1
|
Leary JR, Bacher R. Interpretable trajectory inference with single-cell Linear Adaptive Negative-binomial Expression (scLANE) testing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572477. [PMID: 38187622 PMCID: PMC10769309 DOI: 10.1101/2023.12.19.572477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The rapid proliferation of trajectory inference methods for single-cell RNA-seq data has allowed researchers to investigate complex biological processes by examining underlying gene expression dynamics. After estimating a latent cell ordering, statistical models are used to determine which genes exhibit changes in expression that are significantly associated with progression through the biological trajectory. While a few techniques for performing trajectory differential expression exist, most rely on the flexibility of generalized additive models in order to account for the inherent nonlinearity of changes in gene expression. As such, the results can be difficult to interpret, and biological conclusions often rest on subjective visual inspections of the most dynamic genes. To address this challenge, we propose scLANE testing, which is built around an interpretable generalized linear model and handles nonlinearity with basis splines chosen empirically for each gene. In addition, extensions to estimating equations and mixed models allow for reliable trajectory testing under complex experimental designs. After validating the accuracy of scLANE under several different simulation scenarios, we apply it to a set of diverse biological datasets and display its ability to provide novel biological information when used downstream of both pseudotime and RNA velocity estimation methods.
Collapse
Affiliation(s)
- Jack R. Leary
- Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA
| | - Rhonda Bacher
- Department of Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Banerji R, Joshi R, Saroj SD. Acyl Homoserine Lactone Sensitised Streptococcus Pyogenes Differentially Regulates the Transcriptional Expression of Early Growth Response 1 (EGR1) in Epithelial and Macrophage Cells. Curr Microbiol 2023; 80:268. [PMID: 37402084 DOI: 10.1007/s00284-023-03375-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
The host transcriptional activator Early growth response 1 (EGR1) plays a vital role in cell cycle and differentiation, cell proliferation, and regulation of cytokines and several growth factors. It is an immediate-early gene that is expressed as an initial response to various environmental stimuli. Bacterial infection is one such factor that can trigger the expression of EGR1 in host. Therefore, it is imperative to understand expression of EGR1 during early stages of host-pathogen interaction. Streptococcus pyogenes is an opportunistic bacteria causing skin and respiratory tract infections in humans. The quorum-sensing molecule, N-(3-oxododecanoyl)-l-homoserine lactone (Oxo-C12), not synthesised by S. pyogenes, can be sensed by S. pyogenes leading to molecular changes in the pathogen. In this study, we investigated the role of Oxo-C12 on EGR1 regulation in lung epithelial and murine macrophage cell line upon S. pyogenes infection. We report that Oxo-C12 sensitised S. pyogenes upregulates the transcriptional expression of EGR1 through ERK1/2 pathway. It was observed that EGR1 was not involved in the intial attachment of S. pyogenes to A549 cells. However, inhibition of EGR1 in macrophage cell line, J774A.1, through the ERK1/2 pathway resulted in decreased adhesion of S. pyogenes. The EGR1 upregulation by Oxo-C12 sensitised S. pyogenes plays a vital role in enhancing the survival of S. pyogenes in murine macrophages, leading to persistent infection. Thus, understanding the molecular modulation in the host during bacterial infection will further help develop therapeutics to target specific sites.
Collapse
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Maharashtra, 412115, Pune, India
| | - Riya Joshi
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Maharashtra, 412115, Pune, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Maharashtra, 412115, Pune, India.
| |
Collapse
|
3
|
Stoddart A, Fernald AA, Davis EM, McNerney ME, Le Beau MM. EGR1 Haploinsufficiency Confers a Fitness Advantage to Hematopoietic Stem Cells Following Chemotherapy. Exp Hematol 2022; 115:54-67. [PMID: 35995095 PMCID: PMC10617250 DOI: 10.1016/j.exphem.2022.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
Therapy-related myeloid neoplasms (t-MNs) share many clinical and molecular characteristics with AML de novo in the elderly. One common factor is that they arise in the setting of chronic inflammation, likely because of advanced age or chemotherapy-induced senescence. Here, we examined the effect of haploinsufficient loss of the del(5q) tumor suppressor gene, EGR1, commonly deleted in high-risk MNs. In mice, under the exogenous stress of either serial transplant or successive doses of the alkylating agent N-ethyl-nitrosourea (ENU), Egr1-haploinsufficient hematopoietic stem cells (HSCs) exhibit a clonal advantage. Complete loss of EGR1 function is incompatible with transformation; mutations of EGR1 are rare and are not observed in the remaining allele in del(5q) patients, and complete knockout of Egr1 in mice leads to HSC exhaustion. Using chromatin immunoprecipitation sequencing (ChIP-seq), we identified EGR1 binding sites in human CD34+ cord blood-derived stem and progenitor cells (HSPCs) and found that EGR1 binds genes critical for stem cell differentiation, inflammatory signaling, and the DNA damage response. Notably, in the chromosome 5 sequences frequently deleted in patients, there is a significant enrichment of innate and inflammatory genes, which may confer a fitness advantage in an inflammatory environment. Short hairpin RNA (shRNA)-mediated silencing of EGR1 biases HSPCs toward a self-renewal transcriptional signature. In the absence of EGR1, HSPCs are characterized by upregulated MYC-driven proliferative signals, downregulated CDKN1A (p21), disrupted DNA damage response, and downregulated inflammation-adaptations anticipated to confer a relative fitness advantage for stem cells especially in an environment of chronic inflammation.
Collapse
Affiliation(s)
| | | | | | - Megan E McNerney
- Department of Pathology, University of Chicago, Chicago, IL; University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL; Department of Pediatrics, University of Chicago, Chicago IL
| | - Michelle M Le Beau
- Department of Medicine, University of Chicago, Chicago, IL; University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL
| |
Collapse
|
4
|
Abstract
The inflammation is an important biological response induced by various harmful stimuli, like viruses, bacterial infections, toxins, toxic compounds, tissue injury. During inflammation inflammatory cytokines and reactive oxygen species are produced. Inflammatory cytokines act on various receptors present on the plasma membrane of target cells. To initiate signaling cascade, and activate transcription factors, receptors should be internalized and enter the early endosomes, where the members of the signaling cascade can meet. The further cytoplasmic fate of the receptor plays crucial role in the progression and the course of inflammation. Usually acute inflammation removes injurious stimuli and helps to regain the normal healthy status of the organism. In contrast to this the uncontrolled chronic inflammation—stimulating other than immune cells, inducing transdifferentiation—can provide base of various serious diseases. This paper draws the attention of the long-lasting consequence of chronic inflammation, pointing out that one of the most important step in medication is to identify in time the factors initiating and maintaining inflammation.
Collapse
Affiliation(s)
- Anna L Kiss
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Ramberger E, Sapozhnikova V, Kowenz-Leutz E, Zimmermann K, Nicot N, Nazarov PV, Perez-Hernandez D, Reimer U, Mertins P, Dittmar G, Leutz A. PRISMA and BioID disclose a motifs-based interactome of the intrinsically disordered transcription factor C/EBPα. iScience 2021; 24:102686. [PMID: 34189442 PMCID: PMC8220391 DOI: 10.1016/j.isci.2021.102686] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/17/2021] [Accepted: 05/30/2021] [Indexed: 01/27/2023] Open
Abstract
C/EBPα represents a paradigm intrinsically disordered transcription factor containing short linear motifs and post-translational modifications (PTM). Unraveling C/EBPα protein interaction networks is a prerequisite for understanding the multi-modal functions of C/EBPα in hematopoiesis and leukemia. Here, we combined arrayed peptide matrix screening (PRISMA) with BioID to generate an in vivo validated and isoform specific interaction map of C/EBPα. The myeloid C/EBPα interactome comprises promiscuous and PTM-regulated interactions with protein machineries involved in gene expression, epigenetics, genome organization, DNA replication, RNA processing, and nuclear transport. C/EBPα interaction hotspots coincide with homologous conserved regions of the C/EBP family that also score as molecular recognition features. PTMs alter the interaction spectrum of C/EBP-motifs to configure a multi-valent transcription factor hub that interacts with multiple co-regulatory components, including BAF/SWI-SNF or Mediator complexes. Combining PRISMA and BioID is a powerful strategy to systematically explore the PTM-regulated interactomes of intrinsically disordered transcription factors.
Collapse
Affiliation(s)
- Evelyn Ramberger
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Valeria Sapozhnikova
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Elisabeth Kowenz-Leutz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Karin Zimmermann
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Nathalie Nicot
- Quantitative Biology Unit, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Petr V. Nazarov
- Quantitative Biology Unit, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Daniel Perez-Hernandez
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Quantitative Biology Unit, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Ulf Reimer
- JPT Peptide Technologies GmbH, Volmerstrasse 5, 12489 Berlin, Germany
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Gunnar Dittmar
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Quantitative Biology Unit, Luxembourg Institute of Health, 1a Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Achim Leutz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, 10115 Berlin, Germany
| |
Collapse
|
6
|
Diggins NL, Skalsky RL, Hancock MH. Regulation of Latency and Reactivation by Human Cytomegalovirus miRNAs. Pathogens 2021; 10:pathogens10020200. [PMID: 33668486 PMCID: PMC7918750 DOI: 10.3390/pathogens10020200] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) encodes 22 mature microRNAs (miRNAs), which regulate a myriad of cellular processes, including vesicular trafficking, cell cycle progression, apoptosis, and immune evasion, as well as viral gene expression. Recent evidence points to a critical role for HCMV miRNAs in mediating latency in CD34+ hematopoietic progenitor cells through modulation of cellular signaling pathways, including attenuation of TGFβ and EGFR signaling. Moreover, HCMV miRNAs can act in concert with, or in opposition to, viral proteins in regulating host cell functions. Here, we comprehensively review the studies of HCMV miRNAs in the context of latency and highlight the novel processes that are manipulated by the virus using these small non-coding RNAs.
Collapse
|
7
|
Trizzino M, Zucco A, Deliard S, Wang F, Barbieri E, Veglia F, Gabrilovich D, Gardini A. EGR1 is a gatekeeper of inflammatory enhancers in human macrophages. SCIENCE ADVANCES 2021; 7:7/3/eaaz8836. [PMID: 33523892 PMCID: PMC7806227 DOI: 10.1126/sciadv.aaz8836] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/20/2020] [Indexed: 05/20/2023]
Abstract
Monocytes and monocyte-derived macrophages originate through a multistep differentiation process. First, hematopoietic stem cells generate lineage-restricted progenitors that eventually develop into peripheral, postmitotic monocytes. Second, blood-circulating monocytes undergo differentiation into macrophages, which are specialized phagocytic cells capable of tissue infiltration. While monocytes mediate some level of inflammation and cell toxicity, macrophages boast the widest set of defense mechanisms against pathogens and elicit robust inflammatory responses. Here, we analyze the molecular determinants of monocytic and macrophagic commitment by profiling the EGR1 transcription factor. EGR1 is essential for monopoiesis and binds enhancers that regulate monocytic developmental genes such as CSF1R However, differentiating macrophages present a very different EGR1 binding pattern. We identify novel binding sites of EGR1 at a large set of inflammatory enhancers, even in the absence of its binding motif. We show that EGR1 repressive activity results in suppression of inflammatory genes and is mediated by the NuRD corepressor complex.
Collapse
Affiliation(s)
- Marco Trizzino
- The Wistar Institute, 3601 Spruce street, Philadelphia, PA 19104, USA
| | - Avery Zucco
- The Wistar Institute, 3601 Spruce street, Philadelphia, PA 19104, USA
| | - Sandra Deliard
- The Wistar Institute, 3601 Spruce street, Philadelphia, PA 19104, USA
| | - Fang Wang
- The Wistar Institute, 3601 Spruce street, Philadelphia, PA 19104, USA
| | - Elisa Barbieri
- The Wistar Institute, 3601 Spruce street, Philadelphia, PA 19104, USA
| | - Filippo Veglia
- The Wistar Institute, 3601 Spruce street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
8
|
Cellular and molecular events of inflammation induced transdifferentiation (EMT) and regeneration (MET) in mesenteric mesothelial cells. Inflamm Res 2020; 69:1173-1179. [PMID: 32920669 PMCID: PMC7486969 DOI: 10.1007/s00011-020-01400-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
In this review we summarize the cellular and molecular events of inflammation induced epithelial-to-mesenchymal (EMT) and mesothelial-to-macrophage transition (MET) during regeneration. Since the receptor transmits the environmental stimulus, downregulating or upregulating the process on an epigenetic level, the intracellular localization of receptors (signaling organelles: early endosomes or lysosomal degradation: late endosomes) plays a crucial role in the signaling events regulating inflammation and regeneration. Therefore, we focused on the internalization of the receptors as well as the intracellular compartmentalization of signaling molecules during EMT and MET. The review draws the reader's attention to the plasticity of mesothelial cells and supports the idea that during inflammation an ambient macrophage population might derive from mesothelial cells.
Collapse
|
9
|
Yaparla A, Reeves P, Grayfer L. Myelopoiesis of the Amphibian Xenopus laevis Is Segregated to the Bone Marrow, Away From Their Hematopoietic Peripheral Liver. Front Immunol 2020; 10:3015. [PMID: 32038608 PMCID: PMC6987381 DOI: 10.3389/fimmu.2019.03015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/09/2019] [Indexed: 01/21/2023] Open
Abstract
Across vertebrates, hematopoiesis takes place within designated tissues, wherein committed myeloid progenitors further differentiate toward cells with megakaryocyte/erythroid potential (MEP) or those with granulocyte/macrophage potential (GMP). While the liver periphery (LP) of the Xenopus laevis amphibian functions as a principal site of hematopoiesis and contains MEPs, cells with GMP potential are instead segregated to the bone marrow (BM) of this animal. Presently, using gene expression and western blot analyses of blood cell lineage-specific transcription factors, we confirmed that while the X. laevis LP hosts hematopoietic stem cells and MEPs, their BM contains GMPs. In support of our hypothesis that cells bearing GMP potential originate from the frog LP and migrate through blood circulation to the BM in response to chemical cues; we demonstrated that medium conditioned by the X. laevis BM chemoattracts LP and peripheral blood cells. Compared to LP and by examining a comprehensive panel of chemokine genes, we showed that the X. laevis BM possessed greater expression of a single chemokine, CXCL12, the recombinant form of which was chemotactic to LP and peripheral blood cells and appeared to be a major chemotactic component within BM-conditioned medium. In confirmation of the hepatic origin of the cells that give rise to these frogs' GMPs, we also demonstrated that the X. laevis BM supported the growth of their LP-derived cells.
Collapse
Affiliation(s)
- Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Phillip Reeves
- School Without Walls High School, Washington, DC, United States
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
10
|
Buehler J, Carpenter E, Zeltzer S, Igarashi S, Rak M, Mikell I, Nelson JA, Goodrum F. Host signaling and EGR1 transcriptional control of human cytomegalovirus replication and latency. PLoS Pathog 2019; 15:e1008037. [PMID: 31725811 PMCID: PMC6855412 DOI: 10.1371/journal.ppat.1008037] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022] Open
Abstract
Sustained phosphotinositide3-kinase (PI3K) signaling is critical to the maintenance of alpha and beta herpesvirus latency. We have previously shown that the beta-herpesvirus, human cytomegalovirus (CMV), regulates epidermal growth factor receptor (EGFR), upstream of PI3K, to control states of latency and reactivation. How signaling downstream of EGFR is regulated and how this impacts CMV infection and latency is not fully understood. We demonstrate that CMV downregulates EGFR early in the productive infection, which blunts the activation of EGFR and its downstream pathways in response to stimuli. However, CMV infection sustains basal levels of EGFR and downstream pathway activity in the context of latency in CD34+ hematopoietic progenitor cells (HPCs). Inhibition of MEK/ERK, STAT or PI3K/AKT pathways downstream of EGFR increases viral reactivation from latently infected CD34+ HPCs, defining a role for these pathways in latency. We hypothesized that CMV modulation of EGFR signaling might impact viral transcription important to latency. Indeed, EGF-stimulation increased expression of the UL138 latency gene, but not immediate early or early viral genes, suggesting that EGFR signaling promotes latent gene expression. The early growth response-1 (EGR1) transcription factor is induced downstream of EGFR signaling through the MEK/ERK pathway and is important for the maintenance of hematopoietic stemness. We demonstrate that EGR1 binds the viral genome upstream of UL138 and is sufficient to promote UL138 expression. Further, disruption of EGR1 binding upstream of UL138 prevents the establishment of latency in CD34+ HPCs. Our results indicate a model whereby UL138 modulation of EGFR signaling feeds back to promote UL138 gene expression and suppression of replication for latency. By this mechanism, the virus has hardwired itself into host cell biology to sense and respond to changes in homeostatic host cell signaling. Host signaling is important for regulating states of cytomegalovirus (CMV) replication and latency. We have shown that human cytomegalovirus regulates EGFR levels and trafficking and that sustained EGFR or downstream PI3K signaling is a requirement for viral latency. Changes in host signaling have the ability to alter viral and host gene expression to impact the outcome of infection. Here we show that EGFR signaling through MEK/ERK pathway induces the host EGR1 transcription factor that is highly expressed in hematopoietic stem cells and necessary for the maintenance of hematopoietic stemness. Downregulation of EGR1 promotes stem cell mobilization and differentiation, known stimuli for CMV reactivation. We identified functional EGR1 binding sites upstream of the UL138 CMV latency gene and EGR1 stimulated UL138 expression to reinforce the latent infection. Mutant viruses where the regulation of UL138 by EGR1 is disrupted are unable to establish latency in CD34+ HPCs. This study advances our understanding of how host signaling impacts decisions to enter into or exit from latency. The regulation of viral gene expression by host signaling allows the virus to sense and respond to changes in host stress or differentiation.
Collapse
Affiliation(s)
- Jason Buehler
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Ethan Carpenter
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Sebastian Zeltzer
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Suzu Igarashi
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Michael Rak
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Iliyana Mikell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jay A. Nelson
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Felicia Goodrum
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
11
|
Mikell I, Crawford LB, Hancock MH, Mitchell J, Buehler J, Goodrum F, Nelson JA. HCMV miR-US22 down-regulation of EGR-1 regulates CD34+ hematopoietic progenitor cell proliferation and viral reactivation. PLoS Pathog 2019; 15:e1007854. [PMID: 31725809 PMCID: PMC6855405 DOI: 10.1371/journal.ppat.1007854] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/11/2019] [Indexed: 11/25/2022] Open
Abstract
Reactivation of latent Human Cytomegalovirus (HCMV) in CD34+ hematopoietic progenitor cells (HPCs) is closely linked to hematopoiesis. Viral latency requires maintenance of the progenitor cell quiescence, while reactivation initiates following mobilization of HPCs to the periphery and differentiation into CD14+ macrophages. Early growth response gene 1 (EGR-1) is a transcription factor activated by Epidermal growth factor receptor (EGFR) signaling that is essential for the maintenance of CD34+ HPC self-renewal in the bone marrow niche. Down-regulation of EGR-1 results in mobilization and differentiation of CD34+ HPC from the bone marrow to the periphery. In the current study we demonstrate that the transcription factor EGR-1 is directly targeted for down-regulation by HCMV miR-US22 that results in decreased proliferation of CD34+ HPCs and a decrease in total hematopoietic colony formation. We also show that an HCMV miR-US22 mutant fails to reactivate in CD34+ HPCs, indicating that expression of EGR-1 inhibits viral reactivation. Since EGR-1 promotes CD34+ HPC self-renewal in the bone marrow niche, HCMV miR-US22 down-regulation of EGR-1 is a necessary step to block HPC self-renewal and proliferation to induce a cellular differentiation pathway necessary to promote reactivation of virus.
Collapse
Affiliation(s)
- Iliyana Mikell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Lindsey B. Crawford
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Meaghan H. Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jennifer Mitchell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jason Buehler
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Felicia Goodrum
- Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Jay A. Nelson
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
12
|
Ten Hoeve AL, Hakimi MA, Barragan A. Sustained Egr-1 Response via p38 MAP Kinase Signaling Modulates Early Immune Responses of Dendritic Cells Parasitized by Toxoplasma gondii. Front Cell Infect Microbiol 2019; 9:349. [PMID: 31681626 PMCID: PMC6797980 DOI: 10.3389/fcimb.2019.00349] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/30/2019] [Indexed: 12/28/2022] Open
Abstract
As a response to a diverse array of external stimuli, early growth response protein 1 (Egr-1) plays important roles in the transcriptional regulation of inflammation and the cellular immune response. However, a number of intracellular pathogens colonize immune cells and the implication of Egr-1 in the host-pathogen interplay has remained elusive. Here, we have characterized the Egr-1 responses of primary murine and human dendritic cells (DCs) upon challenge with the obligate intracellular parasite Toxoplasma gondii. We report that live intracellular parasites induce a sustained high expression of Egr-1 in DCs, different from the immediate-early Egr-1 response to parasite lysates, inactivated parasites or LPS. Moreover, a distinct nuclear localization of elevated amounts of Egr-1 protein was detected in infected DCs, but not in by-stander DCs. The ERK1/2 MAPK signaling pathway mediated the canonical immediate-early Egr-1 response to soluble antigens in a MyD88/TLR-dependent fashion. In contrast, a non-canonical extended Egr-1 response that relied primarily on p38 MAPK signaling was induced by intracellular parasites and was exhibited similarly by MyD88-deficient and wildtype DCs. The extended phase Egr-1 response was dramatically reduced upon challenge of DCs with T. gondii parasites deficient in GRA24, a secreted p38-interacting protein. Further, Egr-1-silenced primary DCs maintained their migratory responses upon T. gondii challenge. Importantly, Egr-1 silencing led to elevated expression of co-stimulatory molecules (CD40, CD80) in Toxoplasma-infected DCs and in LPS-challenged immature DCs, indicating that Egr-1 responses suppressed maturation of DCs. Moreover, the IL-12 and IL-2 responses of Toxoplasma-challenged DCs were modulated in a GRA24-dependent fashion. Jointly, the data show that the Egr-1 responses of DCs to microbial external stimuli and intracellular stimuli can be selectively mediated by ERK1/2 or p38 MAPK signaling, and that Egr-1 can act as an intrinsic negative modulator of maturation in primary DCs.
Collapse
Affiliation(s)
- Arne L Ten Hoeve
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Mohamed-Ali Hakimi
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
13
|
Inflammation-Induced Epithelial-to-Mesenchymal Transition and GM-CSF Treatment Stimulate Mesenteric Mesothelial Cells to Transdifferentiate into Macrophages. Inflammation 2019; 41:1825-1834. [PMID: 29911275 DOI: 10.1007/s10753-018-0825-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In our previous work, we showed that during inflammation-induced epithelial-to-mesenchymal transition (EMT), mesenteric mesothelial cells express ED1 (pan-macrophage marker), indicating that they are transformed into macrophage-like cells. In this paper, we provide additional evidences about this transition by following the phagocytic activity and the TNFα production of mesenteric mesothelial cells during inflammation. Upon injection of India ink particles or fluorescent-labeled bioparticles (pHrodo) into the peritoneal cavity of rats pretreated with Freund's adjuvant, we found that mesothelial cells efficiently engulfed these particles. A similar increase of internalization could be observed by mesothelial cells in GM-CSF pretreated primary mesenteric culture. Since macrophages are the major producers of tumor necrosis factor, TNFα, we investigated expression level of TNFα during inflammation-induced EMT and found that TNFα was indeed expressed in these cells, reaching the highest level at the 5th day of inflammation. Since TNFα is one of the target genes of early growth response (EGR1) transcription factor, playing important role in monocyte-macrophage differentiation, expression of EGR1 in mesothelial cells was also investigated by Western blot and immunocytochemistry. While mesothelial cells did not express EGR1, a marked increase was observed in mesothelial cells by the time of inflammation. Parallel to this, nuclear translocation of EGR1 was shown by immunocytochemistry at the day 5 of inflammation. Caveolin-1 level was high and ERK1/2 became phosphorylated as the inflammation proceeded showing a slight decrease when the regeneration started. Our present data support the idea that under special stimuli, mesenteric mesothelial cells are able to transdifferentiate into macrophages, and this transition is regulated by the caveolin-1/ERK1/2/EGR1 signaling pathway.
Collapse
|
14
|
Barbieri E, Trizzino M, Welsh SA, Owens TA, Calabretta B, Carroll M, Sarma K, Gardini A. Targeted Enhancer Activation by a Subunit of the Integrator Complex. Mol Cell 2018; 71:103-116.e7. [PMID: 30008316 DOI: 10.1016/j.molcel.2018.05.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/11/2018] [Accepted: 05/24/2018] [Indexed: 01/12/2023]
Abstract
The control of cell fate is an epigenetic process initiated by transcription factors (TFs) that recognize DNA motifs and recruit activator complexes and transcriptional machineries to chromatin. Lineage specificity is thought to be provided solely by TF-motif pairing, while the recruited activators are passive. Here, we show that INTS13, a subunit of the Integrator complex, operates as monocytic/macrophagic differentiation factor. Integrator is a general activator of transcription at coding genes and is required for eRNA maturation. Here, we show that INTS13 functions as an independent sub-module and targets enhancers through Early Growth Response (EGR1/2) TFs and their co-factor NAB2. INTS13 binds poised monocytic enhancers eliciting chromatin looping and activation. Independent depletion of INTS13, EGR1, or NAB2 impairs monocytic differentiation of cell lines and primary human progenitors. Our data demonstrate that Integrator is not functionally homogeneous and has TF-specific regulatory potential, revealing a new enhancer regulatory axis that controls myeloid differentiation.
Collapse
Affiliation(s)
- Elisa Barbieri
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Marco Trizzino
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Sarah Ann Welsh
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Tori Alexandra Owens
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Bruno Calabretta
- Sidney Kimmel Cancer Center, Thomas Jefferson Medical School, Philadelphia, PA, USA
| | - Martin Carroll
- Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kavitha Sarma
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Alessandro Gardini
- The Wistar Institute, Gene Expression and Regulation Program, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Zhang J, Xiang Z, Malaviarachchi PA, Yan Y, Baltz NJ, Emanuel PD, Liu YL. PTEN is indispensable for cells to respond to MAPK inhibitors in myeloid leukemia. Cell Signal 2018; 50:72-79. [PMID: 29964149 DOI: 10.1016/j.cellsig.2018.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/02/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022]
Abstract
Constitutively activated MAPK and AKT signaling pathways are often found in solid tumors and leukemias. PTEN is one of the tumor suppressors that are frequently found deficient in patients with late-stage cancers or leukemias. In this study we demonstrate that a MAPK inhibitor, PD98059, inhibits both AKT and ERK phosphorylation in a human myeloid leukemia cell line (TF-1), but not in PTEN-deficient leukemia cells (TF-1a). Ectopic expression of wild-type PTEN in myeloid leukemia cells restored cytokine responsiveness at physiological concentrations of GM-CSF (<0.02 ng/mL) and significantly improved cell sensitivity to MAPK inhibitor. We also found that Early Growth Response 1 (EGR1) was constitutively over-expressed in cytokine-independent TF-1a cells, and ectopic expression of PTEN down-regulated EGR1 expression and restored dynamics of EGR1 expression in response to GM-CSF stimulation. Data from primary bone marrow cells from mice with Pten deletion further supports that PTEN is indispensible for myeloid leukemia cells in response to MAPK inhibitors. Finally, We demonstrate that the absence of EGR1 expression dynamics in response to GM-CSF stimulation is one of the mechanisms underlying drug resistance to MAPK inhibitors in leukemia cells with PTEN deficiency. Our data suggest a novel mechanism of PTEN in regulating expression of EGR1 in hematopoietic cells in response to cytokine stimulation. In conclusion, this study demonstrates that PTEN is dispensable for myeloid leukemia cells in response to MAPK inhibitors, and PTEN regulates EGR1 expression and contributes to the cytokine sensitivity in leukemia cells.
Collapse
Affiliation(s)
- Jingliao Zhang
- Winthrop P. Rockefeller Cancer Institute, Division of Hematology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, United States; Department of Pediatrics, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences, Tianjin 300020, China
| | - Zhifu Xiang
- Winthrop P. Rockefeller Cancer Institute, Division of Hematology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, United States
| | - Priyangi A Malaviarachchi
- Winthrop P. Rockefeller Cancer Institute, Division of Hematology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, United States
| | - Yan Yan
- Winthrop P. Rockefeller Cancer Institute, Division of Hematology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, United States
| | - Nicholas J Baltz
- Winthrop P. Rockefeller Cancer Institute, Division of Hematology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, United States
| | - Peter D Emanuel
- Winthrop P. Rockefeller Cancer Institute, Division of Hematology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, United States.
| | - Y Lucy Liu
- Winthrop P. Rockefeller Cancer Institute, Division of Hematology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, United States.
| |
Collapse
|
16
|
Ziegelhoeffer T, Heil M, Fischer S, Fernández B, Schaper W, Preissner KT, Deindl E, Pagel JI. Role of early growth response 1 in arteriogenesis: Impact on vascular cell proliferation and leukocyte recruitment in vivo. Thromb Haemost 2017; 107:562-74. [DOI: 10.1160/th11-07-0490] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 12/13/2011] [Indexed: 02/07/2023]
Abstract
SummaryBased on previous findings that early growth response 1 (Egr-1) participates in leukocyte recruitment and cell proliferation in vitro, this study was designed to investigate its mode of action during arteriogenesis in vivo. In a model of peripheral arteriogenesis, Egr-1 was significantly upregulated in growing collaterals of wild-type (WT) mice, both on mRNA and protein level. Egr-1−/− mice demonstrated delayed arteriogenesis after femoral artery ligation. They further showed increased levels of monocytes and granulocytes in the circulation, but reduced levels in adductor muscles under baseline conditions. After femoral artery ligation, elevated numbers of macrophages were detected in the perivascular zone of collaterals in Egr-1−/− mice and mRNA of leukocyte recruitment mediators was upregulated. Other Egr family members (Egr-2 to -4) were significantly upregulated only in Egr-1−/− mice, suggesting a mechanism of counterbalancing Egr-1 deficiency. Moreover, splicing factor-1, downregulated in WT mice after femoral artery ligation in the process of increased vascular cell proliferation, was upregulated in Egr-1−/− mice. αSM-actin on the other hand, significantly downregulated in WT mice, showed no differential expression in Egr-1−/− mice. While cell cycle regulator cyclin E and cdc20 were upregulated in Egr-1−/− mice, cyclin D1 expression decreased below the detection limit in collaterals, and the proliferation marker ki67 was not differentially expressed. In conclusion, compensation for deficiency in Egr-1 function in leukocyte recruitment can presumably be mediated by other transcription factors; however, Egr-1 is indispensable for effective vascular cell cycle progression in arteriogenesis.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Mortality and morbidity associated with leukemia are largely due to frequently occurring cytopenias or the dysfunction of normal blood cells in patients. Our knowledge of how normal blood cells degenerate in response to leukemic cell infiltration has been quite limited. This review summarizes recent findings and discusses both extrinsic and intrinsic mechanisms underlying the suppression of normal hematopoiesis in leukemia. RECENT FINDINGS Recent studies have shown that leukemic cells are able to remodel the bone marrow niche by secreting specific cytokines or dampening its hematopoietic-supporting functions. In turn, a suitable microenvironment for leukemic cell proliferation but not for normal hematopoietic cell growth is created. Intrinsically, the leukemic condition impairs the normalcy of hematopoietic stem and progenitor cells and alters their signaling networks; consequently, it exhausts hematopoietic progenitor cells and forces stem cells into a more quiescent state, which would allow a reversible suppression of hematopoietic regeneration. The deepened quiescence of hematopoietic stem cells in leukemic marrow was achieved in part via transcription factor Egr3. SUMMARY These findings provide new insights into the mechanisms underlying hematopoietic suppression in response to leukemic cell outgrowth and offer new strategies to further improve current therapies for leukemias, placing more emphasis on the augmentation of normal hematopoietic regeneration when targeting leukemic cells.
Collapse
|
18
|
Maifrede S, Magimaidas A, Sha X, Mukherjee K, Liebermann DA, Hoffman B. Loss of Egr1, a human del5q gene, accelerates BCR-ABL driven chronic myelogenous leukemia. Oncotarget 2017; 8:69281-69294. [PMID: 29050203 PMCID: PMC5642478 DOI: 10.18632/oncotarget.20612] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/04/2017] [Indexed: 11/30/2022] Open
Abstract
There is substantial evidence that early growth response-1 (Egr1) gene, a zinc-finger transcription factor, behaves as a tumor suppressor in leukemia. This includes reports from this laboratory that constitutive Egr1 overrides leukemia conferred by deregulated c-Myc or E2F-1 in the M1 myeloid leukemic cell line by promoting differentiation. To investigate the effect of Egr1 on the initiation and progression of Chronic Myelogenous Leukemia (CML), lethally irradiated syngeneic wild type mice were reconstituted with bone marrow (BM) from either wild type or Egr1 null mice transduced with a 210-kD BCR-ABL-expressing MSCV-retrovirus (bone marrow transplantation {BMT}). Loss of Egr1 was observed to accelerate the development of BCR-ABL driven leukemia in recipient mice, resulting in the development of a more aggressive disease, a significantly shortened median survival time, and increased BCR-ABL expressing leukemic stem/progenitor cells (GFP+Lin-cKit+Sca+). Egr1 deficient progenitors expressing BCR-ABL exhibited decreased apoptosis, and increased cell viability and proliferation relative to WT counterparts. Secondary BMT of BCR-ABL BM revealed that loss of Egr1 resulted in enrichment of LSCs, consistent with shorter survival time and more aggressive disease of these mice compared to WT counterparts. Furthermore, serial re-plating colony assays indicated that loss of Egr1 increased self-renewal ability of BCR-ABL expressing BM. These novel findings on the tumor suppressor role of Egr1 in CML provide the impetus to study the effect of altering Egr1 expression in AML, where the overall five year survival rate remains low. The effect of loss of Egr1 in CML could reflect its established functions in normal hematopoiesis, maintaining quiescence of HSCs and driving terminal differentiation to the monocyte/macrophage lineage. Gain of function studies should validate these conclusions and provide further rationale for increased Egr1 as a therapeutic target in AML.
Collapse
Affiliation(s)
- Silvia Maifrede
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA.,Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Andrew Magimaidas
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA.,Current address: Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania
| | - Xiaojin Sha
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Kaushiki Mukherjee
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Dan A Liebermann
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA.,Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Barbara Hoffman
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA.,Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
19
|
Novel regulators in hematopoietic stem cells can be revealed by a functional approach under leukemic condition. Leukemia 2016; 30:2074-2077. [PMID: 27133818 DOI: 10.1038/leu.2016.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Katzenback BA, Katakura F, Belosevic M. Goldfish (Carassius auratus L.) as a model system to study the growth factors, receptors and transcription factors that govern myelopoiesis in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:68-85. [PMID: 26546240 DOI: 10.1016/j.dci.2015.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
The process of myeloid cell development (myelopoiesis) in fish has mainly been studied in three cyprinid species: zebrafish (Danio rerio), ginbuna carp (Carassius auratus langsdorfii) and goldfish (C. auratus, L.). Our studies on goldfish myelopoiesis have utilized in vitro generated primary kidney macrophage (PKM) cultures and isolated primary kidney neutrophils (PKNs) cultured overnight to study the process of macrophage (monopoiesis) and neutrophil (granulopoiesis) development and the key growth factors, receptors, and transcription factors that govern this process in vitro. The PKM culture system is unique in that all three subpopulations of macrophage development, namely progenitor cells, monocytes, and mature macrophages, are simultaneously present in culture unlike mammalian systems, allowing for the elucidation of the complex mixture of cytokines that regulate progressive and selective macrophage development from progenitor cells to fully functional mature macrophages in vitro. Furthermore, we have been able to extend our investigations to include the development of erythrocytes (erythropoiesis) and thrombocytes (thrombopoiesis) through studies focusing on the progenitor cell population isolated from the goldfish kidney. Herein, we review the in vitro goldfish model systems focusing on the characteristics of cell sub-populations, growth factors and their receptors, and transcription factors that regulate goldfish myelopoiesis.
Collapse
Affiliation(s)
- Barbara A Katzenback
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Fumihiko Katakura
- Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
21
|
Guo H, Cooper S, Friedman AD. In Vivo Deletion of the Cebpa +37 kb Enhancer Markedly Reduces Cebpa mRNA in Myeloid Progenitors but Not in Non-Hematopoietic Tissues to Impair Granulopoiesis. PLoS One 2016; 11:e0150809. [PMID: 26937964 PMCID: PMC4777376 DOI: 10.1371/journal.pone.0150809] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/19/2016] [Indexed: 12/29/2022] Open
Abstract
The murine Cebpa gene contains a +37 kb, evolutionarily conserved 440 bp enhancer that directs high-level expression to myeloid progenitors in transgenic mice. The enhancer is bound and activated by Runx1, Scl, GATA2, C/EBPα, c-Myb, Pu.1, and additional Ets factors in myeloid cells. CRISPR/Cas9-mediated replacement of the wild-type enhancer with a variant mutant in its seven Ets sites leads to 20-fold reduction of Cebpa mRNA in the 32Dcl3 myeloid cell line. To determine the effect of deleting the enhancer in vivo, we now characterize C57BL/6 mice in which loxP sites flank a 688 bp DNA segment containing the enhancer. CMV-Cre mediated germline deletion resulted in diminution of the expected number of viable Enh(f/f);CMV-Cre offspring, with 28-fold reduction in marrow Cebpa mRNA but normal levels in liver, lung, adipose, intestine, muscle, and kidney. Cre-transduction of lineage-negative marrow cells in vitro reduced Cebpa mRNA 12-fold, with impairment of granulocytic maturation, morphologic blast accumulation, and IL-3 dependent myeloid colony replating for >12 generations. Exposure of Enh(f/f);Mx1-Cre mice to pIpC led to 14-fold reduction of Cebpa mRNA in GMP or CMP, 30-fold reduction in LSK, and <2-fold reduction in the LSK/SLAM subset. FACS analysis of marrow from these mice revealed 10-fold reduced neutrophils, 3-fold decreased GMP, and 3-fold increased LSK cells. Progenitor cell cycle progression was mildly impaired. Granulocyte and B lymphoid colony forming units were reduced while monocytic and erythroid colonies were increased, with reduced Pu.1 and Gfi1 and increased Egr1 and Klf4 in GMP. Finally, competitive transplantation indicated preservation of functional long-term hematopoietic stem cells upon enhancer deletion and confirmed marrow-intrinsic impairment of granulopoiesis and B cell generation with LSK and monocyte lineage expansion. These findings demonstrate a critical role for the +37 kb Cebpa enhancer for hematopoietic-specific Cebpa expression, with enhancer deletion leading to impaired myelopoiesis and potentially preleukemic progenitor expansion.
Collapse
Affiliation(s)
- Hong Guo
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Stacy Cooper
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alan D Friedman
- Division of Pediatric Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
22
|
Timing of the loss of Pten protein determines disease severity in a mouse model of myeloid malignancy. Blood 2016; 127:1912-22. [PMID: 26764354 DOI: 10.1182/blood-2015-05-646216] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 01/04/2016] [Indexed: 12/24/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is an aggressive pediatric mixed myelodysplastic/myeloproliferative neoplasm (MDS/MPN). JMML leukemogenesis is linked to a hyperactivated RAS pathway, with driver mutations in the KRAS, NRAS, NF1, PTPN11, or CBL genes. Previous murine models demonstrated how those genes contributed to the selective hypersensitivity of JMML cells to granulocyte macrophage-colony-stimulating factor (GM-CSF), a unifying characteristic in the disease. However, it is unclear what causes the early death in children with JMML, because transformation to acute leukemia is rare. Here, we demonstrate that loss of Pten (phosphatase and tensin homolog) protein at postnatal day 8 in mice harboring Nf1 haploinsufficiency results in an aggressive MPN with death at a murine prepubertal age of 20 to 35 days (equivalent to an early juvenile age in JMML patients). The death in the mice was due to organ infiltration with monocytes/macrophages. There were elevated activities of protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) in cells at physiological concentrations of GM-CSF. These were more pronounced in mice with Nf1 haploinsufficiency than in littermates with wild-type Nf1,but this model is insufficient to cause cells to be GM-CSF hypersensitive. This new model represents a murine MPN model with features of a pediatric unclassifiable mixed MDS/MPN and mimics many clinical manifestations of JMML in terms of age of onset, aggressiveness, and organ infiltration with monocytes/macrophages. Our data suggest that the timing of the loss of PTEN protein plays a critical role in determining the disease severity in myeloid malignancies. This model may be useful for studying the pathogenesis of pediatric diseases with alterations in the Ras pathway.
Collapse
|
23
|
Wang Z, Ema H. Mechanisms of self-renewal in hematopoietic stem cells. Int J Hematol 2015; 103:498-509. [DOI: 10.1007/s12185-015-1919-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 11/30/2015] [Indexed: 11/29/2022]
|
24
|
Carras S, Valayer A, Moratal C, Weiss-Gayet M, Pages G, Morlé F, Mouchiroud G, Gobert S. Instructive role of M-CSF on commitment of bipotent myeloid cells involves ERK-dependent positive and negative signaling. J Leukoc Biol 2015; 99:311-9. [PMID: 26336156 DOI: 10.1189/jlb.2a1214-619r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 08/17/2015] [Indexed: 12/20/2022] Open
Abstract
M-CSF and G-CSF are instructive cytokines that specifically induce differentiation of bipotent myeloid progenitors into macrophages and granulocytes, respectively. Through morphology and colony assay studies, flow cytometry analysis of specific markers, and expression of myeloid transcription factors, we show here that the Eger/Fms cell line is composed of cells whose differentiation fate is instructed by M-CSF and G-CSF, thus representing a good in vitro model of myeloid bipotent progenitors. Consistent with the essential role of ERK1/2 during macrophage differentiation and defects of macrophagic differentiation in native ERK1(-/-) progenitors, ERK signaling is strongly activated in Eger/Fms cells upon M-CSF-induced macrophagic differentiation but only to a very small extent during G-CSF-induced granulocytic differentiation. Previous in vivo studies indicated a key role of Fli-1 in myeloid differentiation and demonstrated its weak expression during macrophagic differentiation with a strong expression during granulocytic differentiation. Here, we demonstrated that this effect could be mediated by a differential regulation of protein kinase Cδ (PKCd) on Fli-1 expression in response to M-CSF and G-CSF. With the use of knockdown of PKCd by small interfering RNA, we demonstrated that M-CSF activates PKCd, which in turn, inhibits Fli-1 expression and granulocytic differentiation. Finally, we studied the connection between ERK and PKCd and showed that in the presence of the MEK inhibitor U0126, PKCd expression is decreased, and Fli-1 expression is increased in response to M-CSF. Altogether, we demonstrated that in bipotent myeloid cells, M-CSF promotes macrophagic over granulocytic differentiation by inducing ERK activation but also PKCd expression, which in turn, down-regulates Fli-1 expression and prevents granulocytic differentiation.
Collapse
Affiliation(s)
- Sylvain Carras
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Unités Mixtes de Recherche 5534, Université de Lyon, Villeurbanne Cedex, France
| | - Alexandre Valayer
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Unités Mixtes de Recherche 5534, Université de Lyon, Villeurbanne Cedex, France
| | - Claudine Moratal
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Unités Mixtes de Recherche 5534, Université de Lyon, Villeurbanne Cedex, France
| | - Michèle Weiss-Gayet
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Unités Mixtes de Recherche 5534, Université de Lyon, Villeurbanne Cedex, France
| | - Gilles Pages
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Unités Mixtes de Recherche 5534, Université de Lyon, Villeurbanne Cedex, France
| | - François Morlé
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Unités Mixtes de Recherche 5534, Université de Lyon, Villeurbanne Cedex, France
| | - Guy Mouchiroud
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Unités Mixtes de Recherche 5534, Université de Lyon, Villeurbanne Cedex, France
| | - Stéphanie Gobert
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Unités Mixtes de Recherche 5534, Université de Lyon, Villeurbanne Cedex, France
| |
Collapse
|
25
|
Hu N, Qiu Y, Dong F. Role of Erk1/2 signaling in the regulation of neutrophil versus monocyte development in response to G-CSF and M-CSF. J Biol Chem 2015; 290:24561-73. [PMID: 26296889 DOI: 10.1074/jbc.m115.668871] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Indexed: 01/11/2023] Open
Abstract
Lineage specification in the hematopoietic system depends on the expression of lineage specific transcription factors. However, the role of hematopoietic cytokines in this process has been controversial and little is known about the intracellular signaling mechanisms by which cytokines instruct lineage choice. G-CSF and M-CSF are two lineage-specific cytokines that play a dominant role in granulopoiesis and monopoiesis, respectively. We show here that a G-CSFR mutant in which tyrosine 729 had been mutated to phenylalanine (Y729F) promoted monocyte rather than neutrophil development in myeloid precursors, which was associated with prolonged activation of Erk1/2 and augmented activation of downstream targets c-Fos and Egr1. Inhibition of Erk1/2 activation or knockdown of c-Fos or Egr1 largely rescued neutrophil development in cells expressing G-CSFR Y729F. We also show that M-CSF, but not G-CSF, stimulated strong and sustained activation of Erk1/2 in mouse lineage marker negative (Lin(-)) bone marrow cells. Significantly, inhibition of Erk1/2 signaling in these cells favored neutrophil over monocyte development in response to M-CSF. Thus, prolonged Erk1/2 activation resulted in monocyte development following G-CSF induction whereas inhibition of Erk1/2 signaling promoted neutrophil development at the expense of monocyte formation in response to M-CSF. These results reveal an important mechanism by which G-CSF and M-CSF instruct neutrophil versus monocyte lineage choice, i.e. differential activation of Erk1/2 pathway.
Collapse
Affiliation(s)
- Nan Hu
- From the Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Yaling Qiu
- From the Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Fan Dong
- From the Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| |
Collapse
|
26
|
Leukemic marrow infiltration reveals a novel role for Egr3 as a potent inhibitor of normal hematopoietic stem cell proliferation. Blood 2015; 126:1302-13. [PMID: 26186938 DOI: 10.1182/blood-2015-01-623645] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 07/08/2015] [Indexed: 12/18/2022] Open
Abstract
Cytopenias resulting from the impaired generation of normal blood cells from hematopoietic precursors are important contributors to morbidity and mortality in patients with leukemia. However, the process by which normal hematopoietic cells are overtaken by emerging leukemia cells and how different subsets of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) are distinctly influenced during leukemic cell infiltration is poorly understood. To investigate these important questions, we used a robust nonirradiated mouse model of human MLL-AF9 leukemia to examine the suppression of HSCs and HPCs during leukemia cell expansion in vivo. Among all the hematopoietic subsets, long-term repopulating HSCs were the least reduced, whereas megakaryocytic-erythroid progenitors were the most significantly suppressed. Notably, nearly all of the HSCs were forced into a noncycling state in leukemic marrow at late stages, but their reconstitution potential appeared to be intact upon transplantation into nonleukemic hosts. Gene expression profiling and further functional validation revealed that Egr3 was a strong limiting factor for the proliferative potential of HSCs. Therefore, this study provides not only a molecular basis for the more tightened quiescence of HSCs in leukemia, but also a novel approach for defining functional regulators of HSCs in disease.
Collapse
|
27
|
Abstract
Monocytes are part of the vertebrate innate immune system. Blood monocytes are produced by bone marrow and splenic progenitors that derive from hematopoietic stem cells (HSCs). In cardiovascular disease, such as atherosclerosis and myocardial infarction, HSCs proliferate at higher levels that in turn increase production of hematopoietic cells, including monocytes. Once produced in hematopoietic niches, monocytes intravasate blood vessels, circulate, and migrate to sites of inflammation. Monocyte recruitment to atherosclerotic plaque and the ischemic heart depends on various chemokines, such as CCL2, CX3 CL1, and CCL5. Once in tissue, monocytes can differentiate into macrophages and dendritic cells. Macrophages are end effector cells that regulate the steady state and tissue healing, but they can also promote disease. At sites of inflammation, monocytes and macrophages produce inflammatory cytokines, which can exacerbate disease progression. Macrophages can also phagocytose tissue debris and produce pro-healing cytokines. Additionally, macrophages are antigen-presenting cells and can prime T cells. The tissue environment, including cytokines and types of inflammation, instructs macrophage specialization. Understanding monocytosis and its consequences in disease will reveal new therapeutic opportunities without compromising steady state functions.
Collapse
Affiliation(s)
- Partha Dutta
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
28
|
Zhang QS, Deater M, Schubert K, Marquez-Loza L, Pelz C, Sinclair DA, Grompe M. The Sirt1 activator SRT3025 expands hematopoietic stem and progenitor cells and improves hematopoiesis in Fanconi anemia mice. Stem Cell Res 2015; 15:130-40. [PMID: 26046330 DOI: 10.1016/j.scr.2015.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/08/2015] [Accepted: 05/09/2015] [Indexed: 12/25/2022] Open
Abstract
Fanconi anemia is a genetic bone marrow failure syndrome. The current treatment options are suboptimal and do not prevent the eventual onset of aplastic anemia requiring bone marrow transplantation. We previously showed that resveratrol, an antioxidant and an activator of the protein deacetylase Sirt1, enhanced hematopoiesis in Fancd2 mutant mice and improved the impaired stem cell quiescence observed in this disease. Given that Sirt1 is important for the function of hematopoietic stem cells, we hypothesized that Sirt1 activation may improve hematopoiesis. Indeed, Fancd2(-/-) mice and wild-type mice treated with the selective Sirt1 activator SRT3025 had increased numbers of hematopoietic stem and progenitor cells, platelets and white blood cells. SRT3025 was also protective against acetaldehyde-induced hematopoietic damage. Unlike resveratrol, however, SRT3025 did not affect stem cell quiescence, suggesting distinct mechanisms of action. Conditional deletion of Sirt1 in hematopoietic cells did not abrogate the beneficial effects of SRT3025, indicating that the drug did not act by directly stimulating Sirt1 in stem cells, but must be acting indirectly via extra-hematopoietic effects. RNA-Seq transcriptome analysis revealed the down-regulation of Egr1-p21 expression, providing a potential mechanism for improved hematopoiesis. Overall, our data indicate that SRT3025 or related compounds may be beneficial in Fanconi anemia and other bone marrow failure syndromes.
Collapse
Affiliation(s)
- Qing-Shuo Zhang
- Oregon Stem Cell Center, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Matthew Deater
- Oregon Stem Cell Center, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kathryn Schubert
- Oregon Stem Cell Center, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Laura Marquez-Loza
- Oregon Stem Cell Center, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Carl Pelz
- Oregon Stem Cell Center, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - David A Sinclair
- Paul F. Glenn Laboratories for the Biological Mechanisms of Aging, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pharmacology, Medicine, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Markus Grompe
- Oregon Stem Cell Center, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
29
|
Dutta P, Nahrendorf M. Monocytes in myocardial infarction. Arterioscler Thromb Vasc Biol 2015; 35:1066-70. [PMID: 25792449 PMCID: PMC4409536 DOI: 10.1161/atvbaha.114.304652] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/27/2015] [Indexed: 01/06/2023]
Abstract
Myocardial infarction (MI) is the leading cause of death in developed countries. Though timely revascularization of the ischemic myocardium and current standard therapy reduce acute mortality after MI, long-term morbidity and mortality remain high. During the first 1 to 2 weeks after MI, tissues in the infarcted myocardium undergo rapid turnover, including digestion of extracellular matrix and fibrosis. Post-MI repair is crucial to survival. Monocytes recruited to the infarcted myocardium remove debris and facilitate the repair process. However, exaggerated inflammation may also impede healing, as demonstrated by the association between elevated white blood cell count and in-hospital mortality after MI. Monocytes produced in the bone marrow and spleen enter the blood after MI and are recruited to the injured myocardium in 2 phases. The first phase is dominated by Ly-6c(high) monocytes and the second phase by Ly-6c(low) monocytes. Yet the number of Ly6C(low) monocytes recruited to the infarct is much lower, and Ly6C(high) monocytes can differentiate to Ly6C(low) macrophages in later healing stages. Understanding the signals regulating monocytosis after MI will help design new therapies to facilitate cardiac healing and limit heart failure.
Collapse
Affiliation(s)
- Partha Dutta
- From the Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston.
| | - Matthias Nahrendorf
- From the Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
30
|
Katakura F, Katzenback BA, Belosevic M. Recombinant goldfish thrombopoietin up-regulates expression of genes involved in thrombocyte development and synergizes with kit ligand A to promote progenitor cell proliferation and colony formation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:157-169. [PMID: 25450454 DOI: 10.1016/j.dci.2014.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/31/2014] [Accepted: 11/01/2014] [Indexed: 06/04/2023]
Abstract
Thrombopoietin (TPO) is the principal regulator of thrombopoiesis and promotes the proliferation, differentiation and maturation of megakaryocytic progenitor cells in mammals. In this study we report on the molecular and functional characterization of goldfish TPO. Quantitative expression analysis of goldfish tpo revealed the highest mRNA levels in heart, followed by spleen, liver, brain, intestine and kidney tissues. Significant decrease of tpo and c-mpl expressions in goldfish primary kidney macrophage (PKM) cultures, as progenitor to macrophage development progressed, indicates that TPO is not involved in monopoiesis. Recombinant goldfish TPO (rgTPO) alone did not induce significant proliferation of progenitor cells, but TPO in cooperation with recombinant goldfish kit ligand A (rgKITLA) supported proliferation of progenitor cells in a dose-dependent manner. In response to rgTPO or a combination of rgTPO and rgKITLA, the mRNA levels of thrombopoietic markers cd41 and c-mpl as well as thrombo/erythropoietic transcription factors gata1 and lmo2 in sorted progenitor cells were up-regulated, while the mRNA levels of granulopoietic markers (cebpα and gcsfr) and the lymphoid transcription factor gata3 were down-regulated. Furthermore, rgTPO and rgKITLA synergistically stimulated thrombocytic colony-formation. Our results demonstrate that goldfish TPO has similar functions to mammalian TPO as a regulator of thrombopoiesis, and suggests a highly conserved molecular mechanism of thrombocyte development throughout evolution of vertebrates.
Collapse
Affiliation(s)
- Fumihiko Katakura
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Barbara A Katzenback
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; School of Public Health, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
31
|
Abstract
Advancements in sequencing techniques have led to the discovery of numerous genes not previously implicated in acute myeloid leukemia (AML) biology. Further in vivo studies are necessary to discern the biological impact of these mutations. Murine models, the most commonly used in vivo system, provide a physiologic context for the study of specific genes. These systems have provided deep insights into the role of genetic translocations, mutations, and dysregulated gene expression on leukemia pathogenesis. This review focuses on the phenotype of newly identified genes, including NPM1, IDH1/2, TET2, MLL, DNMT3A, EZH2, EED, and ASXL1, in mouse models and the implications on AML biology.
Collapse
Affiliation(s)
- Ashley M Perry
- Massachusetts General Hospital Cancer Center, Boston, MA
| | - Eyal C Attar
- Massachusetts General Hospital Cancer Center, Boston, MA.
| |
Collapse
|
32
|
Olive (Olea europaea) leaf extract induces apoptosis and monocyte/macrophage differentiation in human chronic myelogenous leukemia K562 cells: insight into the underlying mechanism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:927619. [PMID: 24803988 PMCID: PMC3997986 DOI: 10.1155/2014/927619] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/16/2014] [Indexed: 01/01/2023]
Abstract
Differentiation therapy is an attractive approach aiming at reversing malignancy and reactivating endogenous differentiation programs in cancer cells. Olive leaf extract, known for its antioxidant activity, has been demonstrated to induce apoptosis in several cancer cells. However, its differentiation inducing properties and the mechanisms involved are still poorly understood. In this study, we investigated the effect of Chemlali Olive Leaf Extract (COLE) for its potential differentiation inducing effect on multipotent leukemia K562 cells. Results showed that COLE inhibits K562 cells proliferation and arrests the cell cycle at G0/G1, and then at G2/M phase over treatment time. Further analysis revealed that COLE induces apoptosis and differentiation of K562 cells toward the monocyte lineage. Microarray analysis was conducted to investigate the underlying mechanism of COLE differentiation inducing effect. The differentially expressed genes such as IFI16, EGR1, NFYA, FOXP1, CXCL2, CXCL3, and CXCL8 confirmed the commitment of K562 cells to the monocyte/macrophage lineage. Thus our results provide evidence that, in addition to apoptosis, induction of differentiation is one of the possible therapeutic effects of olive leaf in cancer cells.
Collapse
|
33
|
Young DJ, Stoddart A, Nakitandwe J, Chen SC, Qian Z, Downing JR, Le Beau MM. Knockdown of Hnrnpa0, a del(5q) gene, alters myeloid cell fate in murine cells through regulation of AU-rich transcripts. Haematologica 2014; 99:1032-40. [PMID: 24532040 DOI: 10.3324/haematol.2013.098657] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The control of mRNA stability plays a central role in orchestrating gene-regulatory networks in hematopoietic cell growth, differentiation and tumorigenesis. HNRNPA0, which encodes an RNA-binding protein shown to regulate transcript stability via binding to the AU-rich elements of mRNAs, is located within the commonly deleted segment of 5q31.2 in myeloid neoplasms with a del(5q), and is expressed at haploinsufficient levels in these patients. We show that HNRNPA0 is normally highly expressed in hematopoietic stem cells and exhibits dynamic changes in expression during the course of differentiation. To model HNRNPA0 haploinsufficiency, we used RNAi interference in primary murine cells and an experimental cell system, and found that reduced Hnrnpa0 expression leads to a shift from monocytic towards granulocytic differentiation. Microarray-based global expression profiling revealed that Hnrnpa0 knockdown disproportionally impacts AU-rich containing transcripts and alters expression of myeloid specification genes. In therapy-related myeloid neoplasms with a del(5q), AU-rich containing mRNAs are enriched in transcripts that encode proteins associated with increased growth and proliferation. Our findings implicate haploinsufficiency of HNRNPA0 as one of the key initiating mutations in the pathogenesis of myeloid neoplasms with a del(5q), and suggest that therapies that target AU-rich elements warrant consideration in efforts to develop new mechanism-based treatment strategies.
Collapse
Affiliation(s)
- David J Young
- Department of Pediatrics, Division of Oncology, Johns Hopkins University, Baltimora, MD
| | - Angela Stoddart
- Department of Medicine and the Comprehensive Cancer Center, University of Chicago, IL
| | - Joy Nakitandwe
- St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Zhijian Qian
- University of Illinois Cancer Center, Chicago, IL, USA
| | | | - Michelle M Le Beau
- Department of Medicine and the Comprehensive Cancer Center, University of Chicago, IL
| |
Collapse
|
34
|
Profilin 1 is essential for retention and metabolism of mouse hematopoietic stem cells in bone marrow. Blood 2014; 123:992-1001. [PMID: 24385538 DOI: 10.1182/blood-2013-04-498469] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
How stem cells interact with the microenvironment to regulate their cell fates and metabolism is largely unknown. Here we demonstrated that the deletion of the cytoskeleton-modulating protein profilin 1 (pfn1) in hematopoietic stem cell (HSCs) led to bone marrow failure, loss of quiescence, and mobilization and apoptosis of HSCs in vivo. A switch from glycolysis to mitochondrial respiration with increased reactive oxygen species (ROS) level was also observed in HSCs on pfn1 deletion. Importantly, treatment of pfn1-deficient mice with the antioxidant N-acetyl-l-cysteine reversed the ROS level and loss of quiescence of HSCs, suggesting that the metabolism is mechanistically linked to the cell cycle quiescence of stem cells. The actin-binding and proline-binding activities of pfn1 are required for its function in HSCs. Our study provided evidence that pfn1 at least partially acts through the axis of pfn1/Gα13/EGR1 to regulate stem cell retention and metabolism in the bone marrow.
Collapse
|
35
|
Katzenback BA, Foroutanpay BV, Belosevic M. Expressions of transcription factors in goldfish (Carassius auratus L.) macrophages and their progenitors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:230-239. [PMID: 23748037 DOI: 10.1016/j.dci.2013.05.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/27/2013] [Accepted: 05/28/2013] [Indexed: 06/02/2023]
Abstract
The development of macrophages is a highly regulated process requiring coordination amongst transcription factors. The presence/absence, relative levels, antagonism, or synergy of all transcription factors involved is critical to directing lineage cell fate and differentiation. While relative levels of many key myeloid transcription factors have been determined in mammalian macrophage differentiation, a similar set of studies have yet to be conducted in a teleost system. In this study, we report on the mRNA levels of transcription factors (cebpa, cjun, cmyb, egr1, gata1, gata2, gata3, lmo2, mafb, pax5, pu.1 and runx1) in sorted goldfish progenitor cells, monocytes, and macrophages from primary kidney macrophage cultures. The mRNA levels of runx1 and pu.1 were significantly higher, gata3 and pax5 mRNA levels were lower, in monocytes compared to progenitors, and the mRNA levels of cjun, egr1, gata2, gata3, mafb and pax5 were significantly decreased in macrophages compared to progenitor cells. The relative mRNA levels of the interferon regulatory factor family of transcription factors, irf1, irf2, irf5, irf7, irf8 and irf9 in sorted progenitors, monocytes and macrophages were also measured. In contrast to other irf family transcription factors examined, irf8 mRNA levels were increased in monocytes compared to progenitors by greater than three-fold, suggesting that irf8 is important for monopoiesis. Lastly, we show the differential regulation of myeloid transcription factor mRNA levels in sorted progenitor cells from 1, 2, or 3-day old cultures in response to the recombinant goldfish growth factors, rgCSF-1 and rgKITLA.
Collapse
Affiliation(s)
- Barbara A Katzenback
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
36
|
Katakura F, Katzenback BA, Belosevic M. Molecular and functional characterization of erythropoietin of the goldfish (Carassius auratus L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:148-157. [PMID: 23474427 DOI: 10.1016/j.dci.2013.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 06/01/2023]
Abstract
Erythropoietin is the principal regulator of erythropoiesis and promotes the survival, proliferation and differentiation of erythroid progenitor cells in mammals. In this study we report on the molecular and functional characterization of erythropoietin from the goldfish. Quantitative expression analysis of goldfish epo revealed the highest mRNA levels in heart, followed by brain, liver, spleen and kidney tissues. There was no marked change of epo expression in goldfish primary kidney macrophage cultures, as progenitor cell to macrophage development progressed, indicating that erythropoietin is not involved in monopoiesis. Recombinant goldfish erythropoietin induced proliferation of progenitor cells in a dose-dependent manner, and up-regulated the expression of erythroid transcription factors gata1 and lmo2 in progenitor cells. Furthermore, recombinant goldfish erythropoietin stimulated erythroid colony formation in a dose-dependent manner and promoted survival of erythroid progenitor cells as colony-forming cells. Our results demonstrate that the function of erythropoietin in the goldfish is similar to that of mammals and suggest a highly conserved mechanism of early erythrocyte development in lower and higher vertebrates.
Collapse
Affiliation(s)
- Fumihiko Katakura
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
37
|
Hooper R, Samakai E, Kedra J, Soboloff J. Multifaceted roles of STIM proteins. Pflugers Arch 2013; 465:1383-96. [PMID: 23568369 DOI: 10.1007/s00424-013-1270-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 12/21/2022]
Abstract
Stromal interaction molecules (STIM1 and STIM2) are critical components of store-operated calcium entry. Sensing depletion of endoplasmic reticulum (ER) Ca(2+) stores, STIM couples with plasma membrane Orai channels, resulting in the influx of Ca(2+) across the PM into the cytosol. Although best recognized for their primary role as ER Ca(2+) sensors, increasing evidence suggests that STIM proteins have a broader variety of sensory capabilities than first envisaged, reacting to cell stressors such as oxidative stress, temperature, and hypoxia. Further, the array of partners for STIM proteins is now understood to range far beyond the Orai channel family. Here we discuss the implications of STIM's expanding role, both as a stress sensor and a general modulator of multiple physiological processes in the cell.
Collapse
Affiliation(s)
- Robert Hooper
- Department of Biochemistry, Temple University School of Medicine, 3440 North Broad Street, Philadelphia, PA, 19140, USA
| | | | | | | |
Collapse
|
38
|
Liu YL, Lensing SY, Yan Y, Cooper TM, Loh ML, Emanuel PD. Deficiency of CREB and over expression of miR-183 in juvenile myelomonocytic leukemia. Leukemia 2013; 27:1585-8. [PMID: 23417028 PMCID: PMC3715750 DOI: 10.1038/leu.2013.49] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
39
|
Ezh2 augments leukemogenicity by reinforcing differentiation blockage in acute myeloid leukemia. Blood 2012; 120:1107-17. [PMID: 22677129 DOI: 10.1182/blood-2011-11-394932] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
EZH2, a catalytic component of the polycomb repressive complex 2, trimethylates histone H3 at lysine 27 (H3K27) to repress the transcription of target genes. Although EZH2 is overexpressed in various cancers, including some hematologic malignancies, the role of EZH2 in acute myeloid leukemia (AML) has yet to be examined in vivo. In the present study, we transformed granulocyte macrophage progenitors from Cre-ERT;Ezh2(flox/flox) mice with the MLL-AF9 leukemic fusion gene to analyze the function of Ezh2 in AML. Deletion of Ezh2 in transformed granulocyte macrophage progenitors compromised growth severely in vitro and attenuated the progression of AML significantly in vivo. Ezh2-deficient leukemic cells developed into a chronic myelomonocytic leukemia-like disease with a lower frequency of leukemia-initiating cells compared with the control. Chromatin immunoprecipitation followed by sequencing revealed a significant reduction in the levels of trimethylation at H3K27 in Ezh2-deficient leukemic cells, not only at Cdkn2a, a known major target of Ezh2, but also at a cohort of genes relevant to the developmental and differentiation processes. Overexpression of Egr1, one of the derepressed genes in Ezh2-deficient leukemic cells, promoted the differentiation of AML cells profoundly. Our findings suggest that Ezh2 inhibits differentiation programs in leukemic stem cells, thereby augmenting their leukemogenic activity.
Collapse
|
40
|
Katzenback BA, Belosevic M. Characterization of granulocyte colony stimulating factor receptor of the goldfish (Carassius auratus L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:199-207. [PMID: 21801744 DOI: 10.1016/j.dci.2011.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 05/31/2023]
Abstract
Granulocyte colony stimulating factor receptor (GCSFR) is a member of the class I cytokine receptor superfamily and signaling through this receptor is important for the proliferation, differentiation and activation of neutrophils and their precursors. In this study we report on the cloning and molecular characterization of goldfish GCSFR. The identified goldfish GCSFR sequence possesses the conserved Ig-like domain, the cytokine receptor homology domain (CRH), three fibronectin domains as well as several intracellular signaling motifs characteristic of other vertebrate GCSFRs. Goldfish gcsfr mRNA was highly expressed in kidney and spleen, and in primary kidney neutrophils. The neutrophils have significantly higher mRNA levels of the transcription factors pu.1 and cebpα, and down-regulated levels of transcription factors important for macrophage development such as egr1 and cjun, compared to progenitor cells from the kidney. The gcsfr mRNA was present in the kidney progenitor cells, albeit at much lower levels compared to the neutrophils, and the expression of gcsfr in progenitor cells was not affected by duration of cultivation. Furthermore, gcsfr mRNA levels were up-regulated in neutrophils after treatment with heat-killed Aeromonas salmonicida A449 or with mitogens. Our results indicate that GCSFR may be a useful marker for fish neutrophils.
Collapse
|
41
|
Abstract
Vascular inflammation is associated with and in large part driven by changes in the leukocyte compartment of the vessel wall. Here, we focus on monocyte influx during atherosclerosis, the most common form of vascular inflammation. Although the arterial wall contains a large number of resident macrophages and some resident dendritic cells, atherosclerosis drives a rapid influx of inflammatory monocytes (Ly-6C(+) in mice) and other monocytes (Ly-6C(-) in mice, also known as patrolling monocytes). Once in the vessel wall, Ly-6C(+) monocytes differentiate to a phenotype consistent with inflammatory macrophages and inflammatory dendritic cells. The phenotype of these cells is modulated by lipid uptake, Toll-like receptor ligands, hematopoietic growth factors, cytokines, and chemokines. In addition to newly recruited macrophages, it is likely that resident macrophages also change their phenotype. Monocyte-derived inflammatory macrophages have a short half-life. After undergoing apoptosis, they may be taken up by surrounding macrophages or, if the phagocytic capacity is overwhelmed, can undergo secondary necrosis, a key event in forming the necrotic core of atherosclerotic lesions. In this review, we discuss these and other processes associated with monocytic cell dynamics in the vascular wall and their role in the initiation and progression of atherosclerosis.
Collapse
Affiliation(s)
- Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
42
|
Dussmann P, Pagel JI, Vogel S, Magnusson T, Zimmermann R, Wagner E, Schaper W, Ogris M, Deindl E. Live in vivo imaging of Egr-1 promoter activity during neonatal development, liver regeneration and wound healing. BMC DEVELOPMENTAL BIOLOGY 2011; 11:28. [PMID: 21595990 PMCID: PMC3120781 DOI: 10.1186/1471-213x-11-28] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 05/20/2011] [Indexed: 12/23/2022]
Abstract
BACKGROUND The zinc finger transcription factor Egr-1 (Early growth response 1) is central to several growth factors and represents an important activator of target genes not only involved in physiological processes like embryogenesis and neonatal development, but also in a variety of pathophysiological processes, for example atherosclerosis or cancer. Current options to investigate its transcription and activation in vivo are end-point measurements that do not provide insights into dynamic changes in the living organism. RESULTS We developed a transgenic mouse (Egr-1-luc) in which the luciferase reporter gene is under the control of the murine Egr-1 promoter providing a versatile tool to study the time course of Egr-1 activation in vivo. In neonatal mice, bioluminescence imaging revealed a high Egr-1 promoter activity reaching basal levels three weeks after birth with activity at snout, ears and paws. Using a model of partial hepatectomy we could show that Egr-1 promoter activity and Egr-1 mRNA levels were increased in the regenerating liver. In a model of wound healing, we demonstrated that Egr-1 promoter activity was upregulated at the site of injury. CONCLUSION Taken together, we have developed a transgenic mouse model that allows real time in vivo imaging of the Egr-1 promoter activity. The ability to monitor and quantify Egr-1 activity in the living organism may facilitate a better understanding of Egr-1 function in vivo.
Collapse
Affiliation(s)
- Philipp Dussmann
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Katzenback BA, Karpman M, Belosevic M. Distribution and expression analysis of transcription factors in tissues and progenitor cell populations of the goldfish (Carassius auratus L.) in response to growth factors and pathogens. Mol Immunol 2011; 48:1224-35. [DOI: 10.1016/j.molimm.2011.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/01/2011] [Accepted: 03/08/2011] [Indexed: 12/16/2022]
|
44
|
Khalfin-Rabinovich Y, Weinstein A, Levi BZ. PML is a key component for the differentiation of myeloid progenitor cells to macrophages. Int Immunol 2011; 23:287-96. [PMID: 21427174 DOI: 10.1093/intimm/dxr004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
IFN regulatory factor-8 (IRF-8, previously known as ICSBP) is a key transcription factor driving the differentiation of granulocyte\monocyte progenitor (GMP) cells toward monocyte\macrophage lineage. The promyelocytic leukemia (PML) gene is an immediate target gene regulated by IRF-8 in response to IFN-γ activation. PML is a multifunctional protein that has many isoforms serving as the scaffold components for nuclear bodies (NBs) engaged in numerous proteins interactions. The role of PML in the retinoic acid pathway that drives GMPs to granulopoiesis is documented in the literature. Here, we show that PML is also involved in monopoiesis by mediating some of the IRF-8 activities during the differentiation of murine-derived bone marrow macrophages (BMMs). PML silencing resulted in altered expression level of key transcription factors essential for monopoiesis that was accompanied by silencing of typical myeloid-specific genes. Interestingly, this altered expression resembled that of the GMPs and that of BMMs derived from IRF-8(-/-) mice altogether supporting the role of PML in monopoiesis. Further, PML silencing led to reduced colony-forming capacity of bone marrow cells highlighting the dual function of PML in myelopoiesis. Last, PML overexpression only partially rescued the phenotype of IRF-8(-/-) BMMs. Together, our data show that PML is an important factor for monopoiesis and not solely for granulopoiesis. This suggests that PML-NBs respond to an incoming signal that affects the fate of GMP driving cell differentiation to granulocytes or monocytes.
Collapse
Affiliation(s)
- Yana Khalfin-Rabinovich
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | |
Collapse
|
45
|
Krox20/EGR2 deficiency accelerates cell growth and differentiation in the monocytic lineage and decreases bone mass. Blood 2010; 116:3964-71. [PMID: 20716776 DOI: 10.1182/blood-2010-01-263830] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Krox20/EGR2, one of the 4 early growth response genes, is a highly conserved transcription factor implicated in hindbrain development, peripheral nerve myelination, tumor suppression, and monocyte/macrophage cell fate determination. Here, we established a novel role for Krox20 in postnatal skeletal metabolism. Microcomputed tomographic analysis of 4- and 8-week-old mice revealed a low bone mass phenotype (LBM) in both the distal femur and the vertebra of Krox20(+/-) mice. This was attributable to accelerated bone resorption as demonstrated in vivo by increased osteoclast number and serum C-terminal telopeptides, a marker for collagen degradation. Krox20 haploinsufficiency did not reduce bone formation in vivo, nor did it compromise osteoblast differentiation in vitro. In contrast, growth and differentiation were significantly stimulated in preosteoclast cultures derived from Krox20(+/-) splenocytes, suggesting that the LBM is attributable to Krox20 haploinsufficiency in the monocytic lineage. Furthermore, Krox20 silencing in preosteoclasts increased cFms expression and response to macrophage colony-stimulating factor, leading to a cell-autonomous stimulation of cell-cycle progression. Our data indicate that the antimitogenic role of Krox20 in preosteoclasts is the predominant mechanism underlying the LBM phenotype of Krox20-deficient mice. Stimulation of Krox20 expression in preosteoclasts may present a viable therapeutic strategy for high-turnover osteoporosis.
Collapse
|
46
|
Saugspier M, Felthaus O, Viale-Bouroncle S, Driemel O, Reichert TE, Schmalz G, Morsczeck C. The Differentiation and Gene Expression Profile of Human Dental Follicle Cells. Stem Cells Dev 2010; 19:707-17. [PMID: 20491563 DOI: 10.1089/scd.2010.0027] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Michael Saugspier
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Oliver Felthaus
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Sandra Viale-Bouroncle
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Oliver Driemel
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Torsten E. Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Gottfried Schmalz
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Christian Morsczeck
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Operative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
47
|
M-CSF elevates c-Fos and phospho-C/EBPalpha(S21) via ERK whereas G-CSF stimulates SHP2 phosphorylation in marrow progenitors to contribute to myeloid lineage specification. Blood 2009; 114:2172-80. [PMID: 19587381 DOI: 10.1182/blood-2008-11-191536] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The role of hematopoietic cytokines in lineage commitment remains uncertain. To gain insight into the contribution of cytokine signaling to myeloid lineage specification, we compared granulocyte colony-stimulating factor (G-CSF) and macrophage colony-stimulating factor (M-CSF) signaling in Ba/F3 cells expressing both the G-CSF and M-CSF receptors and in lineage-negative murine marrow cells. G-CSF and M-CSF serve as prototypes for additional cytokines that also influence immature myeloid cells. G-CSF specifically activated signal transducer and activator of transcription 3 and induced Src homology region 2 domain-containing phosphatase 2 (SHP2) phosphorylation, whereas M-CSF preferentially activated phospholipase Cgamma2, and thereby extracellular signal-regulated kinase (ERK), to stabilize c-Fos and stimulate CCAAT/enhancer-binding protein (C/EBP)alpha(S21) phosphorylation. In contrast, activation of Jun kinase or c-Jun was similar in response to either cytokine. Inhibition of ERK prevented induction of c-Fos by M-CSF and reduced C/EBPalpha phosphorylation and formation of colony-forming unit-monocytes. SHP2 inhibition reduced ERK activation in G-CSF, but not M-CSF, and reduced colony-forming unit-granulocytes, underscoring divergent pathways to ERK activation. Phorbol ester mimicked the effect of M-CSF, activating ERK independent of SHP2. In summary, M-CSF activates ERK more potently than G-CSF, and thereby induces higher levels of c-Fos and phospho-C/EBPalpha(S21), which may directly interact to favor monopoiesis, whereas G-CSF activates signal transducer and activator of transcription 3 and SHP2, potentially shifting the balance to granulopoiesis via gene induction by C/EBPalpha homodimers and via effects of SHP2 on regulators besides ERK.
Collapse
|
48
|
Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 2009; 27:669-92. [PMID: 19132917 DOI: 10.1146/annurev.immunol.021908.132557] [Citation(s) in RCA: 1149] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Monocytes are circulating blood leukocytes that play important roles in the inflammatory response, which is essential for the innate response to pathogens. But inflammation and monocytes are also involved in the pathogenesis of inflammatory diseases, including atherosclerosis. In adult mice, monocytes originate in the bone marrow in a Csf-1R (MCSF-R, CD115)-dependent manner from a hematopoietic precursor common for monocytes and several subsets of macrophages and dendritic cells (DCs). Monocyte heterogeneity has long been recognized, but in recent years investigators have identified three functional subsets of human monocytes and two subsets of mouse monocytes that exert specific roles in homeostasis and inflammation in vivo, reminiscent of those of the previously described classically and alternatively activated macrophages. Functional characterization of monocytes is in progress in humans and rodents and will provide a better understanding of the pathophysiology of inflammation.
Collapse
Affiliation(s)
- Cedric Auffray
- INSERM U838, Université Paris-Descartes, 75015 Paris, France
| | | | | |
Collapse
|
49
|
Induction of Early Growth Response-1 Mediates Microglia Activation In Vitro But is Dispensable In Vivo. Neuromolecular Med 2009; 11:87-96. [DOI: 10.1007/s12017-009-8061-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 04/01/2009] [Indexed: 12/13/2022]
|
50
|
Lazarevic V, Zullo AJ, Schweitzer MN, Staton TL, Gallo EM, Crabtree GR, Glimcher LH. The gene encoding early growth response 2, a target of the transcription factor NFAT, is required for the development and maturation of natural killer T cells. Nat Immunol 2009; 10:306-13. [PMID: 19169262 DOI: 10.1038/ni.1696] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 12/04/2008] [Indexed: 11/09/2022]
Abstract
The influence of signals transmitted by the phosphatase calcineurin and the transcription factor NFAT on the development and function of natural killer T (NKT) cells is unclear. In this report, we demonstrate that the transcription factor early growth response 2 (Egr2), a target gene of NFAT, was specifically required for the ontogeny of NKT cells but not that of conventional CD4(+) or CD8(+) T cells. NKT cells developed normally in the absence of Egr1 or Egr3, which suggests that Egr2 is a specific regulator of NKT cell differentiation. We found that Egr2 was important in the selection, survival and maturation of NKT cells. Our findings emphasize the importance of the calcineurin-NFAT-Egr2 pathway in the development of the NKT lymphocyte lineage.
Collapse
Affiliation(s)
- Vanja Lazarevic
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|