1
|
Long Y, Liu J, Wang Y, Guo H, Cui G. The complex effects of miR-146a in the pathogenesis of Alzheimer's disease. Neural Regen Res 2025; 20:1309-1323. [PMID: 39075895 PMCID: PMC11624861 DOI: 10.4103/nrr.nrr-d-23-01566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/11/2024] [Accepted: 05/06/2024] [Indexed: 07/31/2024] Open
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by cognitive dysfunction and behavioral abnormalities. Neuroinflammatory plaques formed through the extracellular deposition of amyloid-β proteins, as well as neurofibrillary tangles formed by the intracellular deposition of hyperphosphorylated tau proteins, comprise two typical pathological features of Alzheimer's disease. Besides symptomatic treatment, there are no effective therapies for delaying Alzheimer's disease progression. MicroRNAs (miR) are small, non-coding RNAs that negatively regulate gene expression at the transcriptional and translational levels and play important roles in multiple physiological and pathological processes. Indeed, miR-146a, a NF-κB-regulated gene, has been extensively implicated in the development of Alzheimer's disease through several pathways. Research has demonstrated substantial dysregulation of miR-146a both during the initial phases and throughout the progression of this disorder. MiR-146a is believed to reduce amyloid-β deposition and tau protein hyperphosphorylation through the TLR/IRAK1/TRAF6 pathway; however, there is also evidence supporting that it can promote these processes through many other pathways, thus exacerbating the pathological manifestations of Alzheimer's disease. It has been widely reported that miR-146a mediates synaptic dysfunction, mitochondrial dysfunction, and neuronal death by targeting mRNAs encoding synaptic-related proteins, mitochondrial-related proteins, and membrane proteins, as well as other mRNAs. Regarding the impact on glial cells, miR-146a also exhibits differential effects. On one hand, it causes widespread and sustained inflammation through certain pathways, while on the other hand, it can reverse the polarization of astrocytes and microglia, alleviate neuroinflammation, and promote oligodendrocyte progenitor cell differentiation, thus maintaining the normal function of the myelin sheath and exerting a protective effect on neurons. In this review, we provide a comprehensive analysis of the involvement of miR-146a in the pathogenesis of Alzheimer's disease. We aim to elucidate the relationship between miR-146a and the key pathological manifestations of Alzheimer's disease, such as amyloid-β deposition, tau protein hyperphosphorylation, neuronal death, mitochondrial dysfunction, synaptic dysfunction, and glial cell dysfunction, as well as summarize recent relevant studies that have highlighted the potential of miR-146a as a clinical diagnostic marker and therapeutic target for Alzheimer's disease.
Collapse
Affiliation(s)
- Yunfan Long
- Department of Neurology, Shanghai No. 9 People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiajia Liu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Wang
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haidong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guohong Cui
- Department of Neurology, Shanghai No. 9 People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Shirpoor A, Naderi R. Nandrolone decanoate induced kidney injury through miRNA-146a targeting IRAK1 and TRAF6 via activation of the NF-κB pathway: The effect of moderate exercise. Steroids 2024; 211:109503. [PMID: 39208922 DOI: 10.1016/j.steroids.2024.109503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Anabolic-androgenic steroids (AAS) abuse is linked to some abnormalities in several tissues including the kidney. However, the precise molecular mediators involved in AAS-induced kidney disorder remain elusive. The main objective of the present study was to investigate the effect of Nandrolone decanoate on kidney injury alone or in combination with moderate exercise and its related mechanisms. Thirty-two male Wistar rats were subdivided randomly into four groups. control (Con), Nandrolone (10 mg/kg)(N), Exercise (Exe), Nandrolone + Exercise (N+Exe). RESULTS: After 6 weeks, nandrolone treatment led to a significant increase in functional parameters such as serum cystatin c, urea, creatinine, albuminuria and Albumin/ creatinine ratio indicating kidney dysfunction. Moreover, nandrolone treatment increased vacuolization, focal inflammation, hemorragia, cast formation fibrosis in the renal tissue of rats. miRNA-146a increased in kidney tissue after nandrolone exposure by using RT-PCR which may be considered idealtheranomiRNAcandidates for diagnosis and treatment. Western blotting indicated that IRAK1, TRAF6, TNF-α, NF-κB, iNOS and TGF-β protein expressions were considerably elevated in the kidneys of nandrolone treated rats. Moderate exercise could alleviate the renal dysfunction, histological abnormalities and aforementioned proteins. Our findings suggested that nandrolone consumption can cause damage to kidney tissue probably through miRNA-146a targeting IRAK1 and TRAF6 via activation of the NF-κB and TGF-β pathway. These results provide future lines of research in the identification of theranoMiRNAs related to nandrolone treatment, which can be ameliorated by moderate exercise.
Collapse
Affiliation(s)
- Alireza Shirpoor
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Nephrology and Kidney Transplant Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
3
|
Liu L, Wang L, Wang H, Jiang Q, Zhang T, Xu J, Yuan L, Cui X, Chen G, Kang L, Pan Y, Li Y. Niaodukang mixture inhibits micro-inflammation in CKD rats by enhancing MiR-146a levels in enterogenous exosomes. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118318. [PMID: 38754642 DOI: 10.1016/j.jep.2024.118318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Niaodukang mixture (NDK) is a preparation known for its ability to lower serum creatine levels in individuals with chronic kidney disease (CKD) and is commonly administered at medical facilities like the Zhongshan Hospital of Traditional Chinese Medicine. The initial use of NDK was mainly to treat CKD. Our hospital frequently utilizes NDK, which consists of Rheum officinaleBaill., Salvia miltiorrhiza Bunge., Astragalus aaronii (Eig) Zohary., Carthamus tinctorius L., and Sanguisorba officinalis L., for treating patients with CKD-MBD. It has the effects of eliminating dampness and turbidity and dredging kidney collaterals. However, The impact and process of NDK in chronic kidney disease remain unknown. AIM OF THE STUDY To determine whether microRNA-146a (miR-146a) is associated with CKD micro-inflammationand whether NDK protects against CKD micro-inflammation by modulating the miR-146a/nuclear factor kappa-B (NF-κB) signaling pathway. MATERIALS AND METHODS (1) An adenine-induced rat model of chronic kidney disease was created through the use of materials and methods. The levels of miR-146a in exosomes from plasma and ileum were determined by RT-PCR. (2) Human cloned colon adenocarcinoma (Caco-2)cellswere stimulated with lipopolysaccharide (LPS)and transfected with miR-146a mimic and inhibitor. Following that, the Western blot and RT-PCR techniques were used to measure the protein and mRNA quantities of Toll-like receptor 4 (TLR4), NF-κB, and TNF receptor-associated factor 6 (TRAF6). (3) Enzyme-linked immunosorbent assay (ELISA) was used to identify serum levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α). (4) Plasma exosomes were extracted, and the exosomes in intestinal tissues were extracted via ultrahigh-speed centrifugation.Negative staining electron microscopy was used to analyze the morphology of exosomes and the ultrastructure of intestinal tissue and exosomes. The particle size of the exosomes was measured using nanoparticle tracking analysis. RESULTS The pathological characteristics of CKD rats included those associated with systemic micro-inflammation, which may be associated with the release of exosomes in intestinal tissue. NDK suppressed the inflammatory response in Caco-2 cells and decreased the levels of IL-1β, IL-6, and TNF-α in rats with CKD. The expression of miR-146a, which regulates inflammation, differed between plasma-derived and enterogenous exosomes in CKD rats, which may be due to stimulation of ileal exosome release into the blood. NDK effectively reduced the levels of TRAF6, NF-κB, and TLR4 in the ileum tissue of CKD rats. CONCLUSION NDK can effectively improve micro-inflammation in CKD ratsby enhancing the release of enterogenous exosomes, thereby enhancing the release of exosome-associated miR-146a and inhibiting micro-inflammation.
Collapse
Affiliation(s)
- Linna Liu
- Department of Nephrology, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, 528400, China.
| | - Lei Wang
- Cardiovascular and Cerebrovascular Drugs Research and Development Center, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, 300020, China.
| | - Hong Wang
- Cardiovascular and Cerebrovascular Drugs Research and Development Center, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, 300020, China.
| | - Qian Jiang
- Cardiovascular and Cerebrovascular Drugs Research and Development Center, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, 300020, China.
| | - Ting Zhang
- Cardiovascular and Cerebrovascular Drugs Research and Development Center, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, 300020, China.
| | - Juan Xu
- Department of Nephrology, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, 528400, China.
| | - Ling Yuan
- Cardiovascular and Cerebrovascular Drugs Research and Development Center, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, 300020, China.
| | - Xiaoxue Cui
- Cardiovascular and Cerebrovascular Drugs Research and Development Center, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, 300020, China.
| | - Guan Chen
- Cardiovascular and Cerebrovascular Drugs Research and Development Center, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, 300020, China.
| | - Li Kang
- Cardiovascular and Cerebrovascular Drugs Research and Development Center, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin, 300020, China.
| | - Yurong Pan
- Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan, 528400, China.
| | - Yanlin Li
- Department of Nephrology, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, 528400, China.
| |
Collapse
|
4
|
Zhang S, Luo C, Chen Q, Li N, Liao X, Wu J, Zha H, Xie T, Bai S, Tian W, Zhu L, Zou X, Fang S, Sun C, Jiang Y, Yuan J, Shu Y, Wu N, Luo H. ZIKV induces P62-mediated autophagic degradation of TRAF6 through TRAF6-NS1 interaction. iScience 2024; 27:110757. [PMID: 39280623 PMCID: PMC11401155 DOI: 10.1016/j.isci.2024.110757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/07/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) is crucial in flavivirus infections, modulating the host immune response through interactions with viral proteins. Despite its importance, the relationship between TRAF6 and Zika virus (ZIKV) remains poorly understood. Our prior proteomics analysis revealed reduced TRAF6 protein levels in ZIKV-infected human trophoblast cells compared to non-infected controls. Subsequent studies in cell models and murine tissues confirmed a significant reduction in both TRAF6 mRNA and protein levels post-ZIKV infection. Further investigations unveiled that ZIKV induces P62-mediated degradation of TRAF6, with NS1 identified as the primary contributor. Co-localization and interaction studies demonstrated that NS1 promotes the association of P62, a key autophagy mediator, with TRAF6. Notably, our findings revealed TRAF6 enhances ZIKV infection, NS1 ubiquitination, NS1 expression, and the production of inflammatory cytokines and chemokines. These insights highlight the intricate TRAF6-ZIKV relationship, offering potential for drug targeting NS1-TRAF6 interactions to manage ZIKV infections effectively.
Collapse
Affiliation(s)
- Shengze Zhang
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Qiqi Chen
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Nina Li
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Xinzhong Liao
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jiani Wu
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Haolu Zha
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Ting Xie
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Shaohui Bai
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Weijian Tian
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Lin Zhu
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Xuan Zou
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518073, P.R. China
| | - Shisong Fang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518073, P.R. China
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P.R. China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, P.R. China
| | - Ying Jiang
- Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen 518054, P.R. China
| | - Jianhui Yuan
- Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen 518054, P.R. China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, P.R. China
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, P.R. China
| | - Nan Wu
- Shenzhen Nanshan Center for Disease Control and Prevention, Shenzhen 518054, P.R. China
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, P.R. China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, P.R. China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, P.R. China
| |
Collapse
|
5
|
Bahojb Mahdavi SZ, Jebelli A, Aghbash PS, Baradaran B, Amini M, Oroojalian F, Pouladi N, Baghi HB, de la Guardia M, Mokhtarzadeh AA. A comprehensive overview on the crosstalk between microRNAs and viral pathogenesis and infection. Med Res Rev 2024. [PMID: 39185567 DOI: 10.1002/med.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/11/2023] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Infections caused by viruses as the smallest infectious agents, pose a major threat to global public health. Viral infections utilize different host mechanisms to facilitate their own propagation and pathogenesis. MicroRNAs (miRNAs), as small noncoding RNA molecules, play important regulatory roles in different diseases, including viral infections. They can promote or inhibit viral infection and have a pro-viral or antiviral role. Also, viral infections can modulate the expression of host miRNAs. Furthermore, viruses from different families evade the host immune response by producing their own miRNAs called viral miRNAs (v-miRNAs). Understanding the replication cycle of viruses and their relation with host miRNAs and v-miRNAs can help to find new treatments against viral infections. In this review, we aim to outline the structure, genome, and replication cycle of various viruses including hepatitis B, hepatitis C, influenza A virus, coronavirus, human immunodeficiency virus, human papillomavirus, herpes simplex virus, Epstein-Barr virus, Dengue virus, Zika virus, and Ebola virus. We also discuss the role of different host miRNAs and v-miRNAs and their role in the pathogenesis of these viral infections.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Burjassot, Valencia, Spain
| | | |
Collapse
|
6
|
Putthanbut N, Lee JY, Borlongan CV. Extracellular vesicle therapy in neurological disorders. J Biomed Sci 2024; 31:85. [PMID: 39183263 PMCID: PMC11346291 DOI: 10.1186/s12929-024-01075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
Extracellular vesicles (EVs) are vital for cell-to-cell communication, transferring proteins, lipids, and nucleic acids in various physiological and pathological processes. They play crucial roles in immune modulation and tissue regeneration but are also involved in pathogenic conditions like inflammation and degenerative disorders. EVs have heterogeneous populations and cargo, with numerous subpopulations currently under investigations. EV therapy shows promise in stimulating tissue repair and serving as a drug delivery vehicle, offering advantages over cell therapy, such as ease of engineering and minimal risk of tumorigenesis. However, challenges remain, including inconsistent nomenclature, complex characterization, and underdeveloped large-scale production protocols. This review highlights the recent advances and significance of EVs heterogeneity, emphasizing the need for a better understanding of their roles in disease pathologies to develop tailored EV therapies for clinical applications in neurological disorders.
Collapse
Affiliation(s)
- Napasiri Putthanbut
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand
| | - Jea Young Lee
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
| | - Cesario V Borlongan
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA.
| |
Collapse
|
7
|
Molinero M, Perez-Pons M, González J, Barbé F, de Gonzalo-Calvo D. Decoding viral and host microRNA signatures in airway-derived biosamples: Insights for biomarker discovery in viral respiratory infections. Biomed Pharmacother 2024; 177:116984. [PMID: 38908203 DOI: 10.1016/j.biopha.2024.116984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
The global public health crisis caused by the COVID-19 pandemic has intensified the global concern regarding viral respiratory tract infections. Despite their considerable impact on health, society and the economy, effective management of these conditions remains a significant challenge. Integrating high-throughput analyses is pivotal for early detection, prognostication of adverse outcomes, elucidating pathogenetic pathways and developing therapeutic approaches. In recent years, microRNAs (miRNAs), a subset of small noncoding RNAs (ncRNAs), have emerged as promising tools for molecular phenotyping. Current evidence suggests that miRNAs could serve as innovative biological markers, aiding in informed medical decision-making. The cost-effective quantification of miRNAs in standardized samples using techniques routinely employed in clinical laboratories has become feasible. In this context, samples obtained from the airways represent a valuable source of information due to their direct exposure to the infectious agent and host response within the respiratory tract. This review explores viral and host miRNA profiling in airway-derived biosamples as a source of molecular information to guide patient management, with a specific emphasis on SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Marta Molinero
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Manel Perez-Pons
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Jessica González
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
8
|
Bermudez-Santana CI, Gallego-Gómez JC. Toward a Categorization of Virus-ncRNA Interactions in the World of RNA to Disentangle the Tiny Secrets of Dengue Virus. Viruses 2024; 16:804. [PMID: 38793685 PMCID: PMC11125801 DOI: 10.3390/v16050804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, the function of noncoding RNAs (ncRNAs) as regulatory molecules of cell physiology has begun to be better understood. Advances in viral molecular biology have shown that host ncRNAs, cellular factors, and virus-derived ncRNAs and their interplay are strongly disturbed during viral infections. Nevertheless, the folding of RNA virus genomes has also been identified as a critical factor in regulating canonical and non-canonical functions. Due to the influence of host ncRNAs and the structure of RNA viral genomes, complex molecular and cellular processes in infections are modulated. We propose three main categories to organize the current information about RNA-RNA interactions in some well-known human viruses. The first category shows examples of host ncRNAs associated with the immune response triggered in viral infections. Even though miRNAs introduce a standpoint, they are briefly presented to keep researchers moving forward in uncovering other RNAs. The second category outlines interactions between virus-host ncRNAs, while the third describes how the structure of the RNA viral genome serves as a scaffold for processing virus-derived RNAs. Our grouping may provide a comprehensive framework to classify ncRNA-host-cell interactions for emerging viruses and diseases. In this sense, we introduced them to organize DENV-host-cell interactions.
Collapse
Affiliation(s)
- Clara Isabel Bermudez-Santana
- Computational and theoretical RNomics Group, Center of Excellence in Scientific Computing, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Juan Carlos Gallego-Gómez
- Grupo de Medicina de Traslación, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| |
Collapse
|
9
|
Macha NO, Komarasamy TV, Harun S, Adnan NAA, Hassan SS, Balasubramaniam VRMT. Cross Talk between MicroRNAs and Dengue Virus. Am J Trop Med Hyg 2024; 110:856-867. [PMID: 38579704 PMCID: PMC11066346 DOI: 10.4269/ajtmh.23-0546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/19/2023] [Indexed: 04/07/2024] Open
Abstract
Dengue fever (DF) is an endemic infectious tropical disease and is rapidly becoming a global problem. Dengue fever is caused by one of the four dengue virus (DENV) serotypes and is spread by the female Aedes mosquito. Clinical manifestations of DF may range from asymptomatic to life-threatening severe illness with conditions of hemorrhagic fever and shock. Early and precise diagnosis is vital to avoid mortality from DF. A different approach is required to combat DF because of the challenges with the vaccines currently available, which are nonspecific; each is capable of causing cross-reaction and disease-enhancing antibody responses against the residual serotypes. MicroRNAs (miRNAs) are known to be implicated in DENV infection and are postulated to be involved in most of the host responses. Thus, they might be a suitable target for new strategies against the disease. The involvement of miRNAs in cellular activities and pathways during viral infections has been explored under numerous conditions. Interestingly, miRNAs have also been shown to be involved in viral replication. In this review, we summarize the role of known miRNAs, specifically the role of miRNA Let-7c (miR-Let-7c), miR-133a, miR-30e, and miR-146a, in the regulation of DENV replication and their possible effects on the initial immune reaction.
Collapse
Affiliation(s)
- Nur Omar Macha
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Thamil Vaani Komarasamy
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Sarahani Harun
- Institute of Systems Biology Malaysia, National University of Malaysia, Selangor, Malaysia
| | - Nur Amelia Azreen Adnan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Sharifah Syed Hassan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Vinod R. M. T. Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
10
|
Zhang X, Li Y, Cao Y, Wu Y, Cheng G. The Role of Noncoding RNA in the Transmission and Pathogenicity of Flaviviruses. Viruses 2024; 16:242. [PMID: 38400018 PMCID: PMC10892091 DOI: 10.3390/v16020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Noncoding RNAs (ncRNAs) constitute a class of RNA molecules that lack protein-coding capacity. ncRNAs frequently modulate gene expression through specific interactions with target proteins or messenger RNAs, thereby playing integral roles in a wide array of cellular processes. The Flavivirus genus comprises several significant members, such as dengue virus (DENV), Zika virus (ZIKV), and yellow fever virus (YFV), which have caused global outbreaks, resulting in high morbidity and mortality in human populations. The life cycle of arthropod-borne flaviviruses encompasses their transmission between hematophagous insect vectors and mammalian hosts. During this process, a complex three-way interplay occurs among the pathogen, vector, and host, with ncRNAs exerting a critical regulatory influence. ncRNAs not only constitute a crucial regulatory mechanism that has emerged from the coevolution of viruses and their hosts but also hold potential as antiviral targets for controlling flavivirus epidemics. This review introduces the biogenesis of flavivirus-derived ncRNAs and summarizes the regulatory roles of ncRNAs in viral replication, vector-mediated viral transmission, antiviral innate immunity, and viral pathogenicity. A profound comprehension of the interplay between ncRNAs and flaviviruses will help formulate efficacious prophylactic and therapeutic strategies against flavivirus-related diseases.
Collapse
Affiliation(s)
- Xianwen Zhang
- Shenzhen Bay Laboratory, Institute of Infectious Diseases, Shenzhen 518000, China
| | - Yuhan Li
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; (Y.L.); (Y.C.)
| | - Yingyi Cao
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; (Y.L.); (Y.C.)
| | - Ying Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan 430072, China;
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; (Y.L.); (Y.C.)
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
11
|
Kumar M, Sahoo GC, Das VNR, Singh K, Pandey K. A Review of miRNA Regulation in Japanese Encephalitis (JEV) Virus Infection. Curr Pharm Biotechnol 2024; 25:521-533. [PMID: 37888811 DOI: 10.2174/0113892010241606231003102047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 10/28/2023]
Abstract
Japanese encephalitis (JE) is a mosquito-borne disease that causes neuronal damage and inflammation of microglia, and in severe cases, it can be fatal. JE infection can resist cellular immune responses and survive in host cells. Japanese encephalitis virus (JEV) infects macrophages and peripheral blood lymphocytes. In addition to regulating biological signaling pathways, microRNAs in cells also influence virus-host interactions. Under certain circumstances, viruses can change microRNA production. These changes affect the replication and spread of the virus. Host miRNAs can contain viral pathogenicity by downregulating the antiviral immune response pathways. Simultaneous profiling of miRNA and messenger RNA (mRNA) could help us detect pathogenic factors, and dual RNA detection is possible. This work highlights important miRNAs involved in human JE infection. In this study, we have shown the important miRNAs that play significant roles in JEV infection. We found that during JEV infection, miRNA-155, miRNA-29b, miRNA-15b, miRNA-146a, miRNA-125b-5p, miRNA-30la, miRNA-19b-3p, and miRNA-124, cause upregulation of human genes whereas miRNA-432, miRNA-370, miRNA- 33a-5p, and miRNA-466d-3p are responsible for downregulation of human genes respectively. Further, these miRNAs are also responsible for the inflammatory effects. Although several other miRNAs critical to the JEV life cycle are yet unknown, there is currently no evidence for the role of miRNAs in persistence.
Collapse
Affiliation(s)
- Maneesh Kumar
- Department of Virology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, Bihar, India
| | - Ganesh Chandra Sahoo
- Department of Virology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, Bihar, India
| | - Vidya Nand Rabi Das
- Department of Clinical Medicine, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, Bihar, India
| | - Kamal Singh
- Department of Virology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, Bihar, India
| | - Krishna Pandey
- Department of Clinical Medicine, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Patna, 800007, Bihar, India
| |
Collapse
|
12
|
Dey A, Ghosh S, Bhuniya T, Koley M, Bera A, Guha S, Chakraborty K, Muthu S, Gorai S, Vorn R, Vadivalagan C, Anand K. Clinical Theragnostic Signature of Extracellular Vesicles in Traumatic Brain Injury (TBI). ACS Chem Neurosci 2023; 14:2981-2994. [PMID: 37624044 PMCID: PMC10485905 DOI: 10.1021/acschemneuro.3c00386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Traumatic brain injury (TBI) is a common cause of disability and fatality worldwide. Depending on the clinical presentation, it is a type of acquired brain damage that can be mild, moderate, or severe. The degree of patient's discomfort, prognosis, therapeutic approach, survival rates, and recurrence can all be strongly impacted by an accurate diagnosis made early on. The Glasgow Coma Scale (GCS), along with neuroimaging (MRI (Magnetic Resonance Imaging) and CT scan), is a neurological assessment tools used to evaluate and categorize the severity of TBI based on the patient's level of consciousness, eye opening, and motor response. Extracellular vesicles (EVs) are a growing domain, explaining neurological complications in a more detailed manner. EVs, in general, play a role in cellular communication. Its molecular signature such as DNA, RNA, protein, etc. contributes to the status (health or pathological stage) of the parental cell. Brain-derived EVs support more specific screening (diagnostic and prognostic) in TBI research. Therapeutic impact of EVs are more promising for aiding in TBI healing. It is nontoxic, biocompatible, and capable of crossing the blood-brain barrier (BBB) to transport therapeutic molecules. This review has highlighted the relationships between EVs and TBI theranostics, EVs and TBI-related clinical trials, and related research domain-associated challenges and solutions. This review motivates further exploration of associations between EVs and TBI and develops a better approach to TBI management.
Collapse
Affiliation(s)
- Anuvab Dey
- Department
of Biological Sciences and Biological Engineering, IIT Guwahati, North
Guwahati, Assam 781039, India
| | | | - Tiyasa Bhuniya
- Department
of Biotechnology, NIT Durgapur, Mahatma Gandhi Rd, A-Zone, Durgapur, West Bengal 713209, India
| | - Madhurima Koley
- Chemistry
and Chemical Biology department, IIT(ISM), Dhanbad 826004, India
| | - Aishi Bera
- Heritage
Institute of Technology, Chowbaga, Anandapur, Kolkata 700107, India
| | - Sudeepta Guha
- Chemistry
and Chemical Biology department, IIT(ISM), Dhanbad 826004, India
| | | | - Sathish Muthu
- Department
of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department
of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Sukhamoy Gorai
- Rush University
Medical Center, 1620 W Harrison St, Chicago, Illinois 60612, United States
| | - Rany Vorn
- School
of Nursing and Medicine, Johns Hopkins University, Baltimore, Maryland 21287, United States
| | - Chithravel Vadivalagan
- Department
of Surgery, University of Michigan Medical
Center, Ann Arbor, Michigan 48109, United States
| | - Krishnan Anand
- Department
of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
13
|
Gilyazova I, Asadullina D, Kagirova E, Sikka R, Mustafin A, Ivanova E, Bakhtiyarova K, Gilyazova G, Gupta S, Khusnutdinova E, Gupta H, Pavlov V. MiRNA-146a-A Key Player in Immunity and Diseases. Int J Mol Sci 2023; 24:12767. [PMID: 37628949 PMCID: PMC10454149 DOI: 10.3390/ijms241612767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
miRNA-146a, a single-stranded, non-coding RNA molecule, has emerged as a valuable diagnostic and prognostic biomarker for numerous pathological conditions. Its primary function lies in regulating inflammatory processes, haemopoiesis, allergic responses, and other key aspects of the innate immune system. Several studies have indicated that polymorphisms in miRNA-146a can influence the pathogenesis of various human diseases, including autoimmune disorders and cancer. One of the key mechanisms by which miRNA-146a exerts its effects is by controlling the expression of certain proteins involved in critical pathways. It can modulate the activity of interleukin-1 receptor-associated kinase, IRAK1, IRAK2 adaptor proteins, and tumour necrosis factor (TNF) targeting protein receptor 6, which is a regulator of the TNF signalling pathway. In addition, miRNA-146a affects gene expression through multiple signalling pathways, such as TNF, NF-κB and MEK-1/2, and JNK-1/2. Studies have been carried out to determine the effect of miRNA-146a on cancer pathogenesis, revealing its involvement in the synthesis of stem cells, which contributes to tumourigenesis. In this review, we focus on recent discoveries that highlight the significant role played by miRNA-146a in regulating various defence mechanisms and oncogenesis. The aim of this review article is to systematically examine miRNA-146a's impact on the control of signalling pathways involved in oncopathology, immune system development, and the corresponding response to therapy.
Collapse
Affiliation(s)
- Irina Gilyazova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450054 Ufa, Russia (E.K.)
| | - Dilara Asadullina
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Evelina Kagirova
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Ruhi Sikka
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, India
| | - Artur Mustafin
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Elizaveta Ivanova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450054 Ufa, Russia (E.K.)
| | - Ksenia Bakhtiyarova
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Gulshat Gilyazova
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Saurabh Gupta
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, India
| | - Elza Khusnutdinova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450054 Ufa, Russia (E.K.)
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Himanshu Gupta
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, India
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| |
Collapse
|
14
|
Yang R, Yang B, Liu W, Tan C, Chen H, Wang X. Emerging role of non-coding RNAs in neuroinflammation mediated by microglia and astrocytes. J Neuroinflammation 2023; 20:173. [PMID: 37481642 PMCID: PMC10363317 DOI: 10.1186/s12974-023-02856-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023] Open
Abstract
Neuroinflammation has been implicated in the initiation and progression of several central nervous system (CNS) disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, ischemic stroke, traumatic brain injury, spinal cord injury, viral encephalitis, and bacterial encephalitis. Microglia and astrocytes are essential in neural development, maintenance of synaptic connections, and homeostasis in a healthy brain. The activation of astrocytes and microglia is a defense mechanism of the brain against damaged tissues and harmful pathogens. However, their activation triggers neuroinflammation, which can exacerbate or induce CNS injury. Non-coding RNAs (ncRNAs) are functional RNA molecules that lack coding capabilities but can actively regulate mRNA expression and function through various mechanisms. ncRNAs are highly expressed in astrocytes and microglia and are potential mediators of neuroinflammation. We reviewed the recent research progress on the role of miRNAs, lncRNAs, and circRNAs in regulating neuroinflammation in various CNS diseases. Understanding how these ncRNAs affect neuroinflammation will provide important therapeutic insights for preventing and managing CNS dysfunction.
Collapse
Affiliation(s)
- Ruicheng Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Bo Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Wuhan Keqian Biological Co., Ltd., Wuhan, 430070, China
| | - Wei Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Wuhan Academy of Agricultural Sciences, Wuhan, 430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
| |
Collapse
|
15
|
Soltani S, Shahbahrami R, Jahanabadi S, Siri G, Emadi MS, Zandi M. Possible role of CNS microRNAs in Human Mpox virus encephalitis-a mini-review. J Neurovirol 2023; 29:135-140. [PMID: 36964438 DOI: 10.1007/s13365-023-01125-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/26/2023]
Abstract
In May 2022, a re-emerging viral pathogen belonging to the Poxviridae was first reported from the UK, and WHO confirmed the outbreak after the prevalence of the disease increased. As of February 15, 2023, more than 85,000 confirmed cases have been recorded in 110 countries. Due to the spread of the virus across multiple countries, WHO declared the mpox outbreak as a public health emergency. Human mpox virus is an enveloped virus with a linear double-stranded DNA that can cause encephalitis with neurological complications such as pharyngitis, fever, anorexia, adenopathy, vesiculopapular rash, and headache. Dysregulation of microRNAs in viral encephalitis has been reported in a variety of documents. In this mini-review, we aim to discuss the possibility of CNS-related microRNA dysregulation in mpox-related encephalitis.
Collapse
Affiliation(s)
- Saber Soltani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Shahbahrami
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somaye Jahanabadi
- Specialist of Infectious and Tropical Diseases, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Goli Siri
- Department of Internal Medicine, School of Medicine, Amir Alam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Saeid Emadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Liang JQ, Xie MY, Hou LJ, Wang HL, Luo JY, Sun JJ, Xi QY, Jiang QY, Chen T, Zhang YL. miRNAs derived from milk small extracellular vesicles inhibit porcine epidemic diarrhea virus infection. Antiviral Res 2023; 212:105579. [PMID: 36907442 DOI: 10.1016/j.antiviral.2023.105579] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/12/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV), a member of the genus Alphacoronavirus in the family Coronaviridae, causes acute diarrhea and/or vomiting, dehydration, and high mortality in neonatal piglets. It has caused huge economic losses to animal husbandry worldwide. Current commercial PEDV vaccines do not provide enough protection against variant and evolved virus strains. No specific drugs are available to treat PEDV infection. The development of more effective therapeutic anti-PEDV agents is urgently needed. Our previous study suggested that porcine milk small extracellular vesicles (sEV) facilitate intestinal tract development and prevent lipopolysaccharide-induced intestinal injury. However, the effects of milk sEV during viral infection remain unclear. Our study found that porcine milk sEV, which was isolated and purified by differential ultracentrifugation, could inhibit PEDV replication in IPEC-J2 and Vero cells. Simultaneously, we constructed a PEDV infection model for piglet intestinal organoids and found that milk sEV also inhibited PEDV infection. Subsequently, in vivo experiments showed that milk sEV pre-feeding exerted robust protection of piglets from PEDV-induced diarrhea and mortality. Strikingly, we found that the miRNAs extracted from milk sEV inhibited PEDV infection. miRNA-seq, bioinformatics analysis, and experimental verification demonstrated that miR-let-7e and miR-27b, which were identified in milk sEV targeted PEDV N and host HMGB1, suppressed viral replication. Taken together, we revealed the biological function of milk sEV in resisting PEDV infection and proved its cargo miRNAs, miR-let-7e and miR-27b, possess antiviral functions. This study is the first description of the novel function of porcine milk sEV in regulating PEDV infection. It provides a better understanding of milk sEV resistance to coronavirus infection, warranting further studies to develop sEV as an attractive antiviral.
Collapse
Affiliation(s)
- Jia Qi Liang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Mei-Ying Xie
- Guangdong Eco-Engineering Polytechnic, Guangzhou, Guangdong, 510520, China
| | - Lian-Jie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, 511518, China
| | - Hai-Long Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jun-Yi Luo
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jia-Jie Sun
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qian-Yun Xi
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qing-Yan Jiang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ting Chen
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| | - Yong-Liang Zhang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
17
|
Abdel Halim AS, Rudayni HA, Chaudhary AA, Ali MAM. MicroRNAs: Small molecules with big impacts in liver injury. J Cell Physiol 2023; 238:32-69. [PMID: 36317692 DOI: 10.1002/jcp.30908] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
A type of small noncoding RNAs known as microRNAs (miRNAs) fine-tune gene expression posttranscriptionally by binding to certain messenger RNA targets. Numerous physiological processes in the liver, such as differentiation, proliferation, and apoptosis, are regulated by miRNAs. Additionally, there is growing evidence that miRNAs contribute to liver pathology. Extracellular vesicles like exosomes, which contain secreted miRNAs, may facilitate paracrine and endocrine communication between various tissues by changing the gene expression and function of distal cells. The use of stable miRNAs as noninvasive biomarkers was made possible by the discovery of these molecules in body fluids. Circulating miRNAs reflect the conditions of the liver that are abnormal and may serve as new biomarkers for the early detection, prognosis, and evaluation of liver pathological states. miRNAs are appealing therapeutic targets for a range of liver disease states because altered miRNA expression is associated with deregulation of the liver's metabolism, liver damage, liver fibrosis, and tumor formation. This review provides a comprehensive review and update on miRNAs biogenesis pathways and mechanisms of miRNA-mediated gene silencing. It also outlines how miRNAs affect hepatic cell proliferation, death, and regeneration as well as hepatic detoxification. Additionally, it highlights the diverse functions that miRNAs play in the onset and progression of various liver diseases, including nonalcoholic fatty liver disease, alcoholic liver disease, fibrosis, hepatitis C virus infection, and hepatocellular carcinoma. Further, it summarizes the diverse liver-specific miRNAs, illustrating the potential merits and possible caveats of their utilization as noninvasive biomarkers and appealing therapeutic targets for liver illnesses.
Collapse
Affiliation(s)
- Alyaa S Abdel Halim
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hassan Ahmed Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mohamed A M Ali
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.,Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Chithanathan K, Jürgenson M, Guha M, Yan L, Žarkovskaja T, Pook M, Magilnick N, Boldin MP, Rebane A, Tian L, Zharkovsky A. Paradoxical attenuation of neuroinflammatory response upon LPS challenge in miR-146b deficient mice. Front Immunol 2022; 13:996415. [PMID: 36389659 PMCID: PMC9659615 DOI: 10.3389/fimmu.2022.996415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/14/2022] [Indexed: 10/26/2023] Open
Abstract
The miR-146 family consists of two microRNAs (miRNAs), miR-146a and miR-146b (miR-146a/b), both of which are known to suppress immune responses in a variety of conditions. Here, we studied how constitutive deficiency of miR-146b (Mir146b-/-) affects lipopolysaccharide (LPS)-induced neuroinflammation in mice. Our experiments demonstrated that miR-146b deficiency results in the attenuation of LPS-induced neuroinflammation, as it was evidenced by the reduction of sickness behavior, a decrease in the inflammatory status of microglia, and the loss of morphological signs of microglial activation in the hippocampus. Gene expression analysis revealed that LPS-induced upregulation of hippocampal pro-inflammatory cytokines is attenuated in Mir146b-/- mice, compared to wild-type (WT) mice. In addition, reduced expression of the NF-κB nuclear protein p65, reduced miR-146 family target TLR4 expression and relatively stronger upregulation of miR-146a was found in Mir146b-/- mice as compared to WT mice upon LPS challenge. Compensatory upregulation of miR-146a can explain the attenuation of the LPS-induced neuroinflammation. This was supported by experiments conducted with miR-146a/b deficient mice (Mir146a/b-/-), which demonstrated that additional deletion of the miR-146a led to the restoration of LPS-induced sickness behavior and proinflammatory cytokines. Our experiments also showed that the observed upregulation of miR-146a in Mir146b-/- mice is due to the overexpression of a miR-146a transcription inducer, interferon regulatory factor 7 (Irf7). Altogether, our results show the existence of crosstalk between miR-146a and mir-146b in the regulation of LPS-induced neuroinflammation.
Collapse
Affiliation(s)
- Keerthana Chithanathan
- Department of Physiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Monika Jürgenson
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Mithu Guha
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Ling Yan
- Department of Physiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Tamara Žarkovskaja
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Martin Pook
- Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Nathaniel Magilnick
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope National Medical Center, Duarte, CA, United States
| | - Mark P. Boldin
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope National Medical Center, Duarte, CA, United States
| | - Ana Rebane
- Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Li Tian
- Department of Physiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - Alexander Zharkovsky
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
19
|
Davuluri KS, Chauhan DS. microRNAs associated with the pathogenesis and their role in regulating various signaling pathways during Mycobacterium tuberculosis infection. Front Cell Infect Microbiol 2022; 12:1009901. [PMID: 36389170 PMCID: PMC9647626 DOI: 10.3389/fcimb.2022.1009901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Despite more than a decade of active study, tuberculosis (TB) remains a serious health concern across the world, and it is still the biggest cause of mortality in the human population. Pathogenic bacteria recognize host-induced responses and adapt to those hostile circumstances. This high level of adaptability necessitates a strong regulation of bacterial metabolic characteristics. Furthermore, the immune reponse of the host virulence factors such as host invasion, colonization, and survival must be properly coordinated by the pathogen. This can only be accomplished by close synchronization of gene expression. Understanding the molecular characteristics of mycobacterial pathogenesis in order to discover therapies that prevent or resolve illness relies on the bacterial capacity to adjust its metabolism and replication in response to various environmental cues as necessary. An extensive literature details the transcriptional alterations of host in response to in vitro environmental stressors, macrophage infection, and human illness. Various studies have recently revealed the finding of several microRNAs (miRNAs) that are believed to play an important role in the regulatory networks responsible for adaptability and virulence in Mycobacterium tuberculosis. We highlighted the growing data on the existence and quantity of several forms of miRNAs in the pathogenesis of M. tuberculosis, considered their possible relevance to disease etiology, and discussed how the miRNA-based signaling pathways regulate bacterial virulence factors.
Collapse
|
20
|
Lang R, Li H, Luo X, Liu C, Zhang Y, Guo S, Xu J, Bao C, Dong W, Yu Y. Expression and mechanisms of interferon-stimulated genes in viral infection of the central nervous system (CNS) and neurological diseases. Front Immunol 2022; 13:1008072. [PMID: 36325336 PMCID: PMC9618809 DOI: 10.3389/fimmu.2022.1008072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/28/2022] [Indexed: 09/16/2023] Open
Abstract
Interferons (IFNs) bind to cell surface receptors and activate the expression of interferon-stimulated genes (ISGs) through intracellular signaling cascades. ISGs and their expression products have various biological functions, such as antiviral and immunomodulatory effects, and are essential effector molecules for IFN function. ISGs limit the invasion and replication of the virus in a cell-specific and region-specific manner in the central nervous system (CNS). In addition to participating in natural immunity against viral infections, studies have shown that ISGs are essential in the pathogenesis of CNS disorders such as neuroinflammation and neurodegenerative diseases. The aim of this review is to present a macroscopic overview of the characteristics of ISGs that restrict viral neural invasion and the expression of the ISGs underlying viral infection of CNS cells. Furthermore, we elucidate the characteristics of ISGs expression in neurological inflammation, neuropsychiatric disorders such as depression as well as neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Finally, we summarize several ISGs (ISG15, IFIT2, IFITM3) that have been studied more in recent years for their antiviral infection in the CNS and their research progress in neurological diseases.
Collapse
Affiliation(s)
- Rui Lang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huiting Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xiaoqin Luo
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Cencen Liu
- Department of Pathology, People’s Hospital of Zhongjiang County, DeYang, China
| | - Yiwen Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - ShunYu Guo
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jingyi Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Changshun Bao
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Neurological diseases and brain function laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yang Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
21
|
Polonio CM, da Silva P, Russo FB, Hyppolito BRN, Zanluqui NG, Benazzato C, Beltrão-Braga PCB, Muxel SM, Peron JPS. microRNAs Control Antiviral Immune Response, Cell Death and Chemotaxis Pathways in Human Neuronal Precursor Cells (NPCs) during Zika Virus Infection. Int J Mol Sci 2022; 23:ijms231810282. [PMID: 36142200 PMCID: PMC9499039 DOI: 10.3390/ijms231810282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Viral infections have always been a serious burden to public health, increasing morbidity and mortality rates worldwide. Zika virus (ZIKV) is a flavivirus transmitted by the Aedes aegypti vector and the causative agent of severe fetal neuropathogenesis and microcephaly. The virus crosses the placenta and reaches the fetal brain, mainly causing the death of neuronal precursor cells (NPCs), glial inflammation, and subsequent tissue damage. Genetic differences, mainly related to the antiviral immune response and cell death pathways greatly influence the susceptibility to infection. These components are modulated by many factors, including microRNAs (miRNAs). MiRNAs are small noncoding RNAs that regulate post-transcriptionally the overall gene expression, including genes for the neurodevelopment and the formation of neural circuits. In this context, we investigated the pathways and target genes of miRNAs modulated in NPCs infected with ZIKV. We observed downregulation of miR-302b, miR-302c and miR-194, whereas miR-30c was upregulated in ZIKV infected human NPCs in vitro. The analysis of a public dataset of ZIKV-infected human NPCs evidenced 262 upregulated and 3 downregulated genes, of which 142 were the target of the aforementioned miRNAs. Further, we confirmed a correlation between miRNA and target genes affecting pathways related to antiviral immune response, cell death and immune cells chemotaxis, all of which could contribute to the establishment of microcephaly and brain lesions. Here, we suggest that miRNAs target gene expression in infected NPCs, directly contributing to the pathogenesis of fetal microcephaly.
Collapse
Affiliation(s)
- Carolina M. Polonio
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
| | - Patrick da Silva
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
| | - Fabiele B. Russo
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Disease Modeling Laboratory at Department of Microbiology, Institute of Biomedical Sciences, São Paulo 05508-000, Brazil
| | - Brendo R. N. Hyppolito
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo 05508-000, Brazil
| | - Nagela G. Zanluqui
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo 05508-000, Brazil
| | - Cecília Benazzato
- Disease Modeling Laboratory at Department of Microbiology, Institute of Biomedical Sciences, São Paulo 05508-000, Brazil
| | - Patrícia C. B. Beltrão-Braga
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Disease Modeling Laboratory at Department of Microbiology, Institute of Biomedical Sciences, São Paulo 05508-000, Brazil
| | - Sandra M. Muxel
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Correspondence: (S.M.M.); (J.P.S.P.)
| | - Jean Pierre S. Peron
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil
- Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-000, Brazil
- Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo 05508-000, Brazil
- Correspondence: (S.M.M.); (J.P.S.P.)
| |
Collapse
|
22
|
Involvement of host microRNAs in flavivirus-induced neuropathology: An update. J Biosci 2022. [PMID: 36222134 PMCID: PMC9425815 DOI: 10.1007/s12038-022-00288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Flaviviruses are a spectrum of vector-borne RNA viruses that cause potentially severe diseases in humans including encephalitis, acute-flaccid paralysis, cognitive disorders and foetal abnormalities. Japanese encephalitis virus (JEV), Zika virus (ZIKV), West Nile virus (WNV) and Dengue virus (DENV) are globally emerging pathogens that lead to epidemics and outbreaks with continued transmission to newer geographical areas over time. In the past decade, studies have focussed on understanding the pathogenic mechanisms of these viruses in a bid to alleviate their disease burden. MicroRNAs (miRNAs) are short single-stranded RNAs that have emerged as master-regulators of cellular gene expression. The dynamics of miRNAs within a cell have the capacity to modulate hundreds of genes and, consequently, their physiological manifestation. Increasing evidence suggests their role in host response to disease and infection including cell survival, intracellular viral replication and immune activation. In this review, we aim to comprehensively update published evidence on the role of miRNAs in host cells infected with the common neurotropic flaviviruses, with an increased focus on neuropathogenic mechanisms. In addition, we briefly cover therapeutic advancements made in the context of miRNA-based antiviral strategies.
Collapse
|
23
|
Ahmed JQ, Maulud SQ, Dhawan M, Priyanka, Choudhary OP, Jalal PJ, Ali RK, Tayib GA, Hasan DA. MicroRNAs in the development of potential therapeutic targets against COVID-19: A narrative review. J Infect Public Health 2022; 15:788-799. [PMID: 35751930 PMCID: PMC9221922 DOI: 10.1016/j.jiph.2022.06.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 12/12/2022] Open
Abstract
Background As the therapeutic regimens against the COVID-19 remain scarce, the microRNAs (miRNAs) can be exploited to generate efficient therapeutic targets. The miRNAs have been found to play pivotal roles in the several regulatory functions influencing the prognosis of viral infection. The miRNAs have a prospective role in the up and down regulation of the ACE2 receptors. This review examines the clinical applications, as well as the possible threats associated with the use of miRNAs to combat the deleterious consequences of SARS-CoV-2 infection. Methodology This article was compiled to evaluate how the miRNAs are involved in the SARS-CoV-2 pathogenesis and infection, and their potential functions which could help in the development of therapeutic targets against the COVID-19. The sources of the collected information include the several journals, databases and scientific search engines such as the Google scholar, Pubmed, Science direct, official website of WHO, among the other sites. The investigations on the online platform were conducted using the keywords miRNA biogenesis, miRNA and ACE2 interaction, therapeutic role of miRNAs against SARS-CoV-2 and miRNA therapy side effects. Results This review has highlighted that the miRNAs can be exploited to generate potential therapeutic targets against the COVID-19. Changes in the miRNA levels following viral replication are an essential component of the host response to infection. The collection and modification of miRNA modulates may help to minimize the deleterious consequences of SARS-CoV-2 infection, such as by controlling or inhibiting the generation of cytokines and chemokines. The degradation of viral RNA by the cellular miRNAs, along with the reduced expression of ACE2 receptors, can substantially reduce the viral load. Specific miRNAs have been found to have an antiviral influence, allowing the immune system to combat the infection or forcing the virus into a latency stage. Conclusion This review summarizes several studies revealing the involvement of miRNAs in diverse and complex processes during the infection process of SARS-CoV-2. The miRNAs can substantially reduce the viral load by degradation of viral RNA and reduced expression of ACE2 receptors, besides mitigating the deleterious consequences of the exaggerated secretion of cytokines. Extensive investigations need to be done by the scientific community to utilize the miRNA based strategies for the development of effective therapeutic targets against the COVID-19.
Collapse
Affiliation(s)
- Jivan Qasim Ahmed
- Department of Pathology and Microbiology, University of Duhok, Kurdistan Region, Iraq
| | - Sazan Qadir Maulud
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, 141004 Punjab, India; Trafford College, Altrincham, Manchester, WA14 5PQ, UK
| | - Priyanka
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Rampura Phul, Bathinda 151103, Punjab, India.
| | - Om Prakash Choudhary
- Department of Veterinary Anatomy and Histology, College of Veterinary Sciences and Animal Husbandry, Central Agricultural University (I), Selesih, Aizawl, 796015, Mizoram, India.
| | - Paywast Jamal Jalal
- Department of Biology, College of Science, University of Sulaimani, Kurdistan Region, Iraq
| | - Rezhna Kheder Ali
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | | | | |
Collapse
|
24
|
Gao Y, Wang C, Jin F, Han G, Cui C. Therapeutic effect of extracellular vesicles from different cell sources in traumatic brain injury. Tissue Cell 2022; 76:101772. [DOI: 10.1016/j.tice.2022.101772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|
25
|
Cai W, Pan Y, Cheng A, Wang M, Yin Z, Jia R. Regulatory Role of Host MicroRNAs in Flaviviruses Infection. Front Microbiol 2022; 13:869441. [PMID: 35479613 PMCID: PMC9036177 DOI: 10.3389/fmicb.2022.869441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA that affect mRNA abundance or translation efficiency by binding to the 3′UTR of the mRNA of the target gene, thereby participating in multiple biological processes, including viral infection. Flavivirus genus consists of small, positive-stranded, single-stranded RNA viruses transmitted by arthropods, especially mosquitoes and ticks. The genus contains several globally significant human/animal pathogens, such as Dengue virus, Japanese encephalitis virus, West Nile virus, Zika virus, Yellow fever virus, Tick-borne encephalitis virus, and Tembusu virus. After flavivirus invades, the expression of host miRNA changes, exerting the immune escape mechanism to create an environment conducive to its survival, and the altered miRNA in turn affects the life cycle of the virus. Accumulated evidence suggests that host miRNAs influence flavivirus replication and host–virus interactions through direct binding of viral genomes or through virus-mediated host transcriptome changes. Furthermore, miRNA can also interweave with other non-coding RNAs, such as long non-coding RNA and circular RNA, to form an interaction network to regulate viral replication. A variety of non-coding RNAs produced by the virus itself exert similar function by interacting with cellular RNA and viral RNA. Understanding the interaction sites between non-coding RNA, especially miRNA, and virus/host genes will help us to find targets for antiviral drugs and viral therapy.
Collapse
Affiliation(s)
- Wenjun Cai
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- *Correspondence: Anchun Cheng,
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- Renyong Jia,
| |
Collapse
|
26
|
Host Cells Actively Resist Porcine Reproductive and Respiratory Syndrome Virus Infection via the IRF8-MicroRNA-10a-SRP14 Regulatory Pathway. J Virol 2022; 96:e0000322. [PMID: 35293774 DOI: 10.1128/jvi.00003-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) play an important role in the virus-host interaction. Our previous work has indicated that the expression level of miR-10a increased in porcine alveolar macrophages (PAMs) during porcine reproductive and respiratory syndrome virus (PRRSV) infection and further inhibited viral replication through downregulates the expression of host molecule signal-recognition particle 14 (SRP14) protein. However, the molecular mechanism of miR-10a increased after PRRSV infection remains unknown. In the present study, transcription factor interferon regulatory factor 8 (IRF8) was identified as a negative regulator of miR-10a. PRRSV infection decreases the expression level of IRF8 in PAMs, leading to upregulating miR-10a expression to play an anti-PRRSV role. Meanwhile, this work first proved that IRF8 promoted PRRSV replication in an miR-10a-dependent manner. Further, we explained that SRP14, the target gene of miR-10a, promotes the synthesis of the PRRSV genome by interacting with the viral components Nsp2, thus facilitating PRRSV replication. In conclusion, we identified a novel IRF8-miR-10a-SRP14 regulatory pathway against PRRSV infection, which provides new insights into virus-host interactions and suggests potential new antiviral strategies to control PRRSV. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) has rapidly spread to the global pig industry and caused incalculable economic damage since first discovered in the 1980s. However, conventional vaccines do not provide satisfactory protection. Understanding the molecular mechanisms of host resistance to PRRSV infection is necessary to develop safe and effective strategies to control PRRSV. During viral infection, miRNAs play vital roles in regulating the expression of viral or host genes at the posttranscriptional level. The significance of our study is that we revealed the transcriptional regulation mechanism of the antiviral molecule miR-10a after PRRSV infection. Moreover, our research also explained the mechanism of host molecule SRP14, the target gene of miR-10a regulating PRRSV replication. Thus, we report a novel regulatory pathway of IRF8-miR-10a-SRP14 against PRRSV infection, which provides new insights into virus-host interactions and suggests potential new control measures for future PRRSV outbreaks.
Collapse
|
27
|
Zhang X, Feng WH. Porcine Reproductive and Respiratory Syndrome Virus Evades Antiviral Innate Immunity via MicroRNAs Regulation. Front Microbiol 2022; 12:804264. [PMID: 34975824 PMCID: PMC8714953 DOI: 10.3389/fmicb.2021.804264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most important diseases in pigs, leading to significant economic losses in the swine industry worldwide. MicroRNAs (miRNAs) are small single-stranded non-coding RNAs involved in regulating gene expressions at the post-transcriptional levels. A variety of host miRNAs are dysregulated and exploited by PRRSV to escape host antiviral surveillance and help virus infection. In addition, PRRSV might encode miRNAs. In this review, we will summarize current progress on how PRRSV utilizes miRNAs for immune evasions. Increasing knowledge of the role of miRNAs in immune evasion will improve our understanding of PRRSV pathogenesis and help us develop new treatments for PRRSV-associated diseases.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory of Soil Microbiology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wen-Hai Feng
- State Key Laboratory of Agrobiotechnology, Ministry of Agriculture Key Laboratory of Soil Microbiology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
Majumdar A, Basu A. Involvement of host microRNAs in flavivirus-induced neuropathology: An update. J Biosci 2022; 47:54. [PMID: 36222134 PMCID: PMC9425815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/17/2022] [Indexed: 09/07/2024]
Abstract
Flaviviruses are a spectrum of vector-borne RNA viruses that cause potentially severe diseases in humans including encephalitis, acute-flaccid paralysis, cognitive disorders and foetal abnormalities. Japanese encephalitis virus (JEV), Zika virus (ZIKV), West Nile virus (WNV) and Dengue virus (DENV) are globally emerging pathogens that lead to epidemics and outbreaks with continued transmission to newer geographical areas over time. In the past decade, studies have focussed on understanding the pathogenic mechanisms of these viruses in a bid to alleviate their disease burden. MicroRNAs (miRNAs) are short single-stranded RNAs that have emerged as master-regulators of cellular gene expression. The dynamics of miRNAs within a cell have the capacity to modulate hundreds of genes and, consequently, their physiological manifestation. Increasing evidence suggests their role in host response to disease and infection including cell survival, intracellular viral replication and immune activation. In this review, we aim to comprehensively update published evidence on the role of miRNAs in host cells infected with the common neurotropic flaviviruses, with an increased focus on neuropathogenic mechanisms. In addition, we briefly cover therapeutic advancements made in the context of miRNA-based antiviral strategies.
Collapse
Affiliation(s)
- Atreye Majumdar
- National Brain Research Centre, Manesar, Gurugram 122 052 India
| | - Anirban Basu
- National Brain Research Centre, Manesar, Gurugram 122 052 India
| |
Collapse
|
29
|
Shukla A, Rastogi M, Singh SK. Zika virus NS1 suppresses the innate immune responses via miR-146a in human microglial cells. Int J Biol Macromol 2021; 193:2290-2296. [PMID: 34798192 DOI: 10.1016/j.ijbiomac.2021.11.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/27/2022]
Abstract
Zika virus (ZIKV) is a positive-single strand RNA virus that belongs to the Flaviviridae family. ZIKV infection causes congenital ZIKV syndrome (CZS) in children and Guillain Barre Syndrome (GBS) in adults. ZIKV infected cells secrete non-structural protein 1 (sNS1), which plays an important role in viral replication and immune evasion. The microglial cells are the brain resident macrophages that mediate the immune responses in CNS. The miRNAs are small non-coding RNAs that regulate the expression of their target genes by binding to the 3'UTR region. The present study highlights the bystander effect of ZIKV-NS1 via miR-146a. The Real-Time PCR, Immunoblotting, overexpression, knockdown studies, and reactive oxygen species measurement have been done to study the immunomodulatory effects of ZIKV-NS1 in human microglial cells. ZIKV-NS1 induced the expression of miR-146a and suppressed the ROS activity in human microglial cells. The up-regulated miR-146a led to the decreased expression of TRAF6 and STAT-1. The reduced expression of TRAF6 in turn led to the suppression of pNF-κBp65 and TNF-α downstream. The miR-146a suppressed the pro-inflammatory and cellular antiviral responses in microglial cells. Our findings demonstrate the bystander role of ZIKV-NS1 in suppressing the pro-inflammatory and cellular antiviral responses through miR-146a in human microglial cells.
Collapse
Affiliation(s)
- Astha Shukla
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Meghana Rastogi
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sunit K Singh
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
30
|
Li L, Qi C, Liu Y, Shen Y, Zhao X, Qin H, Zhang Y, Yu T. MicroRNA miR-27b-3p regulate microglial inflammation response and cell apoptosis by inhibiting A20 (TNF-α-induced protein 3). Bioengineered 2021; 12:9902-9913. [PMID: 34895052 PMCID: PMC8810141 DOI: 10.1080/21655979.2021.1969195] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inflammatory reaction exerts a pivotal role in secondary damage after cerebral hemorrhage and spinal cord injury. miRNAs can both promote and inhibit inflammatory actions among microglial cells. The objective of the present paper was to figure out whether miR-27b-3p produced regulatory effects during processes of microglial inflammation. Lipopolysaccharides (LPS) were used to prepare microglial activation models. Following miR-27b-3p overexpression and interference, the RNA and protein levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β were subjected to real-time fluorescent quantitative PCR (qPCR) and western blot assays, respectively. Cellular apoptosis was subjected to flow cytometry and miR-27b-3p target genes were visualized using a dual luciferase reporter system for verification. The levels of TNF-α, IL-6, and IL-1β mRNA in miR-27b-3p-overexpressed microglial cells were markedly increased compared to the control. Apoptosis of microglial cells was increased markedly in the overexpressed miR-27b-3p group compared to the negative control. Conversely, a different result was presented in the microglial transfected with miR-27b-3p inhibitors. The downregulation of A20, a miR-27b-3p target gene, mediated levels of TNF-α, IL-6, and IL-1β. Furthermore, A20 reduced microglial apoptosis. These data revealed that miR-27b-3p could mediate not only microglia activation but also neuroinflammation via downregulating A20 expression. Thus, miR-27b-3p is regarded as gene therapy in treating cerebral hemorrhage and spinal cord injury.
Collapse
Affiliation(s)
- Liping Li
- Department of Orthopedic Surgery, The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, Shandong, China.,Department of Orthopedic Surgery, The Second Clinical Medical College of Qingdao University, Qingdao, Shandong, China
| | - Chao Qi
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yuanyuan Liu
- Department of Oncology, The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, Shandong, China.,Department of Oncology, The Second Clinical Medical College of Qingdao University, Qingdao, Shandong, China
| | - Youliang Shen
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xia Zhao
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Han Qin
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yi Zhang
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Tengbo Yu
- Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
31
|
Ashraf U, Ding Z, Deng S, Ye J, Cao S, Chen Z. Pathogenicity and virulence of Japanese encephalitis virus: Neuroinflammation and neuronal cell damage. Virulence 2021; 12:968-980. [PMID: 33724154 PMCID: PMC7971234 DOI: 10.1080/21505594.2021.1899674] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/12/2021] [Accepted: 03/03/2021] [Indexed: 01/22/2023] Open
Abstract
Thousands of human deaths occur annually due to Japanese encephalitis (JE), caused by Japanese encephalitis virus. During the virus infection of the central nervous system, reactive gliosis, uncontrolled inflammatory response, and neuronal cell death are considered as the characteristic features of JE. To date, no specific treatment has been approved to overcome JE, indicating a need for the development of novel therapies. In this article, we focused on basic biological mechanisms in glial (microglia and astrocytes) and neuronal cells that contribute to the onset of neuroinflammation and neuronal cell damage during Japanese encephalitis virus infection. We also provided comprehensive knowledge about anti-JE therapies tested in clinical or pre-clinical settings, and discussed recent therapeutic strategies that could be employed for JE treatment. The improved understanding of JE pathogenesis might lay a foundation for the development of novel therapies to halt JE.Abbreviations AKT: a serine/threonine-specific protein kinase; AP1: activator protein 1; ASC: apoptosis-associated speck-like protein containing a CARD; ASK1: apoptosis signal-regulated kinase 1; ATF3/4/6: activating transcription factor 3/4/6; ATG5/7: autophagy-related 5/7; BBB: blood-brain barrier; Bcl-3/6: B-cell lymphoma 3/6 protein; CCL: C-C motif chemokine ligand; CCR2: C-C motif chemokine receptor 2; CHOP: C/EBP homologous protein; circRNA: circular RNA; CNS: central nervous system; CXCL: C-X-C motif chemokine ligand; dsRNA: double-stranded RNA; EDEM1: endoplasmic reticulum degradation enhancer mannosidase alpha-like 1; eIF2-ɑ: eukaryotic initiation factor 2 alpha; ER: endoplasmic reticulum; ERK: extracellular signal-regulated kinase; GRP78: 78-kDa glucose-regulated protein; ICAM: intercellular adhesion molecule; IFN: interferon; IL: interleukin; iNOS: inducible nitric oxide synthase; IRAK1/2: interleukin-1 receptor-associated kinase 1/2; IRE-1: inositol-requiring enzyme 1; IRF: interferon regulatory factor; ISG15: interferon-stimulated gene 15; JE: Japanese encephalitis; JEV: Japanese encephalitis virus; JNK: c-Jun N-terminal kinase; LAMP2: lysosome-associated membrane protein type 2; LC3-I/II: microtubule-associated protein 1 light chain 3-I/II; lncRNA: long non-coding RNA; MAPK: mitogen-activated protein kinase; miR/miRNA: microRNA; MK2: mitogen-activated protein kinase-activated protein kinase 2; MKK4: mitogen-activated protein kinase kinase 4; MLKL: mixed-linage kinase domain-like protein; MMP: matrix metalloproteinase; MyD88: myeloid differentiation factor 88; Nedd4: neural precursor cell-expressed developmentally downregulated 4; NF-κB: nuclear factor kappa B; NKRF: nuclear factor kappa B repressing factor; NLRP3: NLR family pyrin domain containing 3; NMDAR: N-methyl-D-aspartate receptor; NO: nitric oxide; NS2B/3/4: JEV non-structural protein 2B/3/4; P: phosphorylation. p38: mitogen-activated protein kinase p38; PKA: protein kinase A; PAK4: p21-activated kinase 4; PDFGR: platelet-derived growth factor receptor; PERK: protein kinase R-like endoplasmic reticulum kinase; PI3K: phosphoinositide 3-kinase; PTEN: phosphatase and tensin homolog; Rab7: Ras-related GTPase 7; Raf: proto-oncogene tyrosine-protein kinase Raf; Ras: a GTPase; RIDD: regulated IRE-1-dependent decay; RIG-I: retinoic acid-inducible gene I; RIPK1/3: receptor-interacting protein kinase 1/3; RNF11/125: RING finger protein 11/125; ROS: reactive oxygen species; SHIP1: SH2-containing inositol 5' phosphatase 1; SOCS5: suppressor of cytokine signaling 5; Src: proto-oncogene tyrosine-protein kinase Src; ssRNA = single-stranded RNA; STAT: signal transducer and activator of transcription; TLR: toll-like receptor; TNFAIP3: tumor necrosis factor alpha-induced protein 3; TNFAR: tumor necrosis factor alpha receptor; TNF-α: tumor necrosis factor-alpha; TRAF6: tumor necrosis factor receptor-associated factor 6; TRIF: TIR-domain-containing adapter-inducing interferon-β; TRIM25: tripartite motif-containing 25; VCAM: vascular cell adhesion molecule; ZO-1: zonula occludens-1.
Collapse
Affiliation(s)
- Usama Ashraf
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Zhen Ding
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, P. R. China
| | - Shunzhou Deng
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, P. R. China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Zheng Chen
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, P. R. China
| |
Collapse
|
32
|
Baluni M, Ghildiyal S, Fatima T, Tiwari R, Upadhyay S, Dhole TN, Reddy DH, Singh D. Differential expression of circulating microRNAs in serum: Potential biomarkers to track Japanese encephalitis virus infection. J Med Virol 2021; 94:531-539. [PMID: 34698413 DOI: 10.1002/jmv.27419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/11/2021] [Accepted: 10/23/2021] [Indexed: 11/11/2022]
Abstract
Japanese encephalitis is one of the serious vector-borne viral encephalitis diseases found worldwide and poses a major threat to public health. Most Japanese encephalitis virus (JEV) infections are subclinical; only 1: 250 to 1:1000 infected persons develop clinical presentations. Delay in proper diagnosis of JE affects the timeliness of treatment initiation and increases the mortality rate in patients. Therefore, there is an extreme need to develop potential biomarkers, which might improve the diagnosis and can become the basis for development of new therapeutics. The microRNAs (miRNAs/or miRs) are small noncoding RNAs of 17-24 nucleotides that are known to regulate about 60% of human genes. Although miRNAs have been found to regulate various aspects of innate and adaptive immune responses, less information on circulating miRNAs in JE is known. The study of JEV infected human serum miRNAs will provide novel information for the diagnosis of JE as well as for the improvement of disease outcome. Total RNA, including miRNA, was extracted from serum followed by the complementary DNA (cDNA) synthesis by using sequence-specific primers. cDNA was amplified using target-specific TaqMan MicroRNA Assay. Real-time polymerase chain reaction data was normalized using both exogenous (cel-miR-39) and endogenous (hsa-miR-93) controls. We have found significantly altered expression of miR-155 and miR-21 in serum of JEV infected patients as compared to healthy controls, revealing their role as a a noninvasive biomarker in JE. A significant correlation between miRNAs and JE was observed that offers the basis for miRNAs to serve as a new component to develop possible therapeutic strategies for JE in near future.
Collapse
Affiliation(s)
- Manjari Baluni
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Sneha Ghildiyal
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Tanzeem Fatima
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Rashmi Tiwari
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Shivbrat Upadhyay
- Department of Biochemistry, ERA's Medical College and Hospital, Sarfarazganj, Uttar Pradesh, India
| | - Tapan N Dhole
- Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - D Himanshu Reddy
- Department of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Dharamveer Singh
- Department of Microbiology, All India Institute of Medical Sciences, Patna, Bihar, India
| |
Collapse
|
33
|
Polonio CM, Peron JPS. ZIKV Infection and miRNA Network in Pathogenesis and Immune Response. Viruses 2021; 13:v13101992. [PMID: 34696422 PMCID: PMC8541119 DOI: 10.3390/v13101992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 01/01/2023] Open
Abstract
Over the years, viral infections have caused severe illness in humans. Zika Virus (ZIKV) is a flavivirus transmitted by mosquito vectors that leads to notable neurological impairment, whose most dramatic impact is the Congenital ZIKV Syndrome (CZS). ZIKV targets neuronal precursor cells leading to apoptosis and further impairment of neuronal development, causing microcephaly, lissencephaly, ventriculomegaly, and calcifications. Several regulators of biological processes are involved in CZS development, and in this context, microRNAs (miRNAs) seem to have a fundamental role. miRNAs are important regulators of protein translation, as they form the RISC silencing complex and interact with complementary mRNA target sequences to further post-transcriptional repression. In this context, little is known about their participation in the pathogenesis of viral infections. In this review, we discuss how miRNAs could relate to ZIKV and other flavivirus infections.
Collapse
Affiliation(s)
- Carolina Manganeli Polonio
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil;
- Laboratory of Neuroimmunology of Arboviruses, Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-020, Brazil
| | - Jean Pierre Schatzmann Peron
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo, São Paulo 05508-000, Brazil;
- Laboratory of Neuroimmunology of Arboviruses, Scientific Platform Pasteur-USP (SPPU), University of São Paulo, São Paulo 05508-020, Brazil
- Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo, São Paulo 01246-000, Brazil
- Correspondence:
| |
Collapse
|
34
|
Sharma N, Wang C, Kessler P, Sen GC. Herpes simplex virus 1 evades cellular antiviral response by inducing microRNA-24, which attenuates STING synthesis. PLoS Pathog 2021; 17:e1009950. [PMID: 34591940 PMCID: PMC8483329 DOI: 10.1371/journal.ppat.1009950] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
STING is a nodal point for cellular innate immune response to microbial infections, autoimmunity and cancer; it triggers the synthesis of the antiviral proteins, type I interferons. Many DNA viruses, including Herpes Simplex Virus 1 (HSV1), trigger STING signaling causing inhibition of virus replication. Here, we report that HSV1 evades this antiviral immune response by inducing a cellular microRNA, miR-24, which binds to the 3’ untranslated region of STING mRNA and inhibits its translation. Expression of the gene encoding miR-24 is induced by the transcription factor AP1 and activated by MAP kinases in HSV1-infected cells. Introduction of exogenous miR-24 or prior activation of MAPKs, causes further enhancement of HSV1 replication in STING-expressing cells. Conversely, transfection of antimiR-24 inhibits virus replication in those cells. HSV1 infection of mice causes neuropathy and death; using two routes of infection, we demonstrated that intracranial injection of antimiR-24 alleviates both morbidity and mortality of the infected mice. Our studies reveal a new immune evasion strategy adopted by HSV1 through the regulation of STING and demonstrates that it can be exploited to enhance STING’s antiviral action. The type I interferon system is the first line of cellular antiviral innate immune response. Virus infection is recognized by various pattern recognition receptors in the infected cell and it activates the interferon system to inhibit virus replication. However, viruses have evolved various mechanisms to evade the cellular immune response and enhance viral replication. Our study uncovers an immune evasion strategy used by the Herpes Simplex virus to circumvent the cGAS/STING signaling pathway which is the pivotal innate immune response to combat DNA virus replication. miR-24 induction by HSV1 targets STING and hence, dampens Type I Immune response against the virus. The induction of miR-24 is regulated by virus induced MAPK activation, which are also required during early lytic cycles of HSV1 replication and is indispensable for HSV1 reactivation from latency in neurons; depicting a new direct co-relation between MAPK activation and HSV1 replication orchestrated through cellular miR-24. Silencing of miR-24 in mice brain curtails viral replication and disease severity. Overall, these results indicate possible therapeutic use of stable antimiR-24 against HSV1 and other diseases that are alleviated by STING.
Collapse
Affiliation(s)
- Nikhil Sharma
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Chenyao Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Patricia Kessler
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ganes C Sen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| |
Collapse
|
35
|
Liu F, Dong Z, Lin Y, Yang H, Wang P, Zhang Y. MicroRNA‑502‑3p promotes Mycobacterium tuberculosis survival in macrophages by modulating the inflammatory response by targeting ROCK1. Mol Med Rep 2021; 24:753. [PMID: 34476503 PMCID: PMC8436224 DOI: 10.3892/mmr.2021.12393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/29/2021] [Indexed: 01/22/2023] Open
Abstract
Tuberculosis (TB) is caused by Mycobacterium tuberculosis (M. tuberculosis) infection and has the highest mortality rate of any single infectious disease worldwide. The aim of the present study was to investigate the function of microRNA (miR)-502-3p in M. tuberculosis-infected macrophages. The Gene Expression Omnibus database was used to analyze miR-502-3p expression in patients with TB and healthy individuals. THP-1 and RAW 264.7 cells were transfected with miR-502-3p mimic, miR-502-3p inhibitor, pcDNA3.1-ROCK1 or their negative controls. The expression levels of miR-502-3p and inflammatory cytokines were evaluated using reverse transcription-quantitative PCR. The colony-forming unit assay was performed to assess the survival of M. tuberculosis in macrophages, and Toll-like receptor (TLR)4/NF-κB signaling pathway-associated protein expression levels were detected by western blotting. The nuclear translocation of NF-κB p65 was detected via immunocytochemistry. TargetScan was used to predict the binding sites between miR-502-3p and ROCK1. The interaction between miR-502-3p and Rho-associated coiled-coil-forming protein kinase 1 (ROCK1) was confirmed using a dual-luciferase reporter assay; ROCK1 was demonstrated to be a direct target gene of miR-502-3p. Results from the present study demonstrated that miR-502-3p expression was significantly increased during M. tuberculosis infection in macrophages. Upregulation of miR-502-3p expression levels significantly enhanced the survival of intracellular M. tuberculosis. IL-6, TNF-α, and IL-1β mRNA expression levels were significantly upregulated during M. tuberculosis infection but were downregulated by miR-502-3p overexpression. Moreover, miR-502-3p mimics transfection significantly downregulated TLR4/NF-κB signaling pathway-associated protein expression and significantly reduced nuclear transcription of NF-κB in M. tuberculosis-infected macrophages. ROCK1 overexpression reversed the miR-502-3p inhibitory effect on cytokine production in M. tuberculosis-infected macrophages. In conclusion, miR-502-3p/ROCK1 may serve an anti-inflammatory role and may improve the survival of M. tuberculosis within macrophages, which may provide a promising therapeutic target for TB.
Collapse
Affiliation(s)
- Fang Liu
- Respiratory Endoscopy Room, Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| | - Zhen Dong
- East Medical District Office, Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| | - Yuefu Lin
- Department of Prevention, Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| | - Haibo Yang
- Department of Occupational Diseases, Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| | - Pingping Wang
- Rehabilitation Department, Shandong Coal Linyi Hot Spring Sanatorium, Linyi, Shandong 276034, P.R. China
| | - Yongxia Zhang
- Emergency Department, Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| |
Collapse
|
36
|
Narożna M, Rubiś B. Anti-SARS-CoV-2 Strategies and the Potential Role of miRNA in the Assessment of COVID-19 Morbidity, Recurrence, and Therapy. Int J Mol Sci 2021; 22:8663. [PMID: 34445368 PMCID: PMC8395427 DOI: 10.3390/ijms22168663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 02/06/2023] Open
Abstract
Recently, we have experienced a serious pandemic. Despite significant technological advances in molecular technologies, it is very challenging to slow down the infection spread. It appeared that due to globalization, SARS-CoV-2 spread easily and adapted to new environments or geographical or weather zones. Additionally, new variants are emerging that show different infection potential and clinical outcomes. On the other hand, we have some experience with other pandemics and some solutions in virus elimination that could be adapted. This is of high importance since, as the latest reports demonstrate, vaccine technology might not follow the new, mutated virus outbreaks. Thus, identification of novel strategies and markers or diagnostic methods is highly necessary. For this reason, we present some of the latest views on SARS-CoV-2/COVID-19 therapeutic strategies and raise a solution based on miRNA. We believe that in the face of the rapidly increasing global situation and based on analogical studies of other viruses, the possibility of using the biological potential of miRNA technology is very promising. It could be used as a promising diagnostic and prognostic factor, as well as a therapeutic target and tool.
Collapse
Affiliation(s)
- Maria Narożna
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4 Święcickiego St., 60-781 Poznan, Poland;
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland
| |
Collapse
|
37
|
Pandey N, Rastogi M, Singh SK. Chandipura virus dysregulates the expression of hsa-miR-21-5p to activate NF-κB in human microglial cells. J Biomed Sci 2021; 28:52. [PMID: 34233673 PMCID: PMC8265105 DOI: 10.1186/s12929-021-00748-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022] Open
Abstract
Background Chandipura virus (CHPV) is a negative single-stranded RNA virus of the Rhabdoviridae family. CHPV infection has been reported in Central and Western India. CHPV causes acute encephalitis with a case fatality rate of 70 % and mostly affects children below 15 years of age. CHPV infection in brain leads to neuronal apoptosis and activation of the microglial cells. The microRNAs (miRNAs) are small endogenous non-coding RNA that regulate the gene expression. Viral infections perturb the expression pattern of cellular miRNAs, which may in turn affect the expression pattern of downstream genes. This study aims to investigate hsa-miR-21-5p mediated regulation of PTEN, AKT, NF-ĸBp65, IL-6, TNF-α, and IL-1β, in human microglial cells during CHPV infection. Methods To understand the role of hsa-miR-21-5p in CHPV infection, the human microglial cells were infected with CHPV (MOI-0.1). Real-time PCR, western blotting, Luciferase assay, over-expression and knockdown techniques were used to understand the role of hsa-miR-21-5p in the regulation of PTEN, AKT and, NF-ĸBp65, IL-6, TNF-α, and IL-1β in this study. Results The hsa-miR-21-5p was found to be upregulated during CHPV infection in human microglial cells. This led to the downregulation of PTEN which promoted the phosphorylation of AKT and NF-ĸBp65. Over-expression of hsa-miR-21-5p led to the decreased expression of PTEN and promoted further phosphorylation of AKT and NF-ĸBp65 in human microglial cells. However, the inhibition of hsa-miR-21-5p using hsa-miR-21-5p inhibitor restored the expression. Conclusions This study supports the role of hsa-miR-21-5p in the regulation of pro-inflammatory genes in CHPV infected human microglial cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-021-00748-0.
Collapse
Affiliation(s)
- Neha Pandey
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, 221005, Varanasi, India
| | - Meghana Rastogi
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, 221005, Varanasi, India
| | - Sunit K Singh
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, 221005, Varanasi, India.
| |
Collapse
|
38
|
Liu CP, Zhong M, Sun JX, He J, Gao Y, Qin FX. miR‑146a reduces depressive behavior by inhibiting microglial activation. Mol Med Rep 2021; 23:463. [PMID: 33880591 PMCID: PMC8097766 DOI: 10.3892/mmr.2021.12102] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/01/2021] [Indexed: 11/12/2022] Open
Abstract
Depression is one of the major psychiatric diseases affecting the quality of life for individuals worldwide. Numerous reports have investigated depression, although its etiology remains to be elucidated. microRNA (miR)-146a is suggested to regulate innate immune and inflammatory responses. However, it is unclear whether miR-146a is involved in depression. Depression model mice were established using lipopolysaccharide-induced depression and chronic unpredictable mild stress, separately. miR-146a mimic and short interfering RNA were used to treat depressed mice. Depression-like behaviors and levels of pro-inflammatory cytokines were measured, while ionized calcium binding adapter molecule 1 (Iba-1) expression in hippocampus was quantified by immunohistochemistry. Neuroinflammatory factor levels in hippocampus were measured by western blotting. BV-2 cells were used to confirm that miR-146a suppressed microglia activation. Compared with control mice, the two depressed mouse models showed clearly decreased sucrose preference and significantly increased immobility time in the forced swimming test and tail suspension test (P<0.05). miR-146a overexpression significantly increased sucrose preference and reduced immobility time in depressed mice (P<0.05). However, total distance traveled in the locomotor activity test did not differ among groups. Compared with controls, expression levels of Iba-1, inducible nitric oxide, IL-1β, TNF-α, interleukin 1 receptor associated kinase 1 (IRAK1), TNF receptor-associated factor 6 (TRAF6) and phosphorylated NF-κB p65 were significantly increased in depressed mice (P<0.05). miR-146a overexpression effectively inhibited expression of these neuroinflammatory proteins, while miR-146a silencing significantly upregulated their expression (P<0.05). Consistent with these in vivo results, miR-146a mimic treatment inhibited TNF-α, IL-1β, IRAK1 and TRAF6 expression in BV-2 cells. miR-146a improved depressive behaviors in depressed model mice by inhibiting microglial activation and neuroinflammatory factor expression.
Collapse
Affiliation(s)
- Chuan-Peng Liu
- Department of Psychiatry, Binzhou People's Hospital, Binzhou, Shandong 256600, P.R. China
| | - Ming Zhong
- Department of Psychiatry, Binzhou Youfu Hospital, Binzhou, Shandong 256600, P.R. China
| | - Jun-Xia Sun
- Department of Psychiatry, Binzhou Youfu Hospital, Binzhou, Shandong 256600, P.R. China
| | - Jin He
- Department of Psychiatry, Binzhou People's Hospital, Binzhou, Shandong 256600, P.R. China
| | - Yong Gao
- Department of Psychiatry, Binzhou People's Hospital, Binzhou, Shandong 256600, P.R. China
| | - Fang-Xia Qin
- Department of Psychology, Shandong Provincial Mental Health Center, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
39
|
Marchi R, Sugita B, Centa A, Fonseca AS, Bortoletto S, Fiorentin K, Ferreira S, Cavalli LR. The role of microRNAs in modulating SARS-CoV-2 infection in human cells: a systematic review. INFECTION GENETICS AND EVOLUTION 2021; 91:104832. [PMID: 33812037 PMCID: PMC8012164 DOI: 10.1016/j.meegid.2021.104832] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/11/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022]
Abstract
MicroRNAs are gene expression regulators, associated with several human pathologies, including the ones caused by virus infections. Although their role in infection diseases is not completely known, they can exert double functions in the infected cell, by mediating the virus infection and/or regulating the immunity-related gene targets through complex networks of virus-host cell interactions. In this systematic review, the Pubmed, EMBASE, Scopus, Lilacs, Scielo, and EBSCO databases were searched for research articles published until October 22nd, 2020 that focused on describing the role, function, and/or association of miRNAs in SARS-CoV-2 human infection and COVID-19. Following the PRISMA 2009 protocol, 29 original research articles were selected. Most of the studies reported miRNA data based on the genome sequencing of SARS-CoV-2 isolates and computational prediction analysis. The latter predicted, by at least one independent study, 1266 host miRNAs to target the viral genome. Thirteen miRNAs were identified by four independent studies to target SARS-CoV-2 specific genes, suggested to act by interfering with their cleavage and/or translation process. The studies selected also reported on viral and host miRNAs that targeted host genes, on the expression levels of miRNAs in biological specimens of COVID-19 patients, and on the impact of viral genome mutations on miRNA function. Also, miRNAs that regulate the expression levels of the ACE2 and TMPRSS2 proteins, which are critical for the virus entrance in the host cells, were reported. In conclusion, despite the limited number of studies identified, based on the search terms and eligibility criteria applied, this systematic review provides evidence on the impact of miRNAs on SARS-CoV-2 infection and COVID-19. Although most of the reported viral/host miRNAs interactions were based on in silico prediction analysis, they demonstrate the relevance of the viral/host miRNA interaction for viral activity and host responses. In addition, the identified studies highlight the potential use of miRNAs as therapeutic targets against COVID-19, and other viral human diseases (This review was registered at the International Prospective Register of Systematic Reviews (PROSPERO) database (#CRD42020199290).
Collapse
Affiliation(s)
- Rafael Marchi
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Bruna Sugita
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Ariana Centa
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Aline S Fonseca
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Stefanne Bortoletto
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Karine Fiorentin
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Solange Ferreira
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Luciane R Cavalli
- Research Institute Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil.
| |
Collapse
|
40
|
MicroRNA Interference in Hepatic Host-Pathogen Interactions. Int J Mol Sci 2021; 22:ijms22073554. [PMID: 33808062 PMCID: PMC8036276 DOI: 10.3390/ijms22073554] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022] Open
Abstract
The liver is well recognized as a non-immunological visceral organ that is involved in various metabolic activities, nutrient storage, and detoxification. Recently, many studies have demonstrated that resident immune cells in the liver drive various immunological reactions by means of several molecular modulators. Understanding the mechanistic details of interactions between hepatic host immune cells, including Kupffer cells and lymphocytes, and various hepatic pathogens, especially viruses, bacteria, and parasites, is necessary. MicroRNAs (miRNAs), over 2600 of which have been discovered, are small, endogenous, interfering, noncoding RNAs that are predicted to regulate more than 15,000 genes by degrading specific messenger RNAs. Several recent studies have demonstrated that some miRNAs are associated with the immune response to pathogens in the liver. However, the details of the underlying mechanisms of miRNA interference in hepatic host-pathogen interactions still remain elusive. In this review, we summarize the relationship between the immunological interactions of various pathogens and hepatic resident immune cells, as well as the role of miRNAs in the maintenance of liver immunity against pathogens.
Collapse
|
41
|
Kalhori MR, Saadatpour F, Arefian E, Soleimani M, Farzaei MH, Aneva IY, Echeverría J. The Potential Therapeutic Effect of RNA Interference and Natural Products on COVID-19: A Review of the Coronaviruses Infection. Front Pharmacol 2021; 12:616993. [PMID: 33716745 PMCID: PMC7953353 DOI: 10.3389/fphar.2021.616993] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/14/2021] [Indexed: 01/08/2023] Open
Abstract
The SARS-CoV-2 virus was reported for the first time in Wuhan, Hubei Province, China, and causes respiratory infection. This pandemic pneumonia killed about 1,437,835 people out of 61,308,161cases up to November 27, 2020. The disease's main clinical complications include fever, recurrent coughing, shortness of breath, acute respiratory syndrome, and failure of vital organs that could lead to death. It has been shown that natural compounds with antioxidant, anticancer, and antiviral activities and RNA interference agents could play an essential role in preventing or treating coronavirus infection by inhibiting the expression of crucial virus genes. This study aims to introduce a summary of coronavirus's genetic and morphological structure and determine the role of miRNAs, siRNAs, chemical drugs, and natural compounds in stimulating the immune system or inhibiting the virus's structural and non-structural genes that are essential for replication and infection of SARS-CoV-2.
Collapse
Affiliation(s)
- Mohammad Reza Kalhori
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Saadatpour
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Arefian
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Hosien Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ina Yosifova Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
42
|
Voelz C, Habib P, Köberlein S, Beyer C, Slowik A. Alteration of miRNA Biogenesis Regulating Proteins in the Human Microglial Cell Line HMC-3 After Ischemic Stress. Mol Neurobiol 2020; 58:1535-1549. [PMID: 33210205 DOI: 10.1007/s12035-020-02210-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNA) are small noncoding sequences that control apoptosis, proliferation, and neuroinflammatory pathways in microglia cells. The expression of distinct miRNAs is altered after ischemia in the brain. Only minor information is available about the biogenesis and maturation of miRNAs after ischemia. We aimed at examining the impact of oxygen-glucose deprivation (OGD) and hydrogen peroxide (H2O2)-induced stress on the expression of miRNA regulating proteins such as DROSHA, DGCR8, XPO5, DICER, TARBP2, and AGO2 in the cultured human microglial cell line HMC-3 (human microglial cell line clone 3). OGD duration of 2.5 h or H2O2 stimulation at a concentration of 100 μM for 24 h resulted in a marked increase of the hypoxia sensor hypoxia-inducible factor1-α in HMC-3 cells. These treatments also led to an upregulation of DROSHA, DICER1, and AGO2 detected by semiquantitative real-time PCR (qrtPCR). XPO5 and TARBP2 were only upregulated after stimulation with H2O2, while DGCR8 responded only to OGD. We found elevated DICER1, DROSHA, and AGO2 protein levels by western blot and immunohistochemistry staining. Interestingly, the latter also exposed a colocalization of AGO2 with stress granules (G3BP1) after OGD. Our data indicate that DICER, DROSHA, and AGO2 are induced in microglial cells under hypoxia-like conditions. It might be speculated that their inductions might increase the miRNA synthesis rate. Future studies should investigate this correlation to determine which miRNAs are preferably expressed by microglia cells after ischemia and which functions they could exert.
Collapse
Affiliation(s)
- Clara Voelz
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Pardes Habib
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stefan Köberlein
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
- JARA-Brain, RWTH Aachen University, Aachen, Germany
| | - Alexander Slowik
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.
- Department of Anatomy and Cell Biology, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
43
|
Abstract
AbstractThe high prevalence and spread of arthropod-borne viruses (arboviruses) make them an important cause of viral encephalitis in humans. Most epidemic viral encephalitides have an etiology associated with arboviruses. Among various arboviruses, the Japanese encephalitis virus, West Nile virus, Zika virus, Dengue virus and Chikungunya virus can induce seizures. Arboviruses of the genus Flavivirus are usually transmitted by mosquitoes and other host animals. These vector-borne pathogens can cause epidemic viral encephalitis. Seizures may not be the major manifestation in these viral encephalitides, but may predict a poor prognosis. In this article, we discuss the relationships between these viruses and seizures from perspectives of clinical characteristics, pathogenesis, prognosis and treatments of each.
Collapse
|
44
|
Rastogi M, Singh SK. Japanese Encephalitis Virus exploits microRNA-155 to suppress the non-canonical NF-κB pathway in human microglial cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194639. [PMID: 32987149 DOI: 10.1016/j.bbagrm.2020.194639] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/05/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
Abstract
Japanese Encephalitis Virus (JEV) is a single positive strand RNA virus, belongs to the Flaviviridae family. JEV is neurotropic in nature which accounts for 30-50% neurological, psychiatric sequelae and movement disorder, with 20-30% case fatality rate among children or elder population. JEV causes neuronal loss and microglial activation which leads to neuroinflammation. The microRNAs are the molecular switches, which regulate the gene expression post-transcriptionally. The microRNA-155 has been reported to be associated with CNS-related pathologies like, experimental autoimmune encephalitis, multiple sclerosis and amyotrophic lateral sclerosis. In the present study, we infected microglial cells with JEV, which resulted in the up-regulation of microRNA-155; quantified by real-time polymerase chain reaction. The gene target prediction databases revealed pellino 1 as a putative gene target for microRNA-155. The over-expression based studies of microRNA-155 mimics, scrambles, inhibitors, and cy3 negative control demonstrated the role of PELI1 in the regulation of the non-canonical NF-κB pathway via TRAF3. The luciferase assay showed the regulation of NF-κB promoter via microRNA-155 in JEV infected microglial cells. The suppression of NF-κB in JEV infected microglial cells led to the reduced expression of IL-6 and TNF-α. JEV exploits cellular microRNA-155 to suppress the expression of PELI1 in human microglial cells as a part of their immune evasion strategy.
Collapse
Affiliation(s)
- Meghana Rastogi
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, U.P., India
| | - Sunit Kumar Singh
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, U.P., India.
| |
Collapse
|
45
|
Wang H. Anti-NMDA Receptor Encephalitis, Vaccination and Virus. Curr Pharm Des 2020; 25:4579-4588. [PMID: 31820697 DOI: 10.2174/1381612825666191210155059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Anti-N-methyl-d-aspartate (Anti-NMDA) receptor encephalitis is an acute autoimmune disorder. The symptoms range from psychiatric symptoms, movement disorders, cognitive impairment, and autonomic dysfunction. Previous studies revealed that vaccination might induce this disease. A few cases were reported to be related to H1N1 vaccine, tetanus/diphtheria/pertussis and polio vaccine, and Japanese encephalitis vaccine. Although vaccination is a useful strategy to prevent infectious diseases, in a low risk, it may trigger serious neurological symptoms. In addition to anti-NMDA receptor encephalitis, other neurological diseases were reported to be associated with a number of vaccines. In this paper, the anti-NMDA receptor encephalitis cases related to a number of vaccines and other neurological symptoms that might be induced by these vaccines were reviewed. In addition, anti-NMDA receptor encephalitis cases that were induced by virus infection were also reviewed.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
46
|
Yao YY, Ling EA, Lu D. Microglia mediated neuroinflammation - signaling regulation and therapeutic considerations with special reference to some natural compounds. Histol Histopathol 2020; 35:1229-1250. [PMID: 32662061 DOI: 10.14670/hh-18-239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neuroinflammation plays a central role in multiple neurodegenerative diseases and neurological disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), cerebral ischemic injury etc. In this connection, microglia, the key players in the central nervous system, mediate the inflammatory response process. In brain injuries, activated microglia can clear the cellular debris and invading pathogens and release neurotrophic factors; however, prolonged microglia activation may cause neuronal death through excessive release of inflammatory mediators. Therefore, it is of paramount importance to understand the underlying molecular mechanisms of microglia activation to design an effective therapeutic strategy to alleviate neuronal injury. Recent studies have shown that some natural compounds and herbal extracts possess anti-inflammatory properties that may suppress microglial activation and ameliorate neuroinflammation and hence are neuroprotective. In this review, we will update some of the common signaling pathways that regulate microglia activation. Among the various signaling pathways, the Notch-1, mitogen-activated protein kinases (MAPKs), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) have been reported to exacerbate microglia mediated neuroinflammation that is implicated in different neuropathological diseases. The search for natural compounds or agents, specifically those derived from natural herbal extracts such as Gastrodin, scutellarin, RG1 etc. has been the focus of many of our recent studies because they have been found to regulate microglia activation. The pharmacological effects of these agents and their potential mechanisms for regulating microglia activation are systematically reviewed here for a fuller understanding of their biochemical action and therapeutic potential for treatment of microglia mediated neuropathological diseases.
Collapse
Affiliation(s)
- Yue-Yi Yao
- Technology Transfer Center, Kunming Medical University, Kunming, China
| | - Eng-Ang Ling
- Department of Anatomy, Young Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Di Lu
- Technology Transfer Center, Kunming Medical University, Kunming, China.
| |
Collapse
|
47
|
Jia J, Liu C, Han Y, Han H, Zhong M, Gao Y. miR-146a alleviates the apoptosis of hippocampal neurons induced by microglia activation via targeting TRAF6. Hum Exp Toxicol 2020; 39:1650-1660. [PMID: 32633138 DOI: 10.1177/0960327120930069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To identify the role of miR-146a and tumor necrosis factor receptor-associated factor 6 (TRAF6) for improving the apoptosis of hippocampal neurons induced by microglia activation. METHODS Mouse microglial cell line (BV2 cell) was employed and treated with lipopolysaccharide. Mouse hippocampal nerve cell line (HT22 cell) was then grown in BV2 conditioned medium, and miR-146a overexpression and silencing cell lines were constructed. CCK8 and clone formation test were utilized to evaluate the proliferation ability of the transfected cells, and the level of inflammatory factors was measured by ELISA. Apoptosis was determined extensively by flow cytometry. The apoptosis-related protein and TRAF6 protein expressions were verified by Western blot. TRAF6 was identified to be the target gene of miR-146a based on double Luciferase Report. Finally, both TRAF6 and miR-146a were used to treat HT22 cells and the above indexes were detected repeatedly. RESULTS Interleukin (IL)-1β, tumor necrosis factor-α, and IL-6 expressions in BV2 cells increased significantly. miR-146a overexpression distinctly increased the cell proliferation ability and B-cell lymphoma-2 expression ((Bcl-2, p < 0.05); meanwhile, the apoptosis rate of cells, apoptosis-related proteins (Bcl-2 associated X and cleaved caspase-3), and TRAF6 gene and protein expressions were significantly decreased (p < 0.05). However, these above results were reversed for miR-146a silence. There is a targeting relationship between miR-146a and TRAF6. Silencing TRAF6 gene can promote HT22 cells' proliferation and inhibit apoptosis. The effect of miR-146a on HT22 cells was reversed by adding TRAF6 mimics to miR-146a overexpression cells. CONCLUSION miR-146a can inhibit the apoptosis of hippocampal neurons caused by microglia activation via targeting TRAF6 and down-regulating its expression.
Collapse
Affiliation(s)
- J Jia
- Department of Psychiatry, Binzhou People's Hospital, Binzhou, China
| | - C Liu
- Department of Psychiatry, Binzhou People's Hospital, Binzhou, China
| | - Y Han
- Department of Medical, Binzhou Youfu Hospital, Binzhou, China
| | - H Han
- Department of Psychiatry, Binzhou People's Hospital, Binzhou, China
| | - M Zhong
- Department of Psychiatry, Binzhou Youfu Hospital, Binzhou, China
| | - Y Gao
- Department of Psychiatry, Binzhou People's Hospital, Binzhou, China
| |
Collapse
|
48
|
Fan W, Liang C, Ou M, Zou T, Sun F, Zhou H, Cui L. MicroRNA-146a Is a Wide-Reaching Neuroinflammatory Regulator and Potential Treatment Target in Neurological Diseases. Front Mol Neurosci 2020; 13:90. [PMID: 32581706 PMCID: PMC7291868 DOI: 10.3389/fnmol.2020.00090] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Progressive functional deterioration and loss of neurons underlies neurological diseases and constitutes an important cause of disability and death worldwide. The causes of various types of neurological diseases often share several critical nerve-related cellular mechanisms and pathological features, particularly the neuroinflammatory response in the nervous system. A rapidly growing body of evidence indicates that various microRNAs play pivotal roles in these processes in neurological diseases and might be viable therapeutic targets. Among these microRNAs, microRNA-146a (miR-146a) stands out due to the rapid increase in recent literature on its mechanistic involvement in neurological diseases. In this review, we summarize and highlight the critical role of miR-146a in neurological diseases. MiR-146a polymorphisms are associated with the risk of neurological disease. Alterations in miR-146a expression levels are crucial events in the pathogenesis of numerous neurological diseases that are spatially and temporally diverse. Additionally, the target genes of miR-146a are involved in the regulation of pathophysiological processes in neurological diseases, particularly the neuroinflammatory response. In summary, miR-146a mainly plays a critical role in neuroinflammation during the progression of neurological diseases and might be a prospective biomarker and therapeutic target. Understanding the mechanisms by which miR-146a affects the neuroinflammatory response in different neurological injuries, different cell types, and even different stages of certain neurological diseases will pave the way for its use as a therapeutic target in neurodegenerative diseases.
Collapse
Affiliation(s)
- Weihao Fan
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunmei Liang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mingqian Ou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ting Zou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Furong Sun
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haihong Zhou
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
49
|
Cui M, Chen S, Zhang S, Cheng A, Pan Y, Huang J, Hu Z, Zhang X, Wang M, Zhu D, Chen S, Liu M, Zhao X, Wu Y, Yang Q, Liu Y, Zhang L, Yu Y, Yin Z, Jing B, Rehman MU, Tian B, Pan L, Jia R. Duck Tembusu Virus Utilizes miR-221-3p Expression to Facilitate Viral Replication via Targeting of Suppressor of Cytokine Signaling 5. Front Microbiol 2020; 11:596. [PMID: 32373087 PMCID: PMC7186361 DOI: 10.3389/fmicb.2020.00596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/18/2020] [Indexed: 12/26/2022] Open
Abstract
Duck Tembusu virus (DTMUV), a member of Flaviviridae family, causes acute egg-drop syndrome in ducks. MicroRNAs (miRNAs) have been found to be involved in various biological processes, including tumor genesis, viral infection, and immune response. However, the functional effect of miRNAs on DTMUV replication remains largely unclear. This study aimed to elucidate the role of host microRNA-221-3p (miR-221-3p) in regulating DTMUV replication. Here, we indicated that the expression of miR-221-3p was significantly upregulated in duck embryo fibroblasts (DEFs) during DTMUV infection. Transfection of miR-221-3p mimic significantly reduced interferon (IFN) β production, whereas transfection of miR-221-3p inhibitor conversely significantly increased the expression of IFN-β in DTMUV-infected DEF. Moreover, we found that viral RNA copies, viral E protein expression level, and virus titer, which represent the replication and proliferation of virus, were all enhanced when transfecting the miR-221-3p mimic into DEF; reverse results were also observed by transfecting the miR-221-3p inhibitor. We also found that the expression of suppressor of cytokine signaling 5 (SOCS5) was downregulated in DEF infected with DTMUV. Besides, we further proved that SOCS5 is a target of miR-221-3p and that miR-221-3p could negatively modulate SOCS5 expression at both mRNA and protein levels. Finally, our results showed that overexpression of SOCS5 inhibited DTMUV replication and knockdown of SOCS5 enhanced DTMUV replication. Thus, our findings reveal a novel host evasion mechanism adopted by DTMUV via miR-221-3p, which may hew out novel strategies for designing miRNA-based vaccines and therapies.
Collapse
Affiliation(s)
- Min Cui
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shuling Chen
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuhong Pan
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiqiang Hu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingcui Zhang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mujeeb Ur Rehman
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
50
|
Barbu MG, Condrat CE, Thompson DC, Bugnar OL, Cretoiu D, Toader OD, Suciu N, Voinea SC. MicroRNA Involvement in Signaling Pathways During Viral Infection. Front Cell Dev Biol 2020; 8:143. [PMID: 32211411 PMCID: PMC7075948 DOI: 10.3389/fcell.2020.00143] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
The study of miRNAs started in 1993, when Lee et al. observed their involvement in the downregulation of a crucial protein known as LIN-14 in the nematode Caenorhabditis elegans. Since then, great progress has been made regarding research on microRNAs, which are now known to be involved in the regulation of various physiological and pathological processes in both animals and humans. One such example is represented by their interaction with various signaling pathways during viral infections. It has been observed that these pathogens can induce the up-/downregulation of various host miRNAs in order to elude the host's immune system. In contrast, some miRNAs studied could have an antiviral effect, enabling the defense mechanisms to fight the infection or, at the very least, they could induce the pathogen to enter a latent state. At the same time, some viruses encode their own miRNAs, which could further modulate the host's signaling pathways, thus favoring the survival and replication of the virus. The goal of this extensive literature review was to present how miRNAs are involved in the regulation of various signaling pathways in some of the most important and well-studied human viral infections. Further on, knowing which miRNAs are involved in various viral infections and what role they play could aid in the development of antiviral therapeutic agents for certain diseases that do not have a definitive cure in the present. The clinical applications of miRNAs are extremely important, as miRNAs targeted inhibition may have substantial therapeutic impact. Inhibition of miRNAs can be achieved through many different methods, but chemically modified antisense oligonucleotides have shown the most prominent effects. Though scientists are far from completely understanding all the molecular mechanisms behind the complex cross-talks between miRNA pathways and viral infections, the general knowledge is increasing on the different roles played by miRNAs during viral infections.
Collapse
Affiliation(s)
- Madalina Gabriela Barbu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
| | - Carmen Elena Condrat
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
| | - Dana Claudia Thompson
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
| | - Oana Larisa Bugnar
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
| | - Dragos Cretoiu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
- Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Oana Daniela Toader
- Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Obstetrics and Gynecology, Alessandrescu-Rusescu National Institute for Mother and Child Health, Polizu Clinical Hospital, Bucharest, Romania
| | - Nicolae Suciu
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Fetal Medicine Excellence Research Center, Bucharest, Romania
- Division of Obstetrics, Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Obstetrics and Gynecology, Alessandrescu-Rusescu National Institute for Mother and Child Health, Polizu Clinical Hospital, Bucharest, Romania
| | - Silviu Cristian Voinea
- Department of Surgical Oncology, Institute of Oncology Prof. Dr. Alexandru Trestioreanu, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|