1
|
Chen Z, Wang Q, Yan YY, Jin D, Wang Y, Zhang XX, Liu XH. Discovery of novel and potent CDK8 inhibitors for the treatment of acute myeloid leukaemia. J Enzyme Inhib Med Chem 2024; 39:2305852. [PMID: 38258519 PMCID: PMC10810651 DOI: 10.1080/14756366.2024.2305852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
It has been reported that CDK8 plays a key role in acute myeloid leukaemia. Here, a total of 40 compounds were rational designed and synthesised based on the previous SAR. Among them, compound 12 (3-(3-(furan-3-yl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide) showed the most potent inhibiting activity against CDK8 with an IC50 value of 39.2 ± 6.3 nM and anti AML cell proliferation activity (molm-13 GC50 = 0.02 ± 0.01 μM, MV4-11 GC50 = 0.03 ± 0.01 μM). Mechanistic studies revealed that this compound 12 could inhibit the phosphorylation of STAT-1 and STAT-5. Importantly, compound 12 showed relative good bioavailability (F = 38.80%) and low toxicity in vivo. This study has great significance for the discovery of more efficient CDK8 inhibitors and the development of drugs for treating AML in the future.
Collapse
Affiliation(s)
- Zhuoying Chen
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| | - Quan Wang
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| | - Yao Yao Yan
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| | - Dalong Jin
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| | - Yumeng Wang
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| | - Xing Xing Zhang
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Xin Hua Liu
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| |
Collapse
|
2
|
Shahswar R, Ganser A. Relapse and resistance in acute myeloid leukemia post venetoclax: improving second lines therapy and combinations. Expert Rev Hematol 2024; 17:723-739. [PMID: 39246164 DOI: 10.1080/17474086.2024.2402283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION The combined use of the BCL-2 inhibitor venetoclax with azacitidine now is the standard of care for patients with acute myeloid leukemia (AML) unfit for intensive chemotherapy with outcomes exceeding those achieved with hypomethylating agents alone. Venetoclax in combination with intensive chemotherapy is also increasingly used both as frontline as well as salvage therapy. However, resistance to and relapse after venetoclax-based therapies are of major concern and outcomes after treatment failure remain poor. AREAS COVERED A comprehensive search was performed using PubMed database (up to April 2024). Studies evaluating venetoclax-based combination treatments in AML and studies assessing markers of response and resistance to venetoclax were investigated. We summarize the status of venetoclax-based therapies in the frontline and relapsed/refractory setting with focus on the main mechanisms of resistance to BCL-2 inhibition. Further, strategies to overcome resistance including combinatorial regimens of hypomethylating agent (HMA) + venetoclax + inhibitors targeting actionable mutations like IDH1/2 or FLT3-ITD and the introduction of novel agents like menin-inhibitors are addressed. EXPERT OPINION Although venetoclax is reshaping the treatment of unfit and fit AML patients, prognosis of patients after HMA/VEN failure remains dismal, and strategies to abrogate primary and secondary resistance are an unmet clinical need.
Collapse
Affiliation(s)
- Rabia Shahswar
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Lu Y, Jiang X, Li Y, Li F, Zhao M, Lin Y, Jin L, Zhuang H, Li S, Ye P, Pei R, Jin J, Jiang L. NL101 synergizes with the BCL-2 inhibitor venetoclax through PI3K-dependent suppression of c-Myc in acute myeloid leukaemia. J Transl Med 2024; 22:867. [PMID: 39334157 PMCID: PMC11429391 DOI: 10.1186/s12967-024-05647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Acute myeloid leukaemia (AML) comprises a group of heterogeneous and aggressive haematological malignancies with unsatisfactory prognoses and limited treatment options. Treatments targeting B-cell lymphoma-2 (BCL-2) with venetoclax have been approved for patients with AML, and venetoclax-based drug combinations are becoming the standard of care for older patients unfit for intensive chemotherapy. However, the therapeutic duration of either single or combination strategies is limited, and the development of resistance seems inevitable. Therefore, more effective combination regimens are urgently needed. METHODS The efficacy of combination therapy with NL101, a SAHA-bendamustine hybrid, and venetoclax was evaluated in preclinical models of AML including established cell lines, primary blasts from patients, and animal models. RNA-sequencing and immunoblotting were used to explore the underlying mechanism. RESULTS NL101 significantly potentiated the activity of venetoclax in AML cell lines, as evidenced by the enhanced decrease in viability and induction of apoptosis. Mechanistically, the addition of NL101 to venetoclax decreased the stability of the antiapoptotic protein myeloid cell leukaemia-1 (MCL-1) by inhibiting ERK, thereby facilitating the release of BIM and triggering mitochondrial apoptosis. Moreover, the strong synergy between NL101 and venetoclax also relied on the downregulation of c-Myc via PI3K/Akt/GSK3β signalling. The combination of NL101 and venetoclax synergistically eliminated primary blasts from 10 AML patients and reduced the leukaemia burden in an MV4-11 cell-derived xenograft model. CONCLUSIONS Our results encourage the pursuit of clinical trials of combined treatment with NL101 and venetoclax and provide a novel venetoclax-incorporating therapeutic strategy for AML.
Collapse
Affiliation(s)
- Ying Lu
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Xia Jiang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Youhong Li
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Fenglin Li
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Mengting Zhao
- Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Ye Lin
- Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Lili Jin
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Haihui Zhuang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Shuangyue Li
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Peipei Ye
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Renzhi Pei
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lei Jiang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China.
- Department of Pathology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
4
|
Fasouli ES, Katsantoni E. Age-associated myeloid malignancies - the role of STAT3 and STAT5 in myelodysplastic syndrome and acute myeloid leukemia. FEBS Lett 2024. [PMID: 39048534 DOI: 10.1002/1873-3468.14985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
In the last few decades, the increasing human life expectancy has led to the inflation of the elderly population and consequently the escalation of age-related disorders. Biological aging has been associated with the accumulation of somatic mutations in the Hematopoietic Stem Cell (HSC) compartment, providing a fitness advantage to the HSCs leading to clonal hematopoiesis, that includes non-malignant and malignant conditions (i.e. Clonal Hematopoiesis of Indeterminate Potential, Myelodysplastic Syndrome and Acute Myeloid Leukemia). The Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway is a key player in both normal and malignant hematopoiesis. STATs, particularly STAT3 and STAT5, are greatly implicated in normal hematopoiesis, immunity, inflammation, leukemia, and aging. Here, the pleiotropic functions of JAK-STAT pathway in age-associated hematopoietic defects and of STAT3 and STAT5 in normal hematopoiesis, leukemia, and inflammaging are reviewed. Even though great progress has been made in deciphering the role of STATs, further research is required to provide a deeper understanding of the molecular mechanisms of leukemogenesis, as well as novel biomarkers and therapeutic targets for improved management of age-related disorders.
Collapse
Affiliation(s)
- Eirini Sofia Fasouli
- Biomedical Research Foundation, Academy of Athens, Basic Research Center, Athens, Greece
| | - Eleni Katsantoni
- Biomedical Research Foundation, Academy of Athens, Basic Research Center, Athens, Greece
| |
Collapse
|
5
|
Wang Y, Lei C, Wang Q, Zhang X, Zhi L, Liu X. Design and synthesis of 7-azaindole derivatives as potent CDK8 inhibitors for the treatment of acute myeloid leukemia. RSC Med Chem 2024:d4md00465e. [PMID: 39157854 PMCID: PMC11325196 DOI: 10.1039/d4md00465e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
It is of great significance to design and synthesize novel structural inhibitors with good antitumor activity. In this study, based on rational design, a total of 42 7-azaindole derivatives as novel CDK8 inhibitors were designed and synthesized. All compounds were screened with antitumor activity and compound 6 (1-(3-((1H-pyrrolo[2,3-b]pyridin-5-yl)oxy)phenyl)-3-(m-tolyl)urea) exhibited the best activity, especially in acute myeloid leukemia (GI50 MV4-11 = 1.97 ± 1.24 μM). This compound also exhibited excellent inhibitory activity against CDK8 (IC50 = 51.3 ± 4.6 nM). Further mechanism studies shown that it could inhibit STAT5 phosphorylation and induce cell cycle arrest in the G1 phase, leading to apoptosis in acute myeloid leukemia cells. In addition, acute toxicity at a dose of 1000 mg kg-1 indicated the low toxicity of this compound.
Collapse
Affiliation(s)
- Yumeng Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University Hefei P. R. China
| | - Cencen Lei
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University Hefei P. R. China
| | - Quan Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University Hefei P. R. China
| | - Xingxing Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University Hefei P. R. China
| | - Liping Zhi
- School of Health Management, Anhui Medical University Hefei 230032 PR China
| | - Xinhua Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University Hefei P. R. China
| |
Collapse
|
6
|
Kovecses O, Mercier FE, McKeague M. Nucleic acid therapeutics as differentiation agents for myeloid leukemias. Leukemia 2024; 38:1441-1454. [PMID: 38424137 PMCID: PMC11216999 DOI: 10.1038/s41375-024-02191-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Differentiation therapy has proven to be a success story for patients with acute promyelocytic leukemia. However, the remaining subtypes of acute myeloid leukemia (AML) are treated with cytotoxic chemotherapies that have limited efficacy and a high likelihood of resistance. As differentiation arrest is a hallmark of AML, there is increased interest in developing differentiation-inducing agents to enhance disease-free survival. Here, we provide a comprehensive review of current reports and future avenues of nucleic acid therapeutics for AML, focusing on the use of targeted nucleic acid drugs to promote differentiation. Specifically, we compare and discuss the precision of small interfering RNA, small activating RNA, antisense oligonucleotides, and aptamers to modulate gene expression patterns that drive leukemic cell differentiation. We delve into preclinical and clinical studies that demonstrate the efficacy of nucleic acid-based differentiation therapies to induce leukemic cell maturation and reduce disease burden. By directly influencing the expression of key genes involved in myeloid maturation, nucleic acid therapeutics hold the potential to induce the differentiation of leukemic cells towards a more mature and less aggressive phenotype. Furthermore, we discuss the most critical challenges associated with developing nucleic acid therapeutics for myeloid malignancies. By introducing the progress in the field and identifying future opportunities, we aim to highlight the power of nucleic acid therapeutics in reshaping the landscape of myeloid leukemia treatment.
Collapse
MESH Headings
- Humans
- Cell Differentiation/drug effects
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Nucleic Acids/therapeutic use
- Animals
- Leukemia, Myeloid/drug therapy
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/pathology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/therapeutic use
- Oligonucleotides, Antisense/therapeutic use
Collapse
Affiliation(s)
- Olivia Kovecses
- Department of Pharmacology and Therapeutics, McGill University, Montreal, H3G 1Y6, QC, Canada
| | - François E Mercier
- Division of Hematology and Experimental Medicine, Department of Medicine, McGill University, Montreal, H3T 1E2, QC, Canada
| | - Maureen McKeague
- Department of Pharmacology and Therapeutics, McGill University, Montreal, H3G 1Y6, QC, Canada.
- Department of Chemistry, McGill University, Montreal, H3A 0B8, QC, Canada.
| |
Collapse
|
7
|
Bruzzese A, Vigna E, Martino EA, Labanca C, Mendicino F, Lucia E, Olivito V, Stanzione G, Zimbo A, Lugli E, Neri A, Morabito F, Gentile M. The potential of triplet combination therapies for patients with FLT3-ITD -mutated acute myeloid leukemia. Expert Rev Hematol 2024; 17:241-253. [PMID: 38748404 DOI: 10.1080/17474086.2024.2356258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) encompasses a heterogeneous group of aggressive myeloid malignancies, where FMS-like tyrosine kinase 3 (FLT3) mutations are prevalent, accounting for approximately 25-30% of adult patients. The presence of this mutation is related to a dismal prognosis and high relapse rates. In the lasts years many FLT3 inhibitors have been developed. AREAS COVERED This review provides a comprehensive overview of FLT3mut AML, summarizing the state of art of current treatment and available data about combination strategies including an FLT3 inhibitor. EXPERT OPINION In addition, the review discusses the emergence of drug resistance and the need for a nuanced approaches in treating patients who are ineligible for or resistant to intensive chemotherapy. Specifically, it explores the historical context of FLT3 inhibitors (FLT3Is) and their impact on treatment outcomes, emphasizing the pivotal role of midostaurin, as well as gilteritinib and quizartinib, and providing detailed insights into ongoing trials exploring the safety and efficacy of novel triplet combinations involving FLT3Is in different AML settings.
Collapse
Affiliation(s)
| | - Ernesto Vigna
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | | | | | | | - Eugenio Lucia
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | | | - Gaia Stanzione
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Division of Hematology, Azienda Policlinico-S. Marco, University of Catania, Catania, Italy
| | - Annamaria Zimbo
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- UOC Laboratorio Analisi Cliniche, Biomolecolari e Genetica, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Elisabetta Lugli
- Ematologia Azienda USL-IRCSS Reggio Emilia, Emilia-Romagna, Italy
| | - Antonino Neri
- Scientific Directorate IRCCS of Reggio Emilia, Emilia-Romagna, Reggio Emilia, Italy
| | | | - Massimo Gentile
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende, Italy
| |
Collapse
|
8
|
Edtmayer S, Witalisz-Siepracka A, Zdársky B, Heindl K, Weiss S, Eder T, Dutta S, Graichen U, Klee S, Sharif O, Wieser R, Győrffy B, Poli V, Casanova E, Sill H, Grebien F, Stoiber D. A novel function of STAT3β in suppressing interferon response improves outcome in acute myeloid leukemia. Cell Death Dis 2024; 15:369. [PMID: 38806478 PMCID: PMC11133483 DOI: 10.1038/s41419-024-06749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is frequently overexpressed in patients with acute myeloid leukemia (AML). STAT3 exists in two distinct alternatively spliced isoforms, the full-length isoform STAT3α and the C-terminally truncated isoform STAT3β. While STAT3α is predominantly described as an oncogenic driver, STAT3β has been suggested to act as a tumor suppressor. To elucidate the role of STAT3β in AML, we established a mouse model of STAT3β-deficient, MLL-AF9-driven AML. STAT3β deficiency significantly shortened survival of leukemic mice confirming its role as a tumor suppressor. Furthermore, RNA sequencing revealed enhanced STAT1 expression and interferon (IFN) signaling upon loss of STAT3β. Accordingly, STAT3β-deficient leukemia cells displayed enhanced sensitivity to blockade of IFN signaling through both an IFNAR1 blocking antibody and the JAK1/2 inhibitor Ruxolitinib. Analysis of human AML patient samples confirmed that elevated expression of IFN-inducible genes correlated with poor overall survival and low STAT3β expression. Together, our data corroborate the tumor suppressive role of STAT3β in a mouse model in vivo. Moreover, they provide evidence that its tumor suppressive function is linked to repression of the STAT1-mediated IFN response. These findings suggest that the STAT3β/α mRNA ratio is a significant prognostic marker in AML and holds crucial information for targeted treatment approaches. Patients displaying a low STAT3β/α mRNA ratio and unfavorable prognosis could benefit from therapeutic interventions directed at STAT1/IFN signaling.
Collapse
MESH Headings
- Animals
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Humans
- STAT3 Transcription Factor/metabolism
- Mice
- Signal Transduction
- Interferons/metabolism
- STAT1 Transcription Factor/metabolism
- STAT1 Transcription Factor/genetics
- Mice, Inbred C57BL
- Receptor, Interferon alpha-beta/metabolism
- Receptor, Interferon alpha-beta/genetics
- Cell Line, Tumor
- Nitriles
- Pyrazoles
- Pyrimidines
Collapse
Affiliation(s)
- Sophie Edtmayer
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Agnieszka Witalisz-Siepracka
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Bernhard Zdársky
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Kerstin Heindl
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Stefanie Weiss
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Thomas Eder
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Uwe Graichen
- Division Biostatistics and Data Science, Department of General Health Studies, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Sascha Klee
- Division Biostatistics and Data Science, Department of General Health Studies, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Omar Sharif
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Immunometabolism and Systems Biology of Obesity-Related Diseases (InSpiReD), Vienna, Austria
| | - Rotraud Wieser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Emilio Casanova
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
- Department of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria
| | - Heinz Sill
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Dagmar Stoiber
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Krems, Austria.
| |
Collapse
|
9
|
Forsberg M, Konopleva M. AML treatment: conventional chemotherapy and emerging novel agents. Trends Pharmacol Sci 2024; 45:430-448. [PMID: 38643058 DOI: 10.1016/j.tips.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
Acute myeloid leukemia (AML) is driven by complex mutations and cytogenetic abnormalities with profound tumoral heterogeneity, making it challenging to treat. Ten years ago, the 5-year survival rate of patients with AML was only 29% with conventional chemotherapy and stem cell transplantation. All attempts to improve conventional therapy over the previous 40 years had failed. Now, new genomic, immunological, and molecular insights have led to a renaissance in AML therapy. Improvements to standard chemotherapy and a wave of new targeted therapies have been developed. However, how best to incorporate these advances into frontline therapy and sequence them in relapse is not firmly established. In this review, we highlight current treatments of AML, targeted agents, and pioneering attempts to synthesize these developments into a rational standard of care (SoC).
Collapse
Affiliation(s)
- Mark Forsberg
- Montefiore Einstein Cancer Center, Department of Oncology, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Marina Konopleva
- Montefiore Einstein Cancer Center, Department of Oncology, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
10
|
Nachmias B, Aumann S, Haran A, Schimmer AD. Venetoclax resistance in acute myeloid leukaemia-Clinical and biological insights. Br J Haematol 2024; 204:1146-1158. [PMID: 38296617 DOI: 10.1111/bjh.19314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 04/11/2024]
Abstract
Venetoclax, an oral BCL-2 inhibitor, has been widely incorporated in the treatment of acute myeloid leukaemia. The combination of hypomethylating agents and venetoclax is the current standard of care for elderly and patient's ineligible for aggressive therapies. However, venetoclax is being increasingly used with aggressive chemotherapy regimens both in the front line and in the relapse setting. Our growing experience and intensive research demonstrate that certain genetic abnormalities are associated with venetoclax sensitivity, while others with resistance, and that resistance can emerge during treatment leading to disease relapse. In the current review, we provide a summary of the known mechanisms of venetoclax cytotoxicity, both regarding the inhibition of BCL-2-mediated apoptosis and its effect on cell metabolism. We describe how these pathways are linked to venetoclax resistance and are associated with specific mutations. Finally, we provide the rationale for novel drug combinations in current and future clinical trials.
Collapse
Affiliation(s)
- Boaz Nachmias
- Department of Hematology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shlomzion Aumann
- Department of Hematology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Arnon Haran
- Department of Hematology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Chatzikalil E, Roka K, Diamantopoulos PT, Rigatou E, Avgerinou G, Kattamis A, Solomou EE. Venetoclax Combination Treatment of Acute Myeloid Leukemia in Adolescents and Young Adult Patients. J Clin Med 2024; 13:2046. [PMID: 38610812 PMCID: PMC11012941 DOI: 10.3390/jcm13072046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Over the past two decades, the prognosis in adolescents and young adults (AYAs) diagnosed with acute myeloid leukemia (AML) has significantly improved. The standard intensive cytotoxic treatment approach for AYAs with AML, consisting of induction chemotherapy with anthracycline/cytarabine combination followed by consolidation chemotherapy or stem cell transplantation, has lately been shifting toward novel targeted therapies, mostly in the fields of clinical trials. One of the most recent advances in treating AML is the combination of the B-cell lymphoma 2 (Bcl-2) inhibitor venetoclax with hypomethylating agents, which has been studied in elderly populations and was approved by the Food and Drug Administration (FDA) for patients over 75 years of age or patients excluded from intensive chemotherapy induction schemas due to comorbidities. Regarding the AYA population, venetoclax combination therapy could be a therapeutic option for patients with refractory/relapsed (R/R) AML, although data from real-world studies are currently limited. Venetoclax is frequently used by AYAs diagnosed with advanced hematologic malignancies, mainly acute lymphoblastic leukemia and myelodysplastic syndromes, as a salvage therapeutic option with considerable efficacy and safety. Herein, we aim to summarize the evidence obtained from clinical trials and observational studies on venetoclax use in AYAs with AML. Based on the available evidence, venetoclax is a safe and effective therapeutic option for R/R AML AYA patients. However, further research in larger cohorts is needed to confirm these data, establishing the benefits of a venetoclax-based regimen for this special population.
Collapse
Affiliation(s)
- Elena Chatzikalil
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Kleoniki Roka
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Panagiotis T. Diamantopoulos
- First Department of Internal Medicine, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
| | - Efthymia Rigatou
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Georgia Avgerinou
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Antonis Kattamis
- Division of Pediatric Hematology-Oncology, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (E.C.); (K.R.); (E.R.); (G.A.); (A.K.)
- “Aghia Sofia” Children’s Hospital ERN-PeadCan Center, 11527 Athens, Greece
| | - Elena E. Solomou
- Department of Internal Medicine, University of Patras Medical School, 26500 Rion, Greece
| |
Collapse
|
12
|
Bouligny IM, Murray G, Doyel M, Patel T, Boron J, Tran V, Gor J, Hang Y, Alnimer Y, Ho T, Zacholski K, Venn C, Wages NA, Grant S, Maher KR. Venetoclax with decitabine or azacitidine in relapsed or refractory acute myeloid leukemia. Med Oncol 2024; 41:80. [PMID: 38396145 DOI: 10.1007/s12032-024-02302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/11/2024] [Indexed: 02/25/2024]
Abstract
Relapsed or refractory acute myeloid leukemia (AML) is associated with poor outcomes and resistance to therapy. The addition of venetoclax, a BCL-2 antagonist, to lower-intensity therapies results in improved survival in the first-line setting compared to monotherapy with a hypomethylating agent or low-dose cytarabine. Despite this, much remains unknown about the performance of venetoclax with a hypomethylating agent following the first-line setting. Additionally, while the ELN 2022 guidelines appear to improve the prognostication of AML, clarification is needed to determine how the revision applies to lower-intensity strategies. To investigate this, we retrospectively analyzed the performance of venetoclax with decitabine or azacitidine in relapsed or refractory AML under the ELN 2022 guidelines. We demonstrated that the ELN 2022 revision is not optimized for lower-intensity venetoclax-based strategies. To refine the prognostication schema, we showed significantly improved response and survival benefits for patients with mutated NPM1 and IDH. Relatively, patients with mutated NRAS, KRAS, and FLT3-ITD were associated with inferior response and survival. Furthermore, there is an unmet clinical need for tools to improve the selection of lower-intensity therapy candidates with borderline functional status. Using an incremental survival computation method, we discovered that a CCI score threshold of 5 distinguishes patients at an elevated risk of death. Together, these novel findings highlight areas of refinement to improve survival in relapsed or refractory AML.
Collapse
Affiliation(s)
- Ian M Bouligny
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Division of Hematology and Oncology, Department of Internal Medicine, Virginia Commonwealth University Massey Cancer Center, Richmond, VA, USA.
| | - Graeme Murray
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Michael Doyel
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Tilak Patel
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | - Josh Boron
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | - Valerie Tran
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | - Juhi Gor
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | - Yiwei Hang
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Yanal Alnimer
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | - Thuy Ho
- Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Kyle Zacholski
- Department of Pharmacy, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | - Chad Venn
- Department of Pharmacy, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | - Nolan A Wages
- Department of Biostatistics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Steven Grant
- Division of Hematology and Oncology, Department of Internal Medicine, Virginia Commonwealth University Massey Cancer Center, Richmond, VA, USA
| | - Keri R Maher
- Division of Hematology and Oncology, Department of Internal Medicine, Virginia Commonwealth University Massey Cancer Center, Richmond, VA, USA
| |
Collapse
|
13
|
Lee JK, Chatterjee A, Scarpa M, Bailey CM, Niyongere S, Singh P, Mustafa Ali MK, Kapoor S, Wang Y, Silvestri G, Baer MR. Pim Kinase Inhibitors Increase Gilteritinib Cytotoxicity in FLT3-ITD Acute Myeloid Leukemia Through GSK-3β Activation and c-Myc and Mcl-1 Proteasomal Degradation. CANCER RESEARCH COMMUNICATIONS 2024; 4:431-445. [PMID: 38284896 PMCID: PMC10870818 DOI: 10.1158/2767-9764.crc-23-0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/12/2023] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
Acute myeloid leukemia (AML) with fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) has poor outcomes. FLT3-ITD drives constitutive and aberrant FLT3 signaling, activating STAT5 and upregulating the downstream oncogenic serine/threonine kinase Pim-1. FLT3 inhibitors are in clinical use, but with limited and transient efficacy. We previously showed that concurrent treatment with Pim and FLT3 inhibitors increases apoptosis induction in FLT3-ITD-expressing cells through posttranslational downregulation of Mcl-1. Here we further elucidate the mechanism of action of this dual targeting strategy. Cytotoxicity, apoptosis and protein expression and turnover were measured in FLT3-ITD-expressing cell lines and AML patient blasts treated with the FLT3 inhibitor gilteritinib and/or the Pim inhibitors AZD1208 or TP-3654. Pim inhibitor and gilteritinib cotreatment increased apoptosis induction, produced synergistic cytotoxicity, downregulated c-Myc protein expression, earlier than Mcl-1, increased turnover of both proteins, which was rescued by proteasome inhibition, and increased efficacy and prolonged survival in an in vivo model. Gilteritinib and Pim inhibitor cotreatment of Ba/F3-ITD cells infected with T58A c-Myc or S159A Mcl-1 plasmids, preventing phosphorylation at these sites, did not downregulate these proteins, increase their turnover or increase apoptosis induction. Moreover, concurrent treatment with gilteritinib and Pim inhibitors dephosphorylated (activated) the serine/threonine kinase glycogen synthase kinase-3β (GSK-3β), and GSK-3β inhibition prevented c-Myc and Mcl-1 downregulation and decreased apoptosis induction. The data are consistent with c-Myc T58 and Mcl-1 S159 phosphorylation by activated GSK-3β as the mechanism of action of gilteritinib and Pim inhibitor combination treatment, further supporting GSK-3β activation as a therapeutic strategy in FLT3-ITD AML. SIGNIFICANCE FLT3-ITD is present in 25% of in AML, with continued poor outcomes. Combining Pim kinase inhibitors with the FDA-approved FLT3 inhibitor gilteritinib increases cytotoxicity in vitro and in vivo through activation of GSK-3β, which phosphorylates and posttranslationally downregulates c-Myc and Mcl-1. The data support efficacy of GSK-3β activation in FLT3-ITD AML, and also support development of a clinical trial combining the Pim inhibitor TP-3654 with gilteritinib.
Collapse
Affiliation(s)
- Jonelle K. Lee
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Aditi Chatterjee
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mario Scarpa
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Christopher M. Bailey
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sandrine Niyongere
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Prerna Singh
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Moaath K. Mustafa Ali
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Shivani Kapoor
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Yin Wang
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Giovannino Silvestri
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Maria R. Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
14
|
Li Y, Seet CS, Mack R, Joshi K, Runde AP, Hagen PA, Barton K, Breslin P, Kini A, Ji HL, Zhang J. Distinct roles of hematopoietic cytokines in the regulation of leukemia stem cells in murine MLL-AF9 leukemia. Stem Cell Reports 2024; 19:100-111. [PMID: 38101400 PMCID: PMC10828676 DOI: 10.1016/j.stemcr.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Lymphoid-primed multipotent progenitor (LMPP)-like and granulocyte-monocyte progenitor (GMP)-like leukemia stem cells (LSCs) co-exist in the blood of most patients with acute myeloid leukemia (AML). Complete elimination of both types of LSCs is required to cure AML. Using an MLL-AF9-induced murine AML model, we studied the role of hematopoietic cytokines in the survival of LMPP- and GMP-like LSCs. We found that SCF or FLT3L promotes the survival of LMPP-like LSCs by stimulating Stat5-mediated Mcl1 expression, whereas interleukin-3 (IL-3) or IL-6 induces the survival of GMP-like LSCs by stimulating Stat3/nuclear factor κB (NF-κB)-mediated Bcl2 expression. Functional study demonstrated that, compared to AML cells cultured in IL-3 and IL-6 medium, AML cells in SCF- or Flt3L-only culture are highly clonogenic in in vitro culture and are highly leukemogenic in vivo. Our study suggests that co-inhibition of both STAT5-MCL1 and STAT3/NF-κB-BCL2 signaling might represent an improved treatment strategy against AML, specifically AML cases with a monocytic phenotype and/or FLT3 mutations.
Collapse
Affiliation(s)
- Yanchun Li
- Blood Disease Laboratory, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710126, P.R. China
| | - Christopher S Seet
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Ryan Mack
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Departments of Cancer Biology and Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Kanak Joshi
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Departments of Cancer Biology and Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Austin P Runde
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Departments of Cancer Biology and Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Patrick A Hagen
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Kevin Barton
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Peter Breslin
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Departments of Biology, Molecular/Cellular Physiology, and Cancer Biology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Ameet Kini
- Department of Pathology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Hong-Long Ji
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA; Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| | - Jiwang Zhang
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Departments of Cancer Biology and Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL 60153, USA; Department of Pathology, Loyola University Medical Center, Maywood, IL 60153, USA.
| |
Collapse
|
15
|
Forsberg M, Konopleva M. SOHO State of the Art Updates and Next Questions: Understanding and Overcoming Venetoclax Resistance in Hematologic Malignancies. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:1-14. [PMID: 38007372 DOI: 10.1016/j.clml.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 11/27/2023]
Abstract
The discovery of Venetoclax (VEN) has transformed the therapeutic landscape of acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL). However, the response is heterogeneous with 10% to 50% of newly diagnosed AML patients not responding to hypomethylating agent (HMA) and VEN. Furthermore, up to 40% of responding patients relapse shortly. This review discusses the mechanism of action of Venetoclax and the major mechanisms of inherent and acquired resistance to VEN. VEN is highly specific to BCL-2 binding, as such other antiapoptotic proteins in BCL-2 family induce resistance. These antiapoptotic proteins can also be upregulated via a number of compensatory cell signaling pathways including PI3K/AKT/mTOR, the MAPK/ERK pathway, and mutant FLT3-ITD. Mutations can occur in BCL-2 and BAX proteins, or they can be silenced by TP53 mutations and other epigenetic changes. Changes to mitochondrial structure and metabolism can induce resistance. Key metabolic regulators include OXPHOS and alternative amino acid metabolism. Finally microenvironmental factors can influence VEN responses. This paper evaluates subsets of AML by differentiation, histology, cytogenetics and molecular markers and their different responses to VEN; with spliceosome mutations, ASXL1, NPM1 and IDH1/2 being favorable while others such as FLT3, TP53 and BCL-2 mutations being less responsive. Currently intensive multiagent chemotherapy and Venetoclax combinations such as 7+3+VEN are favored in fit younger AML patients. However, with resistant patients' subsets targeted combination therapies are becoming an increasingly attractive option. We explore the incorporation of non-BCL-2 inhibitors, next-generation BCL-2 and multi-protein agents, other inhibitors most prominently FLT-3 inhibitors in addition to Venetoclax, and other novel approaches for resolving Venetoclax resistance.
Collapse
Affiliation(s)
- Mark Forsberg
- Department of Oncology, Montefiore Einstein Cancer Center, Bronx, NY
| | - Marina Konopleva
- Department of Oncology, Montefiore Einstein Cancer Center, Bronx, NY.
| |
Collapse
|
16
|
Tyagi A, Jaggupilli A, Ly S, Yuan B, El-Dana F, Hegde VL, Anand V, Kumar B, Puppala M, Yin Z, Wong STC, Mollard A, Vankayalapati H, Foulks JM, Warner SL, Daver N, Borthakur G, Battula VL. TP-0184 inhibits FLT3/ACVR1 to overcome FLT3 inhibitor resistance and hinder AML growth synergistically with venetoclax. Leukemia 2024; 38:82-95. [PMID: 38007585 DOI: 10.1038/s41375-023-02086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/27/2023]
Abstract
We identified activin A receptor type I (ACVR1), a member of the TGF-β superfamily, as a factor favoring acute myeloid leukemia (AML) growth and a new potential therapeutic target. ACVR1 is overexpressed in FLT3-mutated AML and inhibition of ACVR1 expression sensitized AML cells to FLT3 inhibitors. We developed a novel ACVR1 inhibitor, TP-0184, which selectively caused growth arrest in FLT3-mutated AML cell lines. Molecular docking and in vitro kinase assays revealed that TP-0184 binds to both ACVR1 and FLT3 with high affinity and inhibits FLT3/ACVR1 downstream signaling. Treatment with TP-0184 or in combination with BCL2 inhibitor, venetoclax dramatically inhibited leukemia growth in FLT3-mutated AML cell lines and patient-derived xenograft models in a dose-dependent manner. These findings suggest that ACVR1 is a novel biomarker and plays a role in AML resistance to FLT3 inhibitors and that FLT3/ACVR1 dual inhibitor TP-0184 is a novel potential therapeutic tool for AML with FLT3 mutations.
Collapse
Affiliation(s)
- Anudishi Tyagi
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Appalaraju Jaggupilli
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stanley Ly
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Yuan
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fouad El-Dana
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Venkatesh L Hegde
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Anand
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bijender Kumar
- Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mamta Puppala
- Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Weill Cornell Medicine, Houston, TX, USA
| | - Zheng Yin
- Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Weill Cornell Medicine, Houston, TX, USA
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Neal Cancer Center, Weill Cornell Medicine, Houston, TX, USA
| | - Alexis Mollard
- University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | | | | | | | - Naval Daver
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gautam Borthakur
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - V Lokesh Battula
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
17
|
Mishra R, Zokaei Nikoo M, Veeraballi S, Singh A. Venetoclax and Hypomethylating Agent Combination in Myeloid Malignancies: Mechanisms of Synergy and Challenges of Resistance. Int J Mol Sci 2023; 25:484. [PMID: 38203655 PMCID: PMC10778677 DOI: 10.3390/ijms25010484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
There has been a widespread adoption of hypomethylating agents (HMA: 5-Azacytidine (5-Aza)/decitabine) and venetoclax (Ven) for the treatment of acute myeloid leukemia (AML); however, the mechanisms behind the combination's synergy are poorly understood. Monotherapy often encounters resistance, leading to suboptimal outcomes; however, the combination of HMA and Ven has demonstrated substantial improvements in treatment responses. This study elucidates multiple synergistic pathways contributing to this enhanced therapeutic effect. Key mechanisms include HMA-mediated downregulation of anti-apoptotic proteins, notably MCL-1, and the priming of cells for Ven through the induction of genes encoding pro-apoptotic proteins such as Noxa. Moreover, Ven induces sensitization to HMA, induces overcoming resistance by inhibiting the DHODH enzyme, and disrupts antioxidant pathways (Nrf2) induced by HMA. The combination further disrupts oxidative phosphorylation in leukemia stem cells, amplifying the therapeutic impact. Remarkably, clinical studies have revealed a favorable response, particularly in patients harboring specific mutations, such as IDH1/2, NPM1, CEBPA, or ASXL1. This prompts future studies to explore the nuanced underpinnings of these synergistic mechanisms in AML patients with these molecular signatures.
Collapse
Affiliation(s)
- Rahul Mishra
- Department of Internal Medicine, Anne Arundel Medical Center, Annapolis, MD 21401, USA;
| | - Maedeh Zokaei Nikoo
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (M.Z.N.); (S.V.)
| | - Sindhusha Veeraballi
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (M.Z.N.); (S.V.)
| | - Abhay Singh
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (M.Z.N.); (S.V.)
| |
Collapse
|
18
|
Leśniak M, Lipniarska J, Majka P, Lejman M, Zawitkowska J. Recent Updates in Venetoclax Combination Therapies in Pediatric Hematological Malignancies. Int J Mol Sci 2023; 24:16708. [PMID: 38069030 PMCID: PMC10706781 DOI: 10.3390/ijms242316708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Venetoclax is a strongly effective B-cell lymphoma-2 inhibitor (BCL-2) with an ability to selectively restore the apoptotic potential of cancerous cells. It has been proven that in combination with immunotherapy, targeted therapies, and lower-intensity therapies such as hypomethylating agents (HMAs) or low-dose cytarabine (LDAC), the drug can improve overall outcomes for adult patients with acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), and multiple myeloma (MM), amongst other hematological malignancies, but its benefit in pediatric hematology remains unclear. With a number of preclinical and clinical trials emerging, the newest findings suggest that in many cases of younger patients, venetoclax combination treatment can be well-tolerated, with a safety profile similar to that in adults, despite often leading to severe infections. Studies aim to determine the activity of BCL-2 inhibitor in the treatment of both primary and refractory acute leukemias in combination with standard and high-dose chemotherapy. Although more research is required to identify the optimal venetoclax-based regimen for the pediatric population and its long-term effects on patients' outcomes, it can become a potential therapeutic agent for pediatric oncology.
Collapse
Affiliation(s)
- Maria Leśniak
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Justyna Lipniarska
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Patrycja Majka
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
19
|
Santinelli E, Pascale MR, Xie Z, Badar T, Stahl MF, Bewersdorf JP, Gurnari C, Zeidan AM. Targeting apoptosis dysregulation in myeloid malignancies - The promise of a therapeutic revolution. Blood Rev 2023; 62:101130. [PMID: 37679263 DOI: 10.1016/j.blre.2023.101130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
In recent years, the therapeutic landscape of myeloid malignancies has been completely revolutionized by the introduction of several new drugs, targeting molecular alterations or pathways crucial for leukemia cells survival. Particularly, many agents targeting apoptosis have been investigated in both pre-clinical and clinical studies. For instance, venetoclax, a pro-apoptotic agent active on BCL-2 signaling, has been successfully used in the treatment of acute myeloid leukemia (AML). The impressive results achieved in this context have made the apoptotic pathway an attractive target also in other myeloid neoplasms, translating the experience of AML. Therefore, several drugs are now under investigation either as single or in combination strategies, due to their synergistic efficacy and capacity to overcome resistance. In this paper, we will review the mechanisms of apoptosis and the specific drugs currently used and under investigation for the treatment of myeloid neoplasia, identifying critical research necessities for the upcoming years.
Collapse
Affiliation(s)
- Enrico Santinelli
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Maria Rosaria Pascale
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Zhuoer Xie
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Talha Badar
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Maximilian F Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jan P Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carmelo Gurnari
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, 00133 Rome, Italy; Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT, USA.
| |
Collapse
|
20
|
Milnerowicz S, Maszewska J, Skowera P, Stelmach M, Lejman M. AML under the Scope: Current Strategies and Treatment Involving FLT3 Inhibitors and Venetoclax-Based Regimens. Int J Mol Sci 2023; 24:15849. [PMID: 37958832 PMCID: PMC10647248 DOI: 10.3390/ijms242115849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Acute myeloid leukemia (AML) is a disease that mainly affects elderly patients who are more often unfit for intensive chemotherapy (median age of diagnosis is 68). The regimens, including venetoclax, a highly specific BCL-2 (B-cell lymphoma-2) inhibitor, are a common alternative because of their safer profile and fewer side effects. However, the resistance phenomenon of leukemic cells necessitates the search for drugs that would help to overcome the resistance and improve treatment outcomes. One of the resistance mechanisms takes place through the upregulation of MCL-1 and BCL-XL, preventing BAX/BAK-driven MOMP (mitochondrial outer membrane permeabilization), thus stopping the apoptosis process. Possible partners for BCL-2 inhibitors may include inhibitors from the FLT3i (FMS-like tyrosine kinase-3 inhibitor) group. They resensitize cancer cells through the downregulation of MCL-1 expression in the FLT3 mutated cells, resulting in the stronger efficacy of BCL-2 inhibitors. Also, they provide an additional pathway for targeting the clonal cell. Both preclinical and clinical data suggest that the combination might show a synergistic effect and improve patients' outcomes. The aim of this review is to determine whether the combination of venetoclax and FLT3 inhibitors can impact the therapeutic approaches and what other agents they can be combined with.
Collapse
Affiliation(s)
- Szymon Milnerowicz
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (J.M.)
| | - Julia Maszewska
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (J.M.)
| | - Paulina Skowera
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (P.S.); (M.S.)
| | - Magdalena Stelmach
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (P.S.); (M.S.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (P.S.); (M.S.)
| |
Collapse
|
21
|
Yuda J, Will C, Phillips DC, Abraham L, Alvey C, Avigdor A, Buck W, Besenhofer L, Boghaert E, Cheng D, Cojocari D, Doyle K, Hansen TM, Huang K, Johnson EF, Judd AS, Judge RA, Kalvass JC, Kunzer A, Lam LT, Li R, Martin RL, Mastracchio A, Mitten M, Petrich A, Wang J, Ward JE, Zhang H, Wang X, Wolff JE, Bell-McGuinn KM, Souers AJ. Selective MCL-1 inhibitor ABBV-467 is efficacious in tumor models but is associated with cardiac troponin increases in patients. COMMUNICATIONS MEDICINE 2023; 3:154. [PMID: 37880389 PMCID: PMC10600239 DOI: 10.1038/s43856-023-00380-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND MCL-1 is a prosurvival B-cell lymphoma 2 family protein that plays a critical role in tumor maintenance and survival and can act as a resistance factor to multiple anticancer therapies. Herein, we describe the generation and characterization of the highly potent and selective MCL-1 inhibitor ABBV-467 and present findings from a first-in-human trial that included patients with relapsed/refractory multiple myeloma (NCT04178902). METHODS Binding of ABBV-467 to human MCL-1 was assessed in multiple cell lines. The ability of ABBV-467 to induce tumor growth inhibition was investigated in xenograft models of human multiple myeloma and acute myelogenous leukemia. The first-in-human study was a multicenter, open-label, dose-escalation study assessing safety, pharmacokinetics, and efficacy of ABBV-467 monotherapy. RESULTS Here we show that administration of ABBV-467 to MCL-1-dependent tumor cell lines triggers rapid and mechanism-based apoptosis. In vivo, intermittent dosing of ABBV-467 as monotherapy or in combination with venetoclax inhibits the growth of xenografts from human hematologic cancers. Results from a clinical trial evaluating ABBV-467 in patients with multiple myeloma based on these preclinical data indicate that treatment with ABBV-467 can result in disease control (seen in 1 patient), but may also cause increases in cardiac troponin levels in the plasma in some patients (seen in 4 of 8 patients), without other corresponding cardiac findings. CONCLUSIONS The selectivity of ABBV-467 suggests that treatment-induced troponin release is a consequence of MCL-1 inhibition and therefore may represent a class effect of MCL-1 inhibitors in human patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Abraham Avigdor
- Institute of Hematology, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Erwin Boghaert
- AbbVie Inc, North Chicago, IL, USA
- , Pleasant Prairie, WI, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mike Mitten
- AbbVie Inc, North Chicago, IL, USA
- , Beach Park, IL, USA
| | - Adam Petrich
- AbbVie Inc, North Chicago, IL, USA
- Northwestern University, Chicago, IL, USA
- Daiichi Sankyo, Basking Ridge, NJ, USA
| | - Jin Wang
- AbbVie Inc, North Chicago, IL, USA
| | - James E Ward
- AbbVie Inc, North Chicago, IL, USA
- Seagen Inc., Bothell, WA, USA
| | | | | | | | | | | |
Collapse
|
22
|
Mansour AG, Teng KY, Li Z, Zhu Z, Chen H, Tian L, Ali A, Zhang J, Lu T, Ma S, Lin CM, Caligiuri MA, Yu J. Off-the-shelf CAR-engineered natural killer cells targeting FLT3 enhance killing of acute myeloid leukemia. Blood Adv 2023; 7:6225-6239. [PMID: 37379267 PMCID: PMC10582841 DOI: 10.1182/bloodadvances.2022007405] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023] Open
Abstract
The majority of patients with acute myeloid leukemia (AML) succumb to the disease or its complications, especially among older patients. Natural killer (NK) cells have been shown to have antileukemic activity in patients with AML; however, to our knowledge, primary NK cells armed with a chimeric antigen receptor (CAR) targeting antigens associated with AML as an "off-the-shelf" product for disease control have not been explored. We developed frozen, off-the-shelf allogeneic human NK cells engineered with a CAR recognizing FLT3 and secreting soluble interleukin-15 (IL-15) (FLT3 CAR_sIL-15 NK) to improve in vivo NK cell persistence and T-cell activation. FLT3 CAR_sIL-15 NK cells had higher cytotoxicity and interferon gamma secretion against FLT3+ AML cell lines when compared with activated NK cells lacking an FLT3 CAR or soluble IL-15. Frozen and thawed allogeneic FLT3 CAR_sIL-15 NK cells prolonged survival of both the MOLM-13 AML model as well as an orthotopic patient-derived xenograft AML model when compared with control NK cells. FLT3 CAR_sIL-15 NK cells showed no cytotoxicity against healthy blood mononuclear cells or hematopoietic stem cells. Collectively, our data suggest that FLT3 is an AML-associated antigen that can be targeted by frozen, allogeneic, off-the-shelf FLT3 CAR_sIL-15 NK cells that may provide a novel approach for the treatment of AML.
Collapse
Affiliation(s)
- Anthony G. Mansour
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
| | - Kun-Yu Teng
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
| | - Zhiyao Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
| | - Zheng Zhu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
| | - Hanyu Chen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
| | - Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
| | - Aliya Ali
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA
| | - Ting Lu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
| | - Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
| | - Chih-Min Lin
- Department of Cellular Immunotherapy GMP Manufacturing, City of Hope National Medical Center, Los Angeles, CA
| | - Michael A. Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA
- President, City of Hope National Medical Center, Los Angeles, CA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Los Angeles, CA
| |
Collapse
|
23
|
Shao R, Zhang Y, He J, Huang F, Fan Z, Yang K, Xu Y, Xu N, Luo Y, Deng L, Zhang X, Chen J, Han M, Li X, Yu S, Liu H, Liang X, Luo X, Shi P, Wang Z, Jiang L, Zhou X, Lin R, Chen Y, Tu S, Sun J, Wang Y, Liu Q, Xuan L. Impact of genetic patterns on sorafenib efficacy in patients with FLT3-ITD acute myeloid leukemia undergoing allogeneic hematopoietic stem cell transplantation: a multi-center, cohort study. Signal Transduct Target Ther 2023; 8:348. [PMID: 37704613 PMCID: PMC10499827 DOI: 10.1038/s41392-023-01614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/15/2023] Open
Abstract
Sorafenib therapy improves overall survival (OS) in patients with FLT3 internal tandem duplication (ITD) acute myeloid leukemia (AML) undergoing allogeneic hematopoietic stem cell transplantation. We explored the efficacy of sorafenib therapy in this population with different concomitant genetic patterns. In this multi-center, cohort study, we enrolled patients with FLT3-ITD AML undergoing allogenic hematopoietic cell transplantation. Patients with sorafenib maintenance post-transplantation for at least four weeks were allocated to the sorafenib group, and otherwise to the control group. Endpoints were OS, disease-free survival, and relapse for the whole cohort and OS for genetic pattern subgroups. Among 613 patients enrolled, 275 were in the sorafenib and 338 the control group. Median follow-up was 36.5 (interquartile range (IQR), 25.2-44.7) months post-transplantation. The 3-year OS post-transplantation was 79.6% (95% confidential interval (CI) 74.8%-84.6%) and 65.2% (95% CI 60.3%-70.6%) (Hazard ratio (HR) 0.50, 95% CI 0.37-0.69; P < 0.0001) in both groups. Sorafenib maintenance post-transplantation improved OS in the favorable (HR 0.33, 95% CI 0.14-0.77; P = 0.011) and adverse (HR 0.56, 95% CI 0.33-0.93; P = 0.026) ELN 2017 risk subgroups. Patients with mutated NPM1, DNMT3A, co-occurring NPM1/DNMT3A, "activated signaling" and "DNA methylation" genes benefited in OS from sorafenib maintenance, while those carrying CEBPA, "tumor suppressors" and "myeloid transcription factors" genes did not. Patients with FLT3-ITDhigh and FLT3-ITDlow AML both benefited in OS from sorafenib maintenance. Our results identify the response of genetic patterns to sorafenib maintenance, providing new viewpoints for the optimal use of sorafenib in FLT3-ITD AML in the transplantation setting.
Collapse
Affiliation(s)
- Ruoyang Shao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, 510515, China
| | - Yu Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, 510515, China
| | - Jinping He
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, 510515, China
| | - Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, 510515, China
| | - Zhiping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, 510515, China
| | - Kaibo Yang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, 510515, China
| | - Yajing Xu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, 510515, China
| | - Yi Luo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Lan Deng
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Jia Chen
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Mingzhe Han
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin, 300020, China
| | - Xudong Li
- Department of Hematology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Sijian Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, 510515, China
| | - Hui Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, 510515, China
| | - Xinquan Liang
- Department of Hematology, the First People's Hospital of Chenzhou, Chenzhou, 423099, China
| | - Xiaodan Luo
- Department of Hematology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Department of Hematology, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, China
| | - Pengcheng Shi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, 510515, China
| | - Zhixiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, 510515, China
| | - Ling Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, 510515, China
| | - Xuan Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, 510515, China
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, 510515, China
| | - Yan Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Sanfang Tu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jing Sun
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, 510515, China
| | - Yu Wang
- Department of Hematology, Peking University People's Hospital, Beijing, 100044, China.
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, 510515, China.
| |
Collapse
|
24
|
Sim KM, Kim SY, Hwang S, Park S, Lee BR, Nam K, Oh S, Kim I. A new cyclin-dependent kinase-9 inhibitor A09-003 induces apoptosis in acute myeloid leukemia cells with reduction of myeloid cell leukemia sequence-1 protein. Chem Biol Interact 2023; 382:110554. [PMID: 37271215 DOI: 10.1016/j.cbi.2023.110554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
Acute myeloid leukemia (AML) is the most common type of hematological disease in adults, and has a very poor outcome [1]. Based on its wide range of efficacy in AML models, a small-molecule inhibitor of the anti-apoptotic protein BCL-2, venetoclax (ABT-199/GDC-0199), was developed for clinical trials. However, venetoclax showed limited monotherapy activity [2]. The overexpression of myeloid cell leukemia sequence-1 protein (Mcl-1)-due to mutations in Fms-like tyrosine kinase 3 internal tandem duplication (FLT-3 ITD)-was considered to be the main reason for low efficacy of venetoclax in clinical trials [3-5]. To achieve venetoclax sensitization in AML, targeting CDK-9 with venetoclax is a promising therapeutic strategy. In this study, we developed A09-003 as a potent inhibitor of CDK-9, with an IC50 value of 16 nM. A09-003 inhibited cell proliferation in various leukemia cell lines. In particular, the proliferation inhibitory effect of A09-003 was most potent in MV4-11 and Molm-14 cells, harboring the FLT-3 ITD mutation with a high expression profile of Mcl-1. Marker analysis revealed that A09-003 reduced CDK-9 phosphorylation and reduced RNA polymerase II activity with decreased Mcl-1 expression. Finally, combining A09-003 with venetoclax induced apoptotic cell death in a synergistic manner. In summary, this study shows the potential of A09-003 in AML therapy.
Collapse
Affiliation(s)
- Kyoung Mi Sim
- Biomedical Research Center, ASAN Institute for Life Sciences, ASAN Medical Center, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, Republic of Korea
| | - So Young Kim
- Biomedical Research Center, ASAN Institute for Life Sciences, ASAN Medical Center, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, Republic of Korea
| | - Supyong Hwang
- Convergence Medicine Research Center (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, Republic of Korea
| | - Sojung Park
- Convergence Medicine Research Center (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, Republic of Korea
| | - Bo Ra Lee
- Convergence Medicine Research Center (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, Republic of Korea
| | | | - SeakHee Oh
- Department of Pediatrics, Asan Medical Center Children's Hospital, University Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Inki Kim
- Biomedical Research Center, ASAN Institute for Life Sciences, ASAN Medical Center, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, Republic of Korea; Convergence Medicine Research Center (CREDIT), ASAN Institute for Life Sciences, ASAN Medical Center, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul, Republic of Korea; Department of Pharmacology, University of Ulsan College of Medicine, 88 Olympicro 43 gil, Songpa-Gu, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Glytsou C, Chen X, Zacharioudakis E, Al-Santli W, Zhou H, Nadorp B, Lee S, Lasry A, Sun Z, Papaioannou D, Cammer M, Wang K, Zal T, Zal MA, Carter BZ, Ishizawa J, Tibes R, Tsirigos A, Andreeff M, Gavathiotis E, Aifantis I. Mitophagy Promotes Resistance to BH3 Mimetics in Acute Myeloid Leukemia. Cancer Discov 2023; 13:1656-1677. [PMID: 37088914 PMCID: PMC10330144 DOI: 10.1158/2159-8290.cd-22-0601] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/30/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023]
Abstract
BH3 mimetics are used as an efficient strategy to induce cell death in several blood malignancies, including acute myeloid leukemia (AML). Venetoclax, a potent BCL-2 antagonist, is used clinically in combination with hypomethylating agents for the treatment of AML. Moreover, MCL1 or dual BCL-2/BCL-xL antagonists are under investigation. Yet, resistance to single or combinatorial BH3-mimetic therapies eventually ensues. Integration of multiple genome-wide CRISPR/Cas9 screens revealed that loss of mitophagy modulators sensitizes AML cells to various BH3 mimetics targeting different BCL-2 family members. One such regulator is MFN2, whose protein levels positively correlate with drug resistance in patients with AML. MFN2 overexpression is sufficient to drive resistance to BH3 mimetics in AML. Insensitivity to BH3 mimetics is accompanied by enhanced mitochondria-endoplasmic reticulum interactions and augmented mitophagy flux, which acts as a prosurvival mechanism to eliminate mitochondrial damage. Genetic or pharmacologic MFN2 targeting synergizes with BH3 mimetics by impairing mitochondrial clearance and enhancing apoptosis in AML. SIGNIFICANCE AML remains one of the most difficult-to-treat blood cancers. BH3 mimetics represent a promising therapeutic approach to eliminate AML blasts by activating the apoptotic pathway. Enhanced mitochondrial clearance drives resistance to BH3 mimetics and predicts poor prognosis. Reverting excessive mitophagy can halt BH3-mimetic resistance in AML. This article is highlighted in the In This Issue feature, p. 1501.
Collapse
Affiliation(s)
- Christina Glytsou
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Pediatrics, Robert Wood Johnson Medical School, and Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Xufeng Chen
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Emmanouil Zacharioudakis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wafa Al-Santli
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Hua Zhou
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Bettina Nadorp
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Soobeom Lee
- Department of Biology, New York University, New York, NY 10003, USA
| | - Audrey Lasry
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Zhengxi Sun
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitrios Papaioannou
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Michael Cammer
- Microscopy Core, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kun Wang
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Tomasz Zal
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Malgorzata Anna Zal
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bing Z. Carter
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jo Ishizawa
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Aristotelis Tsirigos
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Iannis Aifantis
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Langone Health and NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
26
|
Bouligny IM, Murray G, Ho T, Doyel M, Patel T, Boron J, Tran V, Gor J, Hang Y, Alnimer Y, Zacholski K, Venn C, Wages NA, Grant S, Maher KR. Venetoclax with Decitabine or Azacitidine in Relapsed or Refractory Acute Myeloid Leukemia. RESEARCH SQUARE 2023:rs.3.rs-3015916. [PMID: 37398154 PMCID: PMC10312962 DOI: 10.21203/rs.3.rs-3015916/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Abstract
Relapsed or refractory acute myeloid leukemia (AML) is associated with poor outcomes and resistance to therapy. The addition of venetoclax, a BCL-2 antagonist, to lower-intensity therapies results in improved survival in the first-line setting compared to monotherapy with a hypomethylating agent or low-dose cytarabine. Despite this, much remains unknown about the performance of venetoclax with a hypomethylating agent following the first-line setting. Additionally, while the ELN 2022 guidelines appear to improve the prognostication of AML, clarification is needed to determine how the revision applies to lower-intensity strategies. To investigate this, we retrospectively analyzed the performance of venetoclax with decitabine or azacitidine in relapsed or refractory AML under the ELN 2022 guidelines. We demonstrated that the ELN 2022 revision is not optimized for lower-intensity venetoclax-based strategies. To refine the prognostication schema, we showed significantly improved response and survival benefits for patients with mutated NPM1 and IDH. Relatively, patients with mutated NRAS, KRAS, and FLT3-ITD were associated with inferior response and survival. Furthermore, there is an unmet clinical need for tools to improve the selection of lower-intensity therapy candidates with borderline functional status. Using an incremental survival computation method, we discovered that a CCI score threshold of 5 distinguishes patients at an elevated risk of death. Together, these novel findings highlight areas of refinement to improve survival in relapsed or refractory AML.
Collapse
Affiliation(s)
- Ian M Bouligny
- Virginia Commonwealth University Massey Cancer Center - NCI Designated Comprehensive Cancer Center, Division of Hematology and Oncology, Department of Internal Medicine, 1001 E. Leigh St., Richmond, VA, USA
| | - Graeme Murray
- Virginia Commonwealth University School of Medicine, 1201 E. Marshall St., Richmond, VA, USA
| | - Thuy Ho
- Virginia Commonwealth University Massey Cancer Center - NCI Designated Comprehensive Cancer Center, Division of Hematology and Oncology, Department of Internal Medicine, 1001 E. Leigh St., Richmond, VA, USA
| | - Michael Doyel
- Virginia Commonwealth University School of Medicine, 1201 E. Marshall St., Richmond, VA, USA
| | - Tilak Patel
- Virginia Commonwealth University Medical Center, Department of Internal Medicine, 1101 E. Marshall St., Richmond, VA, USA
| | - Josh Boron
- Virginia Commonwealth University Medical Center, Department of Internal Medicine, 1101 E. Marshall St., Richmond, VA, USA
| | - Valerie Tran
- Virginia Commonwealth University Medical Center, Department of Internal Medicine, 1101 E. Marshall St., Richmond, VA, USA
| | - Juhi Gor
- Virginia Commonwealth University Medical Center, Department of Internal Medicine, 1101 E. Marshall St., Richmond, VA, USA
| | - Yiwei Hang
- Virginia Commonwealth University School of Medicine, 1201 E. Marshall St., Richmond, VA, USA
| | - Yanal Alnimer
- Virginia Commonwealth University Medical Center, Department of Internal Medicine, 1101 E. Marshall St., Richmond, VA, USA
| | - Kyle Zacholski
- Virginia Commonwealth University Medical Center, Department of Pharmacy, 410 North 12 St., Richmond, VA, USA
| | - Chad Venn
- Virginia Commonwealth University Medical Center, Department of Pharmacy, 410 North 12 St., Richmond, VA, USA
| | - Nolan A Wages
- Virginia Commonwealth University School of Medicine, Department of Biostatistics, 830 E. Main St., Richmond, VA, USA
| | - Steven Grant
- Virginia Commonwealth University Massey Cancer Center - NCI Designated Comprehensive Cancer Center, Division of Hematology and Oncology, Department of Internal Medicine, 1001 E. Leigh St., Richmond, VA, USA
| | - Keri R Maher
- Virginia Commonwealth University Massey Cancer Center - NCI Designated Comprehensive Cancer Center, Division of Hematology and Oncology, Department of Internal Medicine, 1001 E. Leigh St., Richmond, VA, USA
| |
Collapse
|
27
|
Wei AH, Roberts AW. BCL2 Inhibition: A New Paradigm for the Treatment of AML and Beyond. Hemasphere 2023; 7:e912. [PMID: 37304937 PMCID: PMC10256369 DOI: 10.1097/hs9.0000000000000912] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Altering the natural history of acute myeloid leukemia (AML) in unfit and older patients has proved a highly challenging hurdle, despite several decades of concerted clinical trial effort. The arrival of venetoclax (VEN) to the clinical stage represents the most important therapeutic advance to date for older patients with AML. In this review, we will explain how and why VEN works, summarize its remarkable pathway to regulatory approval, and highlight the key milestones that have been important for its successful development in AML. We also provide perspectives on some of the challenges associated with using VEN in the clinic, emerging knowledge regarding mechanisms of treatment failure, and current clinical research directions likely to shape how this drug and others in this new class of anticancer agents are used in the future.
Collapse
Affiliation(s)
- Andrew H Wei
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Clinical Hematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
- Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
| | - Andrew W Roberts
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Clinical Hematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, Australia
- Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Kaneshige A, Bai L, Wang M, McEachern D, Meagher JL, Xu R, Wang Y, Jiang W, Metwally H, Kirchhoff PD, Zhao L, Jiang H, Wang M, Wen B, Sun D, Stuckey JA, Wang S. A selective small-molecule STAT5 PROTAC degrader capable of achieving tumor regression in vivo. Nat Chem Biol 2023; 19:703-711. [PMID: 36732620 DOI: 10.1038/s41589-022-01248-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/21/2022] [Indexed: 02/04/2023]
Abstract
Signal transducer and activator of transcription 5 (STAT5) is an attractive therapeutic target, but successful targeting of STAT5 has proved to be difficult. Here we report the development of AK-2292 as a first, potent and selective small-molecule degrader of both STAT5A and STAT5B isoforms. AK-2292 induces degradation of STAT5A/B proteins with an outstanding selectivity over all other STAT proteins and more than 6,000 non-STAT proteins, leading to selective inhibition of STAT5 activity in cells. AK-2292 effectively induces STAT5 depletion in normal mouse tissues and human chronic myeloid leukemia (CML) xenograft tissues and achieves tumor regression in two CML xenograft mouse models at well-tolerated dose schedules. AK-2292 is not only a powerful research tool with which to investigate the biology of STAT5 and the therapeutic potential of selective STAT5 protein depletion and inhibition but also a promising lead compound toward ultimate development of a STAT5-targeted therapy.
Collapse
Affiliation(s)
- Atsunori Kaneshige
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, MI, USA
| | - Longchuan Bai
- Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, MI, USA
| | - Mi Wang
- Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, MI, USA
| | - Donna McEachern
- Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, MI, USA
| | | | - Renqi Xu
- Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, MI, USA
| | - Yu Wang
- Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, MI, USA
| | - Wei Jiang
- Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, MI, USA
| | - Hoda Metwally
- Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, MI, USA
| | - Paul D Kirchhoff
- Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, MI, USA
| | - Lijie Zhao
- Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, MI, USA
| | - Hui Jiang
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Meilin Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Jeanne A Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Shaomeng Wang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine, University of Michigan, Medical School, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
29
|
Haage TR, Schraven B, Mougiakakos D, Fischer T. How ITD Insertion Sites Orchestrate the Biology and Disease of FLT3-ITD-Mutated Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:cancers15112991. [PMID: 37296951 DOI: 10.3390/cancers15112991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Mutations of the FLT3 gene are among the most common genetic aberrations detected in AML and occur mainly as internal tandem duplications (FLT3-ITD). However, the specific sites of FLT3-ITD insertion within FLT3 show marked heterogeneity regarding both biological and clinical features. In contrast to the common assumption that ITD insertion sites (IS) are restricted to the juxtamembrane domain (JMD) of FLT3, 30% of FLT3-ITD mutations insert at the non-JMD level, thereby integrating into various segments of the tyrosine kinase subdomain 1 (TKD1). ITDs inserted within TKD1 have been shown to be associated with inferior complete remission rates as well as shorter relapse-free and overall survival. Furthermore, resistance to chemotherapy and tyrosine kinase inhibition (TKI) is linked to non-JMD IS. Although FLT3-ITD mutations in general are already recognized as a negative prognostic marker in currently used risk stratification guidelines, the even worse prognostic impact of non-JMD-inserting FLT3-ITD has not yet been particularly considered. Recently, the molecular and biological assessment of TKI resistance highlighted the pivotal role of activated WEE1 kinase in non-JMD-inserting ITDs. Overcoming therapy resistance in non-JMD FLT3-ITD-mutated AML may lead to more effective genotype- and patient-specific treatment approaches.
Collapse
Affiliation(s)
- Tobias R Haage
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Gesundheitscampus Immunology, Inflammation and Infectiology (GC-I3), Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Burkhart Schraven
- Gesundheitscampus Immunology, Inflammation and Infectiology (GC-I3), Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center of Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39106 Magdeburg, Germany
| | - Dimitrios Mougiakakos
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Gesundheitscampus Immunology, Inflammation and Infectiology (GC-I3), Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Thomas Fischer
- Gesundheitscampus Immunology, Inflammation and Infectiology (GC-I3), Medical Center, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
30
|
Piccini M, Mannelli F, Coltro G. The Role of Venetoclax in Relapsed/Refractory Acute Myeloid Leukemia: Past, Present, and Future Directions. Bioengineering (Basel) 2023; 10:591. [PMID: 37237661 PMCID: PMC10215478 DOI: 10.3390/bioengineering10050591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Relapsed and/or refractory (R/R) acute myeloid leukemia (AML) is hallmarked by dramatic prognosis. Treatment remains challenging, with allogeneic hematopoietic stem cell transplantation (HSCT) as the only curative option. The BCL-2 inhibitor venetoclax (VEN) has proven to be a promising therapy for AML and is currently the standard of care in combination with hypomethylating agents (HMAs) for newly diagnosed AML patients ineligible for induction chemotherapy. Given its satisfactory safety profile, VEN-based combinations are increasingly being investigated as a part of the therapeutic strategy for R/R AML. The current paper aims to provide a comprehensive review of the main evidence regarding VEN in the setting of R/R AML, with a specific focus on combinational strategies, including HMAs and cytotoxic chemotherapy, as well as different clinical settings, especially in view of the crucial role of HSCT. A discussion of what is known about drug resistance mechanisms and future combinational strategies is also provided. Overall, VEN-based regimes (mainly VEN + HMA) have provided unprecedented salvage treatment opportunities in patients with R/R AML, with low extra-hematological toxicity. On the other hand, the issue of overcoming resistance is one of the most important fields to be addressed in upcoming clinical research.
Collapse
Affiliation(s)
- Matteo Piccini
- Hematology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Francesco Mannelli
- Hematology Department, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- CRIMM, Center for Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Giacomo Coltro
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- CRIMM, Center for Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| |
Collapse
|
31
|
Yokoyama S, Onozawa M, Yoshida S, Miyashita N, Kimura H, Takahashi S, Matsukawa T, Goto H, Fujisawa S, Miki K, Hidaka D, Hashiguchi J, Wakasa K, Ibata M, Takeda Y, Shigematsu A, Fujimoto K, Tsutsumi Y, Mori A, Ishihara T, Kakinoki Y, Kondo T, Hashimoto D, Teshima T. Subclinical minute FLT3-ITD clone can be detected in clinically FLT3-ITD-negative acute myeloid leukaemia at diagnosis. Br J Haematol 2023. [PMID: 37067758 DOI: 10.1111/bjh.18800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023]
Abstract
Recent advances in next-generation sequencing (NGS) have enabled the detection of subclinical minute FLT3-ITD. We selected 74 newly diagnosed, cytogenetically normal acute myeloid leukaemia (AML) samples in which FLT3-ITD was not detected by gel electrophoresis. We sequenced them using NGS and found minute FLT3-ITDs in 19 cases. We compared cases with clinically relevant FLT3-ITD (n = 37), cases with minute FLT3-ITD (n = 19) and cases without detectable FLT3-ITD (n = 55). Molecular characteristics (location and length) of minute FLT3-ITD were similar to those of clinically relevant FLT3-ITD. Survival of cases with minute FLT3-ITD was similar to that of cases without detectable FLT3-ITD, whereas the relapse rate within 1 year after onset was significantly higher in cases with minute FLT3-ITD. We followed 18 relapsed samples of cases with clinically FLT3-ITD-negative at diagnosis. Two of 3 cases with minute FLT3-ITD relapsed with progression to clinically relevant FLT3-ITD. Two of 15 cases in which FLT3-ITD was not detected by NGS relapsed with the emergence of minute FLT3-ITD, and one of them showed progression to clinically relevant FLT3-ITD at the second relapse. We revealed the clonal dynamics of subclinical minute FLT3-ITD in clinically FLT3-ITD-negative AML. Minute FLT3-ITD at the initial AML can expand to become a dominant clone at relapse.
Collapse
Affiliation(s)
- Shota Yokoyama
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Masahiro Onozawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Shota Yoshida
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Naoki Miyashita
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Hiroyuki Kimura
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Shogo Takahashi
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Toshihiro Matsukawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Hideki Goto
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Shinichi Fujisawa
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Kosuke Miki
- Department of Hematology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Daisuke Hidaka
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | | | - Kentaro Wakasa
- Division of Hematology, Obihiro-Kosei General Hospital, Obihiro, Japan
| | - Makoto Ibata
- Department of Hematology, Sapporo-Kosei General Hospital, Sapporo, Japan
| | - Yukari Takeda
- Department of Hematology, Tonan Hospital, Sapporo, Japan
| | - Akio Shigematsu
- Department of Hematology, Kushiro Rosai Hospital, Kushiro, Japan
| | - Katsuya Fujimoto
- Department of Hematology, National Hospital Organization Hokkaido Cancer Center, Sapporo, Japan
| | - Yutaka Tsutsumi
- Department of Hematology, Hakodate Municipal Hospital, Hakodate, Japan
| | - Akio Mori
- Blood Disorders Center, Aiiku Hospital, Sapporo, Japan
| | | | | | - Takeshi Kondo
- Blood Disorders Center, Aiiku Hospital, Sapporo, Japan
| | - Daigo Hashimoto
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
32
|
Fedorov K, Maiti A, Konopleva M. Targeting FLT3 Mutation in Acute Myeloid Leukemia: Current Strategies and Future Directions. Cancers (Basel) 2023; 15:cancers15082312. [PMID: 37190240 DOI: 10.3390/cancers15082312] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
FLT3 mutations are present in 30% of newly diagnosed patients with acute myeloid leukemia. Two broad categories of FLT3 mutations are ITD and TKD, with the former having substantial clinical significance. Patients with FLT3-ITD mutation present with a higher disease burden and have inferior overall survival, due to high relapse rates after achieving remission. The development of targeted therapies with FLT3 inhibitors over the past decade has substantially improved clinical outcomes. Currently, two FLT3 inhibitors are approved for use in patients with acute myeloid leukemia: midostaurin in the frontline setting, in combination with intensive chemotherapy; and gilteritinib as monotherapy in the relapsed refractory setting. The addition of FLT3 inhibitors to hypomethylating agents and venetoclax offers superior responses in several completed and ongoing studies, with encouraging preliminary data. However, responses to FLT3 inhibitors are of limited duration due to the emergence of resistance. A protective environment within the bone marrow makes eradication of FLT3mut leukemic cells difficult, while prior exposure to FLT3 inhibitors leads to the development of alternative FLT3 mutations as well as activating mutations in downstream signaling, promoting resistance to currently available therapies. Multiple novel therapeutic strategies are under investigation, including BCL-2, menin, and MERTK inhibitors, as well as FLT3-directed BiTEs and CAR-T therapy.
Collapse
Affiliation(s)
- Kateryna Fedorov
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | - Abhishek Maiti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marina Konopleva
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, USA
| |
Collapse
|
33
|
Shah K, Al Ashiri L, Nasimian A, Ahmed M, Kazi JU. Venetoclax-Resistant T-ALL Cells Display Distinct Cancer Stem Cell Signatures and Enrichment of Cytokine Signaling. Int J Mol Sci 2023; 24:ijms24055004. [PMID: 36902436 PMCID: PMC10003524 DOI: 10.3390/ijms24055004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Therapy resistance remains one of the major challenges for cancer treatment that largely limits treatment benefits and patient survival. The underlying mechanisms that lead to therapy resistance are highly complicated because of the specificity to the cancer subtype and therapy. The expression of the anti-apoptotic protein BCL2 has been shown to be deregulated in T-cell acute lymphoblastic leukemia (T-ALL), where different T-ALL cells display a differential response to the BCL2-specific inhibitor venetoclax. In this study, we observed that the expression of anti-apoptotic BCL2 family genes, such as BCL2, BCL2L1, and MCL1, is highly varied in T-ALL patients, and inhibitors targeting proteins coded by these genes display differential responses in T-ALL cell lines. Three T-ALL cell lines (ALL-SIL, MOLT-16, and LOUCY) were highly sensitive to BCL2 inhibition within a panel of cell lines tested. These cell lines displayed differential BCL2 and BCL2L1 expression. Prolonged exposure to venetoclax led to the development of resistance to it in all three sensitive cell lines. To understand how cells developed venetoclax resistance, we monitored the expression of BCL2, BCL2L1, and MCL1 over the treatment period and compared gene expression between resistant cells and parental sensitive cells. We observed a different trend of regulation in terms of BCL2 family gene expression and global gene expression profile including genes reported to be expressed in cancer stem cells. Gene set enrichment analysis (GSEA) showed enrichment of cytokine signaling in all three cell lines which was supported by the phospho-kinase array where STAT5 phosphorylation was found to be elevated in resistant cells. Collectively, our data suggest that venetoclax resistance can be mediated through the enrichment of distinct gene signatures and cytokine signaling pathways.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Lina Al Ashiri
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Ahmad Nasimian
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Mehreen Ahmed
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Julhash U. Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
- Correspondence:
| |
Collapse
|
34
|
Discovery of a novel oral type Ⅰ CDK8 inhibitor against acute myeloid leukemia. Eur J Med Chem 2023; 251:115214. [PMID: 36889252 DOI: 10.1016/j.ejmech.2023.115214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023]
Abstract
CDK8 plays a key role in acute myeloid leukemia, colorectal cancer and other cancers. Here, a total of 54 compounds were designed and synthesized. Among them, the most potent one compound 43 (3-(1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide), a novel CDK8 Ⅰ inhibitor, showed strong inhibitory activity against CDK8 (IC50 = 51.9 nM), good kinase selectivity, good anti AML cell proliferation activity (molm-13 GC50 = 1.57 ± 0.59 μM) and low toxicity in vivo (acute toxicity: 2000 mg/kg). Further mechanistic studies revealed that this compound could target CDK8 and then phosphorylate STAT-1 and STAT-5 thereby inhibiting of AML cell proliferation. In addition, compound 43 showed relatively good bioavailability (F = 28.00%) and could inhibit the growth of AML tumors in a dose-dependent manner in vivo. This study facilitates the further development of more potent CDK8 inhibitors for the treatment of the AML.
Collapse
|
35
|
Kaneshige A, Bai L, Wang M, McEachern D, Meagher JL, Xu R, Kirchhoff PD, Wen B, Sun D, Stuckey JA, Wang S. Discovery of a Potent and Selective STAT5 PROTAC Degrader with Strong Antitumor Activity In Vivo in Acute Myeloid Leukemia. J Med Chem 2023; 66:2717-2743. [PMID: 36735833 DOI: 10.1021/acs.jmedchem.2c01665] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
STAT5 is an attractive therapeutic target for human cancers. We report herein the discovery of a potent and selective STAT5 degrader with strong antitumor activity in vivo. We first obtained small-molecule ligands with sub-micromolar to low micromolar binding affinities to STAT5 and STAT6 SH2 domains and determined co-crystal structures of three such ligands in complex with STAT5A. We successfully transformed these ligands into potent and selective STAT5 degraders using the PROTAC technology with AK-2292 as the best compound. AK-2292 effectively induces degradation of STAT5A, STAT5B, and phosphorylated STAT5 proteins in a concentration- and time-dependent manner in acute myeloid leukemia (AML) cell lines and demonstrates excellent degradation selectivity for STAT5 over all other STAT members. It exerts potent and specific cell growth inhibitory activity in AML cell lines with high levels of phosphorylated STAT5. AK-2292 effectively reduces STAT5 protein in vivo and achieves strong antitumor activity in mice at well-tolerated dose schedules.
Collapse
Affiliation(s)
- Atsunori Kaneshige
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Longchuan Bai
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mi Wang
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Donna McEachern
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jennifer L Meagher
- Life Science Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Renqi Xu
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul D Kirchhoff
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeanne A Stuckey
- Life Science Institute, University of Michigan, Ann Arbor, Michigan 48109, United States.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
36
|
Bystrom R, Levis MJ. An Update on FLT3 in Acute Myeloid Leukemia: Pathophysiology and Therapeutic Landscape. Curr Oncol Rep 2023; 25:369-378. [PMID: 36808557 DOI: 10.1007/s11912-023-01389-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 02/21/2023]
Abstract
PURPOSE OF REVIEW This review aims to summarize the pathophysiology, clinical presentation, and management of acute myeloid leukemia (AML) with FMS-like tyrosine kinase-3 (FLT3) mutations. RECENT FINDINGS The recent European Leukemia Net (ELN2022) recommendations re-classified AML with FLT3 internal tandem duplications (FLT3-ITD) as intermediate risk regardless of Nucleophosmin 1 (NPM1) co-mutation or the FLT3 allelic ratio. Allogeneic hematopoietic cell transplantation (alloHCT) is now recommended for all eligible patients with FLT3-ITD AML. This review outlines the role of FLT3 inhibitors in induction and consolidation, as well as for post-alloHCT maintenance. It outlines the unique challenges and advantages of assessing FLT3 measurable residual disease (MRD) and discusses the pre-clinical basis for the combination of FLT3 and menin inhibitors. And, for the older or unfit patient ineligible for upfront intensive chemotherapy, it discusses the recent clinical trials incorporating FLT3 inhibitors into azacytidine- and venetoclax-based regimens. Finally, it proposes a rational sequential approach for integrating FLT3 inhibitors into less intensive regimens, with a focus on improved tolerability in the older and unfit patient population. The management of AML with FLT3 mutation remains a challenge in clinical practice. This review provides an update on the pathophysiology and therapeutic landscape of FLT3 AML, as well as a clinical management framework for managing the older or unfit patient ineligible for intensive chemotherapy.
Collapse
Affiliation(s)
- Rebecca Bystrom
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark J Levis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
37
|
The GSK3β/Mcl-1 axis is regulated by both FLT3-ITD and Axl and determines the apoptosis induction abilities of FLT3-ITD inhibitors. Cell Death Dis 2023; 9:44. [PMID: 36739272 PMCID: PMC9899255 DOI: 10.1038/s41420-023-01317-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 02/06/2023]
Abstract
Acute myeloid leukemia (AML) patients with FLT3-ITD mutations are associated with poor prognosis. FLT3-ITD inhibitors are developed and result in transient disease remission, but generally resistance develops. We propose that resistance occurs due to apoptosis evasion. We compared the abilities of five clinically used FLT3-ITD inhibitors, namely, midostaurin, crenolanib, gilteritinib, quizartinib, and sorafenib, to induce apoptosis. These drugs inhibit FLT3-ITD and induce apoptosis. Apoptosis induction is associated with GSK3β activation, Mcl-1 downregulation, and Bim upregulation. Sorafenib-resistant MOLM-13/sor cells have the secondary D835Y mutation and increased Axl signaling pathway with cross-resistance to quizartinib. Gilteritinib and crenolanib inhibit both FLT3-ITD and Axl and induce apoptosis in MOLM-13/sor cells, in which they activate GSK3β and downregulate Mcl-1. Inactivation of GSK3β through phosphorylation and inhibitors blocks apoptosis and Mcl-1 reduction. The Axl/GSK3β/Mcl-1 axis works as a feedback mechanism to attenuate apoptosis of FLT3-ITD inhibition. Homoharringtonine decreases the protein levels of Mcl-1, FLT3-ITD, and Axl. Moreover, it synergistically induces apoptosis with gilteritinib in vitro and prolongs survival of MOLM-13/sor xenografts. The GSK3β/Mcl-1 axis works as the hub of FLT3-ITD inhibitors and plays a critical role in resistance against FLT3-ITD AML-targeted therapy.
Collapse
|
38
|
Zhu M, Li S, Cao X, Rashid K, Liu T. The STAT family: Key transcription factors mediating crosstalk between cancer stem cells and tumor immune microenvironment. Semin Cancer Biol 2023; 88:18-31. [PMID: 36410636 DOI: 10.1016/j.semcancer.2022.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Signal transducer and activator of transcription (STAT) proteins compose a family of transcription factors critical for cancer stem cells (CSCs), and they are involved in maintaining stemness properties, enhancing cell proliferation, and promoting metastasis. Recent studies suggest that STAT proteins engage in reciprocal communication between CSCs and infiltrate immune cell populations in the tumor microenvironment (TME). Emerging evidence has substantiated the influence of immune cells, including macrophages, myeloid-derived suppressor cells, and T cells, on CSC survival through the regulation of STAT signaling. Conversely, dysregulation of STATs in CSCs or immune cells contributes to the establishment of an immunosuppressive TME. Thus, STAT proteins are promising therapeutic targets for cancer treatment, especially when used in combination with immunotherapy. From this perspective, we discuss the complex roles of STATs in CSCs and highlight their functions in the crosstalk between CSCs and the immune microenvironment. Finally, cutting-edge clinical trial progress with STAT signaling inhibitors is summarized.
Collapse
Affiliation(s)
- Mengxuan Zhu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China; Center of Evidence-based Medicine, Fudan University, Shanghai, China
| | - Suyao Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China; Center of Evidence-based Medicine, Fudan University, Shanghai, China
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Khalid Rashid
- Department of Cancer Biology, Faculty of Medicine, University of Cincinnati, OH, USA.
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China; Center of Evidence-based Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
39
|
Rahmati A, Mafi A, Soleymani F, Babaei Aghdam Z, Masihipour N, Ghezelbash B, Asemi R, Aschner M, Vakili O, Homayoonfal M, Asemi Z, Sharifi M, Azadi A, Mirzaei H, Aghadavod E. Circular RNAs: pivotal role in the leukemogenesis and novel indicators for the diagnosis and prognosis of acute myeloid leukemia. Front Oncol 2023; 13:1149187. [PMID: 37124518 PMCID: PMC10140500 DOI: 10.3389/fonc.2023.1149187] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy and affected patients have poor overall survival (OS) rates. Circular RNAs (circRNAs) are a novel class of non-coding RNAs (ncRNAs) with a unique loop structure. In recent years, with the development of high-throughput RNA sequencing, many circRNAs have been identified exhibiting either up-regulation or down-regulation in AML patients compared with healthy controls. Recent studies have reported that circRNAs regulate leukemia cell proliferation, stemness, and apoptosis, both positively and negatively. Additionally, circRNAs could be promising biomarkers and therapeutic targets in AML. In this study, we present a comprehensive review of the regulatory roles and potentials of a number of dysregulated circRNAs in AML.
Collapse
Affiliation(s)
- Atefe Rahmati
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Basic Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Firooze Soleymani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Babaei Aghdam
- Imaging Sciences Research Group, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Masihipour
- Department of Medicine, Lorestan University of Medical Science, Lorestan, Iran
| | - Behrooz Ghezelbash
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Azadi
- Department of Internal Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Abbas Azadi, ; Esmat Aghadavod, ; Hamed Mirzaei, ;
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- Department of Clinical Biochemistry, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Abbas Azadi, ; Esmat Aghadavod, ; Hamed Mirzaei, ;
| |
Collapse
|
40
|
Janssen M, Schmidt C, Bruch PM, Blank MF, Rohde C, Waclawiczek A, Heid D, Renders S, Göllner S, Vierbaum L, Besenbeck B, Herbst SA, Knoll M, Kolb C, Przybylla A, Weidenauer K, Ludwig AK, Fabre M, Gu M, Schlenk RF, Stölzel F, Bornhäuser M, Röllig C, Platzbecker U, Baldus C, Serve H, Sauer T, Raffel S, Pabst C, Vassiliou G, Vick B, Jeremias I, Trumpp A, Krijgsveld J, Müller-Tidow C, Dietrich S. Venetoclax synergizes with gilteritinib in FLT3 wild-type high-risk acute myeloid leukemia by suppressing MCL-1. Blood 2022; 140:2594-2610. [PMID: 35857899 DOI: 10.1182/blood.2021014241] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 11/20/2022] Open
Abstract
BCL-2 inhibition has been shown to be effective in acute myeloid leukemia (AML) in combination with hypomethylating agents or low-dose cytarabine. However, resistance and relapse represent major clinical challenges. Therefore, there is an unmet need to overcome resistance to current venetoclax-based strategies. We performed high-throughput drug screening to identify effective combination partners for venetoclax in AML. Overall, 64 antileukemic drugs were screened in 31 primary high-risk AML samples with or without venetoclax. Gilteritinib exhibited the highest synergy with venetoclax in FLT3 wild-type AML. The combination of gilteritinib and venetoclax increased apoptosis, reduced viability, and was active in venetoclax-azacitidine-resistant cell lines and primary patient samples. Proteomics revealed increased FLT3 wild-type signaling in specimens with low in vitro response to the currently used venetoclax-azacitidine combination. Mechanistically, venetoclax with gilteritinib decreased phosphorylation of ERK and GSK3B via combined AXL and FLT3 inhibition with subsequent suppression of the antiapoptotic protein MCL-1. MCL-1 downregulation was associated with increased MCL-1 phosphorylation of serine 159, decreased phosphorylation of threonine 161, and proteasomal degradation. Gilteritinib and venetoclax were active in an FLT3 wild-type AML patient-derived xenograft model with TP53 mutation and reduced leukemic burden in 4 patients with FLT3 wild-type AML receiving venetoclax-gilteritinib off label after developing refractory disease under venetoclax-azacitidine. In summary, our results suggest that combined inhibition of FLT3/AXL potentiates venetoclax response in FLT3 wild-type AML by inducing MCL-1 degradation. Therefore, the venetoclax-gilteritinib combination merits testing as a potentially active regimen in patients with high-risk FLT3 wild-type AML.
Collapse
Affiliation(s)
- Maike Janssen
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christina Schmidt
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter-Martin Bruch
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maximilian F Blank
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Christian Rohde
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alexander Waclawiczek
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Daniel Heid
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | - Simon Renders
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Stefanie Göllner
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lisa Vierbaum
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Birgit Besenbeck
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sophie A Herbst
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mareike Knoll
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Carolin Kolb
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Adriana Przybylla
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Katharina Weidenauer
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Anne Kathrin Ludwig
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | - Margarete Fabre
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
| | - Muxin Gu
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
| | - Richard F Schlenk
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Friedrich Stölzel
- Department of Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martin Bornhäuser
- Department of Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christoph Röllig
- Department of Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Uwe Platzbecker
- Medical Clinic and Policlinic I, Hematology and Cellular Therapy, Leipzig University Hospital, Leipzig, Germany
| | - Claudia Baldus
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Hubert Serve
- Hematology-Oncology, Department of Medicine II, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Tim Sauer
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Simon Raffel
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Caroline Pabst
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | - George Vassiliou
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Hematology, University of Cambridge, Cambridge, United Kingdom
| | - Binje Vick
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Cancer Consortium, Partner Site Munich, Munich, Germany
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Cancer Consortium, Partner Site Munich, Munich, Germany
- Department of Pediatrics, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| | - Sascha Dietrich
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
41
|
Tecik M, Adan A. Therapeutic Targeting of FLT3 in Acute Myeloid Leukemia: Current Status and Novel Approaches. Onco Targets Ther 2022; 15:1449-1478. [PMID: 36474506 PMCID: PMC9719701 DOI: 10.2147/ott.s384293] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/19/2022] [Indexed: 08/13/2023] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is mutated in approximately 30% of acute myeloid leukemia (AML) patients. The presence of FLT3-ITD (internal tandem duplication, 20-25%) mutation and, to a lesser extent, FLT3-TKD (tyrosine kinase domain, 5-10%) mutation is associated with poorer diagnosis and therapy response since the leukemic cells become hyperproliferative and resistant to apoptosis after continuous activation of FLT3 signaling. Targeting FLT3 has been the focus of many pre-clinical and clinical studies. Hence, many small-molecule FLT3 inhibitors (FLT3is) have been developed, some of which are approved such as midostaurin and gilteritinib to be used in different clinical settings, either in combination with chemotherapy or alone. However, many questions regarding the best treatment strategy remain to be answered. On the other hand, various FLT3-dependent and -independent resistance mechanisms could be evolved during FLT3i therapy which limit their clinical impact. Therefore, identifying molecular mechanisms of resistance and developing novel strategies to overcome this obstacle is a current interest in the field. In this review, recent studies of approved FLT3i and knowledge about major resistance mechanisms of clinically approved FLT3i's will be discussed together with novel treatment approaches such as designing novel FLT3i and dual FLT3i and combination strategies including approved FLT3i plus small-molecule agents targeting altered molecules in the resistant cells to abrogate resistance. Moreover, how to choose an appropriate FLT3i for the patients will be summarized based on what is currently known from available clinical data. In addition, strategies beyond FLT3i's including immunotherapeutics, small-molecule FLT3 degraders, and flavonoids will be summarized to highlight potential alternatives in FLT3-mutated AML therapy.
Collapse
Affiliation(s)
- Melisa Tecik
- Bioengineering Program, Graduate School of Engineering and Science, Abdullah Gul University, Kayseri, Turkey
| | - Aysun Adan
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| |
Collapse
|
42
|
Krawiec K, Strzałka P, Czemerska M, Wiśnik A, Zawlik I, Wierzbowska A, Pluta A. Targeting Apoptosis in AML: Where Do We Stand? Cancers (Basel) 2022; 14:cancers14204995. [PMID: 36291779 PMCID: PMC9600036 DOI: 10.3390/cancers14204995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/01/2022] [Accepted: 10/08/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary In patients with acute myeloid leukemia (AML), genetic mutations can cause cells to evade regulated cell death (RCD), resulting in excessive cell proliferation. The best-known form of RCD is apoptosis, which prevents the emergence of cancer cells; disturbances in this process are an important factor in the development and progression of AML. Clearly, it is essential to understand the mechanisms of apoptosis to establish a personalized, patient-specific approach in AML therapy. Therefore, this paper comprehensively reviews the current range of AML treatment approaches related to apoptosis and highlights other promising concepts such as neddylation. Abstract More than 97% of patients with acute myeloid leukemia (AML) demonstrate genetic mutations leading to excessive proliferation combined with the evasion of regulated cell death (RCD). The most prominent and well-defined form of RCD is apoptosis, which serves as a defense mechanism against the emergence of cancer cells. Apoptosis is regulated in part by the BCL-2 family of pro- and anti-apoptotic proteins, whose balance can significantly determine cell survival. Apoptosis evasion plays a key role in tumorigenesis and drug resistance, and thus in the development and progression of AML. Research on the structural and biochemical aspects of apoptosis proteins and their regulators offers promise for new classes of targeted therapies and strategies for therapeutic intervention. This review provides a comprehensive overview of current AML treatment options related to the mechanism of apoptosis, particularly its mitochondrial pathway, and other promising concepts such as neddylation. It pays particular attention to clinically-relevant aspects of current and future AML treatment approaches, highlighting the molecular basis of individual therapies.
Collapse
Affiliation(s)
- Kinga Krawiec
- Department of Hematology, Medical University of Lodz, 93-513 Lodz, Poland
- Copernicus Multi-Specialist Oncology and Traumatology Center, 93-513 Lodz, Poland
| | - Piotr Strzałka
- Department of Hematology, Medical University of Lodz, 93-513 Lodz, Poland
- Copernicus Multi-Specialist Oncology and Traumatology Center, 93-513 Lodz, Poland
| | - Magdalena Czemerska
- Department of Hematology, Medical University of Lodz, 93-513 Lodz, Poland
- Copernicus Multi-Specialist Oncology and Traumatology Center, 93-513 Lodz, Poland
| | - Aneta Wiśnik
- Copernicus Multi-Specialist Oncology and Traumatology Center, 93-513 Lodz, Poland
| | - Izabela Zawlik
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Agnieszka Wierzbowska
- Department of Hematology, Medical University of Lodz, 93-513 Lodz, Poland
- Copernicus Multi-Specialist Oncology and Traumatology Center, 93-513 Lodz, Poland
| | - Agnieszka Pluta
- Department of Hematology, Medical University of Lodz, 93-513 Lodz, Poland
- Copernicus Multi-Specialist Oncology and Traumatology Center, 93-513 Lodz, Poland
- Correspondence:
| |
Collapse
|
43
|
Liu S, Qiao X, Wu S, Gai Y, Su Y, Edwards H, Wang Y, Lin H, Taub JW, Wang G, Ge Y. c-Myc plays a critical role in the antileukemic activity of the Mcl-1-selective inhibitor AZD5991 in acute myeloid leukemia. Apoptosis 2022; 27:913-928. [PMID: 35943677 DOI: 10.1007/s10495-022-01756-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 12/15/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive disease with a low 5-year overall survival rate of 29.5%. Thus, more effective therapies are in need to prolong survival of AML patients. Mcl-1 is overexpressed in AML and is associated with poor prognosis, representing a promising therapeutic target. The oncoprotein c-Myc is also overexpressed in AML and is a significant prognostic factor. In addition, Mcl-1 is required for c-Myc induced AML, indicating that c-Myc-driven AML harbors a Mcl-1 dependency and co-targeting of Mcl-1 and c-Myc represents a promising strategy to eradicate AML. In this study, we investigated the role of c-Myc in the antileukemic activity of Mcl-1 selective inhibitor AZD5991 and the antileukemic activity of co-targeting of Mcl-1 and c-Myc in preclinical models of AML. We found that c-Myc protein levels negatively correlated with AZD5991 EC50s in AML cell lines and primary patient samples. AZD5991 combined with inhibition of c-Myc synergistically induced apoptosis in AML cell lines and primary patient samples, and cooperatively targeted leukemia progenitor cells. AML cells with acquired resistance to AZD5991 were resensitized to AZD5991 when c-Myc was inhibited. The combination also showed promising and synergistic antileukemic activity in vitro against AML cell lines with acquired resistance to the main chemotherapeutic drug AraC and primary AML cells derived from a patient at relapse post chemotherapy. The oncoprotein c-Myc represents a potential biomarker of AZD5991 sensitivity and inhibition of c-Myc synergistically enhances the antileukemic activity of AZD5991 against AML.
Collapse
Affiliation(s)
- Shuang Liu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, P.R. China
| | - Xinan Qiao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, P.R. China
| | - Shuangshuang Wu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, P.R. China.,Department of Pediatric Hematology and Oncology, The First Hospital of Jilin University, Changchun, China
| | - Yuqinq Gai
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, P.R. China
| | - Yongwei Su
- Department of Oncology, Wayne State University School of Medicine, 421 E. Canfield, 48201, Detroit, MI, USA.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, 421 E. Canfield, 48201, Detroit, MI, USA.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yue Wang
- Department of Pediatric Hematology and Oncology, The First Hospital of Jilin University, Changchun, China
| | - Hai Lin
- Department of Hematology and Oncology, The First Hospital of Jilin University, Changchun, China
| | - Jeffrey W Taub
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.,Division of Pediatric Hematology and Oncology, Department of Pediatrics, Children's Hospital of Michigan, Detroit, MI, USA.,Central Michigan University College of Medicine, Mt. Pleasant, MI, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, P.R. China.
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, 421 E. Canfield, 48201, Detroit, MI, USA. .,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
44
|
Ong F, Kim K, Konopleva MY. Venetoclax resistance: mechanistic insights and future strategies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:380-400. [PMID: 35800373 PMCID: PMC9255248 DOI: 10.20517/cdr.2021.125] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 11/12/2022]
Abstract
Acute myeloid leukemia (AML) is historically associated with poor prognosis, especially in older AML patients unfit for intensive chemotherapy. The development of Venetoclax, a potent oral BH3 (BCL-2 homology domain 3) mimetic, has transformed the AML treatment. However, the short duration of response and development of resistance remain major concerns. Understanding mechanisms of resistance is pivotal to devising new strategies and designing rational drug combination regimens. In this review, we will provide a comprehensive summary of the known mechanisms of resistance to Venetoclax and discuss Venetoclax-based combination therapies. Key contributing factors to Venetoclax resistance include dependencies on alternative anti-apoptotic BCL-2 family proteins and selection of the activating kinase mutations. Mutational landscape governing response to Venetoclax and strategic approaches developed considering current knowledge of mechanisms of resistance will be addressed.
Collapse
Affiliation(s)
| | | | - Marina Y. Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
45
|
Andreozzi F, Massaro F, Wittnebel S, Spilleboudt C, Lewalle P, Salaroli A. New Perspectives in Treating Acute Myeloid Leukemia: Driving towards a Patient-Tailored Strategy. Int J Mol Sci 2022; 23:3887. [PMID: 35409248 PMCID: PMC8999556 DOI: 10.3390/ijms23073887] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/16/2022] Open
Abstract
For decades, intensive chemotherapy (IC) has been considered the best therapeutic option for treating acute myeloid leukemia (AML), with no curative option available for patients who are not eligible for IC or who have had failed IC. Over the last few years, several new drugs have enriched the therapeutic arsenal of AML treatment for both fit and unfit patients, raising new opportunities but also new challenges. These include the already approved venetoclax, the IDH1/2 inhibitors enasidenib and ivosidenib, gemtuzumab ozogamicin, the liposomal daunorubicin/cytarabine formulation CPX-351, and oral azacitidine. Venetoclax, an anti BCL2-inhibitor, in combination with hypomethylating agents (HMAs), has markedly improved the management of unfit and elderly patients from the perspective of improved quality of life and better survival. Venetoclax is currently under investigation in combination with other old and new drugs in early phase trials. Recently developed drugs with different mechanisms of action and new technologies that have already been investigated in other settings (BiTE and CAR-T cells) are currently being explored in AML, and ongoing trials should determine promising agents, more synergic combinations, and better treatment strategies. Access to new drugs and inclusion in clinical trials should be strongly encouraged to provide scientific evidence and to define the future standard of treatment in AML.
Collapse
Affiliation(s)
- Fabio Andreozzi
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Bruxelles, Belgium; (F.M.); (S.W.); (C.S.); (P.L.); (A.S.)
| | - Fulvio Massaro
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Bruxelles, Belgium; (F.M.); (S.W.); (C.S.); (P.L.); (A.S.)
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Sebastian Wittnebel
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Bruxelles, Belgium; (F.M.); (S.W.); (C.S.); (P.L.); (A.S.)
| | - Chloé Spilleboudt
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Bruxelles, Belgium; (F.M.); (S.W.); (C.S.); (P.L.); (A.S.)
| | - Philippe Lewalle
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Bruxelles, Belgium; (F.M.); (S.W.); (C.S.); (P.L.); (A.S.)
| | - Adriano Salaroli
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Bruxelles, Belgium; (F.M.); (S.W.); (C.S.); (P.L.); (A.S.)
| |
Collapse
|
46
|
Yamatani K, Ai T, Saito K, Suzuki K, Hori A, Kinjo S, Ikeo K, Ruvolo V, Zhang W, Mak PY, Kaczkowski B, Harada H, Katayama K, Sugimoto Y, Myslinski J, Hato T, Miida T, Konopleva M, Hayashizaki Y, Carter BZ, Tabe Y, Andreeff M. Inhibition of BCL2A1 by STAT5 inactivation overcomes resistance to targeted therapies of FLT3-ITD/D835 mutant AML. Transl Oncol 2022; 18:101354. [PMID: 35114569 PMCID: PMC8818561 DOI: 10.1016/j.tranon.2022.101354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/07/2022] [Accepted: 01/22/2022] [Indexed: 11/25/2022] Open
Abstract
BCL2A1 is upregulated and exerts a pro-survival function in FLT3-ITD/D835 AML cells. Upregulation of BCL2A1 attenuates sensitivity to quizartinib in FLT3-ITD/D835 cells. Gilteritinib decreases BCL2A1 through inactivation of STAT5 in FLT3-ITD/D835 cells. Gilteritinib/Venetoclax has a synergistic anti-tumor activity in FLT3-ITD/D835 cells.
Tyrosine kinase inhibitors (TKIs) are established drugs in the therapy of FLT3-ITD mutated acute myeloid leukemia (AML). However, acquired mutations, such as D835 in the tyrosine kinase domain (FLT3-ITD/D835), can induce resistance to TKIs. A cap analysis gene expression (CAGE) technology revealed that the gene expression of BCL2A1 transcription start sites was increased in primary AML cells bearing FLT3-ITD/D835 compared to FLT3-ITD. Overexpression of BCL2A1 attenuated the sensitivity to quizartinib, a type II TKI, and venetoclax, a selective BCL2 inhibitor, in AML cell lines. However, a type I TKI, gilteritinib, inhibited the expression of BCL2A1 through inactivation of STAT5 and alleviated TKI resistance of FLT3-ITD/D835. The combination of gilteritinib and venetoclax showed synergistic effects in the FLT3-ITD/D835 positive AML cells. The promoter region of BCL2A1 contains a BRD4 binding site. Thus, the blockade of BRD4 with a BET inhibitor (CPI-0610) downregulated BCL2A1 in FLT3-mutated AML cells and extended profound suppression of FLT3-ITD/D835 mutant cells. Therefore, we propose that BCL2A1 has the potential to be a novel therapeutic target in treating FLT3-ITD/D835 mutated AML.
Collapse
Affiliation(s)
- Kotoko Yamatani
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Tomohiko Ai
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kaori Saito
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Koya Suzuki
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Atsushi Hori
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Sonoko Kinjo
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan
| | - Kazuho Ikeo
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan
| | - Vivian Ruvolo
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 448, Houston, TX 77030, United States
| | - Weiguo Zhang
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 448, Houston, TX 77030, United States
| | - Po Yee Mak
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 448, Houston, TX 77030, United States
| | - Bogumil Kaczkowski
- Preventive Medicine and Diagnosis Innovation Program, RIKEN Center for Life Science Technologies, Kanagawa, Japan
| | - Hironori Harada
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhiro Katayama
- Laboratory of Molecular Targeted Therapeutics, School of Pharmacy, Nihon University, Chiba, Japan
| | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Jered Myslinski
- Department of Medicine, Indiana University School of Medicine, Marion, IN, United States
| | - Takashi Hato
- Department of Medicine, Indiana University School of Medicine, Marion, IN, United States
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Marina Konopleva
- Department of Leukemia, Section of Leukemia Biology Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Bing Z Carter
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 448, Houston, TX 77030, United States
| | - Yoko Tabe
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 448, Houston, TX 77030, United States; Department of Next Generation Hematology Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Michael Andreeff
- Department of Leukemia, Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 448, Houston, TX 77030, United States.
| |
Collapse
|
47
|
Solana-Altabella A, Ballesta-López O, Megías-Vericat JE, Martínez-Cuadrón D, Montesinos P. Emerging FLT3 inhibitors for the treatment of acute myeloid leukemia. Expert Opin Emerg Drugs 2022; 27:1-18. [DOI: 10.1080/14728214.2021.2009800] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Antonio Solana-Altabella
- Servicio de Farmacia, Área del Medicamento. Hospital Universitari i Politècnic La Fe. Av. Fernando Abril Martorell, Valencia– Spain
- Instituto de Investigación Sanitaria La Fe (IISLAFE). Av. Fernando Abril Martorell, Valencia–Spain
| | - Octavio Ballesta-López
- Servicio de Farmacia, Área del Medicamento. Hospital Universitari i Politècnic La Fe. Av. Fernando Abril Martorell, Valencia– Spain
- Instituto de Investigación Sanitaria La Fe (IISLAFE). Av. Fernando Abril Martorell, Valencia–Spain
| | - Juan Eduardo Megías-Vericat
- Servicio de Farmacia, Área del Medicamento. Hospital Universitari i Politècnic La Fe. Av. Fernando Abril Martorell, Valencia– Spain
| | - David Martínez-Cuadrón
- Servicio de Farmacia, Área del Medicamento. Hospital Universitari i Politècnic La Fe. Av. Fernando Abril Martorell, Valencia– Spain
- Instituto de Investigación Sanitaria La Fe (IISLAFE). Av. Fernando Abril Martorell, Valencia–Spain
| | - Pau Montesinos
- Instituto de Investigación Sanitaria La Fe (IISLAFE). Av. Fernando Abril Martorell, Valencia–Spain
- Servicio de Hematología y Hemoterapia. Hospital Universitari i Politècnic La Fe. Av. Fernando Abril Martorell, Valencia-Spain
| |
Collapse
|
48
|
Singh V, Uddin MH, Zonder JA, Azmi AS, Balasubramanian SK. Circular RNAs in acute myeloid leukemia. Mol Cancer 2021; 20:149. [PMID: 34794438 PMCID: PMC8600814 DOI: 10.1186/s12943-021-01446-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/22/2021] [Indexed: 01/01/2023] Open
Abstract
Although mechanistic studies clarifying the molecular underpinnings of AML have facilitated the development of several novel targeted therapeutics, most AML patients still relapse. Thus, overcoming the inherent and acquired resistance to current therapies remains an unsolved clinical problem. While current diagnostic modalities are primarily defined by gross morphology, cytogenetics, and to an extent, by deep targeted gene sequencing, there is an ongoing demand to identify newer diagnostic, therapeutic and prognostic biomarkers for AML. Recent interest in exploring the role of circular RNA (circRNA) in elucidating AML biology and therapy resistance has been promising. This review discerns the circular RNAs’ evolving role on the same scientific premise and attempts to identify its potential in managing AML.
Collapse
Affiliation(s)
- Vijendra Singh
- Department of Oncology, Karmanos Cancer Institute/Wayne State University, 4100 John R, HWCRC 740.2, Detroit, MI, 48201, USA
| | - Mohammed Hafiz Uddin
- Department of Oncology, Wayne State University School of Medicine, 4100 John R, HWCRC 732, Detroit, MI, 48201, USA
| | - Jeffrey A Zonder
- Department of Oncology, Karmanos Cancer Institute/Wayne State University, 4100 John R, HWCRC 740.2, Detroit, MI, 48201, USA
| | - Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, 4100 John R, HWCRC 732, Detroit, MI, 48201, USA
| | - Suresh Kumar Balasubramanian
- Department of Oncology, Karmanos Cancer Institute/Wayne State University, 4100 John R, HWCRC 740.2, Detroit, MI, 48201, USA.
| |
Collapse
|
49
|
Modulation of FLT3-ITD Localization and Targeting of Distinct Downstream Signaling Pathways as Potential Strategies to Overcome FLT3-Inhibitor Resistance. Cells 2021; 10:cells10112992. [PMID: 34831215 PMCID: PMC8616352 DOI: 10.3390/cells10112992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES: Internal tandem duplications (ITDs) of the Fms-like tyrosine kinase 3 (FLT3) represent the most frequent molecular aberrations in acute myeloid leukemia (AML) and are associated with an inferior prognosis. The pattern of downstream activation by this constitutively activated receptor tyrosine kinase is influenced by the localization of FLT3-ITD depending on its glycosylation status. Different pharmacological approaches can affect FLT3-ITD-driven oncogenic pathways by the modulation of FLT3-ITD localization. AIMS: The objective of this study was to investigate the effects of N-glycosylation inhibitors (tunicamycin or 2-deoxy-D-glucose) or the histone deacetylase inhibitor valproic acid (VPA) on FLT3-ITD localization and downstream activity. We sought to determine the potential differences between the distinct FLT3-ITD variants, particularly concerning their susceptibility towards combined treatment by addressing either N-glycosylation and the heat shock protein 90 (HSP90) by 17-AAG, or by targeting the PI3K/AKT/mTOR pathway by rapamycin after treatment with VPA. METHODS: Murine Ba/F3 leukemia cell lines were stably transfected with distinct FLT3-ITD variants resulting in IL3-independent growth. These Ba/F3 FLT3-ITD cell lines or FLT3-ITD-expressing human MOLM13 cells were exposed to tunicamycin, 2-deoxy-D-glucose or VPA, and 17-AAG or rapamycin, and characterized in terms of downstream signaling by immunoblotting. FLT3 surface expression, apoptosis, and metabolic activity were analyzed by flow cytometry or an MTS assay. Proteome analysis by liquid chromatography–tandem mass spectrometry was performed to assess differential protein expression. RESULTS: The susceptibility of FLT3-ITD-expressing cells to 17-AAG after pre-treatment with tunicamycin or 2-deoxy-D-glucose was demonstrated. Importantly, in Ba/F3 cells that were stably expressing distinct FLT3-ITD variants that were located either in the juxtamembrane domain (JMD) or in the tyrosine kinase 1 domain (TKD1), response to the sequential treatments with tunicamycin and 17-AAG varied between individual FLT3-ITD motifs without dependence on the localization of the ITD. In all of the FLT3-ITD cell lines that were investigated, incubation with tunicamycin was accompanied by intracellular retention of FLT3-ITD due to the inhibition of glycosylation. In contrast, treatment of Ba/F3-FLT3-ITD cells with VPA was associated with a significant increase of FLT3-ITD surface expression depending on FLT3 protein synthesis. The allocation of FLT3 to different cellular compartments that was induced by tunicamycin, 2-deoxy-D-glucose, or VPA resulted in the activation of distinct downstream signaling pathways. Whole proteome analyses of Ba/F3 FLT3-ITD cells revealed up-regulation of the relevant chaperone proteins (e.g., calreticulin, calnexin, HSP90beta1) that are directly involved in the stabilization of FLT3-ITD or in its retention in the ER compartment. CONCLUSION: The allocation of FLT3-ITD to different cellular compartments and targeting distinct downstream signaling pathways by combined treatment with N-glycosylation and HSP90 inhibitors or VPA and rapamycin might represent new therapeutic strategies to overcome resistance towards tyrosine kinase inhibitors in FLT3-ITD-positive AML. The treatment approaches addressing N-glycosylation of FLT3-ITD appear to depend on patient-specific FLT3-ITD sequences, potentially affecting the efficacy of such pharmacological strategies.
Collapse
|
50
|
Fang DD, Zhu H, Tang Q, Wang G, Min P, Wang Q, Li N, Yang D, Zhai Y. FLT3 inhibition by olverembatinib (HQP1351) downregulates MCL-1 and synergizes with BCL-2 inhibitor lisaftoclax (APG-2575) in preclinical models of FLT3-ITD mutant acute myeloid leukemia. Transl Oncol 2021; 15:101244. [PMID: 34710737 PMCID: PMC8556530 DOI: 10.1016/j.tranon.2021.101244] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/23/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022] Open
Abstract
Introduction FLT3-ITD mutations occur in approximately 25% of patients with acute myeloid leukemia (AML) and are associated with poor prognosis. Despite initial efficacy, short duration of response and high relapse rates limit clinical use of selective FLT3 inhibitors. Combination approaches with other targeted therapies may achieve better clinical outcomes. Materials and methods Anti-leukemic activity of multikinase inhibitor olverembatinib (HQP1351), alone or in combination with BCL-2 inhibitor lisaftoclax (APG-2575), was evaluated in FLT3-ITD mutant AML cell lines in vitro and in vivo. A patient-derived FLT3-ITD mutant AML xenograft model was also used to assess the anti-leukemic activity of this combination. Results HQP1351 potently induced apoptosis and inhibited FLT3 signaling in FLT3-ITD mutant AML cell lines MV-4-11 and MOLM-13. HQP1351 monotherapy also significantly suppressed growth of FLT3-ITD mutant AML xenograft tumors and prolonged survival of tumor-bearing mice. HQP1351 and APG-2575 synergistically induced apoptosis in FLT3-ITD mutant AML cells and suppressed growth of MV-4–11 xenograft tumors. Combination therapy improved survival of tumor bearing-mice in a systemic MOLM-13 model and showed synergistic anti-leukemic effects in a patient-derived FLT3-ITD mutant AML xenograft model. Mechanistically, HQP1351 downregulated expression of myeloid-cell leukemia 1 (MCL-1) by suppressing FLT3-STAT5 (signal transducer and activator of transcription 5) signaling and thus enhanced APG-2575-induced apoptosis in FLT3-ITD mutant AML cells. Conclusions FLT3 inhibition by HQP1351 downregulates MCL-1 and synergizes with BCL-2 inhibitor APG-2575 to potentiate cellular apoptosis in FLT3-ITD mutant AML. Our findings provide a scientific rationale for further clinical investigation of HQP1351 combined with APG-2575 in patients with FLT3-ITD mutant AML.
Collapse
Affiliation(s)
- Douglas D Fang
- Ascentage Pharma (Suzhou) Co, Ltd, 218 Xinghu Street, Suzhou, Jiangsu Province, China
| | - Hengrui Zhu
- Ascentage Pharma (Suzhou) Co, Ltd, 218 Xinghu Street, Suzhou, Jiangsu Province, China
| | - Qiuqiong Tang
- Ascentage Pharma (Suzhou) Co, Ltd, 218 Xinghu Street, Suzhou, Jiangsu Province, China
| | - Guangfeng Wang
- Ascentage Pharma (Suzhou) Co, Ltd, 218 Xinghu Street, Suzhou, Jiangsu Province, China
| | - Ping Min
- Ascentage Pharma (Suzhou) Co, Ltd, 218 Xinghu Street, Suzhou, Jiangsu Province, China
| | - Qixin Wang
- Ascentage Pharma (Suzhou) Co, Ltd, 218 Xinghu Street, Suzhou, Jiangsu Province, China
| | - Na Li
- Ascentage Pharma (Suzhou) Co, Ltd, 218 Xinghu Street, Suzhou, Jiangsu Province, China
| | - Dajun Yang
- Ascentage Pharma (Suzhou) Co, Ltd, 218 Xinghu Street, Suzhou, Jiangsu Province, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yifan Zhai
- Ascentage Pharma (Suzhou) Co, Ltd, 218 Xinghu Street, Suzhou, Jiangsu Province, China.
| |
Collapse
|