1
|
He Q, Wei Y, Qian Y, Zhong M. Pathophysiological dynamics in the contact, coagulation, and complement systems during sepsis: Potential targets for nafamostat mesilate. JOURNAL OF INTENSIVE MEDICINE 2024; 4:453-467. [PMID: 39310056 PMCID: PMC11411436 DOI: 10.1016/j.jointm.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 09/25/2024]
Abstract
Sepsis is a life-threatening syndrome resulting from a dysregulated host response to infection. It is the primary cause of death in the intensive care unit, posing a substantial challenge to human health and medical resource allocation. The pathogenesis and pathophysiology of sepsis are complex. During its onset, pro-inflammatory and anti-inflammatory mechanisms engage in intricate interactions, possibly leading to hyperinflammation, immunosuppression, and long-term immune disease. Of all critical outcomes, hyperinflammation is the main cause of early death among patients with sepsis. Therefore, early suppression of hyperinflammation may improve the prognosis of these patients. Nafamostat mesilate is a serine protease inhibitor, which can inhibit the activation of the complement system, coagulation system, and contact system. In this review, we discuss the pathophysiological changes occurring in these systems during sepsis, and describe the possible targets of the serine protease inhibitor nafamostat mesilate in the treatment of this condition.
Collapse
Affiliation(s)
- Qiaolan He
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yilin Wei
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiqi Qian
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Siti-Zubaidah MZ, Harafinova HS, Liba AN, Nordin ML, Hambali KA, Siti HN. Exploring bradykinin: A common mediator in the pathophysiology of sepsis and atherosclerotic cardiovascular disease. Vascul Pharmacol 2024; 156:107414. [PMID: 39089528 DOI: 10.1016/j.vph.2024.107414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Sepsis and atherosclerotic cardiovascular disease (ASCVD) are major health challenges involving complex processes like inflammation, renin-angiotensin system (RAS) dysregulation, and thrombosis. Despite distinct clinical symptoms, both conditions share mechanisms mediated by bradykinin. This review explores bradykinin's role in inflammation, RAS modulation, and thrombosis in sepsis and ASCVD. In sepsis, variable kininogen-bradykinin levels may correlate with disease severity and progression, though the effect of bradykinin receptor modulation on inflammation remains uncertain. RAS activation is present in both diseases, with sepsis showing variable or low levels of Ang II, ACE, and ACE2, while ASCVD consistently exhibits elevated levels. Bradykinin may act as a mediator for ACE2 and AT2 receptor effects in RAS regulation. It may influence clotting and fibrinolysis in sepsis-associated coagulopathy, but evidence for an antithrombotic effect in ASCVD is insufficient. Understanding bradykinin's role in these shared pathologies could guide therapeutic and monitoring strategies and inform future research.
Collapse
Affiliation(s)
- Mohd Zahari Siti-Zubaidah
- Department of Anaesthesia and Intensive Care, National Heart Institute, Jalan Tun Razak, 50400 Kuala Lumpur, Malaysia.
| | - Harman-Shah Harafinova
- Department of Internal Medicine, Faculty of Medicine, Universiti Sultan Zainal Abidin, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia.
| | - Abdullahi Nuradeen Liba
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu, 16100, Kelantan, Malaysia
| | - Muhammad Luqman Nordin
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu, 16100, Kelantan, Malaysia; Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Kamarul Ariffin Hambali
- Faculty of Earth Science, Universiti Malaysia Kelantan, Jeli, 17600, Kelantan, Malaysia; Animal and Wildlife Research Group, Faculty of Earth Science, Jeli Campus, Universiti Malaysia Kelantan, 17600, Kelantan, Malaysia.
| | - Hawa Nordin Siti
- Department of Pharmacology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Terengganu, Malaysia.
| |
Collapse
|
3
|
Balczon R, Lin MT, Voth S, Nelson AR, Schupp JC, Wagener BM, Pittet JF, Stevens T. Lung endothelium, tau, and amyloids in health and disease. Physiol Rev 2024; 104:533-587. [PMID: 37561137 PMCID: PMC11281824 DOI: 10.1152/physrev.00006.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sarah Voth
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Jonas C Schupp
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University, New Haven, Connecticut, United States
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
4
|
Liu J, Jin X, Qiu C, Han P, Wang Y, Zhao J, Wu J, Yan N, Song X. Integrated Transcriptomics-Proteomics Analysis Identifies Molecular Phenotypic Alterations Associated with Colorectal Cancer. J Proteome Res 2024; 23:175-184. [PMID: 37909265 DOI: 10.1021/acs.jproteome.3c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Understanding the pathogenesis and finding diagnostic markers for colorectal cancer (CRC) are the key to its diagnosis and treatment. Integrated transcriptomics and proteomics analysis can be used to characterize alterations of molecular phenotypes and reveal the hidden pathogenesis of CRC. This study employed a novel strategy integrating transcriptomics and proteomics to identify pathological molecular pathways and diagnostic biomarkers of CRC. First, differentially expressed proteins and coexpressed genes generated from weighted gene coexpression network analysis (WGCNA) were intersected to obtain key genes of the CRC phenotype. In total, 63 key genes were identified, and pathway enrichment analysis showed that the process of coagulation and peptidase regulator activity could both play important roles in the development of CRC. Second, protein-protein interaction analysis was then conducted on these key genes to find the central genes involved in the metabolic pathways underpinning CRC. Finally, Itih3 and Lrg1 were further screened out as diagnostic biomarkers of CRC by applying statistical analysis on central genes combining transcriptomics and proteomics data. The deep involvement of central genes in tumorigenesis demonstrates the accuracy and reliability of this novel transcriptomics-proteomics integration strategy in biomarker discovery. The identified candidate biomarkers and enriched metabolic pathways provide insights for CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Xinghua Jin
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Chengchao Qiu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Ping Han
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yixuan Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jian Zhao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jing Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Neng Yan
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
5
|
Tarandovskiy ID, Ovanesov MV. The effect of factor XIa on thrombin and plasmin generation, clot formation, lysis and density in coagulation factors deficiencies. Thromb Res 2024; 233:189-199. [PMID: 38101192 DOI: 10.1016/j.thromres.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/21/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION Growing evidence supports the importance of factor (F) XI activation for thrombosis and hemostasis as well as inflammation and complement systems. In this study, we evaluated the effect of activated FXI (FXIa) on the detection of factor deficiencies by global hemostasis assays of thrombin generation (TG), plasmin generation (PG), and clot formation and lysis (CFL). MATERIALS AND METHODS An absorbance and fluorescence microplate assay was used to simultaneously observe TG, PG, and CFL in FV-, FVII-, FVIII-, and FIX-deficient plasmas supplemented with purified factors. Coagulation was initiated with tissue factor with or without FXIa in the presence of tissue plasminogen activator. Thrombin and plasmin peak heights (TPH and PPH), maximal clot density (MCD), times to clotting (CT), thrombin and plasmin peaks (TPT and PPT) and clot lysis (LyT) and a new parameter, clot lifetime (LiT), were evaluated. RESULTS TG/CFL were elevated by the FXIa at low FV (below 0.1 IU/mL), and at FVIII and FIX above 0.01 IU/mL. FXIa affected PG only at low FV and FVII. At high factor concentrations, FXIa reduced MCD. Thrombin and plasmin substrates had effect on CT, LyT, LiT and MCD parameters. CONCLUSIONS FXIa reveals new relationships between TG, PG and CFL parameters in factor deficiencies suggesting potential benefits for discrimination of bleeding phenotypes.
Collapse
Affiliation(s)
- Ivan D Tarandovskiy
- Center of Biologics Evaluation and Research, U.S. Food and Drug Administration, United States of America
| | - Mikhail V Ovanesov
- Center of Biologics Evaluation and Research, U.S. Food and Drug Administration, United States of America.
| |
Collapse
|
6
|
Mohammed BM, Sun MF, Cheng Q, Litvak M, McCrae KR, Emsley J, McCarty OJT, Gailani D. High molecular weight kininogen interactions with the homologs prekallikrein and factor XI: importance to surface-induced coagulation. J Thromb Haemost 2024; 22:225-237. [PMID: 37813198 PMCID: PMC10841474 DOI: 10.1016/j.jtha.2023.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND In plasma, high molecular weight kininogen (HK) is either free or bound to prekallikrein (PK) or factor (F) XI (FXI). During contact activation, HK is thought to anchor PK and FXI to surfaces, facilitating their conversion to the proteases plasma kallikrein and FXIa. Mice lacking HK have normal hemostasis but are resistant to injury-induced arterial thrombosis. OBJECTIVES To identify amino acids on the HK-D6 domain involved in PK and FXI binding and study the importance of the HK-PK and HK-FXI interactions to coagulation. METHODS Twenty-four HK variants with alanine replacements spanning residues 542-613 were tested in PK/FXI binding and activated partial thromboplastin time clotting assays. Surface-induced FXI and PK activation in plasma were studied in the presence or absence of HK. Kng1-/- mice lacking HK were supplemented with human or murine HK and tested in an arterial thrombosis model. RESULTS Overlapping binding sites for PK and FXI were identified in the HK-D6 domain. HK variants with defects only in FXI binding corrected the activated partial thromboplastin time of HK-deficient plasma poorly compared to a variant defective only in PK-binding. In plasma, HK deficiency appeared to have a greater deleterious effect on FXI activation than PK activation. Human HK corrected the defect in arterial thrombus formation in HK-deficient mice poorly due to a specific defect in binding to mouse FXI. CONCLUSION Clinical observations indicate FXI is required for hemostasis, while HK is not. Yet, the HK-FXI interaction is required for contact activation-induced clotting in vitro and in vivo suggesting an important role in thrombosis and perhaps other FXI-related activities.
Collapse
Affiliation(s)
- Bassem M Mohammed
- Edward A. Doisy Research Center, Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri, USA.
| | - Mao-Fu Sun
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Qiufang Cheng
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maxim Litvak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Keith R McCrae
- Department of Hematology and Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jonas Emsley
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Owen J T McCarty
- Department of Biomedical Engineering, Division of Hematology/Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
7
|
Ohnaka Y, Tsukamoto S, Iwai Y, Hamada-Kanazawa M, Kariya R, Takano M. Bradykinin deficiency causes high blood pressure in mice. Biochem Biophys Res Commun 2023; 681:73-79. [PMID: 37757669 DOI: 10.1016/j.bbrc.2023.09.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
Bradykinin has a wide variety of physiological functions, including vasodilation and blood pressure reduction. However, the physiological roles of bradykinin are not fully understood. We used the CRISPR/Cas9 method to generate BKdelK1 and BKdelK2 mutant mice, targeting the BK portion of mouse kininogen1 and kininogen2 genes, respectively. The BKdelK1 and BKdelK2 mutant mice had about 50% reductions in plasma low molecular weight kininogen and trypsin-released BK, compared to wild mice. Both BKdelK1 and BKdelK2 mice had significantly elevated systolic blood pressure compared to WT mice. These results suggest that plasma LKNG is a source of KNG in the vascular kallikrein-kinin system and contributes to maintaining lower systolic blood pressure.
Collapse
Affiliation(s)
- Yusuke Ohnaka
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Satoshi Tsukamoto
- Laboratory Animal and Genome Sciences Section, National Institute for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Yuna Iwai
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Michiko Hamada-Kanazawa
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Ryusho Kariya
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Masaoki Takano
- Laboratory of Molecular Cellular Biology, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan.
| |
Collapse
|
8
|
Chen R, Huang M, Xu P. Polyphosphate as an antithrombotic target and hemostatic agent. J Mater Chem B 2023; 11:7855-7872. [PMID: 37534776 DOI: 10.1039/d3tb01152f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Polyphosphate (PolyP) is a polymer comprised of linear phosphate units connected by phosphate anhydride bonds. PolyP exists in a diverse range of eukaryotes and prokaryotes with varied chain lengths ranging from six to thousands of phosphate units. Upon activation, human platelets and neutrophils release short-chain PolyP, along with other components, to initiate the coagulation pathway. Long-chain PolyP derived from cellular or bacterial organelles exhibits higher proinflammatory and procoagulant effects compared to short-chain PolyP. Notably, PolyP has been identified as a low-hemorrhagic antithrombotic target since neutralizing plasma PolyP suppresses the thrombotic process without impairing the hemostatic functions. As an inorganic polymer without uniform steric configuration, PolyP is typically targeted by cationic polymers or recombinant polyphosphatases rather than conventional antibodies, small-molecule compounds, or peptides. Additionally, because of its procoagulant property, PolyP has been incorporated in wound-dressing materials to facilitate blood hemostasis. This review summarizes current studies on PolyP as a low-hemorrhagic antithrombotic target and the development of hemostatic materials based on PolyP.
Collapse
Affiliation(s)
- Ruoyu Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| | - Mingdong Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China.
| |
Collapse
|
9
|
Liang Y, Tarandovskiy I, Surov SS, Ovanesov MV. Comparative Thrombin Generation in Animal Plasma: Sensitivity to Human Factor XIa and Tissue Factor. Int J Mol Sci 2023; 24:12920. [PMID: 37629101 PMCID: PMC10454801 DOI: 10.3390/ijms241612920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Preclinical evaluation of drugs in animals helps researchers to select potentially informative clinical laboratory markers for human trials. To assess the utility of animal thrombin generation (TG) assay, we studied the sensitivity of animal plasmas to triggers of TG, human Tissue Factor (TF), and Activated Factor XI (FXIa). Pooled human, mouse, rat, guinea pig, rabbit, bovine, sheep, and goat plasmas were used in this study. TF- or FXIa-triggered TG and clotting were measured via fluorescence and optical density, respectively. Thrombin peak height (TPH) and time (TPT), clot time (CT), and fibrin clot density (FCD) were all analyzed. The trigger low and high sensitivity borders (LSB and HSB) for each assay parameter were defined as TF and FXIa concentrations, providing 20 and 80% of the maximal parameter value, unless the baseline (no trigger) value exceeded 20% of the maximal, in which case, LSB was derived from 120% of baseline value. Normal human samples demonstrated lower TPH HSB than most of the animal samples for both TF and FXIa. Animal samples, except mice, demonstrated lower TPT LSB for FXIa versus humans. Most rodent and rabbit samples produced baseline TG in the absence of TG triggers that were consistent with the pre-activation of blood coagulation. FCD was not sensitive to both TF and FXIa in either of the plasmas. Animal plasmas have widely variable sensitivities to human TF and FXIa, which suggests that optimization of trigger concentration is required prior to test use, and this complicates the extrapolation of animal model results to humans.
Collapse
Affiliation(s)
| | | | | | - Mikhail V. Ovanesov
- Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA; (Y.L.); (I.T.); (S.S.S.)
| |
Collapse
|
10
|
Shamanaev A, Litvak M, Cheng Q, Ponczek M, Dickeson SK, Smith SA, Morrissey JH, Gailani D. A site on factor XII required for productive interactions with polyphosphate. J Thromb Haemost 2023; 21:1567-1579. [PMID: 36863563 PMCID: PMC10192085 DOI: 10.1016/j.jtha.2023.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/07/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
BACKGROUND During plasma contact activation, factor XII (FXII) binds to surfaces through its heavy chain and undergoes conversion to the protease FXIIa. FXIIa activates prekallikrein and factor XI (FXI). Recently, we showed that the FXII first epidermal growth factor-1 (EGF1) domain is required for normal activity when polyphosphate is used as a surface. OBJECTIVES The aim of this study was to identify amino acids in the FXII EGF1 domain required for polyphosphate-dependent FXII functions. METHODS FXII with alanine substitutions for basic residues in the EGF1 domain were expressed in HEK293 fibroblasts. Wild-type FXII (FXII-WT) and FXII containing the EGF1 domain from the related protein Pro-HGFA (FXII-EGF1) were positive and negative controls. Proteins were tested for their capacity to be activated, and to activate prekallikrein and FXI, with or without polyphosphate, and to replace FXII-WT in plasma clotting assays and a mouse thrombosis model. RESULTS FXII and all FXII variants were activated similarly by kallikrein in the absence of polyphosphate. However, FXII with alanine replacing Lys73, Lys74, and Lys76 (FXII-Ala73,74,76) or Lys76, His78, and Lys81 (FXII-Ala76,78,81) were activated poorly in the presence of polyphosphate. Both have <5% of normal FXII activity in silica-triggered plasma clotting assays and have reduced binding affinity for polyphosphate. Activated FXIIa-Ala73,74,76 displayed profound defects in surface-dependent FXI activation in purified and plasma systems. FXIIa-Ala73,74,76 reconstituted FXII-deficient mice poorly in an arterial thrombosis model. CONCLUSION FXII Lys73, Lys74, Lys76, and Lys81 form a binding site for polyanionic substances such as polyphosphate that is required for surface-dependent FXII function.
Collapse
Affiliation(s)
- Aleksandr Shamanaev
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA. https://twitter.com/Aleksan18944927
| | - Maxim Litvak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiufang Cheng
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michal Ponczek
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - S Kent Dickeson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephanie A Smith
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James H Morrissey
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
11
|
Santostasi G, Denas G, Pengo V. New pharmacotherapeutic options for oral anticoagulant treatment in atrial fibrillation patients aged 65 and older: factor XIa inhibitors and beyond. Expert Opin Pharmacother 2023; 24:1335-1347. [PMID: 37243619 DOI: 10.1080/14656566.2023.2219391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Although much progress has been made using anticoagulation for stroke prevention in patients with non-valvular atrial fibrillation, bleeding is still a major concern. AREAS COVERED This article reviews current pharmacotherapeutic options in this setting. Particular emphasis is placed on the ability of the new molecules to minimize the bleeding risk in elderly patients. A systematic search of PubMed, Web of Science, and the Cochrane Library up to March 2023 was carried out. EXPERT OPINION Contact phase of coagulation is a possible new target for anticoagulant therapy. Indeed, congenital or acquired deficiency of contact phase factors is associated with reduced thrombotic burden and limited risk of spontaneous bleeding. These new drugs seem particularly suitable for stroke prevention in elderly patients with non-valvular atrial fibrillation in whom the hemorrhagic risk is high. Most of anti Factor XI (FXI) drugs are for parenteral use only. A group of small molecules are for oral use and therefore are candidates to substitute direct oral anticoagulants (DOACs) for stroke prevention in elderly patients with atrial fibrillation. Doubts remain on the possibility of impaired hemostasis. Indeed, a fine calibration of inhibition of contact phase factors is crucial for an effective and safe treatment.
Collapse
Affiliation(s)
| | - Gentian Denas
- Cardiology Clinic, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University Hospital, Padua, Italy
| | - Vittorio Pengo
- Cardiology Clinic, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University Hospital, Padua, Italy
- Arianna Foundation on Anticoagulation, Bologna, Italy
| |
Collapse
|
12
|
Severe high-molecular-weight kininogen deficiency: clinical characteristics, deficiency-causing KNG1 variants, and estimated prevalence. JOURNAL OF THROMBOSIS AND HAEMOSTASIS : JTH 2023; 21:237-254. [PMID: 36700498 DOI: 10.1016/j.jtha.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Severe high-molecular-weight kininogen (HK) deficiency is a poorly studied autosomal recessive contact system defect caused by pathogenic, biallelic KNG1 variants. AIM We performed the first comprehensive analysis of diagnostic, clinical, genetic, and epidemiological aspects of HK deficiency. METHODS We collected clinical information and blood samples from a newly detected HK-deficient individual and from published cases identified by a systematic literature review. Activity and antigen levels of coagulation factors were determined. Genetic analyses of KNG1 and KLKB1 were performed by Sanger sequencing. The frequency of HK deficiency was estimated considering truncating KNG1 variants from GnomAD. RESULTS We identified 48 cases of severe HK deficiency (41 families), of these 47 have been previously published (n = 19 from gray literature). We genotyped 3 cases and critically appraised 10 studies with genetic data. Ten HK deficiency-causing variants (one new) were identified. All of them were truncating mutations, whereas the only known HK amino acid substitution with a relevant phenotype instead causes hereditary angioedema. Conservative estimates suggest an overall prevalence of severe HK deficiency of approximately one case per 8 million population, slightly higher in Africans. Individuals with HK deficiency appeared asymptomatic and had decreased levels of prekallikrein and factor XI, which could lead to misdiagnosis. CONCLUSION HK deficiency is a rare condition with only few known pathogenic variants. It has an apparently good prognosis but is prone to misdiagnosis. Our understanding of its clinical implications is still limited, and an international prekallikrein and HK deficiency registry is being established to fill this knowledge gap.
Collapse
|
13
|
Dickeson SK, Kumar S, Sun MF, Mohammed BM, Phillips DR, Whisstock JC, Quek AJ, Feener EP, Law RHP, Gailani D. A mechanism for hereditary angioedema caused by a lysine 311-to-glutamic acid substitution in plasminogen. Blood 2022; 139:2816-2829. [PMID: 35100351 PMCID: PMC9074402 DOI: 10.1182/blood.2021012945] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 01/18/2022] [Indexed: 11/20/2022] Open
Abstract
Patients with hereditary angioedema (HAE) experience episodes of bradykinin (BK)-induced swelling of skin and mucosal membranes. The most common cause is reduced plasma activity of C1 inhibitor, the main regulator of the proteases plasma kallikrein (PKa) and factor XIIa (FXIIa). Recently, patients with HAE were described with a Lys311 to glutamic acid substitution in plasminogen (Plg), the zymogen of the protease plasmin (Plm). Adding tissue plasminogen activator to plasma containing Plg-Glu311 vs plasma containing wild-type Plg (Plg-Lys311) results in greater BK generation. Similar results were obtained in plasma lacking prekallikrein or FXII (the zymogens of PKa and FXIIa) and in normal plasma treated with a PKa inhibitor, indicating Plg-Glu311 induces BK generation independently of PKa and FXIIa. Plm-Glu311 cleaves high and low molecular weight kininogens (HK and LK, respectively), releasing BK more efficiently than Plm-Lys311. Based on the plasma concentrations of HK and LK, the latter may be the source of most of the BK generated by Plm-Glu311. The lysine analog ε-aminocaproic acid blocks Plm-catalyzed BK generation. The Glu311 substitution introduces a lysine-binding site into the Plg kringle 3 domain, perhaps altering binding to kininogens. Plg residue 311 is glutamic acid in most mammals. Glu311 in patients with HAE, therefore, represents reversion to the ancestral condition. Substantial BK generation occurs during Plm-Glu311 cleavage of human HK, but not mouse HK. Furthermore, mouse Plm, which has Glu311, did not liberate BK from human kininogens more rapidly than human Plg-Lys311. This indicates Glu311 is pathogenic in the context of human Plm when human kininogens are the substrates.
Collapse
Affiliation(s)
- S Kent Dickeson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | - Sunil Kumar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | - Mao-Fu Sun
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | - Bassem M Mohammed
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | | | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; and
| | - Adam J Quek
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; and
| | | | - Ruby H P Law
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia; and
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| |
Collapse
|
14
|
Abstract
Blood coagulation is essential to maintain the integrity of a closed circulatory system (hemostasis), but also contributes to thromboembolic occlusion of vessels (thrombosis). Thrombosis may cause deep vein thrombosis, pulmonary embolism, myocardial infarction, peripheral artery disease, and ischemic stroke, collectively the most common causes of death and disability in the developed world. Treatment for the prevention of thromboembolic diseases using anticoagulants such as heparin, coumarins, thrombin inhibitors, or antiplatelet drugs increase the risk of bleeding and are associated with an increase in potentially life-threatening hemorrhage, partially offsetting the benefits of reduced coagulation. Thus, drug development aiming at novel targets is needed to provide efficient and safe anticoagulation. Within the last decade, experimental and preclinical data have shown that some coagulation mechanisms principally differ in thrombosis and hemostasis. The plasma contact system protein factors XII and XI, high-molecular-weight kininogen, and plasma kallikrein specifically contribute to thrombosis, however, have minor, if any, role in hemostatic coagulation mechanisms. Inherited deficiency in contact system proteins is not associated with increased bleeding in humans and animal models. Therefore, targeting contact system proteins provides the exciting opportunity to interfere specifically with thromboembolic diseases without increasing the bleeding risk. Recent studies that investigated pharmacologic inhibition of contact system proteins have shown that this approach provides efficient and safe thrombo-protection that in contrast to classical anticoagulants is not associated with increased bleeding risk. This review summarizes therapeutic and conceptual developments for selective interference with pathological thrombus formation, while sparing physiologic hemostasis, that enables safe anticoagulation treatment.
Collapse
Affiliation(s)
- Reiner K Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Piotr Kuta
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.,Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.,Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
15
|
Crosstalk between the renin-angiotensin, complement and kallikrein-kinin systems in inflammation. Nat Rev Immunol 2021; 22:411-428. [PMID: 34759348 PMCID: PMC8579187 DOI: 10.1038/s41577-021-00634-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/28/2022]
Abstract
During severe inflammatory and infectious diseases, various mediators modulate the equilibrium of vascular tone, inflammation, coagulation and thrombosis. This Review describes the interactive roles of the renin–angiotensin system, the complement system, and the closely linked kallikrein–kinin and contact systems in cell biological functions such as vascular tone and leakage, inflammation, chemotaxis, thrombosis and cell proliferation. Specific attention is given to the role of these systems in systemic inflammation in the vasculature and tissues during hereditary angioedema, cardiovascular and renal glomerular disease, vasculitides and COVID-19. Moreover, we discuss the therapeutic implications of these complex interactions, given that modulation of one system may affect the other systems, with beneficial or deleterious consequences. The renin–angiotensin, complement and kallikrein–kinin systems comprise a multitude of mediators that modulate physiological responses during inflammatory and infectious diseases. This Review investigates the complex interactions between these systems and how these are dysregulated in various conditions, including cardiovascular diseases and COVID-19, as well as their therapeutic implications.
Collapse
|
16
|
Bernasconi R, Thriene K, Romero‐Fernández E, Gretzmeier C, Kühl T, Maler M, Nauroy P, Kleiser S, Rühl‐Muth A, Stumpe M, Kiritsi D, Martin SF, Hinz B, Bruckner‐Tuderman L, Dengjel J, Nyström A. Pro-inflammatory immunity supports fibrosis advancement in epidermolysis bullosa: intervention with Ang-(1-7). EMBO Mol Med 2021; 13:e14392. [PMID: 34459121 PMCID: PMC8495454 DOI: 10.15252/emmm.202114392] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB), a genetic skin blistering disease, is a paradigmatic condition of tissue fragility-driven multi-organ fibrosis. Here, longitudinal analyses of the tissue proteome through the course of naturally developing disease in RDEB mice revealed that increased pro-inflammatory immunity associates with fibrosis evolution. Mechanistically, this fibrosis is a consequence of altered extracellular matrix organization rather than that of increased abundance of major structural proteins. In a humanized system of disease progression, we targeted inflammatory cell fibroblast communication with Ang-(1-7)-an anti-inflammatory heptapeptide of the renin-angiotensin system, which reduced the fibrosis-evoking aptitude of RDEB cells. In vivo, systemic administration of Ang-(1-7) efficiently attenuated progression of multi-organ fibrosis and increased survival of RDEB mice. Collectively, our study shows that selective down-modulation of pro-inflammatory immunity may mitigate injury-induced fibrosis. Furthermore, together with published data, our data highlight molecular diversity among fibrotic conditions. Both findings have direct implications for the design of therapies addressing skin fragility and fibrosis.
Collapse
Affiliation(s)
- Rocco Bernasconi
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Kerstin Thriene
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Elena Romero‐Fernández
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- University Hospital RegensburgRegensburgGermany
| | - Christine Gretzmeier
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
| | - Tobias Kühl
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Essen University HospitalEssenGermany
| | - Mareike Maler
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Pauline Nauroy
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
| | - Svenja Kleiser
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Anne‐Catherine Rühl‐Muth
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Michael Stumpe
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Dimitra Kiritsi
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
| | - Stefan F Martin
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
| | - Boris Hinz
- Laboratory of Tissue Repair and RegenerationFaculty of DentistryUniversity of TorontoTorontoONCanada
| | - Leena Bruckner‐Tuderman
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
| | - Jörn Dengjel
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Alexander Nyström
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgFreiburgGermany
| |
Collapse
|
17
|
Severe high-molecular-weight kininogen deficiency due to a homozygous c.1456C > T nonsense variant in a large Chinese family. J Thromb Thrombolysis 2021; 50:989-994. [PMID: 32185598 DOI: 10.1007/s11239-020-02088-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
High-molecular-weight kininogen (HMWK) deficiency is a very rare hereditary disorder caused by a defect of Kininogen-1 gene (KGN1). A 67-year-old asymptomatic male with an isolated prolonged activated partial thromboplastin time (aPTT) was recognized to have HMWK deficiency. The propositus had less than 1% HMWK procoagulant activity. The plasma HMWK procoagulant activities of his 2 younger sisters were 1.1% and less than 1%, respectively. Prekallikrein (PK) activity was also reduced in the propositus and two of his younger sisters with severe HMWK deficiency. Genetic testing to identify the KGN1 mutation provides a precise diagnosis for the patient and other family members. This Chinese family has a novel KGN1 nonsense variant, C to T, at nucleotide position 1456 leading to a stop codon in position 486 (p. Gln486*).
Collapse
|
18
|
Henderson MW, Sparkenbaugh EM, Wang S, Ilich A, Noubouossie DF, Mailer R, Renné T, Flick MJ, Luyendyk JP, Chen ZL, Strickland S, Stravitz RT, McCrae KR, Key NS, Pawlinski R. Plasmin-mediated cleavage of high-molecular-weight kininogen contributes to acetaminophen-induced acute liver failure. Blood 2021; 138:259-272. [PMID: 33827130 PMCID: PMC8310429 DOI: 10.1182/blood.2020006198] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Acetaminophen (APAP)-induced liver injury is associated with activation of coagulation and fibrinolysis. In mice, both tissue factor-dependent thrombin generation and plasmin activity have been shown to promote liver injury after APAP overdose. However, the contribution of the contact and intrinsic coagulation pathways has not been investigated in this model. Mice deficient in individual factors of the contact (factor XII [FXII] and prekallikrein) or intrinsic coagulation (FXI) pathway were administered a hepatotoxic dose of 400 mg/kg of APAP. Neither FXII, FXI, nor prekallikrein deficiency mitigated coagulation activation or hepatocellular injury. Interestingly, despite the lack of significant changes to APAP-induced coagulation activation, markers of liver injury and inflammation were significantly reduced in APAP-challenged high-molecular-weight kininogen-deficient (HK-/-) mice. Protective effects of HK deficiency were not reproduced by inhibition of bradykinin-mediated signaling, whereas reconstitution of circulating levels of HK in HK-/- mice restored hepatotoxicity. Fibrinolysis activation was observed in mice after APAP administration. Western blotting, enzyme-linked immunosorbent assay, and mass spectrometry analysis showed that plasmin efficiently cleaves HK into multiple fragments in buffer or plasma. Importantly, plasminogen deficiency attenuated APAP-induced liver injury and prevented HK cleavage in the injured liver. Finally, enhanced plasmin generation and HK cleavage, in the absence of contact pathway activation, were observed in plasma of patients with acute liver failure due to APAP overdose. In summary, extrinsic but not intrinsic pathway activation drives the thromboinflammatory pathology associated with APAP-induced liver injury in mice. Furthermore, plasmin-mediated cleavage of HK contributes to hepatotoxicity in APAP-challenged mice independently of thrombin generation or bradykinin signaling.
Collapse
Affiliation(s)
- Michael W Henderson
- Department of Pathology and Laboratory Medicine
- Division of Hematology, Department of Medicine, and
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Erica M Sparkenbaugh
- Division of Hematology, Department of Medicine, and
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Shaobin Wang
- Division of Hematology, Department of Medicine, and
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Anton Ilich
- Division of Hematology, Department of Medicine, and
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Denis F Noubouossie
- Division of Hematology, Department of Medicine, and
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Reiner Mailer
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg, Hamburg, Germany
| | - Thomas Renné
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg, Hamburg, Germany
| | - Matthew J Flick
- Department of Pathology and Laboratory Medicine
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI
| | - Zu-Lin Chen
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, New York
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, New York
| | - R Todd Stravitz
- Hume-Lee Transplant Center of Virginia Commonwealth University, Richmond, VA; and
| | - Keith R McCrae
- Taussig Cancer Institute and Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH
| | - Nigel S Key
- Department of Pathology and Laboratory Medicine
- Division of Hematology, Department of Medicine, and
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Rafal Pawlinski
- Division of Hematology, Department of Medicine, and
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
19
|
Takeuchi F, Liang YQ, Isono M, Tajima M, Cui ZH, Iizuka Y, Gotoda T, Nabika T, Kato N. Integrative genomic analysis of blood pressure and related phenotypes in rats. Dis Model Mech 2021; 14:dmm048090. [PMID: 34010951 PMCID: PMC8188887 DOI: 10.1242/dmm.048090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Despite remarkable progress made in human genome-wide association studies, there remains a substantial gap between statistical evidence for genetic associations and functional comprehension of the underlying mechanisms governing these associations. As a means of bridging this gap, we performed genomic analysis of blood pressure (BP) and related phenotypes in spontaneously hypertensive rats (SHR) and their substrain, stroke-prone SHR (SHRSP), both of which are unique genetic models of severe hypertension and cardiovascular complications. By integrating whole-genome sequencing, transcriptome profiling, genome-wide linkage scans (maximum n=1415), fine congenic mapping (maximum n=8704), pharmacological intervention and comparative analysis with transcriptome-wide association study (TWAS) datasets, we searched causal genes and causal pathways for the tested traits. The overall results validated the polygenic architecture of elevated BP compared with a non-hypertensive control strain, Wistar Kyoto rats (WKY); e.g. inter-strain BP differences between SHRSP and WKY could be largely explained by an aggregate of BP changes in seven SHRSP-derived consomic strains. We identified 26 potential target genes, including rat homologs of human TWAS loci, for the tested traits. In this study, we re-discovered 18 genes that had previously been determined to contribute to hypertension or cardiovascular phenotypes. Notably, five of these genes belong to the kallikrein-kinin/renin-angiotensin systems (KKS/RAS), in which the most prominent differential expression between hypertensive and non-hypertensive alleles could be detected in rat Klk1 paralogs. In combination with a pharmacological intervention, we provide in vivo experimental evidence supporting the presence of key disease pathways, such as KKS/RAS, in a rat polygenic hypertension model.
Collapse
Affiliation(s)
- Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Yi-Qiang Liang
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Masato Isono
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Michiko Tajima
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Zong Hu Cui
- Department of Functional Pathology, Shimane University Faculty of Medicine, Izumo 693-0021, Japan
| | - Yoko Iizuka
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Takanari Gotoda
- Department of Metabolism and Biochemistry, Kyorin University Faculty of Medicine, Tokyo 181-8611, Japan
| | - Toru Nabika
- Department of Functional Pathology, Shimane University Faculty of Medicine, Izumo 693-0021, Japan
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| |
Collapse
|
20
|
Initial proteomic characterization of IMMODIN, commercially available dialysable leukocytes extract. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01467-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Abstract
PURPOSE OF REVIEW Anticoagulation with vitamin-K antagonists or direct oral anticoagulants is associated with a significant risk of bleeding. There is a major effort underway to develop antithrombotic drugs that have a smaller impact on hemostasis. The plasma contact proteins factor XI (FXI) and factor XII (FXII) have drawn considerable interest because they contribute to thrombosis but have limited roles in hemostasis. Here, we discuss results of preclinical and clinical trials supporting the hypothesis that the contact system contributes to thromboembolic disease. RECENT FINDINGS Numerous compounds targeting FXI or FXII have shown antithrombotic properties in preclinical studies. In phase 2 studies, drugs-targeting FXI or its protease form FXIa compared favorably with standard care for venous thrombosis prophylaxis in patients undergoing knee replacement. While less work has been done with FXII inhibitors, they may be particularly useful for limiting thrombosis in situations where blood comes into contact with artificial surfaces of medical devices. SUMMARY Inhibitors of contact activation, and particularly of FXI, are showing promise for prevention of thromboembolic disease. Larger studies are required to establish their efficacy, and to establish that they are safer than current therapy from a bleeding standpoint.
Collapse
|
22
|
Coelho SVA, Rust NM, Vellasco L, Papa MP, Pereira ASG, da Silva Palazzo MF, Juliano MA, Costa SM, Alves AMB, Cordeiro MT, Marques ETA, Scharfstein J, de Arruda LB. Contact System Activation in Plasma from Dengue Patients Might Harness Endothelial Virus Replication through the Signaling of Bradykinin Receptors. Pharmaceuticals (Basel) 2021; 14:ph14010056. [PMID: 33445640 PMCID: PMC7827195 DOI: 10.3390/ph14010056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Since exacerbated inflammation and microvascular leakage are hallmarks of dengue virus (DENV) infection, here we interrogated whether systemic activation of the contact/kallikrein-kinin system (KKS) might hamper endothelial function. In vitro assays showed that dextran sulfate, a potent contact activator, failed to generate appreciable levels of activated plasma kallikrein (PKa) in the large majority of samples from a dengue cohort (n = 70), irrespective of severity of clinical symptoms. Impaired formation of PKa in dengue-plasmas correlated with the presence of cleaved Factor XII and high molecular weight kininogen (HK), suggesting that the prothrombogenic contact system is frequently triggered during the course of infection. Using two pathogenic arboviruses, DENV or Zika virus (ZIKV), we then asked whether exogenous BK could influence the outcome of infection of human brain microvascular endothelial cells (HBMECs). Unlike the unresponsive phenotype of Zika-infected HBMECs, we found that BK, acting via B2R, vigorously stimulated DENV-2 replication by reverting nitric oxide-driven apoptosis of endothelial cells. Using the mouse model of cerebral dengue infection, we next demonstrated that B2R targeting by icatibant decreased viral load in brain tissues. In summary, our study suggests that contact/KKS activation followed by BK-induced enhancement of DENV replication in the endothelium may underlie microvascular pathology in dengue.
Collapse
Affiliation(s)
- Sharton V. A. Coelho
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (S.V.A.C.); (N.M.R.); (M.P.P.); (A.S.G.P.)
| | - Naiara M. Rust
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (S.V.A.C.); (N.M.R.); (M.P.P.); (A.S.G.P.)
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.V.); (M.F.d.S.P.)
| | - Lucas Vellasco
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.V.); (M.F.d.S.P.)
| | - Michelle P. Papa
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (S.V.A.C.); (N.M.R.); (M.P.P.); (A.S.G.P.)
| | - Aline S. G. Pereira
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (S.V.A.C.); (N.M.R.); (M.P.P.); (A.S.G.P.)
| | - Matheus Ferreira da Silva Palazzo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.V.); (M.F.d.S.P.)
| | - Maria Aparecida Juliano
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil;
| | - Simone M. Costa
- Laboratório de Biotecnologia e Fisiologia de Infecções Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (S.M.C.); (A.M.B.A.)
| | - Ada M. B. Alves
- Laboratório de Biotecnologia e Fisiologia de Infecções Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil; (S.M.C.); (A.M.B.A.)
| | - Marli T. Cordeiro
- Fundação Oswaldo Cruz, Instituto Aggeu Magalhães, Recife 50740-465, Brazil; (M.T.C.); (E.T.A.M.)
| | - Ernesto T. A. Marques
- Fundação Oswaldo Cruz, Instituto Aggeu Magalhães, Recife 50740-465, Brazil; (M.T.C.); (E.T.A.M.)
- Department of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Júlio Scharfstein
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (L.V.); (M.F.d.S.P.)
- Correspondence: (J.S.); (L.B.d.A.)
| | - Luciana B. de Arruda
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (S.V.A.C.); (N.M.R.); (M.P.P.); (A.S.G.P.)
- Correspondence: (J.S.); (L.B.d.A.)
| |
Collapse
|
23
|
ACE2 in the renin-angiotensin system. Clin Sci (Lond) 2020; 134:3063-3078. [PMID: 33264412 DOI: 10.1042/cs20200478] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 01/01/2023]
Abstract
In 2020 we are celebrating the 20th anniversary of the angiotensin-converting enzyme 2 (ACE2) discovery. This event was a landmark that shaped the way that we see the renin-angiotensin system (RAS) today. ACE2 is an important molecular hub that connects the RAS classical arm, formed mainly by the octapeptide angiotensin II (Ang II) and its receptor AT1, with the RAS alternative or protective arm, formed mainly by the heptapeptides Ang-(1-7) and alamandine, and their receptors, Mas and MrgD, respectively. In this work we reviewed classical and modern literature to describe how ACE2 is a critical component of the protective arm, particularly in the context of the cardiac function, coagulation homeostasis and immune system. We also review recent literature to present a critical view of the role of ACE2 and RAS in the SARS-CoV-2 pandemic.
Collapse
|
24
|
Hamid S, Rhaleb IA, Kassem KM, Rhaleb NE. Role of Kinins in Hypertension and Heart Failure. Pharmaceuticals (Basel) 2020; 13:E347. [PMID: 33126450 PMCID: PMC7692223 DOI: 10.3390/ph13110347] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
The kallikrein-kinin system (KKS) is proposed to act as a counter regulatory system against the vasopressor hormonal systems such as the renin-angiotensin system (RAS), aldosterone, and catecholamines. Evidence exists that supports the idea that the KKS is not only critical to blood pressure but may also oppose target organ damage. Kinins are generated from kininogens by tissue and plasma kallikreins. The putative role of kinins in the pathogenesis of hypertension is discussed based on human mutation cases on the KKS or rats with spontaneous mutation in the kininogen gene sequence and mouse models in which the gene expressing only one of the components of the KKS has been deleted or over-expressed. Some of the effects of kinins are mediated via activation of the B2 and/or B1 receptor and downstream signaling such as eicosanoids, nitric oxide (NO), endothelium-derived hyperpolarizing factor (EDHF) and/or tissue plasminogen activator (T-PA). The role of kinins in blood pressure regulation at normal or under hypertension conditions remains debatable due to contradictory reports from various laboratories. Nevertheless, published reports are consistent on the protective and mediating roles of kinins against ischemia and cardiac preconditioning; reports also demonstrate the roles of kinins in the cardiovascular protective effects of the angiotensin-converting enzyme (ACE) and angiotensin type 1 receptor blockers (ARBs).
Collapse
Affiliation(s)
- Suhail Hamid
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA; (S.H.); (I.A.R.)
| | - Imane A. Rhaleb
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA; (S.H.); (I.A.R.)
| | - Kamal M. Kassem
- Division of Cardiology, Department of Internal Medicine, University of Louisville Medical Center, Louisville, KY 40202, USA;
| | - Nour-Eddine Rhaleb
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA; (S.H.); (I.A.R.)
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
25
|
Fang C, Schmaier AH. Novel anti-thrombotic mechanisms mediated by Mas receptor as result of balanced activities between the kallikrein/kinin and the renin-angiotensin systems. Pharmacol Res 2020; 160:105096. [PMID: 32712319 PMCID: PMC7378497 DOI: 10.1016/j.phrs.2020.105096] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 12/17/2022]
Abstract
The risk of thrombosis, a globally growing challenge and a major cause of death, is influenced by various factors in the intravascular coagulation, vessel wall, and cellular systems. Among the contributors to thrombosis, the contact activation system and the kallikrein/kinin system, two overlapping plasma proteolytic systems that are often considered as synonymous, regulate thrombosis from different aspects. On one hand, components of the contact activation system such as factor XII initiates activation of the coagulation proteins promoting thrombus formation on artificial surfaces through factor XI- and possibly prekallikrein-mediated intrinsic coagulation. On the other hand, physiological activation of plasma prekallikrein in the kallikrein/kinin system on endothelial cells liberates bradykinin from associated high-molecular-weight kininogen to stimulate the constitutive bradykinin B2 receptor to generate nitric oxide and prostacyclin to induce vasodilation and counterbalance angiotensin II signaling from the renin-angiotensin system which stimulates vasoconstriction. In addition to vascular tone regulation, this interaction between the kallikrein/kinin and renin-angiotensin systems has a thrombo-regulatory role independent of the contact pathway. At the level of the G-protein coupled receptors of these systems, defective bradykinin signaling due to attenuated bradykinin formation and/or decreased B2 receptor expression, as seen in murine prekallikrein and B2 receptor null mice, respectively, leads to compensatory overexpressed Mas, the receptor for angiotensin-(1-7) of the renin-angiotensin system. Mas stimulation and/or its increased expression contributes to maintaining a healthy vascular homeostasis by generating graded elevation of plasma prostacyclin which reduces thrombosis through two independent pathways: (1) increasing the vasoprotective transcription factor Sirtuin 1 to suppress tissue factor expression, and (2) inhibiting platelet activation. This review will summarize the recent advances in this field that support these understandings. Appreciating these subtle mechanisms help to develop novel anti-thrombotic strategies by targeting the vascular receptors in the renin-angiotensin and the kallikrein/kinin systems to maintain healthy vascular homeostasis.
Collapse
Affiliation(s)
- Chao Fang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and the Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, Hubei, 430030, China.
| | - Alvin H. Schmaier
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
26
|
Sparkenbaugh EM, Kasztan M, Henderson MW, Ellsworth P, Davis PR, Wilson KJ, Reeves B, Key NS, Strickland S, McCrae K, Pollock DM, Pawlinski R. High molecular weight kininogen contributes to early mortality and kidney dysfunction in a mouse model of sickle cell disease. J Thromb Haemost 2020; 18:2329-2340. [PMID: 32573897 PMCID: PMC8043232 DOI: 10.1111/jth.14972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Sickle cell disease (SCD) is characterized by chronic hemolytic anemia, vaso-occlusive crises, chronic inflammation, and activation of coagulation. The clinical complications such as painful crisis, stroke, pulmonary hypertension, nephropathy and venous thromboembolism lead to cumulative organ damage and premature death. High molecular weight kininogen (HK) is a central cofactor for the kallikrein-kinin and intrinsic coagulation pathways, which contributes to both coagulation and inflammation. OBJECTIVE We hypothesize that HK contributes to the hypercoagulable and pro-inflammatory state that causes end-organ damage and early mortality in sickle mice. METHODS We evaluated the role of HK in the Townes mouse model of SCD. RESULTS/CONCLUSIONS We found elevated plasma levels of cleaved HK in sickle patients compared to healthy controls, suggesting ongoing HK activation in SCD. We used bone marrow transplantation to generate wild type and sickle cell mice on a HK-deficient background. We found that short-term HK deficiency attenuated thrombin generation and inflammation in sickle mice at steady state, which was independent of bradykinin signaling. Moreover, long-term HK deficiency attenuates kidney injury, reduces chronic inflammation, and ultimately improves survival of sickle mice.
Collapse
Affiliation(s)
- Erica M. Sparkenbaugh
- UNC Blood Research Center, Division of Hematology & Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Malgorzata Kasztan
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael W. Henderson
- UNC Blood Research Center, Division of Hematology & Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick Ellsworth
- UNC Blood Research Center, Division of Hematology & Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Parker Ross Davis
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kathryn J. Wilson
- UNC Blood Research Center, Division of Hematology & Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brandi Reeves
- UNC Blood Research Center, Division of Hematology & Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nigel S. Key
- UNC Blood Research Center, Division of Hematology & Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| | - Keith McCrae
- Department of Hematology Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - David M. Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rafal Pawlinski
- UNC Blood Research Center, Division of Hematology & Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
27
|
Köhler J, Maletzki C, Koczan D, Frank M, Springer A, Steffen C, Revenko AS, MacLeod AR, Mikkat S, Kreikemeyer B, Oehmcke-Hecht S. Kininogen supports inflammation and bacterial spreading during Streptococccus Pyogenes Sepsis. EBioMedicine 2020; 58:102908. [PMID: 32707450 PMCID: PMC7381504 DOI: 10.1016/j.ebiom.2020.102908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/24/2020] [Accepted: 07/08/2020] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND High-molecular-weight kininogen is a cofactor of the human contact system, an inflammatory response mechanism that is activated during sepsis. It has been shown that high-molecular-weight kininogen contributes to endotoxemia, but is not critical for local host defense during pneumonia by Gram-negative bacteria. However, some important pathogens, such as Streptococcus pyogenes, can cleave kininogen by contact system activation. Whether kininogen causally affects antibacterial host defense in S. pyogenes infection, remains unknown. METHODS Kininogen concentration was determined in course plasma samples from septic patients. mRNA expression and degradation of kininogen was determined in liver or plasma of septic mice. Kininogen was depleted in mice by treatment with selective kininogen directed antisense oligonucleotides (ASOs) or a scrambled control ASO for 3 weeks prior to infection. 24 h after infection, infection parameters were determined. FINDINGS Data from human and mice samples indicate that kininogen is a positive acute phase protein. Lower kininogen concentration in plasma correlate with a higher APACHE II score in septic patients. We show that ASO-mediated depletion of kininogen in mice indeed restrains streptococcal spreading, reduces levels of proinflammatory cytokines such as IL-1β and IFNγ, but increased intravascular tissue factor and fibrin deposition in kidneys of septic animals. INTERPRETATION Mechanistically, kininogen depletion results in reduced plasma kallikrein levels and, during sepsis, in increased intravascular tissue factor that may reinforce immunothrombosis, and thus reduce streptococcal spreading. These novel findings point to an anticoagulant and profibrinolytic role of kininogens during streptococcal sepsis. FUNDING Full details are provided in the Acknowledgements section.
Collapse
Affiliation(s)
- Juliane Köhler
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Claudia Maletzki
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Dirk Koczan
- Center for Medical Research - Core Facility Micro-Array-Technology, Rostock University Medical Center, Rostock, Germany
| | - Marcus Frank
- Medical Biology and Electron Microscopy Centre, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, Rostock University, Rostock, Germany
| | - Armin Springer
- Medical Biology and Electron Microscopy Centre, Rostock University Medical Center, Rostock, Germany
| | - Carolin Steffen
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Alexey S Revenko
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92008, USA
| | - A Robert MacLeod
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92008, USA
| | - Stefan Mikkat
- Core Facility Proteome Analysis, Rostock University Medical Center, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
28
|
Mohammed BM, Monroe DM, Gailani D. Mouse models of hemostasis. Platelets 2020; 31:417-422. [PMID: 31992118 PMCID: PMC7244364 DOI: 10.1080/09537104.2020.1719056] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 02/02/2023]
Abstract
Hemostasis is the normal process that produces a blood clot at a site of vascular injury. Mice are widely used to study hemostasis and abnormalities of blood coagulation because their hemostatic system is similar in most respects to that of humans, and their genomes can be easily manipulated to create models of inherited human coagulation disorders. Two of the most widely used techniques for assessing hemostasis in mice are the tail bleeding time (TBT) and saphenous vein bleeding (SVB) models. Here we discuss the use of these methods in the evaluation of hemostasis, and the advantages and limits of using mice as surrogates for studying hemostasis in humans.
Collapse
Affiliation(s)
- Bassem M. Mohammed
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
- Department of Pathology and Immunology, Washington University, St. Louis, MO
| | - Dougald M. Monroe
- UNC Blood Research Center and Hematology/Oncology, University of North Carolina, Chapel Hill, NC
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| |
Collapse
|
29
|
Noubouossie DF, Henderson MW, Mooberry M, Ilich A, Ellsworth P, Piegore M, Skinner SC, Pawlinski R, Welsby I, Renné T, Hoffman M, Monroe DM, Key NS. Red blood cell microvesicles activate the contact system, leading to factor IX activation via 2 independent pathways. Blood 2020; 135:755-765. [PMID: 31971571 PMCID: PMC7059516 DOI: 10.1182/blood.2019001643] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 01/08/2020] [Indexed: 01/01/2023] Open
Abstract
Storage lesion-induced, red cell-derived microvesicles (RBC-MVs) propagate coagulation by supporting the assembly of the prothrombinase complex. It has also been reported that RBC-MVs initiate coagulation via the intrinsic pathway. To elucidate the mechanism(s) of RBC-MV-induced coagulation activation, the ability of storage lesion-induced RBC-MVs to activate each zymogen of the intrinsic pathway was assessed in a buffer system. Simultaneously, the thrombin generation (TG) assay was used to assess their ability to initiate coagulation in plasma. RBC-MVs directly activated factor XII (FXII) or prekallikrein, but not FXI or FIX. RBC-MVs initiated TG in normal pooled plasma and in FXII- or FXI-deficient plasma, but not in FIX-deficient plasma, suggesting an alternate pathway that bypasses both FXII and FXI. Interestingly, RBC-MVs generated FIXa in a prekallikrein-dependent manner. Similarly, purified kallikrein activated FIX in buffer and initiated TG in normal pooled plasma, as well as FXII- or FXI-deficient plasma, but not FIX-deficient plasma. Dual inhibition of FXIIa by corn trypsin inhibitor and kallikrein by soybean trypsin inhibitor was necessary for abolishing RBC-MV-induced TG in normal pooled plasma, whereas kallikrein inhibition alone was sufficient to abolish TG in FXII- or FXI-deficient plasma. Heating RBC-MVs at 60°C for 15 minutes or pretreatment with trypsin abolished TG, suggesting the presence of MV-associated proteins that are essential for contact activation. In summary, RBC-MVs activate both FXII and prekallikrein, leading to FIX activation by 2 independent pathways: the classic FXIIa-FXI-FIX pathway and direct kallikrein activation of FIX. These data suggest novel mechanisms by which RBC transfusion mediates inflammatory and/or thrombotic outcomes.
Collapse
Affiliation(s)
| | - Michael W Henderson
- UNC Blood Research Center, and
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Anton Ilich
- Department of Medicine
- UNC Blood Research Center, and
| | - Patrick Ellsworth
- Department of Medicine
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mark Piegore
- Department of Medicine
- UNC Blood Research Center, and
| | - Sarah C Skinner
- Department of Medicine
- UNC Blood Research Center, and
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Ian Welsby
- Department of Anesthesiology, Duke University, Durham, NC
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and
| | - Maureane Hoffman
- Department of Pathology, Veteran Affairs Medical Center, Durham, NC
| | | | - Nigel S Key
- Department of Medicine
- UNC Blood Research Center, and
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
30
|
Abstract
Activation of the intrinsic pathway of coagulation contributes to the pathogenesis of arterial and venous thrombosis. Critical insights into the involvement of intrinsic pathway factors have been derived from the study of gene-specific knockout animals and targeted inhibitors. Importantly, preclinical studies have indicated that targeting components of this pathway, including FXI (factor XI), FXII, and PKK (prekallikrein), reduces thrombosis with no significant effect on protective hemostatic pathways. This review highlights the advances made from studying the intrinsic pathway using gene-specific knockout animals and inhibitors in models of arterial and venous thrombosis. Development of inhibitors of activated FXI and FXII may reduce thrombosis with minimal increases in bleeding compared with current anticoagulant drugs.
Collapse
Affiliation(s)
- Steven P Grover
- From the Division of Hematology and Oncology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill
| | - Nigel Mackman
- From the Division of Hematology and Oncology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill
| |
Collapse
|
31
|
Jeong D, Goo JY, Kim HK, Chong SY, Kang MS. The First Korean Case of High-Molecular-Weight Kininogen Deficiency, With a Novel Variant, c.488delG, in the KNG1 Gene. Ann Lab Med 2019; 40:264-266. [PMID: 31858768 PMCID: PMC6933067 DOI: 10.3343/alm.2020.40.3.264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/18/2019] [Accepted: 11/26/2019] [Indexed: 11/19/2022] Open
Affiliation(s)
- Dajeong Jeong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Ja Yoon Goo
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hyun Kyung Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea.
| | - So Young Chong
- Department of Internal Medicine, CHA Bundang Medical Center, Seongnam, Korea
| | - Myung Seo Kang
- Department of Laboratory Medicine, CHA Bundang Medical Center, Seongnam, Korea
| |
Collapse
|
32
|
Liang B, Su J. Inducible Nitric Oxide Synthase ( iNOS) Mediates Vascular Endothelial Cell Apoptosis in Grass Carp Reovirus (GCRV)-Induced Hemorrhage. Int J Mol Sci 2019; 20:ijms20246335. [PMID: 31888180 PMCID: PMC6941106 DOI: 10.3390/ijms20246335] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/13/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Hemorrhage is one of the most obvious pathological phenomena in grass carp reovirus (GCRV) infection. The etiology of GCRV-induced hemorrhage is unclear. We found inducible nitric oxide synthase (iNOS) may relate to viral hemorrhage according to the previous studies, which is expressed at high levels after GCRV infection and is related to apoptosis. In this study, we aimed to investigate the mechanism of iNOS on apoptosis and hemorrhage at the cell level and individual level on subjects who were infected with GCRV and treated with S-methylisothiourea sulfate (SMT), an iNOS inhibitor. Cell structure, apoptosis rate, and hemorrhage were evaluated through fluorescence microscopy, Annexin V-FITC staining, and H&E staining, respectively. Cell samples and muscle tissues were collected for Western blotting, NO concentration measure, caspase activity assay, and qRT-PCR. iNOS-induced cell apoptosis and H&E staining showed that the vascular wall was broken after GCRV infection in vivo. When the function of iNOS was inhibited, NO content, apoptosis rate, caspase activity, and hemorrhage were reduced. Collectively, these results suggested iNOS plays a key role in apoptosis of vascular endothelial cells in GCRV-induced hemorrhage. This study is the first to elucidate the relationship between iNOS-induced cell apoptosis and GCRV-induced hemorrhage, which lays the foundation for further mechanistic research of virus-induced hemorrhage.
Collapse
Affiliation(s)
- Bo Liang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: ; Tel.: +86-27-8728-2227
| |
Collapse
|
33
|
A Proteomics-Based Approach Reveals Differential Regulation of Urine Proteins between Metabolically Healthy and Unhealthy Obese Patients. Int J Mol Sci 2019; 20:ijms20194905. [PMID: 31623319 PMCID: PMC6801506 DOI: 10.3390/ijms20194905] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022] Open
Abstract
Metabolic dysfunction associated with obesity threatens to inundate health care resources by increasing the incidences of obesity-related diseases. The aim of the present study was to investigate the changes in the urinary proteome of 18 individuals classified into metabolically healthy obese (MHO) and metabolically unhealthy obese (MUHO) patients. Proteome analysis was performed using the two-dimensional difference in gel electrophoresis (2D-DIGE) coupled with mass spectrometry (MS). Upon analysis, a total of 54 proteins were found to be affected with ≥1.5-fold change (ANOVA, p ≤ 0.05), of which 44 proteins were upregulated and 10 proteins were downregulated. These differentially abundant proteins were related to nuclear factor κB (NF-κB) and p38 mitogen-activated protein (MAP) kinase pathways and were involved in cellular compromise, inflammatory response, and cancer. Proteins involved in inflammation (fibrinogen alpha (FIBA), serotransferrin (TRFE, and kininogen-1 (KNG1)) and insulin resistance (ADP-ribosylation factor (ARF)-like protein 15 (ARL15) and retinol-binding protein 4 (RET4)) were found to be significantly increased in the urine samples of MUHO compared to MHO patients. Investigating the effects of obesity on urinary proteins can help in developing efficient diagnostic procedures for early detection and prevention of obesity-related complications.
Collapse
|
34
|
Plasma kallikrein contributes to ambient particulate matter-induced lung injury. Biochem Biophys Res Commun 2019; 518:409-415. [DOI: 10.1016/j.bbrc.2019.07.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 07/18/2019] [Indexed: 11/23/2022]
|
35
|
Schmaier AH, Stavrou EX. Factor XII - What's important but not commonly thought about. Res Pract Thromb Haemost 2019; 3:599-606. [PMID: 31624779 PMCID: PMC6781921 DOI: 10.1002/rth2.12235] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/28/2019] [Accepted: 05/18/2019] [Indexed: 12/20/2022] Open
Abstract
Factor XII (FXII) becomes a serine protease when blood is exposed to artificial medical surfaces or when pathologic surfaces arise in disease states leading to its autoactivation. Initiation of the blood coagulation cascade was the first recognized activity of FXIIa. Blocking FXIIa activity formed on artificial medical surfaces should reduce induced blood coagulation leading to thrombosis. In contrast to FXII enzymatic activities, less is known about zymogen FXII functions. Studies show that zymogen FXII has biologic activity in various cells in vivo. In endothelium, FXII stimulates cell growth and proliferation and, in vivo, neoangiogenesis after injury. In fibroblasts, transforming growth factor-β increases FXII expression, which in turn stimulates fibroblast proliferation, contributing to tissue fibrosis. In neutrophils, FXII stimulates Akt2 to initiate neutrophil adhesion, migration, and chemotaxis, priming events leading to NETosis. Factor FXII deficiency leads to decreased neutrophil recruitment and improved wound healing. In dendritic cells, FXII contributes to neuroinflammation, and its deficiency or pharmacologic inhibition renders mice less susceptible to autoimmune encephalomyelitis. These combined studies indicate that FXII also contributes to multiple components of the inflammatory response. In sum, targeting FXII's biologic activities may provide novel approaches to reduce thrombosis and the inflammatory response in various disease states.
Collapse
Affiliation(s)
- Alvin H. Schmaier
- Department of MedicineCase Western Reserve UniversityClevelandOhio
- Department of MedicineUniversity Hospitals Cleveland Medical CenterClevelandOhio
| | - Evi X. Stavrou
- Department of MedicineCase Western Reserve UniversityClevelandOhio
- Department of MedicineVA Northeast Ohio Healthcare SystemClevelandOhio
| |
Collapse
|
36
|
Mohammed BM, Cheng Q, Matafonov A, Verhamme IM, Emsley J, McCrae KR, McCarty OJT, Gruber A, Gailani D. A non-circulating pool of factor XI associated with glycosaminoglycans in mice. J Thromb Haemost 2019; 17:1449-1460. [PMID: 31125187 PMCID: PMC6768408 DOI: 10.1111/jth.14494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 05/20/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND The homologous plasma proteins prekallikrein and factor XI (FXI) circulate as complexes with high molecular weight kininogen. Although evidence supports an interaction between the prekallikrein-kininogen complexes and vascular endothelium, there is conflicting information regarding FXI binding to endothelium. OBJECTIVE To study the interaction between FXI and blood vessels in mice. METHODS C57Bl/6 wild-type or F11-/- mice in which variants of FXI were expressed by hydrodynamic tail vein injection, received intravenous infusions of saline, heparin, polyphosphates, protamine, or enzymes that digest glycosaminoglycans (GAGs). Blood was collected after infusion and plasma was analyzed by western blot for FXI. RESULTS AND CONCLUSIONS Plasma FXI increased 5- to 10-fold in wild-type mice after infusion of heparin, polyphosphates, protamine, or GAG-digesting enzymes, but not saline. Similar treatments resulted in a much smaller change in plasma FXI levels in rats, and infusions of large boluses of heparin did not change FXI levels appreciably in baboons or humans. The releasable FXI fraction was reconstituted in F11-/- mice by expressing murine FXI, but not human FXI. We identified a cluster of basic residues on the apple 4 domain of mouse FXI that is not present in other species. Replacing the basic residues with alanine prevented the interaction of mouse FXI with blood vessels, whereas introducing the basic residues into human FXI allowed it to bind to blood vessels. Most FXI in mice is noncovalently associated with GAGs on blood vessel endothelium and does not circulate in plasma.
Collapse
Affiliation(s)
- Bassem M. Mohammed
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee
- Department of Clinical Pharmacy, School of Pharmacy, Cairo University, Cairo, Egypt
| | - Qiufang Cheng
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee
| | - Anton Matafonov
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee
| | - Ingrid M. Verhamme
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee
| | - Jonas Emsley
- Center for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Keith R. McCrae
- Department of Hematology and Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Owen J. T. McCarty
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
- Division of Hematology/ Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Andras Gruber
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
- Division of Hematology/ Medical Oncology, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
37
|
Garnett ER, Lomax JE, Mohammed BM, Gailani D, Sheehan JP, Raines RT. Phenotype of ribonuclease 1 deficiency in mice. RNA (NEW YORK, N.Y.) 2019; 25:921-934. [PMID: 31053653 PMCID: PMC6633200 DOI: 10.1261/rna.070433.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/27/2019] [Indexed: 05/06/2023]
Abstract
Biological roles for extracellular RNA (eRNA) have become apparent. For example, eRNA can induce contact activation in blood via activation of the plasma proteases factor XII (FXII) and factor XI (FXI). We sought to reveal the biological role of the secretory enzyme ribonuclease 1 (RNase 1) in an organismal context by generating and analyzing RNase 1 knockout (Rnase1-/-) mice. We found that these mice are viable, healthy, and fertile, though larger than Rnase1+/+ mice. Rnase1-/- plasma contains more RNA than does the plasma of Rnase1+/+ mice. Moreover, the plasma of Rnase1-/- mice clots more rapidly than does wild-type plasma. This phenotype appeared to be due to increased levels of the active form of FXII (FXIIa) in the plasma of Rnase1-/- mice compared to Rnase1+/+ mice, and is consistent with the known effects of eRNA on FXII activation. The apparent activity of FXI in the plasma of Rnase1-/- mice was 1000-fold higher when measured in an assay triggered by a low concentration of tissue factor than in assays based on recalcification, consistent with eRNA enhancing FXI activation by thrombin. These findings suggest that one of the physiological functions of RNase 1 is to degrade eRNA in blood plasma. Loss of this function facilitates FXII and FXI activation, which could have effects on inflammation and blood coagulation. We anticipate that Rnase1-/- mice will be a useful tool for evaluating other hypotheses about the functions of RNase 1 and of eRNA in vivo.
Collapse
Affiliation(s)
- Emily R Garnett
- Graduate Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jo E Lomax
- Graduate Program Molecular and Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Bassem M Mohammed
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - John P Sheehan
- Department of Medicine/Hematology-Oncology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Ronald T Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
38
|
Folsom AR, Tang W, Basu S, Misialek JR, Couper D, Heckbert SR, Cushman M. Plasma Concentrations of High Molecular Weight Kininogen and Prekallikrein and Venous Thromboembolism Incidence in the General Population. Thromb Haemost 2019; 119:834-843. [PMID: 30780167 PMCID: PMC6499653 DOI: 10.1055/s-0039-1678737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The kallikrein/kinin system, an intravascular biochemical pathway that includes several proteins involved in the contact activation system of coagulation, renin-angiotensin activation and inflammation, may or may not play a role in venous thromboembolism (VTE) occurrence. Within a large prospective population-based study in the United States, we conducted a nested case-cohort study to test the hypothesis that higher plasma levels of high molecular weight kininogen (HK) or prekallikrein are associated with greater VTE incidence. We related baseline enzyme-linked immunosorbent assay measures of HK and prekallikrein in 1993 to 1995 to incidence VTE of the lower extremity (n = 612) through 2015 (mean follow-up = 18 years). We found no evidence that plasma HK or prekallikrein was associated positively with incident VTE. HK, in fact, was associated inversely and significantly with VTE in most proportional hazards regression models. For example, the hazard ratio of VTE per standard deviation higher HK concentration was 0.88 (95% confidence interval = 0.81, 0.97), after adjustment for several VTE risk factors. Our findings suggest that plasma levels of these factors do not determine the risk of VTE in the general population.
Collapse
Affiliation(s)
- Aaron R. Folsom
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States
| | - Weihong Tang
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States
| | - Saonli Basu
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States
| | - Jeffrey R. Misialek
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States
| | - David Couper
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Susan R. Heckbert
- Department of Epidemiology, University of Washington, Seattle, Washington, United States
| | - Mary Cushman
- Department of Medicine, University of Vermont, Burlington, Vermont, United States
- Department of Pathology, University of Vermont, Burlington, Vermont, United States
| |
Collapse
|
39
|
Subverting bradykinin-evoked inflammation by co-opting the contact system: lessons from survival strategies of Trypanosoma cruzi. Curr Opin Hematol 2019; 25:347-357. [PMID: 30028741 DOI: 10.1097/moh.0000000000000444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW During Chagas disease, Trypanosoma cruzi alternates between intracellular and extracellular developmental forms. After presenting an overview about the roles of the contact system in immunity, I will review experimental studies showing that activation of the kallikrein-kinin system (KKS) translates into mutual benefits to the host/parasite relationship. RECENT FINDINGS T. cruzi trypomastigotes initiate inflammation by activating tissue-resident innate sentinel cells via the TLR2/CXCR2 pathway. Following neutrophil-evoked microvascular leakage, the parasite's major cysteine protease (cruzipain) cleaves plasma-borne kininogens and complement C5. Tightly regulated by angiotensin-converting enzyme (ACE), kinins and C5a in turn further propagate inflammation via iterative cycles of mast cell degranulation, contact system activation, bradykinin release and activation of endothelial bradykinin B2 receptors (B2R). Recently, studies in the intracardiac model of infection revealed a dichotomic role for bradykinin and endothelin-1: generated upon contact activation (mast cell/KKS pathway), these pro-oedematogenic peptides reciprocally stimulate trypomastigote invasion of heart cells that naturally overexpress B2R and endothelin receptors (ETaR/ETbR). SUMMARY Studies focusing on the immunopathogenesis of Chagas disease revealed that the contact system plays a dual role in host/parasite balance: T. cruzi co-opts bradykinin-induced plasma leakage as a strategy to increment heart parasitism and increase immune resistance by upregulating type-1 effector T-cell production in secondary lymphoid tissues.
Collapse
|
40
|
Neutrophils: back in the thrombosis spotlight. Blood 2019; 133:2186-2197. [PMID: 30898858 DOI: 10.1182/blood-2018-10-862243] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
Reactive and clonal neutrophil expansion has been associated with thrombosis, suggesting that neutrophils play a role in this process. However, although there is no doubt that activated monocytes trigger coagulation in a tissue factor-dependent manner, it remains uncertain whether stimulated neutrophils can also directly activate coagulation. After more than a decade of debate, it is now largely accepted that normal human neutrophils do not synthetize tissue factor, the initiator of the extrinsic pathway of coagulation. However, neutrophils may passively acquire tissue factor from monocytes. Recently, the contact system, which initiates coagulation via the intrinsic pathway, has been implicated in the pathogenesis of thrombosis. After the recent description of neutrophil extracellular trap (NET) release by activated neutrophils, some animal models of thrombosis have demonstrated that coagulation may be enhanced by direct NET-dependent activation of the contact system. However, there is currently no consensus on how to assess or quantify NETosis in vivo, and other experimental animal models have failed to demonstrate a role for neutrophils in thrombogenesis. Nevertheless, it is likely that NETs can serve to localize other circulating coagulation components and can also promote vessel occlusion independent of fibrin formation. This article provides a critical appraisal of the possible roles of neutrophils in thrombosis and highlights some existing knowledge gaps regarding the procoagulant activities of neutrophil-derived extracellular chromatin and its molecular components. A better understanding of these mechanisms could guide future approaches to prevent and/or treat thrombosis.
Collapse
|
41
|
A mechanism for hereditary angioedema with normal C1 inhibitor: an inhibitory regulatory role for the factor XII heavy chain. Blood 2018; 133:1152-1163. [PMID: 30591525 DOI: 10.1182/blood-2018-06-860270] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/13/2018] [Indexed: 12/29/2022] Open
Abstract
The plasma proteins factor XII (FXII) and prekallikrein (PK) undergo reciprocal activation to the proteases FXIIa and kallikrein by a process that is enhanced by surfaces (contact activation) and regulated by the serpin C1 inhibitor. Kallikrein cleaves high-molecular-weight kininogen (HK), releasing the vasoactive peptide bradykinin. Patients with hereditary angioedema (HAE) experience episodes of soft tissue swelling as a consequence of unregulated kallikrein activity or increased prekallikrein activation. Although most HAE cases are caused by reduced plasma C1-inhibitor activity, HAE has been linked to lysine/arginine substitutions for Thr309 in FXII (FXII-Lys/Arg309). Here, we show that FXII-Lys/Arg309 is susceptible to cleavage after residue 309 by coagulation proteases (thrombin and FXIa), resulting in generation of a truncated form of FXII (δFXII). The catalytic efficiency of δFXII activation by kallikrein is 15-fold greater than for full-length FXII. The enhanced rate of reciprocal activation of PK and δFXII in human plasma and in mice appears to overwhelm the normal inhibitory function of C1 inhibitor, leading to increased HK cleavage. In mice given human FXII-Lys/Arg309, induction of thrombin generation by infusion of tissue factor results in enhanced HK cleavage as a consequence of δFXII formation. The effects of δFXII in vitro and in vivo are reproduced when wild-type FXII is bound by an antibody to the FXII heavy chain (HC; 15H8). The results contribute to our understanding of the predisposition of patients carrying FXII-Lys/Arg309 to angioedema after trauma, and reveal a regulatory function for the FXII HC that normally limits PK activation in plasma.
Collapse
|
42
|
Genetic effects of BDKRB2 and KNG1 on deep venous thrombosis after orthopedic surgery and the potential mediator. Sci Rep 2018; 8:17332. [PMID: 30478260 PMCID: PMC6255904 DOI: 10.1038/s41598-018-34868-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/22/2018] [Indexed: 11/08/2022] Open
Abstract
Deep venous thrombosis (DVT) is a common complication of orthopedic surgery. Genetic risk factors and high heritability carried a substantial risk of DVT. In this study, we aimed to investigate the potential association in the Han Chinese population between the polymorphisms of BDKRB2 and KNG1 and DVT after orthopedic surgery (DVTAOS). A total of 3,010 study subjects comprising 892 DVT cases and 2,118 controls were included in the study, and 39 single nucleotide polymorphisms (SNPs) in total (30 for BDKRB2 and 9 for KNG1) were chosen for genotyping. Two SNPs, rs710446 (OR = 1.27, P = 0.00016) and rs2069588 (OR = 1.29, P = 0.00056), were identified as significantly associated with DVTAOS. After adjusting for BMI, the significance of rs2069588 decreased (P = 0.0013). Haplotype analyses showed that an LD block containing rs2069588 significantly correlated with the DVTAOS risk. Moreover, bioinformatics analysis indicated that hsa-miR-758-5p and BDKRB2 formed miRNA/SNP target duplexes if the rs2069588 allele was in the T form, suggesting that rs2069588 may alter BDKRB2 expression by affecting hsa-miR-758-5p/single-nucleotide polymorphism target duplexes. Our results demonstrate additional evidence supporting that there is an important role for the KNG1 and BDKRB2 genes in the increased susceptibility of DVTAOS.
Collapse
|
43
|
Yang J, van 't Veer C, Roelofs JJTH, van Heijst JWJ, de Vos AF, McCrae KR, Revenko AS, Crosby J, van der Poll T. Kininogen deficiency or depletion reduces enhanced pause independent of pulmonary inflammation in a house dust mite-induced murine asthma model. Am J Physiol Lung Cell Mol Physiol 2018; 316:L187-L196. [PMID: 30358441 DOI: 10.1152/ajplung.00162.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
High-molecular-weight kininogen is an important substrate of the kallikrein-kinin system. Activation of this system has been associated with aggravation of hallmark features in asthma. We aimed to determine the role of kininogen in enhanced pause (Penh) measurements and lung inflammation in a house dust mite (HDM)-induced murine asthma model. Normal wild-type mice and mice with a genetic deficiency of kininogen were subjected to repeated HDM exposure (sensitization on days 0, 1, and 2; challenge on days 14, 15, 18, and 19) via the airways to induce allergic lung inflammation. Alternatively, kininogen was depleted after HDM sensitization by twice-weekly injections of a specific antisense oligonucleotide (kininogen ASO) starting at day 3. In kininogen-deficient mice HDM induced in Penh was completely prevented. Remarkably, kininogen deficiency did not modify HDM-induced eosinophil/neutrophil influx, T helper 2 responses, mucus production, or lung pathology. kininogen ASO treatment started after HDM sensitization reduced plasma kininogen levels by 75% and reproduced the phenotype of kininogen deficiency: kininogen ASO administration prevented the HDM-induced increase in Penh without influencing leukocyte influx, Th2 responses, mucus production, or lung pathology. This study suggests that kininogen could contribute to HDM-induced rise in Penh independently of allergic lung inflammation. Further research is warranted to confirm these data using invasive measurements of airway responsiveness.
Collapse
Affiliation(s)
- Jack Yang
- Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Cornelis van 't Veer
- Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Jeroen W J van Heijst
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Alex F de Vos
- Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Keith R McCrae
- Departments of Hematology-Oncology and Cellular and Molecular Medicine, Cleveland Clinic , Cleveland, Ohio
| | - Alexey S Revenko
- Drug Discovery and Corporate Development, Ionis Pharmaceuticals, Incorporated, Carlsbad, California
| | - Jeff Crosby
- Drug Discovery and Corporate Development, Ionis Pharmaceuticals, Incorporated, Carlsbad, California
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands.,Division of Infectious Diseases, Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
44
|
Al-Horani RA, Afosah DK. Recent advances in the discovery and development of factor XI/XIa inhibitors. Med Res Rev 2018; 38:1974-2023. [PMID: 29727017 PMCID: PMC6173998 DOI: 10.1002/med.21503] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/09/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022]
Abstract
Factor XIa (FXIa) is a serine protease homodimer that belongs to the intrinsic coagulation pathway. FXIa primarily catalyzes factor IX activation to factor IXa, which subsequently activates factor X to factor Xa in the common coagulation pathway. Growing evidence suggests that FXIa plays an important role in thrombosis with a relatively limited contribution to hemostasis. Therefore, inhibitors targeting factor XI (FXI)/FXIa system have emerged as a paradigm-shifting strategy so as to develop a new generation of anticoagulants to effectively prevent and/or treat thromboembolic diseases without the life-threatening risk of internal bleeding. Several inhibitors of FXI/FXIa proteins have been discovered or designed over the last decade including polypeptides, active site peptidomimetic inhibitors, allosteric inhibitors, antibodies, and aptamers. Antisense oligonucleotides (ASOs), which ultimately reduce the hepatic biosynthesis of FXI, have also been introduced. A phase II study, which included patients undergoing elective primary unilateral total knee arthroplasty, revealed that a specific FXI ASO effectively protects patients against venous thrombosis with a relatively limited risk of bleeding. Initial findings have also demonstrated the potential of FXI/FXIa inhibitors in sepsis, listeriosis, and arterial hypertension. This review highlights various chemical, biochemical, and pharmacological aspects of FXI/FXIa inhibitors with the goal of advancing their development toward clinical use.
Collapse
Affiliation(s)
- Rami A. Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| | - Daniel K. Afosah
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219
| |
Collapse
|
45
|
Coagulation factor XII in thrombosis and inflammation. Blood 2018; 131:1903-1909. [PMID: 29483100 DOI: 10.1182/blood-2017-04-569111] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 02/21/2018] [Indexed: 12/14/2022] Open
Abstract
Combinations of proinflammatory and procoagulant reactions are the unifying principle for a variety of disorders affecting the cardiovascular system. The factor XII-driven contact system starts coagulation and inflammatory mechanisms via the intrinsic pathway of coagulation and the bradykinin-producing kallikrein-kinin system, respectively. The biochemistry of the contact system in vitro is well understood; however, its in vivo functions are just beginning to emerge. Challenging the concept of the coagulation balance, targeting factor XII or its activator polyphosphate, provides protection from thromboembolic diseases without interfering with hemostasis. This suggests that the polyphosphate/factor XII axis contributes to thrombus formation while being dispensable for hemostatic processes. In contrast to deficiency in factor XII providing safe thromboprotection, excessive FXII activity is associated with the life-threatening inflammatory disorder hereditary angioedema. The current review summarizes recent findings of the polyphosphate/factor XII-driven contact system at the intersection of procoagulant and proinflammatory disease states. Elucidating the contact system offers the exciting opportunity to develop strategies for safe interference with both thrombotic and inflammatory disorders.
Collapse
|
46
|
Abstract
The fundamental pathology in Alzheimer's disease (AD) is neuronal dysfunction leading to cognitive impairment. The amyloid-β peptide (Aβ), derived from amyloid precursor protein, is one driver of AD, but how it leads to neuronal dysfunction is not established. In this Review, I discuss the complexity of AD and possible cause-and-effect relationships between Aβ and the vascular and hemostatic systems. AD can be considered a multifactorial syndrome with various contributing pathological mechanisms. Therefore, as is routinely done with cancer, it will be important to classify patients with respect to their disease signature so that specific pathologies, including vascular pathways, can be therapeutically targeted.
Collapse
|
47
|
Spronk HMH, Padro T, Siland JE, Prochaska JH, Winters J, van der Wal AC, Posthuma JJ, Lowe G, d'Alessandro E, Wenzel P, Coenen DM, Reitsma PH, Ruf W, van Gorp RH, Koenen RR, Vajen T, Alshaikh NA, Wolberg AS, Macrae FL, Asquith N, Heemskerk J, Heinzmann A, Moorlag M, Mackman N, van der Meijden P, Meijers JCM, Heestermans M, Renné T, Dólleman S, Chayouâ W, Ariëns RAS, Baaten CC, Nagy M, Kuliopulos A, Posma JJ, Harrison P, Vries MJ, Crijns HJGM, Dudink EAMP, Buller HR, Henskens YMC, Själander A, Zwaveling S, Erküner O, Eikelboom JW, Gulpen A, Peeters FECM, Douxfils J, Olie RH, Baglin T, Leader A, Schotten U, Scaf B, van Beusekom HMM, Mosnier LO, van der Vorm L, Declerck P, Visser M, Dippel DWJ, Strijbis VJ, Pertiwi K, Ten Cate-Hoek AJ, Ten Cate H. Atherothrombosis and Thromboembolism: Position Paper from the Second Maastricht Consensus Conference on Thrombosis. Thromb Haemost 2018; 118:229-250. [PMID: 29378352 DOI: 10.1160/th17-07-0492] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Atherothrombosis is a leading cause of cardiovascular mortality and long-term morbidity. Platelets and coagulation proteases, interacting with circulating cells and in different vascular beds, modify several complex pathologies including atherosclerosis. In the second Maastricht Consensus Conference on Thrombosis, this theme was addressed by diverse scientists from bench to bedside. All presentations were discussed with audience members and the results of these discussions were incorporated in the final document that presents a state-of-the-art reflection of expert opinions and consensus recommendations regarding the following five topics: 1. Risk factors, biomarkers and plaque instability: In atherothrombosis research, more focus on the contribution of specific risk factors like ectopic fat needs to be considered; definitions of atherothrombosis are important distinguishing different phases of disease, including plaque (in)stability; proteomic and metabolomics data are to be added to genetic information. 2. Circulating cells including platelets and atherothrombosis: Mechanisms of leukocyte and macrophage plasticity, migration, and transformation in murine atherosclerosis need to be considered; disease mechanism-based biomarkers need to be identified; experimental systems are needed that incorporate whole-blood flow to understand how red blood cells influence thrombus formation and stability; knowledge on platelet heterogeneity and priming conditions needs to be translated toward the in vivo situation. 3. Coagulation proteases, fibrin(ogen) and thrombus formation: The role of factor (F) XI in thrombosis including the lower margins of this factor related to safe and effective antithrombotic therapy needs to be established; FXI is a key regulator in linking platelets, thrombin generation, and inflammatory mechanisms in a renin-angiotensin dependent manner; however, the impact on thrombin-dependent PAR signaling needs further study; the fundamental mechanisms in FXIII biology and biochemistry and its impact on thrombus biophysical characteristics need to be explored; the interactions of red cells and fibrin formation and its consequences for thrombus formation and lysis need to be addressed. Platelet-fibrin interactions are pivotal determinants of clot formation and stability with potential therapeutic consequences. 4. Preventive and acute treatment of atherothrombosis and arterial embolism; novel ways and tailoring? The role of protease-activated receptor (PAR)-4 vis à vis PAR-1 as target for antithrombotic therapy merits study; ongoing trials on platelet function test-based antiplatelet therapy adjustment support development of practically feasible tests; risk scores for patients with atrial fibrillation need refinement, taking new biomarkers including coagulation into account; risk scores that consider organ system differences in bleeding may have added value; all forms of oral anticoagulant treatment require better organization, including education and emergency access; laboratory testing still needs rapidly available sensitive tests with short turnaround time. 5. Pleiotropy of coagulation proteases, thrombus resolution and ischaemia-reperfusion: Biobanks specifically for thrombus storage and analysis are needed; further studies on novel modified activated protein C-based agents are required including its cytoprotective properties; new avenues for optimizing treatment of patients with ischaemic stroke are needed, also including novel agents that modify fibrinolytic activity (aimed at plasminogen activator inhibitor-1 and thrombin activatable fibrinolysis inhibitor.
Collapse
Affiliation(s)
- H M H Spronk
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - T Padro
- Cardiovascular Research Center (ICCC), Hospital Sant Pau, Barcelona, Spain
| | - J E Siland
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - J H Prochaska
- Center for Cardiology/Center for Thrombosis and Hemostasis/DZHK, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - J Winters
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A C van der Wal
- Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - J J Posthuma
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - G Lowe
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland
| | - E d'Alessandro
- Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.,Department of Pathology, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - P Wenzel
- Department of Cardiology, Universitätsmedizin Mainz, Mainz, Germany
| | - D M Coenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - P H Reitsma
- Einthoven Laboratory, Leiden University Medical Center, Leiden, The Netherlands
| | - W Ruf
- Center for Cardiology/Center for Thrombosis and Hemostasis/DZHK, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - R H van Gorp
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - R R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - T Vajen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - N A Alshaikh
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A S Wolberg
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, United States
| | - F L Macrae
- Thrombosis and Tissue Repair Group, Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - N Asquith
- Thrombosis and Tissue Repair Group, Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - J Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A Heinzmann
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - M Moorlag
- Synapse, Maastricht, The Netherlands
| | - N Mackman
- Department of Medicine, UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, United States
| | - P van der Meijden
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - J C M Meijers
- Department of Plasma Proteins, Sanquin, Amsterdam, The Netherlands
| | - M Heestermans
- Einthoven Laboratory, Leiden University Medical Center, Leiden, The Netherlands
| | - T Renné
- Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden.,Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - S Dólleman
- Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
| | - W Chayouâ
- Synapse, Maastricht, The Netherlands
| | - R A S Ariëns
- Thrombosis and Tissue Repair Group, Division of Cardiovascular and Diabetes Research, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - C C Baaten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - M Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A Kuliopulos
- Tufts University School of Graduate Biomedical Sciences, Biochemistry/Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts
| | - J J Posma
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - P Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - M J Vries
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - H J G M Crijns
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - E A M P Dudink
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - H R Buller
- Department of Vascular Medicine, Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Y M C Henskens
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - A Själander
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - S Zwaveling
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Synapse, Maastricht, The Netherlands
| | - O Erküner
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - J W Eikelboom
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - A Gulpen
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - F E C M Peeters
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - J Douxfils
- Department of Pharmacy, Thrombosis and Hemostasis Center, Faculty of Medicine, Namur University, Namur, Belgium
| | - R H Olie
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - T Baglin
- Department of Haematology, Addenbrookes Hospital Cambridge, Cambridge, United Kingdom
| | - A Leader
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Davidoff Cancer Center, Rabin Medical Center, Institute of Hematology, Sackler Faculty of Medicine, Tel Aviv University, Petah Tikva, Tel Aviv, Israel
| | - U Schotten
- Center for Cardiology/Center for Thrombosis and Hemostasis/DZHK, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - B Scaf
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - H M M van Beusekom
- Department of Experimental Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - L O Mosnier
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, United States
| | | | - P Declerck
- Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Leuven, Belgium
| | | | - D W J Dippel
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | | | - K Pertiwi
- Department of Cardiovascular Pathology, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - A J Ten Cate-Hoek
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - H Ten Cate
- Laboratory for Clinical Thrombosis and Haemostasis, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
48
|
Ahn HJ, Chen ZL, Zamolodchikov D, Norris EH, Strickland S. Interactions of β-amyloid peptide with fibrinogen and coagulation factor XII may contribute to Alzheimer's disease. Curr Opin Hematol 2018; 24:427-431. [PMID: 28661939 DOI: 10.1097/moh.0000000000000368] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW To review the evidence that the Alzheimer peptide β-amyloid interacts with the blood coagulation system and influences the pathophysiology of the disease. RECENT FINDINGS β-amyloid can interact with fibrinogen and blood coagulation factor XII and trigger ischemia and inflammation. SUMMARY β-amyloid interacts with fibrinogen and factor XII. These interactions can lead to increased clotting, abnormal clot formation, persistent fibrin deposition, and generation of proinflammatory molecules. These events can damage neurons and could contribute to the cognitive decline in Alzheimer's disease patients.
Collapse
Affiliation(s)
- Hyung J Ahn
- aPatricia and John Rosenwald Laboratory of Neurobiology and Genetics, Rockefeller University, New York City bRegeneron Pharmaceuticals, Tarrytown, New York, USA *Hyung J. Ahn, Zu-Lin Chen, and Daria Zamolodchikov contributed equally to this article
| | | | | | | | | |
Collapse
|
49
|
van Montfoort M, Meijers J. Anticoagulation beyond direct thrombin and factor Xa inhibitors: indications for targeting the intrinsic pathway? Thromb Haemost 2017; 110:223-32. [DOI: 10.1160/th12-11-0803] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 05/07/2013] [Indexed: 11/05/2022]
Abstract
SummaryAntithrombotic drugs like vitamin K antagonists and heparin have been the gold standard for the treatment and prevention of thromboembolic disease for many years. Unfortunately, there are several disadvantages of these antithrombotic drugs: they are accompanied by serious bleeding problems, it is necessary to monitor the therapeutic window, and there are various interactions with food and other drugs. This has led to the development of new oral anticoagulants, specifically inhibiting either thrombin or factor Xa. In terms of effectiveness, these drugs are comparable to the currently available anticoagulants; however, they are still associated with issues such as bleeding, reversal of the drug and complicated laboratory monitoring. Vitamin K antagonists, heparin, direct thrombin and factor Xa inhibitors have in common that they target key proteins of the haemostatic system. In an attempt to overcome these difficulties we investigated whether the intrinsic coagulation factors (VIII, IX, XI, XII, prekallikrein and high-molecular-weight kininogen) are superior targets for anticoagulation. We analysed epidemiological data concerning thrombosis and bleeding in patients deficient in one of the intrinsic pathway proteins. Furthermore, we discuss several thrombotic models in intrinsic coagulation factor-deficient animals. The combined results suggest that intrinsic coagulation factors could be suitable targets for anticoagulant drugs.
Collapse
|
50
|
Bird JE, Smith P, Wang X, Schumacher W, Barbera F, Revelli JP, Seiffert D. Effects of plasma kallikrein deficiency on haemostasis and thrombosis in mice: Murine Ortholog of the Fletcher Trait. Thromb Haemost 2017. [DOI: 10.1160/th11-10-0682] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SummaryPlasma kallikrein is a multifunctional serine protease involved in contact activation of coagulation. Deficiency in humans is characterised by prolonged activated partial thromboplastin time (aPTT); however, the balance between thrombosis and haemostasis is not fully understood. A study of plasma kallikrein-deficient mice revealed increased aPTT, without prolonged bleeding time. Prekallikrein antisense oligonucleotide (ASO) treatment in mice suggested potential for a positive therapeutic index. The current goal was to further define the role of plasma kallikrein in coagulation. Blood pressure and heart rate were normal in plasma kallikrein-deficient mice, and mice were completely protected from occlusion (100 ± 1.3% control flow) in 3.5% FeCl3 -induced arterial thrombosis versus heterozygotes (20 ± 11.4%) and wild-type littermates (8 ± 0%). Vessels occluded in 8/8 wild-type, 7/8 heterozygotes, and 0/8 knockouts. Anti-thrombotic protection was less pronounced in 5% FeCl3-induced arterial injury. Integrated blood flow was 8 ± 0% control in wild-type and heterozygotes, and significantly (p<0.01) improved to 43 ± 14.2% in knockouts. The number of vessels occluded was similar in all genotypes. Thrombus weight was significantly reduced in knockouts (−47%) and heterozygotes (−23%) versus wild-type in oxidative venous thrombosis. Average tail bleeding time increased modestly in knockout mice compared to wild-type. Average renal bleeding times were similar in all genotypes. These studies confirm and extend studies with prekallikrein ASO, and demonstrate that plasma kallikrein deletion prevents occlusive thrombus formation in mice with a minimal role in provoked bleeding. Additional support for the significance of the intrinsic pathway in the coagulation cascade is provided, as well as for a potential new anti-thrombotic approach.
Collapse
|