1
|
Pu J, Liu T, Wang X, Sharma A, Schmidt-Wolf IGH, Jiang L, Hou J. Exploring the role of histone deacetylase and histone deacetylase inhibitors in the context of multiple myeloma: mechanisms, therapeutic implications, and future perspectives. Exp Hematol Oncol 2024; 13:45. [PMID: 38654286 DOI: 10.1186/s40164-024-00507-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Histone deacetylase inhibitors (HDACis) are a significant category of pharmaceuticals that have developed in the past two decades to treat multiple myeloma. Four drugs in this category have received approval from the U.S. Food and Drug Administration (FDA) for use: Panobinonstat (though canceled by the FDA in 2022), Vorinostat, Belinostat and Romidepsin. The efficacy of this group of drugs is attributed to the disruption of many processes involved in tumor growth through the inhibition of histone deacetylase, and this mode of action leads to significant anti-multiple myeloma (MM) activity. In MM, inhibition of histone deacetylase has many downstream consequences, including suppression of NF-κB signaling and HSP90, upregulation of cell cycle regulators (p21, p53), and downregulation of antiapoptotic proteins including Bcl-2. Furthermore, HDACis have a variety of direct and indirect oxidative effects on cellular DNA. HDAC inhibitors enhance normal immune function, thereby decreasing the proliferation of malignant plasma cells and promoting autophagy. The various biological effects of inhibiting histone deacetylase have a combined or additional impact when used alongside other chemotherapeutic and targeted drugs for multiple myeloma. This helps to decrease resistance to treatment. Combination treatment regimens that include HDACis have become an essential part of the therapy for multiple myeloma. These regimens incorporate drugs from other important classes of anti-myeloma agents, such as immunomodulatory drugs (IMiDs), conventional chemotherapy, monoclonal antibodies, and proteasome inhibitors. This review provides a comprehensive evaluation of the clinical efficacy and safety data pertaining to the currently approved histone deacetylase inhibitors, as well as an explanation of the crucial function of histone deacetylase in multiple myeloma and the characteristics of the different histone deacetylase inhibitors. Moreover, it provides a concise overview of the most recent developments in the use of histone deacetylase inhibitors for treating multiple myeloma, as well as potential future uses in treatment.
Collapse
Affiliation(s)
- Jingjing Pu
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
| | - Ting Liu
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, NRW, Germany
| | - Xuzhen Wang
- Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
| | - Liping Jiang
- Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214002, Jiangsu, China.
| | - Jian Hou
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
2
|
Mitsiades CS. Proteasome Inhibitors in Multiple Myeloma: Biological Insights on Mechanisms of Action or Resistance Informed by Functional Genomics. Hematol Oncol Clin North Am 2024; 38:321-336. [PMID: 38278626 DOI: 10.1016/j.hoc.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
During the last 20 years, proteasome inhibitors have been a cornerstone for the therapeutic management of multiple myeloma (MM). This review highlights how MM research has evolved over time in terms of our understanding of the mechanistic basis for the pronounced clinical activity of proteasome inhibitors in MM, compared with the limited clinical applications of this drug class outside the setting of plasma cell dyscrasias.
Collapse
Affiliation(s)
- Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA; Ludwig Center at Harvard, Boston, MA, USA.
| |
Collapse
|
3
|
Pelon M, Krzeminski P, Tracz-Gaszewska Z, Misiewicz-Krzeminska I. Factors determining the sensitivity to proteasome inhibitors of multiple myeloma cells. Front Pharmacol 2024; 15:1351565. [PMID: 38500772 PMCID: PMC10944964 DOI: 10.3389/fphar.2024.1351565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Multiple myeloma is an incurable cancer that originates from antibody-producing plasma cells. It is characterized by an intrinsic ability to produce large amounts of immunoglobulin-like proteins. The high rate of synthesis makes myeloma cells dependent on protein processing mechanisms related to the proteasome. This dependence made proteasome inhibitors such as bortezomib and carfilzomib one of the most important classes of drugs used in multiple myeloma treatment. Inhibition of the proteasome is associated with alteration of a number of important biological processes leading, in consequence, to inhibition of angiogenesis. The effect of drugs in this group and the degree of patient response to the treatment used is itself an extremely complex process that depends on many factors. At cellular level the change in sensitivity to proteasome inhibitors may be related to differences in the expression level of proteasome subunits, the degree of proteasome loading, metabolic adaptation, transcriptional or epigenetic factors. These are just some of the possibilities that may influence differences in response to proteasome inhibitors. This review describes the main cellular factors that determine the degree of response to proteasome inhibitor drugs, as well as information on the key role of the proteasome and the performance characteristics of the inhibitors that are the mainstay of multiple myeloma treatment.
Collapse
Affiliation(s)
- Marta Pelon
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Patryk Krzeminski
- Department of Nanobiotechnology, Biology Institute, Warsaw University of Life Sciences, Warsaw, Poland
| | - Zuzanna Tracz-Gaszewska
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | |
Collapse
|
4
|
Ferro A, Pantazaka E, Athanassopoulos CM, Cuendet M. Histone deacetylase-based dual targeted inhibition in multiple myeloma. Med Res Rev 2023; 43:2177-2236. [PMID: 37191917 DOI: 10.1002/med.21972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/08/2023] [Accepted: 04/30/2023] [Indexed: 05/17/2023]
Abstract
Despite enormous advances in terms of therapeutic strategies, multiple myeloma (MM) still remains an incurable disease with MM patients often becoming resistant to standard treatments. To date, multiple combined and targeted therapies have proven to be more beneficial compared to monotherapy approaches, leading to a decrease in drug resistance and an improvement in median overall survival in patients. Moreover, recent breakthroughs highlighted the relevant role of histone deacetylases (HDACs) in cancer treatment, including MM. Thus, the simultaneous use of HDAC inhibitors with other conventional regimens, such as proteasome inhibitors, is of interest in the field. In this review, we provide a general overview of HDAC-based combination treatments in MM, through a critical presentation of publications from the past few decades related to in vitro and in vivo studies, as well as clinical trials. Furthermore, we discuss the recent introduction of dual-inhibitor entities that could have the same beneficial effects as drug combinations with the advantage of having two or more pharmacophores in one molecular structure. These findings could represent a starting-point for both reducing therapeutic doses and lowering the risk of developing drug resistance.
Collapse
Affiliation(s)
- Angelica Ferro
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Evangelia Pantazaka
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, Patras, Greece
- Laboratory of Biochemistry/Metastatic Signaling, Section of Genetics, Cell Biology, and Development, Department of Biology, University of Patras, Patras, Greece
| | | | - Muriel Cuendet
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Farani MR, Sarlak M, Gholami A, Azaraian M, Binabaj MM, Kakavandi S, Tambuwala MM, Taheriazam A, Hashemi M, Ghasemi S. Epigenetic drugs as new emerging therapeutics: What is the scale's orientation of application and challenges? Pathol Res Pract 2023; 248:154688. [PMID: 37494800 DOI: 10.1016/j.prp.2023.154688] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Epigenetics is the study of heritable changes in gene expression or function without altering the DNA sequence. Important factors are part of epigenetic events, such as methylation, DNA histone rearrangements, nucleosome transposition, and non-coding RNAs. Dysregulated epigenetic mechanics are associated with various cancers' initiation, development, and metastasis. It is known that the occurrence and development of cancer can be controlled by regulating unexpected epigenetic events. Epi-drugs are used singly or in combination with chemotherapy and enhance antitumor activity, reduce drug resistance, and stimulate the host immune response. Despite these benefits, epigenetic therapy as a single therapy or in combination with other drugs leads to adverse effects. This review article introduces and compares the advantages, disadvantages, and side effects of using these drugs for the first time since their introduction. Also, this article describes the mechanism of action of various epigenetic drugs. Recommendations for future use of epigenetic drugs as cancer therapeutics are suggested as an overall conclusion.
Collapse
Affiliation(s)
- Marzieh Ramezani Farani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417614411 Tehran, Iran
| | - Maryam Sarlak
- Department of Chemistry, Portland State University, Portland, OR, USA
| | - Amir Gholami
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Azaraian
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany; Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Maryam Moradi Binabaj
- Clinical Biochemistry, Department of Biochemistry and Nutrition, School of Medicine, Sabzevar University of Medical Science, Sabzevar, Iran; Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Sareh Kakavandi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, 0United Kingdom
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
6
|
Clavero E, Sanchez-Maldonado JM, Macauda A, Ter Horst R, Sampaio-Marques B, Jurczyszyn A, Clay-Gilmour A, Stein A, Hildebrandt MAT, Weinhold N, Buda G, García-Sanz R, Tomczak W, Vogel U, Jerez A, Zawirska D, Wątek M, Hofmann JN, Landi S, Spinelli JJ, Butrym A, Kumar A, Martínez-López J, Galimberti S, Sarasquete ME, Subocz E, Iskierka-Jażdżewska E, Giles GG, Rybicka-Ramos M, Kruszewski M, Abildgaard N, Verdejo FG, Sánchez Rovira P, da Silva Filho MI, Kadar K, Razny M, Cozen W, Pelosini M, Jurado M, Bhatti P, Dudzinski M, Druzd-Sitek A, Orciuolo E, Li Y, Norman AD, Zaucha JM, Reis RM, Markiewicz M, Rodríguez Sevilla JJ, Andersen V, Jamroziak K, Hemminki K, Berndt SI, Rajkumar V, Mazur G, Kumar SK, Ludovico P, Nagler A, Chanock SJ, Dumontet C, Machiela MJ, Varkonyi J, Camp NJ, Ziv E, Vangsted AJ, Brown EE, Campa D, Vachon CM, Netea MG, Canzian F, Försti A, Sainz J. Polymorphisms within Autophagy-Related Genes as Susceptibility Biomarkers for Multiple Myeloma: A Meta-Analysis of Three Large Cohorts and Functional Characterization. Int J Mol Sci 2023; 24:ijms24108500. [PMID: 37239846 DOI: 10.3390/ijms24108500] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk. We performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms (SNPs; p < 1 × 10-9) with immune responses in whole blood, peripheral blood mononuclear cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 × 10-4-5.79 × 10-14). Mechanistically, we found that the ULK4rs6599175 SNP correlated with circulating concentrations of vitamin D3 (p = 4.0 × 10-4), whereas the IKBKErs17433804 SNP correlated with the number of transitional CD24+CD38+ B cells (p = 4.8 × 10-4) and circulating serum concentrations of Monocyte Chemoattractant Protein (MCP)-2 (p = 3.6 × 10-4). We also found that the CD46rs1142469 SNP correlated with numbers of CD19+ B cells, CD19+CD3- B cells, CD5+IgD- cells, IgM- cells, IgD-IgM- cells, and CD4-CD8- PBMCs (p = 4.9 × 10-4-8.6 × 10-4) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2Ars2811710 SNP correlated with levels of CD4+EMCD45RO+CD27- cells (p = 9.3 × 10-4). These results suggest that genetic variants within these six loci influence MM risk through the modulation of specific subsets of immune cells, as well as vitamin D3-, MCP-2-, and IL20-dependent pathways.
Collapse
Affiliation(s)
- Esther Clavero
- Hematology Department, Virgen de las Nieves University Hospital, 18012 Granada, Spain
| | - José Manuel Sanchez-Maldonado
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain
- Instituto de Investigación Biosanataria IBs, Granada, 18014 Granada, Spain
| | - Angelica Macauda
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Rob Ter Horst
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
| | - Artur Jurczyszyn
- Plasma Cell Dyscrasias Center, Department of Hematology, Jagiellonian University Medical College, 31-066 Kraków, Poland
| | - Alyssa Clay-Gilmour
- Department of Biostatistics and Epidemiology, Arnold School of Public Health, University of South Carolina, Greenville, SC 29208, USA
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55902, USA
| | - Angelika Stein
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michelle A T Hildebrandt
- Department of Lymphoma-Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Niels Weinhold
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Internal Medicine V, University of Heidelberg, 69120 Heidelberg, Germany
| | - Gabriele Buda
- Haematology Unit, Department of Clinical and Experimental Medicine, University of Pisa/AOUP, 56126 Pisa, Italy
| | - Ramón García-Sanz
- Diagnostic Laboratory Unit in Hematology, University Hospital of Salamanca, IBSAL, CIBERONC, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Waldemar Tomczak
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-059 Lublin, Poland
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark
| | - Andrés Jerez
- Department of Hematology, Experimental Hematology Unit, Vall d'Hebron Institute of Oncology (VHIO), University Hospital Vall d'Hebron, 08035 Barcelona, Spain
| | - Daria Zawirska
- Department of Hematology, University Hospital, 30-688 Kraków, Poland
| | - Marzena Wątek
- Holycross Medical Oncology Center, 25-735 Kielce, Poland
- Institute of Hematology and Transfusion Medicine, 00-791 Warsaw, Poland
| | - Jonathan N Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stefano Landi
- Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - John J Spinelli
- Division of Population Oncology, BC Cancer, Vancouver, BC V5Z 4E6, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Aleksandra Butrym
- Department of Cancer Prevention and Therapy, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Alfred Sokolowski Specialist Hospital in Walbrzych Oncology Support Centre for Clinical Trials, 58-309 Walbrzych, Poland
| | - Abhishek Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | | | - Sara Galimberti
- Haematology Unit, Department of Clinical and Experimental Medicine, University of Pisa/AOUP, 56126 Pisa, Italy
| | - María Eugenia Sarasquete
- Diagnostic Laboratory Unit in Hematology, University Hospital of Salamanca, IBSAL, CIBERONC, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Edyta Subocz
- Department of Hematology, Military Institute of Medicine, 04-141 Warsaw, Poland
| | | | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
| | - Malwina Rybicka-Ramos
- Department of Hematology, Specialist Hospital No. 1 in Bytom, Academy of Silesia, Faculty of Medicine, 40-055 Katowice, Poland
| | - Marcin Kruszewski
- Department of Hematology, University Hospital No. 2, 85-168 Bydgoszcz, Poland
| | - Niels Abildgaard
- Department of Hematology, Odense University Hospital, DK-5000 Odense, Denmark
| | | | - Pedro Sánchez Rovira
- Department of Medical Oncology, Complejo Hospitalario de Jaén, 23007 Jaén, Spain
| | - Miguel Inacio da Silva Filho
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | | | - Małgorzata Razny
- Department of Hematology, Rydygier Hospital, 31-826 Cracow, Poland
| | - Wendy Cozen
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, Department of Pathology, School of Medicine, Susan and Henry Samueli College of Health Sciences, Chao Family Comprehensive Cancer Center, University of California at Irvine, Irvine, CA 92697, USA
| | - Matteo Pelosini
- U.O. Dipartimento di Ematologia, Azienda USL Toscana Nord Ovest, 57124 Livorno, Italy
| | - Manuel Jurado
- Hematology Department, Virgen de las Nieves University Hospital, 18012 Granada, Spain
- Instituto de Investigación Biosanataria IBs, Granada, 18014 Granada, Spain
- Department of Medicine, University of Granada, 18012 Granada, Spain
| | - Parveen Bhatti
- Cancer Control Research, BC Cancer, Vancouver, BC V5Z 4E6, Canada
- Program in Epidemiology, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Marek Dudzinski
- Department of Hematology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Agnieszka Druzd-Sitek
- Department of Lymphoproliferative Diseases, Maria Skłodowska Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Enrico Orciuolo
- Haematology Unit, Department of Clinical and Experimental Medicine, University of Pisa/AOUP, 56126 Pisa, Italy
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Centre for Individualised Infection Medicine (CiiM) & TWINCORE, Joint Ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Aaron D Norman
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55902, USA
- Genetic Epidemiology and Risk Assessment Program, Mayo Clinic Comprehensive Cancer Center, Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55902, USA
| | - Jan Maciej Zaucha
- Department of Hematology and Transplantology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Rui Manuel Reis
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal and ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil
| | - Miroslaw Markiewicz
- Department of Hematology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland
| | | | - Vibeke Andersen
- Molecular Diagnostics and Clinical Research Unit, Institute of Regional Health Research, University Hospital of Southern Denmark, DK-6200 Aabenraa, Denmark
| | - Krzysztof Jamroziak
- Department of Hematology, Transplantology and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Kari Hemminki
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vicent Rajkumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Grzegorz Mazur
- Department of Internal Diseases, Occupational Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Shaji K Kumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
| | - Arnon Nagler
- Hematology Division, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Charles Dumontet
- UMR INSERM 1052/CNRS 5286, University of Lyon, Hospices Civils de Lyon, 69008 Lyon, France
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Nicola J Camp
- Division of Hematology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Elad Ziv
- Department of Medicine, University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94143, USA
| | - Annette Juul Vangsted
- Department of Hematology, Rigshospitalet, Copenhagen University, DK-2100 Copenhagen, Denmark
| | - Elizabeth E Brown
- Department of Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniele Campa
- Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - Celine M Vachon
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55902, USA
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Asta Försti
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Hopp Children's Cancer Center (KiTZ), 69120 Heidelberg, Germany
| | - Juan Sainz
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain
- Instituto de Investigación Biosanataria IBs, Granada, 18014 Granada, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain
| |
Collapse
|
7
|
Bashiri H, Tabatabaeian H. Autophagy: A Potential Therapeutic Target to Tackle Drug Resistance in Multiple Myeloma. Int J Mol Sci 2023; 24:ijms24076019. [PMID: 37046991 PMCID: PMC10094562 DOI: 10.3390/ijms24076019] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Multiple myeloma (MM) is the second most prevalent hematologic malignancy. In the past few years, the survival of MM patients has increased due to the emergence of novel drugs and combination therapies. Nevertheless, one of the significant obstacles in treating most MM patients is drug resistance, especially for individuals who have experienced relapses or developed resistance to such cutting-edge treatments. One of the critical processes in developing drug resistance in MM is autophagic activity, an intracellular self-digestive process. Several possible strategies of autophagy involvement in the induction of MM-drug resistance have been demonstrated thus far. In multiple myeloma, it has been shown that High mobility group box protein 1 (HMGB1)-dependent autophagy can contribute to drug resistance. Moreover, activation of autophagy via proteasome suppression induces drug resistance. Additionally, the effectiveness of clarithromycin as a supplemental drug in treating MM has been reported recently, in which autophagy blockage is proposed as one of the potential action mechanisms of CAM. Thus, a promising therapeutic approach that targets autophagy to trigger the death of MM cells and improve drug susceptibility could be considered. In this review, autophagy has been addressed as a survival strategy crucial for drug resistance in MM.
Collapse
Affiliation(s)
- Hamed Bashiri
- Institute of Molecular and Cell Biology (IMCB), Agency of Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | | |
Collapse
|
8
|
Pan D, Mouhieddine TH, Upadhyay R, Casasanta N, Lee A, Zubizarreta N, Moshier E, Richter J. Outcomes with panobinostat in heavily pretreated multiple myeloma patients. Semin Oncol 2023:S0093-7754(23)00039-8. [PMID: 37005144 DOI: 10.1053/j.seminoncol.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
Panobinostat is an oral pan histone-deacetylase inhibitor used in the treatment of relapsed and refractory multiple myeloma. Previously published studies of panobinostat demonstrated synergy with bortezomib but included few patients exposed to newer agent combinations (ie, panobinostat plus daratumumab or carfilzomib). Here, we report outcomes of panobinostat-based combinations at an academic medical center among patients whose disease had been heavily pretreated with modern agents. We retrospectively analyzed 105 patients with myeloma treated with panobinostat at The Mount Sinai Hospital in New York City between October 2012 and October 2021. These patients had a median age of 65 (range 37-87) and had received a median of 6 prior lines of therapy while in 53% the disease was classified as triple class refractory and in 54% the disease had high-risk cytogenetics. Panobinostat was most commonly utilized at 20 mg (64.8%) as part of a triplet (61.0%) or quadruplet (30.5%). Aside from steroids, panobinostat was most commonly administered in combination with lenalidomide, pomalidomide, carfilzomib, and daratumumab in descending order of frequency. Among the 101 response-evaluable patients, the overall response rate was 24.8%, clinical benefit rate (≥minimal response) was 36.6%, and median progression-free survival was 3.4 months. Median overall survival was 19.1 months. The most common toxicities ≥grade 3 were hematologic, primarily neutropenia (34.3%), thrombocytopenia (27.6%), and anemia (19.1%). Panobinostat-based combinations produced modest response rates in patients with heavily pretreated multiple myeloma, over half of whom had triple-class refractory disease. Panobinostat warrants continued investigation as a tolerable oral option for recapturing responses in patients whose disease has progressed after receipt of standard-of-care therapies.
Collapse
|
9
|
Kamens JL, Nance S, Koss C, Xu B, Cotton A, Lam JW, Garfinkle EAR, Nallagatla P, Smith AMR, Mitchell S, Ma J, Currier D, Wright WC, Kavdia K, Pagala VR, Kim W, Wallace LM, Cho JH, Fan Y, Seth A, Twarog N, Choi JK, Obeng EA, Hatley ME, Metzger ML, Inaba H, Jeha S, Rubnitz JE, Peng J, Chen T, Shelat AA, Guy RK, Gruber TA. Proteasome inhibition targets the KMT2A transcriptional complex in acute lymphoblastic leukemia. Nat Commun 2023; 14:809. [PMID: 36781850 PMCID: PMC9925443 DOI: 10.1038/s41467-023-36370-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/26/2023] [Indexed: 02/15/2023] Open
Abstract
Rearrangments in Histone-lysine-N-methyltransferase 2A (KMT2Ar) are associated with pediatric, adult and therapy-induced acute leukemias. Infants with KMT2Ar acute lymphoblastic leukemia (ALL) have a poor prognosis with an event-free-survival of 38%. Herein we evaluate 1116 FDA approved compounds in primary KMT2Ar infant ALL specimens and identify a sensitivity to proteasome inhibition. Upon exposure to this class of agents, cells demonstrate a depletion of histone H2B monoubiquitination (H2Bub1) and histone H3 lysine 79 dimethylation (H3K79me2) at KMT2A target genes in addition to a downregulation of the KMT2A gene expression signature, providing evidence that it targets the KMT2A transcriptional complex and alters the epigenome. A cohort of relapsed/refractory KMT2Ar patients treated with this approach on a compassionate basis had an overall response rate of 90%. In conclusion, we report on a high throughput drug screen in primary pediatric leukemia specimens whose results translate into clinically meaningful responses. This innovative treatment approach is now being evaluated in a multi-institutional upfront trial for infants with newly diagnosed ALL.
Collapse
Affiliation(s)
- Jennifer L Kamens
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephanie Nance
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cary Koss
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anitria Cotton
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeannie W Lam
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Pratima Nallagatla
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Amelia M R Smith
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sharnise Mitchell
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Duane Currier
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - William C Wright
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kanisha Kavdia
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Vishwajeeth R Pagala
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wonil Kim
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - LaShanale M Wallace
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ji-Hoon Cho
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Aman Seth
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nathaniel Twarog
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John K Choi
- Department of Pathology, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Esther A Obeng
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mark E Hatley
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Monika L Metzger
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sima Jeha
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeffrey E Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Junmin Peng
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anang A Shelat
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - R Kiplin Guy
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Tanja A Gruber
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
10
|
Hristov AC, Tejasvi T, Wilcox RA. Cutaneous T-cell lymphomas: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol 2023; 98:193-209. [PMID: 36226409 PMCID: PMC9772153 DOI: 10.1002/ajh.26760] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 02/04/2023]
Abstract
DISEASE OVERVIEW Cutaneous T-cell lymphomas are a heterogenous group of T-cell neoplasms involving the skin, the majority of which may be classified as Mycosis Fungoides (MF) or Sézary Syndrome (SS). DIAGNOSIS The diagnosis of MF or SS requires the integration of clinical and histopathologic data. RISK-ADAPTED THERAPY TNMB (tumor, node, metastasis, blood) staging remains the most important prognostic factor in MF/SS and forms the basis for a "risk-adapted," multidisciplinary approach to treatment. For patients with disease limited to the skin, expectant management or skin-directed therapies is preferred, as both disease-specific and overall survival for these patients is favorable. In contrast, patients with advanced-stage disease with significant nodal, visceral or the blood involvement are generally approached with systemic therapies, including biologic-response modifiers, histone deacetylase inhibitors, or antibody-based strategies, in an escalating fashion. In highly-selected patients, allogeneic stem-cell transplantation may be considered, as this may be curative in some patients.
Collapse
Affiliation(s)
- Alexandra C. Hristov
- Departments of Pathology and Dermatology, 2800 Plymouth Road, Building 35, Ann Arbor, MI 48109-2800
| | - Trilokraj Tejasvi
- Department of Dermatology, 1910 Taubman Center, 1500 E Medical Center Dr, Ann Arbor, MI 48109
| | - Ryan A. Wilcox
- Correspondence to: Ryan Wilcox, MD, PhD, Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Rogel Cancer Center, 1500 E. Medical Center Drive, Room 4310 CC, Ann Arbor, MI 48109-5948, Phone: (734) 615-9799, Fax: (734) 936-7376,
| |
Collapse
|
11
|
Gkotzamanidou M, Terpos E, Dimopoulos MA, Souliotis VL. The Combination of Panobinostat and Melphalan for the Treatment of Patients with Multiple Myeloma. Int J Mol Sci 2022; 23:ijms232415671. [PMID: 36555311 PMCID: PMC9778728 DOI: 10.3390/ijms232415671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Histone deacetylase inhibitors show synergy with several genotoxic drugs. Herein, we investigated the biological impact of the combined treatment of panobinostat and melphalan in multiple myeloma (MM). DNA damage response (DDR) parameters and the expression of DDR-associated genes were analyzed in bone marrow plasma cells (BMPCs) and peripheral blood mononuclear cells (PBMCs) from 26 newly diagnosed MM patients. PBMCs from 25 healthy controls (HC) were examined in parallel. Compared with the ex vivo melphalan-only treatment, combined treatment with panobinostat and melphalan significantly reduced the efficiency of nucleotide excision repair (NER) and double-strand-break repair (DSB/R), enhanced the accumulation of DNA lesions (monoadducts and DSBs), and increased the apoptosis rate only in patients’ BMPCs (all p < 0.001); marginal changes were observed in PBMCs from the same patients or HC. Accordingly, panobinostat pre-treatment decreased the expression levels of critical NER (DDB2, XPC) and DSB/R (MRE11A, PRKDC/DNAPKc, RAD50, XRCC6/Ku70) genes only in patients’ BMPCs; no significant changes were observed in PBMCs from patients or HC. Together, our findings demonstrate that panobinostat significantly increased the melphalan sensitivity of malignant BMPCs without increasing the melphalan sensitivity of PBMCs from the same patients, thus paving the way for combination therapies in MM with improved anti-myeloma efficacy and lower side effects.
Collapse
Affiliation(s)
- Maria Gkotzamanidou
- Oncology Department, 251 Hellenic Air-Force General Hospital, 155 61 Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Vassilis L. Souliotis
- Institute of Chemical Biology, National Hellenic Research Foundation, 116 35 Athens, Greece
- Correspondence:
| |
Collapse
|
12
|
Hazama Y, Tsujioka T, Kitanaka A, Tohyama K, Shimoya K. Histone deacetylase inhibitor, panobinostat, exerts anti-proliferative effect with partial normalization from aberrant epigenetic states on granulosa cell tumor cell lines. PLoS One 2022; 17:e0271245. [PMID: 35802681 PMCID: PMC9269920 DOI: 10.1371/journal.pone.0271245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/24/2022] [Indexed: 12/01/2022] Open
Abstract
The prognosis of the patients with inoperable or advanced granulosa cell tumors (GCTs) is still poor, and therefore it is important to establish a novel treatment strategy. Here we investigated the in vitro effects of a histone deacetylase inhibitor, panobinostat (PS) on two GCT cell lines (KGN and COV434). GCT cell lines were found to be susceptible to PS treatment and it inhibited cell growth mainly by apoptosis. In cell cycle analysis, PS reduced only the ratio of S phase in GCT cell lines. Combined treatment of PS with a deubiquitinase inhibitor, VLX1570 enhanced the expression of p21, cleaved PARP, cleaved caspase-9, heme oxygenase-1, and the acetylation of histone H4 and α-tubulin, leading to an additive anti-proliferative effect on KGN and COV434. The gene set enrichment analysis revealed that PS treatment suppressed DNA replication- or cell cycle-related gene expression which led to chemotherapeutic cell death and in addition, this treatment induced activation of the gene set of adherens junction towards a normalized direction as well as activation of neuron-related gene sets that might imply unexpected differentiation potential due to epigenetic modification by a HDAC inhibitor in KGN cells. Exposure of KGN and COV434 cells to PS increased the expression of E-cadherin, one of the principal regulators associated with adherens junction in quantitative RT-PCR and immunoblotting analysis. In the present study, we indicate a basis of a novel therapeutic availability of a HDAC inhibitor for the treatment of GCTs and further investigations will be warranted.
Collapse
Affiliation(s)
- Yukiko Hazama
- Departments of Obstetrics and Gynecology, Kawasaki Medical School, Okayama, Japan
| | - Takayuki Tsujioka
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan
- * E-mail:
| | - Akira Kitanaka
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan
| | - Kaoru Tohyama
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan
| | - Koichiro Shimoya
- Departments of Obstetrics and Gynecology, Kawasaki Medical School, Okayama, Japan
| |
Collapse
|
13
|
Schwestermann J, Besse A, Driessen C, Besse L. Contribution of the Tumor Microenvironment to Metabolic Changes Triggering Resistance of Multiple Myeloma to Proteasome Inhibitors. Front Oncol 2022; 12:899272. [PMID: 35692781 PMCID: PMC9178120 DOI: 10.3389/fonc.2022.899272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Virtually all patients with multiple myeloma become unresponsive to treatment with proteasome inhibitors over time. Relapsed/refractory multiple myeloma is accompanied by the clonal evolution of myeloma cells with heterogeneous genomic aberrations, diverse proteomic and metabolic alterations, and profound changes of the bone marrow microenvironment. However, the molecular mechanisms that drive resistance to proteasome inhibitors within the context of the bone marrow microenvironment remain elusive. In this review article, we summarize the latest knowledge about the complex interaction of malignant plasma cells with its surrounding microenvironment. We discuss the pivotal role of metabolic reprograming of malignant plasma cells within the tumor microenvironment with a subsequent focus on metabolic rewiring in plasma cells upon treatment with proteasome inhibitors, driving multiple ways of adaptation to the treatment. At the same time, mutual interaction of plasma cells with the surrounding tumor microenvironment drives multiple metabolic alterations in the bone marrow. This provides a tumor-promoting environment, but at the same time may offer novel therapeutic options for the treatment of relapsed/refractory myeloma patients.
Collapse
Affiliation(s)
| | | | | | - Lenka Besse
- Laboratory of Experimental Oncology, Clinics for Medical Hematology and Oncology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
14
|
Allegra A, Casciaro M, Barone P, Musolino C, Gangemi S. Epigenetic Crosstalk between Malignant Plasma Cells and the Tumour Microenvironment in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14112597. [PMID: 35681577 PMCID: PMC9179362 DOI: 10.3390/cancers14112597] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022] Open
Abstract
In multiple myeloma, cells of the bone marrow microenvironment have a relevant responsibility in promoting the growth, survival, and drug resistance of multiple myeloma plasma cells. In addition to the well-recognized role of genetic lesions, microenvironmental cells also present deregulated epigenetic systems. However, the effect of epigenetic changes in reshaping the tumour microenvironment is still not well identified. An assortment of epigenetic regulators, comprising histone methyltransferases, histone acetyltransferases, and lysine demethylases, are altered in bone marrow microenvironmental cells in multiple myeloma subjects participating in disease progression and prognosis. Aberrant epigenetics affect numerous processes correlated with the tumour microenvironment, such as angiogenesis, bone homeostasis, and extracellular matrix remodelling. This review focuses on the interplay between epigenetic alterations of the tumour milieu and neoplastic cells, trying to decipher the crosstalk between these cells. We also evaluate the possibility of intervening specifically in modified signalling or counterbalancing epigenetic mechanisms.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (P.B.); (C.M.)
- Correspondence:
| | - Marco Casciaro
- Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| | - Paola Barone
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (P.B.); (C.M.)
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (P.B.); (C.M.)
| | - Sebastiano Gangemi
- Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, School of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| |
Collapse
|
15
|
Pharmacodynamic, pharmacokinetic, and phase 1a study of bisthianostat, a novel histone deacetylase inhibitor, for the treatment of relapsed or refractory multiple myeloma. Acta Pharmacol Sin 2022; 43:1091-1099. [PMID: 34341512 PMCID: PMC8976035 DOI: 10.1038/s41401-021-00728-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/27/2021] [Indexed: 11/12/2022] Open
Abstract
HDAC inhibitors (HDACis) have been intensively studied for their roles and potential as drug targets in T-cell lymphomas and other hematologic malignancies. Bisthianostat is a novel bisthiazole-based pan-HDACi evolved from natural HDACi largazole. Here, we report the preclinical study of bisthianostat alone and in combination with bortezomib in the treatment of multiple myeloma (MM), as well as preliminary first-in-human findings from an ongoing phase 1a study. Bisthianostat dose dependently induced acetylation of tubulin and H3 and increased PARP cleavage and apoptosis in RPMI-8226 cells. In RPMI-8226 and MM.1S cell xenograft mouse models, oral administration of bisthianostat (50, 75, 100 mg·kg-1·d-1, bid) for 18 days dose dependently inhibited tumor growth. Furthermore, bisthianostat in combination with bortezomib displayed synergistic antitumor effect against RPMI-8226 and MM.1S cell in vitro and in vivo. Preclinical pharmacokinetic study showed bisthianostat was quickly absorbed with moderate oral bioavailability (F% = 16.9%–35.5%). Bisthianostat tended to distribute in blood with Vss value of 0.31 L/kg. This distribution parameter might be beneficial to treat hematologic neoplasms such as MM with few side effects. In an ongoing phase 1a study, bisthianostat treatment was well tolerated and no grade 3/4 nonhematological adverse events (AEs) had occurred together with good pharmacokinetics profiles in eight patients with relapsed or refractory MM (R/R MM). The overall single-agent efficacy was modest, stable disease (SD) was identified in four (50%) patients at the end of first dosing cycle (day 28). These preliminary in-patient results suggest that bisthianostat is a promising HDACi drug with a comparable safety window in R/R MM, supporting for its further phase 1b clinical trial in combination with traditional MM therapies.
Collapse
|
16
|
Revisiting Proteasome Inhibitors: Molecular Underpinnings of Their Development, Mechanisms of Resistance and Strategies to Overcome Anti-Cancer Drug Resistance. Molecules 2022; 27:molecules27072201. [PMID: 35408601 PMCID: PMC9000344 DOI: 10.3390/molecules27072201] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Proteasome inhibitors have shown relevant clinical activity in several hematological malignancies, namely in multiple myeloma and mantle cell lymphoma, improving patient outcomes such as survival and quality of life, when compared with other therapies. However, initial response to the therapy is a challenge as most patients show an innate resistance to proteasome inhibitors, and those that respond to the therapy usually develop late relapses suggesting the development of acquired resistance. The mechanisms of resistance to proteasome inhibition are still controversial and scarce in the literature. In this review, we discuss the development of proteasome inhibitors and the mechanisms of innate and acquired resistance to their activity—a major challenge in preclinical and clinical therapeutics. An improved understanding of these mechanisms is crucial to guiding the design of new and more effective drugs to tackle these devastating diseases. In addition, we provide a comprehensive overview of proteasome inhibitors used in combination with other chemotherapeutic agents, as this is a key strategy to combat resistance.
Collapse
|
17
|
Moscvin M, Ho M, Bianchi G. Overcoming drug resistance by targeting protein homeostasis in multiple myeloma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:1028-1046. [PMID: 35265794 PMCID: PMC8903187 DOI: 10.20517/cdr.2021.93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Multiple myeloma (MM) is a plasma cell disorder typically characterized by abundant synthesis of clonal immunoglobulin or free light chains. Although incurable, a deeper understanding of MM pathobiology has fueled major therapeutical advances over the past two decades, significantly improving patient outcomes. Proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies are among the most effective anti-MM drugs, targeting not only the cancerous cells, but also the bone marrow microenvironment. However, de novo resistance has been reported, and acquired resistance is inevitable for most patients over time, leading to relapsed/refractory disease and poor outcomes. Sustained protein synthesis coupled with impaired/insufficient proteolytic mechanisms makes MM cells exquisitely sensitive to perturbations in protein homeostasis, offering us the opportunity to target this intrinsic vulnerability for therapeutic purposes. This review highlights the scientific rationale for the clinical use of FDA-approved and investigational agents targeting protein homeostasis in MM.
Collapse
Affiliation(s)
- Maria Moscvin
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Matthew Ho
- Department of Medicine, Mayo Clinic, Rochester, MN 240010, USA
| | - Giada Bianchi
- Department of Medicine, Division of Hematology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
18
|
Hristov AC, Tejasvi T, Wilcox RA. Cutaneous T-cell lymphomas: 2021 update on diagnosis, risk-stratification, and management. Am J Hematol 2021; 96:1313-1328. [PMID: 34297414 PMCID: PMC8486344 DOI: 10.1002/ajh.26299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/08/2022]
Abstract
DISEASE OVERVIEW Cutaneous T-cell lymphomas are a heterogenous group of T-cell neoplasms involving the skin, the majority of which may be classified as Mycosis Fungoides (MF) or Sézary Syndrome (SS). DIAGNOSIS The diagnosis of MF or SS requires the integration of clinical and histopathologic data. RISK-ADAPTED THERAPY TNMB (tumor, node, metastasis, blood) staging remains the most important prognostic factor in MF/SS and forms the basis for a "risk-adapted," multi-disciplinary approach to treatment. For patients with disease limited to the skin, expectant management or skin-directed therapies is preferred, as both disease-specific and overall survival for these patients is favorable. In contrast, patients with advanced-stage disease with significant nodal, visceral or blood involvement are generally approached with systemic therapies, including biologic-response modifiers, histone deacetylase inhibitors, or antibody-based strategies, in an escalating fashion. In highly-selected patients, allogeneic stem-cell transplantation may be considered, as this may be curative in some patients.
Collapse
Affiliation(s)
- Alexandra C. Hristov
- Departments of Pathology and Dermatology, North Campus Research Complex, Ann Arbor, Michigan, USA
| | - Trilokraj Tejasvi
- Director Cutaneous Lymphoma program, Department of Dermatology, A. Alfred Taubman Health Care Center, Ann Arbor, Michigan, USA
| | - Ryan A. Wilcox
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Alhallak K, Jeske A, de la Puente P, Sun J, Fiala M, Azab F, Muz B, Sahin I, Vij R, DiPersio JF, Azab AK. A pilot study of 3D tissue-engineered bone marrow culture as a tool to predict patient response to therapy in multiple myeloma. Sci Rep 2021; 11:19343. [PMID: 34588522 PMCID: PMC8481555 DOI: 10.1038/s41598-021-98760-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022] Open
Abstract
Cancer patients undergo detrimental toxicities and ineffective treatments especially in the relapsed setting, due to failed treatment attempts. The development of a tool that predicts the clinical response of individual patients to therapy is greatly desired. We have developed a novel patient-derived 3D tissue engineered bone marrow (3DTEBM) technology that closely recapitulate the pathophysiological conditions in the bone marrow and allows ex vivo proliferation of tumor cells of hematologic malignancies. In this study, we used the 3DTEBM to predict the clinical response of individual multiple myeloma (MM) patients to different therapeutic regimens. We found that while no correlation was observed between in vitro efficacy in classic 2D culture systems of drugs used for MM with their clinical efficacious concentration, the efficacious concentration in the 3DTEBM were directly correlated. Furthermore, the 3DTEBM model retrospectively predicted the clinical response to different treatment regimens in 89% of the MM patient cohort. These results demonstrated that the 3DTEBM is a feasible platform which can predict MM clinical responses with high accuracy and within a clinically actionable time frame. Utilization of this technology to predict drug efficacy and the likelihood of treatment failure could significantly improve patient care and treatment in many ways, particularly in the relapsed and refractory setting. Future studies are needed to validate the 3DTEBM model as a tool for predicting clinical efficacy.
Collapse
Affiliation(s)
- Kinan Alhallak
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO, 63108, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Amanda Jeske
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO, 63108, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.,Cellatrix LLC, St. Louis, MO, USA
| | - Pilar de la Puente
- Cellatrix LLC, St. Louis, MO, USA.,Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, USA
| | - Jennifer Sun
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO, 63108, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Mark Fiala
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Barbara Muz
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO, 63108, USA
| | - Ilyas Sahin
- Division of Hematology/Oncology, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Ravi Vij
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - John F DiPersio
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Ave, St. Louis, MO, 63108, USA. .,Department of Biomedical Engineering, Washington University, St. Louis, MO, USA. .,Cellatrix LLC, St. Louis, MO, USA.
| |
Collapse
|
20
|
Berdeja JG, Laubach JP, Richter J, Stricker S, Spencer A, Richardson PG, Chari A. Panobinostat From Bench to Bedside: Rethinking the Treatment Paradigm for Multiple Myeloma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:752-765. [PMID: 34340951 DOI: 10.1016/j.clml.2021.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 12/31/2022]
Abstract
Relapsed and refractory multiple myeloma (RRMM) presents a therapeutic challenge due to the development of drug resistance. Panobinostat is an oral histone deacetylase inhibitor (HDACi) that affects multiple cellular pathways and has demonstrated the ability to resensitize refractory-multiple myeloma cells in preclinical studies, as well as in patients with RRMM in clinical trials. Synergy of panobinostat with a number of different classes of antimyeloma drugs (proteasome inhibitors, immunomodulatory drugs and monoclonal antibodies) has also been shown. Panobinostat is a promising HDACi for the treatment of multiple myeloma. Here, we present a comprehensive review of preclinical and clinical studies of panobinostat.
Collapse
Affiliation(s)
- Jesus G Berdeja
- Sarah Cannon Research Institute, Nashville, TN; Tennessee Oncology PLLC, Nashville, TN
| | - Jacob P Laubach
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Joshua Richter
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY
| | | | - Andrew Spencer
- Alfred Hospital - Monash University, Melbourne, Australia
| | | | - Ajai Chari
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY.
| |
Collapse
|
21
|
Allegra A, Innao V, Polito F, Oteri R, Alibrandi A, Allegra AG, Oteri G, Di Giorgio RM, Musolino C, Aguennouz M. SIRT2 and SIRT3 expression correlates with redox imbalance and advanced clinical stage in patients with multiple myeloma. Clin Biochem 2021; 93:42-49. [PMID: 33861984 DOI: 10.1016/j.clinbiochem.2021.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Sirtuins comprise seven family elements (SIRT1-7) involved in various cell signalling pathways comprising cancer inhibition and tumorigenesis. The present study aims to evaluate SIRT2 and SIRT3 gene expression and potential redox reactions in patients with multiple myeloma (MM) at onset and its correlation with disease status, extent and presence of organ damage secondary to myeloma. DESIGN & METHODS Total RNA was extracted from 17 MM patients and 10 controls to assess gene expression using real-time PCR. The NAD+/NADH ratio as well as the levels of glutathione peroxidase (GPx) and hydrogen peroxide (HP) in peripheral blood mononuclear cells (PBMCs) were determined using established biochemical assays. RESULTS SIRT2 and SIRT3 expression is reduced in MM patients compared to healthy controls. Correlational analysis demonstrated that SIRT2 reduction is associated with advanced clinical stage and with more advanced bone lesions than in the remaining patients. SIRT3 expression is correlated with lytic bone lesions. Biochemical analysis indicated an imbalance of oxidative stress biomarkers with low concentrations of the antioxidant enzyme GPx, low amounts of NAD + and higher concentrations of pro-oxidant enzyme HP in PBMCs of MM patients compared to controls. Moreover, MM patients with bone lesions had lower concentrations of NAD + and GPx in PBMCs than patients without signs of bone disease. In addition, MM patients had higher quantities of intracellular HP than controls. CONCLUSIONS Our results demonstrate that SIRT2 and SIRT3 are downregulated in MM and that lower concentrations correlate with an advanced stage of disease and redox imbalance. We conclude that SIRT2 and SIRT3 together with oxidative stress biomarkers, may be useful for improved risk stratification of MM patients.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", Division of Haematology, University of Messina, Messina, Italy.
| | - Vanessa Innao
- Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", Division of Haematology, University of Messina, Messina, Italy
| | - Francesca Polito
- Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", Italy
| | - Rosaria Oteri
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Angela Alibrandi
- Department of Economics, Unit of Statistical and Mathematical Sciences, University of Messina, Messina, Italy
| | - Andrea Gaetano Allegra
- Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", Division of Haematology, University of Messina, Messina, Italy
| | - Giacomo Oteri
- Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", Italy
| | - Rosa Maria Di Giorgio
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", Division of Haematology, University of Messina, Messina, Italy
| | - M'hammed Aguennouz
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
22
|
Emerging Therapeutic Strategies to Overcome Drug Resistance in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13071686. [PMID: 33918370 PMCID: PMC8038312 DOI: 10.3390/cancers13071686] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Multiple myeloma is a deadly blood cancer, but fortunately drug development has substantially prolonged the lifespan of patients to average more than a decade after diagnosis with optimal therapy. As a result, the population of patients living with multiple myeloma has grown considerably. Through its course, patients suffer repeated relapses for which they require new lines of treatment. Currently, the key drug classes for treatment are immunomodulatory drugs, proteasome inhibitors, and monoclonal antibodies. The goal of this review is to summarize the understanding of the problem of resistance to these drugs, which is ultimately responsible for patient fatality. In addition, we will focus on how new agents that are promising in clinical trials overcome resistance. Abstract Multiple myeloma is a malignant plasma cell neoplasm that remains incurable and is ultimately fatal when patients acquire multi-drug resistance. Thus, advancing our understanding of the mechanisms behind drug resistance in multi-relapsed patients is critical for developing better strategies to extend their lifespan. Here, we review the understanding of resistance to the three key drug classes approved for multiple myeloma treatment: immunomodulatory drugs, proteasome inhibitors, and monoclonal antibodies. We consider how the complex, heterogenous biology of multiple myeloma may influence the acquisition of drug resistance and reflect on the gaps in knowledge where additional research is needed to improve our treatment approaches. Fortunately, many agents are currently being evaluated preclinically and in clinical trials that have the potential to overcome or delay drug resistance, including next-generation immunomodulatory drugs and proteasome inhibitors, novel small molecule drugs, chimeric antigen receptor T cells, antibody-drug conjugates, and bispecific antibodies. For each class, we discuss the potential of these strategies to overcome resistance through modifying agents within each class or new classes without cross-resistance to currently available drugs.
Collapse
|
23
|
Berdeja JG, Gregory TK, Faber EA, Hart LL, Mace JR, Arrowsmith ER, Flinn IW, Matous JV. A phase I/II study of the combination of panobinostat and carfilzomib in patients with relapsed or relapsed/refractory multiple myeloma: Final analysis of second dose-expansion cohort. Am J Hematol 2021; 96:428-435. [PMID: 33421178 PMCID: PMC7986798 DOI: 10.1002/ajh.26088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/16/2020] [Accepted: 01/02/2021] [Indexed: 11/09/2022]
Abstract
The maximum tolerated dose of the panobinostat and carfilzomib combination in patients with relapsed/refractory multiple myeloma (RRMM) was not reached in our previous dose-escalation study. We report additional dose levels in the phase I/II, single-arm, multicenter, standard 3 + 3 dose-escalation expansion-cohort study (NCT01496118). Patients with RRMM were treated with panobinostat 30 mg, carfilzomib 20/56 mg/m2 (N = 3), or panobinostat 20 mg, carfilzomib 20/56 mg/m2 (N = 33). Treatment cycles lasted 28 days; panobinostat: days 1, 3, 5, 15, 17, 19; carfilzomib: days 1, 2, 8, 9, 15, 16. For dose level 6 (DL 6), median age was 63 years (range, 49-91 years), 60.6% were male, 42.4% were high risk. Patients received a median of two prior therapies (range 1-7); proteasome inhibitors (PI; 100%), immunomodulatory imide drugs (IMiD; 78.8%), and stem cell transplant (36.4%); 48.5%, 51.1%, and 24.2% were refractory to prior PI or prior IMiD treatment or both, respectively. Patients completed a median of seven (range 1-40) treatment cycles. Overall response rate (primary endpoint) of evaluable patients in the expansion cohort (N = 32): 84.4%; clinical benefit rate: 90.6%. With a median follow-up of 26.1 months (range, 0-72.5 months), median (95% CI) progression-free survival, time-to-progression and overall survival of patients was 10.3 (6.1, 13.9), 11.7 (5.6, 14.5), and 44.6 (20.8, N/A) months, respectively. Common adverse events (AEs) included thrombocytopenia (78.8%), nausea (63.6%), fatigue (63.6%), diarrhea (51.5%), and vomiting (51.5%). Seven patients had serious treatment-related AEs. There was one treatment-related death. In conclusion, panobinostat plus carfilzomib is an effective steroid-sparing regimen for RRMM.
Collapse
Affiliation(s)
- Jesus G. Berdeja
- Sarah Cannon Research Institute Nashville Tennessee
- Tennessee Oncology PLLC Nashville Tennessee
| | - Tara K. Gregory
- Sarah Cannon Research Institute Nashville Tennessee
- Colorado Blood Cancer Institute Denver Colorado
| | - Edward A. Faber
- Sarah Cannon Research Institute Nashville Tennessee
- Oncology Hematology Care Cincinnati Ohio
| | - Lowell L. Hart
- Sarah Cannon Research Institute Nashville Tennessee
- Florida Cancer Specialists Fort Myers Florida
| | - Joseph R. Mace
- Sarah Cannon Research Institute Nashville Tennessee
- Florida Cancer Specialists St. Petersburg Florida
| | - Edward R. Arrowsmith
- Sarah Cannon Research Institute Nashville Tennessee
- Tennessee Oncology PLLC Chattanooga Tennessee
| | - Ian W. Flinn
- Sarah Cannon Research Institute Nashville Tennessee
- Tennessee Oncology PLLC Nashville Tennessee
| | - Jeffrey V. Matous
- Sarah Cannon Research Institute Nashville Tennessee
- Colorado Blood Cancer Institute Denver Colorado
| |
Collapse
|
24
|
Jiang X, Jiang L, Cheng J, Chen F, Ni J, Yin C, Wang Q, Wang Z, Fang D, Yi Z, Yu G, Zhong Q, Carter BZ, Meng F. Inhibition of EZH2 by chidamide exerts antileukemia activity and increases chemosensitivity through Smo/Gli-1 pathway in acute myeloid leukemia. J Transl Med 2021; 19:117. [PMID: 33743723 PMCID: PMC7981995 DOI: 10.1186/s12967-021-02789-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Background Epigenetic dysregulation plays important roles in leukemogenesis and the progression of acute myeloid leukemia (AML). Histone acetyltransferases (HATs) and histone deacetylases (HDACs) reciprocally regulate the acetylation and deacetylation of nuclear histones. Aberrant activation of HDACs results in uncontrolled proliferation and blockade of differentiation, and HDAC inhibition has been investigated as epigenetic therapeutic strategy against AML. Methods Cell growth was assessed with CCK-8 assay, and apoptosis was evaluated by flow cytometry in AML cell lines and CD45 + and CD34 + CD38- cells from patient samples after staining with Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI). EZH2 was silenced with short hairpin RNA (shRNA) or overexpressed by lentiviral transfection. Changes in signaling pathways were detected by western blotting. The effect of chidamide or EZH2-specific shRNA (shEZH2) in combination with adriamycin was studied in vivo in leukemia-bearing nude mouse models. Results In this study, we investigated the antileukemia effects of HDAC inhibitor chidamide and its combinatorial activity with cytotoxic agent adriamycin in AML cells. We demonstrated that chidamide suppressed the levels of EZH2, H3K27me3 and DNMT3A, exerted potential antileukemia activity and increased the sensitivity to adriamycin through disruption of Smo/Gli-1 pathway and downstream signaling target p-AKT in AML cells and stem/progenitor cells. In addition to decreasing the levels of H3K27me3 and DNMT3A, inhibition of EZH2 either pharmacologically by chidamide or genetically by shEZH2 suppressed the activity of Smo/Gli-1 pathway and increased the antileukemia activity of adriamycin against AML in vitro and in vivo. Conclusions Inhibition of EZH2 by chidamide has antileukemia activity and increases the chemosensitivity to adriamycin through Smo/Gli-1 pathway in AML cells (Fig. 5). These findings support the rational combination of HDAC inhibitors and chemotherapy for the treatment of AML. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02789-3.
Collapse
Affiliation(s)
- Xuejie Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Ling Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jiaying Cheng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Fang Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jinle Ni
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Changxin Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhixiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dan Fang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhengshan Yi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Guopan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qingxiu Zhong
- Department of Hematology, Kanghua Hospital, Dongguan, 523080, Guangdong, China
| | - Bing Z Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fanyi Meng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Hematology, Kanghua Hospital, Dongguan, 523080, Guangdong, China.
| |
Collapse
|
25
|
Olaoye OO, Watson PR, Nawar N, Geletu M, Sedighi A, Bukhari S, Raouf YS, Manaswiyoungkul P, Erdogan F, Abdeldayem A, Cabral AD, Hassan MM, Toutah K, Shouksmith AE, Gawel JM, Israelian J, Radu TB, Kachhiyapatel N, de Araujo ED, Christianson DW, Gunning PT. Unique Molecular Interaction with the Histone Deacetylase 6 Catalytic Tunnel: Crystallographic and Biological Characterization of a Model Chemotype. J Med Chem 2021; 64:2691-2704. [PMID: 33576627 PMCID: PMC8063965 DOI: 10.1021/acs.jmedchem.0c01922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Histone deacetylase 6 (HDAC6) is involved in multiple regulatory processes, ranging from cellular stress to intracellular transport. Inhibition of aberrant HDAC6 activity in several cancers and neurological diseases has been shown to be efficacious in both preclinical and clinical studies. While selective HDAC6 targeting has been pursued as an alternative to pan-HDAC drugs, identifying truly selective molecular templates has not been trivial. Herein, we report a structure-activity relationship study yielding TO-317, which potently binds HDAC6 catalytic domain 2 (Ki = 0.7 nM) and inhibits the enzyme function (IC50 = 2 nM). TO-317 exhibits 158-fold selectivity for HDAC6 over other HDAC isozymes by binding the catalytic Zn2+ and, uniquely, making a never seen before direct hydrogen bond with the Zn2+ coordinating residue, His614. This novel structural motif targeting the second-sphere His614 interaction, observed in a 1.84 Å resolution crystal structure with drHDAC6 from zebrafish, can provide new pharmacophores for identifying enthalpically driven, high-affinity, HDAC6-selective inhibitors.
Collapse
Affiliation(s)
- Olasunkanmi O. Olaoye
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Paris R. Watson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, United States
| | - Nabanita Nawar
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mulu Geletu
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada
| | - Abootaleb Sedighi
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada
| | - Shazreh Bukhari
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Yasir S. Raouf
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Pimyupa Manaswiyoungkul
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Fettah Erdogan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Ayah Abdeldayem
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Aaron D. Cabral
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Muhammad Murtaza Hassan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Krimo Toutah
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada
| | - Andrew E. Shouksmith
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada
| | - Justyna M. Gawel
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada
| | - Johan Israelian
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Tudor B. Radu
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Niyati Kachhiyapatel
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada
| | - Elvin D. de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, United States
| | - Patrick T. Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd N., Mississauga, Ontario L5L 1C6, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
26
|
Paradzik T, Bandini C, Mereu E, Labrador M, Taiana E, Amodio N, Neri A, Piva R. The Landscape of Signaling Pathways and Proteasome Inhibitors Combinations in Multiple Myeloma. Cancers (Basel) 2021; 13:1235. [PMID: 33799793 PMCID: PMC8000754 DOI: 10.3390/cancers13061235] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma is a malignancy of terminally differentiated plasma cells, characterized by an extreme genetic heterogeneity that poses great challenges for its successful treatment. Due to antibody overproduction, MM cells depend on the precise regulation of the protein degradation systems. Despite the success of PIs in MM treatment, resistance and adverse toxic effects such as peripheral neuropathy and cardiotoxicity could arise. To this end, the use of rational combinatorial treatments might allow lowering the dose of inhibitors and therefore, minimize their side-effects. Even though the suppression of different cellular pathways in combination with proteasome inhibitors have shown remarkable anti-myeloma activities in preclinical models, many of these promising combinations often failed in clinical trials. Substantial progress has been made by the simultaneous targeting of proteasome and different aspects of MM-associated immune dysfunctions. Moreover, targeting deranged metabolic hubs could represent a new avenue to identify effective therapeutic combinations with PIs. Finally, epigenetic drugs targeting either DNA methylation, histone modifiers/readers, or chromatin remodelers are showing pleiotropic anti-myeloma effects alone and in combination with PIs. We envisage that the positive outcome of patients will probably depend on the availability of more effective drug combinations and treatment of early MM stages. Therefore, the identification of sensitive targets and aberrant signaling pathways is instrumental for the development of new personalized therapies for MM patients.
Collapse
Affiliation(s)
- Tina Paradzik
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
| | - Cecilia Bandini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
| | - Elisabetta Mereu
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
| | - Maria Labrador
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
| | - Elisa Taiana
- Department of Oncology and Hemato-oncology, University of Milano, 20122 Milano, Italy; (E.T.); (A.N.)
- Hematology Unit, Fondazione Cà Granda IRCCS, Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milano, 20122 Milano, Italy; (E.T.); (A.N.)
- Hematology Unit, Fondazione Cà Granda IRCCS, Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Roberto Piva
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
- Città Della Salute e della Scienza Hospital, 10126 Torino, Italy
| |
Collapse
|
27
|
Brown S, Pawlyn C, Tillotson AL, Sherratt D, Flanagan L, Low E, Morgan GJ, Williams C, Kaiser M, Davies FE, Jenner MW. Bortezomib, Vorinostat, and Dexamethasone Combination Therapy in Relapsed Myeloma: Results of the Phase 2 MUK four Trial. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:154-161.e3. [DOI: 10.1016/j.clml.2020.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
|
28
|
Overcome the tumor immunotherapy resistance by combination of the HDAC6 inhibitors with antitumor immunomodulatory agents. Bioorg Chem 2021; 109:104754. [PMID: 33677416 DOI: 10.1016/j.bioorg.2021.104754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 11/21/2022]
Abstract
Tumor immunotherapy is currently subject of intense scientific and clinical developments. In previous decade, therapists used natural immune system from the human body to treat several diseases. Although tumor immune disease is a big challenge, combinatorial therapeutic strategy has been succeeded to show the clinical significance. In this context, we discuss the HDAC6 and tumor immune diseases relationship. Also, we summarized the current state of knowledge that based on the combination treatments of the HDAC6 inhibitors (HDAC6is) with antitumor immunomodulatory agents. We observed that, the combination therapies slow down the tumor immune diseases by blocking the aggresome and proteasome pathway. The combination therapy was able to reduce M2 macrophage and increasing PD-L1 blockade sensitivity. Most importantly, multiple combinations of HDAC6is with other agents may consider as potential strategies to treat tumor immune diseases, by reducing the side effects and improve efficacy for the future clinical development.
Collapse
|
29
|
Laubach JP, Tuchman SA, Rosenblatt JM, Mitsiades CS, Colson K, Masone K, Warren D, Redd RA, Grayson D, Richardson PG. Phase 1 open-label study of panobinostat, lenalidomide, bortezomib + dexamethasone in relapsed and relapsed/refractory multiple myeloma. Blood Cancer J 2021; 11:20. [PMID: 33563894 PMCID: PMC7873303 DOI: 10.1038/s41408-021-00407-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/08/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
Additional therapeutic options are needed for relapsed and refractory multiple myeloma (RRMM). We present data from a phase 1b, open-label, dose-escalation study (NCT01965353) of 20 patients with RRMM (median age: 63 years [range: 50–77]) and a median of four prior regimens (range: 2–14); 85% had refractory disease (lenalidomide [80%]; bortezomib [75%]; lenalidomide and bortezomib [50%]). Patients received a median of six cycles (range: 1–74) of panobinostat (10 or 15 mg), lenalidomide 15 mg, bortezomib 1 mg/m2, and dexamethasone 20 mg (pano-RVd). Median follow-up was ~14 months. Six dose-limiting toxicities were reported (mostly hematological); maximum tolerated dose of panobinostat (primary endpoint) was 10 mg. Most common adverse events (AEs) were diarrhea (60%) and peripheral neuropathy (60%); all grade 1/2. Grade 3/4 AEs occurred in 80% of patients and included decreased neutrophil (45%), platelet (25%) and white blood cell (25%) counts, anemia (25%) and hypophosphatemia (25%). No treatment-related discontinuations or mortality occurred. In evaluable patients (n = 18), overall response rate was 44%, and clinical benefit rate was 61%. Median duration of response was 9.2 months; progression-free survival was 7.4 months; overall survival was not reached. Pano-RVd proved generally well-tolerated and demonstrated potential to overcome lenalidomide and/or bortezomib resistance.
Collapse
Affiliation(s)
- Jacob P Laubach
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | | | | | | | - Kathleen Colson
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kelly Masone
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Diane Warren
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Robert A Redd
- Dana-Farber Cancer Institute, Department of Data Sciences, Boston, MA, USA
| | | | - Paul G Richardson
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
30
|
Suzuki K, Sunami K, Matsumoto M, Maki A, Shimada F, Suzuki K, Shimizu K. Phase II, Multicenter, Single-Arm, Open-Label Study to Evaluate the Efficacy and Safety of Panobinostat in Combination with Bortezomib and Dexamethasone in Japanese Patients with Relapsed or Relapsed-and-Refractory Multiple Myeloma. Acta Haematol 2020; 144:264-274. [PMID: 33279887 DOI: 10.1159/000508529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/02/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Panobinostat, bortezomib, and dexamethasone combination therapy demonstrated progression-free survival (PFS) benefit over bortezomib and dexamethasone alone in the PANORAMA-1 study in relapsed/refractory multiple myeloma (MM). Here, we present data from a phase II study (NCT02290431) of this combination in Japanese patients with relapsed or relapsed-and-refractory MM. METHODS Patients received 3-week cycles of 20-mg oral panobinostat (weeks 1 and 2), 1.3-mg/m2 subcutaneous bortezomib (days 1, 4, 8, and 11), and 20-mg oral dexamethasone (day of and the day following bortezomib administration) for a total of 8 cycles (24 weeks; treatment phase 1). Patients with treatment benefit had an option to enter the extension phase to receive 6-week (42-day) cycles of panobinostat (weeks 1, 2, 4, and 5) plus bortezomib (days 1, 8, 22, and 29) and dexamethasone (day of and the day following bortezomib treatment) for 24 weeks. The primary objective was complete response (CR) + near CR (nCR) rate after treatment phase 1 as per the modified European Society for Blood and Marrow Transplantation criteria. RESULTS Of the 31 patients, 4 (12.9%) completed the treatment and 27 (87.1%) discontinued; 17 (54.8%) entered the extension phase. In total, 24 patients (77.4%) entered the survival follow-up phase and followed until study closure when the last patient was treated for 1 year after treatment phase 1. The CR + nCR rate was 48.4% (90% CI: 33.6-63.2). The overall response rate (CR + nCR + partial response) was 80.6%. The median PFS, duration of response, time to response, and time to progression were 15.3, 22.7, 1.4, and 15.3 months, respectively. All patients experienced adverse events (AEs), with diarrhea (80.6%), decreased appetite (58.1%), and thrombocytopenia (54.8%) being the most frequent, regardless of relationship to the study treatment. Thrombocytopenia (48.4%), fatigue (25.8%), diarrhea (22.6%), neutrophil count decrease (22.6%), platelet count decrease (22.6%), and lymphocyte count decrease (22.6%) were the most frequent grade 3/4 AEs. CONCLUSION The study met the primary objective with 48.4% CR + nCR rate. The AEs associated with the combination treatment were safely managed using the existing AE management guidelines, including dose interruption/modification and/or supportive medical intervention. This treatment regimen is an effective option with a favorable benefit/risk profile for Japanese patients with relapsed/refractory MM.
Collapse
Affiliation(s)
- Kenshi Suzuki
- Department of Hematology, Japanese Red Cross Medical Center, Tokyo, Japan,
| | - Kazutaka Sunami
- Department of Hematology, National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Morio Matsumoto
- Department of Hematology, National Hospital Organization Shibukawa Medical Center, Shibukawa, Japan
| | | | | | | | - Kazuyuki Shimizu
- Department of Hematology/Oncology, Higashi Nagoya National Hospital, Nagoya, Japan
| |
Collapse
|
31
|
ROS Overproduction Sensitises Myeloma Cells to Bortezomib-Induced Apoptosis and Alleviates Tumour Microenvironment-Mediated Cell Resistance. Cells 2020; 9:cells9112357. [PMID: 33114738 PMCID: PMC7693395 DOI: 10.3390/cells9112357] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell neoplasm that remains incurable due to innate or acquired resistance. Although MM cells produce high intracellular levels of reactive oxygen species (ROS), we hypothesised that they could remain sensitive to ROS unbalance. We tested if the inhibition of ROS, on one hand, or the overproduction of ROS, on the other, could (re)sensitise cells to bortezomib (BTZ). Two drugs were used in a panel of MM cell lines with various responses to BTZ: VAS3947 (VAS), an inhibitor of NADPH oxidase and auranofin (AUR), an inhibitor of thioredoxin reductase (TXNRD1), an antioxidant enzyme overexpressed in MM cells. We used several culture models: in suspension, on a fibronectin layer, in coculture with HS-5 mesenchymal cells, and/or in 3-D culture (or spheroids) to study the response of MM primary cells and cell lines. Several MM cell lines were sensitive to VAS but the combination with BTZ showed antagonistic or additive effects at best. By contrast, in all culture systems studied, the combined AUR/BTZ treatment showed synergistic effects on cell lines, including those less sensitive to BTZ and primary cells. MM cell death is due to the activation of apoptosis and autophagy. Modulating the redox balance of MM cells could be an effective therapy for refractory or relapse post-BTZ patients.
Collapse
|
32
|
Epigenetic Aberrations in Multiple Myeloma. Cancers (Basel) 2020; 12:cancers12102996. [PMID: 33076518 PMCID: PMC7602661 DOI: 10.3390/cancers12102996] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Multiple Myeloma (MM) is a blood cancer characterized by an uncontrolled growth of cells named plasma cells, within the bone marrow. Patients with MM may present with anemia, bone lesions and kidney impairment. Several studies have been performed in order to provide an explanation to how this tumor may develop. Among them, the so called “epigenetic modifications” certainly represent important players that have been shown to support MM development and disease progression. The present article aims to summarize the current knowledge in the specific are of “epigenetics” in MM. Abstract Multiple myeloma (MM) is a plasma cell dyscrasia characterized by proliferation of clonal plasma cells within the bone marrow. Several advances in defining key processes responsible for MM pathogenesis and disease progression have been made; and dysregulation of epigenetics, including DNA methylation and histone modification, has emerged as a crucial regulator of MM pathogenesis. In the present review article, we will focus on the role of epigenetic modifications within the specific context of MM.
Collapse
|
33
|
Design and Applications of Bifunctional Small Molecules in Biology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140534. [PMID: 32871274 DOI: 10.1016/j.bbapap.2020.140534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
|
34
|
Kaufman JL, Mina R, Shah JJ, Laubach JP, Nooka AK, Lewis C, Gleason C, Sharp C, Harvey RD, Heffner LT, Richardson P, Lonial S, Orlowski RZ. Phase 1 Trial Evaluating Vorinostat Plus Bortezomib, Lenalidomide, and Dexamethasone in Patients With Newly Diagnosed Multiple Myeloma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:797-803. [PMID: 32819881 DOI: 10.1016/j.clml.2020.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Bortezomib plus lenalidomide and dexamethasone (VRD) is a standard induction therapy for newly diagnosed multiple myeloma (NDMM) patients. Given preclinical and clinical data suggesting the synergistic activity of the histone deacetylase inhibitor vorinostat with both bortezomib and lenalidomide for the treatment of multiple myeloma, we hypothesized that adding vorinostat to VRD (R2V2) would increase the rate and the quality of responses to induction treatment. Here we report the results of a phase 1 trial (NCT01038388) evaluating R2V2 as up-front treatment for NDMM patients. PATIENTS AND METHODS R2V2 was tested as induction therapy in a dose-escalation phase 1 study in 30 NDMM patients deemed eligible for autologous stem-cell transplantation. Treatment consisted of 4 induction cycles with R2V2, followed by either autologous stem-cell transplantation or 4 additional R2V2 cycles and lenalidomide maintenance therapy. RESULTS The maximum tolerated dose of vorinostat was 200 mg daily. The most common adverse events were gastrointestinal (87%), fatigue and peripheral neuropathy (60%), and thrombocytopenia (33%). R2V2 induced an objective response in 96% of patients, with 48% obtaining at least a complete remission. Median progression-free survival was 52 months, with 77% of patients alive at 5 years. CONCLUSION R2V2 as induction treatment for NDMM patients resulted in remarkable response rates at the cost of increased toxicity.
Collapse
Affiliation(s)
- Jonathan L Kaufman
- Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Roberto Mina
- Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA.
| | | | - Jacob P Laubach
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA
| | - Ajay K Nooka
- Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Colleen Lewis
- Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Charise Gleason
- Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Cathy Sharp
- Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - R Donald Harvey
- Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Leonard T Heffner
- Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Paul Richardson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA
| | - Sagar Lonial
- Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Robert Z Orlowski
- Department of Lymphoma/Myeloma, The University of Texas, MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
35
|
Kulka LAM, Fangmann PV, Panfilova D, Olzscha H. Impact of HDAC Inhibitors on Protein Quality Control Systems: Consequences for Precision Medicine in Malignant Disease. Front Cell Dev Biol 2020; 8:425. [PMID: 32582706 PMCID: PMC7291789 DOI: 10.3389/fcell.2020.00425] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
Lysine acetylation is one of the major posttranslational modifications (PTM) in human cells and thus needs to be tightly regulated by the writers of this process, the histone acetyl transferases (HAT), and the erasers, the histone deacetylases (HDAC). Acetylation plays a crucial role in cell signaling, cell cycle control and in epigenetic regulation of gene expression. Bromodomain (BRD)-containing proteins are readers of the acetylation mark, enabling them to transduce the modification signal. HDAC inhibitors (HDACi) have been proven to be efficient in hematologic malignancies with four of them being approved by the FDA. However, the mechanisms by which HDACi exert their cytotoxicity are only partly resolved. It is likely that HDACi alter the acetylation pattern of cytoplasmic proteins, contributing to their anti-cancer potential. Recently, it has been demonstrated that various protein quality control (PQC) systems are involved in recognizing the altered acetylation pattern upon HDACi treatment. In particular, molecular chaperones, the ubiquitin proteasome system (UPS) and autophagy are able to sense the structurally changed proteins, providing additional targets. Recent clinical studies of novel HDACi have proven that proteins of the UPS may serve as biomarkers for stratifying patient groups under HDACi regimes. In addition, members of the PQC systems have been shown to modify the epigenetic readout of HDACi treated cells and alter proteostasis in the nucleus, thus contributing to changing gene expression profiles. Bromodomain (BRD)-containing proteins seem to play a potent role in transducing the signaling process initiating apoptosis, and many clinical trials are under way to test BRD inhibitors. Finally, it has been demonstrated that HDACi treatment leads to protein misfolding and aggregation, which may explain the effect of panobinostat, the latest FDA approved HDACi, in combination with the proteasome inhibitor bortezomib in multiple myeloma. Therefore, proteins of these PQC systems provide valuable targets for precision medicine in cancer. In this review, we give an overview of the impact of HDACi treatment on PQC systems and their implications for malignant disease. We exemplify the development of novel HDACi and how affected proteins belonging to PQC can be used to determine molecular signatures and utilized in precision medicine.
Collapse
Affiliation(s)
- Linda Anna Michelle Kulka
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Pia-Victoria Fangmann
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Diana Panfilova
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Heidi Olzscha
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
36
|
Phase I studies of vorinostat with ixazomib or pazopanib imply a role of antiangiogenesis-based therapy for TP53 mutant malignancies. Sci Rep 2020; 10:3080. [PMID: 32080210 PMCID: PMC7033174 DOI: 10.1038/s41598-020-58366-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
We performed two phase I trials of the histone deacetylase inhibitor vorinostat combined with either the vascular endothelial growth factor inhibitor pazopanib (NCT01339871) or the proteasome inhibitor ixazomib (NCT02042989) in patients with metastatic TP53 mutant solid tumors. Both trials followed a 3 + 3 dose-escalation design allowing for a dose expansion cohort of up to 14 additional patients with a specific tumor type. Patients had to have a confirmed TP53 mutation to be enrolled in NCT02042989. Among patients enrolled in NCT01339871, TP53 mutation status was determined for those for whom tumor specimens were available. The results of NCT01339871 were reported previously. Common treatment-related adverse events in NCT02042989 included anemia, thrombocytopenia, fatigue, nausea, vomiting, and diarrhea. Compared with patients with metastatic TP53 hotspot mutant solid tumors who were treated with ixazomib and vorinostat (n = 59), those who were treated with pazopanib and vorinostat (n = 11) had a significantly higher rate of clinical benefit, defined as stable disease lasting ≥6 months or an objective response (3.4% vs. 45%; p < 0.001), a significantly longer median progression-free survival duration (1.7 months [95% confidence interval (CI), 1.1–2.3] vs. 3.5 months [95% CI, 1.7–5.2]; p = 0.002), and a longer median overall survival duration (7.3 months [95% CI, 4.8–9.8] vs. 12.7 months [95% CI, 7.1–18.3]; p = 0.24). Our two phase I trials provide preliminary evidence supporting the use of antiangiogenisis-based therapy in patients with metastatic TP53 mutant solid tumors, especially in those with metastatic sarcoma or metastatic colorectal cancer.
Collapse
|
37
|
Eleutherakis-Papaiakovou E, Kanellias N, Kastritis E, Gavriatopoulou M, Terpos E, Dimopoulos MA. Efficacy of Panobinostat for the Treatment of Multiple Myeloma. JOURNAL OF ONCOLOGY 2020; 2020:7131802. [PMID: 32411240 PMCID: PMC7201625 DOI: 10.1155/2020/7131802] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023]
Abstract
Panobinostat represents a potent oral nonselective pan-histone deacetylase inhibitor (HDAC) with activity in myeloma patients. It has been approved by the FDA and EMA in combination with bortezomib and dexamethasone for the treatment of multiple myeloma, in patients who have received at least two prior regimens, including bortezomib and an immunomodulatory agent. In order to further explore its clinical potential, it is evaluated in different combinations in relapsed/refractory and newly diagnosed multiple myeloma. This review focuses on available data about panobinostat's pharmacology and its role in clinical practice. This review will reveal panobinostat's efficacy as antimyeloma treatment, describing drug evolution from preclinical experimental administration to administration in phase III trials, which established its role in current clinical practice. Based on the latest data, we will present its mechanism of action, its efficacy, and most important issues regarding its toxicity profile. We will further try to shed light on its role in current and future therapeutic landscape of myeloma patients. Panobinostat retains its role in therapy of multiple myeloma because of its manageable toxicity profile and its efficacy, mainly in heavily pretreated multiple myeloma patients. These characteristics make it valuable also for novel regimens in combination with second-generation proteasome inhibitors, IMiDs, and monoclonal antibodies. Results of ongoing trials are expected to shed light on drug introduction in different therapeutic combinations or even at an earlier level of disease course.
Collapse
Affiliation(s)
- Evangelos Eleutherakis-Papaiakovou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Nikolaos Kanellias
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Meletios Athanasios Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| |
Collapse
|
38
|
Gonzalez-Santamarta M, Quinet G, Reyes-Garau D, Sola B, Roué G, Rodriguez MS. Resistance to the Proteasome Inhibitors: Lessons from Multiple Myeloma and Mantle Cell Lymphoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:153-174. [PMID: 32274756 DOI: 10.1007/978-3-030-38266-7_6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Since its introduction in the clinics in early 2000s, the proteasome inhibitor bortezomib (BTZ) significantly improved the prognosis of patients with multiple myeloma (MM) and mantle cell lymphoma (MCL), two of the most challenging B cell malignancies in western countries. However, relapses following BTZ therapy are frequent, while primary resistance to this agent remains a major limitation for further development of its therapeutic potential. In the present chapter, we recapitulate the molecular mechanisms associated with intrinsic and acquired resistance to BTZ learning from MM and MCL experience, including mutations of crucial genes and activation of prosurvival signalling pathways inherent to malignant B cells. We also outline the preclinical and clinical evaluations of some potential druggable targets associated to BTZ resistance, considering the most meaningful findings of the past 10 years. Although our understanding of BTZ resistance is far from being completed, recent discoveries are contributing to develop new approaches to treat relapsed MM and MCL patients.
Collapse
Affiliation(s)
| | | | - Diana Reyes-Garau
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona (Barcelona), Spain
| | - Brigitte Sola
- Normandie University, INSERM UMR1245, UNICAEN, Caen, France
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona (Barcelona), Spain
| | | |
Collapse
|
39
|
Stubba D, Bensinger D, Steinbacher J, Proskurjakov L, Salcedo Gómez Á, Schmidt U, Roth S, Schmitz K, Schmidt B. Cell-Based Optimization of Covalent Reversible Ketoamide Inhibitors Bridging the Unprimed to the Primed Site of the Proteasome β5 Subunit. ChemMedChem 2019; 14:2005-2022. [PMID: 31675179 PMCID: PMC6916368 DOI: 10.1002/cmdc.201900472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/01/2019] [Indexed: 12/11/2022]
Abstract
The ubiquitin-proteasome system (UPS) is an established therapeutic target for approved drugs to treat selected hematologic malignancies. While drug discovery targeting the UPS focuses on irreversibly binding epoxyketones and slowly-reversibly binding boronates, optimization of novel covalent-reversibly binding warheads remains largely unattended. We previously reported α-ketoamides to be a promising reversible lead motif, yet the cytotoxic activity required further optimization. This work focuses on the lead optimization of phenoxy-substituted α-ketoamides combining the structure-activity relationships from the primed and the non-primed site of the proteasome β5 subunit. Our optimization strategy is accompanied by molecular modeling, suggesting occupation of P1' by a 3-phenoxy group to increase β5 inhibition and cytotoxic activity in leukemia cell lines. Key compounds were further profiled for time-dependent inhibition of cellular substrate conversion. Furthermore, the α-ketoamide lead structure 27 does not affect escape response behavior in Danio rerio embryos, in contrast to bortezomib, which suggests increased target specificity.
Collapse
Affiliation(s)
- Daniel Stubba
- Clemens-Schoepf-Institute for Organic Chemistry & BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| | - Dennis Bensinger
- Clemens-Schoepf-Institute for Organic Chemistry & BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| | - Janika Steinbacher
- Clemens-Schoepf-Institute for Organic Chemistry & BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| | - Lilia Proskurjakov
- Clemens-Schoepf-Institute for Organic Chemistry & BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| | - Álvaro Salcedo Gómez
- Clemens-Schoepf-Institute for Organic Chemistry & BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| | - Uwe Schmidt
- Visual Inference Lab, Department of Computer ScienceTechnische Universität DarmstadtHuchschulstr. 1064289DarmstadtGermany
| | - Stefan Roth
- Visual Inference Lab, Department of Computer ScienceTechnische Universität DarmstadtHuchschulstr. 1064289DarmstadtGermany
| | - Katja Schmitz
- Clemens-Schoepf-Institute for Organic Chemistry & BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| | - Boris Schmidt
- Clemens-Schoepf-Institute for Organic Chemistry & BiochemistryTechnische Universität DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| |
Collapse
|
40
|
Sarmento-Ribeiro AB, Scorilas A, Gonçalves AC, Efferth T, Trougakos IP. The emergence of drug resistance to targeted cancer therapies: Clinical evidence. Drug Resist Updat 2019; 47:100646. [PMID: 31733611 DOI: 10.1016/j.drup.2019.100646] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022]
Abstract
For many decades classical anti-tumor therapies included chemotherapy, radiation and surgery; however, in the last two decades, following the identification of the genomic drivers and main hallmarks of cancer, the introduction of therapies that target specific tumor-promoting oncogenic or non-oncogenic pathways, has revolutionized cancer therapeutics. Despite the significant progress in cancer therapy, clinical oncologists are often facing the primary impediment of anticancer drug resistance, as many cancer patients display either intrinsic chemoresistance from the very beginning of the therapy or after initial responses and upon repeated drug treatment cycles, acquired drug resistance develops and thus relapse emerges, resulting in increased mortality. Our attempts to understand the molecular basis underlying these drug resistance phenotypes in pre-clinical models and patient specimens revealed the extreme plasticity and adaptive pathways employed by tumor cells, being under sustained stress and extensive genomic/proteomic instability due to the applied therapeutic regimens. Subsequent efforts have yielded more effective inhibitors and combinatorial approaches (e.g. the use of specific pharmacologic inhibitors with immunotherapy) that exhibit synergistic effects against tumor cells, hence enhancing therapeutic indices. Furthermore, new advanced methodologies that allow for the early detection of genetic/epigenetic alterations that lead to drug chemoresistance and prospective validation of biomarkers which identify patients that will benefit from certain drug classes, have started to improve the clinical outcome. This review discusses emerging principles of drug resistance to cancer therapies targeting a wide array of oncogenic kinases, along with hedgehog pathway and the proteasome and apoptotic inducers, as well as epigenetic and metabolic modulators. We further discuss mechanisms of resistance to monoclonal antibodies, immunomodulators and immune checkpoint inhibitors, potential biomarkers of drug response/drug resistance, along with possible new therapeutic avenues for the clinicians to combat devastating drug resistant malignancies. It is foreseen that these topics will be major areas of focused multidisciplinary translational research in the years to come.
Collapse
Affiliation(s)
- Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology and Coimbra Institute for Clinical and Biomedical Research - Group of Environment Genetics and Oncobiology (iCBR/CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Hematology Department, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology and Coimbra Institute for Clinical and Biomedical Research - Group of Environment Genetics and Oncobiology (iCBR/CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
41
|
Hristov AC, Tejasvi T, Wilcox RA. Mycosis fungoides and Sézary syndrome: 2019 update on diagnosis, risk-stratification, and management. Am J Hematol 2019; 94:1027-1041. [PMID: 31313347 DOI: 10.1002/ajh.25577] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 01/04/2023]
Abstract
DISEASE OVERVIEW Cutaneous T-cell lymphomas (CTCL) are a heterogenous group of T-cell neoplasms involving the skin, the majority of which may be classified as Mycosis fungoides (MF) or Sézary syndrome (SS). DIAGNOSIS The diagnosis of MF or SS requires the integration of clinical and histopathologic data. RISK-ADAPTED THERAPY TNMB (tumor, node, metastasis, blood) staging remains the most important prognostic factor in MF/SS and forms the basis for a "risk-adapted," multi-disciplinary approach to treatment. For patients with disease limited to the skin, skin-directed therapies are preferred, as both disease-specific and overall survival for these patients is favorable. In contrast, patients with advanced-stage disease with significant nodal, visceral or blood involvement are generally approached with systemic therapies. These include biologic-response modifiers, histone deacetylase (HDAC) inhibitors, or antibody-based strategies, in an escalating fashion. In highly-selected patients, allogeneic stem-cell transplantation may be considered, as this may be curative in some patients.
Collapse
Affiliation(s)
- Alexandra C. Hristov
- Departments of Pathology and DermatologyUniversity of Michigan Ann Arbor Michigan
| | | | - Ryan A. Wilcox
- Division of Hematology/Oncology, Department of Internal MedicineUniversity of Michigan Rogel Cancer Center Ann Arbor Michigan
| |
Collapse
|
42
|
Beider K, Bitner H, Voevoda-Dimenshtein V, Rosenberg E, Sirovsky Y, Magen H, Canaani J, Ostrovsky O, Shilo N, Shimoni A, Abraham M, Weiss L, Milyavsky M, Peled A, Nagler A. The mTOR inhibitor everolimus overcomes CXCR4-mediated resistance to histone deacetylase inhibitor panobinostat through inhibition of p21 and mitotic regulators. Biochem Pharmacol 2019; 168:412-428. [PMID: 31325448 DOI: 10.1016/j.bcp.2019.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022]
Abstract
Although having promising anti-myeloma properties, the pan-histone deacetylase inhibitor (HDACi) panobinostat lacks therapeutic activity as a single agent. The aim of the current study was to elucidate the mechanisms underlying multiple myeloma (MM) resistance to panobinostat monotherapy and to define strategies to overcome it. Sensitivity of MM cell lines and primary CD138+ cells from MM patients to panobinostat correlated with reduced expression of the chemokine receptor CXCR4, whereas overexpression of CXCR4 in MM cell lines increased their resistance to panobinostat. Decreased sensitivity to HDACi was associated with reversible G0/G1 cell growth arrest while response was characterized by apoptotic cell death. Analysis of intra-cellular signaling mediators revealed the pro-survival mTOR pathway to be regulated by CXCR4 overexpression. Combining panobinostat with mTOR inhibitor everolimus abrogated the resistance to HDACi and induced synergistic cell death. The combination of panobinostat/everolimus resulted in sustained DNA damage and irreversible suppression of proliferation accompanied by robust apoptosis. Gene expression analysis revealed distinct genetic profiles of single versus combined agent exposure. Whereas panobinostat increased the expression of the cell cycle inhibitor p21, co-treatment with everolimus abrogated the increase in p21 and synergistically downregulated the expression of DNA repair genes and mitotic checkpoint regulators. Importantly, the combination of panobinostat with everolimus effectively targeted CXCR4-expressing resistant MM cells in vivo in the BM niche. In summary, our results uncover the mechanism responsible for the strong synergistic anti-MM activity of dual HDAC and mTOR inhibition and provide the rationale for a novel potential therapeutic approach to treat MM.
Collapse
Affiliation(s)
- Katia Beider
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Tel Aviv University, Israel
| | - Hanna Bitner
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Tel Aviv University, Israel
| | - Valeria Voevoda-Dimenshtein
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Tel Aviv University, Israel
| | - Evgenia Rosenberg
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Tel Aviv University, Israel
| | - Yaarit Sirovsky
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Tel Aviv University, Israel
| | - Hila Magen
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Tel Aviv University, Israel
| | - Jonathan Canaani
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Tel Aviv University, Israel
| | - Olga Ostrovsky
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Tel Aviv University, Israel
| | - Noya Shilo
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Tel Aviv University, Israel
| | - Avichai Shimoni
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Tel Aviv University, Israel
| | - Michal Abraham
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | - Lola Weiss
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amnon Peled
- Goldyne Savad Institute of Gene Therapy, Hebrew University Hospital, Jerusalem, Israel
| | - Arnon Nagler
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Tel Aviv University, Israel.
| |
Collapse
|
43
|
Gao X, Shen L, Li X, Liu J. Efficacy and toxicity of histone deacetylase inhibitors in relapsed/refractory multiple myeloma: Systematic review and meta-analysis of clinical trials. Exp Ther Med 2019; 18:1057-1068. [PMID: 31363365 PMCID: PMC6614737 DOI: 10.3892/etm.2019.7704] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 04/24/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) remains incurable primarily due to relapse. Histone deacetylase inhibitors (HDACis) have shown potential application for the treatment of relapsed/refractory multiple myeloma (RRMM). To assess the efficacy and safety of HDACis in RRMM treatment, a systematic review and meta-analysis were conducted based on clinical trial data. A literature search was performed using PubMed, EMBASE, Web of Science and the Cochrane Library databases. Subsequently, 19 trials with 2193 patients treated with one of the three HDACis, panobinostat, ricolinostat and vorinostat, were identified and included in the present study. The efficacy and toxicity of each agent were assessed. The data were pooled using a random effects model in STATA 13.0. The results showed that the overall response rate (ORR) was 0.64 with a 95% confidence interval (CI) of 0.61–0.68 for panobinostat, 0.51 (95% CI, 0.46–0.55) for vorinostat and 0.38 (95% CI, 0.29–0.48) for ricolinostat. Additionally, subgroup analysis revealed an ORR of 0.36 (95% CI, 0.27–0.46) for HDACis-treated bortezomib-refractory MM patients and 0.43 (95% CI, 0.30–0.55) for lenalidomide-refractory patients. The most common grade 3 and 4 hematological adverse events were thrombocytopenia, neutropenia and anemia. Non-hematological adverse events included fatigue/asthenia, diarrhea and nausea. In conclusion, analysis of the pooled data revealed that panobinostat-containing regimens were effective and tolerable for patients with RRMM. Furthermore, lenalidomide-refractory patients may derive greater benefits from these regimens. More clinical and real-world studies are required to validate these results.
Collapse
Affiliation(s)
- Xiao Gao
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P.R. China
| | - Lijing Shen
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P.R. China
| | - Xiang Li
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P.R. China
| | - Jiaying Liu
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P.R. China
| |
Collapse
|
44
|
Wang F, Zheng L, Yi Y, Yang Z, Qiu Q, Wang X, Yan W, Bai P, Yang J, Li D, Pei H, Niu T, Ye H, Nie C, Hu Y, Yang S, Wei Y, Chen L. SKLB-23bb, A HDAC6-Selective Inhibitor, Exhibits Superior and Broad-Spectrum Antitumor Activity via Additionally Targeting Microtubules. Mol Cancer Ther 2019; 17:763-775. [PMID: 29610282 DOI: 10.1158/1535-7163.mct-17-0332] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 09/07/2017] [Accepted: 01/24/2018] [Indexed: 02/05/2023]
Abstract
Our previous study reported that SKLB-23bb, an orally bioavailable HDAC6-selective inhibitor, exhibited superior antitumor efficiency both in vitro and in vivo in comparison with ACY1215, a HDAC6-selective inhibitor recently in phase II clinical trial. This study focused on the mechanism related to the activity of SKLB-23bb. We discovered that despite having HDAC6-selective inhibition equal to ACY1215, SKLB-23bb showed cytotoxic effects against a panel of solid and hematologic tumor cell lines at the low submicromolar level. Interestingly, in contrast to the reported HDAC6-selective inhibitors, SKLB-23bb was more efficient against solid tumor cells. Utilizing HDAC6 stably knockout cell lines constructed by CRISPR-Cas9 gene editing, we illustrated that SKLB-23bb could remain cytotoxic independent of HDAC6 status. Investigation of the mechanism confirmed that SKLB-23bb exerted its cytotoxic activity by additionally targeting microtubules. SKLB-23bb could bind to the colchicine site in β-tubulin and act as a microtubule polymerization inhibitor. Consistent with its microtubule-disrupting ability, SKLB-23bb also blocked tumor cell cycle at G2-M phase and triggered cellular apoptosis. In solid tumor xenografts, oral administration of SKLB-23bb efficiently inhibited tumor growth. These results suggested that SKLB-23bb was an orally bioavailable HDAC6 and microtubule dual targeting agent. The microtubule targeting profile enhanced the antitumor activity and expanded the antitumor spectrum of SKLB-23bb, thus breaking through the limitation of HDAC6 inhibitors. Mol Cancer Ther; 17(4); 763-75. ©2018 AACR.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Li Zheng
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yuyao Yi
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China.,Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Zhuang Yang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Qiu
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Yan
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Peng Bai
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jianhong Yang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Dan Li
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Heying Pei
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Ting Niu
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China.,Department of Hematology and Research Laboratory of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Haoyu Ye
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Chunlai Nie
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yiguo Hu
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China. .,Guangdong Zhongsheng Pharmaceutical Co., Ltd., Dongguan, Guangdong, China
| |
Collapse
|
45
|
Ge W, Liu Z, Sun Y, Wang T, Guo H, Chen X, Li S, Wang M, Chen Y, Ding Y, Zhang Q. Design and synthesis of parthenolide-SAHA hybrids for intervention of drug-resistant acute myeloid leukemia. Bioorg Chem 2019; 87:699-713. [DOI: 10.1016/j.bioorg.2019.03.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/15/2019] [Accepted: 03/19/2019] [Indexed: 12/28/2022]
|
46
|
Imai Y, Hirano M, Kobayashi M, Futami M, Tojo A. HDAC Inhibitors Exert Anti-Myeloma Effects through Multiple Modes of Action. Cancers (Basel) 2019; 11:cancers11040475. [PMID: 30987296 PMCID: PMC6520917 DOI: 10.3390/cancers11040475] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 11/29/2022] Open
Abstract
HDACs are critical regulators of gene expression that function through histone modification. Non-histone proteins and histones are targeted by these proteins and the inhibition of HDACs results in various biological effects. Moreover, the aberrant expression and function of these proteins is thought to be related to the pathogenesis of multiple myeloma (MM) and several inhibitors have been introduced or clinically tested. Panobinostat, a pan-HDAC inhibitor, in combination with a proteasome inhibitor and dexamethasone has improved survival in relapsing/refractory MM patients. We revealed that panobinostat inhibits MM cell growth by degrading the protein PPP3CA, a catalytic subunit of calcineurin. This degradation was suggested to be mediated by suppression of the chaperone function of HSP90 due to HDAC6 inhibition. Cytotoxicity due to the epigenetic regulation of tumor-associated genes by HDAC inhibitors has also been reported. In addition, HDAC6 inhibition enhances tumor immunity and has been suggested to strengthen the cytotoxic effects of therapeutic antibodies against myeloma. Furthermore, therapeutic strategies to enhance the anti-myeloma effects of HDAC inhibitors through the addition of other agents has been intensely evaluated. Thus, the treatment of patients with MM using HDAC inhibitors is promising as these drugs exert their effects through multiple modes of action.
Collapse
Affiliation(s)
- Yoichi Imai
- Department of Hematology/Oncology, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Mitsuhito Hirano
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Masayuki Kobayashi
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Muneyoshi Futami
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | - Arinobu Tojo
- Department of Hematology/Oncology, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
- Division of Molecular Therapy, Advanced Clinical Research Center, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
47
|
Brünnert D, Kraus M, Stühmer T, Kirner S, Heiden R, Goyal P, Driessen C, Bargou RC, Chatterjee M. Novel cell line models to study mechanisms and overcoming strategies of proteasome inhibitor resistance in multiple myeloma. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1666-1676. [PMID: 30954557 DOI: 10.1016/j.bbadis.2019.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
Abstract
Experimental data on resistance mechanisms of multiple myeloma (MM) to ixazomib (IXA), a second-generation proteasome inhibitor (PI), are currently lacking. We generated MM cell lines with a 10-fold higher resistance to IXA as their sensitive counterparts, and observed cross-resistance towards the PIs carfilzomib (CFZ) and bortezomib (BTZ). Analyses of the IXA-binding proteasome subunits PSMB5 and PSMB1 show increased PSMB5 expression and activity in all IXA-resistant MM cells, and upregulated PSMB1 expression in IXA-resistant AMO1 cells. In addition, sequence analysis of PSMB5 revealed a p.Thr21Ala mutation in IXA-resistant MM1.S cells, and a p.Ala50Val mutation in IXA-resistant L363 cells, whereas IXA-resistant AMO1 cells lack PSMB5 mutations. IXA-resistant cells retain their sensitivity to therapeutic agents that mediate cytotoxic effects via induction of proteotoxic stress. Induction of ER stress and apoptosis by the p97 inhibitor CB-5083 was strongly enhanced in combination with the PI3Kα inhibitor BYL-719 or the HDAC inhibitor panobinostat suggesting potential therapeutic strategies to circumvent IXA resistance in MM. Taken together, our newly established IXA-resistant cell lines provide first insights into resistance mechanisms and overcoming treatment strategies, and represent suitable models to further study IXA resistance in MM.
Collapse
Affiliation(s)
- Daniela Brünnert
- University Hospital of Würzburg, Comprehensive Cancer Center Mainfranken, Translational Oncology, Würzburg, Germany.
| | - Marianne Kraus
- Kantonsspital St. Gallen, Clinic for Oncology/Hematology, St. Gallen, Switzerland
| | - Thorsten Stühmer
- University Hospital of Würzburg, Comprehensive Cancer Center Mainfranken, Translational Oncology, Würzburg, Germany
| | - Stefanie Kirner
- University Hospital of Würzburg, Comprehensive Cancer Center Mainfranken, Translational Oncology, Würzburg, Germany
| | - Robin Heiden
- University Hospital of Würzburg, Comprehensive Cancer Center Mainfranken, Translational Oncology, Würzburg, Germany
| | - Pankaj Goyal
- Central University of Rajasthan, Department of Biotechnology, School of Life Sciences, Bandar Sindri, Kishangarh, India
| | - Christoph Driessen
- Kantonsspital St. Gallen, Clinic for Oncology/Hematology, St. Gallen, Switzerland
| | - Ralf C Bargou
- University Hospital of Würzburg, Comprehensive Cancer Center Mainfranken, Translational Oncology, Würzburg, Germany
| | - Manik Chatterjee
- University Hospital of Würzburg, Comprehensive Cancer Center Mainfranken, Translational Oncology, Würzburg, Germany
| |
Collapse
|
48
|
Manzotti G, Ciarrocchi A, Sancisi V. Inhibition of BET Proteins and Histone Deacetylase (HDACs): Crossing Roads in Cancer Therapy. Cancers (Basel) 2019; 11:cancers11030304. [PMID: 30841549 PMCID: PMC6468908 DOI: 10.3390/cancers11030304] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Histone DeACetylases (HDACs) are enzymes that remove acetyl groups from histones and other proteins, regulating the expression of target genes. Pharmacological inhibition of these enzymes re-shapes chromatin acetylation status, confusing boundaries between transcriptionally active and quiescent chromatin. This results in reinducing expression of silent genes while repressing highly transcribed genes. Bromodomain and Extraterminal domain (BET) proteins are readers of acetylated chromatin status and accumulate on transcriptionally active regulatory elements where they serve as scaffold for the building of transcription-promoting complexes. The expression of many well-known oncogenes relies on BET proteins function, indicating BET inhibition as a strategy to counteract their activity. BETi and HDACi share many common targets and affect similar cellular processes to the point that combined inhibition of both these classes of proteins is regarded as a strategy to improve the effectiveness of these drugs in cancer. In this work, we aim to discuss the molecular basis of the interplay between HDAC and BET proteins, pointing at chromatin acetylation as a crucial node of their functional interaction. We will also describe the state of the art of their dual inhibition in cancer therapy. Finally, starting from their mechanism of action we will provide a speculative perspective on how these drugs may be employed in combination with standard therapies to improve effectiveness and/or overcome resistance.
Collapse
Affiliation(s)
- Gloria Manzotti
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Valentina Sancisi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| |
Collapse
|
49
|
Hillert EK, Brnjic S, Zhang X, Mazurkiewicz M, Saei AA, Mofers A, Selvaraju K, Zubarev R, Linder S, D'Arcy P. Proteasome inhibitor b-AP15 induces enhanced proteotoxicity by inhibiting cytoprotective aggresome formation. Cancer Lett 2019; 448:70-83. [PMID: 30768956 DOI: 10.1016/j.canlet.2019.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/28/2018] [Accepted: 02/01/2019] [Indexed: 01/26/2023]
Abstract
Proteasome inhibitors have been shown to induce cell death in cancer cells by triggering an acute proteotoxic stress response characterized by accumulation of poly-ubiquitinated proteins, ER stress and the production of reactive oxygen species. The aggresome pathway has been described as an escape mechanism from proteotoxicity by sequestering toxic cellular aggregates. Here we show that b-AP15, a small-molecule inhibitor of proteasomal deubiquitinase activity, induces poly-ubiquitin accumulation in absence of aggresome formation. b-AP15 was found to affect organelle transport in treated cells, raising the possibility that microtubule-transport of toxic protein aggregates is inhibited, leading to enhanced cytotoxicity. In contrast to the antiproliferative effects of the clinically used proteasome inhibitor bortezomib, the effects of b-AP15 are not further enhanced by the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). Our results suggest an inhibitory effect of b-AP15 on the transport of misfolded proteins, resulting in a lack of aggresome formation, and a strong proteotoxic stress response.
Collapse
Affiliation(s)
| | - Slavica Brnjic
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Xiaonan Zhang
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | | | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Arjan Mofers
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Karthik Selvaraju
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Roman Zubarev
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Stig Linder
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden; Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Padraig D'Arcy
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden; Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
50
|
|