1
|
Mincheva-Tasheva S, Pfitzner C, Kumar R, Kurtsdotter I, Scherer M, Ritchie T, Muhr J, Gecz J, Thomas PQ. Mapping combinatorial expression of non-clustered protocadherins in the developing brain identifies novel PCDH19-mediated cell adhesion properties. Open Biol 2024; 14:230383. [PMID: 38629124 PMCID: PMC11037505 DOI: 10.1098/rsob.230383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/25/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024] Open
Abstract
Non-clustered protocadherins (ncPcdhs) are adhesive molecules with spatio-temporally regulated overlapping expression in the developing nervous system. Although their unique role in neurogenesis has been widely studied, their combinatorial role in brain physiology and pathology is poorly understood. Using probabilistic cell typing by in situ sequencing, we demonstrate combinatorial inter- and intra-familial expression of ncPcdhs in the developing mouse cortex and hippocampus, at single-cell resolution. We discovered the combinatorial expression of Protocadherin-19 (Pcdh19), a protein involved in PCDH19-clustering epilepsy, with Pcdh1, Pcdh9 or Cadherin 13 (Cdh13) in excitatory neurons. Using aggregation assays, we demonstrate a code-specific adhesion function of PCDH19; mosaic PCDH19 absence in PCDH19+9 and PCDH19 + CDH13, but not in PCDH19+1 codes, alters cell-cell interaction. Interestingly, we found that PCDH19 as a dominant protein in two heterophilic adhesion codes could promote trans-interaction between them. In addition, we discovered increased CDH13-mediated cell adhesion in the presence of PCDH19, suggesting a potential role of PCDH19 as an adhesion mediator of CDH13. Finally, we demonstrated novel cis-interactions between PCDH19 and PCDH1, PCDH9 and CDH13. These observations suggest that there is a unique combinatorial code with a cell- and region-specific characteristic where a single molecule defines the heterophilic cell-cell adhesion properties of each code.
Collapse
Affiliation(s)
- Stefka Mincheva-Tasheva
- School of Biomedicine and Robinson Research Institute,
University of Adelaide, Adelaide, South Australia5005, Australia
- Genome Editing Program, South Australian Health and Medical
Research Institute, Adelaide, South Australia5000, Australia
| | - Chandran Pfitzner
- School of Biomedicine and Robinson Research Institute,
University of Adelaide, Adelaide, South Australia5005, Australia
- Genome Editing Program, South Australian Health and Medical
Research Institute, Adelaide, South Australia5000, Australia
| | - Raman Kumar
- School of Medicine and Robinson Research Institute, University
of Adelaide, Adelaide, South Australia5005, Australia
| | - Idha Kurtsdotter
- Department of Cell and Molecular Biology, Karolinska
Institute, Stockholm, Sweden
| | - Michaela Scherer
- School of Biomedicine and Robinson Research Institute,
University of Adelaide, Adelaide, South Australia5005, Australia
- Genome Editing Program, South Australian Health and Medical
Research Institute, Adelaide, South Australia5000, Australia
| | - Tarin Ritchie
- School of Medicine and Robinson Research Institute, University
of Adelaide, Adelaide, South Australia5005, Australia
| | - Jonas Muhr
- Department of Cell and Molecular Biology, Karolinska
Institute, Stockholm, Sweden
| | - Jozef Gecz
- School of Medicine and Robinson Research Institute, University
of Adelaide, Adelaide, South Australia5005, Australia
- South Australian Health and Medical Research
Institute, Adelaide, 5000 ,
Australia
| | - Paul Q. Thomas
- School of Biomedicine and Robinson Research Institute,
University of Adelaide, Adelaide, South Australia5005, Australia
- Genome Editing Program, South Australian Health and Medical
Research Institute, Adelaide, South Australia5000, Australia
| |
Collapse
|
2
|
Gendosz de Carrillo D, Kocikowska O, Rak M, Krzan A, Student S, Jędrzejowska-Szypułka H, Pawletko K, Lasek-Bal A. The Relevance of Reperfusion Stroke Therapy for miR-9-3p and miR-9-5p Expression in Acute Stroke-A Preliminary Study. Int J Mol Sci 2024; 25:2766. [PMID: 38474013 DOI: 10.3390/ijms25052766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Reperfusion stroke therapy is a modern treatment that involves thrombolysis and the mechanical removal of thrombus from the extracranial and/or cerebral arteries, thereby increasing penumbra reperfusion. After reperfusion therapy, 46% of patients are able to live independently 3 months after stroke onset. MicroRNAs (miRNAs) are essential regulators in the development of cerebral ischemia/reperfusion injury and the efficacy of the applied treatment. The first aim of this study was to examine the change in serum miRNA levels via next-generation sequencing (NGS) 10 days after the onset of acute stroke and reperfusion treatment. Next, the predictive values of the bioinformatics analysis of miRNA gene targets for the assessment of brain ischemic response to reperfusion treatment were explored. Human serum samples were collected from patients on days 1 and 10 after stroke onset and reperfusion treatment. The samples were subjected to NGS and then validated using qRT-PCR. Differentially expressed miRNAs (DEmiRNAs) were used for enrichment analysis. Hsa-miR-9-3p and hsa-miR-9-5p expression were downregulated on day 10 compared to reperfusion treatment on day 1 after stroke. The functional analysis of miRNA target genes revealed a strong association between the identified miRNA and stroke-related biological processes related to neuroregeneration signaling pathways. Hsa-miR-9-3p and hsa-miR-9-5p are potential candidates for the further exploration of reperfusion treatment efficacy in stroke patients.
Collapse
Affiliation(s)
- Daria Gendosz de Carrillo
- Department of Physiology, Faculty of Medicine, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
| | - Olga Kocikowska
- Department of Physiology, Faculty of Medicine, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
- Department of Engineering and Systems Biology, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Małgorzata Rak
- Department of Physiology, Faculty of Medicine, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
| | - Aleksandra Krzan
- Department of Neurology, School of Health Sciences, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
- Department of Neurology, Upper-Silesian Medical Center of the Silesian Medical University, 40-752 Katowice, Poland
| | - Sebastian Student
- Department of Engineering and Systems Biology, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Halina Jędrzejowska-Szypułka
- Department of Physiology, Faculty of Medicine, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
| | - Katarzyna Pawletko
- Department of Physiology, Faculty of Medicine, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
- Department for Experimental Medicine, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
| | - Anetta Lasek-Bal
- Department of Neurology, School of Health Sciences, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
- Department of Neurology, Upper-Silesian Medical Center of the Silesian Medical University, 40-752 Katowice, Poland
| |
Collapse
|
3
|
Xiao Y, Hu M, Lin Q, Zhang T, Li S, Shu L, Song X, Xu X, Meng W, Li X, Xu H, Mo X. Dopey2 and Pcdh7 orchestrate the development of embryonic neural stem cells/ progenitors in zebrafish. iScience 2023; 26:106273. [PMID: 36936789 PMCID: PMC10014312 DOI: 10.1016/j.isci.2023.106273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/18/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
DOPEY2 has been shown to be associated with Down syndrome and PCDH7 might be involved in Rett syndrome and MECP2 duplication syndrome. The mechanism how both proteins play roles in these syndromes are largely unknown. Here, we show that Dopey2 and Pcdh7 balance the proliferation and differentiation of neural stem cells and progenitors during embryonic neurogenesis to generate proper size and architecture of zebrafish brains. Dopey2 and Pcdh7 mutually restricted expression of each other in zebrafish embryos. Dopey2 was responsible for the proliferation of neural stem cells/progenitors, whereas Pcdh7 was responsible for the differentiation of neural stem cells/progenitors. Both proteins were shown to orchestrate the proper development and arrangement of neural cells in zebrafish embryonic brains. The results provide an insight into mechanisms to understand how the embryonic brain is constituted and how developmental defects occur in the brains of patients with Down syndrome, Rett syndrome, or MECP2 duplication syndrome.
Collapse
Affiliation(s)
- Yue Xiao
- Department of Pediatric Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Min Hu
- Department of Pediatric Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Qiyan Lin
- Department of Pediatric Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Ting Zhang
- Department of Pediatric Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Siying Li
- Department of Pediatric Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Linjuan Shu
- Department of Pediatric Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xiuli Song
- Hangzhou HuaAn Biotechnology Co.Ltd, Hangzhou, China
| | - Xiaoyong Xu
- Hangzhou HuaAn Biotechnology Co.Ltd, Hangzhou, China
| | - Wentong Meng
- Department of Pediatric Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xue Li
- Department of Pediatric Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Hong Xu
- Department of Pediatric Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xianming Mo
- Department of Pediatric Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
- Corresponding author
| |
Collapse
|
4
|
Familial 4p Interstitial Deletion Provides New Insights and Candidate Genes Underlying This Rare Condition. Genes (Basel) 2023; 14:genes14030635. [PMID: 36980907 PMCID: PMC10048360 DOI: 10.3390/genes14030635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Chromosome 4p deletions can lead to two distinct phenotypic outcomes: Wolf-–Hirschhorn syndrome (a terminal deletion at 4p16.3) and less frequently reported proximal interstitial deletions (4p11-p16). Proximal 4p interstitial deletions can result in mild to moderate intellectual disability, facial dysmorphisms, and a tall thin body habitus. To date, only 35 cases of proximal 4p interstitial deletions have been reported, and only two of these cases have been familial. The critical region for this syndrome has been narrowed down to 4p15.33-15.2, but the underlying causative genes remain unclear. In this study, we report the case of a 3-year-old female with failure to thrive, developmental and motor delays, and morphological features. The mother also had a 4p15.2-p14 deletion, and the proband was found to have a 13.4-Mb 4p15.2-p14 deletion by chromosome microarray analysis. The deleted region encompasses 16 genes, five of which have a high likelihood of contributing to the phenotype: PPARGC1A, DHX15, RBPJ, STIM2, and PCDH7. These findings suggest that multiple genes are involved in this rare proximal 4p interstitial deletion syndrome. This case highlights the need for healthcare providers to be aware of proximal 4p interstitial deletions and the potential phenotypic manifestations.
Collapse
|
5
|
MeCP2 and transcriptional control of eukaryotic gene expression. Eur J Cell Biol 2022; 101:151237. [DOI: 10.1016/j.ejcb.2022.151237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
|
6
|
A loss-of-function variant in SUV39H2 identified in autism-spectrum disorder causes altered H3K9 trimethylation and dysregulation of protocadherin β-cluster genes in the developing brain. Mol Psychiatry 2021; 26:7550-7559. [PMID: 34262135 DOI: 10.1038/s41380-021-01199-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/21/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
Recent evidence has documented the potential roles of histone-modifying enzymes in autism-spectrum disorder (ASD). Aberrant histone H3 lysine 9 (H3K9) dimethylation resulting from genetic variants in histone methyltransferases is known for neurodevelopmental and behavioral anomalies. However, a systematic examination of H3K9 methylation dynamics in ASD is lacking. Here we resequenced nine genes for histone methyltransferases and demethylases involved in H3K9 methylation in individuals with ASD and healthy controls using targeted next-generation sequencing. We identified a novel rare variant (A211S) in the SUV39H2, which was predicted to be deleterious. The variant showed strongly reduced histone methyltransferase activity in vitro. In silico analysis showed that the variant destabilizes the hydrophobic core and allosterically affects the enzyme activity. The Suv39h2-KO mice displayed hyperactivity and reduced behavioral flexibility in learning the tasks that required complex behavioral adaptation, which is relevant for ASD. The Suv39h2 deficit evoked an elevated expression of a subset of protocadherin β (Pcdhb) cluster genes in the embryonic brain, which is attributable to the loss of H3K9 trimethylation (me3) at the gene promoters. Reduced H3K9me3 persisted in the cerebellum of Suv39h2-deficient mice to an adult stage. Congruently, reduced expression of SUV39H1 and SUV39H2 in the postmortem brain samples of ASD individuals was observed, underscoring the role of H3K9me3 deficiency in ASD etiology. The present study provides direct evidence for the role of SUV39H2 in ASD and suggests a molecular cascade of SUV39H2 dysfunction leading to H3K9me3 deficiency followed by an untimely, elevated expression of Pcdhb cluster genes during early neurodevelopment.
Collapse
|
7
|
Fetit R, Hillary RF, Price DJ, Lawrie SM. The neuropathology of autism: A systematic review of post-mortem studies of autism and related disorders. Neurosci Biobehav Rev 2021; 129:35-62. [PMID: 34273379 DOI: 10.1016/j.neubiorev.2021.07.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/13/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023]
Abstract
Post-mortem studies allow for the direct investigation of brain tissue in those with autism and related disorders. Several review articles have focused on aspects of post-mortem abnormalities but none has brought together the entire post-mortem literature. Here, we systematically review the evidence from post-mortem studies of autism, and of related disorders that present with autistic features. The literature consists of a small body of studies with small sample sizes, but several remarkably consistent findings are evident. Cortical layering is largely undisturbed, but there are consistent reductions in minicolumn numbers and aberrant myelination. Transcriptomics repeatedly implicate abberant synaptic, metabolic, proliferation, apoptosis and immune pathways. Sufficient replicated evidence is available to implicate non-coding RNA, aberrant epigenetic profiles, GABAergic, glutamatergic and glial dysfunction in autism pathogenesis. Overall, the cerebellum and frontal cortex are most consistently implicated, sometimes revealing distinct region-specific alterations. The literature on related disorders such as Rett syndrome, Fragile X and copy number variations (CNVs) predisposing to autism is particularly small and inconclusive. Larger studies, matched for gender, developmental stage, co-morbidities and drug treatment are required.
Collapse
Affiliation(s)
- Rana Fetit
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - David J Price
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Stephen M Lawrie
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH10 5HF, UK; Patrick Wild Centre, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH10 5HF, UK
| |
Collapse
|
8
|
Jia Z, Wu Q. Clustered Protocadherins Emerge as Novel Susceptibility Loci for Mental Disorders. Front Neurosci 2020; 14:587819. [PMID: 33262685 PMCID: PMC7688460 DOI: 10.3389/fnins.2020.587819] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022] Open
Abstract
The clustered protocadherins (cPcdhs) are a subfamily of type I single-pass transmembrane cell adhesion molecules predominantly expressed in the brain. Their stochastic and combinatorial expression patterns encode highly diverse neural identity codes which are central for neuronal self-avoidance and non-self discrimination in brain circuit formation. In this review, we first briefly outline mechanisms for generating a tremendous diversity of cPcdh cell-surface assemblies. We then summarize the biological functions of cPcdhs in a wide variety of neurodevelopmental processes, such as neuronal migration and survival, dendritic arborization and self-avoidance, axonal tiling and even spacing, and synaptogenesis. We focus on genetic, epigenetic, and 3D genomic dysregulations of cPcdhs that are associated with various neuropsychiatric and neurodevelopmental diseases. A deeper understanding of regulatory mechanisms and physiological functions of cPcdhs should provide significant insights into the pathogenesis of mental disorders and facilitate development of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | - Qiang Wu
- Center for Comparative Biomedicine, MOE Key Laboratory of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, School of Life Sciences and Biotechnology, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Javed S, Selliah T, Lee YJ, Huang WH. Dosage-sensitive genes in autism spectrum disorders: From neurobiology to therapy. Neurosci Biobehav Rev 2020; 118:538-567. [PMID: 32858083 DOI: 10.1016/j.neubiorev.2020.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/26/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of heterogenous neurodevelopmental disorders affecting 1 in 59 children. Syndromic ASDs are commonly associated with chromosomal rearrangements or dosage imbalance involving a single gene. Many of these genes are dosage-sensitive and regulate transcription, protein homeostasis, and synaptic function in the brain. Despite vastly different molecular perturbations, syndromic ASDs share core symptoms including social dysfunction and repetitive behavior. However, each ASD subtype has a unique pathogenic mechanism and combination of comorbidities that require individual attention. We have learned a great deal about how these dosage-sensitive genes control brain development and behaviors from genetically-engineered mice. Here we describe the clinical features of eight monogenic neurodevelopmental disorders caused by dosage imbalance of four genes, as well as recent advances in using genetic mouse models to understand their pathogenic mechanisms and develop intervention strategies. We propose that applying newly developed quantitative molecular and neuroscience technologies will advance our understanding of the unique neurobiology of each disorder and enable the development of personalized therapy.
Collapse
Affiliation(s)
- Sehrish Javed
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Tharushan Selliah
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Yu-Ju Lee
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Wei-Hsiang Huang
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
10
|
Flaherty E, Maniatis T. The role of clustered protocadherins in neurodevelopment and neuropsychiatric diseases. Curr Opin Genet Dev 2020; 65:144-150. [PMID: 32679536 DOI: 10.1016/j.gde.2020.05.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/15/2020] [Accepted: 05/31/2020] [Indexed: 12/17/2022]
Abstract
During development, individual neurons extend highly branched arbors that innervate the surrounding territory, enabling the formation of appropriate synaptic connections. The clustered protocadherins (cPCDH), a family of diverse cell-surface homophilic proteins, provide each neuron with a cell specific identity required for distinguishing between self versus non-self. While only 52 unique cPcdh isoforms are encoded in the human genome, a combination of stochastic promoter choice and the formation of a protein lattice through engagement of adjacent cPCDH protein cis/trans-tetramers confer the high degree of cellular specificity required for self-recognition. Studies of mice bearing deletions of individual cPcdh gene clustees have identified deficits in circuit formation and behavior. In humans, single nucleotide variants scattered across the cPCDH locus have been identified, which associate with multiple neurodevelopmental disorders, including autism and schizophrenia. To advance our understanding of cPCDH stochastic choice and maintenance, function across cell types, and contribution to neuropsychiatric disease pathogenesis, hiPSC-based models have been developed. Ultimately, integration of human genetic data, biochemical assays, and functional studies is needed to uncover the mechanism underlying neurite repulsion, which has been implicated in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Erin Flaherty
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, United States; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY, 10027, United States
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, United States; Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, NY, 10027, United States; New York Genome Center, New York, NY 10013, United States.
| |
Collapse
|
11
|
PCDH7 interacts with GluN1 and regulates dendritic spine morphology and synaptic function. Sci Rep 2020; 10:10951. [PMID: 32616769 PMCID: PMC7331671 DOI: 10.1038/s41598-020-67831-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 06/12/2020] [Indexed: 01/28/2023] Open
Abstract
The N-terminal domain (NTD) of the GluN1 subunit (GluN1-NTD) is important for NMDA receptor structure and function, but the interacting proteins of the GluN1-NTD are not well understood. Starting with an unbiased screen of ~ 1,500 transmembrane proteins using the purified GluN1-NTD protein as a bait, we identify Protocadherin 7 (PCDH7) as a potential interacting protein. PCDH7 is highly expressed in the brain and has been linked to CNS disorders, including epilepsy. Using primary neurons and brain slice cultures, we find that overexpression and knockdown of PCDH7 induce opposing morphological changes of dendritic structures. We also find that PCDH7 overexpression reduces synaptic NMDA receptor currents. These data show that PCDH7 can regulate dendritic spine morphology and synaptic function, possibly via interaction with the GluN1 subunit.
Collapse
|
12
|
Brousseau M, Nectoux J, Saintpierre B, Lebrun N, Cagnard N, Izac B, Olivier E, Letourneur F, Bienvenu T. MeCP2 is involved in random mono-allelic expression for a subset of human autosomal genes. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165730. [PMID: 32070770 DOI: 10.1016/j.bbadis.2020.165730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022]
Abstract
Widespread random monoallelic gene expression (RMAE) effects influence about 10% of human genes. However, the mechanisms by which RME of autosomal genes is established and those by which it is maintained both remain open questions. Because the choice of allelic expression is randomly performed cell-by-cell, the RMAE mechanism is not observable in non-clonal cell populations or in whole tissues. Several target genes of MeCP2, the gene involved in Rett syndrome (RTT), have been previously described as subject to RMAE, suggesting that MeCP2 may be involved in the establishment and/or maintenance of RME of autosomal genes. To improve our knowledge on this largely unknown phenomenon, and to study the role of MeCP2 in RMAE, we compared RMA gene expression profiles in clonal cell cultures expressing wild-type MeCP2 versus mutant MeCP2 from a RTT patient carrying a pathogenic non-sense variant. Our data clearly demonstrated that MeCP2 deficiency does not affect significantly allelic gene expression of X-linked genes, imprinted genes as well as the RMAE profile in the majority of genes. However, the functional deficiency in MeCP2 appeared to disrupt the mono-allelic or the bi-allelic expression of at least 49 genes allowing us to define a specific signature of MECP2 mutated clones.
Collapse
Affiliation(s)
- Marine Brousseau
- Assistance Publique - Hôpitaux de Paris, APHP, Centre Universitaire Paris, Hôpital Cochin, Laboratoire de Génétique et Biologie Moléculaires, Paris, France
| | - Juliette Nectoux
- Assistance Publique - Hôpitaux de Paris, APHP, Centre Universitaire Paris, Hôpital Cochin, Laboratoire de Génétique et Biologie Moléculaires, Paris, France
| | | | - Nicolas Lebrun
- Institut de Psychiatrie et de Neurosciences de Paris (IPNP), INSERM U1266, Team "Vulnérabilité aux troubles psychiatriques et addictifs", Université de Paris, Paris, France
| | - Nicolas Cagnard
- Plateforme Bioinformatique, Université Paris Descartes, Institut Imagine, Paris, France
| | - Brigitte Izac
- Plateforme Génomique, Institut Cochin, Paris, France
| | - Emmanuelle Olivier
- Plateforme Bioinformatique, Université Paris Descartes, Institut Imagine, Paris, France
| | | | - Thierry Bienvenu
- Assistance Publique - Hôpitaux de Paris, APHP, Centre Universitaire Paris, Hôpital Cochin, Laboratoire de Génétique et Biologie Moléculaires, Paris, France; Institut de Psychiatrie et de Neurosciences de Paris (IPNP), INSERM U1266, Team "Vulnérabilité aux troubles psychiatriques et addictifs", Université de Paris, Paris, France.
| |
Collapse
|
13
|
Szczurkowska J, Pischedda F, Pinto B, Managò F, Haas CA, Summa M, Bertorelli R, Papaleo F, Schäfer MK, Piccoli G, Cancedda L. NEGR1 and FGFR2 cooperatively regulate cortical development and core behaviours related to autism disorders in mice. Brain 2019; 141:2772-2794. [PMID: 30059965 PMCID: PMC6113639 DOI: 10.1093/brain/awy190] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/04/2018] [Indexed: 12/15/2022] Open
Abstract
Autism spectrum disorders are neurodevelopmental conditions with diverse aetiologies, all characterized by common core symptoms such as impaired social skills and communication, as well as repetitive behaviour. Cell adhesion molecules, receptor tyrosine kinases and associated downstream signalling have been strongly implicated in both neurodevelopment and autism spectrum disorders. We found that downregulation of the cell adhesion molecule NEGR1 or the receptor tyrosine kinase fibroblast growth factor receptor 2 (FGFR2) similarly affects neuronal migration and spine density during mouse cortical development in vivo and results in impaired core behaviours related to autism spectrum disorders. Mechanistically, NEGR1 physically interacts with FGFR2 and modulates FGFR2-dependent extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) signalling by decreasing FGFR2 degradation from the plasma membrane. Accordingly, FGFR2 overexpression rescues all defects due to Negr1 knockdown in vivo. Negr1 knockout mice present phenotypes similar to Negr1-downregulated animals. These data indicate that NEGR1 and FGFR2 cooperatively regulate cortical development and suggest a role for defective NEGR1-FGFR2 complex and convergent downstream ERK and AKT signalling in autism spectrum disorders.
Collapse
Affiliation(s)
- Joanna Szczurkowska
- Local Micro-environment and Brain Development Laboratory, Italian Institute of Technology, Genoa, Italy.,Università degli Studi di Genova, Via Balbi, 5, Genoa, Italy
| | - Francesca Pischedda
- Laboratory of Biology of Synapse. Center for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Bruno Pinto
- Local Micro-environment and Brain Development Laboratory, Italian Institute of Technology, Genoa, Italy.,Bio@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Francesca Managò
- Genetics of Cognition Laboratory, Italian Institute of Technology, Genoa, Italy
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maria Summa
- Department of Drug Discovery and Development, Italian Institute of Technology, Genoa, Italy
| | - Rosalia Bertorelli
- Department of Drug Discovery and Development, Italian Institute of Technology, Genoa, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Italian Institute of Technology, Genoa, Italy
| | - Michael K Schäfer
- Department of Anesthesiology and Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Giovanni Piccoli
- Laboratory of Biology of Synapse. Center for Integrative Biology (CIBIO), University of Trento, Trento, Italy.,Dulbecco Telethon Institute, Varese Street 16b - 00185 Rome, Italy
| | - Laura Cancedda
- Local Micro-environment and Brain Development Laboratory, Italian Institute of Technology, Genoa, Italy.,Dulbecco Telethon Institute, Varese Street 16b - 00185 Rome, Italy
| |
Collapse
|
14
|
Kuehner JN, Bruggeman EC, Wen Z, Yao B. Epigenetic Regulations in Neuropsychiatric Disorders. Front Genet 2019; 10:268. [PMID: 31019524 PMCID: PMC6458251 DOI: 10.3389/fgene.2019.00268] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/11/2019] [Indexed: 12/14/2022] Open
Abstract
Precise genetic and epigenetic spatiotemporal regulation of gene expression is critical for proper brain development, function and circuitry formation in the mammalian central nervous system. Neuronal differentiation processes are tightly regulated by epigenetic mechanisms including DNA methylation, histone modifications, chromatin remodelers and non-coding RNAs. Dysregulation of any of these pathways is detrimental to normal neuronal development and functions, which can result in devastating neuropsychiatric disorders, such as depression, schizophrenia and autism spectrum disorders. In this review, we focus on the current understanding of epigenetic regulations in brain development and functions, as well as their implications in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Janise N Kuehner
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Emily C Bruggeman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States.,Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
15
|
Tang J, Chen X, Cai B, Chen G. A logical relationship for schizophrenia, bipolar, and major depressive disorder. Part 4: Evidence from chromosome 4 high-density association screen. J Comp Neurol 2018; 527:392-405. [DOI: 10.1002/cne.24543] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Jian Tang
- Department of Radiology; Qianfo Hill Campus Hospital of Shandong University; Jinan 250061 Shandong People's Republic of China
| | - Xing Chen
- Department of Medical Genetics, Institute of Basic Medicine; Shandong Academy of Medical Sciences; Jinan Shandong People's Republic of China
| | - Bin Cai
- CapitalBio corporation, 18 Life Science Parkway, Changping District; Beijing People's Republic of China
| | - Gang Chen
- Department of Medical Genetics, Institute of Basic Medicine; Shandong Academy of Medical Sciences; Jinan Shandong People's Republic of China
| |
Collapse
|
16
|
Xiao H, Sun Z, Wan J, Hou S, Xiong Y. Overexpression of protocadherin 7 inhibits neuronal survival by downregulating BIRC5 in vitro. Exp Cell Res 2018; 366:71-80. [PMID: 29548751 DOI: 10.1016/j.yexcr.2018.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 12/29/2022]
Abstract
Protocadherins (Pcdhs) are widely-expressed transmembrane proteins in the nervous system. Recent studies suggest that Pcdhs play multiple critical roles during neuronal development. However, the cellular mechanisms of Pcdh7 in neurons are still largely unknown. In the current study, we demonstrated that the expression of Pcdh7 during mouse brain development was regulated spatiotemporally. We observed that the elevated expression of Pcdh7 led to activation of the intrinsic apoptotic pathway in primary cortical neurons. Whole transcriptome sequencing revealed that 12 genes were involved in the apoptotic pathway including baculoviral inhibitor of apoptosis (IAP) repeat containing 5 (BIRC5). The neuronal apoptosis caused by Pcdh7 overexpression could be significantly inhibited by either a missense mutation in the conserved motif CM2 domain of Pcdh7 or BIRC5 overexpression. These results suggest the existence of Pcdh7-BIRC5 signaling cascade in the cortical neurons and represent a potential therapeutic area for further investigation.
Collapse
Affiliation(s)
- Huajuan Xiao
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Ziling Sun
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jun Wan
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China; Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Shengtao Hou
- Brain Research Center and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yi Xiong
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.
| |
Collapse
|
17
|
Kubota T. Epigenetic Effect of Environmental Factors on Neurodevelopmenal Disorders. Nihon Eiseigaku Zasshi 2018; 71:200-207. [PMID: 27725423 DOI: 10.1265/jjh.71.200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epigenetics is an important mechanism of gene regulation that is dependent on the chromatin structure, which is determined by the epigenetic chemical modification of DNA and histone proteins. It is known that the failure of epigenetic mechanisms causes congenital neurodevelopmental disorders (NDs), and that early life exposure to mental stress and endocrine disrupting chemicals, such as phthalates, bisphenol A, and tobacco, can change epigenetic mechanism and gene expression in the brain and cause NDs. Moreover, environmentally induced epigenetic changes are not erased during gametogenesis and are transmitted to subsequent generations, leading to changes in behavior phenotypes. However, epigenetics has a reversible nature because it is based on the addition or removal of chemical residues, and thus the original epigenetic status may be restored. Indeed, several drugs used for mental disorders and NDs restore the epigenetic state and gene expression. Improved epigenetic understanding of NDs will provide important clues for the development of new drugs that take advantage of epigenetic reversibility.
Collapse
Affiliation(s)
- Takeo Kubota
- Department of Epigenetic Medicine, Faculty of Medicine, University of Yamanashi
| |
Collapse
|
18
|
Kubota T. Preemptive Epigenetic Medicine Based on Fetal Programming. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1012:85-95. [PMID: 29956197 DOI: 10.1007/978-981-10-5526-3_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The developmental origins of health and disease (DOHaD) refers to the concept that environmental stress during pregnancy alters the programmed fetal development and subsequently causes disorders, such as cardiovascular and metabolic diseases, in adulthood. Epigenetics is a gene regulation mechanism that does not depend on DNA sequence but on chemical modifications of DNA. Several lines of evidence suggest that environmental stress in the fetal period alters the epigenetic state of genes, leading to permanent gene dysregulation, which may be associated with disorders that emerge after birth. Such stresses include malnutrition, which may be associated with type 2 diabetes, and mental stress, which may be associated with neurodevelopmental disorders. It has also been demonstrated that environmental stress-induced epigenetic alterations can be transmitted to the next generation via disease phenotypes. However, since epigenetic modification is an internal system based on attachment and detachment of chemical residues on a DNA sequence, it is reversible and potentially treatable. In fact, recent studies demonstrated that some drugs and early interventions are effective at preventing epigenetic disorders. Therefore, preventive and preemptive medicine is possible for disorders caused by alterations in programming during fetal and early periods.
Collapse
Affiliation(s)
- Takeo Kubota
- Faculty of Child Studies, Seitoku University, Matsudo, Chiba, Japan.
| |
Collapse
|
19
|
Peek SL, Mah KM, Weiner JA. Regulation of neural circuit formation by protocadherins. Cell Mol Life Sci 2017; 74:4133-4157. [PMID: 28631008 PMCID: PMC5643215 DOI: 10.1007/s00018-017-2572-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 12/20/2022]
Abstract
The protocadherins (Pcdhs), which make up the most diverse group within the cadherin superfamily, were first discovered in the early 1990s. Data implicating the Pcdhs, including ~60 proteins encoded by the tandem Pcdha, Pcdhb, and Pcdhg gene clusters and another ~10 non-clustered Pcdhs, in the regulation of neural development have continually accumulated, with a significant expansion of the field over the past decade. Here, we review the many roles played by clustered and non-clustered Pcdhs in multiple steps important for the formation and function of neural circuits, including dendrite arborization, axon outgrowth and targeting, synaptogenesis, and synapse elimination. We further discuss studies implicating mutation or epigenetic dysregulation of Pcdh genes in a variety of human neurodevelopmental and neurological disorders. With recent structural modeling of Pcdh proteins, the prospects for uncovering molecular mechanisms of Pcdh extracellular and intracellular interactions, and their role in normal and disrupted neural circuit formation, are bright.
Collapse
Affiliation(s)
- Stacey L Peek
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA
- Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Kar Men Mah
- Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Joshua A Weiner
- Department of Biology, The University of Iowa, Iowa City, IA, USA.
- Department of Psychiatry, The University of Iowa, 143 Biology Building, Iowa City, IA, 52242, USA.
| |
Collapse
|
20
|
Pacheco NL, Heaven MR, Holt LM, Crossman DK, Boggio KJ, Shaffer SA, Flint DL, Olsen ML. RNA sequencing and proteomics approaches reveal novel deficits in the cortex of Mecp2-deficient mice, a model for Rett syndrome. Mol Autism 2017; 8:56. [PMID: 29090078 PMCID: PMC5655833 DOI: 10.1186/s13229-017-0174-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/02/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Rett syndrome (RTT) is an X-linked neurodevelopmental disorder caused by mutations in the transcriptional regulator MeCP2. Much of our understanding of MeCP2 function is derived from transcriptomic studies with the general assumption that alterations in the transcriptome correlate with proteomic changes. Advances in mass spectrometry-based proteomics have facilitated recent interest in the examination of global protein expression to better understand the biology between transcriptional and translational regulation. METHODS We therefore performed the first comprehensive transcriptome-proteome comparison in a RTT mouse model to elucidate RTT pathophysiology, identify potential therapeutic targets, and further our understanding of MeCP2 function. The whole cortex of wild-type and symptomatic RTT male littermates (n = 4 per genotype) were analyzed using RNA-sequencing and data-independent acquisition liquid chromatography tandem mass spectrometry. Ingenuity® Pathway Analysis was used to identify significantly affected pathways in the transcriptomic and proteomic data sets. RESULTS Our results indicate these two "omics" data sets supplement one another. In addition to confirming previous works regarding mRNA expression in Mecp2-deficient animals, the current study identified hundreds of novel protein targets. Several selected protein targets were validated by Western blot analysis. These data indicate RNA metabolism, proteostasis, monoamine metabolism, and cholesterol synthesis are disrupted in the RTT proteome. Hits common to both data sets indicate disrupted cellular metabolism, calcium signaling, protein stability, DNA binding, and cytoskeletal cell structure. Finally, in addition to confirming disrupted pathways and identifying novel hits in neuronal structure and synaptic transmission, our data indicate aberrant myelination, inflammation, and vascular disruption. Intriguingly, there is no evidence of reactive gliosis, but instead, gene, protein, and pathway analysis suggest astrocytic maturation and morphological deficits. CONCLUSIONS This comparative omics analysis supports previous works indicating widespread CNS dysfunction and may serve as a valuable resource for those interested in cellular dysfunction in RTT.
Collapse
Affiliation(s)
- Natasha L. Pacheco
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294 USA
| | - Michael R. Heaven
- Vulcan Analytical, LLC, 1500 1st Ave. North, Birmingham, AL 35203 USA
| | - Leanne M. Holt
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294 USA
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences Building Room 213, 970 Washington St. SW, Blacksburg, VA 24061 USA
| | - David K. Crossman
- UAB Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham, Kaul 424A, 1720 2nd Ave. South, Birmingham, AL 35294 USA
| | - Kristin J. Boggio
- Proteomics and Mass Spectrometry Facility, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 222 Maple Ave., Fuller Building, Shrewsbury, MA 01545 USA
| | - Scott A. Shaffer
- Proteomics and Mass Spectrometry Facility, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 222 Maple Ave., Fuller Building, Shrewsbury, MA 01545 USA
| | - Daniel L. Flint
- Luxumbra Strategic Research, LLC, 1331 South Eads St, Arlington, VA 22202 USA
| | - Michelle L. Olsen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL 35294 USA
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences Building Room 213, 970 Washington St. SW, Blacksburg, VA 24061 USA
| |
Collapse
|
21
|
Dantoft W, Martínez-Vicente P, Jafali J, Pérez-Martínez L, Martin K, Kotzamanis K, Craigon M, Auer M, Young NT, Walsh P, Marchant A, Angulo A, Forster T, Ghazal P. Genomic Programming of Human Neonatal Dendritic Cells in Congenital Systemic and In Vitro Cytomegalovirus Infection Reveal Plastic and Robust Immune Pathway Biology Responses. Front Immunol 2017; 8:1146. [PMID: 28993767 PMCID: PMC5622154 DOI: 10.3389/fimmu.2017.01146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022] Open
Abstract
Neonates and especially premature infants are highly susceptible to infection but still can have a remarkable resilience that is poorly understood. The view that neonates have an incomplete or deficient immune system is changing. Human neonatal studies are challenging, and elucidating host protective responses and underlying cognate pathway biology, in the context of viral infection in early life, remains to be fully explored. In both resource rich and poor settings, human cytomegalovirus (HCMV) is the most common cause of congenital infection. By using unbiased systems analyses of transcriptomic resources for HCMV neonatal infection, we find the systemic response of a preterm congenital HCMV infection, involves a focused IFN regulatory response associated with dendritic cells. Further analysis of transcriptional-programming of neonatal dendritic cells in response to HCMV infection in culture revealed an early dominant IFN-chemokine regulatory subnetworks, and at later times the plasticity of pathways implicated in cell-cycle control and lipid metabolism. Further, we identify previously unknown suppressed networks associated with infection, including a select group of GPCRs. Functional siRNA viral growth screen targeting 516-GPCRs and subsequent validation identified novel GPCR-dependent antiviral (ADORA1) and proviral (GPR146, RGS16, PTAFR, SCTR, GPR84, GPR85, NMUR2, FZ10, RDS, CCL17, and SORT1) roles. By contrast a gene family cluster of protocadherins is significantly differentially induced in neonatal cells, suggestive of possible immunomodulatory roles. Unexpectedly, programming responses of adult and neonatal dendritic cells, upon HCMV infection, demonstrated comparable quantitative and qualitative responses showing that functionally, neonatal dendritic cell are not overly compromised. However, a delay in responses of neonatal cells for IFN subnetworks in comparison with adult-derived cells are notable, suggestive of subtle plasticity differences. These findings support a set-point control mechanism rather than immaturity for explaining not only neonatal susceptibility but also resilience to infection. In summary, our findings show that neonatal HCMV infection leads to a highly plastic and functional robust programming of dendritic cells in vivo and in vitro. In comparison with adults, a minimal number of subtle quantitative and temporal differences may contribute to variability in host susceptibility and resilience, in a context dependent manner.
Collapse
Affiliation(s)
- Widad Dantoft
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Pablo Martínez-Vicente
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - James Jafali
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Lara Pérez-Martínez
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Quantitative Proteomics, Institute of Molecular Biology, Mainz, Germany
| | - Kim Martin
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Synexa Life Sciences, Cape Town, South Africa
| | - Konstantinos Kotzamanis
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Marie Craigon
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Manfred Auer
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom.,SynthSys-Centre for Synthetic and Systems Biology, School of Engineering, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil T Young
- Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Paul Walsh
- NSilico Life Science and Department of Computing, Institute of Technology, Cork, Ireland
| | - Arnaud Marchant
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Thorsten Forster
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Ghazal
- Division of Infection and Pathway Medicine, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Lefebvre JL. Neuronal territory formation by the atypical cadherins and clustered protocadherins. Semin Cell Dev Biol 2017; 69:111-121. [DOI: 10.1016/j.semcdb.2017.07.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 02/04/2023]
|
23
|
Light SEW, Jontes JD. δ-Protocadherins: Organizers of neural circuit assembly. Semin Cell Dev Biol 2017; 69:83-90. [PMID: 28751249 DOI: 10.1016/j.semcdb.2017.07.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 02/08/2023]
Abstract
The δ-protocadherins comprise a small family of homophilic cell adhesion molecules within the larger cadherin superfamily. They are essential for neural development as mutations in these molecules give rise to human neurodevelopmental disorders, such as schizophrenia and epilepsy, and result in behavioral defects in animal models. Despite their importance to neural development, a detailed understanding of their mechanisms and the ways in which their loss leads to changes in neural function is lacking. However, recent results have begun to reveal roles for the δ-protocadherins in both regulation of neurogenesis and lineage-dependent circuit assembly, as well as in contact-dependent motility and selective axon fasciculation. These evolutionarily conserved mechanisms could have a profound impact on the robust assembly of the vertebrate nervous system. Future work should be focused on unraveling the molecular mechanisms of the δ-protocadherins and understanding how this family functions broadly to regulate neural development.
Collapse
Affiliation(s)
- Sarah E W Light
- Department of Neuroscience, Neuroscience Graduate Program, Ohio State University, 1060 Carmack Rd., 113 Rightmire Hall, Columbus, OH 43210, United States
| | - James D Jontes
- Department of Neuroscience, Neuroscience Graduate Program, Ohio State University, 1060 Carmack Rd., 113 Rightmire Hall, Columbus, OH 43210, United States.
| |
Collapse
|
24
|
Epigenetic dysregulation of protocadherins in human disease. Semin Cell Dev Biol 2017; 69:172-182. [PMID: 28694114 DOI: 10.1016/j.semcdb.2017.07.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022]
Abstract
Protocadherins (Pcdhs) are a group of cell-cell adhesion molecules that are highly expressed in the nervous system and have a major function in dendrite development and neural circuit formation. However, the role protocadherins play in human health and disease remains unclear. Several recent studies have associated epigenetic dysregulation of protocadherins with possible implications for disease pathogenesis. In this review, we briefly recap the various epigenetic mechanisms regulating protocadherin genes, particularly the clustered Pcdhs. We further outline research describing altered epigenetic regulation of protocadherins in neurological and psychiatric disorders, as well as in cancer and during aging. We additionally present preliminary data on DNA methylation dynamics of clustered protocadherins during fetal brain development, as well as the epigenetic differences distinguishing adult neuronal and glial cells. A deeper understanding of the role of protocadherins in disease is crucial for designing novel diagnostic tools and therapies targeting brain disorders.
Collapse
|
25
|
Hirayama T, Yagi T. Regulation of clustered protocadherin genes in individual neurons. Semin Cell Dev Biol 2017; 69:122-130. [PMID: 28591566 DOI: 10.1016/j.semcdb.2017.05.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 02/06/2023]
Abstract
Individual neurons are basic functional units in the complex system of the brain. One aspect of neuronal individuality is generated by stochastic and combinatorial expression of diverse clustered protocadherins (Pcdhs), encoded by the Pcdha, Pcdhb, and Pcdhg gene clusters, that are critical for several aspects of neural circuit formation. Each clustered Pcdh gene has its own promoter containing conserved sequences and is transcribed by a promoter choice mechanism involving interaction between the promoter and enhancers. A CTCF/Cohesin complex induces this interaction by configuration of DNA-looping in the chromatin structure. At the same time, the semi-stochastic expression of clustered Pcdh genes is regulated in individual neurons by DNA methylation: the methyltransferase Dnmt3b regulates methylation state of individual clustered Pcdh genes during early embryonic stages prior to the establishment of neural stem cells. Several other factors, including Smchd1, also contribute to the regulation of clustered Pcdh gene expression. In addition, psychiatric diseases and early life experiences of individuals can influence expression of clustered Pcdh genes in the brain, through epigenetic alterations. Clustered Pcdh gene expression is thus a significant and highly regulated step in establishing neuronal individuality and generating functional neural circuits in the brain.
Collapse
Affiliation(s)
- Teruyoshi Hirayama
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
26
|
Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism. Int J Genomics 2017; 2017:7526592. [PMID: 28567415 PMCID: PMC5439185 DOI: 10.1155/2017/7526592] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/02/2017] [Indexed: 01/07/2023] Open
Abstract
The increasing prevalence of neurodevelopmental disorders, especially autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD), calls for more research into the identification of etiologic and risk factors. The Developmental Origin of Health and Disease (DOHaD) hypothesizes that the environment during fetal and childhood development affects the risk for many chronic diseases in later stages of life, including neurodevelopmental disorders. Epigenetics, a term describing mechanisms that cause changes in the chromosome state without affecting DNA sequences, is suggested to be the underlying mechanism, according to the DOHaD hypothesis. Moreover, many neurodevelopmental disorders are also related to epigenetic abnormalities. Experimental and epidemiological studies suggest that exposure to prenatal environmental toxicants is associated with neurodevelopmental disorders. In addition, there is also evidence that environmental toxicants can result in epigenetic alterations, notably DNA methylation. In this review, we first focus on the relationship between neurodevelopmental disorders and environmental toxicants, in particular maternal smoking, plastic-derived chemicals (bisphenol A and phthalates), persistent organic pollutants, and heavy metals. We then review studies showing the epigenetic effects of those environmental factors in humans that may affect normal neurodevelopment.
Collapse
|
27
|
Nozawa K, Lin Y, Kubodera R, Shimizu Y, Tanaka H, Ohshima T. Zebrafish Mecp2 is required for proper axonal elongation of motor neurons and synapse formation. Dev Neurobiol 2017; 77:1101-1113. [PMID: 28371371 DOI: 10.1002/dneu.22498] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/08/2017] [Accepted: 03/23/2017] [Indexed: 12/13/2022]
Abstract
Rett syndrome is a severe neurodevelopmental disorder. It is caused by a mutation in methyl-CpG binding protein 2 (MecP2), a transcriptional regulator that recruits protein complexes involved in histone modification and chromatin remodeling. However, the role of Mecp2 in Rett syndrome remains unclear. In this study, we investigated the function of Mecp2 in neuronal development using zebrafish embryos. Mecp2 expression was detected ubiquitously in the central nervous system and muscles at 28 h postfertilization (hpf). We injected an antisense morpholino oligonucleotide (AMO) to induce Mecp2 knockdown phenotype. In mecp2 morphants (embryos with Mecp2 knockdown by AMO) at 28 and 72 hpf, we found an increase in abnormal axonal branches of caudal primary motor neurons and a decrease in motor activity. In mecp2 morphants at 24 hpf, we observed an increase in the expression of an mecp2 downstream candidate gene, brain derived neurotrophic factor (bdnf). In mecp2 morphants at 72 hpf, the presynaptic area stained by an anti-SV2 antibody was increased at the neuromuscular junction (NMJ). Interestingly, the size of SV2-positive presynaptic area at the NMJ was also increased following bdnf mRNA injection, while it was normalized in a double knockdown of mecp2 and bdnf. These results imply that Mecp2 is an important functional regulator of bdnf gene expression during neural circuit formation in zebrafish embryo. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1101-1113, 2017.
Collapse
Affiliation(s)
- Keisuke Nozawa
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Tokyo, 162-8480, Japan
| | - Yanbin Lin
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Tokyo, 162-8480, Japan
| | - Ryota Kubodera
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Tokyo, 162-8480, Japan
| | - Yuki Shimizu
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Tokyo, 162-8480, Japan
| | - Hideomi Tanaka
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Tokyo, 162-8480, Japan
| | - Toshio Ohshima
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Tokyo, 162-8480, Japan
| |
Collapse
|
28
|
Kubota T. Epigenetic alterations induced by environmental stress associated with metabolic and neurodevelopmental disorders. ENVIRONMENTAL EPIGENETICS 2016; 2:dvw017. [PMID: 29492297 PMCID: PMC5804531 DOI: 10.1093/eep/dvw017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/14/2016] [Accepted: 07/18/2016] [Indexed: 06/08/2023]
Abstract
Epigenetics is a gene regulation mechanism that does not depend on genomic DNA sequences but depends on chemical modification of genomic DNA and histone proteins around which DNA is wrapped. The failure of epigenetic mechanisms is known to cause various congenital disorders. It is also known that the failures of epigenetic mechanisms causes various acquired disorders since epigenetic modifications of the genome (i.e., "epigenome") are more vulnerable to environmental stress, such as malnutrition, environmental chemicals, and mental stress, than the "genome," especially during the early period of life. However, the epigenome has a reversible property since it is based on removable residues on genomic DNA. Thus, environmentally induced epigenomic alterations can be potentially restored. In fact, some medicines, especially for psychiatric diseases, are known to restore an altered epigenome, resulting in the correction of gene expression. Several lines of evidence suggest that environmentally induced epigenomic alterations are not erased completely during gametogenesis, but are transmitted to subsequent generations with disease phenotypes. In accordance with these understandings, I would like to propose the development of epigenomic-based preemptive medicine that consists of the early detection of the developmental origins of diseases using epigenomic signatures and the early intervention that take advantages of the use of epigenomic reversibility.
Collapse
Affiliation(s)
- Takeo Kubota
- Department of Epigenetic Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| |
Collapse
|
29
|
Kubota T, Mochizuki K. Epigenetic Effect of Environmental Factors on Autism Spectrum Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13050504. [PMID: 27187441 PMCID: PMC4881129 DOI: 10.3390/ijerph13050504] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/23/2016] [Accepted: 05/10/2016] [Indexed: 12/22/2022]
Abstract
Both environmental factors and genetic factors are involved in the pathogenesis of autism spectrum disorders (ASDs). Epigenetics, an essential mechanism for gene regulation based on chemical modifications of DNA and histone proteins, is also involved in congenital ASDs. It was recently demonstrated that environmental factors, such as endocrine disrupting chemicals and mental stress in early life, can change epigenetic status and gene expression, and can cause ASDs. Moreover, environmentally induced epigenetic changes are not erased during gametogenesis and are transmitted to subsequent generations, leading to changes in behavior phenotypes. However, epigenetics has a reversible nature since it is based on the addition or removal of chemical residues, and thus the original epigenetic status may be restored. Indeed, several antidepressants and anticonvulsants used for mental disorders including ASDs restore the epigenetic state and gene expression. Therefore, further epigenetic understanding of ASDs is important for the development of new drugs that take advantages of epigenetic reversibility.
Collapse
Affiliation(s)
- Takeo Kubota
- Department of Epigenetic Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| | - Kazuki Mochizuki
- Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, 4-4-37 Takeda, Kofu-City, Yamanashi 400-8510, Japan.
| |
Collapse
|
30
|
Prader-Willi Syndrome: The Disease that Opened up Epigenomic-Based Preemptive Medicine. Diseases 2016; 4:diseases4010015. [PMID: 28933395 PMCID: PMC5456307 DOI: 10.3390/diseases4010015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 01/20/2023] Open
Abstract
Prader-Willi syndrome (PWS) is a congenital neurodevelopmental disorder caused by loss of function of paternally expressed genes on chromosome 15 due to paternal deletion of 15q11–q13, maternal uniparental disomy for chromosome 15, or an imprinting mutation. We previously developed a DNA methylation-based PCR assay to identify each of these three genetic causes of PWS. The assay enables straightforward and rapid diagnosis during infancy and therefore allows early intervention such as nutritional management, physical therapy, or growth hormone treatment to prevent PWS patients from complications such as obesity and type 2 diabetes. It is known that various environmental factors induce epigenomic changes during the perinatal period, which increase the risk of adult diseases such as type 2 diabetes and intellectual disabilities. Therefore, a similar preemptive approach as used in PWS would also be applicable to acquired disorders and would make use of environmentally-introduced “epigenomic signatures” to aid development of early intervention strategies that take advantage of “epigenomic reversibility”.
Collapse
|
31
|
Massah S, Beischlag TV, Prefontaine GG. Epigenetic events regulating monoallelic gene expression. Crit Rev Biochem Mol Biol 2015; 50:337-58. [PMID: 26155735 DOI: 10.3109/10409238.2015.1064350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In mammals, generally it is assumed that the genes inherited from each parent are expressed to similar levels. However, it is now apparent that in non-sex chromosomes, 6-10% of genes are selected for monoallelic expression. Monoallelic expression or allelic exclusion is established either in an imprinted (parent-of-origin) or a stochastic manner. The stochastic model explains random selection while the imprinted model describes parent-of-origin specific selection of alleles for expression. Allelic exclusion occurs during X chromosome inactivation, parent-of-origin expression of imprinted genes and stochastic monoallelic expression of cell surface molecules, clustered protocadherin (PCDH) genes. Mis-regulation or loss of allelic exclusion contributes to developmental diseases. Epigenetic mechanisms are fundamental players that determine this type of expression despite a homogenous genetic background. DNA methylation and histone modifications are two mediators of the epigenetic phenomena. The majority of DNA methylation is found on cytosines of the CpG dinucleotide in mammals. Several covalent modifications of histones change the electrostatic forces between DNA and histones modifying gene expression. Long-range chromatin interactions organize chromatin into transcriptionally permissive and prohibitive regions leading to simultaneous regulation of gene expression and repression. Non-coding RNAs (ncRNAs) are also players in regulating gene expression. Together, these epigenetic mechanisms fine-tune gene expression levels essential for normal development and survival. In this review, first we discuss what is known about monoallelic gene expression. Then, we focus on the molecular mechanisms that regulate expression of three monoallelically expressed gene classes: the X-linked genes, selected imprinted genes and PCDH genes.
Collapse
Affiliation(s)
- Shabnam Massah
- a The Faculty of Health Sciences , Simon Fraser University , Burnaby , BC , Canada
| | - Timothy V Beischlag
- a The Faculty of Health Sciences , Simon Fraser University , Burnaby , BC , Canada
| | | |
Collapse
|
32
|
Kubota T, Miyake K, Hariya N, Mochizuki K. Epigenomic-basis of Preemptive Medicine for Neurodevelopmental Disorders. Curr Genomics 2015; 16:175-82. [PMID: 26069457 PMCID: PMC4460221 DOI: 10.2174/1389202916666150216221312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 11/24/2022] Open
Abstract
Neurodevelopmental disorders (NDs) are currently thought to be caused by either genetic
defects or various environmental factors. Recent studies have demonstrated that congenital NDs can
result not only from changes in DNA sequence in neuronal genes but also from changes to the secondary
epigenomic modifications of DNA and histone proteins. Thus, epigenomic assays, as well as genomic
assays, are currently performed for diagnosis of the congenital NDs. It is recently known that
the epigenomic modifications can be altered by various environmental factors, which potentially cause
acquired NDs. Furthermore these alterations can potentially be restored taking advantage of use of reversibility in epigenomics.
Therefore, epigenome-based early diagnosis and subsequent intervention, by using drugs that restore epigenomic
alterations, will open up a new era of preemptive medicine for congenital and acquired NDs.
Collapse
Affiliation(s)
- Takeo Kubota
- Department of Epigenetic Medicine, Faculty of Medicine, University of Yamanashi, Japan
| | - Kunio Miyake
- Department of Epigenetic Medicine, Faculty of Medicine, University of Yamanashi, Japan
| | - Natsuyo Hariya
- Department of Epigenetic Medicine, Faculty of Medicine, University of Yamanashi, Japan
| | - Kazuki Mochizuki
- Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Japan
| |
Collapse
|
33
|
Andoh-Noda T, Akamatsu W, Miyake K, Matsumoto T, Yamaguchi R, Sanosaka T, Okada Y, Kobayashi T, Ohyama M, Nakashima K, Kurosawa H, Kubota T, Okano H. Differentiation of multipotent neural stem cells derived from Rett syndrome patients is biased toward the astrocytic lineage. Mol Brain 2015; 8:31. [PMID: 26012557 PMCID: PMC4446051 DOI: 10.1186/s13041-015-0121-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/30/2015] [Indexed: 12/23/2022] Open
Abstract
Background Rett syndrome (RTT) is one of the most prevalent neurodevelopmental disorders in females, caused by de novo mutations in the X-linked methyl CpG-binding protein 2 gene, MECP2. Although abnormal regulation of neuronal genes due to mutant MeCP2 is thought to induce autistic behavior and impaired development in RTT patients, precise cellular mechanisms underlying the aberrant neural progression remain unclear. Results Two sets of isogenic pairs of either wild-type or mutant MECP2-expressing human induced pluripotent stem cell (hiPSC) lines were generated from a single pair of 10-year-old RTT-monozygotic (MZ) female twins. Mutant MeCP2-expressing hiPSC lines did not express detectable MeCP2 protein during any stage of differentiation. The lack of MeCP2 reflected altered gene expression patterns in differentiated neural cells rather than in undifferentiated hiPSCs, as assessed by microarray analysis. Furthermore, MeCP2 deficiency in the neural cell lineage increased astrocyte-specific differentiation from multipotent neural stem cells. Additionally, chromatin immunoprecipitation (ChIP) and bisulfite sequencing assays indicated that anomalous glial fibrillary acidic protein gene (GFAP) expression in the MeCP2-negative, differentiated neural cells resulted from the absence of MeCP2 binding to the GFAP gene. Conclusions An isogenic RTT-hiPSC model demonstrated that MeCP2 participates in the differentiation of neural cells. Moreover, MeCP2 deficiency triggers perturbation of astrocytic gene expression, yielding accelerated astrocyte formation from RTT-hiPSC-derived neural stem cells. These findings are likely to shed new light on astrocytic abnormalities in RTT, and suggest that astrocytes, which are required for neuronal homeostasis and function, might be a new target of RTT therapy. Electronic supplementary material The online version of this article (doi:10.1186/s13041-015-0121-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomoko Andoh-Noda
- Division of Medicine and Engineering Science, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Yamanashi, Kofu, 400-8510, Japan. .,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Wado Akamatsu
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo, 160-8582, Japan. .,Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Kunio Miyake
- Department of Epigenetic Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| | - Takuya Matsumoto
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Ryo Yamaguchi
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo, 160-8582, Japan. .,Sumitomo Dainipponn Pharma Co. Ltd., Osaka, Osaka, 541-0045, Japan.
| | - Tsukasa Sanosaka
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Yohei Okada
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo, 160-8582, Japan. .,Department of Neurology,School of Meidicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| | - Tetsuro Kobayashi
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Manabu Ohyama
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Hiroshi Kurosawa
- Division of Medicine and Engineering Science, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Yamanashi, Kofu, 400-8510, Japan.
| | - Takeo Kubota
- Department of Epigenetic Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
34
|
Lal D, Ruppert AK, Trucks H, Schulz H, de Kovel CG, Kasteleijn-Nolst Trenité D, Sonsma ACM, Koeleman BP, Lindhout D, Weber YG, Lerche H, Kapser C, Schankin CJ, Kunz WS, Surges R, Elger CE, Gaus V, Schmitz B, Helbig I, Muhle H, Stephani U, Klein KM, Rosenow F, Neubauer BA, Reinthaler EM, Zimprich F, Feucht M, Møller RS, Hjalgrim H, De Jonghe P, Suls A, Lieb W, Franke A, Strauch K, Gieger C, Schurmann C, Schminke U, Nürnberg P, Sander T. Burden analysis of rare microdeletions suggests a strong impact of neurodevelopmental genes in genetic generalised epilepsies. PLoS Genet 2015; 11:e1005226. [PMID: 25950944 PMCID: PMC4423931 DOI: 10.1371/journal.pgen.1005226] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/16/2015] [Indexed: 01/06/2023] Open
Abstract
Genetic generalised epilepsy (GGE) is the most common form of genetic epilepsy, accounting for 20% of all epilepsies. Genomic copy number variations (CNVs) constitute important genetic risk factors of common GGE syndromes. In our present genome-wide burden analysis, large (≥ 400 kb) and rare (< 1%) autosomal microdeletions with high calling confidence (≥ 200 markers) were assessed by the Affymetrix SNP 6.0 array in European case-control cohorts of 1,366 GGE patients and 5,234 ancestry-matched controls. We aimed to: 1) assess the microdeletion burden in common GGE syndromes, 2) estimate the relative contribution of recurrent microdeletions at genomic rearrangement hotspots and non-recurrent microdeletions, and 3) identify potential candidate genes for GGE. We found a significant excess of microdeletions in 7.3% of GGE patients compared to 4.0% in controls (P = 1.8 x 10-7; OR = 1.9). Recurrent microdeletions at seven known genomic hotspots accounted for 36.9% of all microdeletions identified in the GGE cohort and showed a 7.5-fold increased burden (P = 2.6 x 10-17) relative to controls. Microdeletions affecting either a gene previously implicated in neurodevelopmental disorders (P = 8.0 x 10-18, OR = 4.6) or an evolutionarily conserved brain-expressed gene related to autism spectrum disorder (P = 1.3 x 10-12, OR = 4.1) were significantly enriched in the GGE patients. Microdeletions found only in GGE patients harboured a high proportion of genes previously associated with epilepsy and neuropsychiatric disorders (NRXN1, RBFOX1, PCDH7, KCNA2, EPM2A, RORB, PLCB1). Our results demonstrate that the significantly increased burden of large and rare microdeletions in GGE patients is largely confined to recurrent hotspot microdeletions and microdeletions affecting neurodevelopmental genes, suggesting a strong impact of fundamental neurodevelopmental processes in the pathogenesis of common GGE syndromes.
Collapse
Affiliation(s)
- Dennis Lal
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department of Neuropediatrics, University Medical Center Giessen and Marburg, Giessen, Germany
- EPICURE Consortium
| | - Ann-Kathrin Ruppert
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
- EPICURE Consortium
| | - Holger Trucks
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
- EPICURE Consortium
| | - Herbert Schulz
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
- EPICURE Consortium
| | - Carolien G. de Kovel
- EPICURE Consortium
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Anja C. M. Sonsma
- EPICURE Consortium
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bobby P. Koeleman
- EPICURE Consortium
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dick Lindhout
- EPICURE Consortium
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
- SEIN Epilepsy Institute in the Netherlands, Hoofddorp, The Netherlands
| | - Yvonne G. Weber
- EPICURE Consortium
- Department of Neurology and Epileptology, Hertie Institute of Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Holger Lerche
- EPICURE Consortium
- Department of Neurology and Epileptology, Hertie Institute of Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Claudia Kapser
- EPICURE Consortium
- Department of Neurology, University of Munich Hospital—Großhadern, Munich, Germany
| | - Christoph J. Schankin
- EPICURE Consortium
- Department of Neurology, University of Munich Hospital—Großhadern, Munich, Germany
| | - Wolfram S. Kunz
- EPICURE Consortium
- Department of Epileptology, University Clinics Bonn, Bonn, Germany
| | - Rainer Surges
- EPICURE Consortium
- Department of Epileptology, University Clinics Bonn, Bonn, Germany
| | - Christian E. Elger
- EPICURE Consortium
- Department of Epileptology, University Clinics Bonn, Bonn, Germany
| | - Verena Gaus
- EPICURE Consortium
- Department of Neurology, Charité University Medicine, Campus Virchow Clinic, Berlin, Germany
| | - Bettina Schmitz
- EPICURE Consortium
- Department of Neurology, Charité University Medicine, Campus Virchow Clinic, Berlin, Germany
- Department of Neurology, Vivantes Humboldt-Klinikum, Berlin, Germany
| | - Ingo Helbig
- EPICURE Consortium
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein (Kiel Campus), Kiel, Germany
| | - Hiltrud Muhle
- EPICURE Consortium
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein (Kiel Campus), Kiel, Germany
| | - Ulrich Stephani
- EPICURE Consortium
- Department of Neuropediatrics, University Medical Center Schleswig-Holstein (Kiel Campus), Kiel, Germany
| | - Karl M. Klein
- EPICURE Consortium
- Epilepsy-Center Hessen, Department of Neurology, Philipps-University Marburg, Marburg, Germany
- Epilepsy Center Frankfurt Rhein-Main, Department of Neurology, Johann Wolfgang Goethe University Frankfurt, Frankfurt, Germany
| | - Felix Rosenow
- EPICURE Consortium
- Epilepsy-Center Hessen, Department of Neurology, Philipps-University Marburg, Marburg, Germany
- Epilepsy Center Frankfurt Rhein-Main, Department of Neurology, Johann Wolfgang Goethe University Frankfurt, Frankfurt, Germany
| | - Bernd A. Neubauer
- Department of Neuropediatrics, University Medical Center Giessen and Marburg, Giessen, Germany
| | - Eva M. Reinthaler
- EPICURE Consortium
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Fritz Zimprich
- EPICURE Consortium
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Martha Feucht
- EPICURE Consortium
- Department of Pediatrics and Neonatology, Medical University of Vienna, Vienna, Austria
| | - Rikke S. Møller
- EPICURE Consortium
- Department of Neurology, Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Helle Hjalgrim
- EPICURE Consortium
- Department of Neurology, Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Peter De Jonghe
- EPICURE Consortium
- Neurogenetics Group, VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Arvid Suls
- EPICURE Consortium
- Neurogenetics Group, VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank Popgen, Christian Albrechts University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, and Chair of Genetic Epidemiology, Ludwig-Maximilians-University, Munich, Germany
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Schurmann
- Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University, Greifswald, Germany
| | - Ulf Schminke
- Department of Neurology, University Medicine Greifswald, Ernst Moritz Arndt University, Greifswald, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- EPICURE Consortium
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | | | - Thomas Sander
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
- EPICURE Consortium
| |
Collapse
|
35
|
Abstract
The Developmental Origins of Health and Disease (DOHaD) hypothesis refers to the concept that 'malnutrition during the fetal period induces a nature of thrift in fetuses, such that they have a higher change of developing non-communicable diseases, such as obesity and diabetes, if they grow up in the current well-fed society.' Epigenetics is a chemical change in DNA and histones that affects how genes are expressed without alterations of DNA sequences. Several lines of evidence suggest that malnutrition during the fetal period alters the epigenetic expression status of metabolic genes in the fetus and that this altered expression can persist, and possibly lead to metabolic disorders. Similarly, mental stress during the neonatal period can alter the epigenetic expression status of neuronal genes in neonates. Moreover, such environmental, stress-induced, epigenetic changes are transmitted to the next generation via an acquired epigenetic status in sperm. The advantage of epigenetic modifications over changes in genetic sequences is their potential reversibility; thus, epigenetic alterations are potentially reversed with gene expression. Therefore, we potentially establish 'preemptive medicine,' that, in combination with early detection of abnormal epigenetic status and early administration of epigenetic-restoring drugs may prevent the development of disorders associated with the DOHaD.
Collapse
|
36
|
Tesone-Coelho C, Morel LJ, Bhatt J, Estevez L, Naudon L, Giros B, Zwiller J, Daugé V. Vulnerability to opiate intake in maternally deprived rats: implication of MeCP2 and of histone acetylation. Addict Biol 2015; 20:120-31. [PMID: 23980619 DOI: 10.1111/adb.12084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We previously showed that maternal deprivation predisposes male rats to anxiety, accompanied with an increase in their opiate consumption. In the present report, we searched for brain epigenetic mechanisms that possibly underlie this increase. For that, we examined the expression of the methyl-CpG-binding protein MeCP2 and of the histone deacetylases HDAC2 and HDAC3, as well as the acetylation status of histone H3 and H4 in mesolimbic structures of adult maternally deprived rats, using immunohistochemistry and Western blot analysis. A long-lasting increase in MeCP2 expression was found throughout the striatum of deprived rats. Enhanced HDAC2 expression and increased nuclear HDAC activity in the nucleus accumbens of deprived rats were associated with lower acetylation levels of histone H3 and H4. Treatment for 3 weeks with the HDAC inhibitor sodium valproate abolished HDAC activation together with the decrease in the acetylation levels of histone H4, and was accompanied with normalized oral morphine consumption. The data indicate that epigenetic mechanisms induced by early adverse environment memorize life experience to trigger greater opiate vulnerability during adult life. They suggest that sodium valproate may lessen vulnerability to opiate intake, particularly in subgroups of individuals subjected to adverse postnatal environments.
Collapse
Affiliation(s)
| | - Lydie J. Morel
- Institut National de la Santé et de la Recherche Médicale (INSERM); Université Pierre et Marie Curie; France
- Centre National de la Recherche Scientifique (CNRS); Université Pierre et Marie Curie; France
- UPMC Université Paris 6; France
| | - Jeena Bhatt
- Institut National de la Santé et de la Recherche Médicale (INSERM); Université Pierre et Marie Curie; France
- Centre National de la Recherche Scientifique (CNRS); Université Pierre et Marie Curie; France
- UPMC Université Paris 6; France
| | - Lucie Estevez
- Institut National de la Santé et de la Recherche Médicale (INSERM); Université Pierre et Marie Curie; France
- Centre National de la Recherche Scientifique (CNRS); Université Pierre et Marie Curie; France
- UPMC Université Paris 6; France
| | - Laurent Naudon
- Institut National de la Santé et de la Recherche Médicale (INSERM); Université Pierre et Marie Curie; France
- Centre National de la Recherche Scientifique (CNRS); Université Pierre et Marie Curie; France
- UPMC Université Paris 6; France
| | - Bruno Giros
- Institut National de la Santé et de la Recherche Médicale (INSERM); Université Pierre et Marie Curie; France
- Centre National de la Recherche Scientifique (CNRS); Université Pierre et Marie Curie; France
- UPMC Université Paris 6; France
- Department of Psychiatry; Douglas Hospital Research Center; McGill University; Canada
| | - Jean Zwiller
- Centre National de la Recherche Scientifique (CNRS); Université de Strasbourg; France
| | - Valérie Daugé
- Institut National de la Santé et de la Recherche Médicale (INSERM); Université Pierre et Marie Curie; France
- Centre National de la Recherche Scientifique (CNRS); Université Pierre et Marie Curie; France
- UPMC Université Paris 6; France
| |
Collapse
|
37
|
Melka MG, Castellani CA, Rajakumar N, O'Reilly R, Singh SM. Olanzapine-induced methylation alters cadherin gene families and associated pathways implicated in psychosis. BMC Neurosci 2014; 15:112. [PMID: 25266742 PMCID: PMC4261529 DOI: 10.1186/1471-2202-15-112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/26/2014] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The complex aetiology of most mental disorders involves gene-environment interactions that may operate using epigenetic mechanisms particularly DNA methylation. It may explain many of the features seen in mental disorders including transmission, expression and antipsychotic treatment responses. This report deals with the assessment of DNA methylation in response to an antipsychotic drug (olanzapine) on brain (cerebellum and hippocampus), and liver as a non-neural reference in a rat model. The study focuses on the Cadherin/protocadherins encoded by a multi-gene family that serve as adhesion molecules and are involved in cell-cell communication in the mammalian brain. A number of these molecules have been implicated in the causation of schizophrenia and related disorders. RESULTS The results show that olanzapine causes changes in DNA methylation, most specific to the promoter region of specific genes. This response is tissue specific and involves a number of cadherin genes, particularly in cerebellum. Also, the genes identified have led to the identification of several pathways significantly affected by DNA methylation in cerebellum, hippocampus and liver. These included the Gα12/13 Signalling (p = 9.2E-08) and Wnt signalling (p = 0.01) pathways as contributors to psychosis that is based on its responsiveness to antipsychotics used in its treatment. CONCLUSION The results suggest that DNA methylation changes on the promoter regions of the Cadherin/protocadherin genes impact the response of olanzapine treatment. These impacts have been revealed through the identified pathways and particularly in the identification of pathways that have been previously implicated in psychosis.
Collapse
Affiliation(s)
| | | | | | | | - Shiva M Singh
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada.
| |
Collapse
|
38
|
Kubota T. [Epigenome: what we learned from Rett syndrome, a neurological disease caused by mutation of a methyl-CpG binding protein]. Rinsho Shinkeigaku 2014; 53:1339-41. [PMID: 24291980 DOI: 10.5692/clinicalneurol.53.1339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Epigenome is defined as DNA and histone modification-dependent gene regulation system. Abnormalities in this system are known to cause various neuro-developmental diseases. We recently reported that neurological symptoms of Rett syndrome, which is an autistic disorder caused by mutations in methyl-CpG binding protein 2 (MeCP2), was associated with failure of epigenomic gene regulation in neuronal cells, and that clinical differences in the identical twins with Rett syndrome in the differences in DNA methylation in neuronal genes, but not caused by DNA sequence differences. Since central nervus system requires precise gene regulation, neurological diseases including Alzheimer and Parkinson diseases may be caused by acquired DNA modification (epigenomic) changes that results in aberrant gene regulation as well as DNA sequence changes congenitally occurred (mutation).
Collapse
Affiliation(s)
- Takeo Kubota
- Department of Epigenetic Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| |
Collapse
|
39
|
Abstract
Background The epilepsies are a clinically heterogeneous group of neurological disorders. Despite strong evidence for heritability, genome-wide association studies have had little success in identification of risk loci associated with epilepsy, probably because of relatively small sample sizes and insufficient power. We aimed to identify risk loci through meta-analyses of genome-wide association studies for all epilepsy and the two largest clinical subtypes (genetic generalised epilepsy and focal epilepsy). Methods We combined genome-wide association data from 12 cohorts of individuals with epilepsy and controls from population-based datasets. Controls were ethnically matched with cases. We phenotyped individuals with epilepsy into categories of genetic generalised epilepsy, focal epilepsy, or unclassified epilepsy. After standardised filtering for quality control and imputation to account for different genotyping platforms across sites, investigators at each site conducted a linear mixed-model association analysis for each dataset. Combining summary statistics, we conducted fixed-effects meta-analyses of all epilepsy, focal epilepsy, and genetic generalised epilepsy. We set the genome-wide significance threshold at p<1·66 × 10−8. Findings We included 8696 cases and 26 157 controls in our analysis. Meta-analysis of the all-epilepsy cohort identified loci at 2q24.3 (p=8·71 × 10−10), implicating SCN1A, and at 4p15.1 (p=5·44 × 10−9), harbouring PCDH7, which encodes a protocadherin molecule not previously implicated in epilepsy. For the cohort of genetic generalised epilepsy, we noted a single signal at 2p16.1 (p=9·99 × 10−9), implicating VRK2 or FANCL. No single nucleotide polymorphism achieved genome-wide significance for focal epilepsy. Interpretation This meta-analysis describes a new locus not previously implicated in epilepsy and provides further evidence about the genetic architecture of these disorders, with the ultimate aim of assisting in disease classification and prognosis. The data suggest that specific loci can act pleiotropically raising risk for epilepsy broadly, or can have effects limited to a specific epilepsy subtype. Future genetic analyses might benefit from both lumping (ie, grouping of epilepsy types together) or splitting (ie, analysis of specific clinical subtypes). Funding International League Against Epilepsy and multiple governmental and philanthropic agencies.
Collapse
|
40
|
Matsunaga E, Okanoya K. Cadherins: potential regulators in the faculty of language. Curr Opin Neurobiol 2014; 28:28-33. [PMID: 24988490 DOI: 10.1016/j.conb.2014.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 04/20/2014] [Accepted: 06/04/2014] [Indexed: 12/22/2022]
Abstract
The cadherin superfamily is a large (now more than 100 proteins) protein family originally identified as cell adhesion molecules. Each cadherin shows distinct expression patterns in the nervous system, and their expressions are both spatially and temporally regulated and diverse among different species. Mounting evidence has suggested that cadherins play multiple roles in neural development and functions. Recently, using songbirds and mice, the potential role of cadherins in vocal behavior has been demonstrated. Here, we will briefly introduce general function of cadherins, and analyze the potential involvement of cadherins in vocal behaviors and their evolution.
Collapse
Affiliation(s)
- Eiji Matsunaga
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Japan.
| | - Kazuo Okanoya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan; ERATO Okanoya Emotional Information Project, JST-ERATO, Japan; Emotional Information Joint Research Laboratory, RIKEN Brain Science Institute, Japan.
| |
Collapse
|
41
|
Kubota T, Miyake K, Hariya N, Mochizuki K. Epigenetics as a basis for diagnosis of neurodevelopmental disorders: challenges and opportunities. Expert Rev Mol Diagn 2014; 14:685-97. [DOI: 10.1586/14737159.2014.925805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Adachi M, Monteggia LM. Decoding transcriptional repressor complexes in the adult central nervous system. Neuropharmacology 2014; 80:45-52. [PMID: 24418103 PMCID: PMC3984594 DOI: 10.1016/j.neuropharm.2013.12.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/18/2013] [Accepted: 12/30/2013] [Indexed: 12/27/2022]
Abstract
Cells maintain precise gene expression by balancing transcriptional activation and repression. While much work has focused on elucidating transcriptional activation in the central nervous system (CNS), little is known about transcriptional repression. One means to repress gene expression is to initiate binding of transcription factors to DNA, which then recruit co-repressors as well as other accessory proteins, forming a multi-protein repressor complex. These multi-protein repressor complexes include histone modifying enzymes that trigger processes such as histone acetylation, methylation, and ubiquitylation, altering chromatin structures to impact gene expression. Within these complexes transcriptional repressor proteins per se do not exhibit enzymatic reactions to remodel chromatin structure, whereas histone modifying enzymes lack intrinsic DNA binding activity but have an ability to process post-translational modifications on histones. Thus, the mutual association between transcriptional repressors and histone modifying enzymes is essential to sculpt chromatin to favor transcriptional repression and down regulate gene expression. Additionally, co-repressors are integral components in the context of gene repression as they bridge the association of transcriptional repressors and histone modifying enzymes. In this review, we will discuss the roles of some of the major components of these repressor complex in the CNS as well as their cellular functions that may underlie fundamental behavior in animals.
Collapse
Affiliation(s)
- Megumi Adachi
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9111, USA
| | - Lisa M Monteggia
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9111, USA.
| |
Collapse
|
43
|
Hirabayashi T, Yagi T. Protocadherins in neurological diseases. ADVANCES IN NEUROBIOLOGY 2014; 8:293-314. [PMID: 25300142 DOI: 10.1007/978-1-4614-8090-7_13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cadherins were originally isolated as calcium-dependent cell adhesion molecules and are characterized by their cadherin motifs in the extracellular domain. In vertebrates, including humans, there are more than 100 different cadherin-related genes, which constitute the cadherin superfamily. The protocadherin (Pcdh) family comprises a large subgroup within the cadherin superfamily. The Pcdhs are divided into clustered and non-clustered Pcdhs, based on their genomic structure. Almost all the Pcdh genes are expressed widely in the brain and play important roles in brain development and in the regulation of brain function. This chapter presents an overview of Pcdh family members with regard to their functions, knockout mouse phenotypes, and association with neurological diseases and tumors.
Collapse
|
44
|
Abstract
Rett syndrome (RTT) is an X-linked neurodevelopmental disease caused by MECP2 mutations. The MeCP2 protein was originally thought to function as a transcription repressor by binding to methylated CpG dinucleotides, but is now also thought to be a transcription activator. Recent studies suggest that MeCP2 is not only being expressed in neurons, but also in glial cells, which suggests a new paradigm for understanding the pathogenesis of RTT. It has also been demonstrated that reintroduction of MeCP2 into behaviorally affected Mecp2-null mice after birth rescues neurological symptoms, which indicates that epigenetic failures in RTT are reversible. Therefore, RTT may well be seen as a model disease that can be potentially treated by taking advantage of the reversibility of epigenetic phenomena in various congenital neurodevelopmental diseases that were previously thought to be untreatable.
Collapse
Affiliation(s)
- Takeo Kubota
- Department of Epigenetics Medicine, Interdisciplinary Graduate School of Medicine & Engineering, University of Yamanashi, Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Kunio Miyake
- Department of Epigenetics Medicine, Interdisciplinary Graduate School of Medicine & Engineering, University of Yamanashi, Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Takae Hirasawa
- Department of Epigenetics Medicine, Interdisciplinary Graduate School of Medicine & Engineering, University of Yamanashi, Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
45
|
Chen CP, Lee MJ, Chern SR, Wu PS, Su JW, Chen YT, Lee MS, Wang W. Prenatal diagnosis and molecular cytogenetic characterization of a de novo proximal interstitial deletion of chromosome 4p (4p15.2→p14). Gene 2013; 529:351-6. [PMID: 23948085 DOI: 10.1016/j.gene.2013.07.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/13/2013] [Accepted: 07/16/2013] [Indexed: 02/03/2023]
Abstract
We present prenatal diagnosis of de novo proximal interstitial deletion of chromosome 4p (4p15.2→p14) and molecular cytogenetic characterization of the deletion using uncultured amniocytes. We review the phenotypic abnormalities of previously reported patients with similar proximal interstitial 4p deletions, and we discuss the functions of the genes of RBPJ, CCKAR, STIM2, PCDH7 and ARAP2 that are deleted within this region.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Cocaine self-administration by rats is inhibited by cyclic GMP-elevating agents: involvement of epigenetic markers. Int J Neuropsychopharmacol 2013; 16:1587-97. [PMID: 23375146 DOI: 10.1017/s1461145712001630] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The C-type natriuretic peptide (CNP) exerts its action via stimulation of the cyclic GMP (cGMP) signalling pathway, which includes the activation of cGMP-dependent protein kinases. The pathway can also be activated by inhibitors of phosphodiesterases (PDE) that hydrolyse cGMP. The present report shows that activation of the cGMP pathway by CNP, by bromo-cGMP, a cell-permeant cGMP analogue, or by the PDE inhibitor zaprinast dose dependently reduces intravenous cocaine self-administration by rats. The effect was found when the compounds were injected in situ into the prefrontal cortex, but not when they were injected into the nucleus accumbens. A decrease in the number of cocaine infusions performed by rats was obtained under the fixed ratio-1 schedule of reinforcement as well as under a progressive ratio schedule, which evaluates the motivation of the animals for the drug. Decrease in cocaine self-administration was accompanied with reduced expression of the epigenetic markers methyl-CpG-binding protein 2 (MeCP2) and histone deacetylase 2 (HDAC2) in dopaminergic projection areas. An increase in the acetylation level of histone H3, but not of histone H4, was also noticed. Since MeCP2 and HDAC2 are known to modulate dynamic functions in the adult brain, such as synaptic plasticity, our results showing that activation of the cGMP signal transduction pathway decreased both cocaine intake and expression of the epigenetic markers strongly suggest that the MeCP2/HDAC2 complex is involved in the analysis of the reinforcing properties of cocaine in the prefrontal cortex.
Collapse
|
47
|
Li AM, Tian AX, Zhang RX, Ge J, Sun X, Cao XC. Protocadherin-7 induces bone metastasis of breast cancer. Biochem Biophys Res Commun 2013; 436:486-90. [PMID: 23751349 DOI: 10.1016/j.bbrc.2013.05.131] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 11/25/2022]
Abstract
Breast cancer had a propensity to metastasize to bone, resulting in serious skeletal complications associated with poor outcome. Previous study showed that Protocadherin-7 (PCDH7) play an important role in brain metastatic breast cancer, however, the role of PCDH7 in bone metastatic breast cancer has never been explored. In the present study, we found that PCDH7 expression was up-regulation in bone metastatic breast cancer tissues by real-time PCR and immunohistochemistry assays. Furthermore, suppression of PCDH7 inhibits breast cancer cell proliferation, migration, and invasion in vitro by MTT, scratch, and transwell assays. Most importantly, overexpression of PCDH7 promotes breast cancer cell proliferation and invasion in vitro, and formation of bone metastasis in vivo. These data provide an important insight into the role of PCDH7 in bone metastasis of breast cancer.
Collapse
Affiliation(s)
- Ai-Min Li
- Department of Orthopedics, The 5th Central Hospital of Tianjin, Tianjin, China
| | | | | | | | | | | |
Collapse
|
48
|
Huidobro C, Fernandez AF, Fraga MF. The role of genetics in the establishment and maintenance of the epigenome. Cell Mol Life Sci 2013; 70:1543-73. [PMID: 23474979 PMCID: PMC11113764 DOI: 10.1007/s00018-013-1296-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/19/2022]
Abstract
Epigenetic mechanisms play an important role in gene regulation during development. DNA methylation, which is probably the most important and best-studied epigenetic mechanism, can be abnormally regulated in common pathologies, but the origin of altered DNA methylation remains unknown. Recent research suggests that these epigenetic alterations could depend, at least in part, on genetic mutations or polymorphisms in DNA methyltransferases and certain genes encoding enzymes of the one-carbon metabolism pathway. Indeed, the de novo methyltransferase 3B (DNMT3B) has been recently found to be mutated in several types of cancer and in the immunodeficiency, centromeric region instability and facial anomalies syndrome (ICF), in which these mutations could be related to the loss of global DNA methylation. In addition, mutations in glycine-N-methyltransferase (GNMT) could be associated with a higher risk of hepatocellular carcinoma and liver disease due to an unbalanced S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratio, which leads to aberrant methylation reactions. Also, genetic variants of chromatin remodeling proteins and histone tail modifiers are involved in genetic disorders like α thalassemia X-linked mental retardation syndrome, CHARGE syndrome, Cockayne syndrome, Rett syndrome, systemic lupus erythematous, Rubinstein-Taybi syndrome, Coffin-Lowry syndrome, Sotos syndrome, and facioescapulohumeral syndrome, among others. Here, we review the potential genetic alterations with a possible role on epigenetic factors and discuss their contribution to human disease.
Collapse
Affiliation(s)
- Covadonga Huidobro
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA-HUCA), University of Oviedo, Oviedo, Spain
| | - Agustin F. Fernandez
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA-HUCA), University of Oviedo, Oviedo, Spain
| | - Mario F. Fraga
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA-HUCA), University of Oviedo, Oviedo, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
49
|
Matsunaga E, Nambu S, Oka M, Okanoya K, Iriki A. Comparative analysis of protocadherin-11 X-linked expression among postnatal rodents, non-human primates, and songbirds suggests its possible involvement in brain evolution. PLoS One 2013; 8:e58840. [PMID: 23527036 PMCID: PMC3601081 DOI: 10.1371/journal.pone.0058840] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/07/2013] [Indexed: 02/02/2023] Open
Abstract
Background Protocadherin-11 is a cell adhesion molecule of the cadherin superfamily. Since, only in humans, its paralog is found on the Y chromosome, it is expected that protocadherin-11X/Y plays some role in human brain evolution or sex differences. Recently, a genetic mutation of protocadherin-11X/Y was reported to be associated with a language development disorder. Here, we compared the expression of protocadherin-11 X-linked in developing postnatal brains of mouse (rodent) and common marmoset (non-human primate) to explore its possible involvement in mammalian brain evolution. We also investigated its expression in the Bengalese finch (songbird) to explore a possible function in animal vocalization and human language faculties. Methodology/Principal Findings Protocadherin-11 X-linked was strongly expressed in the cerebral cortex, hippocampus, amygdala and brainstem. Comparative analysis between mice and marmosets revealed that in certain areas of marmoset brain, the expression was clearly enriched. In Bengalese finches, protocadherin-11 X-linked was expressed not only in nuclei of regions of the vocal production pathway and the tracheosyringeal hypoglossal nucleus, but also in areas homologous to the mammalian amygdala and hippocampus. In both marmosets and Bengalese finches, its expression in pallial vocal control areas was developmentally regulated, and no clear expression was seen in the dorsal striatum, indicating a similarity between songbirds and non-human primates. Conclusions/Significance Our results suggest that the enriched expression of protocadherin-11 X-linked is involved in primate brain evolution and that some similarity exists between songbirds and primates regarding the neural basis for vocalization.
Collapse
Affiliation(s)
- Eiji Matsunaga
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Japan.
| | | | | | | | | |
Collapse
|
50
|
Kahr I, Vandepoele K, van Roy F. Delta-protocadherins in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:169-92. [PMID: 23481195 DOI: 10.1016/b978-0-12-394311-8.00008-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The protocadherin family comprises clustered and nonclustered protocadherin genes. The nonclustered genes encode mainly δ-protocadherins, which deviate markedly from classical cadherins. They can be subdivided phylogenetically into δ0-protocadherins (protocadherin-20), δ1-protocadherins (protocadherin-1, -7, -9, and -11X/Y), and δ2-protocadherins (protocadherin-8, -10, -17, -18, and -19). δ-Protocadherins share a similar gene structure and are expressed as multiple alternative splice forms differing mostly in their cytoplasmic domains (CDs). Some δ-protocadherins reportedly show cell-cell adhesion properties. Individual δ-protocadherins appear to be involved in specific signaling pathways, as they interact with proteins such as TAF1/Set, TAO2β, Nap1, and the Frizzled-7 receptor. The spatiotemporally restricted expression of δ-protocadherins in various tissues and species and their functional analysis suggest that they play multiple, tightly regulated roles in vertebrate development. Furthermore, several δ-protocadherins have been implicated in neurological disorders and in cancers, highlighting the importance of scrutinizing their properties and their dysregulation in various pathologies.
Collapse
Affiliation(s)
- Irene Kahr
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
| | | | | |
Collapse
|