Zhang G, Li H. The Role of Extracellular Matrix in Wound Healing. Dermatol Surg 2023; 49:S41-S48. [PMID: 37115999 DOI: 10.1097/dss.0000000000003779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
BACKGROUND Extracellular matrix communicates with surrounding cells to maintain skin homeostasis and modulate multiple cellular processes including wound healing. OBJECTIVE To elucidate the dynamic composition and potential roles of extracellular matrix in normal skin, wound healing process, and abnormal skin scarring. MATERIALS AND METHODS Literature review was performed to identify relevant publications pertaining to the extracellular matrix deposition in normal skin and wound healing process, as well as in abnormal scars. RESULTS A summary of the matrix components in normal skin is presented. Their primary roles in hemostasis, inflammation, proliferation, and remodeling phases of wound healing are briefly discussed. Identification of novel extracellular matrix in keloids is also provided. CONCLUSION Abnormal scarring remains a challenging condition with unmet satisfactory treatments. Illumination of extracellular matrix composition and functions in wound healing process will allow for the development of targeted therapies in the future.
Collapse
Affiliation(s)
- Pingping Lin
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Guohong Zhang
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Hang Li
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| |
Collapse
|
4
|
Ohara R, Dario FL, Emílio-Silva MT, Assunção R, Rodrigues VP, Bueno G, Raimundo PR, da Rocha LRM, Hiruma-Lima CA. Citral Modulates MMP-2 and MMP-9 Activities on Healing of Gastric Ulcers Associated with High-Fat Diet-Induced Obesity. Int J Mol Sci 2023; 24:ijms24054888. [PMID: 36902320 PMCID: PMC10003425 DOI: 10.3390/ijms24054888] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 03/06/2023] Open
Abstract
Obesity causes low-grade inflammation that results in the development of comorbidities. In people with obesity, exacerbation of gastric lesion severity and delayed healing may aggravate gastric mucosal lesions. Accordingly, we aimed to evaluate the citral effects on gastric lesion healing in eutrophic and obese animals. C57Bl/6 male mice were divided into two groups: animals fed a standard diet (SD) or high-fat diet (HFD) for 12 weeks. Gastric ulcers were induced using acetic acid (80%) in both groups. Citral (25, 100, or 300 mg/kg) was administered orally for 3 or 10 days. A vehicle-treated negative control (1% Tween 80, 10 mL/kg) and lansoprazole-treated (30 mg/kg) were also established. Lesions were macroscopically examined by quantifying regenerated tissue and ulcer areas. Matrix metalloproteinases (MMP-2 and -9) were analyzed by zymography. The ulcer base area between the two examined periods was significantly reduced in HFD 100 and 300 mg/kg citral-treated animals. In the 100 mg/kg citral-treated group, healing progression was accompanied by reduced MMP-9 activity. Accordingly, HFD could alter MMP-9 activity, delaying the initial healing phase. Although macroscopic changes were undetectable, 10-day treatment with 100 mg/kg citral exhibited improved scar tissue progression in obese animals, with reduced MMP-9 activity and modulation of MMP-2 activation.
Collapse
|
5
|
Li L, Ma Q, Mou J, Wang M, Ye J, Sun G. Basic fibroblast growth factor gel preparation induces angiogenesis during wound healing. Int J Artif Organs 2023; 46:171-181. [PMID: 36625364 DOI: 10.1177/03913988221145525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE This study aimed to observe the effect of basic fibroblast growth factor (bFGF) gel preparation on wound repair in a full-thickness skin defect rat model and to further explore its mechanism. METHODS The full-thickness skin defect model of Wistar rats was created with circular wounds of 20 mm or 10 mm in diameter on both sides of the spine. The animals were divided into the normal, model, control gel, and bFGF gel groups (300 IU/cm2). The effects of the bFGF gel on wound healing were evaluated and compared. Optical coherence tomography (OCT)-based angiography (OCTA) was used to investigate the effects of bFGF on angiogenesis during wound healing. Western blotting, polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay (ELISA) kits were used to detect the effect of the gel preparation on the levels of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMP2 and MMP9) on the wound surface to explore the mechanism. RESULTS The bFGF gel significantly reduced wound area, promoted the formation of wound granulation tissue, and accelerated wound healing in the bFGF gel group on days 7 and 14, compared with the control gel group. OCTA results showed that bFGF significantly improved wound vascular density, diameter, and circumference. Western blot, PCR, and ELISA results showed that the gel preparation could promote the expression levels of MMP2, MMP9, and VEGF on the wound surface 7 and 14 days after injury. CONCLUSION bFGF promotes angiogenesis in wound areas. Topical gel preparations of bFGF can be developed for use in wound repair.
Collapse
Affiliation(s)
- Lanfang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiuxiao Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junyu Mou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Harbin University of Commerce, Harbin, China
| | - Min Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingxue Ye
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Jiao J, Tian Y, Li Y, Liang Y, Deng S, Wang W, Wang Y, Lin Y, Tian Y, Li C. Metal-organic framework-based nanoplatform enhance fibroblast activity to treat periodontitis. Dent Mater J 2023; 42:19-29. [PMID: 36244739 DOI: 10.4012/dmj.2022-096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
After periodontal tissue injury, reconstruct soft tissue sealing around the tooth surface is of fundamental importance to treat periodontitis. Among multiple cell types, fibroblast plays a central role in reestablishing functional periodontium. To enhance fibroblast activity, a novel metal-organic framework-based nanoplatform is fabricated using mesoporous Prussian blue (MPB) nanoparticles to load baicalein (BA), named MPB-BA. Drug release test displayed sustained BA release of MPB-BA. Cell proliferation, transwell migration and wound healing tests revealed accelerated fibroblast proliferation and migration for the established MPB-BA nanoplatform. Moreover, vinculin immunofluorescence staining, western blot and quantitative real-time PCR analysis showed up-regulated vinculin protein and integrin α5 and integrin β1 gene expressions for MPB-BA, suggesting improved cell adhesion. In addition, hematoxylin and eosin (H&E) and Masson trichromatic staining suggested superior anti-inflammatory and collagen fiber reconstruction effects for MPB-BA in a rat experimental periodontitis model in vivo. Our study may provide a promising strategy for the treatment of periodontitis.
Collapse
Affiliation(s)
- Jian Jiao
- School of Dentistry, Stomatological Hospital, Tianjin Medical University.,Department of Stomatology, General Hospital, Tianjin Medical University
| | - Yujuan Tian
- School of Dentistry, Stomatological Hospital, Tianjin Medical University
| | - Ying Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University
| | - Yunkai Liang
- School of Dentistry, Stomatological Hospital, Tianjin Medical University
| | - Shu Deng
- Department of Stomatology, Second Hospital, Tianjin Medical University
| | - Wanmeng Wang
- School of Dentistry, Stomatological Hospital, Tianjin Medical University
| | - Yuwei Wang
- School of Dentistry, Stomatological Hospital, Tianjin Medical University
| | - Yi Lin
- School of Dentistry, Stomatological Hospital, Tianjin Medical University
| | - Yuan Tian
- School of Dentistry, Stomatological Hospital, Tianjin Medical University
| | - Changyi Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University
| |
Collapse
|
7
|
Xu X, Zhang Y, Ha P, Chen Y, Li C, Yen E, Bai Y, Chen R, Wu BM, Da Lio A, Ting K, Soo C, Zheng Z. A novel injectable fibromodulin-releasing granular hydrogel for tendon healing and functional recovery. Bioeng Transl Med 2023; 8:e10355. [PMID: 36684085 PMCID: PMC9842059 DOI: 10.1002/btm2.10355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 01/25/2023] Open
Abstract
A crucial component of the musculoskeletal system, the tendon is one of the most commonly injured tissues in the body. In severe cases, the ruptured tendon leads to permanent dysfunction. Although many efforts have been devoted to seeking a safe and efficient treatment for enhancing tendon healing, currently existing treatments have not yet achieved a major clinical improvement. Here, an injectable granular hyaluronic acid (gHA)-hydrogel is engineered to deliver fibromodulin (FMOD)-a bioactive extracellular matrix (ECM) that enhances tenocyte mobility and optimizes the surrounding ECM assembly for tendon healing. The FMOD-releasing granular HA (FMOD/gHA)-hydrogel exhibits unique characteristics that are desired for both patients and health providers, such as permitting a microinvasive application and displaying a burst-to-sustained two-phase release of FMOD, which leads to a prompt FMOD delivery followed by a constant dose-maintaining period. Importantly, the generated FMOD-releasing granular HA hydrogel significantly augmented tendon-healing in a fully-ruptured rat's Achilles tendon model histologically, mechanically, and functionally. Particularly, the breaking strength of the wounded tendon and the gait performance of treated rats returns to the same normal level as the healthy controls. In summary, a novel effective FMOD/gHA-hydrogel is developed in response to the urgent demand for promoting tendon healing.
Collapse
Affiliation(s)
- Xue Xu
- Department of Oral and Maxillofacial Plastic and Traumatic SurgeryBeijing Stomatological Hospital of Capital Medical UniversityBeijingChina
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
- Division of Growth and DevelopmentSchool of Dentistry, University of CaliforniaLos AngelesCaliforniaUSA
| | - Yulong Zhang
- School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Pin Ha
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
- Division of Growth and DevelopmentSchool of Dentistry, University of CaliforniaLos AngelesCaliforniaUSA
| | - Yao Chen
- School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Chenshuang Li
- Department of OrthodonticsSchool of Dental Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Emily Yen
- Arcadia High SchoolArcadiaCaliforniaUSA
| | - Yuxing Bai
- Department of OrthodonticsBeijing Stomatological Hospital of Capital Medical UniversityBeijingChina
| | - Renji Chen
- Department of Oral and Maxillofacial Plastic and Traumatic SurgeryBeijing Stomatological Hospital of Capital Medical UniversityBeijingChina
| | - Benjamin M. Wu
- School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Andrew Da Lio
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
| | - Kang Ting
- Forsyth Research InstituteHarvard UniversityCambridgeMassachusettsUSA
- Samueli School of EngineeringUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery, Department of Orthopaedic SurgeryThe Orthopaedic Hospital Research Center, University of CaliforniaLos AngelesCaliforniaUSA
| | - Zhong Zheng
- Division of Plastic and Reconstructive SurgeryDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
- Division of Growth and DevelopmentSchool of Dentistry, University of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
8
|
Hernandez DS, Michelson KE, Romanovicz D, Ritschdorff ET, Shear JB. Laser-imprinting of micro-3D printed protein hydrogels enables real-time independent modification of substrate topography and elastic modulus. BIOPRINTING (AMSTERDAM, NETHERLANDS) 2022; 28:e00250. [PMID: 37601117 PMCID: PMC10438846 DOI: 10.1016/j.bprint.2022.e00250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Independent control over the Young's modulus and topography of a hydrogel cell culture substrate is necessary to characterize how attributes of its adherent surface affect cellular responses. Arbitrary, real-time manipulation of these parameters at the micron scale would further provide cellular biologists and bioengineers with the tools to study and control numerous highly dynamic behaviors including cellular adhesion, motility, metastasis, and differentiation. Although physical, chemical, thermal, and light-based strategies have been developed to influence Young's modulus and topography of hydrogel substrates, independent control of these physical attributes has remained elusive, spatial resolution is often limited, and features commonly must be pre-patterned. We recently reported a strategy in which biomaterials having specified three-dimensional (3D) morphologies are micro-3D printed in a two-step process: laser-scanning bioprinting of a protein-based hydrogel, followed by biocompatible hydrogel re-scanning to create microscale imprinted features at user-defined times. In this approach, a pulsed near-infrared laser beam is focused within the printed hydrogel to promote matrix contraction through multiphoton crosslinking, where scanning the laser focus projects a user-defined topographical pattern on the surface without subjecting the hydrogel-solution interface to damaging light intensities. Here, we extend this strategy, demonstrating the ability to decouple dynamic topographical changes from changes in hydrogel Young's modulus at the substrate surface by increasing the isolation distance between the surface and re-scanning planes. Using atomic force microscopy, we show that robust topographic changes can be imposed without altering the Young's modulus measured at the substrate surface by scanning at a depth of greater than ~6 μm. Transmission electron microscopy of hydrogel thin sections reveals changes to hydrogel porosity and density distribution within scanned regions, and that such changes to the hydrogel matrix are highly localized to regions of laser exposure. These results represent valuable new capabilities for deconvolving the effects of substrate dynamic physical attributes on the behavior of adherent cells.
Collapse
Affiliation(s)
| | | | - Dwight Romanovicz
- Department of Chemistry, 1 University Station A5300, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Eric T. Ritschdorff
- Department of Chemistry, 1 University Station A5300, The University of Texas at Austin, Austin, TX, 78712, United States
| | - Jason B. Shear
- Department of Chemistry, 1 University Station A5300, The University of Texas at Austin, Austin, TX, 78712, United States
| |
Collapse
|
9
|
Bacci S, Bani D. The Epidermis in Microgravity and Unloading Conditions and Their Effects on Wound Healing. Front Bioeng Biotechnol 2022; 10:666434. [PMID: 35392403 PMCID: PMC8980714 DOI: 10.3389/fbioe.2022.666434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/08/2022] [Indexed: 01/06/2023] Open
Abstract
The future objectives of human space flight are changing from low-term permanence in the International Space Station to missions beyond low Earth orbit to explore other planets. This implies that astronauts would remain exposed for long time to a micro-gravity environment with limited medical support available. This has sparkled medical research to investigate how tissues may adapt to such conditions and how wound repair may be influenced. This mini-review is focused on the effects of microgravity and unloading conditions on the epidermis and its keratinocytes. Previous studies, originally aimed at improving the in vitro protocols to generate skin substitutes for plastic surgery purposes, showed that epidermal stem cells cultured in simulated microgravity underwent enhanced proliferation and viability and reduced terminal differentiation than under normal gravity. In the meantime, microgravity also triggered epithelial-mesenchymal transition of keratinocytes, promoting a migratory behavior. The molecular mechanisms, only partially understood, involve mechano-trasduction signals and pathways whereby specific target genes are activated, i.e., those presiding to circadian rhythms, migration, and immune suppression, or inhibited, i.e., those involved in stress responses. However, despite the above in vitro studies suggest that microgravity would accelerate keratinocyte growth rate and migration, in vivo findings on animals in experimental set-ups to simulate low gravity rather suggest that prolonged mechanical unloading contributes to delayed and impaired epidermal repair. This is in keeping with the finding that microgravity interferes at multiple levels with the regulatory signals which coordinate the different cell types involved in the repair process, thereby negatively influencing skin wound healing.
Collapse
Affiliation(s)
- Stefano Bacci
- Research Unit of Histology and Embryology, Florence, Italy
- Department Biology, Florence, Italy
- *Correspondence: Stefano Bacci,
| | - Daniele Bani
- Research Unit of Histology and Embryology, Florence, Italy
- Department, Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
10
|
Carvalho MTB, Araújo-Filho HG, Barreto AS, Quintans-Júnior LJ, Quintans JSS, Barreto RSS. Wound healing properties of flavonoids: A systematic review highlighting the mechanisms of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153636. [PMID: 34333340 DOI: 10.1016/j.phymed.2021.153636] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/22/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Flavonoids are a class of compounds with a wide variety of biological functions, being an important source of new products with pharmaceutical potential, including treatment of skin wounds. PURPOSE This review aimed to summarize and evaluate the evidence in the literature in respect of the healing properties of flavonoids on skin wounds in animal models. STUDY DESIGN This is a systematic review following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. METHODS This was carried out through a specialized search of four databases: PubMed, Scopus, Web of Science and Embase. The following keyword combinations were used: "flavonoidal" OR "flavonoid" OR "flavonoidic" OR "flavonoids" AND "wound healing" as well as MeSH terms, Emtree terms and free-text words. RESULTS Fifty-five (55) articles met the established inclusion and exclusion criteria. Flavonoids presented effects in respect of the inflammatory process, angiogenesis, re-epithelialization and oxidative stress. They were shown to be able to act on macrophages, fibroblasts and endothelial cells by mediating the release and expression of TGF-β1, VEGF, Ang, Tie, Smad 2 and 3, and IL-10. Moreover, they were able to reduce the release of inflammatory cytokines, NFκB, ROS and the M1 phenotype. Flavonoids acted by positively regulating MMPs 2, 8, 9 and 13, and the Ras/Raf/MEK/ERK, PI3K/Akt and NO pathways. CONCLUSION Flavonoids are useful tools in the development of therapies to treat skin lesions, and our review provides a scientific basis for future basic and translational research.
Collapse
Affiliation(s)
- Mikaella T B Carvalho
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, CEP: 49.000-100, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Heitor G Araújo-Filho
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, CEP: 49.000-100, São Cristóvão, SE, Brazil
| | - André S Barreto
- Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil; Laboratory Pharmacology Cardiovascular (LAFAC), Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Lucindo J Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, CEP: 49.000-100, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Jullyana S S Quintans
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, CEP: 49.000-100, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Rosana S S Barreto
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Marechal Rondon Avenue, S/N, Rosa Elza, CEP: 49.000-100, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
11
|
Kusuma CG, Gubbiveeranna V, Sumachirayu CK, Bhavana S, Ravikumar H, Nagaraju S. Thrombin- and plasmin-like and platelet-aggregation-inducing activities of Plumeria alba L. latex: Action of cysteine protease. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:114000. [PMID: 33705919 DOI: 10.1016/j.jep.2021.114000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/20/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In folk medicine, parts of Plumeria alba L. are used for the treatment of many diseases, with its latex being used for curing skin diseases and promoting wound healing. AIM OF THE STUDY This study aimed to study the role of P. alba L. latex in hemostasis and platelet aggregation. MATERIALS AND METHODS The latex of P. alba L. was processed to remove waxes and enrich protein content, and the final extract was named Plumeria alba L. natant latex (PaNL). PaNL was analyzed for protease activity against casein. The type of protease in PaNL was identified by using protease inhibitors such as E-64, phenylmethylsulfonyl fluoride, ethylenediaminetetraacetic acid, and pepstatin A. Human fibrinogen, fibrin, and collagen types I and IV were subjected to hydrolysis with different concentrations of PaNL. The thrombin-like activity of PaNL was determined by analyzing its fibrinogen-clotting and procoagulant activities. The role of PaNL in platelet aggregation was also investigated. Its hemorrhagic and edema-inducing activities were evaluated in a mouse model. Phytochemical compounds were identified by gas chromatography-mass spectroscopy. RESULTS The findings of casein/gelatin zymography confirmed that PaNL possesses protease activity. The results of the protease inhibition study indicated the presence of a cysteine-type protease(s) in PaNL. PaNL hydrolyzed the subunits of fibrinogen, fibrin, and collagen types I and IV. Its fibrin-degradation activity indicated that PaNL possesses plasmin-like activity. PaNL induced clotting of citrated human plasma within 3 min of incubation in the absence of CaCl2, indicating the presence of thrombin-like activity, which was further confirmed by the results of the fibrinogen-clotting assay. PaNL induced platelet aggregation in the absence of agonists. There was no hemolytic activity. Mice injected with PaNL did not show edema/ hemorrhagic activity. CONCLUSION PaNL possesses procoagulant, fibrino(geno)lytic, thrombin- and plasmin-like activities and induces platelet aggregation, which could explain its usage for wound treatment in folk medicine.
Collapse
Affiliation(s)
- C G Kusuma
- Department of Studies and Research in Biochemistry, Tumkur University, Tumkur, 572103, Karnataka, India
| | - Vinod Gubbiveeranna
- Department of Studies and Research in Biochemistry, Tumkur University, Tumkur, 572103, Karnataka, India
| | - C K Sumachirayu
- Department of Studies and Research in Biochemistry, Tumkur University, Tumkur, 572103, Karnataka, India
| | - S Bhavana
- Department of Studies and Research in Biochemistry, Tumkur University, Tumkur, 572103, Karnataka, India
| | - H Ravikumar
- Department of Life Science, Jnana Bharathi Campus, Bangalore University, Bangalore, Karnataka, India
| | - S Nagaraju
- Department of Studies and Research in Biochemistry, Tumkur University, Tumkur, 572103, Karnataka, India.
| |
Collapse
|
12
|
Despoudi K, Mantzoros I, Ioannidis O, Loutzidou L, Christidis P, Chatzakis C, Gkasdaris G, Raptis D, Pramateftakis MG, Angelopoulos S, Zaraboukas T, Koliakos G, Tsalis K. Healing of colonic anastomosis in rats under obstructive ileus conditions. Discoveries (Craiova) 2021; 9:e129. [PMID: 34849396 PMCID: PMC8627191 DOI: 10.15190/d.2021.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The anastomosis leak in colon resections is a crucial post-operative complication with significant morbidity and mortality. Methods: Forty (40) Wistar rats were allocated in two groups. In SHAM group only anastomosis was performed. In ILEUS group anastomosis was performed following one day of ileus. Animals in both groups were subdivided in two groups according to the day they were sacrificed, 4th or 8th post-operative day. A number of variables between the groups were estimated. RESULTS Body weight loss was higher following obstructive ileus on both days. Adhesion score in 4th and 8th post-operative day was higher in ILEUS1, ILEUS2 groups compared to SHAM1, SHAM2 groups respectively (p<0.001 for both). Neovascularization decreased following obstructive ileus compared to control on the 4th day (ILEUS1 vs. SHAM1, p=0.038). Bursting pressure was lower in ILEUS2 group than SHAM2 group (p<0.001). The number of fibroblasts decreased following obstructive ileus compared to control on the 4th and 8th day (ILEUS1 vs. SHAM1, p=0.001, ILEUS2 vs SHAM2, p=0.016). Hydroxyproline concentration was decreased in ILEUS2 group compared to SHAM2 group (p<0.001). CONCLUSIONS The balance of collagenolysis and collagenogenesis plays a decisive role in the healing of anastomoses following bowel obstruction. Under those circumstances, anastomosis' bursting pressure is reduced owning to decreased neovascularization, reduced fibroblast presence and lower hydroxyproline concertation. In our study, local inflammation, neocollagen concentration and collagenase activity were not associated with this adverse effect. However, further research should delineate the mechanisms of healing of colonic anastomoses and identify those factors that can improve our outcomes.
Collapse
Affiliation(s)
- Kalliopi Despoudi
- 4th Academic Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Ioannis Mantzoros
- 4th Academic Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Orestis Ioannidis
- 4th Academic Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Lydia Loutzidou
- 4th Academic Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Panagiotis Christidis
- 4th Academic Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Christos Chatzakis
- 4th Academic Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Grigorios Gkasdaris
- 4th Academic Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Dimitrios Raptis
- 4th Academic Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Manousos George Pramateftakis
- 4th Academic Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Stamatios Angelopoulos
- 4th Academic Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Thomas Zaraboukas
- Department of Pathology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - George Koliakos
- Department of Biochemistry, School of Medicine, Aristotle University of Thessaloniki, Greece
| | - Konstantinos Tsalis
- 4th Academic Department of Surgery, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
13
|
Zhou P, Yang C, Zhang S, Ke ZX, Chen DX, Li YQ, Li Q. The Imbalance of MMP-2/TIMP-2 and MMP-9/TIMP-1 Contributes to Collagen Deposition Disorder in Diabetic Non-Injured Skin. Front Endocrinol (Lausanne) 2021; 12:734485. [PMID: 34777244 PMCID: PMC8579102 DOI: 10.3389/fendo.2021.734485] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/05/2021] [Indexed: 01/15/2023] Open
Abstract
The importance of the early diagnosis and treatment of diabetes and its cutaneous complications has become increasingly recognized. When diabetic non-injured skin was stained with Masson's trichrome, its dermal collagen was found to be disordered, its density was variable, and it was dispersed or arranged in vague fascicles. The collagen type I sequencing results of RNA sequencing-based transcriptome analysis of three primary human skin cell types-dermal fibroblasts, dermal microvascular endothelial cells, and epidermal keratinocytes-under high glucose were analyzed. The results showed that both COL1A1 and COL1A2 mRNA expressions were reduced in human dermal fibroblasts (HDFs). The ratio of matrix metalloproteinase (MMP)-2/tissue inhibitors of metalloproteinase (TIMP)-2 and MMP-9/TIMP-1 in HDFs increased when treated with high glucose. By inhibiting MMP-2 and MMP-9 with SB-3CT, collagen deposition disorder of the skin in streptozotocin-induced diabetes mice was alleviated. The imbalance of MMP2/TIMP2 and MMP9/TIMP1 contributes to the non-injured skin disorder of collagen deposition in diabetes, suggesting a possibility for early treatment of diabetes skin complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qin Li
- *Correspondence: Yi-Qing Li, ; Qin Li,
| |
Collapse
|
14
|
Fraser D, Nguyen T, Benoit DSW. Matrix Control of Periodontal Ligament Cell Activity Via Synthetic Hydrogel Scaffolds. Tissue Eng Part A 2020; 27:733-747. [PMID: 33107404 DOI: 10.1089/ten.tea.2020.0278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Rebuilding the tooth-supporting tissues (periodontium) destroyed by periodontitis remains a clinical challenge. Periodontal ligament cells (PDLCs), multipotent cells within the periodontal ligament (PDL), differentiate and form new PDL and mineralized tissues (cementum and bone) during native tissue repair in response to specific extracellular matrix (ECM) cues. Thus, harnessing ECM cues to control PDLC activity ex vivo, and ultimately, to design a PDLC delivery vehicle for tissue regeneration is an important goal. In this study, poly(ethylene glycol) hydrogels were used as a synthetic PDL ECM to interrogate the roles of cell-matrix interactions and cell-mediated matrix remodeling in controlling PDLC activity. Results showed that PDLCs within matrix metalloproteinase (MMP)-degradable hydrogels expressed key PDL matrix genes and showed a six to eightfold increase in alkaline phosphatase (ALP) activity compared with PDLCs in nondegradable hydrogel controls. The increase in ALP activity, commonly considered an early marker of cementogenic/osteogenic differentiation, occurred independent of the presentation of the cell-binding ligand RGD or soluble media cues and remained elevated when inhibiting PDLC-matrix binding and intracellular tension. ALP activity was further increased in softer hydrogels regardless of degradability and was accompanied by an increase in PDLC volume. However, scaffolds that fostered PDLC ALP activity did not necessarily promote hydrogel ECM mineralization. Rather, matrix mineralization was greatest in stiffer, MMP-degradable hydrogels and required the presence of soluble media cues. These divergent outcomes illustrate the complexity of the PDLC response to ECM cues and the limitations of current scaffold materials. Nevertheless, key biomaterial design principles for controlling PDLC activity were identified for incorporation into scaffolds for periodontal tissue regeneration. Impact statement Engineered scaffolds are an attractive approach for delivering periodontal ligament cells (PDLCs) to rebuild the tooth-supporting tissues. Replicating key extracellular matrix (ECM) cues within tissue engineered scaffolds may maximize PDLC potential. However, the identity of important ECM cues and how they can be harnessed to control PDLC activity is still unknown. In this study, matrix degradability, cell-matrix binding, and stiffness were varied using synthetic poly(ethylene glycol) hydrogels for three-dimensional PDLC culture. PDLCs exhibited dramatic and divergent responses to these cues, supporting further investigation of ECM-replicating scaffolds for control of PDLC behavior and periodontal tissue regeneration.
Collapse
Affiliation(s)
- David Fraser
- Translational Biomedical Science, University of Rochester, Rochester, New York, USA.,Eastman Institute for Oral Health, University of Rochester, Rochester, New York, USA
| | - Tram Nguyen
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA.,Department of Chemical Engineering, University of Rochester, Rochester, New York, USA.,Materials Science Program, University of Rochester, Rochester, New York, USA.,Center for Oral Biology, University of Rochester, Rochester, New York, USA.,Center for Musculoskeletal Research, University of Rochester, Rochester, New York, USA
| |
Collapse
|
15
|
Amadio EM, Marcos RL, Serra AJ, Dos Santos SA, Caires JR, Fernandes GHC, Leal-Junior EC, Ferrari JCC, de Tarso Camillo de Carvalho P. Effect of photobiomodulation therapy on the proliferation phase and wound healing in rats fed with an experimental hypoproteic diet. Lasers Med Sci 2020; 36:1427-1435. [PMID: 33156476 DOI: 10.1007/s10103-020-03181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Photobiomodulation therapy (PBMT) has been indicated for enforcement on healing skin wounds. This study evaluated the effects of PBMT on the healing of skin wounds during the proliferation phase in rats with a hypoproteic diet. Rats were randomized to one of the following groups (n = 10 per group): (i) injured normoproteic (25% protein) not subjected to PBMT; (ii) injured normoproteic who received PBMT; (iii) injured hypoproteic (8% protein) not subjected to PBMT; and (iv) injured hypoproteic who received PBMT. Rats were submitted to skin wounds and then treated with PBMT (low-level laser therapy: 660 nm, 50 mW, 1.07 W/cm2, 0.028 cm2, 72 J/cm2, 2 J). Analyses were performed at 7 and 14 days of follow-up: semi-quantitative histopathologic analysis, collagen type I and III expressions, immunohistochemical marking for matrix metalloproteinases-3 (MMP-3) and (matrix metalloproteinases-9) MMP-9, and mechanical resistance test. There were significant differences between the normoproteic groups and their respective treated groups (p < 0.05), as well as to treated and untreated hypoproteic groups in histopathologic analysis semi-quantitatively and immunohistochemistry for MMP-3 and 9, in which PBMT was able to decrease immunostaining. Moreover, there was a decrease in collagen deposition with the statistical difference (p < 0.05) for both collagen types III and I. In conclusion, PBMT application was proved effective in the treatment of cutaneous wounds in rats submitted to a hypoproteic diet. These alterations were more salient in the proliferation stage with the reduction of metalloproteinases providing better mechanical resistance of the injured area in the remodeling phase with an intensification of type I collagen.
Collapse
Affiliation(s)
- Eliane Martins Amadio
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), Sao Paulo, SP, Brazil
| | - Rodrigo Labat Marcos
- Nine of July University, Postgraduate Program in Applied Biophotonics in Health Sciences, Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Andrey Jorge Serra
- Nine of July University, Postgraduate Program in Applied Biophotonics in Health Sciences, Nove de Julho (UNINOVE), São Paulo, SP, Brazil. .,Postgraduate Program in Cardiology, Federal University of São Paulo, Rua Pedro de Toledo 781, São Paulo, SP, Brazil.
| | - Solange Almeida Dos Santos
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), Sao Paulo, SP, Brazil
| | - Jheniphe Rocha Caires
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), Sao Paulo, SP, Brazil
| | | | - Ernesto Cesar Leal-Junior
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), Sao Paulo, SP, Brazil
| | - João Carlos Correa Ferrari
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), Sao Paulo, SP, Brazil
| | - Paulo de Tarso Camillo de Carvalho
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), Sao Paulo, SP, Brazil.,Nine of July University, Postgraduate Program in Applied Biophotonics in Health Sciences, Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| |
Collapse
|
16
|
Xu X, Xia X, Zhang K, Rai A, Li Z, Zhao P, Wei K, Zou L, Yang B, Wong WK, Chiu PWY, Bian L. Bioadhesive hydrogels demonstrating pH-independent and ultrafast gelation promote gastric ulcer healing in pigs. Sci Transl Med 2020; 12:12/558/eaba8014. [DOI: 10.1126/scitranslmed.aba8014] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023]
Abstract
Hydrogels are soft materials used in an array of biomedical applications. However, the in situ formation of hydrogels at target sites, particularly in dynamic in vivo environments, usually requires a prolonged gelation time and results in poor adhesion. These limitations cause considerable loss of both hydrogel mass and encapsulated therapeutic cargoes, thereby compromising treatment outcomes. Here, we report the development of a hydrogel based on thiourea-catechol reaction to enhance the bioadhesion. Compared with classical bioadhesive hydrogels, our hydrogels show enhanced mechanical properties, exceedingly short curing time, and pH-independent gelation with a much lower oxidant concentration. We further report the robust adhesion of our hydrogels to acidic gastric tissues and easy delivery to the porcine stomach via endoscopy. The delivered hydrogels adhered to ulcer sites in vivo for at least 48 hours. Hydrogel treatment of gastric ulcers in rodent and porcine models accelerated ulcer healing by suppressing inflammation and promoting re-epithelization and angiogenesis. The improved retention of proregenerative growth factors and reduced exposure to external catabolic factors after hydrogel application may contribute to the observed therapeutic outcomes. Our findings reveal a promising biomaterial-based approach for treating gastrointestinal diseases.
Collapse
Affiliation(s)
- Xiayi Xu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Xianfeng Xia
- Department of Endoscopy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510000, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Kunyu Zhang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Aliza Rai
- Department of Surgery, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhuo Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Pengchao Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Kongchang Wei
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Li Zou
- Department of Orthpaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Boguang Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Wai-Ki Wong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Philip Wai-Yan Chiu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
- Department of Surgery, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China
| |
Collapse
|
17
|
Specht M, Kelm S, Mirastschijski U. [Suitability of biological acellular dermal matrices as a skin replacement]. HANDCHIR MIKROCHIR P 2020; 52:533-544. [PMID: 32731271 DOI: 10.1055/a-1200-1189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
INTRODUCTION Tissue defects are associated with loss of epidermal and dermal components of the skin. For full-thickness tissue defects, dermal equivalents are useful to enable rapid wound closure. Split-thickness skin grafts are associated with loss of tissue elasticity resulting in scar contractures that can impair joint mobility. Synthetic collagen matrices and allogeneic acellular dermal matrices (ADM) are commercially available and could serve as skin tissue replacement. The aim of this study was to investigate whether ADM of different dermal layers or bioartificial matrices can serve as cutaneous replacement. For this purpose, cellular migration, differentiation and the inflammatory reaction were studied in an established ex vivo skin organ model. MATERIALS AND METHODS Human split-thickness skin grafts were transplanted onto ADM (Epiflex, DIZG, Berlin, Germany), de-epidermized dermis (DED) or an artificial collagen-elastin matrix (Matriderm, Dr. Suwelack, Billerbeck, Germany). Epithelial migration was studied using an established skin culture model at the air-liquid interface. In addition, the effect of tissue from different dermal compartments, e. g. papillar and reticular dermis, on epithelial migration was compared. Epithelial resurfacing and differentiation of matrices as well as the inflammatory reaction were studied using histological, immunohistochemical and biochemical analyses. RESULTS AND CONCLUSION Significantly more epithelial outgrowth area was found on DED (2.54 mm ± 0.43 mm, mean ± SEM) compared to papillary ADM (1.32 mm ± 0.44 mm, p = 0.039), to reticular ADM (no horizontal growth, p < 0.0001) and collagen-elastin matrix (0.78 mm ± 0.11 mm, p = 0.0056) measured by fluorescence microscopy over 10 days presumably due to the presence of pro-migratory basement membrane residues on DED. Reepithelialization was significantly higher (p < 0.002) on papillary dermis compared to ADM of reticular origin. In contrast to the biological matrices, a complete horizontal penetration was found in the macroporous collagen-elastin matrix. Pro-inflammatory mediators varied depending on the human skin donor and matrix. In summary, the biochemical structure of the matrix' surface and its origin influenced the epithelial behaviour with regard to migration, differentiation and inflammatory response.
Collapse
Affiliation(s)
- Marcin Specht
- Klinikum Bremen-Mitte gGmbH Plastisc, Reconstructive and Aesthetic Surgery
| | - Sorge Kelm
- University of Bremen CBIB, Faculty of Biology and Biochemistry
| | - Ursula Mirastschijski
- University of Bremen CBIB, Faculty of Biology and Biochemistry.,Mira-Beau gender esthetics, Berlin
| |
Collapse
|
18
|
Enhanced Human Gingival Fibroblast Response and Reduced Porphyromonas gingivalis Adhesion with Titania Nanotubes. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5651780. [PMID: 32596329 PMCID: PMC7298314 DOI: 10.1155/2020/5651780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/24/2020] [Accepted: 05/23/2020] [Indexed: 01/06/2023]
Abstract
Successful dental implants rely on stable osseointegration and soft-tissue integration. Titania nanotubes (TNTs) with a diameter of 100 nm could increase the mesenchymal stem cell response and simultaneously decrease Staphylococcus aureus adhesion. However, the interactions between the modified surface and surrounding soft tissues are still unknown. In the present study, we fully investigated the biological behavior of human gingival fibroblasts (HGFs) and the adhesion of Porphyromonas gingivalis (P. gingivalis). TNTs were synthesized on titanium (Ti) surfaces by electrochemical anodization at 10, 30, and 60 V, and the products were denoted as NT10, NT30, and NT60, respectively. NT10 (diameter: 30 nm) and NT30 (diameter: 100 nm) could enhance the HGF functions, such as cell attachment and proliferation and extracellular matrix- (ECM-) related gene expressions, with the latter showing higher enhancement. NT60 (diameter: 200 nm) clearly impaired cell adhesion and proliferation and ECM-related gene expressions. Bacterial adhesion on the TNTs decreased and reached the lowest value on NT30. Therefore, NT30 without pharmaceuticals can be used to substantially enhance the HGF response and reduce P. gingivalis adhesion to the utmost, thus demonstrating significant potential in the transgingival part of dental implants.
Collapse
|
19
|
Higher Gene Expression Related to Wound Healing by Fibroblasts on Silk Fibroin Biomaterial than on Collagen. Molecules 2020; 25:molecules25081939. [PMID: 32331316 PMCID: PMC7221890 DOI: 10.3390/molecules25081939] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
Silk fibroin (SF), which offers the benefits of biosafety, biocompatibility, and mechanical strength, has potential for use as a good biomedical material, especially in the tissue engineering field. This study investigated the use of SF biomaterials as a wound dressing compared to commercially available collagen materials. After human fibroblasts (WI-38) were cultured on both films and sponges, their cell motilities and gene expressions related to wound repair and tissue reconstruction were evaluated. Compared to the collagen film (Col film), the SF film induced higher cell motility; higher expressions of genes were observed on the SF film. Extracellular matrix production-related genes were up-regulated in WI-38 fibroblasts cultured on the SF sponges. These results suggest that SF-based biomaterials can accelerate wound healing and tissue reconstruction. They can be useful biomaterials for functional wound dressings.
Collapse
|
20
|
Chen C, Xu G, Sun Y, Cui Z. Transcriptome sequencing reveals dynamic changes in matrix metalloproteinases in facet joint osteoarthritis. Exp Ther Med 2020; 19:2475-2482. [PMID: 32256724 PMCID: PMC7086276 DOI: 10.3892/etm.2020.8488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/04/2019] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis is a general joint disease characterized by articular cartilage degeneration. The extracellular matrix is a principal component in articular cartilage. The dynamic remodeling of the extracellular matrix is involved in the pathological degradation of the articular cartilage. Facet joint osteoarthritis (FJOA) is a common form of osteoarthritis that occurs in the posterior aspect of the vertebral column. However, to the best of our knowledge, the current understanding of the genetic changes in FJOA is limited. The most significantly differentially expressed genes and Gene Ontology categories in FJOA were identified by transcriptome sequencing analysis. The extracellular matrix, matrix metalloproteinases (MMPs) and proteinases of the extracellular matrix were highly involved in FJOA. The canonical signaling pathway ‘inhibition of matrix metalloproteinases’ was further studied in detail by identifying and validating differentially expressed genes in the signaling pathway. Taken together, the present study revealed changes in MMP-related genes in FJOA and showed the importance of extracellular matrix remodeling in FJOA from a genetic aspect.
Collapse
Affiliation(s)
- Chu Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Guanhua Xu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yuyu Sun
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
21
|
Wang Q, Jiang F, Xu G. The pathogenesis of renal injury and treatment in light chain deposition disease. J Transl Med 2019; 17:387. [PMID: 31767034 PMCID: PMC6878616 DOI: 10.1186/s12967-019-02147-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 11/19/2019] [Indexed: 11/11/2022] Open
Abstract
Light chain deposition disease (LCDD) is a rare clinical disorder. The deposition of light chain immunoglobulins mainly affects the kidneys, which have different characteristics than other tissues. To date, the therapeutic approach for the treatment of LCDD has no evidence-based consensus, and clinical experience of reported cases guides current disease management strategies. The present systematic review investigates and summarizes the pathological mechanisms of renal injury and the subsequent treatments for LCDD.
Collapse
Affiliation(s)
- Qi Wang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, Zip Code: 330006, People's Republic of China.,Medical Center of the Graduate School, Nanchang University, Nanchang, China
| | - Fang Jiang
- Department of Nephrology, People's Hospital of Xinyu City, No. 369, Xinxin North Avenue, High-tech District, Xinyu, People's Republic of China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, Zip Code: 330006, People's Republic of China.
| |
Collapse
|
22
|
Pallaske F, Pallaske A, Herklotz K, Boese-Landgraf J. The significance of collagen dressings in wound management: a review. J Wound Care 2019; 27:692-702. [PMID: 30332361 DOI: 10.12968/jowc.2018.27.10.692] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Clinical experience and research has improved our understanding of wound healing which, in turn, has enabled health professionals to aid wound healing and manufacturers to develop modern wound dressings. The significant role of collagen in wound healing has led to the development of numerous products on the basis of this biological material. The main focus of this review is to provide a critical appraisal of publications about collagen and acellular collagen dressings with a fleece-like or spongy structure. It is intended for clinicians and researchers, and aims to keep them up-to-date in the complex field of interactive, collagen-based wound dressings, including their manufacture, combination possibilities, mechanisms of action, performance in the promotion of wound healing and indications. Despite the small number of clinical studies, the importance of acellular collagen dressings with a fleece- or sponge-like structure is likely to increase in the future. As there is no ideal wound dressing, the knowledge attained is meant to support health professionals in selecting the right product, and pave the way for new applications and clinical studies.
Collapse
Affiliation(s)
- Frank Pallaske
- Developer of Wound Dressings; medichema GmbH, Weststraße 57, 09112 Chemnitz, DE
| | - Anett Pallaske
- Resident Physician; Hospital of Internal Medicine II of the Kreiskrankenhaus Stollberg gGmbH, Jahnsdorfer Straße 7, 09366 Stollberg, DE
| | - Kurt Herklotz
- Microscopy expert; Institute of Biosciences of the Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, DE
| | - Joachim Boese-Landgraf
- Prof. Dr. med., former Head of the Hospital of General and Visceral Surgery, Klinikum Chemnitz gGmbH, Flemmingstraße 2, 09116 Chemnitz, DE
| |
Collapse
|
23
|
Conformation and Domain Movement Analysis of Human Matrix Metalloproteinase-2: Role of Associated Zn 2+ and Ca 2+ Ions. Int J Mol Sci 2019; 20:ijms20174194. [PMID: 31461891 PMCID: PMC6747341 DOI: 10.3390/ijms20174194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 12/23/2022] Open
Abstract
Matrix metaloproteinase-2 (MMP-2) is an extracellular Zn2+ protease specific to type I and IV collagens. Its expression is associated with several inflammatory, degenerative, and malignant diseases. Conformational properties, domain movements, and interactions between MMP-2 and its associated metal ions were characterized using a 1.0 µs molecular dynamics simulation. Dihedral principle component analysis revealed ten families of conformations with the greatest degree of variability occurring in the link region connecting the catalytic and hemopexin domains. Dynamic cross-correlation analysis indicated domain movements corresponding to the opening and closing of the hemopexin domain in relation to the fibronectin and catalytic domains facilitated by the link region. Interaction energies were calculated using the molecular mechanics Poisson Boltzman surface area-interaction entropy (MMPBSA-IE) analysis method and revealed strong binding energies for the catalytic Zn2+ ion 1, Ca2+ ion 1, and Ca2+ ion 3 with significant conformational stability at the binding sites of Zn2+ ion 1 and Ca2+ ion 1. Ca2+ ion 2 diffuses freely away from its crystallographically defined binding site. Zn2+ ion 2 plays a minor role in conformational stability of the catalytic domain while Ca2+ ion 3 is strongly attracted to the highly electronegative sidechains of the Asp residues around the central β-sheet core of the hemopexin domain; however, the interacting residue sidechain carboxyl groups are outside of Ca2+ ion 3′s coordination sphere.
Collapse
|
24
|
Xu C, Zhang Y, Sutrisno L, Yang L, Chen R, Sung KLP. Bay11-7082 facilitates wound healing by antagonizing mechanical injury- and TNF-α-induced expression of MMPs in posterior cruciate ligament. Connect Tissue Res 2019; 60:311-322. [PMID: 30372627 DOI: 10.1080/03008207.2018.1512978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purposes: To investigate the ability of synoviocytes (SCs) in regulating MMPs expression in the posterior cruciate ligament fibroblasts (PCLfs) after TNF-α treatment, to test whether a specific inflammation inhibitor Bay11-7082 can antagonize the expression of MMPs in PCLfs after injury. Methods: The microenvironment of knee joint cavity after PCL injury was mimicked in an in vitro co-culture system. The effects of TNF-α treatment on the expression of MMPs in PCL fibroblasts (PCLfs) were studied. The expression of MMPs mRNA and protein was detected by qRT-PCR and western blot. For the in vivo study, the Bay11-7082 inhibitor was injected into the knee joint cavity after injury, and then were performed on histological analysis. Results: In the mono-culture conditions, 6% mechanical injury upregulated the expression of MMP-2, whereas downregulated MMP-1 and -3, additionally 12% mechanical injury were upregulated all. However, in co-culture conditions, 6% and 12% both significantly increased MMPs expressions. Stretch injury and TNF-α treatment significantly upregulated expression of MMPs mRNA and protein levels in mono-cultured PCLfs. This effect was more significant in PCLfs Plus SCs co-culture system, in which the cells were treated by combination of stretch injury and TNF-α. In addition, Bay11-7082, a specific inflammation inhibitor, could significantly decrease the expression of MMPs induced by stretch injury and/or TNF-α treatment. Less infiltrated inflammatory cells and more integrated tissues were detected in injury PCL 2 weeks after Bay11-7082 treatment, compared to injury group. Immunofluorescent staining showed very low expression levels of MMPs in PCL of Bay11-7082-treated group, compared to the injury groups. Conclusions: SCs sever as the supporting cells that aggravate the TNF-α-induced MMPs accumulation in PCLfs. Inhibition of the expression of MMPs by Bay11-7082 is a promising way to facilitate the self-healing of PCL.
Collapse
Affiliation(s)
- Chunming Xu
- a "111" project Laboratory of Biomechanics and Tissue Repair, Bioengineering College , Chongqing University , Chongqing , China
| | - Yanjun Zhang
- b Department of Life Science , Hunan University of Science and Technology , Xiangtan , Hunan , China
| | - Linawati Sutrisno
- a "111" project Laboratory of Biomechanics and Tissue Repair, Bioengineering College , Chongqing University , Chongqing , China
| | - Li Yang
- a "111" project Laboratory of Biomechanics and Tissue Repair, Bioengineering College , Chongqing University , Chongqing , China
| | - Rongfu Chen
- c Department of Orthopedics , People's hospital of Changshou , Chongqing , China
| | - K L Paul Sung
- a "111" project Laboratory of Biomechanics and Tissue Repair, Bioengineering College , Chongqing University , Chongqing , China.,d Departments of Bioengineering and Orthopedics , University of California , San Diego , CA , USA
| |
Collapse
|
25
|
Radioprotective effect of Date syrup on radiation- induced damage in Rats. Sci Rep 2018; 8:7423. [PMID: 29743497 PMCID: PMC5943437 DOI: 10.1038/s41598-018-25586-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/19/2018] [Indexed: 01/01/2023] Open
Abstract
Ionizing radiation has cytotoxic and genotoxic effects caused mainly by the oxidative damage induced by free radical release. The need for radioprotectives is increasing to protect normal tissues during radiotherapy. In the present study, we investigated the radioprotective effect of Date syrup in rats subjected to whole body radiation at 6 Gy through biochemical, molecular and histopathological analysis. Significant elevations were recorded in the activities of serum ALT, AST, ALP and LDH and in the levels of all lipid profiles parameters, while the level of HDL-C was reduced. The concentration of liver MDA was elevated with depletion of hepatic glutathione (GSH) and catalase. DNA damage was evidenced by increased DNA strand breakage and DNA-protein crosslinks. Significant elevations were observed in the expression of liver TNF-α and serum activity of matrix metalloproteinase (MMP-9). Pretreatment of rats with Date syrup ameliorated the tissue damage induced by radiation as evidenced by the improvement of liver function, antioxidant status and reduction of DNA damage. Besides, liver TNF-α expression and serum MMP-9 activity were reduced. In conclusion, Date syrup could alleviate the toxic effects of ionizing radiation and thus is useful as a radioprotective in radiotherapy regimen.
Collapse
|
26
|
Connexin 43 regulates the expression of wound healing-related genes in human gingival and skin fibroblasts. Exp Cell Res 2018; 367:150-161. [PMID: 29596891 DOI: 10.1016/j.yexcr.2018.03.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 12/21/2022]
Abstract
Fibroblasts are the most abundant connective tissue cells and play an important role in wound healing. It is possible that faster and scarless wound healing in oral mucosal gingiva relative to skin may relate to the distinct phenotype of the fibroblasts residing in these tissues. Connexin 43 (Cx43) is the most ubiquitous Cx in skin (SFBLs) and gingival fibroblasts (GFBLs), and assembles into hemichannels (HCs) and gap junctions (GJs) on the cell membrane. We hypothesized that SFBLs and GFBLs display distinct expression or function of Cx43, and that this may partly underlie the different wound healing outcomes in skin and gingiva. Here we show that Cx43 distinctly formed Cx43 GJs and HCs in human skin and gingiva in vivo. However, in SFBLs, in contrast to GFBLs, only a small proportion of total Cx43 assembled into HC plaques. Using an in vivo-like 3D culture model, we further show that the GJ, HC, and channel-independent functions of Cx43 distinctly regulated wound healing-related gene expression in GFBLs and SFBLs. Therefore, the distinct wound healing outcomes in skin and gingiva may partly relate to the inherently different assembly and function of Cx43 in the resident fibroblasts.
Collapse
|
27
|
Torres P, Castro M, Reyes M, Torres VA. Histatins, wound healing, and cell migration. Oral Dis 2018; 24:1150-1160. [PMID: 29230909 DOI: 10.1111/odi.12816] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/20/2022]
Abstract
Wounds in the oral mucosa heal faster and more efficiently than those in the skin, although the mechanisms underlying these differences are not completely clear. In the last 10 years, a group of salivary peptides, the histatins, has gained attention on behalf of their ability to improve several phases of the wound-healing process. In addition to their roles as anti-microbial agents and in enamel maintenance, histatins elicit other biological effects, namely by promoting the migration of different cell types contained in the oral mucosa and in non-oral tissues. Histatins, and specifically histatin-1, promote cell adhesion and migration in oral keratinocytes, gingival and dermal fibroblasts, non-oral epithelial cells, and endothelial cells. This is particularly relevant, as histatin-1 promotes the re-epithelialization phase and the angiogenic responses by increasing epithelial and endothelial cell migration. Although the molecular mechanisms associated with histatin-dependent cell migration remain poorly understood, recent studies have pointed to the control of signaling endosomes and the balance of small GTPases. This review aimed to update the literature on the effects of histatins in cell migration, with a focus on wound healing. We will also discuss the consequences that this increasing field will have in disease and therapy design.
Collapse
Affiliation(s)
- P Torres
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| | - M Castro
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| | - M Reyes
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| | - V A Torres
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| |
Collapse
|
28
|
Tarzemany R, Jiang G, Jiang JX, Larjava H, Häkkinen L. Connexin 43 Hemichannels Regulate the Expression of Wound Healing-Associated Genes in Human Gingival Fibroblasts. Sci Rep 2017; 7:14157. [PMID: 29074845 PMCID: PMC5658368 DOI: 10.1038/s41598-017-12672-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/18/2017] [Indexed: 02/01/2023] Open
Abstract
Connexin 43 (Cx43) is the most ubiquitous connexin in various cells, and presents as hemichannels (HCs) and gap junctions (GJs) on the cell membrane. We have recently shown that Cx43 abundance was strongly reduced in fibroblasts of human gingival wounds, and blocking Cx43 function in cultured human gingival fibroblasts (GFBLs) strongly regulated the expression of wound healing-related genes. However, it is not known whether these responses involved Cx43 HCs or GJs. Here we show that Cx43 assembled into distinct GJ and HC plaques in GFBLs both in vivo and in vitro. Specific blockage of Cx43 HC function by TAT-Gap19, a Cx43 mimetic peptide, significantly upregulated the expression of several MMPs, TGF-β signaling molecules, Tenascin-C, and VEGF-A, while pro-fibrotic molecules, including several extracellular matrix proteins and myofibroblast and cell contractility-related molecules, were significantly downregulated. These changes were linked with TAT-Gap19-induced suppression of ATP signaling and activation of the ERK1/2 signaling pathway. Collectively, our data suggest that reduced Cx43 HC function could promote fast and scarless gingival wound healing. Thus, selective suppression of Cx43 HCs may provide a novel target to modulate wound healing.
Collapse
Affiliation(s)
- Rana Tarzemany
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Guoqiao Jiang
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Jean X Jiang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, 78229-3900, USA
| | - Hannu Larjava
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Lari Häkkinen
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
29
|
Yu G, Li Y, Ye L, Wang X, Zhang J, Dong Z, Jiang D. Exogenous peripheral blood mononuclear cells affect the healing process of deep‑degree burns. Mol Med Rep 2017; 16:8110-8122. [PMID: 28990101 PMCID: PMC5779898 DOI: 10.3892/mmr.2017.7672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 07/20/2017] [Indexed: 12/24/2022] Open
Abstract
The regenerative repair of deep-degree (second degree) burned skin remains a notable challenge in the treatment of burn injury, despite improvements being made with regards to treatment modality and the emergence of novel therapies. Fetal skin constitutes an attractive target for investigating scarless healing of burned skin. To investigate the inflammatory response during scarless healing of burned fetal skin, the present study developed a nude mouse model, which was implanted with normal human fetal skin and burned fetal skin. Subsequently, human peripheral blood mononuclear cells (PBMCs) were used to treat the nude mouse model carrying the burned fetal skin. The expression levels of matrix metalloproteinase (MMP)-9 and tissue inhibitor of metalloproteinases (TIMP)-1 were investigated during this process. In the present study, fetal skin was subcutaneously implanted into the nude mice to establish the murine model. Hematoxylin and eosin staining was used to detect alterations in the skin during the development of fetal skin and during the healing process of deep-degree burned fetal skin. The expression levels of MMP-9 and TIMP-1 were determined using immunochemical staining, and their staining intensity was evaluated by mean optical density. The results demonstrated that fetal skin subcutaneously implanted into the dorsal skin flap of nude mice developed similarly to the normal growth process in the womb. In addition, the scarless healing process was clearly observed in the mice carrying the burned fetal skin. A total of 2 weeks was required to complete scarless healing. Following treatment with PBMCs, the burned fetal skin generated inflammatory factors and enhanced the inflammatory response, which consequently resulted in a reduction in the speed of healing and in the formation of scars. Therefore, exogenous PBMCs may alter the lowered immune response environment, which is required for scarless healing, resulting in scar formation. In conclusion, the present study indicated that the involvement of inflammatory cells is important during the healing process of deep-degree burned skin, and MMP-9 and TIMP-1 may serve important roles in the process of scar formation.
Collapse
Affiliation(s)
- Guanying Yu
- Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yaonan Li
- Department of Emergency, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Lan Ye
- Cancer Center, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xinglei Wang
- Department of Emergency, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jixun Zhang
- Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhengxue Dong
- Department of Burns and Plastic Surgery, The Chinese People's Liberation Army 148 Hospital, Zibo, Shandong 255300, P.R. China
| | - Duyin Jiang
- Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
30
|
Hussey GS, Cramer MC, Badylak SF. Extracellular Matrix Bioscaffolds for Building Gastrointestinal Tissue. Cell Mol Gastroenterol Hepatol 2017; 5:1-13. [PMID: 29276748 PMCID: PMC5736871 DOI: 10.1016/j.jcmgh.2017.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022]
Abstract
Regenerative medicine is a rapidly advancing field that uses principles of tissue engineering, developmental biology, stem cell biology, immunology, and bioengineering to reconstruct diseased or damaged tissues. Biologic scaffolds composed of extracellular matrix have shown great promise as an inductive substrate to facilitate the constructive remodeling of gastrointestinal (GI) tissue damaged by neoplasia, inflammatory bowel disease, and congenital or acquired defects. The present review summarizes the preparation and use of extracellular matrix scaffolds for bioengineering of the GI tract, identifies significant advances made in regenerative medicine for the reconstruction of functional GI tissue, and describes an emerging therapeutic approach.
Collapse
Affiliation(s)
- George S. Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, School of Medicine, University of Pittsburgh Medical Center Presbyterian Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Madeline C. Cramer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, School of Medicine, University of Pittsburgh Medical Center Presbyterian Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania
- Correspondence Address correspondence to: Stephen F. Badylak, DVM, PhD, MD, McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, Pennsylvania 15219-3110. fax: (412) 624-5256.McGowan Institute for Regenerative MedicineUniversity of Pittsburgh450 Technology Drive, Suite 300PittsburghPennsylvania15219-3110
| |
Collapse
|
31
|
Despoudi K, Mantzoros I, Ioannidis O, Cheva A, Antoniou N, Konstantaras D, Symeonidis S, Pramateftakis MG, Kotidis E, Angelopoulos S, Tsalis K. Effects of albumin/glutaraldehyde glue on healing of colonic anastomosis in rats. World J Gastroenterol 2017; 23:5680-5691. [PMID: 28883693 PMCID: PMC5569282 DOI: 10.3748/wjg.v23.i31.5680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 06/08/2017] [Accepted: 07/24/2017] [Indexed: 02/07/2023] Open
Abstract
AIM To evaluate the effect of local surgical adhesive glue (albumin/glutaraldehyde-Bioglue) on the healing of colonic anastomoses in rats.
METHODS Forty Albino-Wistar male rats were randomly divided into two groups, with two subgroups of ten animals each. In the control group, an end-to-end colonic anastomosis was performed after segmental resection. In the Bioglue group, the anastomosis was protected with extraluminar application of adhesive glue containing albumin and glutaraldehyde. Half of the rats were sacrificed on the fourth and the rest on the eighth postoperative day. Anastomoses were resected and macroscopically examined. Bursting pressures were calculated and histological features were graded. Other parameters of healing, such as hydroxyproline and collagenase concentrations, were evaluated. The experimental data were summarized and computed from the results of a one-way ANOVA. Fisher’s exact test was applied to compare percentages.
RESULTS Bursting pressures, adhesion formation, inflammatory cell infiltration, and collagen deposition were significantly higher on the fourth postoperative day in the albumin/glutaraldehyde group than in the control group. Furthermore, albumin/glutaraldehyde significantly increased adhesion formation, inflammatory cell infiltration, neoangiogenesis, and collagen deposition on the eighth postoperative day. There was no difference in fibroblast activity or hydroxyproline and collagenase concentrations.
CONCLUSION Albumin/glutaraldehyde, when applied on colonic anastomoses, promotes their healing in rats. Therefore, the application of protective local agents in colonic anastomoses leads to better outcomes.
Collapse
Affiliation(s)
- Kalliopi Despoudi
- Fourth Surgical Department, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Ioannis Mantzoros
- Fourth Surgical Department, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Orestis Ioannidis
- Fourth Surgical Department, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Aggeliki Cheva
- Department of Pathology, General Hospital “G. Papanikolaou”, 57010 Thessaloniki, Greece
| | - Nikolaos Antoniou
- Fourth Surgical Department, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Dimitrios Konstantaras
- Fourth Surgical Department, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Savvas Symeonidis
- Fourth Surgical Department, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | | | - Efstathios Kotidis
- Fourth Surgical Department, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Stamatis Angelopoulos
- Fourth Surgical Department, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Konstantinos Tsalis
- Fourth Surgical Department, Medical School, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| |
Collapse
|
32
|
Krishnaswamy VR, Mintz D, Sagi I. Matrix metalloproteinases: The sculptors of chronic cutaneous wounds. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2220-2227. [PMID: 28797647 DOI: 10.1016/j.bbamcr.2017.08.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023]
Abstract
Cutaneous wound healing is a complex mechanism with multiple processes orchestrating harmoniously for structural and functional restoration of the damaged tissue. Chronic non-healing wounds plagued with infection create a major healthcare burden and is one of the most frustrating clinical problems. Chronic wounds are manifested by prolonged inflammation, defective re-epithelialization and haphazard remodeling. Matrix metalloproteinases (MMPs) are zinc dependent enzymes that play cardinal functions in wound healing. Understanding the pathological events mediated by MMPs during wound healing may pave way in identifying novel drug targets for chronic wounds. Here, we discuss the functions and skewed regulation of different MMPs during infection and chronic tissue repair. This review also points out the potential of MMPs and their inhibitors as therapeutic agents in treating chronic wounds during distinct phases of the wound healing. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
| | - Dvir Mintz
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
33
|
Thorlakson HH, Engen SA, Schreurs O, Schenck K, Blix IJS. Lysophosphatidic acid induces expression of genes in human oral keratinocytes involved in wound healing. Arch Oral Biol 2017; 80:153-159. [DOI: 10.1016/j.archoralbio.2017.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
|
34
|
The role of free kappa and lambda light chains in the pathogenesis and treatment of inflammatory diseases. Biomed Pharmacother 2017; 91:632-644. [DOI: 10.1016/j.biopha.2017.04.121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/08/2017] [Accepted: 04/27/2017] [Indexed: 12/12/2022] Open
|
35
|
Picchietti S, Bernini C, Stocchi V, Taddei AR, Meschini R, Fausto AM, Rocco L, Buonocore F, Cervia D, Scapigliati G. Engineered nanoparticles of titanium dioxide (TIO 2): Uptake and biological effects in a sea bass cell line. FISH & SHELLFISH IMMUNOLOGY 2017; 63:53-67. [PMID: 28159697 DOI: 10.1016/j.fsi.2017.01.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/26/2017] [Accepted: 01/28/2017] [Indexed: 06/06/2023]
Abstract
With the rapid development of nanotechnology there has been a corresponding increase in the application of titanium dioxide nanoparticles (TiO2-NPs) in various consumer and industrial products, consequently their potential health hazards and environmental effects are considered an aspect of great concern. In the present study, in order to assess the impact of TiO2-NPs in the marine environment, the biological effects of TiO2-NPs on a sea bass cell line (DLEC) were investigated. Cells were exposed for 24 h to different concentrations of TiO2-NPs (1, 8, 40, 200 and 1000 μg/ml) or co-exposed with CdCl2 (Cd). The effects of UV light irradiation were also investigated in cells treated with TiO2-NPs and/or Cd. The internalization of TiO2-NPs and the morphological cell modifications induced by the treatments were examined by transmission and scanning electron microscopy, this latter coupled with energy dispersive X-ray spectroscopy (EDS) for particle element detection. In addition, the effects of controlled exposures were studied evaluating the cytotoxicity, the DNA damage and the expression of inflammatory genes. Our study indicates that TiO2-NPs were localized on the cell surface mainly as agglomerates revealed by EDS analysis and that they were uptaken by the cells inducing morphological changes. Photoactivation of TiO2-NPs and/or co-exposure with Cd affects ATP levels and it contributes to induce acute cellular toxicity in DLEC cells dependent on Ti concentration. The inflammatory potential and the DNA damage, this latter displayed through a caspase-3 independent apoptotic process, were also demonstrated. Overall our data suggest that the interaction of TiO2-NPs with marine water contaminants, such as cadmium, and the UV irradiation, may be an additional threat to marine organisms.
Collapse
Affiliation(s)
- S Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - C Bernini
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - V Stocchi
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - A R Taddei
- Section of Electron Microscopy, Great Equipment Center, University of Tuscia, Viterbo, Italy.
| | - R Meschini
- Department of Environmental and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy.
| | - A M Fausto
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - L Rocco
- Department of Environmental, Biological and Pharmaceutical, Sciences and Technologies (DiSTABiF), Second University of Naples, Caserta, Italy.
| | - F Buonocore
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - D Cervia
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - G Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| |
Collapse
|
36
|
Hussain AA, Lee Y, Zhang JJ, Francis PT, Marshall J. Disturbed Matrix Metalloproteinase Pathway in Both Age-Related Macular Degeneration and Alzheimer's Disease. JOURNAL OF NEURODEGENERATIVE DISEASES 2017; 2017:4810232. [PMID: 28197357 PMCID: PMC5286539 DOI: 10.1155/2017/4810232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/12/2016] [Accepted: 11/17/2016] [Indexed: 02/02/2023]
Abstract
Purpose. Abnormal protein deposits including β-amyloid, found in ageing Bruch's membrane and brain, are susceptible to degradation by matrix metalloproteinases (MMPs). In ageing Bruch's membrane, these MMPs become less effective due to polymerisation and aggregation reactions (constituting the MMP Pathway), a situation much advanced in age-related macular degeneration (AMD). The likely presence of this MMP Pathway in brain with the potential to compromise the degradation of β-amyloid associated with Alzheimer's disease (AD) has been investigated. Methods. Presence of high molecular weight MMP species (HMW1 and HMW2) together with the much larger aggregate termed LMMC was determined by standard zymographic techniques. Centrigugation and gel filtration techniques were used to separate and quantify the distribution between bound and free MMP species. Results. The MMP Pathway, initially identified in Bruch's membrane, was also present in brain tissue. The various MMP species displayed bound-free equilibrium and in AD samples, the amount of bound HMW1 and pro-MMP9 species was significantly reduced (p < 0.05). The abnormal operation of the MMP Pathway in AD served to reduce the degradation potential of the MMP system. Conclusion. The presence and abnormalities of the MMP Pathway in both brain and ocular tissues may therefore contribute to the anomalous deposits associated with AD and AMD.
Collapse
Affiliation(s)
| | - Yunhee Lee
- Nanobiotech Co., Ltd., Heungdeok IT Valley, Yongin, Republic of Korea
| | - Jin-Jun Zhang
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
| | - Paul T. Francis
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - John Marshall
- Department of Genetics, UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
37
|
Agarwal T, Narayan R, Maji S, Behera S, Kulanthaivel S, Maiti TK, Banerjee I, Pal K, Giri S. Gelatin/Carboxymethyl chitosan based scaffolds for dermal tissue engineering applications. Int J Biol Macromol 2016; 93:1499-1506. [DOI: 10.1016/j.ijbiomac.2016.04.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/09/2016] [Accepted: 04/12/2016] [Indexed: 02/05/2023]
|
38
|
Das S, Baker AB. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing. Front Bioeng Biotechnol 2016; 4:82. [PMID: 27843895 PMCID: PMC5087310 DOI: 10.3389/fbioe.2016.00082] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023] Open
Abstract
Wound healing is an intricate process that requires complex coordination between many cell types and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care, the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds, including excessive inflammation, ischemia, scarring, and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or are currently used in clinical practice.
Collapse
Affiliation(s)
- Subhamoy Das
- Department of Biomedical Engineering, University of Texas at Austin , Austin, TX , USA
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA; Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
39
|
Qin J, Zha GB, Yu J, Zhang HH, Yi S. Differential temporal expression of matrix metalloproteinases following sciatic nerve crush. Neural Regen Res 2016; 11:1165-71. [PMID: 27630704 PMCID: PMC4994463 DOI: 10.4103/1673-5374.187059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We previously performed transcriptome sequencing and found that genes for matrix metalloproteinases (MMPs), such as MMP7 and 12, seem to be highly upregulated following peripheral nerve injury, and may be involved in nerve repair. In the present study, we systematically determined the expression levels of MMPs and their regulators at 1, 4, 7 and 14 days after sciatic nerve crush injury. The number of differentially expressed genes was elevated at 4 and 7 days after injury, but decreased at 14 days after injury. Among the differentially expressed genes, those most up-regulated showed fold changes of more than 214, while those most down-regulated exhibited fold changes of more than 2−10. Gene sequencing showed that, at all time points after injury, a variety of MMP genes in the “Inhibition of MMPs” pathway were up-regulated, and their inhibitor genes were down-regulated. Expression of key up- and down-regulated genes was verified by quantitative real-time polymerase chain reaction analysis and found to be consistent with transcriptome sequencing. These results suggest that MMP-related genes are strongly involved in the process of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Jing Qin
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Guang-Bin Zha
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jun Yu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Hong-Hong Zhang
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Sheng Yi
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
40
|
Research advances on structure and biological functions of integrins. SPRINGERPLUS 2016; 5:1094. [PMID: 27468395 PMCID: PMC4947080 DOI: 10.1186/s40064-016-2502-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/02/2016] [Indexed: 12/18/2022]
Abstract
Integrins are an important family of adhesion molecules that were first discovered two decades ago. Integrins are transmembrane heterodimeric glycoprotein receptors consisting of α and β subunits, and are comprised of an extracellular domain, a transmembrane domain, and a cytoplasmic tail. Therein, integrin cytoplasmic domains may associate directly with numerous cytoskeletal proteins and intracellular signaling molecules, which are crucial for modulating fundamental cell processes and functions including cell adhesion, proliferation, migration, and survival. The purpose of this review is to describe the unique structure of each integrin subunit, primary cytoplasmic association proteins, and transduction signaling pathway of integrins, with an emphasis on their biological functions.
Collapse
|
41
|
Joseph LB, Composto GM, Heck DE. Tissue injury and repair following cutaneous exposure of mice to sulfur mustard. Ann N Y Acad Sci 2016; 1378:118-123. [PMID: 27371823 DOI: 10.1111/nyas.13125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 12/12/2022]
Abstract
In mouse skin, sulfur mustard (SM) is a potent vesicant, damaging both the epidermis and the dermis. The extent of wounding is dependent on the dose of SM and the duration of exposure. Initial responses include erythema, pruritus, edema, and xerosis; this is followed by an accumulation of inflammatory leukocytes in the tissue, activation of mast cells, and the release of mediators, including proinflammatory cytokines and bioactive lipids. These proinflammatory mediators contribute to damaging the epidermis, hair follicles, and sebaceous glands and to disruption of the epidermal basement membrane. This can lead to separation of the epidermis from the dermis, resulting in a blister, which ruptures, leading to the formation of an eschar. The eschar stimulates the formation of a neoepidermis and wound repair and may result in persistent epidermal hyperplasia. Epidermal damage and repair is associated with upregulation of enzymes generating proinflammatory and pro-growth/pro-wound healing mediators, including cyclooxygenase-2, which generates prostanoids, inducible nitric oxide synthase, which generates nitric oxide, fibroblast growth factor receptor 2, and galectin-3. Characterization of the mediators regulating structural changes in the skin during SM-induced tissue damage and wound healing will aid in the development of therapeutic modalities to mitigate toxicity and stimulate tissue repair processes.
Collapse
Affiliation(s)
- Laurie B Joseph
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey.
| | - Gabriella M Composto
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Diane E Heck
- Department of Environmental Science, New York Medical College, Valhalla, New York
| |
Collapse
|
42
|
Integrin-mediated regulation of epidermal wound functions. Cell Tissue Res 2016; 365:467-82. [PMID: 27351421 DOI: 10.1007/s00441-016-2446-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/02/2016] [Indexed: 01/14/2023]
Abstract
During cutaneous wound healing, keratinocyte proliferation and migration are critical for re-epithelialization. In addition the epidermis secretes growth factors, cytokines, proteases, and matricellular proteins into the wound microenvironment that modify the extracellular matrix and stimulate other wound cells that control the inflammatory response, promote angiogenesis and facilitate tissue contraction and remodeling. Wound keratinocytes express at least seven different integrins-the major cell adhesion receptors for the extracellular matrix-that collectively control essential cell-autonomous functions to ensure proper re-epithelialization, including migration, proliferation, survival and basement membrane assembly. Moreover, it has become evident in recent years that some integrins can regulate paracrine signals from wound epidermis that stimulate other wound cells involved in angiogenesis, contraction and inflammation. Importantly, it is likely that abnormal integrin expression or function in the epidermis contributes to wound pathologies such as over-exuberant healing (e.g., hypertrophic scar formation) or diminished healing (e.g., chronic wounds). In this review, we discuss current knowledge of integrin function in the epidermis, which implicates them as attractive therapeutic targets to promote wound healing or treat wound pathologies. We also discuss challenges that arise from the complex roles that multiple integrins play in wound epidermis, which may be regulated through extracellular matrix remodeling that determines ligand availability. Indeed, understanding how different integrin functions are temporally coordinated in wound epidermis and which integrin functions go awry in pathological wounds, will be important to determine how best to target them clinically to achieve maximum therapeutic benefit. Graphical abstract In addition to their well-characterized roles in keratinocyte adhesion, migration and wound re-epithelialization, epidermal integrins play important roles in modifying the wound microenvironment by regulating the expression and secretion of growth factors, extracellular proteases, and matricellular proteins that stimulate other wound cells, including vascular endothelial cells and fibroblasts/myofibroblasts.
Collapse
|
43
|
Matrix-assisted refolding, purification and activity assessment using a 'form invariant' assay for matrix metalloproteinase 2 (MMP2). Mol Biotechnol 2016; 56:1121-32. [PMID: 25119648 DOI: 10.1007/s12033-014-9792-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Matrix metalloproteinases expression is used as biomarker for various cancers and associated malignancies. Since these proteinases can cleave many intracellular proteins, overexpression tends to be toxic; hence, a challenge to purify them. To overcome these limitations, we designed a protocol where full length pro-MMP2 enzyme was overexpressed in E. coli as inclusion bodies and purified using 6xHis affinity chromatography under denaturing conditions. In one step, the enzyme was purified and refolded directly on the affinity matrix under redox conditions to obtain a bioactive protein. The pro-MMP2 protein was characterized by mass spectrometry, CD spectroscopy, zymography and activity analysis using a simple in-house developed 'form invariant' assay, which reports the total MMP2 activity independent of its various forms. The methodology yielded higher yields of bioactive protein compared to other strategies reported till date, and we anticipate that using the protocol, other toxic proteins can also be overexpressed and purified from E. coli and subsequently refolded into active form using a one step renaturation protocol.
Collapse
|
44
|
Hiraoka C, Toki F, Shiraishi K, Sayama K, Nishimura EK, Miura H, Higashiyama S, Nanba D. Two clonal types of human skin fibroblasts with different potentials for proliferation and tissue remodeling ability. J Dermatol Sci 2016; 82:84-94. [PMID: 26867959 DOI: 10.1016/j.jdermsci.2016.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/05/2016] [Accepted: 01/25/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Skin fibroblast heterogeneity is of growing interest due to its relevance in not only skin development but also cutaneous wound healing. However, the characterization of human dermal fibroblasts at a clonal level has not been accomplished and their functional heterogeneity remains poorly understood. OBJECTIVE The aim of this study was to define the clonal heterogeneity of human dermal fibroblasts. METHODS Isolated human dermal fibroblasts were clonally expanded and categorized by comprehensive phenotypic and gene expression profiling. RESULTS Single fibroblasts were significantly multiplied and efficiently cloned without chromosomal abnormalities under hypoxic conditions. Individual clones were heterogeneous in their proliferative capacity, and gene expression profiling revealed differences in the expression of genes involved in extracellular matrix synthesis and degradation. Each cloned fibroblast also had different abilities in terms of collagen remodeling. All phenotypic and gene expression data were analyzed with Spearman's rank correlation, and fibroblasts were categorized into at least two functional clonal types. One was highly proliferative, while the other was less proliferative but had the ability to remodel the tissue architecture. The proliferative clones were predominant in infants, but decreased with physiological aging. CONCLUSION This study provides strong evidence for the functional heterogeneity of human dermal fibroblasts at a clonal level, which has implications regarding skin repair and aging.
Collapse
Affiliation(s)
- Chihiro Hiraoka
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Ehime University, Toon, Ehime 791-0295, Japan; Department of Biochemistry and Molecular Genetics, Graduate School of Medicine, Ehime University, Toon, Ehime 791-0295, Japan; Department of Bone and Joint Surgery, Graduate School of Medicine, Ehime University, Toon, Ehime 791-0295, Japan
| | - Fujio Toki
- Department of Biochemistry and Molecular Genetics, Graduate School of Medicine, Ehime University, Toon, Ehime 791-0295, Japan; Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ken Shiraishi
- Department of Dermatology, Graduate School of Medicine, Ehime University, Toon, Ehime 791-0295, Japan
| | - Koji Sayama
- Department of Dermatology, Graduate School of Medicine, Ehime University, Toon, Ehime 791-0295, Japan
| | - Emi K Nishimura
- Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hiromasa Miura
- Department of Bone and Joint Surgery, Graduate School of Medicine, Ehime University, Toon, Ehime 791-0295, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Ehime University, Toon, Ehime 791-0295, Japan; Department of Biochemistry and Molecular Genetics, Graduate School of Medicine, Ehime University, Toon, Ehime 791-0295, Japan
| | - Daisuke Nanba
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Ehime University, Toon, Ehime 791-0295, Japan; Department of Biochemistry and Molecular Genetics, Graduate School of Medicine, Ehime University, Toon, Ehime 791-0295, Japan; Department of Stem Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
45
|
Rizwan A, Cheng M, Bhujwalla ZM, Krishnamachary B, Jiang L, Glunde K. Breast cancer cell adhesome and degradome interact to drive metastasis. NPJ Breast Cancer 2015; 1:15017. [PMID: 28721370 PMCID: PMC5515192 DOI: 10.1038/npjbcancer.2015.17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/02/2015] [Accepted: 09/17/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Although primary breast tumors are detected early in most cases, it is inevitable that many patients remain at risk for future recurrence and death due to micrometastases. We investigated interactions between the degradome and the adhesome that drive metastasis, and have focused on matrix metalloproteases (MMPs) within the degradome and integrins and E-cadherin within the adhesome. AIMS The aim of this study is to identify interaction networks between adhesion molecules and degradative enzymes in breast cancer metastasis. METHODS We compared non-metastatic (BT-474, T47D, MCF7) and metastatic (MDA-MB-231, SUM149, SUM159) human breast cancer cell lines and xenografts, in which we measured growth rate, migration, invasion, colony formation, protein expression, and enzyme activity in vitro and in vivo. RESULTS The metastatic breast cancer lines and xenografts displayed higher expression and activity levels of MMPs, which was also confirmed by noninvasive imaging in vivo. These metastatic breast cancer models also displayed elevated heterophilic cell-extracellular matrix (ECM) and lower homophilic cell-cell adhesion compared with those of non-metastatic models. This was conferred by an increased expression of the heterophilic cell adhesion molecule integrin β1 (ITGB1) and a decreased expression of the homophilic cell adhesion molecule E-cadherin. Inhibition of MMPs in metastatic cells led to a reduced expression of ITGB1, and stimulation of ITGB1 resulted in higher MMP activities in metastatic cancer cells, demonstrating reciprocal dependencies between degradome and adhesome. Re-expression of E-cadherin (CDH1) led to an increased expression of the precursor form of ITGB1. CONCLUSIONS Our results point toward a concerted interdependence of MMPs, ITGB1, and CDH1 that is critical for breast cancer metastasis.
Collapse
Affiliation(s)
- Asif Rizwan
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Menglin Cheng
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zaver M Bhujwalla
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Balaji Krishnamachary
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lu Jiang
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristine Glunde
- The Johns Hopkins University In Vivo Cellular and Molecular Imaging Center, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Johns Hopkins University School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| |
Collapse
|
46
|
Caley MP, Martins VL, O'Toole EA. Metalloproteinases and Wound Healing. Adv Wound Care (New Rochelle) 2015; 4:225-234. [PMID: 25945285 DOI: 10.1089/wound.2014.0581] [Citation(s) in RCA: 522] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 12/15/2022] Open
Abstract
Significance: Matrix metalloproteinases (MMPs) are present in both acute and chronic wounds. They play a pivotal role, with their inhibitors, in regulating extracellular matrix degradation and deposition that is essential for wound reepithelialization. The excess protease activity can lead to a chronic nonhealing wound. The timed expression and activation of MMPs in response to wounding are vital for successful wound healing. MMPs are grouped into eight families and display extensive homology within these families. This homology leads in part to the initial failure of MMP inhibitors in clinical trials and the development of alternative methods for modulating the MMP activity. MMP-knockout mouse models display altered wound healing responses, but these are often subtle phenotypic changes indicating the overlapping MMP substrate specificity and inter-MMP compensation. Recent Advances: Recent research has identified several new MMP modulators, including photodynamic therapy, protease-absorbing dressing, microRNA regulation, signaling molecules, and peptides. Critical Issues: Wound healing requires the controlled activity of MMPs at all stages of the wound healing process. The loss of MMP regulation is a characteristic of chronic wounds and contributes to the failure to heal. Future Directions: Further research into how MMPs are regulated should allow the development of novel treatments for wound healing.
Collapse
Affiliation(s)
- Matthew P. Caley
- Blizard Institute, Centre for Cutaneous Research, London, United Kingdom
| | - Vera L.C. Martins
- Blizard Institute, Centre for Cutaneous Research, London, United Kingdom
| | - Edel A. O'Toole
- Blizard Institute, Centre for Cutaneous Research, London, United Kingdom
| |
Collapse
|
47
|
Li M, Zhao Y, Hao H, Dai H, Han Q, Tong C, Liu J, Han W, Fu X. Mesenchymal stem cell-conditioned medium improves the proliferation and migration of keratinocytes in a diabetes-like microenvironment. INT J LOW EXTR WOUND 2015; 14:73-86. [PMID: 25759411 DOI: 10.1177/1534734615569053] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The impairment of wound healing in diabetic patients is an important clinical problem. Proper keratinocyte migration and proliferation are the crucial steps during reepithelialization, and these steps may be impaired in diabetes mellitus (DM) due to hyperglycemia and chronic inflammation in wound site. In this study, we explored the effects of diabetes-like microenvironment with high glucose (HG) and intense inflammation on the migration and proliferation of keratinocytes in vitro. We found that the migration and proliferation of rat keratinocytes were reduced with HG and lipopolysaccharide (LPS) stimulation via Erk signaling pathway in a reactive oxygen species (ROS)-dependent manner. Nevertheless, mesenchymal stem cell-conditioned medium (MSC-CM) counteracts the effects of HG and LPS. Treatment of rat keratinocyte with MSC-CM decreased HG- and/or LPS-induced ROS overproduction. Furthermore, MSC-CM reversed the downregulation of phosphorylation of MEK1/2 and Erk 1/2, which was induced by HG and/or LPS without affecting total levels. Our results may provide a possible mechanism for delayed wound healing in DM and provide a foundation to develop MSC-CM as an alternative therapeutic strategy to ameliorate the poor wound-healing conditions.
Collapse
Affiliation(s)
- Meirong Li
- Chinese PLA General Hospital, Beijing, People's Republic of China Chinese PLA General Hospital Hainan Branch, Sanya, People's Republic of China
| | - Yali Zhao
- Chinese PLA General Hospital, Beijing, People's Republic of China Chinese PLA General Hospital Hainan Branch, Sanya, People's Republic of China
| | - Haojie Hao
- Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Hanren Dai
- Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Qingwang Han
- Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Chuan Tong
- Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jiejie Liu
- Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Weidong Han
- Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiaobing Fu
- Chinese PLA General Hospital, Beijing, People's Republic of China
| |
Collapse
|
48
|
Tarzemany R, Jiang G, Larjava H, Häkkinen L. Expression and function of connexin 43 in human gingival wound healing and fibroblasts. PLoS One 2015; 10:e0115524. [PMID: 25584940 PMCID: PMC4293150 DOI: 10.1371/journal.pone.0115524] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/25/2014] [Indexed: 11/18/2022] Open
Abstract
Connexins (C×s) are a family of transmembrane proteins that form hemichannels and gap junctions (GJs) on the cell membranes, and transfer small signaling molecules between the cytoplasm and extracellular space and between connecting cells, respectively. Among C×s, suppressing C×43 expression or function promotes skin wound closure and granulation tissue formation, and may alleviate scarring, but the mechanisms are not well understood. Oral mucosal gingiva is characterized by faster wound closure and scarless wound healing outcome as compared to skin wounds. Therefore, we hypothesized that C×43 function is down regulated during human gingival wound healing, which in fibroblasts promotes expression of genes conducive for fast and scarless wound healing. Cultured gingival fibroblasts expressed C×43 as their major connexin. Immunostaining of unwounded human gingiva showed that C×43 was abundantly present in the epithelium, and in connective tissue formed large C×43 plaques in fibroblasts. At the early stages of wound healing, C×43 was strongly down regulated in wound epithelial cells and fibroblasts, returning to the level of normal tissue by day 60 post-wounding. Blocking of C×43 function by C×43 mimetic peptide Gap27 suppressed GJ-mediated dye transfer, promoted migration, and caused significant changes in the expression of wound healing-associated genes in gingival fibroblasts. In particular, out of 54 genes analyzed, several MMPs and TGF-β1, involved in regulation of inflammation and extracellular matrix (ECM) turnover, and VEGF-A, involved in angiogenesis, were significantly upregulated while pro-fibrotic ECM molecules, including Collagen type I, and cell contractility-related molecules were significantly down regulated. These responses involved MAPK, GSK3α/β and TGF-β signaling pathways, and AP1 and SP1 transcription factors. Thus, suppressed function of C×43 in fibroblasts promotes their migration, and regulates expression of wound healing-associated genes via AP1, SP1, MAPK, GSK3α/β and TGF-β signaling pathways, and may promote fast and scarless wound healing in human gingiva.
Collapse
Affiliation(s)
- Rana Tarzemany
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Guoqiao Jiang
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Hannu Larjava
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Lari Häkkinen
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
49
|
Ramsay S, Cowan L, Davidson JM, Nanney L, Schultz G. Wound samples: moving towards a standardised method of collection and analysis. Int Wound J 2015; 13:880-91. [PMID: 25581688 DOI: 10.1111/iwj.12399] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 01/02/2023] Open
Abstract
Chronic wounds, including diabetic foot ulcers, pressure ulcers and venous leg ulcers, impact the lives of millions of people worldwide. These types of wounds represent a significant physical, social and financial burden to both patients and health care systems. Wound care has made great progress in recent years as a result of the critical research performed in academic, clinical and industrial settings. However, there has been relatively little translation of basic research discoveries into novel and effective treatments. One underlying reason for this paucity may be inconsistency in the methods of wound analysis and sample collection, resulting in the inability of researchers to accurately characterise the healing process and compare results from different studies. This review examines the various types of analytical methods being used in wound research today with emphasis on sampling techniques, processing and storage, and the findings call forth the wound care research community to standardise its approach to wound analysis in order to yield more robust and comparable data sets.
Collapse
Affiliation(s)
- Sarah Ramsay
- Research & Development, Smith & Nephew, Inc., Fort Worth, TX, USA.
| | - Linda Cowan
- Center of Innovation for Disability and Rehabilitation Research (CINDRR), North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Jeffrey M Davidson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.,VA Tennessee Valley Healthcare System, Research Service, Nashville, TN, USA
| | - Lillian Nanney
- Department of Plastic Surgery, Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Gregory Schultz
- Department of Obstetrics and Gynecology, University of Florida Medical School, Gainesville, FL, USA
| |
Collapse
|
50
|
Loss of keratinocyte focal adhesion kinase stimulates dermal proteolysis through upregulation of MMP9 in wound healing. Ann Surg 2015; 260:1138-46. [PMID: 25389925 DOI: 10.1097/sla.0000000000000219] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To investigate how epithelial mechanotransduction pathways impact wound repair. BACKGROUND Mechanical forces are increasingly recognized to influence tissue repair, but their role in chronic wound pathophysiology remains unknown. Studies have shown that chronic wounds exhibit high levels of matrix metalloproteinase 9 (MMP9), a key proteolytic enzyme that regulates wound remodeling. We hypothesized that epithelial mechanosensory pathways regulated by keratinocyte-specific focal adhesion kinase (FAK) control dermal remodeling via MMP9. METHODS A standard wound model was applied to keratinocyte-specific FAK knockout (KO) and control mice. Rates of wound healing were measured and tissue was obtained for histologic and molecular analyses. Transcriptional and immunoblot assays were used to assess the activation of FAK, intracellular kinases, and MMP9 in vitro. A cell suspension model was designed to validate the importance of FAK mechanosensing, p38, and MMP9 secretion in human cells. Biomechanical testing was utilized to evaluate matrix tensile properties in FAK KO and control wounds. RESULTS Wound healing in FAK KO mice was significantly delayed compared with controls (closure at 15 days compared with 20 days, P = 0.0003). FAK KO wounds demonstrated decreased dermal thickness and collagen density. FAK KO keratinocytes exhibited overactive p38 and MMP9 signaling in vitro, findings recapitulated in human keratinocytes via the deactivation of FAK in the cell suspension model. Functionally, FAK KO wounds were significantly weaker and more brittle than control wounds, results consistent with the histologic and molecular analyses. CONCLUSIONS Keratinocyte FAK is highly responsive to mechanical cues and may play a critical role in matrix remodeling via regulation of p38 and MMP9. These findings suggest that aberrant epithelial mechanosensory pathways may contribute to pathologic dermal proteolysis and wound chronicity.
Collapse
|