1
|
Best J, Kim R, Reed M, Nijhout HF. A mathematical model of melatonin synthesis and interactions with the circadian clock. Math Biosci 2024; 377:109280. [PMID: 39243938 DOI: 10.1016/j.mbs.2024.109280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/13/2024] [Indexed: 09/09/2024]
Abstract
A new mathematical model of melatonin synthesis in pineal cells is created and connected to a slightly modified previously created model of the circadian clock in the suprachiasmatic nucleus (SCN). The SCN influences the production of melatonin by upregulating two key enzymes in the pineal. The melatonin produced enters the blood and the cerebrospinal fluid and thus the SCN, influencing the circadian clock. We show that the model of melatonin synthesis corresponds well with extant experimental data and responds similarly to clinical experiments on bright light in the middle of the night. Melatonin is widely used to treat jet lag and sleep disorders. We show how the feedback from the pineal to the SCN causes phase resetting of the circadian clock. Melatonin doses early in the evening advance the clock and doses late at night delay the clock with a dead zone in between where the phase of the clock does not change.
Collapse
Affiliation(s)
- Janet Best
- Department of Mathematics, The Ohio State University, 231 W. 18th Ave., Columbus, 43210, OH, USA.
| | - Ruby Kim
- Department of Mathematics, University of Michigan, 2074 East Hall, 530 Church St., Ann Arbor, 48109, MI, USA
| | - Michael Reed
- Department of Mathematics, Duke University, 120 Science Drive, Campus box 90338, Durham, 27708, NC, USA
| | - H Frederik Nijhout
- Department of Biology, Duke University, Biological Sciences Building, Campus box 90320, Durham, 27708, NC, USA
| |
Collapse
|
2
|
Janoski JR, Aiello I, Lundberg CW, Finkielstein CV. Circadian clock gene polymorphisms implicated in human pathologies. Trends Genet 2024; 40:834-852. [PMID: 38871615 DOI: 10.1016/j.tig.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024]
Abstract
Circadian rhythms, ~24 h cycles of physiological and behavioral processes, can be synchronized by external signals (e.g., light) and persist even in their absence. Consequently, dysregulation of circadian rhythms adversely affects the well-being of the organism. This timekeeping system is generated and sustained by a genetically encoded endogenous mechanism composed of interlocking transcriptional/translational feedback loops that generate rhythmic expression of core clock genes. Genome-wide association studies (GWAS) and forward genetic studies show that SNPs in clock genes influence gene regulation and correlate with the risk of developing various conditions. We discuss genetic variations in core clock genes that are associated with various phenotypes, their implications for human health, and stress the need for thorough studies in this domain of circadian regulation.
Collapse
Affiliation(s)
- Jesse R Janoski
- Integrated Cellular Responses Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Ignacio Aiello
- Integrated Cellular Responses Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - Clayton W Lundberg
- Integrated Cellular Responses Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Academy of Integrated Sciences, College of Science, Virginia Tech, Blacksburg, VA, USA
| | - Carla V Finkielstein
- Integrated Cellular Responses Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA; Molecular Diagnostics Laboratory, Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA; Academy of Integrated Sciences, College of Science, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
3
|
Li DD, Zhou T, Gao J, Wu GL, Yang GR. Circadian rhythms and breast cancer: from molecular level to therapeutic advancements. J Cancer Res Clin Oncol 2024; 150:419. [PMID: 39266868 PMCID: PMC11393214 DOI: 10.1007/s00432-024-05917-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND AND OBJECTIVES Circadian rhythms, the endogenous biological clocks that govern physiological processes, have emerged as pivotal regulators in the development and progression of breast cancer. This comprehensive review delves into the intricate interplay between circadian disruption and breast tumorigenesis from multifaceted perspectives, encompassing biological rhythms, circadian gene regulation, tumor microenvironment dynamics, and genetic polymorphisms. METHODS AND RESULTS Epidemiological evidence underscores the profound impact of external factors, such as night shift work, jet lag, dietary patterns, and exercise routines, on breast cancer risk and progression through the perturbation of circadian homeostasis. The review elucidates the distinct roles of key circadian genes, including CLOCK, BMAL1, PER, and CRY, in breast cancer biology, highlighting their therapeutic potential as molecular targets. Additionally, it investigates how circadian rhythm dysregulation shapes the tumor microenvironment, fostering epithelial-mesenchymal transition, chronic inflammation, and immunosuppression, thereby promoting tumor progression and metastasis. Furthermore, the review sheds light on the association between circadian gene polymorphisms and breast cancer susceptibility, paving the way for personalized risk assessment and tailored treatment strategies. CONCLUSIONS Importantly, it explores innovative therapeutic modalities that harness circadian rhythms, including chronotherapy, melatonin administration, and traditional Chinese medicine interventions. Overall, this comprehensive review emphasizes the critical role of circadian rhythms in the pathogenesis of breast cancer and highlights the promising prospects for the development of circadian rhythm-based interventions to enhance treatment efficacy and improve patient outcomes.
Collapse
Affiliation(s)
- Dou-Dou Li
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Teng Zhou
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Gao
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Guan-Lin Wu
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Guang-Rui Yang
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| |
Collapse
|
4
|
Zakic T, Pekovic-Vaughan V, Cvoro A, Korac A, Jankovic A, Korac B. Redox and metabolic reprogramming in breast cancer and cancer-associated adipose tissue. FEBS Lett 2024; 598:2106-2134. [PMID: 38140817 DOI: 10.1002/1873-3468.14794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Redox and metabolic processes are tightly coupled in both physiological and pathological conditions. In cancer, their integration occurs at multiple levels and is characterized by synchronized reprogramming both in the tumor tissue and its specific but heterogeneous microenvironment. In breast cancer, the principal microenvironment is the cancer-associated adipose tissue (CAAT). Understanding how the redox-metabolic reprogramming becomes coordinated in human breast cancer is imperative both for cancer prevention and for the establishment of new therapeutic approaches. This review aims to provide an overview of the current knowledge of the redox profiles and regulation of intermediary metabolism in breast cancer while considering the tumor and CAAT of breast cancer as a unique Warburg's pseudo-organ. As cancer is now recognized as a systemic metabolic disease, we have paid particular attention to the cell-specific redox-metabolic reprogramming and the roles of estrogen receptors and circadian rhythms, as well as their crosstalk in the development, growth, progression, and prognosis of breast cancer.
Collapse
Affiliation(s)
- Tamara Zakic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Vanja Pekovic-Vaughan
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, William Henry Duncan Building, University of Liverpool, UK
| | | | | | - Aleksandra Jankovic
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Bato Korac
- Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Serbia
- Faculty of Biology, University of Belgrade, Serbia
| |
Collapse
|
5
|
Xia H, Zhan Y, Wang L, Wang X. Exploring the interplay between circadian rhythms and prostate cancer: insights into androgen receptor signaling and therapeutic opportunities. Front Cell Dev Biol 2024; 12:1421204. [PMID: 39011396 PMCID: PMC11246886 DOI: 10.3389/fcell.2024.1421204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
Circadian rhythm disruption is closely related to increased incidence of prostate cancer. Incorporating circadian rhythms into the study of prostate cancer pathogenesis can provide a more comprehensive understanding of the causes of cancer and offer new options for precise treatment. Therefore, this article comprehensively summarizes the epidemiology of prostate cancer, expounds the contradictory relationship between circadian rhythm disorders and prostate cancer risk, and elucidates the relationship between circadian rhythm regulators and the incidence of prostate cancer. Importantly, this article also focuses on the correlation between circadian rhythms and androgen receptor signaling pathways, as well as the applicability of time therapy in prostate cancer. This may prove significant in enhancing the clinical treatment of prostate cancer.
Collapse
Affiliation(s)
- Hongyan Xia
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yang Zhan
- National Engineering Laboratory for AIDS Vaccine, College of Life Sciences, Jilin University, Changchun, China
| | - Li Wang
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Xiaohui Wang
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Kim SY, Ryu S, Jhon M, Kang HJ, Lee JY, Kim JM, Shin IS, Shim HJ, Hwang JE, Bae WK, Choi HW, Shin MG, Kim SW. The moderating role of circadian gene polymorphisms in the relationship between sleep disturbance and circulating lymphocyte subsets in colorectal cancer patients. J Psychosom Res 2024; 177:111562. [PMID: 38113795 DOI: 10.1016/j.jpsychores.2023.111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
AIM We investigated the impact of sleep disturbance on immune status in colorectal cancer (CRC) patients with consideration of the moderating role of circadian clock gene polymorphisms. METHODS A prospective longitudinal study design was used to collect information regarding sleep disturbance. Blood samples for immunologic assays were obtained the day before the first (baseline) and last cycles of 5-fluorouracil, leucovorin, and oxaliplatin (FOLFOX) chemotherapy. Clinical sleep disturbance was compared between the two-time points using the Pittsburgh Sleep Quality Index (PSQI) global score. We analysed single-nucleotide polymorphisms in rs2278749, rs3749474, rs2291738, rs17031614, and rs2287161. The dependent variables included changes in the percentages of CD4+, CD8+, CD19+, and CD16/56+ lymphocytes between the two-time points. The results were analysed using moderated regression analysis; the p-values were adjusted using the false discovery rate. RESULTS Among the 104 patients, no significant dyadic associations were observed between changes in lymphocyte percentages and the PSQI global score. However, the moderated regression analysis revealed five significant associations (rs2287161 with CD8+, rs2278749 and rs2291738 with CD19+, and rs17031614 with CD4+ and CD16/56+ lymphocytes). The inclusion of each interaction resulted in a significant increase (5.7-10.7%) in the variance explained by changes in lymphocyte percentage. CONCLUSION Patients with specific circadian gene allele types may be more susceptible to immune dysregulation when experiencing sleep disturbances. Considering that sleep disturbance is a modifiable factor that can impact immune regulation, it is essential to prioritise the management of sleep disturbances in CRC patients receiving FOLFOX chemotherapy.
Collapse
Affiliation(s)
- Seon-Young Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea; Mental Health Clinic, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Seunghyong Ryu
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Min Jhon
- Mental Health Clinic, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Hee-Ju Kang
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ju-Yeon Lee
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jae-Min Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Il-Seon Shin
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hyun-Jeong Shim
- Department of Hemato-Oncology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jun Eul Hwang
- Department of Hemato-Oncology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Woo Kyun Bae
- Department of Hemato-Oncology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hyun-Woo Choi
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Myung Geun Shin
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Republic of Korea.
| |
Collapse
|
7
|
Shi Y, Wu L, Ji X, Li Y, Zhang Z. Relationship Between Breast Cancer Risk and Polymorphisms in CLOCK Gene: A Systematic Review and Meta-Analysis. Biochem Genet 2023; 61:2348-2362. [PMID: 37036639 PMCID: PMC10665245 DOI: 10.1007/s10528-023-10372-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/27/2023] [Indexed: 04/11/2023]
Abstract
Previous studies found that the circadian clock gene participated in the genesis and development of breast cancer. However, research findings on the relationship between polymorphisms in the CLOCK gene and breast cancer risk were inconsistent. This study performed a meta-analysis of the association between CLOCK gene polymorphisms and breast cancer risk. PubMed, Cochrane Library, and Embase databases were electronically searched to collect studies on the association between CLOCK gene polymorphisms and breast cancer risk from inception to February 14, 2022. The quality of the included literature was assessed using the Newcastle-Ottawa Scale. For statistical analysis, odds ratio (OR) and 95% confidence intervals (CIs) were calculated using STATA 14.0. In addition, publication bias was performed by the funnel diagram and the Harbord's regression test. And sensitivity analysis was assessed by the trim and fill method. A total of 6 eligible studies, including 10,164 subjects (5488 breast cancer cases and 4676 controls), were screened in this meta-analysis. Though we did not find a significant association between the polymorphisms in the overall CLOCK gene with breast cancer risk [OR (95%CI) = 0.98 (0.96, 1.01), P = 0.148], we found that compared with T/T types of rs3749474 in CLOCK, T/C and C/C types of rs3749474 were associated with lower risk of breast cancer [OR (95%CI) = 0.93 (0.88, 0.98), P = 0.003]. The sensitivity analysis confirmed the robustness of the results. The funnel plot showed no significant publication bias. Polymorphisms in the CLOCK gene might be associated with breast cancer risk. More studies are needed to confirm the conclusion.
Collapse
Affiliation(s)
- Yi Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Lixing Wu
- Ningjin Hospital of Chinese Medicine, Shandong, China
| | - Xuenian Ji
- Beijing University of Chinese Medicine, Beijing, China
| | - Yunru Li
- Beijing University of Chinese Medicine, Beijing, China
| | | |
Collapse
|
8
|
Webber DM, Li M, MacLeod SL, Tang X, Levy JW, Karim MA, Erickson SW, Hobbs CA. Gene-Folic Acid Interactions and Risk of Conotruncal Heart Defects: Results from the National Birth Defects Prevention Study. Genes (Basel) 2023; 14:genes14010180. [PMID: 36672920 PMCID: PMC9859210 DOI: 10.3390/genes14010180] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Conotruncal heart defects (CTDs) are heart malformations that affect the cardiac outflow tract and typically cause significant morbidity and mortality. Evidence from epidemiological studies suggests that maternal folate intake is associated with a reduced risk of heart defects, including CTD. However, it is unclear if folate-related gene variants and maternal folate intake have an interactive effect on the risk of CTDs. In this study, we performed targeted sequencing of folate-related genes on DNA from 436 case families with CTDs who are enrolled in the National Birth Defects Prevention Study and then tested for common and rare variants associated with CTD. We identified risk alleles in maternal MTHFS (ORmeta = 1.34; 95% CI 1.07 to 1.67), maternal NOS2 (ORmeta = 1.34; 95% CI 1.05 to 1.72), fetal MTHFS (ORmeta = 1.35; 95% CI 1.09 to 1.66), and fetal TCN2 (ORmeta = 1.38; 95% CI 1.12 to 1.70) that are associated with an increased risk of CTD among cases without folic acid supplementation. We detected putative de novo mutations in genes from the folate, homocysteine, and transsulfuration pathways and identified a significant association between rare variants in MGST1 and CTD risk. Results suggest that periconceptional folic acid supplementation is associated with decreased risk of CTD among individuals with susceptible genotypes.
Collapse
Affiliation(s)
- Daniel M. Webber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ming Li
- Department of Epidemiology and Biostatistics, Indiana University at Bloomington, Bloomington, IN 47405, USA
| | - Stewart L. MacLeod
- Division of Birth Defects Research, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Xinyu Tang
- Biostatistics Program, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Joseph W. Levy
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA
| | - Mohammad A. Karim
- Department of Child Health, College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
- Department of Neurology, Sections on Neurodevelopmental Disorders, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Stephen W. Erickson
- Center for Genomics in Public Health and Medicine, RTI International, Research Triangle Park, NC 27709, USA
| | - Charlotte A. Hobbs
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital, San Diego, CA 92123, USA
- Correspondence:
| | | |
Collapse
|
9
|
Yang J, Hu Y, Zhang B, Liang X, Li X. The JMJD Family Histone Demethylases in Crosstalk Between Inflammation and Cancer. Front Immunol 2022; 13:881396. [PMID: 35558079 PMCID: PMC9090529 DOI: 10.3389/fimmu.2022.881396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Inflammation has emerged as a key player in regulating cancer initiation, progression, and therapeutics, acting as a double edged sword either facilitating cancer progression and therapeutic resistance or inducing anti-tumor immune responses. Accumulating evidence has linked the epigenetic modifications of histones to inflammation and cancer, and histone modifications-based strategies have shown promising therapeutic potentials against cancer. The jumonji C domain-containing (JMJD) family histone demethylases have exhibited multiple regulator functions in inflammatory processes and cancer development, and a number of therapeutic strategies targeting JMJD histone demethylases to modulate inflammatory cells and their products have been successfully evaluated in clinical or preclinical tumor models. This review summarizes current understanding of the functional roles and mechanisms of JMJD histone demethylases in crosstalk between inflammation and cancer, and highlights recent clinical and preclinical progress on harnessing the JMJD histone demethylases to regulate cancer-related inflammation for future cancer therapeutics.
Collapse
Affiliation(s)
- Jia Yang
- Department of Gynecology and Obstetrics and Pediatric Nephrology Nursing, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yuan Hu
- Department of Gynecology and Obstetrics and Pediatric Nephrology Nursing, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Binjing Zhang
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Liang
- Department of Gynecology and Obstetrics and Pediatric Nephrology Nursing, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Xin Li
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Nikolaev G, Robeva R, Konakchieva R. Membrane Melatonin Receptors Activated Cell Signaling in Physiology and Disease. Int J Mol Sci 2021; 23:ijms23010471. [PMID: 35008896 PMCID: PMC8745360 DOI: 10.3390/ijms23010471] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
The pineal hormone melatonin has attracted great scientific interest since its discovery in 1958. Despite the enormous number of basic and clinical studies the exact role of melatonin in respect to human physiology remains elusive. In humans, two high-affinity receptors for melatonin, MT1 and MT2, belonging to the family of G protein-coupled receptors (GPCRs) have been cloned and identified. The two receptor types activate Gi proteins and MT2 couples additionally to Gq proteins to modulate intracellular events. The individual effects of MT1 and MT2 receptor activation in a variety of cells are complemented by their ability to form homo- and heterodimers, the functional relevance of which is yet to be confirmed. Recently, several melatonin receptor genetic polymorphisms were discovered and implicated in pathology-for instance in type 2 diabetes, autoimmune disease, and cancer. The circadian patterns of melatonin secretion, its pleiotropic effects depending on cell type and condition, and the already demonstrated cross-talks of melatonin receptors with other signal transduction pathways further contribute to the perplexity of research on the role of the pineal hormone in humans. In this review we try to summarize the current knowledge on the membrane melatonin receptor activated cell signaling in physiology and pathology and their relevance to certain disease conditions including cancer.
Collapse
Affiliation(s)
- Georgi Nikolaev
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1504 Sofia, Bulgaria;
- Correspondence:
| | - Ralitsa Robeva
- Department of Endocrinology, Faculty of Medicine, Medical University, 1431 Sofia, Bulgaria;
| | - Rossitza Konakchieva
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 1504 Sofia, Bulgaria;
| |
Collapse
|
11
|
Peng LU, Bai G, Pang Y. Roles of NPAS2 in circadian rhythm and disease. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1257-1265. [PMID: 34415290 DOI: 10.1093/abbs/gmab105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 11/14/2022] Open
Abstract
NPAS2, a circadian rhythm gene encoding the neuronal PAS domain protein 2 (NPAS2), has received widespread attention because of its complex functions in cells and diverse roles in disease progression, especially tumorigenesis. NPAS2 binds with DNA at E-box sequences and forms heterodimers with another circadian protein, brain and muscle ARNT-like protein 1 (BMAL1). Nucleotide variations of the NPAS2 gene have been shown to influence the overall survival and risk of death of cancer patients, and differential expression of NPAS2 has been linked to patient outcomes in breast cancer, lung cancer, non-Hodgkin's lymphoma, and other diseases. Here, we review the latest advances in our understanding of NPAS2 with the aim of drawing attention to its potential clinical applications and prospects.
Collapse
Affiliation(s)
- L u Peng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Gaigai Bai
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yingxin Pang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
12
|
HINOURA TAKUJI, MUKAI SHOICHIRO, KAMOTO TOSHIYUKI, KURODA YOSHIKI. PER3 polymorphisms and their association with prostate cancer risk in Japanese men. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2021; 62:E489-E495. [PMID: 34604590 PMCID: PMC8451342 DOI: 10.15167/2421-4248/jpmh2021.62.2.1865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/18/2021] [Indexed: 12/24/2022]
Abstract
Introduction Prostate cancer (PCa) is one of the most common cancers affecting men globally. Although PER3 has been suggested as a risk factor for cancer development, there are few reports elucidating the relationship between PER3 and PCa. We investigated the association between PER3 polymorphisms (rs2640908 and VNTR) and susceptibility to PCa in the Japanese population. Methods Eighty three patients with PCa and 122 controls participated in this study. We analyzed rs2640908 and VNTR polymorphisms by using PCR-Restriction Fragment Length Polymorphism (PCR-RFLP). Results Compared to the C/C genotype with the rs2640908 polymorphism, the T/T (OR: 0.35, 95% CI: 0.15-0.81, P = 0.02) and C/T + T/T (OR: 0.46, 95% CI: 0.24-0.88, P = 0.02) genotypes had a significantly lower risk of PCa. TT (OR: 0.29, 95% CI: 0.10-0.77, P = 0.02) and CT + TT (OR: 0.47, 95% CI: 0.23-0.97, P = 0.04) also had significant protection against PCa in the smoker group. Significantly, we observed an association between smoking and rs2640908 polymorphism in this study. However, no association between the VNTR polymorphisms and PCa was detected. Conclusions Our results suggest that PER3 rs2640908 polymorphisms influence an individual's susceptibility to PCa.
Collapse
Affiliation(s)
- TAKUJI HINOURA
- Department of Public Health, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - SHOICHIRO MUKAI
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - TOSHIYUKI KAMOTO
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - YOSHIKI KURODA
- Department of Public Health, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
- Correspondence: Yoshiki Kuroda, Department of Public Health, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake-cho, Miyazaki city, Miyazaki 889-1692, Japan - Tel.: +81-985-85-0874 - Fax: +81-985-85-6258 - E-mail:
| |
Collapse
|
13
|
Lee CC, Kuo YC, Hu JM, Chang PK, Sun CA, Yang T, Li CW, Chen CY, Lin FH, Hsu CH, Chou YC. MTNR1B polymorphisms with CDKN2A and MGMT methylation status are associated with poor prognosis of colorectal cancer in Taiwan. World J Gastroenterol 2021; 27:5737-5752. [PMID: 34629798 PMCID: PMC8473598 DOI: 10.3748/wjg.v27.i34.5737] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/30/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Identifying novel colorectal cancer (CRC) prognostic biomarkers is crucial to helping clinicians make appropriate therapy decisions. Melatonin plays a major role in managing the circadian rhythm and exerts oncostatic effects on different kinds of tumours.
AIM To explore the relationship between MTNR1B single-nucleotide polymorphism (SNPs) combined with gene hypermethylation and CRC prognosis.
METHODS A total of 94 CRC tumour tissues were investigated. Genotyping for the four MTNR1B SNPs (rs1387153, rs2166706, rs10830963, and rs1447352) was performed using multiplex polymerase chain reaction. The relationships between the MTNR1B SNPs and CRC 5-year overall survival (OS) was assessed by calculating hazard ratios with 95%CIs.
RESULTS All SNPs (rs1387153, rs2166706, rs10830963, and rs1447352) were correlated with decreased 5-year OS. In stratified analysis, rs1387153, rs10830963, and rs1447352 risk genotype combined with CDKN2A and MGMT methylation status were associated with 5-year OS. A strong cumulative effect of the four polymorphisms on CRC prognosis was observed. Four haplotypes of MTNR1B SNPs were also associated with the 5-year OS. MTNR1B SNPs combined with CDKN2A and MGMT gene methylation status could be used to predict shorter CRC survival.
CONCLUSION The novel genetic biomarkers combined with epigenetic biomarkers may be predictive tool for CRC prognosis and thus could be used to individualise treatment for patients with CRC.
Collapse
Affiliation(s)
- Chia-Cheng Lee
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Medical Informatics Office, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Yu-Cheng Kuo
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| | - Je-Ming Hu
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Pi-Kai Chang
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chien-An Sun
- Department of Public Health, College of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
- Big Data Research Center, College of Medicine, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| | - Tsan Yang
- Department of Health Business Administration, Meiho University, Pingtung 91202, Taiwan
| | - Chuan-Wang Li
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 237, Taiwan
| | - Chao-Yang Chen
- Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Fu-Huang Lin
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| | - Chih-Hsiung Hsu
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| | - Yu-Ching Chou
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
14
|
Fagundo-Rivera J, Allande-Cussó R, Ortega-Moreno M, García-Iglesias JJ, Romero A, Ruiz-Frutos C, Gómez-Salgado J. Implications of Lifestyle and Occupational Factors on the Risk of Breast Cancer in Shiftwork Nurses. Healthcare (Basel) 2021; 9:649. [PMID: 34070908 PMCID: PMC8228409 DOI: 10.3390/healthcare9060649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 11/21/2022] Open
Abstract
Shift work that involves circadian disruption has been highlighted as a likely carcinogenic factor for breast cancer in humans. Also, unhealthy lifestyle habits observed in night work nurses could be causally related to an increase in the incidence of estrogen-positive breast tumours in this population. Assessing baseline risk of breast cancer in nurses is essential. The objective of this study was to analyze the risk of breast cancer that nurses had in relation to their lifestyle and labour factors related to shift work. A cross-sectional descriptive study through a questionnaire about sociodemographic variables, self-perception of health, and working life was designed. The sample consisted of 966 nurses. The relationship between variables was tested. A binary logistic regression and a classification and regression tree were performed. The most significant labour variables in relation to the risk of breast cancer were the number of years worked (more than 16 years; p < 0.01; OR = 8.733, 95% CI = 2.811, 27.134) and the total years performing more than 3 nights per month (10 or more years; p < 0.05; OR = 2.294, 95% CI = 1.008, 5.220). Also, the nights worked throughout life (over 500; OR = 4.190, 95% CI = 2.118, 8.287) were significant in the analysis. Nurses who had or ever had breast cancer valued their self-perceived health more negatively (p < 0.001) and referred a lower quality of sleep (p < 0.001) than the non-cases nurses. The occupational factors derived from night work could have several impacts on nurses' health and their family-work balance. Promoting healthy lifestyles, informing about shift work risks, and adjusting shift work schedules are critical methods to decrease the possible effects of circadian disruption in nurses.
Collapse
Affiliation(s)
- Javier Fagundo-Rivera
- Health Sciences Doctorate School, University of Huelva, 21071 Huelva, Spain;
- Centro Universitario de Enfermería Cruz Roja, University of Seville, 41009 Seville, Spain
- Escola Superior de Saúde, Universidade Atlântica, 2730-036 Barcarena, Portugal
| | | | - Mónica Ortega-Moreno
- Department of Economy, Faculty of Labour Sciences, University of Huelva, 21007 Huelva, Spain;
| | - Juan Jesús García-Iglesias
- Department of Sociology, Social Work and Public Health, Faculty of Labour Sciences, University of Huelva, 21007 Huelva, Spain; (C.R.-F.); (J.G.-S.)
| | - Adolfo Romero
- Nursing and Podiatry Department, Health Sciences School, University of Malaga, Instituto de Investigación Biomédica de Málaga (IBIMA), 29071 Málaga, Spain
| | - Carlos Ruiz-Frutos
- Department of Sociology, Social Work and Public Health, Faculty of Labour Sciences, University of Huelva, 21007 Huelva, Spain; (C.R.-F.); (J.G.-S.)
- Safety and Health Postgraduate Programme, Espíritu Santo University, Guayaquil 092301, Ecuador
| | - Juan Gómez-Salgado
- Department of Sociology, Social Work and Public Health, Faculty of Labour Sciences, University of Huelva, 21007 Huelva, Spain; (C.R.-F.); (J.G.-S.)
- Safety and Health Postgraduate Programme, Espíritu Santo University, Guayaquil 092301, Ecuador
| |
Collapse
|
15
|
Dmitrzak-Weglarz M, Banach E, Bilska K, Narozna B, Szczepankiewicz A, Reszka E, Jablonska E, Kapelski P, Skibinska M, Pawlak J. Molecular Regulation of the Melatonin Biosynthesis Pathway in Unipolar and Bipolar Depression. Front Pharmacol 2021; 12:666541. [PMID: 33981243 PMCID: PMC8107693 DOI: 10.3389/fphar.2021.666541] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Melatonin is a neurohormone that maintains the circadian rhythms of the body. By regulating the secretion of other hormones and neurotransmitters, it acts as a pleiotropic modulator that affects, for example, reproductive, immune, cardiovascular, sleep, and wake systems and mood. Thus, synthetic melatonin has become an essential component in the treatment of depressive disorders. Although we know the pathway of melatonin action in the brain, we lack comprehensive cross-sectional studies on the periphery of depressed patients. This study aimed to comprehensively analyze the differences between healthy control subjects (n = 84) and unipolar and bipolar depression patients (n = 94), including an analysis of the melatonin pathway at the level of the genes and serum biomarkers. An innovative approach is a pilot study based on gene expression profiling carried out on clinical and cell culture models using agomelatine and melatonin. We confirmed the melatonin biosynthesis pathway's molecular regulation dysfunctions, with a specific pattern for unipolar and bipolar depression, at the AANAT gene, its polymorphisms (rs8150 and rs3760138), and examined the serum biomarkers (serotonin, AANAT, ASMT, and melatonin). The biological pathway analysis uncovered pathways and genes that were uniquely altered after agomelatine treatment in a clinical model and melatonin treatment in a cell culture model. In both models, we confirmed the immunomodulatory effect of melatonin agents in depression.
Collapse
Affiliation(s)
| | - Ewa Banach
- Laboratory of Neurobiology, Department of Molecular and Cellular Neurobiology, Nencki Institute, Warsaw, Poland
| | - Karolina Bilska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Beata Narozna
- Laboratory of Molecular and Cell Biology, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksandra Szczepankiewicz
- Laboratory of Molecular and Cell Biology, Department of Pediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Edyta Reszka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Ewa Jablonska
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Paweł Kapelski
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Maria Skibinska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
16
|
Brito-Marcelino A, Duarte-Tavares RJ, Marcelino KB, Silva-Neto JA. Breast cancer and occupational exposures: an integrative review of the literature. Rev Bras Med Trab 2021; 18:488-496. [PMID: 33688331 PMCID: PMC7934163 DOI: 10.47626/1679-4435-2020-595] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 06/29/2020] [Indexed: 11/20/2022] Open
Abstract
Occupational factors can lead to breast cancer, though the relationship between these variables is not well established. The objective of this study was to search the relevant literature for information on the association between breast cancer and exposure to occupational risk factors. For that purpose, electronic databases were searched using the following keywords: breast cancer and occupational exposures. A total of 40 articles published in the 10-year period from 2009 to 2019 were included in this review. Workers exposed to metals such as cadmium, chemical products, radiation and night work were more susceptible to breast cancer. The findings showed significant evidence to support an association between breast cancer and some chemical products, ionizing radiation and night work. However, most studies have difficulty establishing a causal relationship between these variables, pointing to the need for further investigation of these issues.
Collapse
|
17
|
Benna C, Rajendran S, Spiro G, Menin C, Dall'Olmo L, Rossi CR, Mocellin S. Gender-specific associations between polymorphisms of the circadian gene RORA and cutaneous melanoma susceptibility. J Transl Med 2021; 19:57. [PMID: 33549124 PMCID: PMC7866430 DOI: 10.1186/s12967-021-02725-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/28/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Melanoma is the deadliest of skin cancers and has an increasing annual incidence worldwide. It is a multi-factorial disease most likely arising from both genetic predisposition and environmental exposure to ultraviolet light. Genetic variability of the components of the biological circadian clock is recognized to be a risk factor for different type of cancers. Moreover, two variants of a clock gene, RORA, have been associated with melanoma patient's prognosis. Our aim is to test the hypothesis that specific single nucleotide polymorphisms (SNPs) of the circadian clock genes may significantly influence the predisposition to develop cutaneous melanoma or the outcome of melanoma patients. METHODS We genotyped 1239 subjects, 629 cases of melanoma and 610 healthy controls in 14 known SNPs of seven selected clock genes: AANAT, CLOCK, NPAS2, PER1, PER2, RORA, and TIMELESS. Genotyping was conducted by q-PCR. Multivariate logistic regression was employed for susceptibility of melanoma assessment, modeled additively. Subgroup analysis was performed by gender. For the female subgroup, a further discrimination was performed by age. For prognosis of melanoma assessment, multivariate Cox proportional hazard regression was employed. The Benjamini-Hochberg method was utilized as adjustment for multiple comparisons. RESULTS We identified two RORA SNPs statistically significant with respect to the association with melanoma susceptibility. Considering the putative role of RORA as a nuclear steroid hormone receptor, we conducted a subgroup analysis by gender. Interestingly, the RORA rs339972 C allele was associated with a decreased predisposition to develop melanoma only in the female subgroup (OR 0.67; 95% CI 0.51-0.88; P = 0.003) while RORA rs10519097 T allele was associated with a decreased predisposition to develop melanoma only in the male subgroup (OR 0.62; 95% CI 0.44-0.87; P = 0.005). Moreover, the RORA rs339972 C allele had a decreased susceptibility to develop melanoma only in females aged over 50 years old (OR 0.67; 95% CI 0.54-0.83; P = 0.0002). None of the studied SNPs were significantly associated with the prognosis. CONCLUSIONS Overall, we cannot ascertain that circadian pathway genetic variation is involved in melanoma susceptibility or prognosis. Nevertheless, we identified an interesting relationship between melanoma susceptibility and RORA polymorphisms acting in sex-specific manner and which is worth further future investigation.
Collapse
Affiliation(s)
- Clara Benna
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy. .,First Surgical Clinic, Azienda Ospedaliera Padova, Padova, Italy.
| | - Senthilkumar Rajendran
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Giovanna Spiro
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Chiara Menin
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology (IOV - IRCCS), Padova, Italy
| | - Luigi Dall'Olmo
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy.,Surgical Oncology Unit, Veneto Institute of Oncology (IOV-IRCCS), Padova, Italy
| | - Carlo Riccardo Rossi
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy.,Surgical Oncology Unit, Veneto Institute of Oncology (IOV-IRCCS), Padova, Italy
| | - Simone Mocellin
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy.,Surgical Oncology Unit, Veneto Institute of Oncology (IOV-IRCCS), Padova, Italy
| |
Collapse
|
18
|
Relationship between Night Shifts and Risk of Breast Cancer among Nurses: A Systematic Review. ACTA ACUST UNITED AC 2020; 56:medicina56120680. [PMID: 33321692 PMCID: PMC7764664 DOI: 10.3390/medicina56120680] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
Background and objectives: The incidence of breast cancer worldwide has increased in recent decades, accounting for 1 in 3 neoplasms in women. Besides, nurses are mainly represented by the female collective, most of them, undertaking working conditions with intensive rotative and night shifts due to the 24-h pace of work of this profession. The objective of this study was to assess the possible relationship between shift work, especially night-time work, and the development of breast cancer among nurses. Materials and Methods: A systematic review of the literature was carried out through the consultation of the following databases: Cochrane Plus Library, PubMed, CINAHL (Cumulative Index to Nursing and Allied Health Literature), Web of Science, ScienceDirect, Scopus, and Dialnet. Records were selected between 2010 and 2020, in Spanish and English, which covered the association between breast cancer diagnosed among nursing professionals and rotating night shifts. Results: A total of 12 studies were identified after critical reading. Most of the studies found an association between breast cancer and consecutive rotating night shifts prolonged over time. Among the associated factors, the alteration of the circadian rhythm influenced the expression of peripheral clock genes, which was the same as reproductive hormones. The risk of breast cancer in nurses increased during early adulthood and after 5 or more years with 6 or more consecutive nights. Conclusions: The different studies of this review show significant associations between breast cancer and prolonged rotating night shifts. Similarly, there is a relationship between the alterations in certain circadian rhythm markers (such as melatonin), epigenetic markers (such as telomeres), and breast cancer that would require more studies in order to corroborate these findings.
Collapse
|
19
|
Wendeu-Foyet MG, Cénée S, Koudou Y, Trétarre B, Rébillard X, Cancel-Tassin G, Cussenot O, Boland A, Olaso R, Deleuze JF, Blanché H, Lamy PJ, Mulot C, Laurent-Puig P, Truong T, Menegaux F. Circadian genes polymorphisms, night work and prostate cancer risk: Findings from the EPICAP study. Int J Cancer 2020; 147:3119-3129. [PMID: 32506468 DOI: 10.1002/ijc.33139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 11/10/2022]
Abstract
Over the past two decades, several studies have attempted to understand the hypothesis that disrupting the circadian rhythm may promote the development of cancer. Some have suggested that night work and some circadian genes polymorphisms are associated with cancer, including prostate cancer. Our study aims to test the hypothesis that prostate cancer risk among night workers may be modulated by genetic polymorphisms in the circadian pathway genes based on data from the EPICAP study, a population-based case-control study including 1511 men (732 cases/779 controls) with genotyped data. We estimated odds ratio (ORs) and P values of the association between prostate cancer and circadian gene variants using logistic regression models. We tested the interaction between circadian genes variants and night work indicators that were significantly associated with prostate cancer at pathway, gene and SNP levels. Analyses were also stratified by each of these night work indicators and by cancer aggressiveness. The circadian pathway was significantly associated with aggressive prostate cancer among night workers (P = .004), particularly for men who worked at night for <20 years (P = .0002) and those who performed long night shift (>10 hours, P = .001). At the gene level, we observed among night workers significant associations between aggressive prostate cancer and ARNTL, NPAS2 and RORA. At the SNP-level, no significant association was observed. Our findings provide some clues of a potential modulating effect of circadian genes in the relationship between night work and prostate cancer. Further investigation is warranted to confirm these findings and to better elucidate the biological pathways involved.
Collapse
Affiliation(s)
| | - Sylvie Cénée
- Université Paris-Saclay, UVSQ, Inserm, CESP, Villejuif, France
| | - Yves Koudou
- Université Paris-Saclay, UVSQ, Inserm, CESP, Villejuif, France
| | - Brigitte Trétarre
- Registre des Tumeurs de l'Hérault, EA 2415, ICM, Montpellier, France
| | | | - Géraldine Cancel-Tassin
- CeRePP, Hopital Tenon, Paris, France
- Sorbonne Université, GRC no. 5, ONCOTYPE-URO, AP-HP, Hôpital Tenon, Paris, France
| | - Olivier Cussenot
- CeRePP, Hopital Tenon, Paris, France
- Sorbonne Université, GRC no. 5, ONCOTYPE-URO, AP-HP, Hôpital Tenon, Paris, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Saint-Aubin, France
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Saint-Aubin, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Saint-Aubin, France
| | - Hélène Blanché
- Centre d'Etude du Polymorphisme Humain (CEPH), Fondation Jean Dausset, Paris, France
| | - Pierre-Jean Lamy
- Clinique Beau Soleil, Service Urologie, Montpellier, France
- Institut médical d'Analyse Génomique-Imagenome, Labosud, Montpellier, France
| | - Claire Mulot
- Université Paris Descartes, INSERM UMR-S1147 EPIGENETEC, Paris, France
| | | | - Thérèse Truong
- Université Paris-Saclay, UVSQ, Inserm, CESP, Villejuif, France
| | | |
Collapse
|
20
|
Taherzadeh-Soureshjani P, Chehelgerdi M. Algae-meditated route to cuprous oxide (Cu2O) nanoparticle: differential expression profile of MALAT1 and GAS5 LncRNAs and cytotoxic effect in human breast cancer. Cancer Nanotechnol 2020. [DOI: 10.1186/s12645-020-00066-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Abstract
Background
Breast cancer (BC), as the most widely recognized disease in women worldwide, represents about 30% of all cancers impacting women. This study was aimed to synthesize Cu2O nanoparticles from the cystoseira myrica algae (CM-Cu2O NPs) assess their antimicrobial activity against pathogenic bacteria and fungi. We evaluated the expression levels of lncRNAs (MALAT1 and GAS5) and apoptosis genes (p53, p27, bax, bcl2 and caspase3), their prognostic roles.
Methods
In this study, CM-Cu2O NPs synthesized by cystoseira myrica algae extraction used to evaluate its cytotoxicity and apoptotic properties on MDA-MB-231, SKBR3 and T-47D BC cell lines compared to HDF control cell line. The CM-Cu2O NPs was characterized by UV–Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Scanning electron microscopy (SEM). The antimicrobial activity of CM-Cu2O NPs was assessed against pathogenic bacteria, staphylococcus aureus (S. aureus) PTCC 1112 bacteria as a standard gram-positive bacteria and pseudomonas aeruginosa (P. aeruginosa) PTCC 1310 as a standard gram-negative bacterium. Expression profile of MALAT1 and GAS5 lncRNAs and apoptosis genes, i.e., p27, bax, bcl2 and caspase3 genes, were calculated utilizing qRT-PCR. The changes in the expression levels were determined using the DDCT method.
Results
MALAT1 was upregulated in MDA-MB-231, SKBR3 and T-47D BC (p < 0.01), while GAS5 was downregulated in SKBR3 and T-47D cell lines tested compared with HDF control cell line (p < 0.05) was found. The results revealed that, p27, bax and caspase3 were significantly upregulated in BC cell lines as compared with normal cell line. Bcl2 expression was also significantly increased in MDA-MB-231 and T47D cell lines compared with normal cell line, but bcl2 levels were downregulated in SKBR3 cell line.
Conclusions
Our results confirm the beneficial cytotoxic effects of green-synthesized CM-Cu2O NPs on BC cell lines. This nanoparticle decreased angiogenesis and induces apoptosis, so we conclude that CM-Cu2O NPs can be used as a supplemental drug in cancer treatments. Significantly, elevated circulating lncRNAs were demonstrated to be BC specific and could differentiate BC cell lines from the normal cell lines. It was demonstrated that lncRNAs used in this study and their expression profiles can be created as biomarkers for early diagnosis and prognosis of BC. Further studies utilizing patients would give recognizable identification of lncRNAs as key players in intercellular interactions.
Collapse
|
21
|
Chen G, Zhang J, Zhang L, Xiong X, Yu D, Zhang Y. Association analysis between chronic obstructive pulmonary disease and polymorphisms in circadian genes. PeerJ 2020; 8:e9806. [PMID: 32913680 PMCID: PMC7456532 DOI: 10.7717/peerj.9806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/03/2020] [Indexed: 11/20/2022] Open
Abstract
Background Circadian genes have been suggested to play an important role in lung pathology. However, it remains unknown whether polymorphisms of these genes are associated with chronic obstructive pulmonary disease (COPD). Here, we aimed to investigate the association of circadian genes polymorphisms with COPD in a case-control study of 477 COPD patient and 323 control Han Chinese persons. Methods Genotyping assays were carried out for nine single nucleotide polymorphisms (SNPs) from five circadian genes (PER3, CLOCK, RORB, BMAL1 and CRY2) that were previously identified in lung pathology. Age, sex, BMI and smoking status and comorbidities were recorded for all subjects. Results No significant association was found in all SNP sites in overall subjects and no significant difference was found in age, sex, smoking status stratification analysis. Discussion The findings of this investigation indicated the effect of circadian genes polymorphisms on COPD susceptibility may only be small and possibly dependent on the subject factors, such as age and sex.
Collapse
Affiliation(s)
- Guo Chen
- Department of Geriatrics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Cheng Du, China
| | - Jingwei Zhang
- Department of Laboratory Medicine, Chengdu Second People's Hospital, Cheng Du, China
| | - Lijuan Zhang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Cheng Du, China
| | - Xuan Xiong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Cheng Du, China
| | - Dongke Yu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Cheng Du, China
| | - Yuan Zhang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Cheng Du, China
| |
Collapse
|
22
|
Dun A, Zhao X, Jin X, Wei T, Gao X, Wang Y, Hou H. Association Between Night-Shift Work and Cancer Risk: Updated Systematic Review and Meta-Analysis. Front Oncol 2020; 10:1006. [PMID: 32656086 PMCID: PMC7324664 DOI: 10.3389/fonc.2020.01006] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Nightshift work introduces light at night and causes circadian rhythm among night workers, who are considered to be at increased risk of cancer. However, in the last 2 years, nine population-based studies reported insignificant associations between night-shift work and cancer risks. We aimed to conduct an updated systematic review and meta-analysis to ascertain the effect of night-shift work on the incidence of cancers. Methods: Our protocol was registered in PROSPERO and complied with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Embase, PubMed, and Web of Science databases were used to comprehensively search studies published up to May 31, 2019. The random-effect model (Der Simonian-Laird method) was carried out to combine the risk estimates of night-shift work for cancers. The dose-response meta-analysis was performed to verify whether the association was in a dose-dependent manner. Results: Our literature searching retrieved 1,660 publications. Included in the meta-analyses were 57 eligible studies with 8,477,849 participants (mean age 55 years; 2,560,886 men, 4,220,154 women, and 1,696,809 not mentioned). The pooled results showed that night-shift work was not associated with the risk of breast cancer (OR = 1.009, 95% CI = 0.984-1.033), prostate cancer (OR = 1.027, 95% CI = 0.982-1.071), ovarian cancer (OR = 1.027, 95% CI = 0.942-1.113), pancreatic cancer (OR = 1.007, 95% CI = 0.910-1.104), colorectal cancer (OR = 1.016, 95% CI = 0.964-1.068), non-Hodgkin's lymph (OR = 1.046, 95% CI = 0.994-1.098), and stomach cancer (OR = 1.064, 95% CI = 0.971-1.157), while night-shift work was associated with a reduction of lung cancer (OR = 0.949, 95% CI = 0.903-0.996), and skin cancer (OR = 0.916, 95% CI = 0.879-0.953). The dose-response meta-analysis found that cancer risk was not significantly elevated with the increased light exposure of night- shift work. Conclusion: This systematic review of 57 observational studies did not find an overall association between ever-exposure to night-shift work and the risk of breast, prostate ovarian, pancreatic, colorectal, non-Hodgkin's lymph, and stomach cancers.
Collapse
Affiliation(s)
- Aishe Dun
- School of Basic Medical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Xuan Zhao
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Xu Jin
- School of Basic Medical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Tao Wei
- School of Basic Medical Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Xiang Gao
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Youxin Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Haifeng Hou
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| |
Collapse
|
23
|
Rosa D, Terzoni S, Dellafiore F, Destrebecq A. Systematic review of shift work and nurses' health. Occup Med (Lond) 2020; 69:237-243. [PMID: 31132107 DOI: 10.1093/occmed/kqz063] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Nursing is characterized by a working articulation in shifts to ensure continuity of care throughout the 24 h. However, shift work and the resulting desynchronization of circadian rhythms may have adverse effects on nurses' health. AIMS To describe the effects of shift work and desynchronization of circadian rhythms on nurse's health. METHODS Databases: PubMed, Cinahl, Scopus, Embase and Ilisi. Search terms (free terms, MeSH): 'nurses', 'shiftwork', 'nightwork', 'sleep disorder, circadian rhythm', 'work schedule tolerance', 'breast neoplasm', 'metabolic syndrome X', 'metabolic cardiovascular syndrome', 'Cardiovascular disease', 'stress', 'diabetes'. We included all randomized controlled trials, observational studies, reviews and papers studying nurses' shift work. Quality assessment of the retrieved papers was verified according to Dixon-Woods checklist. RESULTS Twenty-four articles were analyzed. Literature review has shown that shift work involves an alteration in psychophysical homeostasis, with a decrease in performance. It is an obstacle for social and family relationships, as well as a risk factor for stress, sleep disorders, metabolic disorders, diabetes, cardiovascular disorders and breast cancer. CONCLUSIONS An organized ergonomic turnaround can be less detrimental to the health of nurses and more beneficial for the healthcare providers. Therefore, we suggest organizing studies to assess whether improving nurses' health would lead to a reduction in miscarriages, absenteeism and work-related stress.
Collapse
Affiliation(s)
- D Rosa
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Roma, Italy
| | - S Terzoni
- San Paolo Bachelor School of Nursing, San Paolo Teaching Hospital, Milan, Italy
| | - F Dellafiore
- Health Professions Research and Development Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - A Destrebecq
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
24
|
Escala-Garcia M, Abraham J, Andrulis IL, Anton-Culver H, Arndt V, Ashworth A, Auer PL, Auvinen P, Beckmann MW, Beesley J, Behrens S, Benitez J, Bermisheva M, Blomqvist C, Blot W, Bogdanova NV, Bojesen SE, Bolla MK, Børresen-Dale AL, Brauch H, Brenner H, Brucker SY, Burwinkel B, Caldas C, Canzian F, Chang-Claude J, Chanock SJ, Chin SF, Clarke CL, Couch FJ, Cox A, Cross SS, Czene K, Daly MB, Dennis J, Devilee P, Dunn JA, Dunning AM, Dwek M, Earl HM, Eccles DM, Eliassen AH, Ellberg C, Evans DG, Fasching PA, Figueroa J, Flyger H, Gago-Dominguez M, Gapstur SM, García-Closas M, García-Sáenz JA, Gaudet MM, George A, Giles GG, Goldgar DE, González-Neira A, Grip M, Guénel P, Guo Q, Haiman CA, Håkansson N, Hamann U, Harrington PA, Hiller L, Hooning MJ, Hopper JL, Howell A, Huang CS, Huang G, Hunter DJ, Jakubowska A, John EM, Kaaks R, Kapoor PM, Keeman R, Kitahara CM, Koppert LB, Kraft P, Kristensen VN, Lambrechts D, Le Marchand L, Lejbkowicz F, Lindblom A, Lubiński J, Mannermaa A, Manoochehri M, Manoukian S, Margolin S, Martinez ME, Maurer T, Mavroudis D, Meindl A, Milne RL, Mulligan AM, Neuhausen SL, Nevanlinna H, Newman WG, Olshan AF, Olson JE, Olsson H, Orr N, Peterlongo P, Petridis C, Prentice RL, Presneau N, Punie K, Ramachandran D, Rennert G, Romero A, Sachchithananthan M, Saloustros E, Sawyer EJ, Schmutzler RK, Schwentner L, Scott C, Simard J, Sohn C, Southey MC, Swerdlow AJ, Tamimi RM, Tapper WJ, Teixeira MR, Terry MB, Thorne H, Tollenaar RAEM, Tomlinson I, Troester MA, Truong T, Turnbull C, Vachon CM, van der Kolk LE, Wang Q, Winqvist R, Wolk A, Yang XR, Ziogas A, Pharoah PDP, Hall P, Wessels LFA, Chenevix-Trench G, Bader GD, Dörk T, Easton DF, Canisius S, Schmidt MK. A network analysis to identify mediators of germline-driven differences in breast cancer prognosis. Nat Commun 2020; 11:312. [PMID: 31949161 PMCID: PMC6965101 DOI: 10.1038/s41467-019-14100-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 12/17/2019] [Indexed: 11/09/2022] Open
Abstract
Identifying the underlying genetic drivers of the heritability of breast cancer prognosis remains elusive. We adapt a network-based approach to handle underpowered complex datasets to provide new insights into the potential function of germline variants in breast cancer prognosis. This network-based analysis studies ~7.3 million variants in 84,457 breast cancer patients in relation to breast cancer survival and confirms the results on 12,381 independent patients. Aggregating the prognostic effects of genetic variants across multiple genes, we identify four gene modules associated with survival in estrogen receptor (ER)-negative and one in ER-positive disease. The modules show biological enrichment for cancer-related processes such as G-alpha signaling, circadian clock, angiogenesis, and Rho-GTPases in apoptosis.
Collapse
Affiliation(s)
- Maria Escala-Garcia
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Jean Abraham
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Cambridge Experimental Cancer Medicine Centre, Cambridge, UK
- Cambridge Breast Unit and NIHR Cambridge Biomedical Research Centre, University of Cambridge NHS Foundation Hospitals, Cambridge, UK
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Hoda Anton-Culver
- Department of Epidemiology, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alan Ashworth
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Paul L Auer
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Päivi Auvinen
- Cancer Center, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Oncology, University of Eastern Finland, Kuopio, Finland
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jonathan Beesley
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Javier Benitez
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics, Ufa Scientific Center of Russian Academy of Sciences, Ufa, Russia
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Oncology, Örebro University Hospital, Örebro, Sweden
| | - William Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- International Epidemiology Institute, Rockville, MD, USA
| | - Natalia V Bogdanova
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manjeet K Bolla
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Anne-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- iFIT-Cluster of Excellence, University of Tuebingen, Tuebingen, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Sara Y Brucker
- Department of Gynecology and Obstetrics, University of Tübingen, Tübingen, Germany
| | - Barbara Burwinkel
- Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, Department of Oncology, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Breast Cancer Programme, CRUK Cambridge Cancer Centre and NIHR Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Suet-Feung Chin
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Christine L Clarke
- Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Angela Cox
- Department of Oncology and Metabolism, Sheffield Institute for Nucleic Acids (SInFoNiA), University of Sheffield, Sheffield, UK
| | - Simon S Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mary B Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Joe Dennis
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Janet A Dunn
- Warwick Clinical Trials Unit, University of Warwick, Coventry, UK
| | - Alison M Dunning
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Miriam Dwek
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London, UK
| | - Helena M Earl
- Cambridge Breast Unit and NIHR Cambridge Biomedical Research Centre, University of Cambridge NHS Foundation Hospitals, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Diana M Eccles
- Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - A Heather Eliassen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Carolina Ellberg
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - D Gareth Evans
- Division of Evolution and Genomic Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Genomic Medicine, St Mary's Hospital, Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center ER-EMN, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh Medical School, Edinburgh, UK
- Cancer Research UK Edinburgh Centre, Edinburgh, UK
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Susan M Gapstur
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - José A García-Sáenz
- Medical Oncology Department, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Centro Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Mia M Gaudet
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA
| | - Angela George
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - David E Goldgar
- Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Anna González-Neira
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mervi Grip
- Department of Surgery, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Pascal Guénel
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), University Paris-Saclay, INSERM, University Paris-Sud, Villejuif, France
| | - Qi Guo
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Niclas Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patricia A Harrington
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Louise Hiller
- Warwick Clinical Trials Unit, University of Warwick, Coventry, UK
| | - Maartje J Hooning
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Anthony Howell
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Chiun-Sheng Huang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Guanmengqian Huang
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David J Hunter
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Esther M John
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pooja Middha Kapoor
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Renske Keeman
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Linetta B Koppert
- Department of Surgical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vessela N Kristensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Diether Lambrechts
- VIB, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Flavio Lejbkowicz
- Carmel Medical Center and Technion Faculty of Medicine, Clalit National Cancer Control Center, Haifa, Israel
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Pathology, Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Mehdi Manoochehri
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano (INT), Milan, Italy
| | - Sara Margolin
- Department of Oncology, Sšdersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Sšdersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Maria Elena Martinez
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Tabea Maurer
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University Hospital of Heraklion, Heraklion, Greece
| | - Alfons Meindl
- Department of Gynecology and Obstetrics, Ludwig Maximilian University of Munich, Munich, Germany
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Anna Marie Mulligan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - William G Newman
- Division of Evolution and Genomic Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Genomic Medicine, St Mary's Hospital, Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Andrew F Olshan
- Department of Epidemiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janet E Olson
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Håkan Olsson
- Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Nick Orr
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Ireland, UK
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM - the FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology, Milan, Italy
| | - Christos Petridis
- Research Oncology, Guy's Hospital, King's College London, London, UK
| | - Ross L Prentice
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nadege Presneau
- Department of Biomedical Sciences, Faculty of Science and Technology, University of Westminster, London, UK
| | - Kevin Punie
- Department of Oncology, Leuven Multidisciplinary Breast Center, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | | | - Gad Rennert
- Carmel Medical Center and Technion Faculty of Medicine, Clalit National Cancer Control Center, Haifa, Israel
| | - Atocha Romero
- Medical Oncology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | | | | | - Elinor J Sawyer
- Research Oncology, Guy's Hospital, King's College London, London, UK
| | - Rita K Schmutzler
- Center for Hereditary Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Lukas Schwentner
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Ulm, Germany
| | - Christopher Scott
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jacques Simard
- Genomics Center, Research Center, Centre Hospitalier Universitaire de Québec - Université Laval, Québec City, QC, Canada
| | - Christof Sohn
- National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Rulla M Tamimi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
- Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Heather Thorne
- Peter MacCallum Cancer Center, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Rob A E M Tollenaar
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Ian Tomlinson
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Melissa A Troester
- Department of Epidemiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thérèse Truong
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), University Paris-Saclay, INSERM, University Paris-Sud, Villejuif, France
| | - Clare Turnbull
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Celine M Vachon
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Lizet E van der Kolk
- Family Cancer Clinic, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Qin Wang
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Robert Winqvist
- Biocenter Oulu, Cancer and Translational Medicine Research Unit, Laboratory of Cancer Genetics and Tumor Biology, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Argyrios Ziogas
- Department of Epidemiology, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA
| | - Paul D P Pharoah
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Sšdersjukhuset, Stockholm, Sweden
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Faculty of EEMCS, Delft University of Technology, Delft, The Netherlands
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Douglas F Easton
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Sander Canisius
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Liu F, Li X, Liu P, Quan X, Zheng C, Zhou B. Association Between Three Polymorphisms in BMAL1 Genes and Risk of Lung Cancer in a Northeast Chinese Population. DNA Cell Biol 2019; 38:1437-1443. [PMID: 31580742 DOI: 10.1089/dna.2019.4853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The connection between cancer and circadian rhythms has garnered recent attention. BMAL1 is a core factor in the regulation of circadian rhythms, and its variants have frequently been associated with human diseases, including cancer. Our study first clarifies the relationship of three single-nucleotide polymorphisms (rs3816360, rs2290035, and rs3816358) in BMAL1 with the risk of lung cancer, as well as the gene-environment interaction between the polymorphisms and tobacco exposure in a Northeast Chinese population. A case-control study of 409 new diagnosis patients and 417 controls was performed in Shenyang, Liaoning province. The gene-environment interactions were explored on both additive and multiplicative scale. After Bonferroni correction, rs3816360 and rs2290035 were evidently associated with lung cancer risk. For rs3816360, subjects carrying CC (adjusted odds ratio [OR] = 2.163, 95% confidence interval [CI] = 1.413-3.310, p = 0.004) genotype showed an increased risk of lung cancer compared to the subjects carrying homozygous TT genotype. As for rs2290035, homozygous carriers of AA genotype (OR = 1.908, 95% CI = 1.207-3.017, p = 0.006) showed a significantly increased risk of lung cancer. The dominant models and recessive models of rs3816360 and rs2290035 showed significant associations (p < 0.01). In the stratified analysis, our results revealed that rs3816360 and rs2290035 were associated with the risk of lung adenocarcinoma. However, rs3816358 polymorphism was not significantly associated with lung cancer risk. The measures of additive interaction and logistic models suggested that the gene-environment interactions were not statistically significant on both additive and multiplicative scales.
Collapse
Affiliation(s)
- Fangjiang Liu
- Department of Clinical Epidemiology, First Affiliated Hospital, China Medical University, Shenyang, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Xuelian Li
- Department of Clinical Epidemiology, First Affiliated Hospital, China Medical University, Shenyang, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Pinyun Liu
- Department of Clinical Epidemiology, First Affiliated Hospital, China Medical University, Shenyang, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Xiaowei Quan
- Department of Clinical Epidemiology, First Affiliated Hospital, China Medical University, Shenyang, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Chang Zheng
- Department of Clinical Epidemiology, First Affiliated Hospital, China Medical University, Shenyang, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Baosen Zhou
- Department of Clinical Epidemiology, First Affiliated Hospital, China Medical University, Shenyang, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
26
|
Circadian Gene Polymorphisms Associated with Breast Cancer Susceptibility. Int J Mol Sci 2019; 20:ijms20225704. [PMID: 31739444 PMCID: PMC6888181 DOI: 10.3390/ijms20225704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is a major problem for civilization, manifested by continuously increasing morbidity and mortality among women worldwide. Core circadian genes may play an important role in cancer development and progression. To evaluate the effects of single nucleotide polymorphism (SNP) in circadian genes in BC risk, 16 functional SNPs were genotyped in 321 BC patients and 364 healthy women using the TaqMan fluorescence-labelled probes or High-Resolution Melt Curve technique in the Real-Time PCR system. The selected SNPs were analyzed for the risk of BC, progression, and the influence on gene expression in BC tissue pairs to demonstrate the functionality of genetic variants. The study showed a relationship between an increased BC risk under the dominant genetic model of CRY2 rs10838524, PER2 rs934945, and recessive genetic model of PER1 rs2735611. A protective effect of BMAL1 rs2279287 was observed among carriers with at least one variant allele. Moreover, we found an increased risk of estrogen-/progesterone-positive tumors under the dominant genetic model of PER2 rs934945 and estrogen negative tumors under the variant genotype of CRY2 rs10838524, PER1 rs2735611. We demonstrated significantly altered gene expression of BMAL1, CRY2, PER1, PER2, PER3 according to particular genotypes in the BC tissue pairs. Our findings support the hypothesized role of circadian genes in breast carcinogenesis and indicate probable biomarkers for breast cancer susceptibility.
Collapse
|
27
|
Sulli G, Lam MTY, Panda S. Interplay between Circadian Clock and Cancer: New Frontiers for Cancer Treatment. Trends Cancer 2019; 5:475-494. [PMID: 31421905 DOI: 10.1016/j.trecan.2019.07.002] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 12/23/2022]
Abstract
Circadian clocks constitute the evolutionary molecular machinery that dictates the temporal regulation of physiology to maintain homeostasis. Disruption of the circadian rhythm plays a key role in tumorigenesis and facilitates the establishment of cancer hallmarks. Conversely, oncogenic processes directly weaken circadian rhythms. Pharmacological modulation of core clock genes is a new approach in cancer therapy. The integration of circadian biology into cancer research offers new options for making cancer treatment more effective, encompassing the prevention, diagnosis, and treatment of this devastating disease. This review highlights the role of the circadian clock in tumorigenesis and cancer hallmarks, and discusses how pharmacological modulation of circadian clock genes can lead to new therapeutic options.
Collapse
Affiliation(s)
- Gabriele Sulli
- The Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Medicine, Division of Regenerative Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; Scintillon Institute, San Diego, CA 92121, USA.
| | - Michael Tun Yin Lam
- The Salk Institute for Biological Studies, La Jolla, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, 9300 Campus Point Drive, La Jolla, CA 92037, USA
| | | |
Collapse
|
28
|
Night-shift work, circadian and melatonin pathway related genes and their interaction on breast cancer risk: evidence from a case-control study in Korean women. Sci Rep 2019; 9:10982. [PMID: 31358835 PMCID: PMC6662707 DOI: 10.1038/s41598-019-47480-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/10/2019] [Indexed: 12/14/2022] Open
Abstract
Our purpose is to investigate the impact of circadian and melatonin pathway genes as well as their interactions with night-shift work (NSW) on breast cancer risk in Korean women. Information about NSW and other covariates was collected using a structured questionnaire and twenty-two polymorphisms in 11 genes were analyzed in a hospital-based case-control study with 941 cases of breast cancer and 959 controls. In analysis of the main effects of each single nucleotide polymorphisms(SNPs), variants in CLOCK rs11133373 was associated with breast cancer risk even after false discovery rate (FDR) correction (Odd Ratios (OR) = 1.38 (95% Confident Interval (CI) 1.14–1.69) in CG and CC compared to GG genotype. Analysis of MTNR1A rs2119882 demonstrated a decreased risk of breast cancer in CC compared to TT (p-FDR = 0.043). A correlation between NSW and breast cancer interaction was found in two loci. NSW increased risk of breast cancer in women who carried the heterozygote genotype of CRY2 rs2292912 (OR = 1.98, 95% CI = 1.14–3.44) or carried at least one minor allele of RORA rs1482057 (OR = 2.20, 95% CI = 1.10–4.37). Our study results support a putative role for several loci of circadian genes and genes of melatonin biosynthesis and their interaction, and the gene interactions with NSW in the development of breast cancer.
Collapse
|
29
|
Circadian protein BMAL1 promotes breast cancer cell invasion and metastasis by up-regulating matrix metalloproteinase9 expression. Cancer Cell Int 2019; 19:182. [PMID: 31346317 PMCID: PMC6636133 DOI: 10.1186/s12935-019-0902-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
Background Metastasis is an important factor in the poor prognosis of breast cancer. As an important core clock protein, brain and muscle arnt-like 1 (BMAL1) is closely related to tumorigenesis. However, the molecular mechanisms that mediate the role of BMAL1 in invasion and metastasis remain largely unknown. In this study, we investigated the BMAL1 may take a crucial effect in the progression of breast cancer cells. Methods BMAL1 and MMP9 expression was measured in breast cell lines. Transwell and scratch wound-healing assays were used to detect the movement of cells and MTT assays and clonal formation assays were used to assess cells’ proliferation. The effects of BMAL1 on the MMP9/NF-κB pathway were examined by western blotting, co-immunoprecipitation and mammalian two-hybrid. Results In our study, it showed that cell migration and invasion were significantly enhanced when overexpressed BMAL1. Functionally, overexpression BMAL1 significantly increased the mRNA and protein level of matrix metalloproteinase9 (MMP9) and improved the activity of MMP9. Moreover, BMAL1 activated the NF-κB signaling pathway by increasing the phosphorylation of IκB and promoted human MMP9 promoter activity by interacting with NF-kB p65, leading to increased expression of MMP9. When overexpressed BMAL1, CBP (CREB binding protein) was recruited to enhance the activity of p65 and further activate the NF-κB signaling pathway to regulate the expression of its downstream target genes, including MMP9, TNFα, uPA and IL8, and then promote the invasion and metastasis of breast cancer cells. Conclusions This study confirmed a new mechanism by which BMAL1 up-regulated MMP9 expression to increase breast cancer metastasis, to provide research support for the prevention and treatment of breast cancer.
Collapse
|
30
|
Wendeu-Foyet MG, Koudou Y, Cénée S, Trétarre B, Rébillard X, Cancel-Tassin G, Cussenot O, Boland A, Bacq D, Deleuze JF, Lamy PJ, Mulot C, Laurent-Puig P, Truong T, Menegaux F. Circadian genes and risk of prostate cancer: Findings from the EPICAP study. Int J Cancer 2019; 145:1745-1753. [PMID: 30665264 DOI: 10.1002/ijc.32149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Circadian rhythms regulate several physiological functions and genes controlling the circadian rhythm were found to regulate cell proliferation, cell cycle and apoptosis. Few studies have investigated the role of those circadian genes in prostate cancer occurrence. We aim to investigate the relationship between circadian genes polymorphisms and prostate cancer risk based on data from the EPICAP study, a population-based case-control study including 1,515 men (732 cases / 783 controls) with genotyped data. Odds Ratios (ORs) for association between prostate cancer and circadian gene variants were estimated for each of the 872 single nucleotide polymorphisms (SNPs) in 31 circadian clock genes. We also used a gene-based and pathway-based approach with a focus on the pathway including 9 core circadian genes. Separate analyses were conducted by prostate cancer aggressiveness. The core-circadian pathway (p = 0.0006) was significantly associated to prostate cancer, for either low (p = 0.002) or high (p = 0.01) grade tumor. At the gene level, we observed significant associations between all prostate cancer and NPAS2 and PER1 after correcting for multiple testing, while only RORA was significant for aggressive tumors. At the SNP-level, no significant association was observed. Our findings provide additional evidence of a potential link between genetic variants in circadian genes and prostate cancer risk. Further investigation is warranted to confirm these findings and to better understand the biological pathways involved.
Collapse
Affiliation(s)
- Méyomo G Wendeu-Foyet
- Université Paris-Saclay, Université Paris-Sud, CESP (Center for Research in Epidemiology and Population Health), Inserm, Team Cancer and Environment, Villejuif, France
| | - Yves Koudou
- Université Paris-Saclay, Université Paris-Sud, CESP (Center for Research in Epidemiology and Population Health), Inserm, Team Cancer and Environment, Villejuif, France
| | - Sylvie Cénée
- Université Paris-Saclay, Université Paris-Sud, CESP (Center for Research in Epidemiology and Population Health), Inserm, Team Cancer and Environment, Villejuif, France
| | | | | | - Géraldine Cancel-Tassin
- CeRePP, Hopital Tenon, Paris, France.,Sorbonne Université, GRC n°5, ONCOTYPE-URO, AP-HP, Hôpital Tenon, Paris
| | - Olivier Cussenot
- CeRePP, Hopital Tenon, Paris, France.,Sorbonne Université, GRC n°5, ONCOTYPE-URO, AP-HP, Hôpital Tenon, Paris
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Delphine Bacq
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Pierre-Jean Lamy
- Clinique Beau Soleil, Montpellier, France.,Imagenome, Labosud, Montpellier, France
| | - Claire Mulot
- Université Paris Descartes, INSERM UMR-S1147 EPIGENETEC, Paris, France
| | | | - Thérèse Truong
- Université Paris-Saclay, Université Paris-Sud, CESP (Center for Research in Epidemiology and Population Health), Inserm, Team Cancer and Environment, Villejuif, France
| | - Florence Menegaux
- Université Paris-Saclay, Université Paris-Sud, CESP (Center for Research in Epidemiology and Population Health), Inserm, Team Cancer and Environment, Villejuif, France
| |
Collapse
|
31
|
Yuan X, Zhu C, Wang M, Mo F, Du W, Ma X. Night Shift Work Increases the Risks of Multiple Primary Cancers in Women: A Systematic Review and Meta-analysis of 61 Articles. Cancer Epidemiol Biomarkers Prev 2019; 27:25-40. [PMID: 29311165 DOI: 10.1158/1055-9965.epi-17-0221] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/27/2017] [Accepted: 10/11/2017] [Indexed: 02/05/2023] Open
Abstract
A growing number of studies have examined associations between night shift work and the risks of common cancers among women, with varying conclusions. We did a meta-analysis to identify whether long-term night shift work increased the risks of common cancers in women. We enrolled 61 articles involving 114,628 cases and 3,909,152 participants from Europe, North America, Asia, and Australia. Risk estimates were performed with a random-effect model or a fixed-effect model. Subgroup analyses and meta-regression analyses about breast cancer were conducted to explore possible sources of heterogeneity. In addition, we carried out a dose-response analysis to quantitatively estimate the accumulative effect of night shift work on the risk of breast cancer. A positive relationship was revealed between long-term night shift work and the risks of breast [OR = 1.316; 95% confidence interval (CI), 1.196-1.448], digestive system (OR = 1.177; 95% CI, 1.065-1.301), and skin cancer (OR = 1.408; 95% CI, 1.024-1.934). For every 5 years of night shift work, the risk of breast cancer in women was increased by 3.3% (OR = 1.033; 95% CI, 1.012-1.056). Concerning the group of nurses, long-term night shift work presented potential carcinogenic effect in breast cancer (OR = 1.577; 95% CI, 1.235-2.014), digestive system cancer (OR = 1.350; 95% CI, 1.030-1.770), and lung cancer (OR = 1.280; 95% CI, 1.070-1.531). This systematic review confirmed the positive association between night shift work and the risks of several common cancers in women. We identified that cancer risk of women increased with accumulating years of night shift work, which might help establish and implement effective measures to protect female night shifters. Cancer Epidemiol Biomarkers Prev; 27(1); 25-40. ©2018 AACR.
Collapse
Affiliation(s)
- Xia Yuan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, P.R. China
| | - Chenjing Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, P.R. China
| | - Manni Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, P.R. China
| | - Fei Mo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, P.R. China
| | - Wei Du
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, P.R. China
| | - Xuelei Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, P.R. China.
| |
Collapse
|
32
|
Benna C, Rajendran S, Spiro G, Tropea S, Del Fiore P, Rossi CR, Mocellin S. Associations of clock genes polymorphisms with soft tissue sarcoma susceptibility and prognosis. J Transl Med 2018; 16:338. [PMID: 30518396 PMCID: PMC6280400 DOI: 10.1186/s12967-018-1715-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/30/2018] [Indexed: 12/28/2022] Open
Abstract
Background Dysfunction of the circadian clock and polymorphisms of some circadian genes have been linked to cancer development and progression. We investigated the relationship between circadian genes germline variation and susceptibility or prognosis of patients with soft tissue sarcoma. Patients and methods We considered the 14 single nucleotide polymorphisms (SNPs) of 6 core circadian genes that have a minor allele frequency > 5% and that are known to be associated with cancer risk or prognosis. Genotyping was performed by q-PCR. Peripheral blood and clinic-pathological data were available for 162 patients with liposarcoma or leiomyosarcoma and 610 healthy donors. Associations between the selected clock genes polymorphisms and sarcoma susceptibility or prognosis were tested assuming 3 models of inheritance: additive, recessive and dominant. Subgroup analysis based on sarcoma histotype was performed under the additive genetic model. Multivariate logistic regression and multivariate Cox proportional hazard regression analyses were utilized to assess the association between SNPs with patient susceptibility and survival, respectively. Pathway variation analysis was conducted employing the Adaptive Rank Truncated Product method. Results Six out of the 14 analyzed SNPs were statistically significantly associated with susceptibility or prognosis of soft tissue sarcoma (P < 0.05). The present analysis suggested that carriers of the minor allele of the CLOCK polymorphism rs1801260 (C) or of PER2 rs934945 (T) had a reduced predisposition to sarcoma (26% and 35% respectively with the additive model) and liposarcoma (33% and 41% respectively). The minor allele (A) of NPAS2 rs895520 was associated with an increased predisposition to sarcoma of 33% and leiomyosarcoma of 44%. RORA rs339972 C allele was associated with a decreased predisposition to develop sarcoma assuming an additive model (29%) and leiomyosarcoma (36%). PER1 rs3027178 was associated with a reduced predisposition only in liposarcoma subgroup (32%). rs7602358 located upstream PER2 was significantly associated with liposarcoma survival (HR: 1.98; 95% CI 1.02–3.85; P = 0.04). Germline genetic variation in the circadian pathway was associated with the risk of developing soft tissue sarcoma (P = 0.035). Conclusions Genetic variation of circadian genes appears to play a role in the determinism of patient susceptibility and prognosis. These findings prompt further studies to fully dissect the molecular mechanisms. Electronic supplementary material The online version of this article (10.1186/s12967-018-1715-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clara Benna
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padua, Italy. .,Clinica Chirurgica I, Azienda Ospedaliera Padova, Padua, Italy.
| | | | - Giovanna Spiro
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Saveria Tropea
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padua, Italy.,Surgical Oncology Unit, Istituto Oncologico Veneto (IOV-IRCCS), Padua, Italy
| | - Paolo Del Fiore
- Surgical Oncology Unit, Istituto Oncologico Veneto (IOV-IRCCS), Padua, Italy
| | - Carlo Riccardo Rossi
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padua, Italy.,Surgical Oncology Unit, Istituto Oncologico Veneto (IOV-IRCCS), Padua, Italy
| | - Simone Mocellin
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padua, Italy.,Surgical Oncology Unit, Istituto Oncologico Veneto (IOV-IRCCS), Padua, Italy
| |
Collapse
|
33
|
Archer SN, Schmidt C, Vandewalle G, Dijk DJ. Phenotyping of PER3 variants reveals widespread effects on circadian preference, sleep regulation, and health. Sleep Med Rev 2018; 40:109-126. [PMID: 29248294 DOI: 10.1016/j.smrv.2017.10.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/16/2017] [Accepted: 10/30/2017] [Indexed: 12/29/2022]
Abstract
Period3 (Per3) is one of the most robustly rhythmic genes in humans and animals. It plays a significant role in temporal organisation in peripheral tissues. The effects of PER3 variants on many phenotypes have been investigated in targeted and genome-wide studies. PER3 variants, especially the human variable number tandem repeat (VNTR), associate with diurnal preference, mental disorders, non-visual responses to light, brain and cognitive responses to sleep loss/circadian misalignment. Introducing the VNTR into mice alters responses to sleep loss and expression of sleep homeostasis-related genes. Several studies were limited in size and some findings were not replicated. Nevertheless, the data indicate a significant contribution of PER3 to sleep and circadian phenotypes and diseases, which may be connected by common pathways. Thus, PER3-dependent altered light sensitivity could relate to high retinal PER3 expression and may contribute to altered brain response to light, diurnal preference and seasonal mood. Altered cognitive responses during sleep loss/circadian misalignment and changes to slow wave sleep may relate to changes in wake/activity-dependent patterns of hypothalamic gene expression involved in sleep homeostasis and neural network plasticity. Comprehensive characterisation of effects of clock gene variants may provide new insights into the role of circadian processes in health and disease.
Collapse
Affiliation(s)
- Simon N Archer
- Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, UK.
| | - Christina Schmidt
- GIGA-Research, Cyclotron Research Centre-In Vivo Imaging Unit, University of Liège, Belgium; Psychology and Neuroscience of Cognition Research Unit (PsyNCog), Faculty of Psychology and Educational Sciences, University of Liège, Belgium
| | - Gilles Vandewalle
- GIGA-Research, Cyclotron Research Centre-In Vivo Imaging Unit, University of Liège, Belgium
| | - Derk-Jan Dijk
- Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, UK
| |
Collapse
|
34
|
Arshi A, Sharifi FS, Khorramian Ghahfarokhi M, Faghih Z, Doosti A, Ostovari S, Mahmoudi Maymand E, Ghahramani Seno MM. Expression Analysis of MALAT1, GAS5, SRA, and NEAT1 lncRNAs in Breast Cancer Tissues from Young Women and Women over 45 Years of Age. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:751-757. [PMID: 30126830 PMCID: PMC6108071 DOI: 10.1016/j.omtn.2018.07.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/13/2022]
Abstract
Breast cancer, as the most common cancer in women worldwide, represents about 30% of all cancers affecting women. Long non-coding RNAs (lncRNAs) have been implicated in the regulation of several biological processes, and their dysregulation in cancer has well been documented. To investigate possible age-dependent variations in expression profiles of lncRNAs, we evaluated the expression levels of four lncRNAs, i.e., MALAT1, GAS5, SRA, and NEAT1, in breast cancer (BC) samples obtained from younger (<45 years) and older (>45 years) women. Tumor samples (n = 23) and 15 normal tissues were collected from BC patients. All tumor and normal samples were morphologically confirmed by a pathologist. RNA was extracted from the tissues and cDNAs were then synthesized. The lncRNA expression levels were evaluated by qRT-PCR. The changes in the expression levels were determined using the ΔΔCt method. Compared to normal tissues, BC tissues from both age groups (women under 45 years of age and women above 45 years of age) showed upregulation of MALAT1 (p = 0.003 and p = 0.0002), SRA (p = 0.005 and p = 0.0002), and NEAT1 (p = 0.010 and p = 0.0002) and downregulation of GAS5 (p = 0.0002 and p = 0.0005). Additionally, our analysis showed significant and direct correlation between the age and the expression levels of three of the four lncRNAs studied in this work. All four lncRNAs were overexpressed in both MDA-MB-231 and MCF7 cell lines (p = 0.1000). Our data show that MALAT1, GAS5, SRA, and NEAT1 lncRNAs are dysregulated in BC samples. However, except for MALAT1, the expression levels of all of these lncRNAs were significantly lower in cancers developed in younger cases, where poorer prognosis is suggested. Of note, GAS5 reduced expression has been documented to correlate with tumor progression.
Collapse
Affiliation(s)
- Asghar Arshi
- Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Fatemeh Sadat Sharifi
- Biotechnology Research Center, School of Basic Sciences, Islamic Azad University, Shahrekord Branch, Shahrekord, Iran
| | - Milad Khorramian Ghahfarokhi
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Zahra Faghih
- Cancer Immunology Group, Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Doosti
- Biotechnology Research Center, School of Basic Sciences, Islamic Azad University, Shahrekord Branch, Shahrekord, Iran
| | - Sara Ostovari
- Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Elham Mahmoudi Maymand
- Cancer Immunology Group, Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mahdi Ghahramani Seno
- Division of Biotechnology, Department of Pathobiology and Department of Basic Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
35
|
Circadian clock pathway genes associated with colorectal cancer risk and prognosis. Arch Toxicol 2018; 92:2681-2689. [PMID: 29968159 DOI: 10.1007/s00204-018-2251-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022]
Abstract
Circadian clock genes influence biological processes and may be involved in tumorigenesis. We systematically evaluated genetic variants in the circadian clock pathway genes associated with colorectal cancer risk and survival. We evaluated the association of 119 single nucleotide polymorphisms (SNPs) in 27 circadian clock pathway genes with the risk of colorectal cancer in a case-control study (1150 cases and 1342 controls). The false discovery rate (FDR) method was applied to correct for multiple comparisons. Gene-based analysis was performed by the sequence kernel association test (SKAT). Cox proportional hazards regression was used to calculate the effects of SNPs on the overall survival of patients. We identified that compared to those with the G allele, individuals with the rs76436997 A allele in RORA had a significant 1.33-fold increased risk of colorectal cancer (P = 3.83 × 10- 4). Specifically, the GA/AA genotypes were related to an enhanced risk of colorectal cancer compared with that associated with the GG genotype, which was more common in patients with well and moderately differentiated tumors and Dukes A/B stages. The SNP rs76436997 significantly increased the overall survival time of colorectal cancer patients (P = 0.044). Furthermore, RNA-seq data showed that the mRNA levels of RORA were significantly lower in colorectal tumors than the paired normal tissues. Gene-based analysis revealed a significant association between RORA and colorectal cancer risk. These findings highlight the important roles of genetic variations in circadian clock pathway genes play in colorectal cancer risk and suggest that RORA is potentially related to colorectal carcinogenesis.
Collapse
|
36
|
Walton ZE, Altman BJ, Brooks RC, Dang CV. Circadian Clock's Cancer Connections. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zandra E. Walton
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Brian J. Altman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Rebekah C. Brooks
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Chi V. Dang
- Ludwig Institute for Cancer Research, New York, NY 10017, USA
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
37
|
Shostak A. Human Clock Genes and Cancer. CURRENT SLEEP MEDICINE REPORTS 2018. [DOI: 10.1007/s40675-018-0102-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Gu F, Zhang H, Hyland PL, Berndt S, Gapstur SM, Wheeler W, Ellipse Consortium T, Amos CI, Bezieau S, Bickeböller H, Brenner H, Brennan P, Chang-Claude J, Conti DV, Doherty JA, Gruber SB, Harrison TA, Hayes RB, Hoffmeister M, Houlston RS, Hung RJ, Jenkins MA, Kraft P, Lawrenson K, McKay J, Markt S, Mucci L, Phelan CM, Qu C, Risch A, Rossing MA, Wichmann HE, Shi J, Schernhammer E, Yu K, Landi MT, Caporaso NE. Inherited variation in circadian rhythm genes and risks of prostate cancer and three other cancer sites in combined cancer consortia. Int J Cancer 2017; 141:1794-1802. [PMID: 28699174 PMCID: PMC5907928 DOI: 10.1002/ijc.30883] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/15/2017] [Accepted: 06/16/2017] [Indexed: 12/20/2022]
Abstract
Circadian disruption has been linked to carcinogenesis in animal models, but the evidence in humans is inconclusive. Genetic variation in circadian rhythm genes provides a tool to investigate such associations. We examined associations of genetic variation in nine core circadian rhythm genes and six melatonin pathway genes with risk of colorectal, lung, ovarian and prostate cancers using data from the Genetic Associations and Mechanisms in Oncology (GAME-ON) network. The major results for prostate cancer were replicated in the Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening trial, and for colorectal cancer in the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO). The total number of cancer cases and controls was 15,838/18,159 for colorectal, 14,818/14,227 for prostate, 12,537/17,285 for lung and 4,369/9,123 for ovary. For each cancer site, we conducted gene-based and pathway-based analyses by applying the summary-based Adaptive Rank Truncated Product method (sARTP) on the summary association statistics for each SNP within the candidate gene regions. Aggregate genetic variation in circadian rhythm and melatonin pathways were significantly associated with the risk of prostate cancer in data combining GAME-ON and PLCO, after Bonferroni correction (ppathway < 0.00625). The two most significant genes were NPAS2 (pgene = 0.0062) and AANAT (pgene = 0.00078); the latter being significant after Bonferroni correction. For colorectal cancer, we observed a suggestive association with the circadian rhythm pathway in GAME-ON (ppathway = 0.021); this association was not confirmed in GECCO (ppathway = 0.76) or the combined data (ppathway = 0.17). No significant association was observed for ovarian and lung cancer. These findings support a potential role for circadian rhythm and melatonin pathways in prostate carcinogenesis. Further functional studies are needed to better understand the underlying biologic mechanisms.
Collapse
Affiliation(s)
- Fangyi Gu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY
| | - Han Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Paula L Hyland
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Sonja Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Susan M Gapstur
- Epidemiology Research Program, American Cancer Society, Atlanta, GA
| | | | | | | | | | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center Göttingen, Göttingen, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David V Conti
- Keck School of Medicine, University of South California, Los Angeles, CA
| | | | - Stephen B Gruber
- Keck School of Medicine, University of South California, Los Angeles, CA
| | - Tabitha A Harrison
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Richard B Hayes
- Department of Population Health, New York University School of Medicine, New York, NY
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H Chan School of Public Health, Boston, MA
| | | | - James McKay
- International Agency for Research on Cancer, Lyon, France
| | - Sarah Markt
- Department of Epidemiology, Harvard T.H Chan School of Public Health, Boston, MA
| | - Lorelei Mucci
- Department of Epidemiology, Harvard T.H Chan School of Public Health, Boston, MA
| | - Catherine M Phelan
- Department of Cancer Epidemiology, Population Sciences Division, Moffitt Cancer Center, Tampa, FL
| | - Conghui Qu
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Angela Risch
- Division of Molecular Biology, University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
- Translational Lung Research Center, Heidelberg, Germany within the German Center for Lung Research (DZL), Giessen, Germany
- Division of Epigenomics and Cancer Risk Factors, DKFZ German Cancer Research Center, Heidelberg, Germany
| | - Mary Anne Rossing
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - H-Erich Wichmann
- Institute of Medical Informatics, Biometry and Epidemiology, University of Munich, Munich, Bavaria, Germany
- Helmholtz Center Munich, Institute of Epidemiology II, Neuherberg, Germany
- Institute of Medical Statistics and Epidemiology, Technical University Munich, Munich, Germany
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Eva Schernhammer
- Department of Epidemiology, Harvard T.H Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Department of Epidemiology, Medical University of Vienna, Vienna, Austria
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| |
Collapse
|
39
|
Benna C, Helfrich-Förster C, Rajendran S, Monticelli H, Pilati P, Nitti D, Mocellin S. Genetic variation of clock genes and cancer risk: a field synopsis and meta-analysis. Oncotarget 2017; 8:23978-23995. [PMID: 28177907 PMCID: PMC5410358 DOI: 10.18632/oncotarget.15074] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/27/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The number of studies on the association between clock genes’ polymorphisms and cancer susceptibility has increased over the last years but the results are often conflicting and no comprehensive overview and quantitative summary of the evidence in this field is available. RESULTS Literature search identified 27 eligible studies comprising 96756 subjects (cases: 38231) and investigating 687 polymorphisms involving 14 clock genes. Overall, 1025 primary and subgroup meta-analyses on 366 gene variants were performed. Study distribution by tumor was as follows: breast cancer (n=15), prostate cancer (n=3), pancreatic cancer (n=2), non-Hodgkin's lymphoma (n=2), glioma (n=1), chronic lymphocytic leukemia (n=1), colorectal cancer (n=1), non-small cell lung cancer (n=1) and ovarian cancer (n=1). We identified 10 single nucleotide polymorphisms (SNPs) significantly associated with cancer risk: NPAS2 rs10165970 (mixed and breast cancer shiftworkers), rs895520 (mixed), rs17024869 (breast) and rs7581886 (breast); CLOCK rs3749474 (breast) and rs11943456 (breast); RORA rs7164773 (breast and breast cancer postmenopausal), rs10519097 (breast); RORB rs7867494 (breast cancer postmenopausal), PER3 rs1012477 (breast cancer subgroups) and assessed the level of quality evidence to be intermediate. We also identified polymorphisms with lower quality statistically significant associations (n=30). CONCLUSIONS Our work supports the hypothesis that genetic variation of clock genes might affect cancer risk. These findings also highlight the need for more efforts in this research field in order to fully establish the contribution of clock gene variants to the risk of developing cancer. METHODS We conducted a systematic review and meta-analysis of the evidence on the association between clock genes’ germline variants and the risk of developing cancer. To assess result credibility, summary evidence was graded according to the Venice criteria and false positive report probability (FPRP) was calculated to further validate result noteworthiness. Subgroup meta-analysis was also performed based on participant features and tumor type. The breast cancer subgroup was further stratified by work conditions, estrogen receptor/progesterone receptor status and menopausal status, conditions associated with the risk of breast cancer in different studies.
Collapse
Affiliation(s)
- Clara Benna
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Senthilkumar Rajendran
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| | | | | | - Donato Nitti
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy.,Clinica Chirurgica I, Azienda Ospedaliera Padova, Padova, Italy
| | - Simone Mocellin
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy.,Istituto Oncologico Veneto, IOV-IRCSS, Padova, Italy
| |
Collapse
|
40
|
Samulin Erdem J, Skare Ø, Petersen-Øverleir M, Notø HØ, Lie JAS, Reszka E, Pepłońska B, Zienolddiny S. Mechanisms of Breast Cancer in Shift Workers: DNA Methylation in Five Core Circadian Genes in Nurses Working Night Shifts. J Cancer 2017; 8:2876-2884. [PMID: 28928877 PMCID: PMC5604437 DOI: 10.7150/jca.21064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/28/2017] [Indexed: 12/15/2022] Open
Abstract
Shift work has been suggested to be associated with breast cancer risk, and circadian disruption in shift workers is hypothesized as one of the mechanisms of increased cancer risk. There is, however, insufficient molecular evidence supporting this hypothesis. Using the quantitative methodology of pyrosequencing, epigenetic changes in 5-methyl cytosine (5mC) in five circadian genes CLOCK, BMAL1, CRY1, PER1 and PER2 in female nurses working night shift work (278 breast cancer cases, 280 controls) were analyzed. In breast cancer cases, a medium exposure to night work was associated with increased methylation levels of the CLOCK (p=0.050), BMAL1 (p=0.001) and CRY1 (p=0.040) genes, compared with controls. Within the cases, analysis of the effects of shift work on the methylation patterns showed that methylation of CRY1 was lower in those who had worked night shift and had a high exposure (p=0.006) compared with cases that had worked only days. For cases with a medium exposure to night work, an increase in BMAL1 (p=0.003) and PER1 (p=0.035) methylation was observed compared with day working (unexposed) cases. The methylation levels of the five core circadian genes were also analyzed in relation to the estrogen and progesterone receptors status of the tumors in the cases, and no correlations were observed. Furthermore, nineteen polymorphisms in the five circadian genes were assessed for their effects on the methylation levels of the respective genes, but no associations were found. In summary, our data suggest that epigenetic regulation of CLOCK, BMAL1, CRY1 and PER1 may contribute to breast cancer in shift workers.
Collapse
Affiliation(s)
- Johanna Samulin Erdem
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, 0363, Norway
| | - Øivind Skare
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, 0363, Norway
| | - Marte Petersen-Øverleir
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, 0363, Norway
| | - Heidi Ødegaard Notø
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, 0363, Norway
| | - Jenny-Anne S Lie
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, 0363, Norway
| | - Edyta Reszka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Beata Pepłońska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Shanbeh Zienolddiny
- Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, 0363, Norway
| |
Collapse
|
41
|
Zubidat AE, Haim A. Artificial light-at-night - a novel lifestyle risk factor for metabolic disorder and cancer morbidity. J Basic Clin Physiol Pharmacol 2017; 28:295-313. [PMID: 28682785 DOI: 10.1515/jbcpp-2016-0116] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 03/02/2017] [Indexed: 06/07/2023]
Abstract
Both obesity and breast cancer are already recognized worldwide as the most common syndromes in our modern society. Currently, there is accumulating evidence from epidemiological and experimental studies suggesting that these syndromes are closely associated with circadian disruption. It has been suggested that melatonin (MLT) and the circadian clock genes both play an important role in the development of these syndromes. However, we still poorly understand the molecular mechanism underlying the association between circadian disruption and the modern health syndromes. One promising candidate is epigenetic modifications of various genes, including clock genes, circadian-related genes, oncogenes, and metabolic genes. DNA methylation is the most prominent epigenetic signaling tool for gene expression regulation induced by environmental exposures, such as artificial light-at-night (ALAN). In this review, we first provide an overview on the molecular feedback loops that generate the circadian regulation and how circadian disruption by ALAN can impose adverse impacts on public health, particularly metabolic disorders and breast cancer development. We then focus on the relation between ALAN-induced circadian disruption and both global DNA methylation and specific loci methylation in relation to obesity and breast cancer morbidities. DNA hypo-methylation and DNA hyper-methylation, are suggested as the most studied epigenetic tools for the activation and silencing of genes that regulate metabolic and monostatic responses. Finally, we discuss the potential clinical and therapeutic roles of MLT suppression and DNA methylation patterns as novel biomarkers for the early detection of metabolic disorders and breast cancer development.
Collapse
|
42
|
Reszka E, Przybek M, Muurlink O, Pepłonska B. Circadian gene variants and breast cancer. Cancer Lett 2017; 390:137-145. [PMID: 28109907 DOI: 10.1016/j.canlet.2017.01.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/05/2017] [Accepted: 01/11/2017] [Indexed: 12/22/2022]
Abstract
The endogenous and self-sustained circadian rhythm generated and maintained in suprachiasmatic nucleus and peripheral tissues can coordinate various molecular, biochemical and physiological processes in living organisms resulting in the adaptation to environmental cues, e.g. light. Multifactorial breast cancer etiology also involves circadian gene alterations, especially among individuals exposed to light at night. Indeed, shift work that causes circadian disruption has been classified by the International Agency for Research on Cancer as a probable human carcinogen, group 2A. Thus it seems extremely important to recognize specific susceptible gene variants among around 20 candidate circadian genes that may be linked with breast cancer etiology. The aim of this review was to evaluate recent data investigating a putative link between circadian gene polymorphisms and breast cancer risk. We summarize fifteen epidemiological studies, including five studies on shift work that have indicated BMAL1, BMAL2, CLOCK, NPAS2, CRY1, CRY2, PER1, PER3 and TIMELESS as a candidate breast cancer risk variants.
Collapse
Affiliation(s)
- Edyta Reszka
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Teresy St. 8, 91-348, Lodz, Poland.
| | - Monika Przybek
- Department of Molecular Genetics and Epigenetics, Nofer Institute of Occupational Medicine, Teresy St. 8, 91-348, Lodz, Poland
| | - Olav Muurlink
- Central Queensland University, 160 Ann Street, Brisbane, Australia; Griffith Institute of Educational Research, 76 Messines Ridge Road, Mount Gravatt, Australia
| | - Beata Pepłonska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Teresy St. 8, 91-348, Lodz, Poland
| |
Collapse
|
43
|
Sultan A, Parganiha A, Sultan T, Choudhary V, Pati AK. Circadian clock, cell cycle, and breast cancer: an updated review. BIOL RHYTHM RES 2016. [DOI: 10.1080/09291016.2016.1263011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Armiya Sultan
- Chronobiology and Animal Behaviour Laboratory, School of Life Sciences, Pt. Ravishankar Shukla University, Raipur, India
| | - Arti Parganiha
- Chronobiology and Animal Behaviour Laboratory, School of Life Sciences, Pt. Ravishankar Shukla University, Raipur, India
- Center for Translational Chronobiology, Pt. Ravishankar Shukla University, Raipur, India
| | - Tahira Sultan
- Department of Biochemistry, University of Kashmir, Srinagar, India
| | - Vivek Choudhary
- Regional Cancer Centre, Pt. J.N.M. Medical College, Dr. B.R. Ambedkar Memorial Hospital, Raipur, India
| | - Atanu Kumar Pati
- Chronobiology and Animal Behaviour Laboratory, School of Life Sciences, Pt. Ravishankar Shukla University, Raipur, India
- Center for Translational Chronobiology, Pt. Ravishankar Shukla University, Raipur, India
| |
Collapse
|
44
|
Ha NH, Long J, Cai Q, Shu XO, Hunter KW. The Circadian Rhythm Gene Arntl2 Is a Metastasis Susceptibility Gene for Estrogen Receptor-Negative Breast Cancer. PLoS Genet 2016; 12:e1006267. [PMID: 27656887 PMCID: PMC5033489 DOI: 10.1371/journal.pgen.1006267] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/28/2016] [Indexed: 12/23/2022] Open
Abstract
Breast cancer mortality is primarily due to metastasis rather than primary tumors, yet relatively little is understood regarding the etiology of metastatic breast cancer. Previously, using a mouse genetics approach, we demonstrated that inherited germline polymorphisms contribute to metastatic disease, and that these single nucleotide polymorphisms (SNPs) could be used to predict outcome in breast cancer patients. In this study, a backcross between a highly metastatic (FVB/NJ) and low metastatic (MOLF/EiJ) mouse strain identified Arntl2, a gene encoding a circadian rhythm transcription factor, as a metastasis susceptibility gene associated with progression, specifically in estrogen receptor-negative breast cancer patients. Integrated whole genome sequence analysis with DNase hypersensitivity sites reveals SNPs in the predicted promoter of Arntl2. Using CRISPR/Cas9-mediated substitution of the MOLF promoter, we demonstrate that the SNPs regulate Arntl2 transcription and affect metastatic burden. Finally, analysis of SNPs associated with ARNTL2 expression in human breast cancer patients revealed reproducible associations of ARNTL2 expression quantitative trait loci (eQTL) SNPs with disease-free survival, consistent with the mouse studies. Estrogen receptor-negative (ER-) breast cancer is a highly malignant form of breast cancer with poor prognosis. Like most solid tumors, the mortality associated with ER- breast cancer is due to the development of secondary tumors, or metastases, in vital organs distant from the original breast tumor. ER- breast tumors, particularly those also lacking HER (human epidermal growth factor receptor) expression, are particularly deadly because unlike ER+ or HER+ breast cancers, targeted therapies have not yet been developed that can effectively reduce or eliminate tumor cells that have disseminated throughout the patient. Therefore, better understanding of the etiology of metastasis in ER- patients would potentially have a large clinical benefit by providing new targets to eradicate single tumor cells before they develop into metastases. A better understanding of metastasis etiology may also provide methods to prevent the conversion of these disseminated cells into life-threatening lesions. In this study, we demonstrate that a commonly used model of metastatic breast cancer is capable of identifying genes that play a role in the metastatic progression of ER- breast cancers. Furthermore, we identify the circadian rhythm gene, Arntl2, as a gene associated with inherited susceptibility for the development of metastatic lesions. These studies provide additional information regarding the mechanisms associated with metastasis in ER- breast cancers.
Collapse
Affiliation(s)
- Ngoc-Han Ha
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Xiao Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Kent W. Hunter
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
45
|
Fenga C. Occupational exposure and risk of breast cancer. Biomed Rep 2016; 4:282-292. [PMID: 26998264 DOI: 10.3892/br.2016.575] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 12/24/2015] [Indexed: 11/05/2022] Open
Abstract
Breast cancer is a multifactorial disease and the most commonly diagnosed cancer in women. Traditional risk factors for breast cancer include reproductive status, genetic mutations, family history and lifestyle. However, increasing evidence has identified an association between breast cancer and occupational factors, including environmental stimuli. Epidemiological and experimental studies demonstrated that ionizing and non-ionizing radiation exposure, night-shift work, pesticides, polycyclic aromatic hydrocarbons and metals are defined environmental factors for breast cancer, particularly at young ages. However, the mechanisms by which occupational factors can promote breast cancer initiation and progression remains to be elucidated. Furthermore, the evaluation of occupational factors for breast cancer, particularly in the workplace, also remains to be explained. The present review summarizes the occupational risk factors and the associated mechanisms involved in breast cancer development, in order to highlight new environmental exposures that could be correlated to breast cancer and to provide new insights for breast cancer prevention in the occupational settings. Furthermore, this review suggests that there is a requirement to include, through multidisciplinary approaches, different occupational exposure risks among those associated with breast cancer development. Finally, the design of new epigenetic biomarkers may be useful to identify the workers that are more susceptible to develop breast cancer.
Collapse
Affiliation(s)
- Concettina Fenga
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Occupational Medicine Section, 'Policlinico G. Martino' Hospital, University of Messina, Messina I-98125, Italy
| |
Collapse
|
46
|
Valenzuela FJ, Vera J, Venegas C, Muñoz S, Oyarce S, Muñoz K, Lagunas C. Evidences of Polymorphism Associated with Circadian System and Risk of Pathologies: A Review of the Literature. Int J Endocrinol 2016; 2016:2746909. [PMID: 27313610 PMCID: PMC4893437 DOI: 10.1155/2016/2746909] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/14/2016] [Accepted: 04/19/2016] [Indexed: 12/15/2022] Open
Abstract
The circadian system is a supraphysiological system that modulates different biological functions such as metabolism, sleep-wake, cellular proliferation, and body temperature. Different chronodisruptors have been identified, such as shift work, feeding time, long days, and stress. The environmental changes and our modern lifestyle can alter the circadian system and increase the risk of developing pathologies such as cancer, preeclampsia, diabetes, and mood disorder. This system is organized by transcriptional/tranductional feedback loops of clock genes Clock, Bmal1, Per1-3, and Cry1-2. How molecular components of the clock are able to influence the development of diseases and their risk relation with genetic components of polymorphism of clock genes is unknown. This research describes different genetic variations in the population and how these are associated with risk of cancer, metabolic diseases such as diabetes, obesity, and dyslipidemias, and also mood disorders such as depression, bipolar disease, excessive alcohol intake, and infertility. Finally, these findings will need to be implemented and evaluated at the level of genetic interaction and how the environment factors trigger the expression of these pathologies will be examined.
Collapse
Affiliation(s)
- F. J. Valenzuela
- Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, 378000 Chillán, Chile
- Group of Biotechnological Sciences, Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, 378000 Chillán, Chile
- *F. J. Valenzuela:
| | - J. Vera
- Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, 378000 Chillán, Chile
- Group of Biotechnological Sciences, Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, 378000 Chillán, Chile
| | - C. Venegas
- Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, 378000 Chillán, Chile
| | - S. Muñoz
- Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, 378000 Chillán, Chile
| | - S. Oyarce
- Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, 378000 Chillán, Chile
| | - K. Muñoz
- Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, 378000 Chillán, Chile
| | - C. Lagunas
- Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, 378000 Chillán, Chile
| |
Collapse
|
47
|
Lee JH, Kim SJ, Lee SY, Hwang JW, Suh IB. Association of PER2 and CRY1 Polymorphisms with the Morningness-Eveningness in Korean Adults. SLEEP MEDICINE RESEARCH 2015. [DOI: 10.17241/smr.2015.6.2.60] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
48
|
Chun SK, Chung S, Kim HD, Lee JH, Jang J, Kim J, Kim D, Son GH, Oh YJ, Suh YG, Lee CS, Kim K. A synthetic cryptochrome inhibitor induces anti-proliferative effects and increases chemosensitivity in human breast cancer cells. Biochem Biophys Res Commun 2015; 467:441-6. [PMID: 26407844 DOI: 10.1016/j.bbrc.2015.09.103] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/18/2015] [Indexed: 01/21/2023]
Abstract
Disruption of circadian rhythm is a major cause of breast cancer in humans. Cryptochrome (CRY), a circadian transcription factor, is a risk factor for initiation of breast cancer, and it is differentially expressed between normal and breast cancer tissues. Here, we evaluated the anti-proliferative and pro-apoptotic activity of KS15, a recently discovered small-molecule inhibitor of CRY, in human breast cancer cells. First, we investigated whether KS15 treatment could promote E-box-mediated transcription by inhibiting the activity of CRY in MCF-7 human breast cancer cells. Protein and mRNA levels of regulators of cell cycle and apoptosis, as well as core clock genes, were differentially modulated in response to KS15. Next, we investigated whether KS15 could inhibit proliferation and increase sensitivity to anti-tumor drugs in MCF-7 cells. We found that KS15 decreased the speed of cell growth and increased the chemosensitivity of MCF-7 cells to doxorubicin and tamoxifen, but had no effect on MCF-10A cells. These findings suggested that pharmacological inhibition of CRY by KS15 exerts an anti-proliferative effect and increases sensitivity to anti-tumor drugs in a specific type of breast cancer.
Collapse
Affiliation(s)
- Sung Kook Chun
- Department of Brain & Cognitive Sciences, Daegu-Gyeongbuk Institute of Science & Technology, Daegu, 711-873, South Korea; Department of Biological Sciences, Seoul National University, Seoul, 151-747, South Korea; Department of Brain & Cognitive Sciences, Seoul National University, Seoul, 151-747, South Korea
| | - Sooyoung Chung
- Department of Biological Sciences, Seoul National University, Seoul, 151-747, South Korea; Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 136-705, South Korea
| | - Hee-Dae Kim
- Department of Biological Sciences, Seoul National University, Seoul, 151-747, South Korea
| | - Ju Hyung Lee
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, South Korea
| | - Jaebong Jang
- College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea
| | - Jeongah Kim
- Department of Brain & Cognitive Sciences, Daegu-Gyeongbuk Institute of Science & Technology, Daegu, 711-873, South Korea; Department of Biological Sciences, Seoul National University, Seoul, 151-747, South Korea; Department of Brain & Cognitive Sciences, Seoul National University, Seoul, 151-747, South Korea
| | - Doyeon Kim
- Department of Brain & Cognitive Sciences, Daegu-Gyeongbuk Institute of Science & Technology, Daegu, 711-873, South Korea; Department of Biological Sciences, Seoul National University, Seoul, 151-747, South Korea; Department of Brain & Cognitive Sciences, Seoul National University, Seoul, 151-747, South Korea
| | - Gi Hoon Son
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 136-705, South Korea
| | - Young J Oh
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, South Korea
| | - Young-Ger Suh
- College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea
| | - Cheol Soon Lee
- Gachon Clinical Trials Center, Gachon University, Incheon, 417-842, South Korea
| | - Kyungjin Kim
- Department of Brain & Cognitive Sciences, Daegu-Gyeongbuk Institute of Science & Technology, Daegu, 711-873, South Korea; Department of Biological Sciences, Seoul National University, Seoul, 151-747, South Korea; Department of Brain & Cognitive Sciences, Seoul National University, Seoul, 151-747, South Korea.
| |
Collapse
|
49
|
Smolensky MH, Sackett-Lundeen LL, Portaluppi F. Nocturnal light pollution and underexposure to daytime sunlight: Complementary mechanisms of circadian disruption and related diseases. Chronobiol Int 2015; 32:1029-48. [PMID: 26374931 DOI: 10.3109/07420528.2015.1072002] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Routine exposure to artificial light at night (ALAN) in work, home, and community settings is linked with increased risk of breast and prostate cancer (BC, PC) in normally sighted women and men, the hypothesized biological rhythm mechanisms being frequent nocturnal melatonin synthesis suppression, circadian time structure (CTS) desynchronization, and sleep/wake cycle disruption with sleep deprivation. ALAN-induced perturbation of the CTS melatonin synchronizer signal is communicated maternally at the very onset of life and after birth via breast or artificial formula feedings. Nighttime use of personal computers, mobile phones, electronic tablets, televisions, and the like--now epidemic in adolescents and adults and highly prevalent in pre-school and school-aged children--is a new source of ALAN. However, ALAN exposure occurs concomitantly with almost complete absence of daytime sunlight, whose blue-violet (446-484 nm λ) spectrum synchronizes the CTS and whose UV-B (290-315 nm λ) spectrum stimulates vitamin D synthesis. Under natural conditions and clear skies, day/night and annual cycles of UV-B irradiation drive corresponding periodicities in vitamin D synthesis and numerous bioprocesses regulated by active metabolites augment and strengthen the biological time structure. Vitamin D insufficiency and deficiency are widespread in children and adults in developed and developing countries as a consequence of inadequate sunlight exposure. Past epidemiologic studies have focused either on exposure to too little daytime UV-B or too much ALAN, respectively, on vitamin D deficiency/insufficiency or melatonin suppression in relation to risk of cancer and other, e.g., psychiatric, hypertensive, cardiac, and vascular, so-called, diseases of civilization. The observed elevated incidence of medical conditions the two are alleged to influence through many complementary bioprocesses of cells, tissues, and organs led us to examine effects of the totality of the artificial light environment in which humans reside today. Never have chronobiologic or epidemiologic investigations comprehensively researched the potentially deleterious consequences of the combination of suppressed vitamin D plus melatonin synthesis due to life in today's man-made artificial light environment, which in our opinion is long overdue.
Collapse
Affiliation(s)
- Michael H Smolensky
- a Department of Biomedical Engineering , Cockrell School of Engineering, The University of Texas at Austin , Austin , TX , USA
| | - Linda L Sackett-Lundeen
- b American Association for Clinical Chronobiology and Chronotherapeutics , Roseville , MN , USA , and
| | - Francesco Portaluppi
- c Hypertension Center, S. Anna University Hospital, University of Ferrara , Ferrara , Italy
| |
Collapse
|
50
|
Santi SA, Meigs ML, Zhao Y, Bewick MA, Lafrenie RM, Conlon MS. A case–control study of breast cancer risk in nurses from Northeastern Ontario, Canada. Cancer Causes Control 2015. [DOI: 10.1007/s10552-015-0633-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|