1
|
Ehx G, Ritacco C, Baron F. Pathophysiology and preclinical relevance of experimental graft-versus-host disease in humanized mice. Biomark Res 2024; 12:139. [PMID: 39543777 PMCID: PMC11566168 DOI: 10.1186/s40364-024-00684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantations (allo-HCT) used for the treatment of hematological malignancies and other blood-related disorders. Until recently, the discovery of actionable molecular targets to treat GVHD and their preclinical testing was almost exclusively based on modeling allo-HCT in mice by transplanting bone marrow and splenocytes from donor mice into MHC-mismatched recipient animals. However, due to fundamental differences between human and mouse immunology, the translation of these molecular targets into the clinic can be limited. Therefore, humanized mouse models of GVHD were developed to circumvent this limitation. In these models, following the transplantation of human peripheral blood mononuclear cells (PBMCs) into immunodeficient mice, T cells recognize and attack mouse organs, inducing GVHD. Thereby, humanized mice provide a platform for the evaluation of the effects of candidate therapies on GVHD mediated by human immune cells in vivo. Understanding the pathophysiology of this xenogeneic GVHD is therefore crucial for the design and interpretation of experiments performed with this model. In this article, we comprehensively review the cellular and molecular mechanisms governing GVHD in the most commonly used model of xenogeneic GVHD: PBMC-engrafted NOD/LtSz-PrkdcscidIL2rγtm1Wjl (NSG) mice. By re-analyzing public sequencing data, we also show that the clonal expansion and the transcriptional program of T cells in humanized mice closely reflect those in humans. Finally, we highlight the strengths and limitations of this model, as well as arguments in favor of its biological relevance for studying T-cell reactions against healthy tissues or cancer cells.
Collapse
Affiliation(s)
- Grégory Ehx
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium.
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium.
| | - Caroline Ritacco
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium
| | - Frédéric Baron
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium
- Department of Medicine, Division of Hematology, CHU of Liege, University of Liege, Liege, Belgium
| |
Collapse
|
2
|
Artacho A, González-Torres C, Gómez-Cebrián N, Moles-Poveda P, Pons J, Jiménez N, Casanova MJ, Montoro J, Balaguer A, Villalba M, Chorão P, Puchades-Carrasco L, Sanz J, Ubeda C. Multimodal analysis identifies microbiome changes linked to stem cell transplantation-associated diseases. MICROBIOME 2024; 12:229. [PMID: 39511587 PMCID: PMC11542268 DOI: 10.1186/s40168-024-01948-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is one of the most efficient therapeutic options available to cure many hematological malignancies. However, severe complications derived from this procedure, including graft-versus-host disease (GVHD) and infections, can limit its success and negatively impact survival. Previous studies have shown that alterations in the microbiome are associated with the development of allo-HSCT-derived complications. However, most studies relied on single techniques that can only analyze a unique aspect of the microbiome, which hinders our ability to understand how microbiome alterations drive allo-HSCT-associated diseases. RESULTS Here, we have applied multiple "omic" techniques (16S rRNA and shotgun sequencing, targeted and un-targeted metabolomics) in combination with machine learning approaches to define the most significant microbiome changes following allo-HSCT at multiple modalities (bacterial taxa, encoded functions, and derived metabolites). In addition, multivariate approaches were applied to study interactions among the various microbiome modalities (the interactome). Our results show that the microbiome of transplanted patients exhibits substantial changes in all studied modalities. These include depletion of beneficial microbes, mainly from the Clostridiales order, loss of their bacterial encoded functions required for the synthesis of key metabolites, and a reduction in metabolic end products such as short chain fatty acids (SCFAs). These changes were followed by an expansion of bacteria that frequently cause infections after allo-HSCT, including several Staphylococcus species, which benefit from the reduction of bacteriostatic SCFAs. Additionally, we found specific alterations in all microbiome modalities that distinguished those patients who subsequently developed GVHD, including depletion of anti-inflammatory commensals, protective reactive oxygen detoxifying enzymes, and immunoregulatory metabolites such as acetate or malonate. Moreover, extensive shifts in the homeostatic relationship between bacteria and their metabolic products (e.g., Faecalibacterium and butyrate) were detected mainly in patients who later developed GVHD. CONCLUSIONS We have identified specific microbiome changes at different modalities (microbial taxa, their encoded genes, and synthetized metabolites) and at the interface between them (the interactome) that precede the development of complications associated with allo-HSCT. These identified microbial features provide novel targets for the design of microbiome-based strategies to prevent diseases associated with stem cell transplantation. Video Abstract.
Collapse
Affiliation(s)
- Alejandro Artacho
- Fundación Para El Fomento de La Investigación Sanitaria y Biomédica de La Comunitat Valenciana-FISABIO, Valencia, Spain
| | - Cintya González-Torres
- Fundación Para El Fomento de La Investigación Sanitaria y Biomédica de La Comunitat Valenciana-FISABIO, Valencia, Spain
| | - Nuria Gómez-Cebrián
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Paula Moles-Poveda
- Hematology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Javier Pons
- Fundación Para El Fomento de La Investigación Sanitaria y Biomédica de La Comunitat Valenciana-FISABIO, Valencia, Spain
| | - Nuria Jiménez
- Fundación Para El Fomento de La Investigación Sanitaria y Biomédica de La Comunitat Valenciana-FISABIO, Valencia, Spain
| | | | - Juan Montoro
- Hematology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Aitana Balaguer
- Hematology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Marta Villalba
- Hematology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Pedro Chorão
- Hematology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | | | - Jaime Sanz
- Hematology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain.
- Departament de Medicina, Universitat de Valencia, Valencia, Spain.
- CIBERONC, Instituto Carlos III, Madrid, Spain.
| | - Carles Ubeda
- Fundación Para El Fomento de La Investigación Sanitaria y Biomédica de La Comunitat Valenciana-FISABIO, Valencia, Spain.
- Centers of Biomedical Research Network (CIBER) in Epidemiology and Public Health, Madrid, Spain.
| |
Collapse
|
3
|
Najaf Khosravi H, Razi S, Rezaei N. The role of interleukin-2 in graft-versus-host disease pathogenesis, prevention and therapy. Cytokine 2024; 183:156723. [PMID: 39173281 DOI: 10.1016/j.cyto.2024.156723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024]
Abstract
Graft-versus-host disease (GVHD) is a significant complication following allogeneic hematopoietic cell transplantation (allo-HCT), posing substantial risks to patient survival. In the late follow-up phase of transplanted patients, GVHD is also a major cause of morbidity and disability, mostly due to low response to first-line steroids and the lack of effective standard therapies in the second line. This review provides a description of GVHD pathogenesis, with a focus on the central role of Interleukin-2 (IL-2). IL-2 is one of the critical mediators in the complex pathogenesis of GVHD, contributing to the intricate balance between regulatory T cells (Tregs) and effector T cells (Teffs). Due to this pivotal role, several studies investigate the potential of IL-2 as a therapeutic option for GVHD management. We discuss the outcomes of low-dose IL-2 therapies and their impact on Treg proliferation and steroid dependency reduction. Additionally, the effects of combining IL-2 with other treatments, such as extracorporeal photopheresis (ECP) and Treg-enriched lymphocyte infusions, are highlighted. Novel approaches, including modified IL-2 complexes and IL-2 receptor blockade, are explored for their potential in selectively enhancing Treg function and limiting Teff activation. The evolving understanding of IL-2's pivotal role in immune regulation presents promising prospects for applying treatment and prevention strategies for GVHD.
Collapse
Affiliation(s)
- Hila Najaf Khosravi
- Royan Institute for Stem Cell Biology and Technology, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
4
|
He J, Zheng F, Zhang L, Cai J, Ogawa Y, Tsubota K, Liu S, Jin X. Single-cell RNA-sequencing reveals the transcriptional landscape of lacrimal gland in GVHD mouse model. Ocul Surf 2024; 33:50-63. [PMID: 38703817 DOI: 10.1016/j.jtos.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE To investigate the global transcriptional landscape of lacrimal gland cell populations in the GVHD mouse model. METHODS Single-cell RNA sequencing and further bioinformatic analysis of dissociated lacrimal gland (LG) cells from the mouse model were performed. Parts of transcriptional results were confirmed by immunofluorescence staining. RESULTS We identified 23 cell populations belonging to 11 cell types. In GVHD LG, the proportion of acinar cells, myoepithelial cells, and endothelial cells was remarkably decreased, while T cells and macrophages were significantly expanded. Gene expression analysis indicated decreased secretion function, extracellular matrix (ECM) synthesis, and increased chemokines of myoepithelial cells. A newly described epithelial population named Lrg1high epithelial cells, expressing distinct gene signatures, was exclusively identified in GVHD LG. The fibroblasts exhibited an inflammation gene pattern. The gene pattern of endothelial cells suggested an increased ability to recruit immune cells and damaged cell-cell junctions. T cells were mainly comprised of Th2 cells and effective memory CD8+ T cells. GVHD macrophages exhibited a Th2 cell-linked pattern. CONCLUSIONS This single-cell atlas uncovered alterations of proportion and gene expression patterns of cell populations and constructed cell-cell communication networks of GVHD LG. These data may provide some new insight into understanding the development of ocular GVHD.
Collapse
Affiliation(s)
- Jingliang He
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, China; Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Fang Zheng
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, China; Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Li Zhang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, China; Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | | | - Yoko Ogawa
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan; Tsubota Laboratory, Inc., Tokyo, Japan
| | - Shan Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Xiuming Jin
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, China; Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Cheng W, Zhang BF, Chen N, Liu Q, Ma X, Fu X, Xu M. Molecular Mechanism of Yangshen Maidong Decoction in the Treatment of Chronic Heart Failure based on Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulations. Cell Biochem Biophys 2024; 82:1433-1451. [PMID: 38753250 DOI: 10.1007/s12013-024-01297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 08/25/2024]
Abstract
Chronic heart failure (CHF) is a complex multifactorial clinical syndrome leading to abnormal cardiac structure and function. The severe form of this ailment is characterized by high disability, high mortality, and morbidity. Worldwide, 2-17% of patients die at first admission, of which 17-45% die within 1 year of admission and >50% within 5 years. Yangshen Maidong Decoction (YSMDD) is frequently used to treat the deficiency and pain of the heart. The specific mechanism of action of YSMDD in treating CHF, however, remains unclear. Therefore, a network pharmacology-based strategy combined with molecular docking and molecular dynamics simulations was employed to investigate the potential molecular mechanism of YSMDD against CHF. The effective components and their targets of YSMDD and related targets of CHF were predicted and screened based on the public database. The network pharmacology was used to explore the potential targets and possible pathways that involved in YSMDD treated CHF. Molecular docking and molecular dynamics simulations were performed to elucidate the binding affinity between the YSMDD and CHF targets. Screen results, 10 main active ingredients, and 6 key targets were acquired through network pharmacology analysis. Pathway enrichment analysis showed that intersectional targets associated pathways were enriched in the Prostate cancer pathway, Hepatitis B pathway, and C-type lectin receptor signaling pathways. Molecular docking and molecular dynamics simulations analysis suggested 5 critical active ingredients have high binding affinity to the 5 key targets. This research shows the multiple active components and molecular mechanisms of YSMDD in the treatment of CHF and offers resources and suggestions for future studies.
Collapse
Affiliation(s)
- Wei Cheng
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China
| | - Bo-Feng Zhang
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China
| | - Na Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Qun Liu
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China
| | - Xin Ma
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China
| | - Xiao Fu
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China
| | - Min Xu
- Department of Pharmacy, Guang'anmen Hospital Jinan Hospital (Jinan Municipal Hospital of Traditional Chinese Medicine), Jinan, 250012, China.
| |
Collapse
|
6
|
Na H, Im KI, Kim N, Lee J, Gil S, Min GJ, Cho SG. The IL-6 signaling pathway contributes critically to the immunomodulatory mechanism of human decidua-derived mesenchymal stromal cells. iScience 2024; 27:109783. [PMID: 38726369 PMCID: PMC11079465 DOI: 10.1016/j.isci.2024.109783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/01/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Human bone marrow-derived mesenchymal stromal cells (BM-MSCs) have been proposed as a treatment for graft-versus-host disease (GVHD), which is a major complication following allogeneic hematopoietic cell transplantation. However, clinical trials have not yielded good results, and human decidua-derived mesenchymal stromal cells (DSCs) have been proposed as an alternative. In addition, the mechanism by which DSCs exert their immunomodulatory effects is still unknown. We found that knockdown of IL-6 in DSCs reduced the expression of PD-L1 and PD-L2, which are known as classical immune checkpoint inhibitors. Expression of PD-L1 and PD-L2 was restored by adding recombinant IL-6 to the DSCs. When DSCs and IL-6-knockdown DSCs were administered as treatment in a murine GVHD model, the group receiving IL-6-knockdown DSCs had significantly higher mortality and clinical scores compared to the group receiving DSCs. Taken together, these data suggest that the IL-6 signaling pathway is a crucial contributor to the immunosuppressive capacity of DSCs.
Collapse
Affiliation(s)
- Hyemin Na
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Keon-Il Im
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
| | - Nayoun Kim
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
| | - Junseok Lee
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sojin Gil
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Gi-June Min
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seok-Goo Cho
- Institute for Translational Research and Molecular Imaging, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
7
|
Huang Z, Zhang R, Teng Y, Guo J, Zhang H, Wang L, Tang LV, Shi W, Wu Q, Xia L. Nuclear Matrix-associated Protein SMAR1 Attenuated Acute Graft-versus-host Disease by Targeting JAK-STAT Signaling in CD4 + T Cells. Transplantation 2024; 108:e23-e35. [PMID: 37817309 DOI: 10.1097/tp.0000000000004818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
BACKGROUND Acute graft-versus-host disease (aGVHD) mediated by alloreactive T cells remains a serious and life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT). The contribution of the different CD4 + T helper cell subtypes to the pathogenesis and regulation of aGVHD is a central point in current research. The specialized effector subsets of T cells that differentiate from naive T cells into mature cells are closely related to scaffold/matrix-associated region-1-binding protein (SMAR1). However, the role of SMAR1 in aGVHD is unclear. METHODS Peripheral blood was collected from the patients with or without aGVHD after allo-HCT. The differences in CD4 + T cells transduced with the SMAR1 lentivirus vector and empty vector were analyzed. A humanized aGVHD mouse model was constructed to evaluate the function of SMAR1 in aGVHD. RESULTS The expression of SMAR1 was significantly reduced in the CD4 + T cells from aGVHD patients and related to the occurrence of aGVHD. SMAR1 overexpression in human CD4 + T cells regulated CD4 + T-cell subsets differentiation and inflammatory cytokines secretion and inhibited the Janus kinase/signal transducer and activator of transcription pathway. Moreover, SMAR1 changed chromatin accessibility landscapes and affected the binding motifs of key transcription factors regulating T cells. Additionally, upregulation of SMAR1 expression in CD4 + T cells improved the survival and pathology in a humanized aGVHD mouse model. CONCLUSIONS Our results showed that upregulation of SMAR1 regulated the CD4 + T-cell subpopulation and cytokines secretion and improved survival in a humanized aGVHD mouse model by alleviating inflammation. This study provides a promising therapeutic target for aGVHD.
Collapse
Affiliation(s)
- Zhenli Huang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yao Teng
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Guo
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyong Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liang V Tang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Shi
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuling Wu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linghui Xia
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Frueh JT, Campe J, Sunaga-Franze DY, Verheyden NA, Ghimire S, Meedt E, Haslinger D, Harenkamp S, Staudenraus D, Sauer S, Kreft A, Schubert R, Lohoff M, Krueger A, Bonig H, Chiocchetti AG, Zeiser R, Holler E, Ullrich E. Interferon regulatory factor 4 plays a pivotal role in the development of aGVHD-associated colitis. Oncoimmunology 2023; 13:2296712. [PMID: 38170159 PMCID: PMC10761041 DOI: 10.1080/2162402x.2023.2296712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Interferon regulatory factor 4 (IRF4) is a master transcription factor that regulates T helper cell (Th) differentiation. It interacts with the Basic leucine zipper transcription factor, ATF-like (BATF), depletion of which in CD4+ T cells abrogates acute graft-versus-host disease (aGVHD)-induced colitis. Here, we investigated the immune-regulatory role of Irf4 in a mouse model of MHC-mismatched bone marrow transplantation. We found that recipients of allogenic Irf4-/- CD4+ T cells developed less GVHD-related symptoms. Transcriptome analysis of re-isolated donor Irf4-/- CD4+ T helper (Th) cells, revealed gene expression profiles consistent with loss of effector T helper cell signatures and enrichment of a regulatory T cell (Treg) gene expression signature. In line with these findings, we observed a high expression of the transcription factor BTB and CNC homolog 2; (BACH2) in Irf4-/- T cells, which is associated with the formation of Treg cells and suppression of Th subset differentiation. We also found an association between BACH2 expression and Treg differentiation in patients with intestinal GVHD. Finally, our results indicate that IRF4 and BACH2 act as counterparts in Th cell polarization and immune homeostasis during GVHD. In conclusion, targeting the BACH2/IRF4-axis could help to develop novel therapeutic approaches against GVHD.
Collapse
Affiliation(s)
- Jochen T. Frueh
- Department of Pediatrics, Experimental Immunology and Cell Therapy, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Julia Campe
- Department of Pediatrics, Experimental Immunology and Cell Therapy, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Daniele Yumi Sunaga-Franze
- Genomics Platform, Max Delbrueck Center for Molecular Medicine, Berlin Institute of Health, Berlin, Germany
| | - Nikita A. Verheyden
- Institute for Molecular Medicine, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
- Molecular Immunology, Justus Liebig University Giessen, Giessen, Germany
| | - Sakhila Ghimire
- Hematology and Oncology Department, Medical Clinic 3, University Hospital Regensburg, Regensburg, Germany
| | - Elisabeth Meedt
- Hematology and Oncology Department, Medical Clinic 3, University Hospital Regensburg, Regensburg, Germany
| | - Denise Haslinger
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Sabine Harenkamp
- German Red Cross Blood Service BaWüHe, Frankfurt am Main, Germany
| | | | - Sascha Sauer
- Genomics Platform, Max Delbrueck Center for Molecular Medicine, Berlin Institute of Health, Berlin, Germany
| | - Andreas Kreft
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Ralf Schubert
- Department of Pediatric Medicine, Division of Pneumology, Allergology, Infectious diseaes und Gastroenterology. Frankfurt am Main, Goethe University Frankfurt, Frankfurt, Germany
| | - Michael Lohoff
- Institute for Microbiology, Philipps University, Marburg, Germany
| | - Andreas Krueger
- Institute for Molecular Medicine, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
- Molecular Immunology, Justus Liebig University Giessen, Giessen, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
| | - Halvard Bonig
- German Red Cross Blood Service BaWüHe, Frankfurt am Main, Germany
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt am Main, Germany
| | - Andreas G. Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Robert Zeiser
- Department of Internal Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ernst Holler
- Hematology and Oncology Department, Medical Clinic 3, University Hospital Regensburg, Regensburg, Germany
| | - Evelyn Ullrich
- Department of Pediatrics, Experimental Immunology and Cell Therapy, Goethe University Frankfurt, Frankfurt am Main, Germany
- Department of Pediatrics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt/Mainz, a partnership between DKFZ, University Hospital Frankfurt, Frankfurt, Germany
- University Cancer Center (UCT), Frankfurt am Main, Germany
| |
Collapse
|
9
|
Singh A, Bhargawa SK, Yadav G, Kushwaha R, Verma SP, Tripathi T, Singh US, Tripathi AK. Interleukin-6 and interleukin-8 levels in children with aplastic anemia and its correlation with disease severity and response to immunosuppressive therapy. Ann Afr Med 2023; 22:446-450. [PMID: 38358144 PMCID: PMC10775928 DOI: 10.4103/aam.aam_106_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 02/01/2023] [Accepted: 02/15/2023] [Indexed: 02/16/2024] Open
Abstract
Background Aplastic anemia (AA) is an uncommon condition characterized by pancytopenia and hypocellular bone marrow. Interleukin (IL)-6 and IL-8 have been shown to inhibit myelopoiesis and are major mediators of tissue damage. The primary goal of this study was to determine the IL-6 and IL-8 levels in children with AA, as well as their relationship to illness severity and immunosuppressive medication response. Materials and Methods The IL-6 and IL-8 levels were tested in 50 children aged 3-18 years who had AA. As controls, 50 healthy age and sex matched individuals were used. A sandwich enzyme-linked immunosorbent assay kit (solid-phase) was used to measure IL-6 and IL-8 levels quantitatively. The concentrations of IL-6 and IL-8 in pg/mL were used to represent the results. Immunosuppressive medication was given to the patients in accordance with the British Committee for Standards in Haematology Guidelines 2009. Results The patients' average age was 11.3 ± 3.7 years. Patients with AA had significantly higher IL-6 and IL-8 levels than controls (278.88 ± 216.03 vs. 4.51 ± 3.26; P < 0.001) and (120.28 ± 94.98 vs. 1.79 ± 0.78; P < 0.001), respectively. The IL-6 and IL-8 levels were also investigated with respect to AA severity, with statistically significant differences (P < 0.01) between different grading strata. Patients with very severe AA (VSAA) had the highest IL-6 levels (499.52 ± 66.19), followed by severe AA (SAA) (201.28 ± 157.77) and non-SAA (NSAA) (22.62 ± 14.63). For IL-8 levels, a similar trend (P < 0.01) was detected, with values of 209.81 ± 38.85, 92.12 ± 78.0, and 9.29 ± 10.68 for VSAA, SAA, and NSAA, respectively. After 6 months of immunosuppressive treatment (IST), mean levels of IL-6 and IL-8 in responders and nonresponders were again assessed. The mean IL-6 level in the responders' group (46.50 ± 45.41) was significantly lower, when compared to the nonresponders' group (145.76 ± 116.32) (P < 0.001). Similarly, the mean IL-8 level in the responder's group (33.57 ± 27.14) was significantly lower, compared to the nonresponder's group (97.49 ± 69.00) (P < 0.001). Conclusions Children with AA had higher IL-6 and IL-8 levels than normal age- and sex-matched controls. Increased levels were linked to the severity of the condition, suggesting that IL may have a role in AA. IL levels can be monitored in AA patients during IST, which can assist in predicting response to IST.
Collapse
Affiliation(s)
- Anurag Singh
- Department of Pathology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Sharvan Kumar Bhargawa
- Department of Pathology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Geeta Yadav
- Department of Pathology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Rashmi Kushwaha
- Department of Pathology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shailendra Prasad Verma
- Department of Clinical Hematology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Tanya Tripathi
- Department of Pathology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Uma Shankar Singh
- Department of Pathology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Anil Kumar Tripathi
- Department of Clinical Hematology, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
10
|
Maximova N, Nisticò D, Riccio G, Maestro A, Barbi E, Faganel Kotnik B, Marcuzzi A, Rimondi E, Di Paolo A. Advantage of First-Line Therapeutic Drug Monitoring-Driven Use of Infliximab for Treating Acute Intestinal and Liver GVHD in Children: A Prospective, Single-Center Study. Cancers (Basel) 2023; 15:3605. [PMID: 37509268 PMCID: PMC10376946 DOI: 10.3390/cancers15143605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The high serum concentrations of TNF-α characterize acute graft-versus-host disease (aGVHD), for which infliximab treatment may be beneficial. In 28 pediatric patients, four doses of 10 mg/kg infliximab every seven days were administered after steroid failure (Standard Group, n = 14) or as a first-line therapy (Early Group, n = 14). Population pharmacokinetic analyses and evaluation of serum cytokines were performed. After two months of treatment, complete response in gastrointestinal and liver aGVHD was achieved in 43% and 100% of patients in the Standard and Early groups, respectively. During follow-up, four patients in the Standard Group (but none in the Early Group) experienced an aGVHD recurrence. Viral infections occurred more frequently in the Standard Group after the fifth dose. Infliximab clearance did not differ between groups or according to treatment outcome for each organ involved in aGVHD, whereas serum levels of cytokines significantly differed. Therefore, present findings show that use of first-line, TDM-driven infliximab to treat aGVHD in children may result in better clinical outcomes and tolerability, with a different pattern of cytokines generated according to the moment of beginning of treatment.
Collapse
Affiliation(s)
- Natalia Maximova
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Daniela Nisticò
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Guglielmo Riccio
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Alessandra Maestro
- Pharmacy and Clinical Pharmacology Unit, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | - Egidio Barbi
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Barbara Faganel Kotnik
- Department of Hematology and Oncology, University Children's Hospital, 1000 Ljubljana, Slovenia
| | - Annalisa Marcuzzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Erika Rimondi
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Antonello Di Paolo
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
11
|
Pang Y, Holtzman NG. Immunopathogenic mechanisms and modulatory approaches to graft-versus-host disease prevention in acute myeloid leukaemia. Best Pract Res Clin Haematol 2023; 36:101475. [PMID: 37353287 PMCID: PMC10291443 DOI: 10.1016/j.beha.2023.101475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 06/25/2023]
Abstract
Allogeneic haematopoietic stem cell transplantation (HSCT) remains the only potential cure for intermediate to high-risk acute myeloid leukaemia (AML). The therapeutic effect of HSCT is largely dependent on the powerful donor-derived immune response against recipient leukaemia cells, known as graft-versus-leukaemia effect (GvL). However, the donor-derived immune system can also cause acute or chronic damage to normal recipient organs and tissues, in a process known as graft-versus-host disease (GvHD). GvHD is a leading cause of non-relapse mortality in HSCT recipients. There are many similarities and cross talk between the immune pathways of GvL and GvHD. Studies have demonstrated that both processes require the presence of mismatched alloantigens between the donor and recipient, and activation of immune responses centered around donor T-cells, which can be further modulated by various recipient or donor factors. Dissecting GvL from GvHD to achieve more effective GvHD prevention and enhanced GvL has been the holy grail of HSCT research. In this review, we focused on the key factors that contribute to the immune responses of GvL and GvHD, the effect on GvL with different GvHD prophylactic strategies, and the potential impact of various AML relapse prevention therapy or treatments on GvHD.
Collapse
Affiliation(s)
- Yifan Pang
- Department of Haematologic Oncology and Blood Disorders, Levine Cancer Institute, Charlotte, NC, USA.
| | - Noa G Holtzman
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Sligar C, Cuthbertson P, Miles NA, Adhikary SR, Elhage A, Zhang G, Alexander SI, Sluyter R, Watson D. Tocilizumab increases regulatory T cells, reduces natural killer cells and delays graft-versus-host disease development in humanized mice treated with post-transplant cyclophosphamide. Immunol Cell Biol 2023. [PMID: 37191045 DOI: 10.1111/imcb.12652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/02/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023]
Abstract
Graft-versus-host disease (GVHD) is a life-threatening complication following donor hematopoietic stem cell transplantation, where donor T cells damage host tissues. This study investigated the effect of tocilizumab (TOC) combined with post-transplant cyclophosphamide (PTCy) on immune cell engraftment and GVHD development in a humanized mouse model. NOD-scid-IL2Rγnull (NSG) mice were injected intraperitoneally with 2 × 107 human (h) peripheral blood mononuclear cells and cyclophosphamide (33 mg kg-1 ) or saline on days 3 and 4, then TOC or control antibody (0.5 mg mouse-1 ) twice weekly for 28 days. Mice were monitored for clinical signs of GVHD for either 28 or 70 days. Spleens and livers were assessed for human leukocyte subsets, and serum cytokines and tissue histology were analyzed. In the short-term model (day 28), liver and lung damage were reduced in PTCy + TOC compared with control mice. All groups showed similar splenic hCD45+ leukocyte engraftment (55-60%); however, PTCy + TOC mice demonstrated significantly increased (1.5-2-fold) splenic regulatory T cells. Serum human interferon gamma was significantly reduced in PTCy + TOC compared with control mice. Long-term (day 70), prolonged survival was similar in PTCy + TOC (median survival time, > 70 days) and PTCy mice (median survival time, 56 days). GVHD onset was significantly delayed in PTCy + TOC, compared with TOC or control mice. Notably, natural killer cells were reduced (77.5%) in TOC and PTCy + TOC mice. Overall, combining PTCy with TOC increases regulatory T cells and reduces clinical signs of early GVHD, but does not improve long-term survival compared with PTCy alone.
Collapse
Affiliation(s)
- Chloe Sligar
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Peter Cuthbertson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Nicole A Miles
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Sam R Adhikary
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Amal Elhage
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Geoff Zhang
- The Centre for Kidney Research, The Children's Hospital at Westmead, NSW, Westmead, Australia
| | - Stephen I Alexander
- The Centre for Kidney Research, The Children's Hospital at Westmead, NSW, Westmead, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Debbie Watson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
13
|
Dertschnig S, Passweg J, Bucher C, Medinger M, Tzankov A. Mocravimod, a S1P receptor modulator, increases T cell counts in bone marrow biopsies from patients undergoing allogeneic hematopoietic stem cell transplantation. Cell Immunol 2023; 388-389:104719. [PMID: 37141843 DOI: 10.1016/j.cellimm.2023.104719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/27/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023]
Abstract
Graft-versus-leukemia (GvL) effects are critical to prevent relapses after allogeneic hematopoietic cell transplantation (allo-HCT). However, the success of allo-HCT is limited by graft-versus-host disease (GvHD). Both, CD4+ and CD8+ T cells contribute to GvHD and GvL. The sphingosine-1-phosphate receptor (S1PR) signaling plays a crucial role in lymphocyte trafficking. Mocravimod is an S1PR modulator and its administration leads to blocking lymphocyte egress from lymphoid organs. We hypothesized that this applies to the bone marrow (BM) too, and analyzed BM biopsies from the clinical study with mocravimod (phase I trial in allo-HCT patients; NCT01830010) by immunohistochemical staining for CD3, CD4, CD8, TIA1, FoxP3, PD1, T-Bet, GATA3, and ROR-γt to identify and quantify T cell subsets in situ. Allo-HCT patients without receiving mocravimod were used as controls. BM from 9 patients in the mocravimod group and 10 patients in the control group were examined. CD3+ T cells were found to accumulate in the BM of mocravimod-treated patients compared to controls, both on day 30 and 90 post-transplant. The effect was stronger for CD4+ T cells, than CD8+ T cells, which is in line with data from murine studies showing that CD4+ T cells are more sensitive to mocravimod treatment than CD8+ T cells. Clinically-relevant acute GvHD events (grade II-IV) were slightly lower, but comparable to controls when mocravimod was administered. Taken together, data are supportive of mocravimod's mode of action and bring additional evidence of fewer relapses for allo-HCT patients treated with S1PR modulators.
Collapse
Affiliation(s)
| | - Jakob Passweg
- Hematology, University Hospital Basel, Basel, Switzerland
| | | | | | - Alexandar Tzankov
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
14
|
Bayegi SN, Hamidieh AA, Behfar M, Saghazadeh A, Bozorgmehr M, Karamlou Y, Shekarabi M, Tajik N, Delbandi AA, Zavareh FT, Delavari S, Rezaei N. T helper 17 and regulatory T-cell profile and graft-versus-host disease after allogeneic hematopoietic stem cell transplantation in pediatric patients with beta-thalassemia. Transpl Immunol 2023; 77:101803. [PMID: 36842567 DOI: 10.1016/j.trim.2023.101803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/29/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an effective treatment option for hereditary hemoglobin disorders, such as beta-thalassemia; However, this procedure is not without constraints, mainly engendering complications such as acute graft-versus-host disease (aGvHD), chronic GvHD (cGvHD), and susceptibility to infections. The clinical outcomes of allo-HSCT are highly dependant on the quality and quantity of T-cell subsets reconstitution. Following the allo-HSCT of six pediatric patients afflicted with beta-thalassemia, their mononuclear cells were isolated, and then cultured with a combination of phorbol myristate acetate (PMA)/ionomycin and Brefeldin A. The content of CD4 T-cell subsets, including T helper 17 (Th17) cells and regulatory T cells (Tregs), were determined by specific conjugated-monoclonal antibodies three and six months post-HSCT. An increased frequency of total CD4 T-cells, Tregs and Th17 cells was observed at day 90 and 180 after allo-HSCT, albeit the numbers were still lower than that of our healthy controls. In patients who developed cGvHD, a lower Th17/Treg ratio was observed, owing it to a decreased proportion of Th17 cells. In conclusion, creating balance between Th17 and Treg subsets may prevent acute and chronic GvHD in patients after allo-HSCT.
Collapse
Affiliation(s)
- Shideh Namazi Bayegi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Behfar
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahmood Bozorgmehr
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Yalda Karamlou
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shekarabi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nader Tajik
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Tofighi Zavareh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Delavari
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
15
|
Lu C, Ma H, Song L, Wang H, Wang L, Li S, Lagana SM, Sepulveda AR, Hoebe K, Pan SS, Yang YG, Lentzsch S, Mapara MY. IFN-γR/STAT1 signaling in recipient hematopoietic antigen-presenting cells suppresses graft-versus-host disease. J Clin Invest 2023; 133:125986. [PMID: 36445781 PMCID: PMC9888368 DOI: 10.1172/jci125986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
The absence of IFN-γ receptor (IFN-γR) or STAT1 signaling in donor cells has been shown to result in reduced induction of acute graft-versus-host disease (GVHD). In this study, we unexpectedly observed increased activation and expansion of donor lymphocytes in both lymphohematopoietic organs and GVHD target tissues of IFN-γR/STAT1-deficient recipient mice, leading to rapid mortality following the induction of GVHD. LPS-matured, BM-derived Ifngr1-/- Stat1-/- DCs (BMDCs) were more potent allogeneic stimulators and expressed increased levels of MHC II and costimulatory molecules. Similar effects were observed in human antigen-presenting cells (APCs) with knockdown of Stat1 by CRISPR/Cas9 and treatment with a JAK1/2 inhibitor. Furthermore, we demonstrated that the absence of IFN-γR/STAT1 signaling in hematopoietic APCs impaired the presentation of exogenous antigens, while promoting the presentation of endogenous antigens. Thus, the indirect presentation of host antigens to donor lymphocytes was defective in IFN-γR/STAT1-deficient, donor-derived APCs in fully donor chimeric mice. The differential effects of IFN-γR/STAT1 signaling on endogenous and exogenous antigen presentation could provide further insight into the roles of the IFN-γ/STAT1 signaling pathway in the pathogenesis of GVHD, organ rejection, and autoimmune diseases.
Collapse
Affiliation(s)
- Caisheng Lu
- Columbia Center for Translational Immunology and
| | - Huihui Ma
- Columbia Center for Translational Immunology and
| | | | - Hui Wang
- Columbia Center for Translational Immunology and
| | - Lily Wang
- Columbia Center for Translational Immunology and
| | - Shirong Li
- Division of Hematology-Oncology, Columbia University, New York, New York, USA
| | - Stephen M. Lagana
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Antonia R. Sepulveda
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Kasper Hoebe
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA.,Janssen Research and Development, Spring House, Pennsylvania, USA
| | - Samuel S. Pan
- Janssen Research and Development, Spring House, Pennsylvania, USA
| | | | - Suzanne Lentzsch
- Division of Hematology-Oncology, Columbia University, New York, New York, USA
| | - Markus Y. Mapara
- Columbia Center for Translational Immunology and,Division of Hematology-Oncology, Columbia University, New York, New York, USA
| |
Collapse
|
16
|
Park HY, Kim CE, Lee SM, Ahn JM, Yoon EH, Yoo M, Kim JM, Back J, Park DH, Jang WH, Kwon B, Seo SK. Priming Mesenchymal Stem/Stromal Cells with a Combination of a Low Dose of IFN-γ and Bortezomib Results in Potent Suppression of Pathogenic Th17 Immunity Through the IDO1-AHR Axis. Stem Cells 2023; 41:64-76. [PMID: 36242771 DOI: 10.1093/stmcls/sxac075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/26/2022] [Indexed: 02/02/2023]
Abstract
Preconditioning of mesenchymal stem/stromal cells (MSCs) with the inflammatory cytokine IFN-γ enhances not only their immunosuppressive activity but also their expression of HLA and proinflammatory genes. We hypothesized that prevention of the upregulation of inflammatory cytokines and HLA molecules in IFN-γ-primed MSCs would render these cells more immunosuppressive and less immunogenic. In this study, we discovered the following findings supporting this hypothesis: (1) activated human T cells induced the expression of IDO1 in MSCs via IFN-γ secretion and those MSCs in turn inhibited T-cell proliferation in an AHR-dependent fashion; (2) there was no difference in the expression of IDO1 and HLA-DR in MSCs after priming with a low dose (25 IU/mL) versus a high dose (100 IU/mL) of IFN-γ; (3) the transient addition of bortezomib, a proteasome inhibitor, to culture MSCs after IFN-γ priming decreased the expression of HLA-DR, inflammatory cytokine genes and Vcam1 while increasing the expression of IDO1 and the production of L-kynurenine; finally, MSCs primed with a combination of a low dose of IFN-γ and bortezomib were more effective in inhibiting Th17-mediated idiopathic pneumonia syndrome (IPS) and chronic colitis than unprimed MSCs. Our results suggest that bortezomib significantly eliminates the unfavorable effects of IFN-γ priming of MSCs (increased expression of MHC molecules and inflammatory cytokines and cell aggregation genes) and simultaneously increases their immunosuppressive activity by upregulating IDO1. Taken together, our newly established MSC priming method may contribute to MSC-based cell therapy for inflammatory diseases.
Collapse
Affiliation(s)
- Ha Young Park
- Department of Microbiology and Immunology, College of Medicine Inje University, Busan, Republic of Korea
| | - Chae Eun Kim
- Department of Microbiology and Immunology, College of Medicine Inje University, Busan, Republic of Korea
| | - Soung-Min Lee
- Department of Microbiology and Immunology, College of Medicine Inje University, Busan, Republic of Korea
| | - Joo Mi Ahn
- Department of Microbiology and Immunology, College of Medicine Inje University, Busan, Republic of Korea
| | - Eun Hye Yoon
- Department of Microbiology and Immunology, College of Medicine Inje University, Busan, Republic of Korea
| | - Minjoo Yoo
- Cell Therapy Research Center, GC Cell, Gyeonggi-do, Republic of Korea
| | - Jung-Mi Kim
- Cell Therapy Research Center, GC Cell, Gyeonggi-do, Republic of Korea
| | - Jiyeon Back
- School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Dae Hwi Park
- Cell Therapy Research Center, GC Cell, Gyeonggi-do, Republic of Korea
| | - Won Hee Jang
- Department of Biochemistry, College of Medicine Inje University, Busan, Republic of Korea
| | - Byungsuk Kwon
- School of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Su-Kil Seo
- Department of Microbiology and Immunology, College of Medicine Inje University, Busan, Republic of Korea
| |
Collapse
|
17
|
Tian L, Wu Y, Choi HJ, Sui X, Li X, Sofi MH, Kassir MF, Chen X, Mehrotra S, Ogretmen B, Yu XZ. S1P/S1PR1 signaling differentially regulates the allogeneic response of CD4 and CD8 T cells by modulating mitochondrial fission. Cell Mol Immunol 2022; 19:1235-1250. [PMID: 36071219 PMCID: PMC9622814 DOI: 10.1038/s41423-022-00921-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/15/2022] [Indexed: 01/27/2023] Open
Abstract
Graft-versus-host disease (GVHD) significantly contributes to patient morbidity and mortality after allogeneic hematopoietic cell transplantation (allo-HSCT). Sphingosine-1-phosphate (S1P) signaling is involved in the biogenetic processes of different immune cells. In the current study, we demonstrated that recipient sphingosine kinase 1 (Sphk1), but not Sphk2, was required for optimal S1PR1-dependent donor T-cell allogeneic responses by secreting S1P. Using genetic and pharmacologic approaches, we demonstrated that inhibition of Sphk1 or S1PR1 substantially attenuated acute GVHD (aGVHD) while retaining the graft-versus-leukemia (GVL) effect. At the cellular level, the Sphk1/S1P/S1PR1 pathway differentially modulated the alloreactivity of CD4+ and CD8+ T cells; it facilitated T-cell differentiation into Th1/Th17 cells but not Tregs and promoted CD4+ T-cell infiltration into GVHD target organs but was dispensable for the CTL activity of allogeneic CD8+ T cells. At the molecular level, the Sphk1/S1P/S1PR1 pathway augmented mitochondrial fission and increased mitochondrial mass in allogeneic CD4+ but not CD8+ T cells by activating the AMPK/AKT/mTOR/Drp1 pathway, providing a mechanistic basis for GVL maintenance when S1P signaling was inhibited. For translational purposes, we detected the regulatory efficacy of pharmacologic inhibitors of Sphk1 and S1PR1 in GVHD induced by human T cells in a xenograft model. Our study provides novel mechanistic insight into how the Sphk1/S1P/S1PR1 pathway modulates T-cell alloreactivity and validates Sphk1 or S1PR1 as a therapeutic target for the prevention of GVHD and leukemia relapse. This novel strategy may be readily translated into the clinic to benefit patients with hematologic malignancies and disorders.
Collapse
Affiliation(s)
- Linlu Tian
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yongxia Wu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hee-Jin Choi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xiaohui Sui
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Xinlei Li
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M Hanief Sofi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Mohamed Faisal Kassir
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Xiao Chen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Besim Ogretmen
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Xue-Zhong Yu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA.
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
- The Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
18
|
Tian L, Wu Y, Choi HJ, Sui X, Li X, Sofi MH, Kassir MF, Chen X, Mehrotra S, Ogretmen B, Yu XZ. S1P/S1PR1 signaling differentially regulates the allogeneic response of CD4 and CD8 T cells by modulating mitochondrial fission. Cell Mol Immunol 2022. [PMID: 36071219 DOI: 10.1038/s41423-022-00921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Graft-versus-host disease (GVHD) significantly contributes to patient morbidity and mortality after allogeneic hematopoietic cell transplantation (allo-HSCT). Sphingosine-1-phosphate (S1P) signaling is involved in the biogenetic processes of different immune cells. In the current study, we demonstrated that recipient sphingosine kinase 1 (Sphk1), but not Sphk2, was required for optimal S1PR1-dependent donor T-cell allogeneic responses by secreting S1P. Using genetic and pharmacologic approaches, we demonstrated that inhibition of Sphk1 or S1PR1 substantially attenuated acute GVHD (aGVHD) while retaining the graft-versus-leukemia (GVL) effect. At the cellular level, the Sphk1/S1P/S1PR1 pathway differentially modulated the alloreactivity of CD4+ and CD8+ T cells; it facilitated T-cell differentiation into Th1/Th17 cells but not Tregs and promoted CD4+ T-cell infiltration into GVHD target organs but was dispensable for the CTL activity of allogeneic CD8+ T cells. At the molecular level, the Sphk1/S1P/S1PR1 pathway augmented mitochondrial fission and increased mitochondrial mass in allogeneic CD4+ but not CD8+ T cells by activating the AMPK/AKT/mTOR/Drp1 pathway, providing a mechanistic basis for GVL maintenance when S1P signaling was inhibited. For translational purposes, we detected the regulatory efficacy of pharmacologic inhibitors of Sphk1 and S1PR1 in GVHD induced by human T cells in a xenograft model. Our study provides novel mechanistic insight into how the Sphk1/S1P/S1PR1 pathway modulates T-cell alloreactivity and validates Sphk1 or S1PR1 as a therapeutic target for the prevention of GVHD and leukemia relapse. This novel strategy may be readily translated into the clinic to benefit patients with hematologic malignancies and disorders.
Collapse
Affiliation(s)
- Linlu Tian
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yongxia Wu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hee-Jin Choi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xiaohui Sui
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Xinlei Li
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M Hanief Sofi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Mohamed Faisal Kassir
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Xiao Chen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Besim Ogretmen
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Xue-Zhong Yu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA.
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
- The Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
19
|
Tsubokura Y, Yoshimura H, Satake A, Nasa Y, Tsuji R, Ito T, Nomura S. Early administration of lenalidomide after allogeneic hematopoietic stem cell transplantation suppresses graft-versus-host disease by inhibiting T-cell migration to the gastrointestinal tract. Immun Inflamm Dis 2022; 10:e688. [PMID: 36039651 PMCID: PMC9425011 DOI: 10.1002/iid3.688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Allogeneic hematopoietic stem cell transplantation (aHSCT) is a curative treatment for hematopoietic malignancies. Graft-versus-host disease (GVHD) is a major complication of aHSCT. After transplantation, the balance of immune conditions, such as proinflammatory cytokine level and T-cell subset count, influences GVHD magnitude. Lenalidomide (LEN) is an immunomodulatory drug used for treating several hematological malignancies such as multiple myeloma, adult T-cell lymphoma/leukemia, and follicular lymphoma. However, the impact of LEN on immune responses after aHSCT has not been elucidated. METHODS We analyzed the lymphocyte composition in naïve mice treated with LEN. Subsequently, we treated host mice with LEN, soon after aHSCT, and analyzed GVHD severity as well as the composition and characteristics of lymphocytes associated with GVHD. RESULTS Using a mouse model, we demonstrated the beneficial effects of LEN for treating acute GVHD. Although natural killer cells were slightly increased by LEN, it did not significantly change T-cell proliferation and the balance of the T-cell subset in naïve mice. LEN did not modulate the suppressive function of regulatory T cells (Tregs). Unexpectedly, LEN prevented severe GVHD in a mouse acute GVHD model. Donor-derived lymphocytes were more numerous in host mice treated with LEN than in host mice treated with vehicle. Lymphocyte infiltration of the gastrointestinal tract in host mice treated with LEN was less severe compared to that in host mice treated with vehicle. The percentage of LPAM-1 (α4 β7 -integrin)-expressing Foxp3- CD4+ T cells was significantly lower in host mice treated with LEN than in host mice treated with vehicle, whereas that of LPAM-1-expressing Tregs was comparable. CONCLUSIONS LEN may be useful as a prophylactic agent for acute GVHD-induced mortality through the inhibition of lymphocyte migration to the gastrointestinal tract. Our data show the effect of LEN on immune responses early after aHSCT and suggest that cereblon, a molecular target of LEN, may be a therapeutic target for preventing acute GVHD-induced mortality.
Collapse
Affiliation(s)
- Yukie Tsubokura
- First Department of Internal MedicineKansai Medical UniversityHirakata CityOsakaJapan
| | - Hideaki Yoshimura
- First Department of Internal MedicineKansai Medical UniversityHirakata CityOsakaJapan
| | - Atsushi Satake
- First Department of Internal MedicineKansai Medical UniversityHirakata CityOsakaJapan
| | - Yutaro Nasa
- First Department of Internal MedicineKansai Medical UniversityHirakata CityOsakaJapan
| | - Ryohei Tsuji
- First Department of Internal MedicineKansai Medical UniversityHirakata CityOsakaJapan
| | - Tomoki Ito
- First Department of Internal MedicineKansai Medical UniversityHirakata CityOsakaJapan
| | - Shosaku Nomura
- First Department of Internal MedicineKansai Medical UniversityHirakata CityOsakaJapan
| |
Collapse
|
20
|
Evaluating the utility of an immune checkpoint-related lncRNA signature for identifying the prognosis and immunotherapy response of lung adenocarcinoma. Sci Rep 2022; 12:12785. [PMID: 35896612 PMCID: PMC9329438 DOI: 10.1038/s41598-022-16715-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 07/14/2022] [Indexed: 12/03/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most frequent subtype of lung cancer globally. However, the survival rate of lung adenocarcinoma patients remains low. Immune checkpoints and long noncoding RNAs are emerging as vital tools for predicting the immunotherapeutic response and outcomes of patients with lung adenocarcinoma. It is critical to identify lncRNAs associated with immune checkpoints in lung adenocarcinoma patients. In this study, immune checkpoint-related lncRNAs (IClncRNAs) were analysed and identified by coexpression. Based on the immune checkpoint-related lncRNAs, we divided patients with lung adenocarcinoma into two clusters and constructed a risk model. Kaplan–Meier analysis, Gene Set Enrichment Analysis, and nomogram analysis of the 2 clusters and the risk model were performed. Finally, the potential immunotherapeutic prediction value of this model was discussed. The risk model consisting of 6 immune checkpoint-related lncRNAs was an independent predictor of survival. Through regrouping the patients with this model, we can distinguish between them more effectively in terms of their immunotherapeutic response, tumour microenvironment, and chemotherapy response. This risk model based on immune checkpoint-based lncRNAs may have an excellent clinical value for predicting the immunotherapeutic response and outcomes of patients with LUAD.
Collapse
|
21
|
Dwyer GK, Mathews LR, Villegas JA, Lucas A, Gonzalez de Peredo A, Blazar BR, Girard JP, Poholek AC, Luther SA, Shlomchik W, Turnquist HR. IL-33 acts as a costimulatory signal to generate alloreactive Th1 cells in graft-versus-host disease. J Clin Invest 2022; 132:e150927. [PMID: 35503257 PMCID: PMC9197517 DOI: 10.1172/jci150927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Antigen-presenting cells (APCs) integrate signals emanating from local pathology and program appropriate T cell responses. In allogeneic hematopoietic stem cell transplantation (alloHCT), recipient conditioning releases damage-associated molecular patterns (DAMPs) that generate proinflammatory APCs that secrete IL-12, which is a driver of donor Th1 responses, causing graft-versus-host disease (GVHD). Nevertheless, other mechanisms exist to initiate alloreactive T cell responses, as recipients with disrupted DAMP signaling or lacking IL-12 develop GVHD. We established that tissue damage signals are perceived directly by donor CD4+ T cells and promoted T cell expansion and differentiation. Specifically, the fibroblastic reticular cell-derived DAMP IL-33 is increased by recipient conditioning and is critical for the initial activation, proliferation, and differentiation of alloreactive Th1 cells. IL-33 stimulation of CD4+ T cells was not required for lymphopenia-induced expansion, however. IL-33 promoted IL-12-independent expression of Tbet and generation of Th1 cells that infiltrated GVHD target tissues. Mechanistically, IL-33 augmented CD4+ T cell TCR-associated signaling pathways in response to alloantigen. This enhanced T cell expansion and Th1 polarization, but inhibited the expression of regulatory molecules such as IL-10 and Foxp3. These data establish an unappreciated role for IL-33 as a costimulatory signal for donor Th1 generation after alloHCT.
Collapse
Affiliation(s)
- Gaelen K. Dwyer
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Thomas E. Starzl Transplantation Institute and
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lisa R. Mathews
- Thomas E. Starzl Transplantation Institute and
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - José A. Villegas
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Anna Lucas
- Thomas E. Starzl Transplantation Institute and
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Bruce R. Blazar
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Jean-Philippe Girard
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique, Université Paul Sabatier, Toulouse, France
| | - Amanda C. Poholek
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Pediatric Rheumatology, and
| | - Sanjiv A. Luther
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Warren Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Thomas E. Starzl Transplantation Institute and
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hēth R. Turnquist
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Thomas E. Starzl Transplantation Institute and
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
22
|
Song Q, Nasri U, Nakamura R, Martin PJ, Zeng D. Retention of Donor T Cells in Lymphohematopoietic Tissue and Augmentation of Tissue PD-L1 Protection for Prevention of GVHD While Preserving GVL Activity. Front Immunol 2022; 13:907673. [PMID: 35677056 PMCID: PMC9168269 DOI: 10.3389/fimmu.2022.907673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (Allo-HCT) is a curative therapy for hematological malignancies (i.e., leukemia and lymphoma) due to the graft-versus-leukemia (GVL) activity mediated by alloreactive T cells that can eliminate residual malignant cells and prevent relapse. However, the same alloreactive T cells can cause a serious side effect, known as graft-versus-host disease (GVHD). GVHD and GVL occur in distinct organ and tissues, with GVHD occurring in target organs (e.g., the gut, liver, lung, skin, etc.) and GVL in lympho-hematopoietic tissues where hematological cancer cells primarily reside. Currently used immunosuppressive drugs for the treatment of GVHD inhibit donor T cell activation and expansion, resulting in a decrease in both GVHD and GVL activity that is associated with cancer relapse. To prevent GVHD, it is important to allow full activation and expansion of alloreactive T cells in the lympho-hematopoietic tissues, as well as prevent donor T cells from migrating into the GVHD target tissues, and tolerize infiltrating T cells via protective mechanisms, such as PD-L1 interacting with PD-1, in the target tissues. In this review, we will summarize major approaches that prevent donor T cell migration into GVHD target tissues and approaches that augment tolerization of the infiltrating T cells in the GVHD target tissues while preserving strong GVL activity in the lympho-hematopoietic tissues.
Collapse
Affiliation(s)
- Qingxiao Song
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, Unites States.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, Unites States.,Fujian Medical University Center of Translational Hematology, Fujian Institute of Hematology, and Fujian Medical University Union Hospital, Fuzhou, China
| | - Ubaydah Nasri
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, Unites States.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, Unites States
| | - Ryotaro Nakamura
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, Unites States
| | - Paul J Martin
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, United States
| | - Defu Zeng
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, Unites States.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, Unites States
| |
Collapse
|
23
|
Aryl hydrocarbon receptor-targeted therapy for CD4+ T cell-mediated idiopathic pneumonia syndrome in mice. Blood 2022; 139:3325-3339. [PMID: 35226727 DOI: 10.1182/blood.2021013849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
We previously demonstrated that interferon γ (IFN-γ) derived from donor T cells co-opts the indoleamine 2,3-dioxygenase 1 (IDO1) → aryl hydrocarbon receptor (AHR) axis to suppress idiopathic pneumonia syndrome (IPS). Here we report that the dysregulated expression of AP-1 family genes in Ahr-/- lung epithelial cells exacerbated IPS in allogeneic bone marrow transplantation settings. AHR repressed transcription of Jund by preventing STAT1 from binding to its promoter. As a consequence, decreased interleukin-6 impaired the differentiation of CD4+ T cells toward Th17 cells. IFN-γ- and IDO1-independent induction of Ahr expression indicated that the AHR agonist might be a better therapeutic target for IPS than the IDO1 activator. We developed a novel synthetic AHR agonist (referred to here as PB502) that potently inhibits Jund expression. PB502 was highly effective at inducing AHR activation and ameliorating IPS. Notably, PB502 was by far superior to the endogenous AHR ligand, L-kynurenine, in promoting the differentiation of both mouse and human FoxP3+ regulatory CD4+ T cells. Our results suggest that the IDO1-AHR axis in lung epithelial cells is associated with IPS repression. A specific AHR agonist may exhibit therapeutic activity against inflammatory and autoimmune diseases by promoting regulatory T-cell differentiation.
Collapse
|
24
|
Zhang H, Liu M, Du G, Yu B, Ma X, Gui Y, Cao L, Li X, Tan B. Immune checkpoints related-LncRNAs can identify different subtypes of lung cancer and predict immunotherapy and prognosis. J Cancer Res Clin Oncol 2022; 148:1597-1612. [PMID: 35296921 DOI: 10.1007/s00432-022-03940-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 02/02/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Non-small cell lung cancer is the most common subtype of lung cancer in the world. However, the survival rate of non-small cell lung cancer patients remains low currently. Immune checkpoint and long non-coding RNAs are emerging as critical roles in prognostic significance and the immunotherapeutic response of non-small cell lung cancer. It is critical to discern LncRNAs related with immune checkpoints in patients with Non-small cell lung cancer. METHODS In this study, immune checkpoint-linked LncRNAs were determined and achieved by the co-expression analysis. Immune checkpoint-linked LncRNAs with noteworthy prognostic value (P < 0.05) gained were next utilized to separate into two cluster by non-negative matrix factorization (NMF). Univariate and a least absolute shrinkage and selection operator were applied to construct an immune checkpoint-linked LncRNAs model. Kaplan-Meier analysis, Gene Set Enrichment Analysis, and the nomogram were utilized to investigate the LncRNAs model. Lastly, the capability immunotherapy and chemotherapy prediction value of this risk model were also estimated. RESULTS The model consisting of ten immune checkpoint-related LncRNAs was acknowledged to be a self-determining predictor of prognosis. Through regrouping the NSCLC patients by this model, difference between them more efficiently on immunotherapeutic response, tumor microenvironment and chemotherapy response could be discovered. This risk model related to the immune checkpoint-based LncRNAs may have an excellent clinical prediction for prognosis and the immunotherapeutic response in patients with NSCLC. CONCLUSIONS We performed an integrative analysis of LncRNAs linked with immune checkpoints and emphasized the significance of NSCLC subtypes classification, immune checkpoints related LncRNAs in estimating the tumor microenvironment score, immune cell infiltration of the tumor, immunotherapy, and chemotherapy response.
Collapse
Affiliation(s)
- Hongpan Zhang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan south road, Shunqing District, Nanchong City, Sichuan Province, 637000, People's Republic of China
- North Sichuan Medical College, No. 55 Dongshun road, Gaoping district, Nanchong, Sichuan province, People's Republic of China
| | - Meihan Liu
- North Sichuan Medical College, No. 55 Dongshun road, Gaoping district, Nanchong, Sichuan province, People's Republic of China
| | - Guobo Du
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan south road, Shunqing District, Nanchong City, Sichuan Province, 637000, People's Republic of China
- North Sichuan Medical College, No. 55 Dongshun road, Gaoping district, Nanchong, Sichuan province, People's Republic of China
| | - Bin Yu
- Guangyuan Central Hospital, No. 16 Jingxiangzi, Lizhou district, Guangyuan, Sichuan province, People's Republic of China
| | - Xiaojie Ma
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan south road, Shunqing District, Nanchong City, Sichuan Province, 637000, People's Republic of China
- North Sichuan Medical College, No. 55 Dongshun road, Gaoping district, Nanchong, Sichuan province, People's Republic of China
| | - Yan Gui
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan south road, Shunqing District, Nanchong City, Sichuan Province, 637000, People's Republic of China
- North Sichuan Medical College, No. 55 Dongshun road, Gaoping district, Nanchong, Sichuan province, People's Republic of China
| | - Lu Cao
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan south road, Shunqing District, Nanchong City, Sichuan Province, 637000, People's Republic of China
- North Sichuan Medical College, No. 55 Dongshun road, Gaoping district, Nanchong, Sichuan province, People's Republic of China
| | - Xianfu Li
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan south road, Shunqing District, Nanchong City, Sichuan Province, 637000, People's Republic of China.
- North Sichuan Medical College, No. 55 Dongshun road, Gaoping district, Nanchong, Sichuan province, People's Republic of China.
| | - Bangxian Tan
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, No. 1, Maoyuan south road, Shunqing District, Nanchong City, Sichuan Province, 637000, People's Republic of China.
- North Sichuan Medical College, No. 55 Dongshun road, Gaoping district, Nanchong, Sichuan province, People's Republic of China.
| |
Collapse
|
25
|
Campe J, Ullrich E. T Helper Cell Lineage-Defining Transcription Factors: Potent Targets for Specific GVHD Therapy? Front Immunol 2022; 12:806529. [PMID: 35069590 PMCID: PMC8766661 DOI: 10.3389/fimmu.2021.806529] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Allogenic hematopoietic stem cell transplantation (allo-HSCT) represents a potent and potentially curative treatment for many hematopoietic malignancies and hematologic disorders in adults and children. The donor-derived immunity, elicited by the stem cell transplant, can prevent disease relapse but is also responsible for the induction of graft-versus-host disease (GVHD). The pathophysiology of acute GVHD is not completely understood yet. In general, acute GVHD is driven by the inflammatory and cytotoxic effect of alloreactive donor T cells. Since several experimental approaches indicate that CD4 T cells play an important role in initiation and progression of acute GVHD, the contribution of the different CD4 T helper (Th) cell subtypes in the pathomechanism and regulation of the disease is a central point of current research. Th lineages derive from naïve CD4 T cell progenitors and lineage commitment is initiated by the surrounding cytokine milieu and subsequent changes in the transcription factor (TF) profile. Each T cell subtype has its own effector characteristics, immunologic function, and lineage specific cytokine profile, leading to the association with different immune responses and diseases. Acute GVHD is thought to be mainly driven by the Th1/Th17 axis, whereas Treg cells are attributed to attenuate GVHD effects. As the differentiation of each Th subset highly depends on the specific composition of activating and repressing TFs, these present a potent target to alter the Th cell landscape towards a GVHD-ameliorating direction, e.g. by inhibiting Th1 and Th17 differentiation. The finding, that targeting of Th1 and Th17 differentiation appears more effective for GVHD-prevention than a strategy to inhibit Th1 and Th17 cytokines supports this concept. In this review, we shed light on the current advances of potent TF inhibitors to alter Th cell differentiation and consecutively attenuate GVHD. We will focus especially on preclinical studies and outcomes of TF inhibition in murine GVHD models. Finally, we will point out the possible impact of a Th cell subset-specific immune modulation in context of GVHD.
Collapse
Affiliation(s)
- Julia Campe
- Experimental Immunology, Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Evelyn Ullrich
- Experimental Immunology, Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Children's University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (Deutsches Konsortium für Translationale Krebsforschung (DKTK)), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| |
Collapse
|
26
|
Mature naive B cells regulate the outcome of murine acute graft-versus-host disease in an IL-10 independent manner. Transplant Cell Ther 2022; 28:181.e1-181.e9. [PMID: 35032717 DOI: 10.1016/j.jtct.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/30/2022]
Abstract
Graft-versus-host disease (GVHD) is the main complication of bone marrow transplantation (BMT). T CD4+ lymphocytes are the main effector cells for disease development but other cell types can determine disease outcome through cytokine production and antigen presentation. B cells are abundant in BMT products and are involved in chronic GVHD immunopathogenesis. However, their role in acute GVHD is still unclear. Here, we studied the role of donor resting B cells in a model of acute GVHD. Animals receiving transplants depleted of B cells presented a more severe disease, indicating a protective role for B cells. Mice transplanted with IL-10 KO B cells developed GVHD as severe as those receiving WT B cells. Besides that, mice transplanted with MHC II deficient B cells and as so, unable to present antigen to CD4+ T cells, developed as severe GVHD as animals transplanted without B cells. This result suggests that protection provided by mature naive B cells depends on antigen presentation and not IL-10 production by B cells. In the absence of donor B cells, transplanted mice exhibited disorganized lymphoid splenic tissue. Additionally, donor B cell depletion diminished the follicular T (Tfh)/T effector (Teff) ratio suggesting that protection was correlated with a shift to Tfh differentiation, reducing the number of effector T cells. Importantly, the Tfh/Teff shift impacts disease outcome since observed proinflammatory cytokine levels and tissue damage in target organs were consistent with disease protection. The role of transplanted B cells in the outcome of BMT and the development of acute GVHD should be carefully studied, since these cells are abundant in BMT products and are potent modulator and effector cells in allogeneic response. Extended Abstract Background: B cells are widely known for their ability to produce antibodies. In addition, B cells can act efficiently as antigen-presenting cells, implying the mutual regulation of both T and B lymphocyte subsets. T cell help for B cells has been known for more than 50 years; however, B cell help for T cells, especially regarding the modulation of follicular and regulatory phenotypes, had only lately been explored. Here, we studied the role of resting B cells in a model of systemic inflammatory disease mediated by T cells, graft-versus-host disease (GVHD), which is the main complication of allogeneic bone marrow transplantation. Objetive: The objective of this paper is to investigate the role of donor B cells in acute Graft-versus-Host Disease. STUDY DESIGN To investigate the role of donor B cells in aGVHD, we used a full MHC-mismatched bone marrow transplantation model. We infused C57BL/6 BM cells along with splenocytes depleted or not of B220+ cells into lethally irradiated BALB/c mice. We also used B cells from IL-10 KO mice to investigate the role of IL-10 produced by donor B cells and B cells from mice which cannot express MHC-II (CIITA KO) to investigate the role of cognate interaction between donor B and T cells. RESULTS Animals receiving transplants depleted of B cells presented a more severe disease, showing the existence of B cell-dependent protection. This protection was dependent on the T cell-B cell cognate interaction but not on IL-10 or Treg induction. In the absence of donor B cells, transplanted mice exhibited fewer GCs and a lower follicular T (Tfh)/T effector (Teff) ratio than mice transplanted in the presence of B cells. Protection was correlated with a shift to Tfh differentiation, reducing the number of effector cells. Importantly, the Tfh/Teff shift impacts disease outcome with less T cell-mediated disease due to more B cell-dependent Tfh generation with fewer effector T cells and lower proinflammatory cytokine levels detected in target organs. CONCLUSION We show that B-cell depleted bone marrow transplantation leads to a more severe disease, with earlier mortality related to increased organ damage. Such differences depend on cognate interactions between T cells and B cells, are IL-10 independent and are related to a shift in the differentiation of lymphocytes from the follicular helper phenotype to the effector phenotype. Therefore, Teffs, which are circulating cells, become relatively more numerous and can reach and damage the target tissues. These results point to caution in the early posttransplantation elimination of donor B cells. It is not a matter of eliminating only antibody-forming cells or cells that mediate Tfh generation but of B cells, which interact and modulate T cell activity, impacting a disease that is not antibody mediated.
Collapse
|
27
|
Challenges and opportunities targeting mechanisms of epithelial injury and recovery in acute intestinal graft-versus-host disease. Mucosal Immunol 2022; 15:605-619. [PMID: 35654837 PMCID: PMC9259481 DOI: 10.1038/s41385-022-00527-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
Despite advances in immunosuppressive prophylaxis and overall supportive care, gastrointestinal (GI) graft-versus-host disease (GVHD) remains a major, lethal side effect after allogeneic hematopoietic stem cell transplantation (allo-HSCT). It has become increasingly clear that the intestinal epithelium, in addition to being a target of transplant-related toxicity and GVHD, plays an important role in the onset of GVHD. Over the last two decades, increased understanding of the epithelial constituents and their microenvironment has led to the development of novel prophylactic and therapeutic interventions, with the potential to protect the intestinal epithelium from GVHD-associated damage and promote its recovery following insult. In this review, we will discuss intestinal epithelial injury and the role of the intestinal epithelium in GVHD pathogenesis. In addition, we will highlight possible approaches to protect the GI tract from damage posttransplant and to stimulate epithelial regeneration, in order to promote intestinal recovery. Combined treatment modalities integrating immunomodulation, epithelial protection, and induction of regeneration may hold the key to unlocking mucosal recovery and optimizing therapy for acute intestinal GVHD.
Collapse
|
28
|
Michniacki TF, Choi SW, Peltier DC. Immune Suppression in Allogeneic Hematopoietic Stem Cell Transplantation. Handb Exp Pharmacol 2022; 272:209-243. [PMID: 34628553 PMCID: PMC9055779 DOI: 10.1007/164_2021_544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative treatment for high-risk hematologic disorders. There are multiple immune-mediated complications following allo-HSCT that are prevented and/or treated by immunosuppressive agents. Principal among these immune-mediated complications is acute graft-versus-host disease (aGVHD), which occurs when the new donor immune system targets host tissue antigens. The immunobiology of aGVHD is complex and involves all aspects of the immune system. Due to the risk of aGVHD, immunosuppressive aGVHD prophylaxis is required for nearly all allogeneic HSCT recipients. Despite prophylaxis, aGVHD remains a major cause of nonrelapse mortality. Here, we discuss the clinical features of aGVHD, the immunobiology of aGVHD, the immunosuppressive therapies used to prevent and treat aGVHD, how to mitigate the side effects of these immunosuppressive therapies, and what additional immune-mediated post-allo-HSCT complications are also treated with immunosuppression.
Collapse
Affiliation(s)
- Thomas F Michniacki
- Division of Hematology/Oncology, Department of Pediatrics, Blood and Marrow Transplantation Program, University of Michigan, Ann Arbor, MI, USA
| | - Sung Won Choi
- Division of Hematology/Oncology, Department of Pediatrics, Blood and Marrow Transplantation Program, University of Michigan, Ann Arbor, MI, USA.
- University of Michigan Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| | - Daniel C Peltier
- Division of Hematology/Oncology, Department of Pediatrics, Blood and Marrow Transplantation Program, University of Michigan, Ann Arbor, MI, USA.
- University of Michigan Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
29
|
Braun LM, Zeiser R. Kinase Inhibition as Treatment for Acute and Chronic Graft- Versus-Host Disease. Front Immunol 2021; 12:760199. [PMID: 34868001 PMCID: PMC8635802 DOI: 10.3389/fimmu.2021.760199] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/28/2021] [Indexed: 01/25/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HCT) is a potentially curative therapy for patients suffering from hematological malignancies via the donor immune system driven graft-versus-leukemia effect. However, the therapy is mainly limited by severe acute and chronic graft-versus-host disease (GvHD), both being life-threatening complications after allo-HCT. GvHD develops when donor T cells do not only recognize remaining tumor cells as foreign, but also the recipient’s tissue, leading to a severe inflammatory disease. Typical GvHD target organs include the skin, liver and intestinal tract. Currently all approved strategies for GvHD treatment are immunosuppressive therapies, with the first-line therapy being glucocorticoids. However, therapeutic options for glucocorticoid-refractory patients are still limited. Novel therapeutic approaches, which reduce GvHD severity while preserving GvL activity, are urgently needed. Targeting kinase activity with small molecule inhibitors has shown promising results in preclinical animal models and clinical trials. Well-studied kinase targets in GvHD include Rho-associated coiled-coil-containing kinase 2 (ROCK2), spleen tyrosine kinase (SYK), Bruton’s tyrosine kinase (BTK) and interleukin-2-inducible T-cell kinase (ITK) to control B- and T-cell activation in acute and chronic GvHD. Janus Kinase 1 (JAK1) and 2 (JAK2) are among the most intensively studied kinases in GvHD due to their importance in cytokine production and inflammatory cell activation and migration. Here, we discuss the role of kinase inhibition as novel treatment strategies for acute and chronic GvHD after allo-HCT.
Collapse
Affiliation(s)
- Lukas M Braun
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
30
|
Snyder KJ, Choe HK, Gao Y, Sell NE, Braunreiter KM, Zitzer NC, Neidemire-Colley L, Kalyan S, Dorrance AM, Keller A, Mihaylova MM, Singh S, Sehgal L, Bollag G, Ma Y, Powell B, Devine SM, Ranganathan P. Inhibition of Bromodomain and Extra Terminal (BET) Domain Activity Modulates the IL-23R/IL-17 Axis and Suppresses Acute Graft- Versus-Host Disease. Front Oncol 2021; 11:760789. [PMID: 34722316 PMCID: PMC8554203 DOI: 10.3389/fonc.2021.760789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
Acute graft-versus-host disease (GVHD) is the leading cause of non-relapse mortality following allogeneic hematopoietic cell transplantation. The majority of patients non-responsive to front line treatment with steroids have an estimated overall 2-year survival rate of only 10%. Bromodomain and extra-terminal domain (BET) proteins influence inflammatory gene transcription, and therefore represent a potential target to mitigate inflammation central to acute GVHD pathogenesis. Using potent and selective BET inhibitors Plexxikon-51107 and -2853 (PLX51107 and PLX2853), we show that BET inhibition significantly improves survival and reduces disease progression in murine models of acute GVHD without sacrificing the beneficial graft-versus-leukemia response. BET inhibition reduces T cell alloreactive proliferation, decreases inflammatory cytokine production, and impairs dendritic cell maturation both in vitro and in vivo. RNA sequencing studies in human T cells revealed that BET inhibition impacts inflammatory IL-17 and IL-12 gene expression signatures, and Chromatin Immunoprecipitation (ChIP)-sequencing revealed that BRD4 binds directly to the IL-23R gene locus. BET inhibition results in decreased IL-23R expression and function as demonstrated by decreased phosphorylation of STAT3 in response to IL-23 stimulation in human T cells in vitro as well as in mouse donor T cells in vivo. Furthermore, PLX2853 significantly reduced IL-23R+ and pathogenic CD4+ IFNγ+ IL-17+ double positive T cell infiltration in gastrointestinal tissues in an acute GVHD murine model. Our findings identify a role for BET proteins in regulating the IL-23R/STAT3/IL-17 pathway. Based on our preclinical data presented here, PLX51107 will enter clinical trial for refractory acute GVHD in a Phase 1 safety, biological efficacy trial.
Collapse
Affiliation(s)
- Katiri J Snyder
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Hannah K Choe
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Yandi Gao
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Natalie E Sell
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Kara M Braunreiter
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Nina C Zitzer
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Lotus Neidemire-Colley
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Sonu Kalyan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Adrienne M Dorrance
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Andrea Keller
- Department of Biological Chemistry and Pharmacology, Comprehensive Cancer Center, The Ohio State University Columbus, Columbus, OH, United States
| | - Maria M Mihaylova
- Department of Biological Chemistry and Pharmacology, Comprehensive Cancer Center, The Ohio State University Columbus, Columbus, OH, United States
| | - Satishkumar Singh
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Lalit Sehgal
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Gideon Bollag
- Plexxikon Inc, South San Francisco, CA, United States
| | - Yan Ma
- Plexxikon Inc, South San Francisco, CA, United States
| | - Ben Powell
- Plexxikon Inc, South San Francisco, CA, United States
| | - Steven M Devine
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Parvathi Ranganathan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
31
|
Jiang H, Fu D, Bidgoli A, Paczesny S. T Cell Subsets in Graft Versus Host Disease and Graft Versus Tumor. Front Immunol 2021; 12:761448. [PMID: 34675938 PMCID: PMC8525316 DOI: 10.3389/fimmu.2021.761448] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/13/2021] [Indexed: 01/04/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is an essential therapeutic modality for patients with hematological malignancies and other blood disorders. Unfortunately, acute graft-versus-host disease (aGVHD) remains a major source of morbidity and mortality following allo-HCT, which limits its use in a broader spectrum of patients. Chronic graft-versus-host disease (cGVHD) also remains the most common long-term complication of allo-HCT, occurring in reportedly 30-70% of patients surviving more than 100 days. Chronic GVHD is also the leading cause of non-relapse mortality (NRM) occurring more than 2 years after HCT for malignant disease. Graft versus tumor (GVT) is a major component of the overall beneficial effects of allogeneic HCT in the treatment of hematological malignancies. Better understanding of GVHD pathogenesis is important to identify new therapeutic targets for GVHD prevention and therapy. Emerging data suggest opposing roles for different T cell subsets, e.g., IFN-γ producing CD4+ and CD8+ T cells (Th1 and Tc1), IL-4 producing T cells (Th2 and Tc2), IL-17 producing T cells (Th17 and Tc17), IL-9 producing T cells (Th9 and Tc9), IL-22 producing T cells (Th22), T follicular helper cells (Tfh), regulatory T-cells (Treg) and tissue resident memory T cells (Trm) in GVHD and GVT etiology. In this review, we first summarize the general description of the cytokine signals that promote the differentiation of T cell subsets and the roles of these T cell subsets in the pathogenesis of GVHD. Next, we extensively explore preclinical findings of T cell subsets in both GVHD/GVT animal models and humans. Finally, we address recent findings about the roles of T-cell subsets in clinical GVHD and current strategies to modulate T-cell differentiation for treating and preventing GVHD in patients. Further exploring and outlining the immune biology of T-cell differentiation in GVHD that will provide more therapeutic options for maintaining success of allo-HCT.
Collapse
Affiliation(s)
| | | | | | - Sophie Paczesny
- Department of Microbiology and Immunology and Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
32
|
Cieniewicz B, Uyeda MJ, Chen PP, Sayitoglu EC, Liu JMH, Andolfi G, Greenthal K, Bertaina A, Gregori S, Bacchetta R, Lacayo NJ, Cepika AM, Roncarolo MG. Engineered type 1 regulatory T cells designed for clinical use kill primary pediatric acute myeloid leukemia cells. Haematologica 2021; 106:2588-2597. [PMID: 33054128 PMCID: PMC8485690 DOI: 10.3324/haematol.2020.263129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/02/2022] Open
Abstract
Type 1 regulatory (Tr1) T cells induced by enforced expression of interleukin-10 (LV-10) are being developed as a novel treatment for chemotherapy-resistant myeloid leukemias. In vivo, LV-10 cells do not cause graft-versus-host disease while mediating graft-versus-leukemia effect against adult acute myeloid leukemia (AML). Since pediatric AML (pAML) and adult AML are different on a genetic and epigenetic level, we investigate herein whether LV-10 cells also efficiently kill pAML cells. We show that the majority of primary pAML are killed by LV-10 cells, with different levels of sensitivity to killing. Transcriptionally, pAML sensitive to LV-10 killing expressed a myeloid maturation signature. Overlaying the signatures of sensitive and resistant pAML onto the public NCI TARGET pAML dataset revealed that sensitive pAML clustered with M5 monocytic pAML and pAML with MLL rearrangement. Resistant pAML clustered with myelomonocytic leukemias and those bearing the core binding factor translocations inv(16) or t(8;21)(RUNX1- RUNX1T1). Furthermore, resistant pAML upregulated the membrane glycoprotein CD200, which binds to the inhibitory receptor CD200R1 on LV-10 cells. In order to examine if CD200 expression on target cells can impair LV-10 cell function, we overexpressed CD200 in myeloid leukemia cell lines ordinarily sensitive to LV-10 killing. Indeed, LV-10 cells degranulated less and killed fewer CD200-overexpressing cells compared to controls, indicating that pAML can utilize CD200 expression for immune evasion. Altogether, the majority of pAML are killed by LV-10 cells in vitro, supporting further LV-10 cell development as an innovative cell therapy for pAML.
Collapse
Affiliation(s)
- Brandon Cieniewicz
- Department of Pediatrics, Division of Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford
| | - Molly Javier Uyeda
- Department of Pediatrics, Division of Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford
| | - Ping Pauline Chen
- Department of Pediatrics, Division of Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford
| | - Ece Canan Sayitoglu
- Department of Pediatrics, Division of Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford
| | - Jeffrey Mao-Hwa Liu
- Department of Pediatrics, Division of Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford
| | | | - Katharine Greenthal
- Department of Pediatrics, Division of Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford
| | - Alice Bertaina
- Department of Pediatrics, Division of Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford
| | | | - Rosa Bacchetta
- Department of Pediatrics, Division of Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford
| | - Norman James Lacayo
- Department of Pediatrics, Division of Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford
| | - Alma-Martina Cepika
- Department of Pediatrics, Division of Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford
| | - Maria Grazia Roncarolo
- Department of Pediatrics, Division of Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA; Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford.
| |
Collapse
|
33
|
Kong X, Zeng D, Wu X, Wang B, Yang S, Song Q, Zhu Y, Salas M, Qin H, Nasri U, Haas KM, Riggs AD, Nakamura R, Martin PJ, Huang A, Zeng D. Tissue-resident PSGL1loCD4+ T cells promote B cell differentiation and chronic graft-versus-host disease-associated autoimmunity. J Clin Invest 2021; 131:135468. [PMID: 32931481 DOI: 10.1172/jci135468] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
CD4+ T cell interactions with B cells play a critical role in the pathogenesis of systemic autoimmune diseases such as systemic lupus and chronic graft-versus-host disease (cGVHD). Extrafollicular CD44hiCD62LloPSGL1loCD4+ T cells (PSGL1loCD4+ T cells) are associated with the pathogenesis of lupus and cGVHD, but their causal role has not been established. With murine and humanized MHC-/-HLA-A2+DR4+ murine models of cGVHD, we showed that murine and human PSGL1loCD4+ T cells from GVHD target tissues have features of B cell helpers with upregulated expression of programmed cell death protein 1 (PD1) and inducible T cell costimulator (ICOS) and production of IL-21. They reside in nonlymphoid tissues without circulating in the blood and have features of tissue-resident memory T cells with upregulated expression of CD69. Murine PSGL1loCD4+ T cells from GVHD target tissues augmented B cell differentiation into plasma cells and production of autoantibodies via their PD1 interaction with PD-L2 on B cells. Human PSGL1loCD4+ T cells were apposed with memory B cells in the liver tissues of humanized mice and cGVHD patients. Human PSGL1loCD4+ T cells from humanized GVHD target tissues also augmented autologous memory B cell differentiation into plasma cells and antibody production in a PD1/PD-L2-dependent manner. Further preclinical studies targeting tissue-resident T cells to treat antibody-mediated features of autoimmune diseases are warranted.
Collapse
Affiliation(s)
- Xiaohui Kong
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Deye Zeng
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA.,Department of Pathology at School of Basic Medical Sciences, Institute of Oncology and Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Xiwei Wu
- Department of Integrative Genomics Core, The Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Bixin Wang
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA.,Fujian Medical University Center of Translational Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shijie Yang
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA.,Department of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Qingxiao Song
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA.,Fujian Medical University Center of Translational Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yongping Zhu
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Martha Salas
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Hanjun Qin
- Department of Integrative Genomics Core, The Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Ubaydah Nasri
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Karen M Haas
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Arthur D Riggs
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Ryotaro Nakamura
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| | - Paul J Martin
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Aimin Huang
- Department of Pathology at School of Basic Medical Sciences, Institute of Oncology and Diagnostic Pathology Center, Fujian Medical University, Fuzhou, China
| | - Defu Zeng
- Diabetes and Metabolism Research Institute, the Beckman Research Institute of City of Hope, Duarte, California, USA.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
34
|
Tian Y, Meng L, Wang Y, Li B, Yu H, Zhou Y, Bui T, Abraham C, Li A, Zhang Y, Wang J, Zhao C, Mineishi S, Gallucci S, Porter D, Hexner E, Zheng H, Zhang Y, Hu S, Zhang Y. Graft-versus-host disease depletes plasmacytoid dendritic cell progenitors to impair tolerance induction. J Clin Invest 2021; 131:136774. [PMID: 33090973 DOI: 10.1172/jci136774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 10/14/2020] [Indexed: 12/31/2022] Open
Abstract
Graft-versus-host disease (GVHD) causes failed reconstitution of donor plasmacytoid dendritic cells (pDCs) that are critical for immune protection and tolerance. We used both murine and human systems to uncover the mechanisms whereby GVHD induces donor pDC defects. GVHD depleted Flt3-expressing donor multipotent progenitors (MPPs) that sustained pDCs, leading to impaired generation of pDCs. MPP loss was associated with decreased amounts of MPP-producing hematopoietic stem cells (HSCs) and oxidative stress-induced death of proliferating MPPs. Additionally, alloreactive T cells produced GM-CSF to inhibit MPP expression of Tcf4, the transcription factor essential for pDC development, subverting MPP production of pDCs. GM-CSF did not affect the maturation of pDC precursors. Notably, enhanced recovery of donor pDCs upon adoptive transfer early after allogeneic HSC transplantation repressed GVHD and restored the de novo generation of donor pDCs in recipient mice. pDCs suppressed the proliferation and expansion of activated autologous T cells via a type I IFN signaling-dependent mechanism. They also produced PD-L1 and LILRB4 to inhibit T cell production of IFN-γ. We thus demonstrate that GVHD impairs the reconstitution of tolerogenic donor pDCs by depleting DC progenitors rather than by preventing pDC maturation. MPPs are an important target to effectively bolster pDC reconstitution for controlling GVHD.
Collapse
Affiliation(s)
- Yuanyuan Tian
- Shanghai Institute of Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Lijun Meng
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA.,Department of Hematology, Children Hospital, Soochow University, Suzhou, China
| | - Ying Wang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA.,Department of Microbiology and Immunology, Temple University, Philadelphia, Pennsylvania, USA
| | - Bohan Li
- Department of Hematology, Children Hospital, Soochow University, Suzhou, China
| | - Hongshuang Yu
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Tien Bui
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Ciril Abraham
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Alicia Li
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Yongping Zhang
- Department of Hematology, Children Hospital, Soochow University, Suzhou, China
| | - Jian Wang
- Department of Hematology, Children Hospital, Soochow University, Suzhou, China
| | - Chenchen Zhao
- Penn State Cancer Institute, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Shin Mineishi
- Penn State Cancer Institute, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Stefania Gallucci
- Department of Microbiology and Immunology, Temple University, Philadelphia, Pennsylvania, USA
| | - David Porter
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth Hexner
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hong Zheng
- Penn State Cancer Institute, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Yanyun Zhang
- Shanghai Institute of Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoyan Hu
- Department of Hematology, Children Hospital, Soochow University, Suzhou, China
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA.,Department of Microbiology and Immunology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
35
|
Kubota H, Masuda T, Noura M, Furuichi K, Matsuo H, Hirata M, Kataoka TR, Hiramatsu H, Yasumi T, Nakahata T, Imai Y, Takita J, Adachi S, Sugiyama H, Kamikubo Y. RUNX inhibitor suppresses graft-versus-host disease through targeting RUNX-NFATC2 axis. EJHAEM 2021; 2:449-458. [PMID: 35844683 PMCID: PMC9175814 DOI: 10.1002/jha2.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/13/2022]
Abstract
Patients with refractory graft-versus-host disease (GVHD) have a dismal prognosis. Therefore, novel therapeutic targets are still needed to be identified. Runt-related transcriptional factor (RUNX) family transcription factors are essential transcription factors that mediate the essential roles in effector T cells. However, whether RUNX targeting can suppress, and GVHD is yet unknown. Here, we showed that RUNX family members have a redundant role in directly transactivating NFATC2 expression in T cells. We also found that our novel RUNX inhibitor, Chb-M', which is the inhibitor that switches off the entire RUNX family by alkylating agent-conjugated pyrrole-imidazole (PI) polyamides, inhibited T-cell receptor mediated T cell proliferation and allogenic T cell response. These were designed to specifically bind to consensus RUNX-binding sequences (TGTGGT). Chb-M' also suppressed the expression of NFATC2 and pro-inflammatory cytokine genes in vitro. Using xenogeneic GVHD model, mice injected by Chb-M' showed almost no sign of GVHD. Especially, the CD4 T cell was decreased and GVHD-associated cytokines including tissue necrosis factor-α and granulocyte-macrophage colony-stimulating factor were reduced in the peripheral blood of Chb-M' injected mice. Taken together, our data demonstrates that RUNX family transcriptionally upregulates NFATC2 in T cells, and RUNX-NFATC2 axis can be a novel therapeutic target against GVHD.
Collapse
Affiliation(s)
- Hirohito Kubota
- Department of PediatricsGraduate School of MedicineKyoto UniversitySakyo‐kuKyotoJapan
| | - Tatsuya Masuda
- Department of Human Health SciencesGraduate School of MedicineKyoto, University, Sakyo‐kuKyotoJapan
| | - Mina Noura
- Department of Human Health SciencesGraduate School of MedicineKyoto, University, Sakyo‐kuKyotoJapan
| | - Kana Furuichi
- Department of Human Health SciencesGraduate School of MedicineKyoto, University, Sakyo‐kuKyotoJapan
| | - Hidemasa Matsuo
- Department of Human Health SciencesGraduate School of MedicineKyoto, University, Sakyo‐kuKyotoJapan
| | - Masahiro Hirata
- Department of Diagnostic PathologyKyoto University HospitalSakyo‐kuKyotoJapan
| | - Tatsuki R. Kataoka
- Department of Diagnostic PathologyKyoto University HospitalSakyo‐kuKyotoJapan
| | - Hidefumi Hiramatsu
- Department of PediatricsGraduate School of MedicineKyoto UniversitySakyo‐kuKyotoJapan
| | - Takahiro Yasumi
- Department of PediatricsGraduate School of MedicineKyoto UniversitySakyo‐kuKyotoJapan
| | - Tatsutoshi Nakahata
- Drug Discovery Technology Development OfficeCenter for iPS cell research and application (CiRA)Kyoto UniversitySakyo‐kuKyotoJapan
| | - Yoichi Imai
- Department of Hematology/OncologyIMSUT HospitalThe Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Junko Takita
- Department of PediatricsGraduate School of MedicineKyoto UniversitySakyo‐kuKyotoJapan
| | - Souichi Adachi
- Department of Human Health SciencesGraduate School of MedicineKyoto, University, Sakyo‐kuKyotoJapan
| | - Hiroshi Sugiyama
- Department of ChemistryGraduate School of ScienceKyoto UniversitySakyo‐kuKyotoJapan
| | - Yasuhiko Kamikubo
- Department of Human Health SciencesGraduate School of MedicineKyoto, University, Sakyo‐kuKyotoJapan
| |
Collapse
|
36
|
Belmesk L, Muntyanu A, Cantin E, AlHalees Z, Jack CS, Le M, Sasseville D, Iannattone L, Ben-Shoshan M, Litvinov IV, Netchiporouk E. Prominent Role of Type 2 Immunity in Skin Diseases-Beyond Atopic Dermatitis. J Cutan Med Surg 2021; 26:33-49. [PMID: 34261335 DOI: 10.1177/12034754211027858] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Type 2 immunity, illustrated by T helper 2 lymphocytes (Th2) and downstream cytokines (IL-4, IL-13, IL-31) as well as group 2 innate lymphoid cells (ILC2), is important in host defense and wound healing.1 The hallmark of type 2 inflammation is eosinophilia and/or high IgE counts and is best recognized in atopic diathesis. Persistent eosinophilia, such as seen in hypereosinophilic syndromes, leads to fibrosis and hence therapeutic Type 2 inhibition in fibrotic diseases is of high interest. Furthermore, as demonstrated in cutaneous T cell lymphoma, advanced disease is characterized by Th1 to Th2 switch allowing cancer progression and immunosuppression. Development of targeted monoclonal antibodies against IL-4Rα (eg, dupilumab) led to a paradigm shift for the treatment of atopic dermatitis (AD) and stimulated research to better understand the role of Type 2 inflammation in other skin conditions. In this review, we summarize up to date knowledge on the role of Type 2 inflammation in skin diseases other than AD and highlight whether the use of Type 2 targeted therapies has been documented or is being investigated in clinical trials. This manuscript reviews the role of Type 2 inflammation in dermatitis, neurodermatitis, IgE-mediated dermatoses (eg, bullous pemphigoid, chronic spontaneous urticaria), sclerodermoid conditions and skin neoplasms.
Collapse
Affiliation(s)
| | - Anastasiya Muntyanu
- 544735620507266 Division of Dermatology, McGill University Health Centre, Montreal, QC, Canada
| | | | - Zeinah AlHalees
- 544735620507266 Division of Dermatology, McGill University Health Centre, Montreal, QC, Canada
| | - Carolyn S Jack
- 544735620507266 Division of Dermatology, McGill University Health Centre, Montreal, QC, Canada
| | - Michelle Le
- 544735620507266 Division of Dermatology, McGill University Health Centre, Montreal, QC, Canada
| | - Denis Sasseville
- 544735620507266 Division of Dermatology, McGill University Health Centre, Montreal, QC, Canada
| | - Lisa Iannattone
- 60301 Division of Dermatology, Maisonneuve-Rosemont Hospital, Montreal, QC, Canada
| | - Moshe Ben-Shoshan
- Division of Pediatric Allergy Immunology and Dermatology, Department of Pediatrics, McGill University Health Center, Montreal, QC, Canada
| | - Ivan V Litvinov
- 544735620507266 Division of Dermatology, McGill University Health Centre, Montreal, QC, Canada
| | - Elena Netchiporouk
- 544735620507266 Division of Dermatology, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
37
|
Zhao C, Zhang Y, Zheng H. The Effects of Interferons on Allogeneic T Cell Response in GVHD: The Multifaced Biology and Epigenetic Regulations. Front Immunol 2021; 12:717540. [PMID: 34305954 PMCID: PMC8297501 DOI: 10.3389/fimmu.2021.717540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for hematological malignancies. This beneficial effect is derived mainly from graft-versus-leukemia (GVL) effects mediated by alloreactive T cells. However, these alloreactive T cells can also induce graft-versus-host disease (GVHD), a life-threatening complication after allo-HSCT. Significant progress has been made in the dissociation of GVL effects from GVHD by modulating alloreactive T cell immunity. However, many factors may influence alloreactive T cell responses in the host undergoing allo-HSCT, including the interaction of alloreactive T cells with both donor and recipient hematopoietic cells and host non-hematopoietic tissues, cytokines, chemokines and inflammatory mediators. Interferons (IFNs), including type I IFNs and IFN-γ, primarily produced by monocytes, dendritic cells and T cells, play essential roles in regulating alloreactive T cell differentiation and function. Many studies have shown pleiotropic effects of IFNs on allogeneic T cell responses during GVH reaction. Epigenetic mechanisms, such as DNA methylation and histone modifications, are important to regulate IFNs’ production and function during GVHD. In this review, we discuss recent findings from preclinical models and clinical studies that characterize T cell responses regulated by IFNs and epigenetic mechanisms, and further discuss pharmacological approaches that modulate epigenetic effects in the setting of allo-HSCT.
Collapse
Affiliation(s)
- Chenchen Zhao
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, United States
| | - Hong Zheng
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
38
|
Russell AJ, Musiek AC, Staser KW, Rosman IS. Histopathologic and immunophenotypic features of cutaneous solid organ transplant-associated graft-vs-host disease: Comparison with acute hematopoietic cell transplant-associated graft-vs-host disease and cutaneous drug eruption. J Cutan Pathol 2021; 48:1480-1488. [PMID: 34173980 DOI: 10.1111/cup.14093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Although it is relatively common after hematopoietic cell transplant (HCT), graft-vs-host disease (GVHD) is a rare complication following solid organ transplantation (SOT). METHODS This study evaluated skin biopsy specimens from five cases of SOT GVHD, 15 cases of HCT GVHD, and 15 cases of cutaneous drug eruption. Immunohistochemical staining for CD3, CD4, CD8, T-bet, and GATA-3 was performed to examine the density and immune phenotype of skin-infiltrating lymphocytes. RESULTS Similar to HCT GVHD, the predominant histopathologic findings in skin biopsy specimens of SOT GVHD were widespread vacuolar interface dermatitis with scattered necrotic keratinocytes. However, the density of dermal inflammation was considerably higher in SOT GVHD. Features that were more predictive of a cutaneous drug eruption over GVHD included spongiosis, confluent parakeratosis, and many eosinophils. Involvement of the hair follicle epithelium was seen in all three disorders. Both forms of cutaneous GVHD showed a predominance of Th1 (CD3+/T-bet+) lymphocytes within the inflammatory infiltrates. This shift was more pronounced in SOT GVHD, particularly among intraepidermal T-cells. CONCLUSIONS SOT GVHD shares many histopathologic features with HCT GVHD. However, SOT GVHD has a greater tendency to develop brisk lichenoid inflammation.
Collapse
Affiliation(s)
- Aaron J Russell
- Department of Medicine, Division of Dermatology, Washington University School of Medicine, St. Louis, Missouri, USA.,Departments of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Amy C Musiek
- Department of Medicine, Division of Dermatology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Ilana S Rosman
- Department of Medicine, Division of Dermatology, Washington University School of Medicine, St. Louis, Missouri, USA.,Departments of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
39
|
Adhikary SR, Cuthbertson P, Nicholson L, Bird KM, Sligar C, Hu M, O'Connell PJ, Sluyter R, Alexander SI, Watson D. Post-transplant cyclophosphamide limits reactive donor T cells and delays the development of graft-versus-host disease in a humanized mouse model. Immunology 2021; 164:332-347. [PMID: 34021907 DOI: 10.1111/imm.13374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/03/2021] [Accepted: 05/09/2021] [Indexed: 12/27/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a major complication of allogeneic haematopoietic stem cell transplantation (allo-HSCT) that develops when donor T cells in the graft become reactive against the host. Post-transplant cyclophosphamide (PTCy) is increasingly used in mismatched allo-HSCT, but how PTCy impacts donor T cells and reduces GVHD is unclear. This study aimed to determine the effect of PTCy on reactive human donor T cells and GVHD development in a preclinical humanized mouse model. Immunodeficient NOD-scid-IL2Rγnull mice were injected intraperitoneally (i.p.) with 20 × 106 human peripheral blood mononuclear cells stained with carboxyfluorescein succinimidyl ester (CFSE) (day 0). Mice were subsequently injected (i.p.) with PTCy (33 mg kg-1 ) (PTCy-mice) or saline (saline-mice) (days 3 and 4). Mice were assessed for T-cell depletion on day 6 and monitored for GVHD for up to 10 weeks. Flow cytometric analysis of livers at day 6 revealed lower proportions of reactive (CFSElow ) human (h) CD3+ T cells in PTCy-mice compared with saline-mice. Over 10 weeks, PTCy-mice showed reduced weight loss and clinical GVHD, with prolonged survival and reduced histological liver GVHD compared with saline-mice. PTCy-mice also demonstrated increased splenic hCD4+ :hCD8+ T-cell ratios and reduced splenic Tregs (hCD4+ hCD25+ hCD127lo ) compared with saline-mice. This study demonstrates that PTCy reduces GVHD in a preclinical humanized mouse model. This corresponded to depletion of reactive human donor T cells, but fewer human Tregs.
Collapse
Affiliation(s)
- Sam R Adhikary
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Peter Cuthbertson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Leigh Nicholson
- Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Katrina M Bird
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Chloe Sligar
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Min Hu
- Westmead Institute for Medical Research, Westmead, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | | | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | | | - Debbie Watson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
40
|
Removal of CD276 + cells from haploidentical memory T-cell grafts significantly lowers the risk of GVHD. Bone Marrow Transplant 2021; 56:2336-2354. [PMID: 33976380 PMCID: PMC8486669 DOI: 10.1038/s41409-021-01307-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/27/2021] [Accepted: 04/12/2021] [Indexed: 01/08/2023]
Abstract
Detrimental graft-versus-host disease (GVHD) still remains a major cause of death in hematopoietic stem cell transplantation (HSCT). The recently explored depletion of naive cells from mobilized grafts (CD45RA depletion) has shown considerable promise, yet is unable to eliminate the incidence of GVHD. Analysis of CD45RA-depleted haploidentical mixed lymphocytes culture (haplo-MLC) revealed insufficient suppression of alloresponses in the CD4+ compartment and identified CD276 as a marker for alloreactive memory Th1 T cells. Conclusively, depleting CD276+ cells from CD45RA-depleted haplo-MLC significantly attenuated alloreactivity to recipient cells while increasing antiviral reactivity and maintaining anti-third party reactivity in vitro. To evaluate these findings in vivo, bulk, CD45RA-depleted, or CD45RA/CD276-depleted CD4+ T cells from HLA-DR4negative healthy humans were transplanted into NSG-Ab°DR4 mice, a sensitive human allo-GVHD model. Compellingly, CD45RA/CD276-depleted grafts from HLA-DR4negative donors or in vivo depletion of CD276+ cells after transplant of HLA-DR4negative memory CD4 T cells significantly delay the onset of GVHD symptoms and significantly alleviate its severity in NSG-Ab°DR4 mice. The clinical courses correlated with diminished Th1-cytokine secretion and downregulated CXCR6 expression of engrafted peripheral T cells. Collectively, mismatched HLA-mediated GVHD can be controlled by depleting recipient-specific CD276+ alloreacting T cells from the graft, highlighting its application in haplo-HSCT.
Collapse
|
41
|
Utility of novel T-cell-specific extracellular vesicles in monitoring and evaluation of acute GVHD. Int J Hematol 2021; 113:910-920. [DOI: 10.1007/s12185-021-03113-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 01/08/2023]
|
42
|
Xu X, Li X, Zhao Y, Huang H. Immunomodulatory Effects of Histone Deacetylation Inhibitors in Graft-vs.-Host Disease After Allogeneic Stem Cell Transplantation. Front Immunol 2021; 12:641910. [PMID: 33732262 PMCID: PMC7959724 DOI: 10.3389/fimmu.2021.641910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/08/2021] [Indexed: 01/14/2023] Open
Abstract
Histone deacetylase inhibitors are currently the most studied drugs because of their beneficial effects on inflammatory response. Emerging data from numerous basic studies and clinical trials have shown that histone deacetylase inhibitors can suppress immune-mediated diseases, such as graft-vs.-host disease (GVHD), while retaining beneficial graft-vs.-leukemia (GVL) effects. These drugs prevent and/or treat GVHD by modifying gene expression and inhibiting the production of proinflammatory cytokines, regulating the function of alloreactive T cells, and upregulating the function and number of regulatory T cells. Some of these drugs may become new immunotherapies for GVHD and other immune diseases.
Collapse
Affiliation(s)
- Xiaoxiao Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoqin Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Song Q, Wang X, Wu X, Kang TH, Qin H, Zhao D, Jenq RR, van den Brink MRM, Riggs AD, Martin PJ, Chen YZ, Zeng D. IL-22-dependent dysbiosis and mononuclear phagocyte depletion contribute to steroid-resistant gut graft-versus-host disease in mice. Nat Commun 2021; 12:805. [PMID: 33547295 PMCID: PMC7865028 DOI: 10.1038/s41467-021-21133-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/10/2021] [Indexed: 02/07/2023] Open
Abstract
Efforts to improve the prognosis of steroid-resistant gut acute graft-versus-host-disease (SR-Gut-aGVHD) have suffered from poor understanding of its pathogenesis. Here we show that the pathogenesis of SR-Gut-aGVHD is associated with reduction of IFN-γ+ Th/Tc1 cells and preferential expansion of IL-17-IL-22+ Th/Tc22 cells. The IL-22 from Th/Tc22 cells causes dysbiosis in a Reg3γ-dependent manner. Transplantation of IFN-γ-deficient donor CD8+ T cells in the absence of CD4+ T cells produces a phenocopy of SR-Gut-aGVHD. IFN-γ deficiency in donor CD8+ T cells also leads to a PD-1-dependent depletion of intestinal protective CX3CR1hi mononuclear phagocytes (MNP), which also augments expansion of Tc22 cells. Supporting the dual regulation, simultaneous dysbiosis induction and depletion of CX3CR1hi MNP results in full-blown Gut-aGVHD. Our results thus provide insights into SR-Gut-aGVHD pathogenesis and suggest the potential efficacy of IL-22 antagonists and IFN-γ agonists in SR-Gut-aGVHD therapy.
Collapse
Affiliation(s)
- Qingxiao Song
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, The Beckman Research Institute of City of Hope, Duarte, CA, USA
- Fujian Medical University Center of Translational Hematology, Fujian Institute of Hematology, and Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoning Wang
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA, USA
- Hematologic Malignancies and Stem Cell Transplantation Institute, The Beckman Research Institute of City of Hope, Duarte, CA, USA
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiwei Wu
- Department of Integrative Genomics Core, The Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Tae Hyuk Kang
- Department of Integrative Genomics Core, The Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Hanjun Qin
- Department of Integrative Genomics Core, The Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Dongchang Zhao
- The Tisch Cancer Institute and Division of Hematology/Medical Oncology, The Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| | - Robert R Jenq
- Departments of Genomic Medicine and Stem Cell Transplantation Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcel R M van den Brink
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arthur D Riggs
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Paul J Martin
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA
| | - Yuan-Zhong Chen
- Fujian Medical University Center of Translational Hematology, Fujian Institute of Hematology, and Fujian Medical University Union Hospital, Fuzhou, China.
| | - Defu Zeng
- Diabetes and Metabolism Research Institute, The Beckman Research Institute of City of Hope, Duarte, CA, USA.
- Hematologic Malignancies and Stem Cell Transplantation Institute, The Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
44
|
Berger M, Pessolano R, Carraro F, Saglio F, Vassallo E, Fagioli F. Steroid-refractory acute graft-versus-host disease graded III-IV in pediatric patients. A mono-institutional experience with a long-term follow-up. Pediatr Transplant 2020; 24:e13806. [PMID: 32844519 DOI: 10.1111/petr.13806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/28/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022]
Abstract
aGvHD remains a major obstacle to successful HSCT. We report our experience on steroid-refractory aGvHD III and IV from 1989 to 2017. Ninety patients with aGvHD III or IV were stratified according to the HSCT year: 1989-1998, 1999-2007, and 2008-2017 and to aGvHD extension (GvHD III vs IV) and finally the probability of OS, RI, and TRM was calculated accordingly. aGvHD III patients had a substantial improvement over time: day 100 OS raised from 64% (95% CI 39-89) in the first cohort to 100% in the latest (P = .022), and it was mainly due to a reduction of TRM (it was 28% [95% CI 12-65] in the first cohort to 0% in the latest (P = .01). The aGvHD IV patients did not present a significant improvement. Day 100 OS was 42% (95% CI 16-68) in the first group and 54% (95% CI 25-83) in the year 2008-2017 (P = NS), and the day-100 TRM was very similar (it was 57% [95% CI 36-90] in the first cohort and 45% [95% CI 23-89] in the latest (P = NS). We report significant improvements in OS and TRM in patients diagnosed with grade III aGvHD. Patients with the most severe aGvHD appear to have no or fewer benefits on long-term outcomes.
Collapse
Affiliation(s)
- Massimo Berger
- Pediatric Onco-Hematology, City of Health and Science, Regina Margherita Children Hospital, University of Turin, Turin, Italy
| | - Rosanna Pessolano
- Pediatric Onco-Hematology, City of Health and Science, Regina Margherita Children Hospital, University of Turin, Turin, Italy
| | - Francesca Carraro
- Pediatric Onco-Hematology, City of Health and Science, Regina Margherita Children Hospital, University of Turin, Turin, Italy
| | - Francesco Saglio
- Pediatric Onco-Hematology, City of Health and Science, Regina Margherita Children Hospital, University of Turin, Turin, Italy
| | - Elena Vassallo
- Pediatric Onco-Hematology, City of Health and Science, Regina Margherita Children Hospital, University of Turin, Turin, Italy
| | - Franca Fagioli
- Pediatric Onco-Hematology, City of Health and Science, Regina Margherita Children Hospital, University of Turin, Turin, Italy
| |
Collapse
|
45
|
Park S, Griesenauer B, Jiang H, Adom D, Mehrpouya-Bahrami P, Chakravorty S, Kazemian M, Imam T, Srivastava R, Hayes TA, Pardo J, Janga SC, Paczesny S, Kaplan MH, Olson MR. Granzyme A-producing T helper cells are critical for acute graft-versus-host disease. JCI Insight 2020; 5:124465. [PMID: 32809971 PMCID: PMC7526544 DOI: 10.1172/jci.insight.124465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
Acute graft-versus-host disease (aGVHD) can occur after hematopoietic cell transplant in patients undergoing treatment for hematological malignancies or inborn errors. Although CD4+ T helper (Th) cells play a major role in aGVHD, the mechanisms by which they contribute, particularly within the intestines, have remained elusive. We have identified a potentially novel subset of Th cells that accumulated in the intestines and produced the serine protease granzyme A (GrA). GrA+ Th cells were distinct from other Th lineages and exhibited a noncytolytic phenotype. In vitro, GrA+ Th cells differentiated in the presence of IL-4, IL-6, and IL-21 and were transcriptionally unique from cells cultured with either IL-4 or the IL-6/IL-21 combination alone. In vivo, both STAT3 and STAT6 were required for GrA+ Th cell differentiation and played roles in maintenance of the lineage identity. Importantly, GrA+ Th cells promoted aGVHD-associated morbidity and mortality and contributed to crypt destruction within intestines but were not required for the beneficial graft-versus-leukemia effect. Our data indicate that GrA+ Th cells represent a distinct Th subset and are critical mediators of aGVHD.
Collapse
Affiliation(s)
- Sungtae Park
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Brad Griesenauer
- Department of Pediatrics and Herman B Wells Center for Pediatric Research and.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hua Jiang
- Department of Pediatrics and Herman B Wells Center for Pediatric Research and.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Djamilatou Adom
- Department of Pediatrics and Herman B Wells Center for Pediatric Research and.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Srishti Chakravorty
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, Indiana, USA
| | - Tanbeena Imam
- Department of Pediatrics and Herman B Wells Center for Pediatric Research and
| | - Rajneesh Srivastava
- Department of Biohealth Informatics, School of Informatics and Computing, Indiana University-Purdue University, Indianapolis, Indianapolis, Indiana, USA
| | - Tristan A Hayes
- Department of Pediatrics and Herman B Wells Center for Pediatric Research and
| | - Julian Pardo
- Biomedical Research Centre of Aragon (CIBA), Department of Microbiology, Preventative Medicine and Public Health, Nanoscience Institute of Aragon (INA), Aragon I+D Foundation, IIS Aragon/University of Zaragoza, Zaragoza, Spain
| | - Sarath Chandra Janga
- Department of Biohealth Informatics, School of Informatics and Computing, Indiana University-Purdue University, Indianapolis, Indianapolis, Indiana, USA
| | - Sophie Paczesny
- Department of Pediatrics and Herman B Wells Center for Pediatric Research and.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark H Kaplan
- Department of Pediatrics and Herman B Wells Center for Pediatric Research and.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Matthew R Olson
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
46
|
Zhou Y, Cao L, Guo H, Hong Y, Wang M, Wang K, Huang X, Chang Y. Th2 polarization in target organs is involved in the alleviation of pathological damage mediated by transplanting granulocyte colony-stimulating factor-primed donor T cells. SCIENCE CHINA-LIFE SCIENCES 2020; 64:1087-1096. [PMID: 32880861 DOI: 10.1007/s11427-020-1754-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/09/2020] [Indexed: 11/24/2022]
Abstract
Acute graft-versus-host disease (aGVHD) is caused by allo-activated donor T cells infiltrating target organs. As a regulator of immune function, granulocyte colony-stimulating factor (G-CSF) has been demonstrated to relieve the aGVHD reaction. However, the role of G-CSF-primed donor T cells in specific target organs is still unknown. In this study, we employed a classical MHC-mismatched transplantation mouse model (C57BL/6 into BALB/c) and found that recipient mice transplanted with G-CSF-primed T cells exhibited prolonged survival compared with that of the PBS-treated group. This protective function against GVHD mediated by G-CSF-primed donor T cells was further confirmed by decreased clinical and pathological scores in this aGVHD mouse model, especially in the lung and gut. Moreover, we found that T cells polarized towards Th2 cells and regulatory T cells were increased in specific target organs. In addition, G-CSF treatment inhibited inducible co-stimulator (ICOS) expression and increased the expression of tolerance-related genes in recipient mice. Our study provides new insight into the immune regulatory effects of G-CSF on T cell-mediated aGVHD, especially for its precise regulation in GVHD target organs.
Collapse
Affiliation(s)
- Yang Zhou
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China
| | - Leqing Cao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China
| | - Huidong Guo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China
| | - Yan Hong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China
| | - Ming Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China
| | - Ke Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China. .,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100044, China.
| | - Yingjun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China.
| |
Collapse
|
47
|
Shrestha B, Walton K, Reff J, Sagatys EM, Tu N, Boucher J, Li G, Ghafoor T, Felices M, Miller JS, Pidala J, Blazar BR, Anasetti C, Betts BC, Davila ML. Human CD83-targeted chimeric antigen receptor T cells prevent and treat graft-versus-host disease. J Clin Invest 2020; 130:4652-4662. [PMID: 32437331 PMCID: PMC7456225 DOI: 10.1172/jci135754] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Graft-versus-host disease (GVHD) remains an important cause of morbidity and mortality after allogeneic hematopoietic cell transplantation (allo-HCT). For decades, GVHD prophylaxis has included calcineurin inhibitors, despite their incomplete efficacy and impairment of graft-versus-leukemia (GVL). Distinct from pharmacologic immune suppression, we have developed what we believe is a novel, human CD83-targeted chimeric antigen receptor (CAR) T cell for GVHD prevention. CD83 is expressed on allo-activated conventional CD4+ T cells (Tconvs) and proinflammatory dendritic cells (DCs), which are both implicated in GVHD pathogenesis. Human CD83 CAR T cells eradicate pathogenic CD83+ target cells, substantially increase the ratio of regulatory T cells (Tregs) to allo-activated Tconvs, and provide durable prevention of xenogeneic GVHD. CD83 CAR T cells are also capable of treating xenogeneic GVHD. We show that human acute myeloid leukemia (AML) expresses CD83 and that myeloid leukemia cell lines are readily killed by CD83 CAR T cells. Human CD83 CAR T cells are a promising cell-based approach to preventing 2 critical complications of allo-HCT - GVHD and relapse. Thus, the use of human CD83 CAR T cells for GVHD prevention and treatment, as well as for targeting CD83+ AML, warrants clinical investigation.
Collapse
Affiliation(s)
- Bishwas Shrestha
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Kelly Walton
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jordan Reff
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Elizabeth M. Sagatys
- Department of Hematopathology and Laboratory Medicine, Moffitt Cancer Center, Tampa, Florida, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
| | - Nhan Tu
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
| | - Justin Boucher
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
| | - Gongbo Li
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
| | - Tayyebb Ghafoor
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
| | - Martin Felices
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeffrey S. Miller
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joseph Pidala
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida, USA
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Claudio Anasetti
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida, USA
| | - Brian C. Betts
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Marco L. Davila
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida, USA
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
48
|
Increased P2X7 expression in the gastrointestinal tract and skin in a humanised mouse model of graft-versus-host disease. Clin Sci (Lond) 2020; 134:207-223. [PMID: 31934722 DOI: 10.1042/cs20191086] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/20/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Allogeneic haematopoietic stem cell transplantation (HSCT) is a curative therapy for blood cancers; but results in the development of graft-versus-host disease (GVHD) in up to 70% of recipients. During GVHD, tissue damage results in ATP release into the extracellular compartment activating P2X7 on antigen-presenting cells, leading to the release of pro-inflammatory cytokines and subsequent activation of donor T cells. Therefore, the aim of the present study was to examine murine (m) P2rx7 and human (h) P2RX7 gene expression in GVHD target organs of humanised mice, and further characterise disease impact in these organs. METHODS NOD-scid IL2Rγnull (NSG) mice were injected with human peripheral blood mononuclear cells (hu-PBMC-NSG mice) or phosphate-buffered saline (PBS, control). Leucocytes were assessed by flow cytometry; gene expression was measured by quantitative polymerase chain reaction (qPCR), and tissue sections examined by histology. RESULTS Compared with control mice, hu-PBMC-NSG mice had increased mP2rx7 and mP2rx4 expression in the duodenum, ileum and skin. hP2RX7 was expressed in all tissues examined. hu-PBMC-NSG mice also displayed increased mReg3g expression in the duodenum and ileum, despite limited histological gut GVHD. hu-PBMC-NSG mice showed histological evidence of GVHD in the skin, liver and lung. Compared with control mice, hu-PBMC-NSG mice displayed increased ear swelling. CONCLUSION Combined data revealed that P2rx7 is up-regulated in gut and skin GVHD and that P2RX7 is present in target tissues of GVHD, corresponding to human leucocyte infiltration. Data also reveal increased mReg3g expression and ear swelling in hu-PBMC-NSG mice, offering new measurements of early-stage gut GVHD and skin GVHD, respectively.
Collapse
|
49
|
Takashima S, Martin ML, Jansen SA, Fu Y, Bos J, Chandra D, O'Connor MH, Mertelsmann AM, Vinci P, Kuttiyara J, Devlin SM, Middendorp S, Calafiore M, Egorova A, Kleppe M, Lo Y, Shroyer NF, Cheng EH, Levine RL, Liu C, Kolesnick R, Lindemans CA, Hanash AM. T cell-derived interferon-γ programs stem cell death in immune-mediated intestinal damage. Sci Immunol 2020; 4:4/42/eaay8556. [PMID: 31811055 DOI: 10.1126/sciimmunol.aay8556] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022]
Abstract
Despite the importance of intestinal stem cells (ISCs) for epithelial maintenance, there is limited understanding of how immune-mediated damage affects ISCs and their niche. We found that stem cell compartment injury is a shared feature of both alloreactive and autoreactive intestinal immunopathology, reducing ISCs and impairing their recovery in T cell-mediated injury models. Although imaging revealed few T cells near the stem cell compartment in healthy mice, donor T cells infiltrating the intestinal mucosa after allogeneic bone marrow transplantation (BMT) primarily localized to the crypt region lamina propria. Further modeling with ex vivo epithelial cultures indicated ISC depletion and impaired human as well as murine organoid survival upon coculture with activated T cells, and screening of effector pathways identified interferon-γ (IFNγ) as a principal mediator of ISC compartment damage. IFNγ induced JAK1- and STAT1-dependent toxicity, initiating a proapoptotic gene expression program and stem cell death. BMT with IFNγ-deficient donor T cells, with recipients lacking the IFNγ receptor (IFNγR) specifically in the intestinal epithelium, and with pharmacologic inhibition of JAK signaling all resulted in protection of the stem cell compartment. In addition, epithelial cultures with Paneth cell-deficient organoids, IFNγR-deficient Paneth cells, IFNγR-deficient ISCs, and purified stem cell colonies all indicated direct targeting of the ISCs that was not dependent on injury to the Paneth cell niche. Dysregulated T cell activation and IFNγ production are thus potent mediators of ISC injury, and blockade of JAK/STAT signaling within target tissue stem cells can prevent this T cell-mediated pathology.
Collapse
Affiliation(s)
- S Takashima
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - M L Martin
- Department of Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - S A Jansen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Division of Pediatrics, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3508 AB Utrecht, Netherlands
| | - Y Fu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - J Bos
- Division of Pediatrics, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3508 AB Utrecht, Netherlands
| | - D Chandra
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - M H O'Connor
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - A M Mertelsmann
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - P Vinci
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - J Kuttiyara
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - S M Devlin
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - S Middendorp
- Division of Pediatrics, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3508 AB Utrecht, Netherlands
| | - M Calafiore
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - A Egorova
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - M Kleppe
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Y Lo
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - N F Shroyer
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - E H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - R L Levine
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - C Liu
- Department of Pathology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - R Kolesnick
- Department of Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - C A Lindemans
- Division of Pediatrics, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3508 AB Utrecht, Netherlands.,Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, Netherlands
| | - A M Hanash
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. .,Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
50
|
|