1
|
Fan W, Liu P, Tan L, Lv H, Zhou H, Tao Z, Xu Y. Tet2 modulates M2 macrophage polarization via mRNA 5-methylcytosine in allergic rhinitis. Int Immunopharmacol 2024; 143:113495. [PMID: 39486186 DOI: 10.1016/j.intimp.2024.113495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Allergic rhinitis (AR) represents a hallmark of obvious hypersensitivity with an imbalance of immune responses, including abnormal macrophage activity in local tissues. It has been reported that alternatively activated macrophages (M2) may contribute to allergic pathogenesis. Ten-eleven translocation (Tet) enzymes can oxidize 5-methylcytosine (m5C) in mRNA, implying the epigenetic regulation of post-transcriptional RNA modification. Our previous study suggested that decreased Tet2 impairs the function of regulatory T cells, failing to exert a protective role in AR. However, the mechanism of Tet2 in macrophage polarization has been little discussed. In this paper, we investigate the regulatory role of Tet2 in macrophage polarization under allergic inflammation. METHODS Macrophage immunofluorescence and eosinophil counts were used to confirm the inflammatory and polarized state in the nasal mucosa of AR patients. Additionally, we used Raw264.7 cells to explore the relationships among mRNA methylation, Tet2 expression, and the macrophage polarization process. Furthermore an Ovalbumin (OVA)-mediated AR mouse model was established with wild-type (WT) and Tet2 gene knockout (Tet2-/-) mice to verify the role of Tet2 in AR severity and macrophage polarization. The final stage comprised RNA sequencing, methylated RNA immunoprecipitation with qPCR (MeRIP-qPCR) using bone marrow-derived macrophages (BMDMs) from WT and Tet2-/- mice to explore the effect of Tet2 deficiency on the mRNA methylation level of M2-related genes under OVA treatment. A two-tailed Student's t-test was used to compare two groups, and Spearman correlation analysis was applied for relationship analysis. RESULTS M2-macrophages were confirmed as the dominant subtype associated with eosinophil levels in AR nasal tissues. In vitro analyses demonstrated that mRNA methylation and Tet2 are linked to M2 macrophages. Additionally, we found that Tet2 influences local allergic severity and macrophage polarization. Specifically, Tet2 deficiency decreased the mRNA m5C demethylation levels of Klf4 and Rock1, contributing to M2 polarization in an allergic state. CONCLUSIONS The findings of this study demonstrate that Tet2 may play a protective role in AR by negatively regulating M2-related factors through mRNA m5C demethylation. These findings provide new insights into AR therapy, suggesting that intervening in macrophage polarization at the post-transcriptional level could be a novel therapeutic strategy.
Collapse
Affiliation(s)
- Wenjun Fan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Peiqiang Liu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lu Tan
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Lv
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huiqin Zhou
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Zhang F, Cui Y, Zhang T, Yin W. Epigenetic regulation of macrophage activation in chronic obstructive pulmonary disease. Front Immunol 2024; 15:1445372. [PMID: 39206196 PMCID: PMC11349576 DOI: 10.3389/fimmu.2024.1445372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Macrophages in the innate immune system play a vital role in various lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), acute lung injury and pulmonary fibrosis. Macrophages involved in the process of immunity need to go through a process of activation, including changes in gene expression and cell metabolism. Epigenetic modifications are key factors of macrophage activation including DNA methylation, histone modification and non-coding RNA regulation. Understanding the role and mechanisms of epigenetic regulation of macrophage activation can provide insights into the function of macrophages in lung diseases and help identification of potential therapeutic targets. This review summarizes the latest progress in the epigenetic changes and regulation of macrophages in their development process and in normal physiological states, and the epigenetic regulation of macrophages in COPD as well as the influence of macrophage activation on COPD development.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University (GMU) - Guangzhou Institutes of Biomedicine and Health (GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Yachao Cui
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University (GMU) - Guangzhou Institutes of Biomedicine and Health (GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Tiejun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University (GMU) - Guangzhou Institutes of Biomedicine and Health (GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University Affiliated Qingyuan Hospital, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenguang Yin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University (GMU) - Guangzhou Institutes of Biomedicine and Health (GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Dourson AJ, Fadaka AO, Warshak AM, Paranjpe A, Weinhaus B, Queme LF, Hofmann MC, Evans HM, Donmez OA, Forney C, Weirauch MT, Kottyan LC, Lucas D, Deepe GS, Jankowski MP. Macrophage memories of early-life injury drive neonatal nociceptive priming. Cell Rep 2024; 43:114129. [PMID: 38640063 PMCID: PMC11197107 DOI: 10.1016/j.celrep.2024.114129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/05/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024] Open
Abstract
The developing peripheral nervous and immune systems are functionally distinct from those of adults. These systems are vulnerable to early-life injury, which influences outcomes related to nociception following subsequent injury later in life (i.e., "neonatal nociceptive priming"). The underpinnings of this phenomenon are unclear, although previous work indicates that macrophages are trained by inflammation and injury. Our findings show that macrophages are both necessary and partially sufficient to drive neonatal nociceptive priming, possibly due to a long-lasting remodeling in chromatin structure. The p75 neurotrophic factor receptor is an important effector in regulating neonatal nociceptive priming through modulation of the inflammatory profile of rodent and human macrophages. This "pain memory" is long lasting in females and can be transferred to a naive host to alter sex-specific pain-related behaviors. This study reveals a mechanism by which acute, neonatal post-surgical pain drives a peripheral immune-related predisposition to persistent pain following a subsequent injury.
Collapse
Affiliation(s)
- Adam J Dourson
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Adewale O Fadaka
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anna M Warshak
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Aditi Paranjpe
- Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Benjamin Weinhaus
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - Luis F Queme
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Megan C Hofmann
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Heather M Evans
- Division of Infectious Diseases, University of Cincinnati, Cincinnati, OH, USA
| | - Omer A Donmez
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carmy Forney
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Daniel Lucas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - George S Deepe
- Division of Infectious Diseases, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA; Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
4
|
Gilchrist JJ, Fang H, Danielli S, Tomkova M, Nassiri I, Ng E, Tong O, Taylor C, Muldoon D, Cohen LRZ, Al-Mossawi H, Lau E, Neville M, Schuster-Boeckler B, Knight JC, Fairfax BP. Characterization of the genetic determinants of context-specific DNA methylation in primary monocytes. CELL GENOMICS 2024; 4:100541. [PMID: 38663408 PMCID: PMC11099345 DOI: 10.1016/j.xgen.2024.100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/24/2023] [Accepted: 03/27/2024] [Indexed: 05/12/2024]
Abstract
To better understand inter-individual variation in sensitivity of DNA methylation (DNAm) to immune activity, we characterized effects of inflammatory stimuli on primary monocyte DNAm (n = 190). We find that monocyte DNAm is site-dependently sensitive to lipopolysaccharide (LPS), with LPS-induced demethylation occurring following hydroxymethylation. We identify 7,359 high-confidence immune-modulated CpGs (imCpGs) that differ in genomic localization and transcription factor usage according to whether they represent a gain or loss in DNAm. Demethylated imCpGs are profoundly enriched for enhancers and colocalize to genes enriched for disease associations, especially cancer. DNAm is age associated, and we find that 24-h LPS exposure triggers approximately 6 months of gain in epigenetic age, directly linking epigenetic aging with innate immune activity. By integrating LPS-induced changes in DNAm with genetic variation, we identify 234 imCpGs under local genetic control. Exploring shared causal loci between LPS-induced DNAm responses and human disease traits highlights examples of disease-associated loci that modulate imCpG formation.
Collapse
Affiliation(s)
- James J Gilchrist
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK; MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Hai Fang
- Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Sara Danielli
- Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Marketa Tomkova
- Ludwig Cancer Research Oxford, University of Oxford, Oxford OX3 7DQ, UK
| | - Isar Nassiri
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Esther Ng
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Orion Tong
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Chelsea Taylor
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Dylan Muldoon
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Lea R Z Cohen
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Hussein Al-Mossawi
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Evelyn Lau
- Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Matt Neville
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LE, UK
| | | | - Julian C Knight
- Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Benjamin P Fairfax
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK; Department of Oncology, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
5
|
Caldwell BA, Li L. Epigenetic regulation of innate immune dynamics during inflammation. J Leukoc Biol 2024; 115:589-606. [PMID: 38301269 PMCID: PMC10980576 DOI: 10.1093/jleuko/qiae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024] Open
Abstract
Innate immune cells play essential roles in modulating both immune defense and inflammation by expressing a diverse array of cytokines and inflammatory mediators, phagocytizing pathogens to promote immune clearance, and assisting with the adaptive immune processes through antigen presentation. Rudimentary innate immune "memory" states such as training, tolerance, and exhaustion develop based on the nature, strength, and duration of immune challenge, thereby enabling dynamic transcriptional reprogramming to alter present and future cell behavior. Underlying transcriptional reprogramming are broad changes to the epigenome, or chromatin alterations above the level of DNA sequence. These changes include direct modification of DNA through cytosine methylation as well as indirect modifications through alterations to histones that comprise the protein core of nucleosomes. In this review, we will discuss recent advances in our understanding of how these epigenetic changes influence the dynamic behavior of the innate immune system during both acute and chronic inflammation, as well as how stable changes to the epigenome result in long-term alterations of innate cell behavior related to pathophysiology.
Collapse
Affiliation(s)
- Blake A. Caldwell
- Department of Biological Sciences, Virginia Tech, 970 Washington St. SW, Blacksburg, VA 24061-0910, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, 970 Washington St. SW, Blacksburg, VA 24061-0910, USA
| |
Collapse
|
6
|
Wang X, Chen J, Jia G. From dichotomy to diversity: deciphering the multifaceted roles of tumor-associated macrophages in cancer progression and therapy. Cancer Biol Med 2023; 21:j.issn.2095-3941.2023.0370. [PMID: 38098274 PMCID: PMC10884535 DOI: 10.20892/j.issn.2095-3941.2023.0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/14/2023] [Indexed: 02/24/2024] Open
Affiliation(s)
- Xiumei Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Guangshuai Jia
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510182, China
| |
Collapse
|
7
|
Dourson AJ, Fadaka AO, Warshak AM, Paranjpe A, Weinhaus B, Queme LF, Hofmann MC, Evans HM, Donmez OA, Forney C, Weirauch MT, Kottyan LT, Lucas D, Deepe GS, Jankowski MP. Macrophage epigenetic memories of early life injury drive neonatal nociceptive priming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528015. [PMID: 36824978 PMCID: PMC9948986 DOI: 10.1101/2023.02.13.528015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The developing peripheral nervous and immune systems are functionally distinct from adults. These systems are vulnerable to early life injury, which influences outcomes related to nociception following subsequent injury later in life (neonatal nociceptive priming). The underpinnings of this phenomenon are largely unknown, although previous work indicates that macrophages are epigenetically trained by inflammation and injury. We found that macrophages are both necessary and partially sufficient to drive neonatal nociceptive priming possibly due to a long-lasting epigenetic remodeling. The p75 neurotrophic factor receptor (NTR) was an important effector in regulating neonatal nociceptive priming through modulation of the inflammatory profile of rodent and human macrophages. This pain memory was long lasting in females and could be transferred to a naive host to alter sex-specific pain-related behaviors. This study reveals a novel mechanism by which acute, neonatal post-surgical pain drives a peripheral immune-related predisposition to persistent pain following a subsequent injury.
Collapse
|
8
|
Stergioti EM, Manolakou T, Sentis G, Samiotaki M, Kapsala N, Fanouriakis A, Boumpas DT, Banos A. Transcriptomic and proteomic profiling reveals distinct pathogenic features of peripheral non-classical monocytes in systemic lupus erythematosus. Clin Immunol 2023; 255:109765. [PMID: 37678715 DOI: 10.1016/j.clim.2023.109765] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Peripheral blood monocytes propagate inflammation in systemic lupus erythematosus (SLE). Three major populations of monocytes have been recognized namely classical (CM), intermediate (IM) and non-classical monocytes (NCM). Herein, we performed a comprehensive transcriptomic, proteomic and functional characterization of the three peripheral monocytic subsets from active SLE patients and healthy individuals. Our data demonstrate extensive molecular disruptions in circulating SLE NCM, characterized by enhanced inflammatory features such as deregulated DNA repair, cell cycle and heightened IFN signaling combined with differentiation and developmental cues. Enhanced DNA damage, elevated expression of p53, G0 arrest of cell cycle and increased autophagy stress the differentiation potential of NCM in SLE. This immunogenic profile is associated with an activated macrophage phenotype of NCM exhibiting M1 characteristics in the circulation, fueling the inflammatory response. Together, these findings identify circulating SLE NCM as a pathogenic cell type in the disease that could represent an additional therapeutic target.
Collapse
Affiliation(s)
- Eirini Maria Stergioti
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 115 27, Greece; 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens 124 62, Greece.
| | - Theodora Manolakou
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 115 27, Greece
| | - George Sentis
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 115 27, Greece
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center Alexander Fleming, Vari, Athens 166 72, Greece
| | - Noemin Kapsala
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens 124 62, Greece
| | - Antonis Fanouriakis
- 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens 124 62, Greece
| | - Dimitrios T Boumpas
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 115 27, Greece.
| | - Aggelos Banos
- Laboratory of Autoimmunity and Inflammation, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 115 27, Greece.
| |
Collapse
|
9
|
Zhong F, Lin Y, Zhao L, Yang C, Ye Y, Shen Z. Reshaping the tumour immune microenvironment in solid tumours via tumour cell and immune cell DNA methylation: from mechanisms to therapeutics. Br J Cancer 2023:10.1038/s41416-023-02292-0. [PMID: 37117649 DOI: 10.1038/s41416-023-02292-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023] Open
Abstract
In recent years, the tumour microenvironment (TME) of solid tumours has attracted more and more attention from researchers, especially those non-tumour components such as immune cells. Infiltration of various immune cells causes tumour immune microenvironment (TIME) heterogeneity, and results in different therapeutic effects. Accumulating evidence showed that DNA methylation plays a crucial role in remodelling TIME and is associated with the response towards immune checkpoint inhibitors (ICIs). During carcinogenesis, DNA methylation profoundly changes, specifically, there is a global loss of DNA methylation and increased DNA methylation at the promoters of suppressor genes. Immune cell differentiation is disturbed, and exclusion of immune cells from the TME occurs at least in part due to DNA methylation reprogramming. Therefore, pharmaceutical interventions targeting DNA methylation are promising. DNA methyltransferase inhibitors (DNMTis) enhance antitumor immunity by inducing transcription of transposable elements and consequent viral mimicry. DNMTis upregulate the expression of tumour antigens, mediate immune cells recruitment and reactivate exhausted immune cells. In preclinical studies, DNMTis have shown synergistic effect when combined with immunotherapies, suggesting new strategies to treat refractory solid tumours.
Collapse
Affiliation(s)
- Fengyun Zhong
- Department of Gastroenterological Surgery, Peking University People's Hospital, 100044, Beijing, P. R. China
- Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, 100044, Beijing, P. R. China
| | - Yilin Lin
- Department of Gastroenterological Surgery, Peking University People's Hospital, 100044, Beijing, P. R. China
- Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, 100044, Beijing, P. R. China
| | - Long Zhao
- Department of Gastroenterological Surgery, Peking University People's Hospital, 100044, Beijing, P. R. China
- Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, 100044, Beijing, P. R. China
| | - Changjiang Yang
- Department of Gastroenterological Surgery, Peking University People's Hospital, 100044, Beijing, P. R. China
- Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, 100044, Beijing, P. R. China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, 100044, Beijing, P. R. China
- Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, 100044, Beijing, P. R. China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, 100044, Beijing, P. R. China.
- Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, 100044, Beijing, P. R. China.
| |
Collapse
|
10
|
Temporal Analysis Reveals the Transient Differential Expression of Transcription Factors That Underlie the Trans-Differentiation of Human Monocytes to Macrophages. Int J Mol Sci 2022; 23:ijms232415830. [PMID: 36555471 PMCID: PMC9781183 DOI: 10.3390/ijms232415830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 12/15/2022] Open
Abstract
The activation of monocytes and their trans-differentiation into macrophages are critical processes of the immune response. Prior work has characterized the differences in the expression between monocytes and macrophages, but the transitional process between these cells is poorly detailed. Here, we analyzed the temporal changes of the transcriptome during trans-differentiation of primary human monocytes into M0 macrophages. We find changes with many transcription factors throughout the process, the vast majority of which exhibit a maximally different expression at the intermediate stages. A few factors, including AP-1, were previously known to play a role in immunological transitions, but most were not. Thus, these findings indicate that this trans-differentiation requires the dynamic expression of many transcription factors not previously discussed in immunology, and provide a foundation for the delineation of the molecular mechanisms associated with healthy or pathological responses that involve this transition.
Collapse
|
11
|
Petrova V, Song R, Nordström KJV, Walter J, Wong JJL, Armstrong N, Rasko JEJ, Schmitz U. Increased chromatin accessibility facilitates intron retention in specific cell differentiation states. Nucleic Acids Res 2022; 50:11563-11579. [PMID: 36354002 PMCID: PMC9723627 DOI: 10.1093/nar/gkac994] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
Dynamic intron retention (IR) in vertebrate cells is of widespread biological importance. Aberrant IR is associated with numerous human diseases including several cancers. Despite consistent reports demonstrating that intrinsic sequence features can help introns evade splicing, conflicting findings about cell type- or condition-specific IR regulation by trans-regulatory and epigenetic mechanisms demand an unbiased and systematic analysis of IR in a controlled experimental setting. We integrated matched mRNA sequencing (mRNA-Seq), whole-genome bisulfite sequencing (WGBS), nucleosome occupancy methylome sequencing (NOMe-Seq) and chromatin immunoprecipitation sequencing (ChIP-Seq) data from primary human myeloid and lymphoid cells. Using these multi-omics data and machine learning, we trained two complementary models to determine the role of epigenetic factors in the regulation of IR in cells of the innate immune system. We show that increased chromatin accessibility, as revealed by nucleosome-free regions, contributes substantially to the retention of introns in a cell-specific manner. We also confirm that intrinsic characteristics of introns are key for them to evade splicing. This study suggests an important role for chromatin architecture in IR regulation. With an increasing appreciation that pathogenic alterations are linked to RNA processing, our findings may provide useful insights for the development of novel therapeutic approaches that target aberrant splicing.
Collapse
Affiliation(s)
- Veronika Petrova
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown 2050, Australia,Gene and Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia
| | - Renhua Song
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia,Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | | | - Karl J V Nordström
- Laboratory of EpiGenetics, Saarland University, Campus A2 4, D-66123 Saarbrücken, Germany
| | - Jörn Walter
- Laboratory of EpiGenetics, Saarland University, Campus A2 4, D-66123 Saarbrücken, Germany
| | - Justin J L Wong
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown 2050, Australia,Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Nicola J Armstrong
- Mathematics and Statistics, Curtin University, Bentley, WA 6102, Australia
| | | | | |
Collapse
|
12
|
No evidence for intervention-associated DNA methylation changes in monocytes of patients with posttraumatic stress disorder. Sci Rep 2022; 12:17347. [PMID: 36253434 PMCID: PMC9576776 DOI: 10.1038/s41598-022-22177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/11/2022] [Indexed: 01/10/2023] Open
Abstract
DNA methylation patterns can be responsive to environmental influences. This observation has sparked interest in the potential for psychological interventions to influence epigenetic processes. Recent studies have observed correlations between DNA methylation changes and therapy outcome. However, most did not control for changes in cell composition. This study had two aims: first, we sought to replicate therapy-associated changes in DNA methylation of commonly assessed candidate genes in isolated monocytes from 60 female patients with post-traumatic stress disorder (PTSD). Our second, exploratory goal was to identify novel genomic regions with substantial pre-to-post intervention DNA methylation changes by performing whole-genome bisulfite sequencing (WGBS) in two patients with PTSD. Equivalence testing and Bayesian analyses provided evidence against physiologically meaningful intervention-associated DNA methylation changes in monocytes of PTSD patients in commonly investigated target genes (NR3C1, FKBP5, SLC6A4, OXTR). Furthermore, WGBS yielded only a limited set of candidate regions with suggestive evidence of differential DNA methylation pre- to post-therapy. These differential DNA methylation patterns did not prove replicable when investigated in the entire cohort. We conclude that there is no evidence for major, recurrent intervention-associated DNA methylation changes in the investigated genes in monocytes of patients with PTSD.
Collapse
|
13
|
Zhang Z, Bossila EA, Li L, Hu S, Zhao Y. Central gene transcriptional regulatory networks shaping monocyte development in bone marrow. Front Immunol 2022; 13:1011279. [PMID: 36304450 PMCID: PMC9595600 DOI: 10.3389/fimmu.2022.1011279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
The development of monocytes in bone marrow is a complex process with multiple steps. We used RNA-seq data to analyze the transcriptome profiles in developing stages of monocytes, including hematopoietic stem cells (HSCs), common myeloid progenitors (CMPs), granulocyte-monocyte progenitors (GMPs), and monocytes. We found that genes related to potassium and other cation transmembrane activities and ion binding were upregulated during the differentiation of HSCs into CMPs. Protein transport and membrane surface functional molecules were significantly upregulated in the GMP stage. The CD42RAC and proteasome pathways are significantly upregulated during the development of HSCs into monocytes. Transcription factors Ank1, Runx2, Hmga2, Klf1, Nfia, and Bmyc were upregulated during the differentiation of HSCs into CMPs; Gfi1 and Hmgn2 were highly expressed during the differentiation of CMPs into GMPs; Seventeen transcription factors including Foxo1, Cdkn2d, Foxo3, Ep300, Pias1, Nfkb1, Creb1, Bcl6, Ppp3cb, Stat5b, Nfatc4, Mef2a, Stat6, Ifnar2, Irf7, Irf5, and Cebpb were identified as potentially involved in the development of GMPs into monocytes in mice and humans. In metabolism pathway regulation, HSCs have high glucose, lipid, and nucleic acid metabolism activities; CMPs mainly up regulate the TCA cycle related genes; and GMPs have extremely active metabolisms, with significantly elevated pentose phosphate pathway, TCA cycle, histidine metabolism, and purine metabolism. In the monocyte phase, the tricarboxylic acid (TCA) cycle is reduced, and the anaerobic glycolysis process becomes dominated. Overall, our studies offer the kinetics and maps of gene transcriptional expressions and cell metabolisms during monocyte development in bone marrow.
Collapse
Affiliation(s)
- Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Elhusseny A. Bossila
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Biotechnology Department, Faculty of Agriculture Al-Azhar University, Cairo, Egypt
| | - Ling Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regeneration, Beijing, China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regeneration, Beijing, China
| |
Collapse
|
14
|
An update on novel therapeutic intervention in Rheumatoid arthritis. Int Immunopharmacol 2022; 109:108794. [DOI: 10.1016/j.intimp.2022.108794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022]
|
15
|
Liu L, Zhu L, Liu M, Zhao L, Yu Y, Xue Y, Shan L. Recent Insights Into the Role of Macrophages in Acute Gout. Front Immunol 2022; 13:955806. [PMID: 35874765 PMCID: PMC9304769 DOI: 10.3389/fimmu.2022.955806] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Gout is a common type of inflammatory arthritis characterized by the presence of monosodium urate crystals (MSU) in the joints. Macrophages are believed to be involved in gout flares. It has long been recognized that resident macrophage and monocyte derived macrophages are distinct subsets and there have been attempts to investigate their roles in acute gout, respectively. Previous studies revealed that resident macrophages initiate and drive the inflammation, while monocyte derived macrophages differentiated into M1-like macrophages in response to MSU crystals. With the advancement of technologies, subpopulations of synovial resident macrophages have been defined with the characteristics more accurately described. Resident macrophages in the synovial lining layer showed an anti-inflammatory effect in rheumatoid arthritis, but specific Trpv4 depletion of them reduced MSU crystals induced murine arthritis. CD14+ monocytes in the synovial fluid from patients with gout exhibit phenotypes of anti-inflammatory as well as pro-inflammatory characteristics. Here, we review the main aspects of macrophages in the initiation and resolution of acute gout and try to clarify the specific role of each subpopulation. Building a reliable diagram of the effect of monocytes and macrophages during MSU crystals induced arthritis will bring us closer to targeting macrophages for improving the management of gout.
Collapse
Affiliation(s)
- Lei Liu
- Department of Rheumatology, The Second affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Lingjiang Zhu
- Department of Rheumatology, The Second affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Mengdan Liu
- Department of Rheumatology, The Second affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Li Zhao
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiyun Yu
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Xue
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lizhen Shan
- Department of Endocrinology, The Second affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
- *Correspondence: Lizhen Shan,
| |
Collapse
|
16
|
Dourson AJ, Willits A, Raut NG, Kader L, Young E, Jankowski MP, Chidambaran V. Genetic and epigenetic mechanisms influencing acute to chronic postsurgical pain transitions in pediatrics: Preclinical to clinical evidence. Can J Pain 2022; 6:85-107. [PMID: 35572362 PMCID: PMC9103644 DOI: 10.1080/24740527.2021.2021799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 12/02/2022]
Abstract
Background Chronic postsurgical pain (CPSP) in children remains an important problem with no effective preventive or therapeutic strategies. Recently, genomic underpinnings explaining additional interindividual risk beyond psychological factors have been proposed. Aims We present a comprehensive review of current preclinical and clinical evidence for genetic and epigenetic mechanisms relevant to pediatric CPSP. Methods Narrative review. Results Animal models are relevant to translational research for unraveling genomic mechanisms. For example, Cacng2, p2rx7, and bdnf mutant mice show altered mechanical hypersensitivity to injury, and variants of the same genes have been associated with CPSP susceptibility in humans; similarly, differential DNA methylation (H1SP) and miRNAs (miR-96/7a) have shown translational implications. Animal studies also suggest that crosstalk between neurons and immune cells may be involved in nociceptive priming observed in neonates. In children, differential DNA methylation in regulatory genomic regions enriching GABAergic, dopaminergic, and immune pathways, as well as polygenic risk scores for enhanced prediction of CPSP, have been described. Genome-wide studies in pediatric CPSP are scarce, but pathways identified by adult gene association studies point to potential common mechanisms. Conclusions Bench-to-bedside genomics research in pediatric CPSP is currently limited. Reverse translational approaches, use of other -omics, and inclusion of pediatric/CPSP endophenotypes in large-scale biobanks may be potential solutions. Time of developmental vulnerability and longitudinal genomic changes after surgery warrant further investigation. Emergence of promising precision pain management strategies based on gene editing and epigenetic programing emphasize need for further research in pediatric CPSP-related genomics.
Collapse
Affiliation(s)
- Adam J. Dourson
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
| | - Adam Willits
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Namrata G.R. Raut
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
| | - Leena Kader
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Erin Young
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michael P. Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | - Vidya Chidambaran
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,USA
| |
Collapse
|
17
|
Sandhu G, Thelma BK. New Druggable Targets for Rheumatoid Arthritis Based on Insights From Synovial Biology. Front Immunol 2022; 13:834247. [PMID: 35265082 PMCID: PMC8899708 DOI: 10.3389/fimmu.2022.834247] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) is a multifactorial autoimmune disease characterized by chronic inflammation and destruction of multiple small joints which may lead to systemic complications. Altered immunity via pathogenic autoantibodies pre-date clinical symptom development by several years. Incompletely understood range of mechanisms trigger joint-homing, leading to clinically evident articular disease. Advances in therapeutic approaches and understanding pathogenesis have improved prognosis and likely remission. However, partial/non-response to conventional and biologic therapies witnessed in a subset of patients highlights the need for new therapeutics. It is now evident that joint disease chronicity stems from recalcitrant inflammatory synovial environment, majorly maintained by epigenetically and metabolically reprogrammed synoviocytes. Therefore, interference with effector functions of activated cell types seems a rational strategy to reinstate synovial homeostasis and complement existing anti-inflammatory interventions to mitigate chronic RA. Presenting this newer aspect of fibroblast-like synoviocytes and myeloid cells underlying the altered synovial biology in RA and its potential for identification of new druggable targets is attempted in this review. Major leads from i) molecular insights of pathogenic cell types from hypothesis free OMICS approaches; ii) hierarchy of their dysregulated signaling pathways; and iii) knowledge of druggability of molecular nodes in these pathways are highlighted. Development of such synovial biology-directed therapeutics hold promise for an enriched drug repertoire for RA.
Collapse
Affiliation(s)
| | - B. K. Thelma
- Department of Genetics, University of Delhi, New Delhi, India
| |
Collapse
|
18
|
Konwar C, Asiimwe R, Inkster AM, Merrill SM, Negri GL, Aristizabal MJ, Rider CF, MacIsaac JL, Carlsten C, Kobor MS. Risk-focused differences in molecular processes implicated in SARS-CoV-2 infection: corollaries in DNA methylation and gene expression. Epigenetics Chromatin 2021; 14:54. [PMID: 34895312 PMCID: PMC8665859 DOI: 10.1186/s13072-021-00428-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/26/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Understanding the molecular basis of susceptibility factors to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global health imperative. It is well-established that males are more likely to acquire SARS-CoV-2 infection and exhibit more severe outcomes. Similarly, exposure to air pollutants and pre-existing respiratory chronic conditions, such as asthma and chronic obstructive respiratory disease (COPD) confer an increased risk to coronavirus disease 2019 (COVID-19). METHODS We investigated molecular patterns associated with risk factors in 398 candidate genes relevant to COVID-19 biology. To accomplish this, we downloaded DNA methylation and gene expression data sets from publicly available repositories (GEO and GTEx Portal) and utilized data from an empirical controlled human exposure study conducted by our team. RESULTS First, we observed sex-biased DNA methylation patterns in autosomal immune genes, such as NLRP2, TLE1, GPX1, and ARRB2 (FDR < 0.05, magnitude of DNA methylation difference Δβ > 0.05). Second, our analysis on the X-linked genes identified sex associated DNA methylation profiles in genes, such as ACE2, CA5B, and HS6ST2 (FDR < 0.05, Δβ > 0.05). These associations were observed across multiple respiratory tissues (lung, nasal epithelia, airway epithelia, and bronchoalveolar lavage) and in whole blood. Some of these genes, such as NLRP2 and CA5B, also exhibited sex-biased gene expression patterns. In addition, we found differential DNA methylation patterns by COVID-19 status for genes, such as NLRP2 and ACE2 in an exploratory analysis of an empirical data set reporting on human COVID-9 infections. Third, we identified modest DNA methylation changes in CpGs associated with PRIM2 and TATDN1 (FDR < 0.1, Δβ > 0.05) in response to particle-depleted diesel exhaust in bronchoalveolar lavage. Finally, we captured a DNA methylation signature associated with COPD diagnosis in a gene involved in nicotine dependence (COMT) (FDR < 0.1, Δβ > 0.05). CONCLUSION Our findings on sex differences might be of clinical relevance given that they revealed molecular associations of sex-biased differences in COVID-19. Specifically, our results hinted at a potentially exaggerated immune response in males linked to autosomal genes, such as NLRP2. In contrast, our findings at X-linked loci such as ACE2 suggested a potentially distinct DNA methylation pattern in females that may interact with its mRNA expression and inactivation status. We also found tissue-specific DNA methylation differences in response to particulate exposure potentially capturing a nitrogen dioxide (NO2) effect-a contributor to COVID-19 susceptibility. While we identified a molecular signature associated with COPD, all COPD-affected individuals were smokers, which may either reflect an association with the disease, smoking, or may highlight a compounded effect of these two risk factors in COVID-19. Overall, our findings point towards a molecular basis of variation in susceptibility factors that may partly explain disparities in the risk for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Chaini Konwar
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
| | - Rebecca Asiimwe
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
| | - Amy M Inkster
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- The Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Sarah M Merrill
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
| | - Gian L Negri
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Maria J Aristizabal
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
- The Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
- Department of Biology, Queen' University, Kingston, ON, K7L 3N6, Canada
- Program in Child and Brain Development, CIFAR, MaRS Centre, 661 University Ave, Toronto, ON, M5G 1M1, Canada
| | - Christopher F Rider
- The Department of Respiratory Medicine, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Julie L MacIsaac
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
| | - Christopher Carlsten
- The Department of Respiratory Medicine, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Michael S Kobor
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada.
- Program in Child and Brain Development, CIFAR, MaRS Centre, 661 University Ave, Toronto, ON, M5G 1M1, Canada.
- The Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
19
|
Tuong ZK, Stewart BJ, Guo SA, Clatworthy MR. Epigenetics and tissue immunity-Translating environmental cues into functional adaptations. Immunol Rev 2021; 305:111-136. [PMID: 34821397 DOI: 10.1111/imr.13036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022]
Abstract
There is an increasing appreciation that many innate and adaptive immune cell subsets permanently reside within non-lymphoid organs, playing a critical role in tissue homeostasis and defense. The best characterized are macrophages and tissue-resident T lymphocytes that work in concert with organ structural cells to generate appropriate immune responses and are functionally shaped by organ-specific environmental cues. The interaction of tissue epithelial, endothelial and stromal cells is also required to attract, differentiate, polarize and maintain organ immune cells in their tissue niche. All of these processes require dynamic regulation of cellular transcriptional programmes, with epigenetic mechanisms playing a critical role, including DNA methylation and post-translational histone modifications. A failure to appropriately regulate immune cell transcription inevitably results in inadequate or inappropriate immune responses and organ pathology. Here, with a focus on the mammalian kidney, an organ which generates differing regional environmental cues (including hypersalinity and hypoxia) due to its physiological functions, we will review the basic concepts of tissue immunity, discuss the technologies available to profile epigenetic modifications in tissue immune cells, including those that enable single-cell profiling, and consider how these mechanisms influence the development, phenotype, activation and function of different tissue immune cell subsets, as well as the immunological function of structural cells.
Collapse
Affiliation(s)
- Zewen Kelvin Tuong
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Shuang Andrew Guo
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, MRC-Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK.,Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Noonepalle SKR, Karabon L, Chiappinelli KB, Villagra A. Editorial: Genetic and Epigenetic Control of Immune Responses. Front Immunol 2021; 12:775101. [PMID: 34675944 PMCID: PMC8523980 DOI: 10.3389/fimmu.2021.775101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Satish kumar R. Noonepalle
- Department of Biochemistry and Molecular Medicine, GW Cancer Center, School of Medicine and Health Sciences, George Washington University, Washington DC, United States
| | - Lidia Karabon
- Department of Experimental Therapy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Katherine B. Chiappinelli
- Department of Microbiology, Immunology, and Tropical Medicine, GW Cancer Center, School of Medicine and Health Sciences, George Washington University, Washington DC, United States
| | - Alejandro Villagra
- Department of Biochemistry and Molecular Medicine, GW Cancer Center, School of Medicine and Health Sciences, George Washington University, Washington DC, United States
| |
Collapse
|
21
|
Church MC, Workman JL, Suganuma T. Macrophages, Metabolites, and Nucleosomes: Chromatin at the Intersection between Aging and Inflammation. Int J Mol Sci 2021; 22:10274. [PMID: 34638614 PMCID: PMC8508989 DOI: 10.3390/ijms221910274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Inflammation is the body's means of defense against harmful stimuli, with the ultimate aim being to restore homeostasis. Controlled acute inflammation transiently activates an immune response and can be beneficial as protection against infection or injury. However, dysregulated inflammatory responses, including chronic inflammation, disrupt the immune system's ability to maintain homeostatic balance, leading to increased susceptibility to infection, continuous tissue damage, and dysfunction. Aging is a risk factor for chronic inflammation; their coincidence is termed "inflammaging". Metabolic disorders including obesity, neurodegenerative diseases, and atherosclerosis are often encountered in old age. Therefore, it is important to understand the mechanistic relationship between aging, chronic inflammation, and metabolism. It has been established that the expression of inflammatory mediators is transcriptionally and translationally regulated. In addition, the post-translational modification of the mediators plays a crucial role in the response to inflammatory signaling. Chromatin regulation responds to metabolic status and controls homeostasis. However, chromatin structure is also changed by aging. In this review, we discuss the functional contributions of chromatin regulation to inflammaging.
Collapse
Affiliation(s)
| | | | - Tamaki Suganuma
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA; (M.C.C.); (J.L.W.)
| |
Collapse
|
22
|
Chamseddine AN, Assi T, Mir O, Chouaib S. Modulating tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors: A TAM-pting approach. Pharmacol Ther 2021; 231:107986. [PMID: 34481812 DOI: 10.1016/j.pharmthera.2021.107986] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages (TAM) plasticity and diversity are both essential hallmarks of the monocyte-macrophage lineage and the tumor-derived inflammation. TAM exemplify the perfect adaptable cell with dynamic phenotypic modifications that reflect changes in their functional polarization status. Under several tumor microenvironment (TME)-related cues, TAM shift their polarization, hence promoting or halting cancer progression. Immune checkpoint inhibitors (ICI) displayed unprecedented clinical responses in various refractory cancers; but only approximately a third of patients experienced durable responses. It is, therefore, crucial to enhance the response rate of immunotherapy. Several mechanisms of resistance to ICI have been elucidated including TAM role with its essential immunosuppressive functions that reduce both anti-tumor immunity and the subsequent ICI efficacy. In the past few years, thorough research has led to a better understanding of TAM biology and innovative approaches can now be adapted through targeting macrophages' recruitment axis as well as TAM activation and polarization status within the TME. Some of these therapeutic strategies are currently being evaluated in several clinical trials in association with ICI agents. This combination between TAM modulation and ICI allows targeting TAM intrinsic immunosuppressive functions and tumor-promoting factors as well as overcoming ICI resistance. Hence, such strategies, with a better understanding of the mechanisms driving TAM modulation, may have the potential to optimize ICI efficacy.
Collapse
Affiliation(s)
- Ali N Chamseddine
- Department of Medical Oncology, Gustave Roussy, F-94805, Villejuif, France; Department of Biostatistics and Epidemiology, CESP INSERM U1018, OncoStat, Gustave Roussy, F-94805, Villejuif, France.
| | - Tarek Assi
- Department of Medical Oncology, Gustave Roussy, F-94805, Villejuif, France
| | - Olivier Mir
- Department of Medical Oncology, Gustave Roussy, F-94805, Villejuif, France; Department of Pharmacology, Gustave Roussy, F-94805, Villejuif, France; Department of Ambulatory Care, Gustave Roussy, F-94805, Villejuif, France
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, F-94805, Villejuif, France
| |
Collapse
|
23
|
McErlean P, Bell CG, Hewitt RJ, Busharat Z, Ogger PP, Ghai P, Albers GJ, Calamita E, Kingston S, Molyneaux PL, Beck S, Lloyd CM, Maher TM, Byrne AJ. DNA Methylome Alterations are Associated with Airway Macrophage Differentiation and Phenotype During Lung Fibrosis. Am J Respir Crit Care Med 2021; 204:954-966. [PMID: 34280322 DOI: 10.1164/rccm.202101-0004oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Airway macrophages (AMs) are key regulators of the lung environment and are implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF), a fatal respiratory disease with no cure. However, knowledge of epigenetics of AMs in IPF are limited. METHODS We undertook DNA methylation profiling using Illumina EPIC (850k) arrays in sorted AMs from Healthy (n=14) and IPF (n=30) donors. Cell-type deconvolution was performed using reference myeloid-cell DNA methylomes. MEASUREMENTS AND MAIN RESULTS Our analysis revealed epigenetic heterogeneity was a key characteristic of IPF-AMs. DNAm 'clock' analysis indicated epigenetic alterations in IPF-AMs was not associated with accelerated ageing. In differential DNAm analysis, we identified numerous differentially methylated positions (DMPs, n=11) and regions (DMRs, n=49) between healthy and IPF AMs respectively. DMPs and DMRs encompassed genes involved in lipid (LPCAT1) and glucose (PFKFB3) metabolism and importantly, DNAm status was associated with disease severity in IPF. CONCLUSIONS Collectively, our data identify that changes in the epigenome are associated with development and function of AMs in the IPF lung.
Collapse
Affiliation(s)
- Peter McErlean
- Imperial College London, 4615, London, United Kingdom of Great Britain and Northern Ireland
| | - Christopher G Bell
- William Harvey Research Institute, 105713, London, United Kingdom of Great Britain and Northern Ireland
| | - Richard J Hewitt
- National Heart and Lung Institute, Inflammation, Repair & Development, London, United Kingdom of Great Britain and Northern Ireland
| | - Zabreen Busharat
- Imperial College London, London, United Kingdom of Great Britain and Northern Ireland
| | - Patricia P Ogger
- Imperial College London, London, United Kingdom of Great Britain and Northern Ireland
| | - Poonam Ghai
- Imperial College London, London, United Kingdom of Great Britain and Northern Ireland
| | - Gesa J Albers
- Imperial College London, London, United Kingdom of Great Britain and Northern Ireland
| | - Emily Calamita
- Imperial College London, 4615, London, United Kingdom of Great Britain and Northern Ireland
| | - Shaun Kingston
- Royal Brompton Hospital, 156726, Interstitial Lung Disease Unit, London, United Kingdom of Great Britain and Northern Ireland
| | - Philip L Molyneaux
- Imperial College London, National Heart and Lung Institute, London, United Kingdom of Great Britain and Northern Ireland
| | - Stephan Beck
- University College London, 4919, London, United Kingdom of Great Britain and Northern Ireland
| | - Clare M Lloyd
- Imperial College, Leukocyte Biology, London, United Kingdom of Great Britain and Northern Ireland
| | - Toby M Maher
- Royal Brompton Hospital, 156726, Interstitial Lung Disease Unit, London, United Kingdom of Great Britain and Northern Ireland;
| | - Adam J Byrne
- Imperial College London, London, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
24
|
Liebold I, Grützkau A, Göckeritz A, Gerl V, Lindquist R, Feist E, Zänker M, Häupl T, Poddubnyy D, Zernicke J, Smiljanovic B, Alexander T, Burmester GR, Gay S, Stuhlmüller B. Peripheral blood mononuclear cells are hypomethylated in active rheumatoid arthritis and methylation correlates with disease activity. Rheumatology (Oxford) 2021; 60:1984-1995. [PMID: 33200208 DOI: 10.1093/rheumatology/keaa649] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Epigenetic modifications are dynamic and influence cellular disease activity. The aim of this study was to investigate global DNA methylation in peripheral blood mononuclear cells (PBMCs) of RA patients to clarify whether global DNA methylation pattern testing might be useful in monitoring disease activity as well as the response to therapeutics. METHODS Flow cytometric measurement of 5-methyl-cytosine (5'-mC) was established using the cell line U937. In the subsequent prospective study, 62 blood samples were investigated, including 17 healthy donors and 45 RA patients at baseline and after 3 months of treatment with methotrexate, the IL-6 receptor inhibitor sarilumab, and Janus kinase inhibitors. Methylation status was assessed with an anti-5'-mC antibody and analysed in PBMCs and CD4+, CD8+, CD14+ and CD19+ subsets. Signal intensities of 5'-mC were correlated with 28-joint DASs with ESR and CRP (DAS28-ESR and DAS28-CRP). RESULTS Compared with healthy individuals, PBMCs of RA patients showed a significant global DNA hypomethylation. Signal intensities of 5'-mC correlated with transcription levels of DNMT1, DNMT3B and MTR genes involved in methylation processes. Using flow cytometry, significant good correlations and linear regression values were achieved in RA patients between global methylation levels and DAS28-ESR values for PBMCs (r = -0.55, P = 0.002), lymphocytes (r = -0.57, P = 0.001), CD4+ (r = -0.57, P = 0.001), CD8+ (r = -0.54, P = 0.001), CD14+ (r = -0.49, P = 0.008) and CD19+ (r = -0.52, P = 0.004) cells. CONCLUSIONS The degree of global DNA methylation was found to be associated with disease activity. Based on this novel approach, the degree of global methylation is a promising biomarker for therapy monitoring and the prediction of therapy outcome in inflammatory diseases.
Collapse
Affiliation(s)
- Ilka Liebold
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| | - Andreas Grützkau
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz-Institute, Berlin, Germany
| | - Anika Göckeritz
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| | - Velia Gerl
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| | - Randall Lindquist
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz-Institute, Berlin, Germany
| | - Eugen Feist
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany.,Department of Rheumatology, Helios Fachklinik, Vogelsang-Gommern, Germany
| | - Michael Zänker
- Immanuel Klinikum Bernau Herzzentrum Brandenburg, Medizinische Hochschule Brandenburg, Bernau, Germany
| | - Thomas Häupl
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| | - Denis Poddubnyy
- Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Corporate Member of Berlin Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| | - Jan Zernicke
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| | - Biljana Smiljanovic
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| | - Tobias Alexander
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| | - Gerd R Burmester
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| | - Steffen Gay
- Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Bruno Stuhlmüller
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| |
Collapse
|
25
|
Ebert P, Schulz MH. Fast detection of differential chromatin domains with SCIDDO. Bioinformatics 2021; 37:1198-1205. [PMID: 33232443 PMCID: PMC8189691 DOI: 10.1093/bioinformatics/btaa960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/30/2020] [Indexed: 12/29/2022] Open
Abstract
MOTIVATION The generation of genome-wide maps of histone modifications using chromatin immunoprecipitation sequencing is a standard approach to dissect the complexity of the epigenome. Interpretation and differential analysis of histone datasets remains challenging due to regulatory meaningful co-occurrences of histone marks and their difference in genomic spread. To ease interpretation, chromatin state segmentation maps are a commonly employed abstraction combining individual histone marks. We developed the tool SCIDDO as a fast, flexible and statistically sound method for the differential analysis of chromatin state segmentation maps. RESULTS We demonstrate the utility of SCIDDO in a comparative analysis that identifies differential chromatin domains (DCD) in various regulatory contexts and with only moderate computational resources. We show that the identified DCDs correlate well with observed changes in gene expression and can recover a substantial number of differentially expressed genes (DEGs). We showcase SCIDDO's ability to directly interrogate chromatin dynamics, such as enhancer switches in downstream analysis, which simplifies exploring specific questions about regulatory changes in chromatin. By comparing SCIDDO to competing methods, we provide evidence that SCIDDO's performance in identifying DEGs via differential chromatin marking is more stable across a range of cell-type comparisons and parameter cut-offs. AVAILABILITY AND IMPLEMENTATION The SCIDDO source code is openly available under github.com/ptrebert/sciddo. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Peter Ebert
- Institute for Medical Biometry and Bioinformatics, Heinrich Heine University, 40225 Düsseldorf, Germany.,Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany
| | - Marcel H Schulz
- Max Planck Institute for Informatics, Saarland Informatics Campus, 66123 Saarbrücken, Germany.,Cluster of Excellence on Multimodal Computing and Interaction, Saarland Informatics Campus, 66123 Saarbrücken, Germany.,Institute for Cardiovascular Regeneration, Goethe University, 60590 Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main, 60590 Frankfurt am Main, Germany
| |
Collapse
|
26
|
Meutia N, Lubis LD, Megawati ER. Moderate Dose of Lipopolysaccharide Induces Tumor Necrosis Factor-alpha and Interleukin-6 Production by Human Monocyte-derived Macrophages. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Macrophages have been widely used for in vitro studies. Despite different types and doses of stimulatory agents that have been tested, there is no consensus for the method.
AIM: This study was aimed to determine a sufficient dose of lipopolysaccharide (LPS) to stimulate inflammatory response in macrophages.
METHODS: Whole blood was collected from four donors after written informed consent. The monocytes were isolated from peripheral blood mononuclear cells and stimulated with macrophage colony-stimulating factor, LPS, and Interferon-gamma for 6 days until differentiated into macrophages. The production of Tumor necrosis factor-alpha (TNF-α) and Interleukin-6 (IL-6) were quantified after 24-h further stimulation with 100 ng/mL and 2 μg/mL of LPS.
RESULTS: Both doses increased TNF-α _production compare to their controls, but not statistically different (p > 0.05). There were also no differences in IL-6 production between treatments, 56.55 ± 32.30 pg/mL and 70.96 ± 65.08 pg/mL, respectively.
CONCLUSION: A dose of 100 ng/mL of LPS was sufficient to stimulate inflammatory response in human monocyte-derived macrophages. A 24-h duration of macrophage stimulation was sufficient to observed the production TNF-α.
Collapse
|
27
|
Lasp1 regulates adherens junction dynamics and fibroblast transformation in destructive arthritis. Nat Commun 2021; 12:3624. [PMID: 34131132 PMCID: PMC8206096 DOI: 10.1038/s41467-021-23706-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
The LIM and SH3 domain protein 1 (Lasp1) was originally cloned from metastatic breast cancer and characterised as an adaptor molecule associated with tumourigenesis and cancer cell invasion. However, the regulation of Lasp1 and its function in the aggressive transformation of cells is unclear. Here we use integrative epigenomic profiling of invasive fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA) and from mouse models of the disease, to identify Lasp1 as an epigenomically co-modified region in chronic inflammatory arthritis and a functionally important binding partner of the Cadherin-11/β-Catenin complex in zipper-like cell-to-cell contacts. In vitro, loss or blocking of Lasp1 alters pathological tissue formation, migratory behaviour and platelet-derived growth factor response of arthritic FLS. In arthritic human TNF transgenic mice, deletion of Lasp1 reduces arthritic joint destruction. Therefore, we show a function of Lasp1 in cellular junction formation and inflammatory tissue remodelling and identify Lasp1 as a potential target for treating inflammatory joint disorders associated with aggressive cellular transformation.
Collapse
|
28
|
Ntontsi P, Photiades A, Zervas E, Xanthou G, Samitas K. Genetics and Epigenetics in Asthma. Int J Mol Sci 2021; 22:ijms22052412. [PMID: 33673725 PMCID: PMC7957649 DOI: 10.3390/ijms22052412] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Asthma is one of the most common respiratory disease that affects both children and adults worldwide, with diverse phenotypes and underlying pathogenetic mechanisms poorly understood. As technology in genome sequencing progressed, scientific efforts were made to explain and predict asthma’s complexity and heterogeneity, and genome-wide association studies (GWAS) quickly became the preferred study method. Several gene markers and loci associated with asthma susceptibility, atopic and childhood-onset asthma were identified during the last few decades. Markers near the ORMDL3/GSDMB genes were associated with childhood-onset asthma, interleukin (IL)33 and IL1RL1 SNPs were associated with atopic asthma, and the Thymic Stromal Lymphopoietin (TSLP) gene was identified as protective against the risk to TH2-asthma. The latest efforts and advances in identifying and decoding asthma susceptibility are focused on epigenetics, heritable characteristics that affect gene expression without altering DNA sequence, with DNA methylation being the most described mechanism. Other less studied epigenetic mechanisms include histone modifications and alterations of miR expression. Recent findings suggest that the DNA methylation pattern is tissue and cell-specific. Several studies attempt to describe DNA methylation of different types of cells and tissues of asthmatic patients that regulate airway remodeling, phagocytosis, and other lung functions in asthma. In this review, we attempt to briefly present the latest advancements in the field of genetics and mainly epigenetics concerning asthma susceptibility.
Collapse
Affiliation(s)
- Polyxeni Ntontsi
- 7th Respiratory Medicine Department and Asthma Center, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece; (P.N.); (A.P.); (E.Z.)
| | - Andreas Photiades
- 7th Respiratory Medicine Department and Asthma Center, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece; (P.N.); (A.P.); (E.Z.)
| | - Eleftherios Zervas
- 7th Respiratory Medicine Department and Asthma Center, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece; (P.N.); (A.P.); (E.Z.)
| | - Georgina Xanthou
- Cellular Immunology Laboratory, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Konstantinos Samitas
- 7th Respiratory Medicine Department and Asthma Center, Athens Chest Hospital “Sotiria”, 11527 Athens, Greece; (P.N.); (A.P.); (E.Z.)
- Cellular Immunology Laboratory, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
- Correspondence: ; Tel.: +30-210-778-1720
| |
Collapse
|
29
|
Mehdi A, Rabbani SA. Role of Methylation in Pro- and Anti-Cancer Immunity. Cancers (Basel) 2021; 13:cancers13030545. [PMID: 33535484 PMCID: PMC7867049 DOI: 10.3390/cancers13030545] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/09/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
DNA and RNA methylation play a vital role in the transcriptional regulation of various cell types including the differentiation and function of immune cells involved in pro- and anti-cancer immunity. Interactions of tumor and immune cells in the tumor microenvironment (TME) are complex. TME shapes the fate of tumors by modulating the dynamic DNA (and RNA) methylation patterns of these immune cells to alter their differentiation into pro-cancer (e.g., regulatory T cells) or anti-cancer (e.g., CD8+ T cells) cell types. This review considers the role of DNA and RNA methylation in myeloid and lymphoid cells in the activation, differentiation, and function that control the innate and adaptive immune responses in cancer and non-cancer contexts. Understanding the complex transcriptional regulation modulating differentiation and function of immune cells can help identify and validate therapeutic targets aimed at targeting DNA and RNA methylation to reduce cancer-associated morbidity and mortality.
Collapse
Affiliation(s)
- Ali Mehdi
- Department of Human Genetics, McGill University, Montreal, QC H3A 2B4, Canada;
- Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Shafaat A. Rabbani
- Department of Human Genetics, McGill University, Montreal, QC H3A 2B4, Canada;
- Department of Medicine, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Correspondence: ; Tel.: +1-514-843-1632
| |
Collapse
|
30
|
Abstract
Over the last decade, our understanding of the physiological role of senescent cells has drastically evolved, from merely indicators of cellular stress and ageing to having a central role in regeneration and repair. Increasingly, studies have identified senescent cells and the senescence-associated secretory phenotype (SASP) as being critical in the regenerative process following injury; however, the timing and context at which the senescence programme is activated can lead to distinct outcomes. For example, a transient induction of senescent cells followed by rapid clearance at the early stages following injury promotes repair, while the long-term accumulation of senescent cells impairs tissue function and can lead to organ failure. A key role of the SASP is the recruitment of immune cells to the site of injury and the subsequent elimination of senescent cells. Among these cell types are macrophages, which have well-documented regulatory roles in all stages of regeneration and repair. However, while the role of senescent cells and macrophages in this process is starting to be explored, the specific interactions between these cell types and how these are important in the different stages of injury/reparative response still require further investigation. In this review, we consider the current literature regarding the interaction of these cell types, how their cooperation is important for regeneration and repair, and what questions remain to be answered to advance the field.
Collapse
|
31
|
Oxidative Bisulfite Sequencing: An Experimental and Computational Protocol. Methods Mol Biol 2020. [PMID: 32822043 DOI: 10.1007/978-1-0716-0876-0_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Bisulfite sequencing (BS-seq) remains the gold standard technique to quantitively map DNA methylation at a single-base resolution. However, BS-seq cannot discriminate between 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). Oxidative bisulfite sequencing (oxBS-seq) was one of the first techniques that enabled absolute quantification of 5mC and 5hmC at single-base resolution. OxBS-seq uses chemical oxidation of 5hmC prior to bisulfite treatment to provide a direct readout of 5mC; comparison with BS-seq data can then be used to infer 5hmC levels. Here we describe in detail an updated version of our laboratory's oxBS-seq protocol, which uses potassium perruthenate (KRuO4) as an oxidant. We also describe a bioinformatics pipeline designed to handle Illumina short read sequencing data from whole-genome oxBS-seq.
Collapse
|
32
|
Rosenberg T, Kisliouk T, Cramer T, Shinder D, Druyan S, Meiri N. Embryonic Heat Conditioning Induces TET-Dependent Cross-Tolerance to Hypothalamic Inflammation Later in Life. Front Genet 2020; 11:767. [PMID: 32849788 PMCID: PMC7419591 DOI: 10.3389/fgene.2020.00767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/29/2020] [Indexed: 11/13/2022] Open
Abstract
Early life encounters with stress can lead to long-lasting beneficial alterations in the response to various stressors, known as cross-tolerance. Embryonic heat conditioning (EHC) of chicks was previously shown to mediate resilience to heat stress later in life. Here we demonstrate that EHC can induce cross-tolerance with the immune system, attenuating hypothalamic inflammation. Inflammation in EHC chicks was manifested, following lipopolysaccharide (LPS) challenge on day 10 post-hatch, by reduced febrile response and reduced expression of LITAF and NFκB compared to controls, as well as nuclear localization and activation of NFκB in the hypothalamus. Since the cross-tolerance effect was long-lasting, we assumed that epigenetic mechanisms are involved. We focused on the role of ten-eleven translocation (TET) family enzymes, which are the mediators of active CpG demethylation. Here, TET transcription during early life stress was found to be necessary for stress resilience later in life. The expression of the TET family enzymes in the midbrain during conditioning increased in parallel to an elevation in concentration of their cofactor α-ketoglutarate. In-ovo inhibition of TET activity during EHC, by the α-ketoglutarate inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide (BPTES), resulted in reduced total and locus specific CpG demethylation in 10-day-old chicks and reversed both thermal and inflammatory resilience. In addition, EHC attenuated the elevation in expression of the stress markers HSP70, CRHR1, and CRHR2, during heat challenge on day 10 post-hatch. This reduction in expression was reversed by BPTES. Similarly, the EHC-dependent reduction of inflammatory gene expression during LPS challenge was eliminated in BPTES-treated chicks. Thus, TET family enzymes and CpG demethylation are essential for the embryonic induction of stress cross-tolerance in the hypothalamus.
Collapse
Affiliation(s)
- Tali Rosenberg
- Agricultural Research Organization, Volcani Center, Institute of Animal Science, Rishon LeZion, Israel
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tatiana Kisliouk
- Agricultural Research Organization, Volcani Center, Institute of Animal Science, Rishon LeZion, Israel
| | - Tomer Cramer
- Agricultural Research Organization, Volcani Center, Institute of Animal Science, Rishon LeZion, Israel
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Dmitry Shinder
- Agricultural Research Organization, Volcani Center, Institute of Animal Science, Rishon LeZion, Israel
| | - Shelly Druyan
- Agricultural Research Organization, Volcani Center, Institute of Animal Science, Rishon LeZion, Israel
| | - Noam Meiri
- Agricultural Research Organization, Volcani Center, Institute of Animal Science, Rishon LeZion, Israel
| |
Collapse
|
33
|
Jain N, Moeller J, Vogel V. Mechanobiology of Macrophages: How Physical Factors Coregulate Macrophage Plasticity and Phagocytosis. Annu Rev Biomed Eng 2020; 21:267-297. [PMID: 31167103 DOI: 10.1146/annurev-bioeng-062117-121224] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In addition to their early-recognized functions in host defense and the clearance of apoptotic cell debris, macrophages play vital roles in tissue development, homeostasis, and repair. If misregulated, they steer the progression of many inflammatory diseases. Much progress has been made in understanding the mechanisms underlying macrophage signaling, transcriptomics, and proteomics, under physiological and pathological conditions. Yet, the detailed mechanisms that tune circulating monocytes/macrophages and tissue-resident macrophage polarization, differentiation, specification, and their functional plasticity remain elusive. We review how physical factors affect macrophage phenotype and function, including how they hunt for particles and pathogens, as well as the implications for phagocytosis, autophagy, and polarization from proinflammatory to prohealing phenotype. We further discuss how this knowledge can be harnessed in regenerative medicine and for the design of new drugs and immune-modulatory drug delivery systems, biomaterials, and tissue scaffolds.
Collapse
Affiliation(s)
- Nikhil Jain
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| | - Jens Moeller
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| |
Collapse
|
34
|
Singer BD. A Practical Guide to the Measurement and Analysis of DNA Methylation. Am J Respir Cell Mol Biol 2020; 61:417-428. [PMID: 31264905 DOI: 10.1165/rcmb.2019-0150tr] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DNA methylation represents a fundamental epigenetic mark that is associated with transcriptional repression during development, maintenance of homeostasis, and disease. In addition to methylation-sensitive PCR and targeted deep-amplicon bisulfite sequencing to measure DNA methylation at defined genomic loci, numerous unsupervised techniques exist to quantify DNA methylation on a genome-wide scale, including affinity enrichment strategies and methods involving bisulfite conversion. Both affinity-enriched and bisulfite-converted DNA can serve as input material for array hybridization or sequencing using next-generation technologies. In this practical guide to the measurement and analysis of DNA methylation, the goal is to convey basic concepts in DNA methylation biology and explore genome-scale bisulfite sequencing as the current gold standard for assessment of DNA methylation. Bisulfite conversion chemistry and library preparation are discussed in addition to a bioinformatics approach to quality assessment, trimming, alignment, and methylation calling of individual cytosine residues. Bisulfite-converted DNA presents challenges for standard next-generation sequencing library preparation protocols and data-processing pipelines, but these challenges can be met with elegant solutions that leverage the power of high-performance computing systems. Quantification of DNA methylation, data visualization, statistical approaches to compare DNA methylation between sample groups, and examples of integrating DNA methylation data with other -omics data sets are also discussed. The reader is encouraged to use this article as a foundation to pursue advanced topics in DNA methylation measurement and data analysis, particularly the application of bioinformatics and computational biology principles to generate a deeper understanding of mechanisms linking DNA methylation to cellular function.
Collapse
Affiliation(s)
- Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Genetics, and Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
35
|
Wöste M, Leitão E, Laurentino S, Horsthemke B, Rahmann S, Schröder C. wg-blimp: an end-to-end analysis pipeline for whole genome bisulfite sequencing data. BMC Bioinformatics 2020; 21:169. [PMID: 32357829 PMCID: PMC7195798 DOI: 10.1186/s12859-020-3470-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/24/2020] [Indexed: 11/20/2022] Open
Abstract
Background Analysing whole genome bisulfite sequencing datasets is a data-intensive task that requires comprehensive and reproducible workflows to generate valid results. While many algorithms have been developed for tasks such as alignment, comprehensive end-to-end pipelines are still sparse. Furthermore, previous pipelines lack features or show technical deficiencies, thus impeding analyses. Results We developed wg-blimp (whole genome bisulfite sequencing methylation analysis pipeline) as an end-to-end pipeline to ease whole genome bisulfite sequencing data analysis. It integrates established algorithms for alignment, quality control, methylation calling, detection of differentially methylated regions, and methylome segmentation, requiring only a reference genome and raw sequencing data as input. Comparing wg-blimp to previous end-to-end pipelines reveals similar setups for common sequence processing tasks, but shows differences for post-alignment analyses. We improve on previous pipelines by providing a more comprehensive analysis workflow as well as an interactive user interface. To demonstrate wg-blimp’s ability to produce correct results we used it to call differentially methylated regions for two publicly available datasets. We were able to replicate 112 of 114 previously published regions, and found results to be consistent with previous findings. We further applied wg-blimp to a publicly available sample of embryonic stem cells to showcase methylome segmentation. As expected, unmethylated regions were in close proximity of transcription start sites. Segmentation results were consistent with previous analyses, despite different reference genomes and sequencing techniques. Conclusions wg-blimp provides a comprehensive analysis pipeline for whole genome bisulfite sequencing data as well as a user interface for simplified result inspection. We demonstrated its applicability by analysing multiple publicly available datasets. Thus, wg-blimp is a relevant alternative to previous analysis pipelines and may facilitate future epigenetic research.
Collapse
Affiliation(s)
- Marius Wöste
- Institute of Medical Informatics, University of Münster, Albert-Schweitzer-Campus 1, Münster, 48149, Germany.
| | - Elsa Leitão
- Institute of Human Genetics, University of Duisburg-Essen, University Hospital Essen, Hufelandstraße 55, Essen, 45147, Germany
| | - Sandra Laurentino
- Centre of Reproductive Medicine and Andrology, Institute of Reproductive and Regenerative Biology, University Hospital Münster, Albert-Schweitzer-Campus 1, Münster, 48149, Germany
| | - Bernhard Horsthemke
- Institute of Human Genetics, University of Duisburg-Essen, University Hospital Essen, Hufelandstraße 55, Essen, 45147, Germany.,Institute of Human Genetics, University of Münster, Vesaliusweg 12-14, Münster, 48149, Germany
| | - Sven Rahmann
- Genome Informatics, Institute of Human Genetics, University of Duisburg-Essen, University Hospital Essen, Hufelandstraße 55, Essen, 45147, Germany
| | - Christopher Schröder
- Institute of Human Genetics, University of Duisburg-Essen, University Hospital Essen, Hufelandstraße 55, Essen, 45147, Germany.,Genome Informatics, Institute of Human Genetics, University of Duisburg-Essen, University Hospital Essen, Hufelandstraße 55, Essen, 45147, Germany
| |
Collapse
|
36
|
The epigenetic face of lupus: Focus on antigen-presenting cells. Int Immunopharmacol 2020; 81:106262. [PMID: 32045873 DOI: 10.1016/j.intimp.2020.106262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
Abstract
In recent years, epigenetic mechanisms became widely known due to their ability to regulate and maintain physiological processes such as cell growth, development, differentiation and genomic stability. When dysregulated, epigenetic mechanisms, may introduce gene expression changes and disturbance in immune homeostasis leading to autoimmune diseases. Systemic lupus erythematosus (SLE), the most extensively studied autoimmune disorder, has already been correlated with epigenetic modifications, especially in T cells. Since these cell rely on antigen presentation, it may be assumed that erroneous activity of antigen-presenting cells (APCs), culminates in T cell abnormalities. In this review we summarize and discuss the epigenetic modifications in SLE affected APCs, with the focus on dendritic cells (DCs), B cells and monocytes. Unravelling this aspect of SLE pathogenesis, might result in identification of new disease biomarkers and putative therapeutic approaches.
Collapse
|
37
|
Amiri S, Davie JR, Rastegar M. Chronic Ethanol Exposure Alters DNA Methylation in Neural Stem Cells: Role of Mouse Strain and Sex. Mol Neurobiol 2020; 57:650-667. [PMID: 31414368 DOI: 10.1007/s12035-019-01728-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022]
Abstract
Prenatal alcohol exposure (PAE) is considered as a risk factor for the development of fetal alcohol spectrum disorders (FASD). Evidence indicates that PAE affects epigenetic mechanisms (such as DNA methylation) and alters the normal differentiation and development of neural stem cells (NSC) in the fetal brain. However, PAE effects depend on several factors such as sex and strain of the studied subjects. Here, we investigated whether murine sex and strain contribute to the effects of chronic ethanol exposure on DNA methylation machinery of differentiating NSC. Further, the effects of PAE on glial lineage (including both astrocytes and oligodendrocytes) in a sex- and strain-dependent manner have not been studied yet. To examine the effects of chronic ethanol exposure on gliogenesis, we exposed differentiating NSC to glio-inductive culture conditions. Applying a standard in vitro model system, we treated male and female differentiating NSC (obtained from the forebrain of CD1 and C57BL/6 embryos at embryonic day 14.5) with chronic ethanol exposure (70 mM) for 8 days. We show that ethanol induces global DNA hypomethylation, while altering the expression of DNA methylation-related genes in a sex- and strain-specific manner. The observed change in cellular DNA methylation levels was associated with altered expression of glial markers CNPASE, GFAP, and OLIG2 in CD1 (but not C57BL/6) cells. We conclude that the impact of ethanol effect on DNA methylation is dependent on cellular sex and strain. Also, ethanol impact on neural stem cell fate commitment was only detected in cells isolated from CD1 mouse strain, but not in C57BL/6 cells. The results of the current study provide evidence that sex and strain of rodents (C57BL/6 and CD1) during gestation are important factors, which affect alcohol effects on NSC differentiation and DNA methylation. Results of this study may also help in interpreting data on the developmental toxicity of many compounds during the gestational period.
Collapse
Affiliation(s)
- Shayan Amiri
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
- Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
- Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
38
|
Karami J, Aslani S, Tahmasebi MN, Mousavi MJ, Sharafat Vaziri A, Jamshidi A, Farhadi E, Mahmoudi M. Epigenetics in rheumatoid arthritis; fibroblast-like synoviocytes as an emerging paradigm in the pathogenesis of the disease. Immunol Cell Biol 2020; 98:171-186. [PMID: 31856314 DOI: 10.1111/imcb.12311] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA) is characterized by immune dysfunctions and chronic inflammation that mainly affects diarthrodial joints. Genetics has long been surveyed in searching for the etiopathogenesis of the disease and partially clarified the conundrums within this context. Epigenetic alterations, such as DNA methylation, histone modifications, and noncoding RNAs, which have been considered to be involved in RA pathogenesis, likely explain the nongenetic risk factors. Epigenetic modifications may influence RA through fibroblast-like synoviocytes (FLSs). It has been shown that FLSs play an essential role in the onset and exacerbation of RA, and therefore, they may illustrate some aspects of RA pathogenesis. These cells exhibit a unique DNA methylation profile in the early stage of the disease that changes with disease progression. Histone acetylation profile in RA FLSs is disrupted through the imbalance of histone acetyltransferases and histone deacetylase activity. Furthermore, dysregulation of microRNAs (miRNAs) is immense. Most of these miRNAs have shown an aberrant expression in FLSs that are involved in proliferation and cytokine production. Besides, dysregulation of long noncoding RNAs in FLSs has been revealed and attributed to RA pathogenesis. Further investigations are needed to get a better view of epigenetic alterations and their interactions. We also discuss the role of these epigenetic alterations in RA pathogenesis and their therapeutic potential.
Collapse
Affiliation(s)
- Jafar Karami
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Naghi Tahmasebi
- Department of Orthopedics, Division of Knee Surgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Sharafat Vaziri
- Department of Orthopedics, Division of Knee Surgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Hudon Thibeault AA, Laprise C. Cell-Specific DNA Methylation Signatures in Asthma. Genes (Basel) 2019; 10:E932. [PMID: 31731604 PMCID: PMC6896152 DOI: 10.3390/genes10110932] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022] Open
Abstract
Asthma is a complex trait, often associated with atopy. The genetic contribution has been evidenced by familial occurrence. Genome-wide association studies allowed for associating numerous genes with asthma, as well as identifying new loci that have a minor contribution to its phenotype. Considering the role of environmental exposure on asthma development, an increasing amount of literature has been published on epigenetic modifications associated with this pathology and especially on DNA methylation, in an attempt to better understand its missing heritability. These studies have been conducted in different tissues, but mainly in blood or its peripheral mononuclear cells. However, there is growing evidence that epigenetic changes that occur in one cell type cannot be directly translated into another one. In this review, we compare alterations in DNA methylation from different cells of the immune system and of the respiratory tract. The cell types in which data are obtained influences the global status of alteration of DNA methylation in asthmatic individuals compared to control (an increased or a decreased DNA methylation). Given that several genes were cell-type-specific, there is a great need for comparative studies on DNA methylation from different cells, but from the same individuals in order to better understand the role of epigenetics in asthma pathophysiology.
Collapse
Affiliation(s)
- Andrée-Anne Hudon Thibeault
- Département des sciences fondamentales, Université du Québec à Chicoutimi (UQAC), Saguenay, G7H 2B1 QC, Canada;
- Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi (UQAC), Saguenay, G7H 2B1 QC, Canada
- Quebec Respiratory Health Network, Quebec, G1V 4G5 QC, Canada
| | - Catherine Laprise
- Département des sciences fondamentales, Université du Québec à Chicoutimi (UQAC), Saguenay, G7H 2B1 QC, Canada;
- Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi (UQAC), Saguenay, G7H 2B1 QC, Canada
- Quebec Respiratory Health Network, Quebec, G1V 4G5 QC, Canada
| |
Collapse
|
40
|
Chen S, Yang J, Wei Y, Wei X. Epigenetic regulation of macrophages: from homeostasis maintenance to host defense. Cell Mol Immunol 2019; 17:36-49. [PMID: 31664225 PMCID: PMC6952359 DOI: 10.1038/s41423-019-0315-0] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/28/2019] [Indexed: 02/05/2023] Open
Abstract
Macrophages are crucial members of the innate immune response and important regulators. The differentiation and activation of macrophages require the timely regulation of gene expression, which depends on the interaction of a variety of factors, including transcription factors and epigenetic modifications. Epigenetic changes also give macrophages the ability to switch rapidly between cellular programs, indicating the ability of epigenetic mechanisms to affect phenotype plasticity. In this review, we focus on key epigenetic events associated with macrophage fate, highlighting events related to the maintenance of tissue homeostasis, responses to different stimuli and the formation of innate immune memory. Further understanding of the epigenetic regulation of macrophages will be helpful for maintaining tissue integrity, preventing chronic inflammatory diseases and developing therapies to enhance host defense.
Collapse
Affiliation(s)
- Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Jing Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China.
| |
Collapse
|
41
|
Kalmbach A, Schröder C, Klein-Hitpass L, Nordström K, Ulz P, Heitzer E, Speicher MR, Rahmann S, Wieczorek D, Horsthemke B, Bramswig NC. Genome-Wide Analysis of the Nucleosome Landscape in Individuals with Coffin-Siris Syndrome. Cytogenet Genome Res 2019; 159:1-11. [PMID: 31658463 DOI: 10.1159/000503266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 01/15/2023] Open
Abstract
The switch/sucrose non-fermenting (SWI/SNF) complex is an ATP-dependent chromatin remodeller that regulates the spacing of nucleosomes and thereby controls gene expression. Heterozygous mutations in genes encoding subunits of the SWI/SNF complex have been reported in individuals with Coffin-Siris syndrome (CSS), with the majority of the mutations in ARID1B. CSS is a rare congenital disorder characterized by facial dysmorphisms, digital anomalies, and variable intellectual disability. We hypothesized that mutations in genes encoding subunits of the ubiquitously expressed SWI/SNF complex may lead to alterations of the nucleosome profiles in different cell types. We performed the first study on CSS-patient samples and investigated the nucleosome landscapes of cell-free DNA (cfDNA) isolated from blood plasma by whole-genome sequencing. In addition, we studied the nucleosome landscapes of CD14+ monocytes from CSS-affected individuals by nucleosome occupancy and methylome-sequencing (NOMe-seq) as well as their expression profiles. In cfDNA of CSS-affected individuals with heterozygous ARID1B mutations, we did not observe major changes in the nucleosome profile around transcription start sites. In CD14+ monocytes, we found few genomic regions with different nucleosome occupancy when compared to controls. RNA-seq analysis of CD14+ monocytes of these individuals detected only few differentially expressed genes, which were not in proximity to any of the identified differential nucleosome-depleted regions. In conclusion, we show that heterozygous mutations in the human SWI/SNF subunit ARID1B do not have a major impact on the nucleosome landscape or gene expression in blood cells. This might be due to functional redundancy, cell-type specificity, or alternative functions of ARID1B.
Collapse
|
42
|
Westerman K, Sebastiani P, Jacques P, Liu S, DeMeo D, Ordovás JM. DNA methylation modules associate with incident cardiovascular disease and cumulative risk factor exposure. Clin Epigenetics 2019; 11:142. [PMID: 31615550 PMCID: PMC6792327 DOI: 10.1186/s13148-019-0705-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Epigenome-wide association studies using DNA methylation have the potential to uncover novel biomarkers and mechanisms of cardiovascular disease (CVD) risk. However, the direction of causation for these associations is not always clear, and investigations to-date have often failed to replicate at the level of individual loci. METHODS Here, we undertook module- and region-based DNA methylation analyses of incident CVD in the Women's Health Initiative (WHI) and Framingham Heart Study Offspring Cohort (FHS) in order to find more robust epigenetic biomarkers for cardiovascular risk. We applied weighted gene correlation network analysis (WGCNA) and the Comb-p algorithm to find methylation modules and regions associated with incident CVD in the WHI dataset. RESULTS We discovered two modules whose activation correlated with CVD risk and replicated across cohorts. One of these modules was enriched for development-related processes and overlaps strongly with epigenetic aging sites. For the other, we showed preliminary evidence for monocyte-specific effects and statistical links to cumulative exposure to traditional cardiovascular risk factors. Additionally, we found three regions (associated with the genes SLC9A1, SLC1A5, and TNRC6C) whose methylation associates with CVD risk. CONCLUSIONS In sum, we present several epigenetic associations with incident CVD which reveal disease mechanisms related to development and monocyte biology. Furthermore, we show that epigenetic modules may act as a molecular readout of cumulative cardiovascular risk factor exposure, with implications for the improvement of clinical risk prediction.
Collapse
Affiliation(s)
- Kenneth Westerman
- JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Paola Sebastiani
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Paul Jacques
- JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Simin Liu
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Dawn DeMeo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - José M Ordovás
- JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.
- IMDEA Alimentación, CEI, UAM, Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
43
|
Li H, Lu T, Sun W, Ma R, Zhong H, Wei Y, Chen D, Wen Y, Carlsten C, Wen W. Ten-Eleven Translocation (TET) Enzymes Modulate the Activation of Dendritic Cells in Allergic Rhinitis. Front Immunol 2019; 10:2271. [PMID: 31616436 PMCID: PMC6775386 DOI: 10.3389/fimmu.2019.02271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Background: The prevalence of allergic rhinitis (AR) has increased in recent decades. Accumulating evidence indicates that aberrant DNA demethylation modulated by enzymes of ten-eleven translocation (TET) promotes an imbalanced immune response. Objective: This study aimed to explore TETs on the activation of dendritic cells (DCs) in AR. Methods: The levels of TETs in peripheral blood mononuclear cells (PBMCs), peripheral myeloid DCs (mDCs), and plasmacytoid DCs (pDCs) from house dust mite (HDM)-sensitive AR patients and healthy volunteers (HC) were evaluated by qPCR and flow cytometry. The levels of 5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) in PBMCs were determined by DNA-5hmC and DNA-5mC ELISA. The major HDM allergen, Dermatophagoides pteronyssinus (Der p 1), was used to stimulate atopic monocyte-derived DCs (moDCs) to assess its effect on the TETs. TET1 knockdown effect on the activation of non-atopic and atopic moDCs was investigated. Results: TETs and global 5hmC were higher in PBMCs of AR than HC. So was TET1 in peripheral mDCs and pDCs of AR. In vitro, TET1 in atopic moDCs was significantly decreased by allergen challenge. Knockdown of TET1 in moDCs tended to induce CD86, CD80, and CD40 in AR but not in HC. TET1-knockdown moDCs significantly decreased the differentiation of activated regulatory T cells in AR. Conclusion: DCs from AR patients express higher TET1 and are susceptible to be activated by TET1 decrease, which can be triggered by allergen challenge. Collectively, this suggests a role for TET in the pathogenesis of AR and potential for novel TET1-related, preventive, and therapeutic targets.
Collapse
Affiliation(s)
- Hang Li
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tong Lu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Renqiang Ma
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hua Zhong
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yi Wei
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dehua Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yihui Wen
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chris Carlsten
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Weiping Wen
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangzhou Key Laboratory of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
44
|
Giehr P, Kyriakopoulos C, Lepikhov K, Wallner S, Wolf V, Walter J. Two are better than one: HPoxBS - hairpin oxidative bisulfite sequencing. Nucleic Acids Res 2019; 46:e88. [PMID: 29912476 PMCID: PMC6125676 DOI: 10.1093/nar/gky422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/13/2018] [Indexed: 12/30/2022] Open
Abstract
The controlled and stepwise oxidation of 5mC to 5hmC, 5fC and 5caC by Tet enzymes is influencing the chemical and biological properties of cytosine. Besides direct effects on gene regulation, oxidised forms influence the dynamics of demethylation and re-methylation processes. So far, no combined methods exist which allow to precisely determine the strand specific localisation of cytosine modifications along with their CpG symmetric distribution. Here we describe a comprehensive protocol combining conventional hairpin bisulfite with oxidative bisulfite sequencing (HPoxBS) to determine the strand specific distribution of 5mC and 5hmC at base resolution. We apply this method to analyse the contribution of local oxidative effects on DNA demethylation in mouse ES cells. Our method includes the HPoxBS workflow and subsequent data analysis using our developed software tools. Besides a precise estimation and display of strand specific 5mC and 5hmC levels at base resolution we apply the data to predict region specific activities of Dnmt and Tet enzymes. Our experimental and computational workflow provides a precise double strand display of 5mC and 5hmC modifications at single base resolution. Based on our data we predict region specific Tet and Dnmt enzyme efficiencies shaping the distinct locus levels and patterns of 5hmC and 5mC.
Collapse
Affiliation(s)
- Pascal Giehr
- Department of Biological Sciences, Saarland University, Campus A2.4, 66123 Saarbrücken, Saarland, Germany
| | | | - Konstantin Lepikhov
- Department of Biological Sciences, Saarland University, Campus A2.4, 66123 Saarbrücken, Saarland, Germany
| | - Stefan Wallner
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Bayern, Germany
| | - Verena Wolf
- Computer Science Department, Saarland University, Campus E1.3, 66123 Saarbrücken, Saarland, Germany
| | - Jörn Walter
- Department of Biological Sciences, Saarland University, Campus A2.4, 66123 Saarbrücken, Saarland, Germany
| |
Collapse
|
45
|
Jain N, Shahal T, Gabrieli T, Gilat N, Torchinsky D, Michaeli Y, Vogel V, Ebenstein Y. Global modulation in DNA epigenetics during pro-inflammatory macrophage activation. Epigenetics 2019; 14:1183-1193. [PMID: 31262215 DOI: 10.1080/15592294.2019.1638700] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
DNA methylation patterns create distinct gene-expression profiles. These patterns are maintained after cell division, thus enabling the differentiation and maintenance of multiple cell types from the same genome sequence. The advantage of this mechanism for transcriptional control is that chemical-encoding allows to rapidly establish new epigenetic patterns 'on-demand' through enzymatic methylation and demethylation of DNA. Here we show that this feature is associated with the fast response of macrophages during their pro-inflammatory activation. By using a combination of mass spectroscopy and single-molecule imaging to quantify global epigenetic changes in the genomes of primary macrophages, we followed three distinct DNA marks (methylated, hydroxymethylated and unmethylated), involved in establishing new DNA methylation patterns during pro-inflammatory activation. The observed epigenetic modulation together with gene-expression data generated for the involved enzymatic machinery may suggest that de-methylation upon LPS-activation starts with oxidation of methylated CpGs, followed by excision-repair of these oxidized bases and their replacement with unmodified cytosine.
Collapse
Affiliation(s)
- Nikhil Jain
- Department of Health Sciences and Technology, Laboratory of Applied Mechanobiology, Institute of Translational Medicine, ETH Zurich , Zurich , Switzerland
| | - Tamar Shahal
- Sagol Center for the Epigenetics of Metabolism and Aging, Tel Aviv Sourasky Medical Center , Tel Aviv , Israel.,Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University , Tel Aviv , Israel
| | - Tslil Gabrieli
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University , Tel Aviv , Israel
| | - Noa Gilat
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University , Tel Aviv , Israel
| | - Dmitry Torchinsky
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University , Tel Aviv , Israel
| | - Yael Michaeli
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University , Tel Aviv , Israel
| | - Viola Vogel
- Department of Health Sciences and Technology, Laboratory of Applied Mechanobiology, Institute of Translational Medicine, ETH Zurich , Zurich , Switzerland
| | - Yuval Ebenstein
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
46
|
Next-Generation-Sequencing in der Epigenetik. MED GENET-BERLIN 2019. [DOI: 10.1007/s11825-019-0245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Zusammenfassung
Molekulare Epigenetik bezieht sich auf die chemische und physikalische Modifikation von DNA und Chromatin. Transkriptionsfaktoren bestimmen die Chromatinzustände ihrer Zielgene, während Chromatinzustände andererseits die Bindung von Transkriptionsfaktoren an die DNA beeinflussen. Chromatinzustände sind gekennzeichnet durch spezifische Muster der DNA-Methylierung, Histonmodifikation, den Abstand der Nukleosomen und die 3‑D-Faltung von Chromatin. Seit dem Aufkommen des Next-Generation-Sequencing (NGS) ist es möglich, diese Muster im genomweiten Maßstab mit einer beispiellosen Auflösung zu analysieren. Solche epigenetischen Karten sind wertvoll, um regulatorische Elemente zu identifizieren, normale und gestörte Entwicklungsvorgänge zu verstehen und Epimutationen zu entdecken.
Collapse
|
47
|
TET1 is an important transcriptional activator of TNFα expression in macrophages. PLoS One 2019; 14:e0218551. [PMID: 31216336 PMCID: PMC6583962 DOI: 10.1371/journal.pone.0218551] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/04/2019] [Indexed: 11/19/2022] Open
Abstract
Activation of macrophages and overexpression of TNFα is associated with the pathogenesis of chronic inflammatory diseases. However, the mechanisms leading to TNFα overexpression are still unknown. 5-methylocytosine (5-mC) is an epigenetic modification that is associated with silenced genes. Recent studies showed that it is converted to 5-hydroxylmethylocytosine (5-hmC) and reactivates gene expression through the action of the family of Ten-Eleven-Translocation (TET1-3) enzymes. In this study, we show that 5-hmC levels are increased globally and specifically in the TNFα promoter during the differentiation of monocytes to macrophages. In addition, the levels of 5-hmC are increased upon LPS stimulation of macrophages. Furthermore, CRIPSR stable knockout of TET1 decreases the expression of TNFα and other pro-inflammatory cytokines. In conclusion, we showed that TET1 contributes to the activation of macrophages possibly through regulation of 5-hydroxymethylation in the promoter of pro-inflammatory cytokine genes. The TET1 enzyme could be a promising therapeutic target to inhibit the persistent inflammation caused by macrophages in chronic inflammatory diseases.
Collapse
|
48
|
Dekkers KF, Neele AE, Jukema JW, Heijmans BT, de Winther MPJ. Human monocyte-to-macrophage differentiation involves highly localized gain and loss of DNA methylation at transcription factor binding sites. Epigenetics Chromatin 2019; 12:34. [PMID: 31171035 PMCID: PMC6551876 DOI: 10.1186/s13072-019-0279-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/17/2019] [Indexed: 12/21/2022] Open
Abstract
Background Macrophages and their precursors monocytes play a key role in inflammation and chronic inflammatory disorders. Monocyte-to-macrophage differentiation and activation programs are accompanied by significant epigenetic remodeling where DNA methylation associates with cell identity. Here we show that DNA methylation changes characteristic for monocyte-to-macrophage differentiation occur at transcription factor binding sites, and, in contrast to what was previously described, are generally highly localized and encompass both losses and gains of DNA methylation. Results We compared genome-wide DNA methylation across 440,292 CpG sites between human monocytes, naïve macrophages and macrophages further activated toward a pro-inflammatory state (using LPS/IFNγ), an anti-inflammatory state (IL-4) or foam cells (oxLDL and acLDL). Moreover, we integrated these data with public whole-genome sequencing data on monocytes and macrophages to demarcate differentially methylated regions. Our analysis showed that differential DNA methylation was most pronounced during monocyte-to-macrophage differentiation, was typically restricted to single CpGs or very short regions, and co-localized with lineage-specific enhancers irrespective of whether it concerns gain or loss of methylation. Furthermore, differentially methylated CpGs were located at sites characterized by increased binding of transcription factors known to be involved in monocyte-to-macrophage differentiation including C/EBP and ETS for gain and AP-1 for loss of methylation. Conclusion Our study highlights the involvement of subtle, yet highly localized remodeling of DNA methylation at regulatory regions in cell differentiation. Electronic supplementary material The online version of this article (10.1186/s13072-019-0279-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Koen F Dekkers
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Annette E Neele
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands. .,Institute for Cardiovascular Prevention (IPEK), Munich, Germany.
| |
Collapse
|
49
|
Dual mechanisms of posttranscriptional regulation of Tet2 by Let-7 microRNA in macrophages. Proc Natl Acad Sci U S A 2019; 116:12416-12421. [PMID: 31160465 DOI: 10.1073/pnas.1811040116] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tet methylcytosine dioxygenase 2 (Tet2) is an epigenetic regulator that removes methyl groups from deoxycytosine residues in DNA. Tet2-deficient murine macrophages show increased lipopolysaccharide (LPS)-induced and spontaneous inflammation at least partially because Tet2 acts to restrain interleukin (IL)-1β and IL-6 expression in induced cells. MicroRNAs have emerged as critical regulatory noncoding RNAs that tune immune cell responses to physiological perturbations and play roles in pathological conditions in macrophages. To determine if a microRNA played any role in Tet2 activity, we examined the interrelationship of Tet2 action and the let-7 microRNA family, utilizing several let-7 microRNA engineered murine models. We first showed that Tet2, but not Tet3, is a direct target of the let-7a-1/let-7d/let-7f-1 (let-7adf) microRNAs in macrophages. We found that overexpression or deletion of the let-7adf gene cluster causes altered IL-6 induction both in tissue culture cells induced by LPS treatment in vitro as well as in a Salmonella infection mouse model in vivo. Mechanistically, let-7adf promotes IL-6 by directly repressing Tet2 levels and indirectly by enhancing a Tet2 suppressor, the key TCA cycle metabolite, succinate. We found that Let-7adf promotes succinate accumulation by regulating the Lin28a/Sdha axis. We thereby identify two pathways of let-7 control of Tet2 and, in turn, of the key inflammatory cytokine, IL-6, thus characterizing a regulatory pathway in which a microRNA acts as a feedback inhibitor of inflammatory processes.
Collapse
|
50
|
Abstract
Immune cell populations determine the balance between ongoing damage and repair following tissue injury. Cells responding to a tissue-damaged environment have significant bioenergetic and biosynthetic needs. In addition to supporting these needs, metabolic pathways govern the function of pro-repair immune cells, including regulatory T cells and tissue macrophages. In this Review, we explore how specific features of the tissue-damaged environment such as hypoxia, oxidative stress, and nutrient depletion serve as metabolic cues to promote or impair the reparative functions of immune cell populations. Hypoxia, mitochondrial DNA stress, and altered redox balance each contribute to mechanisms regulating the response to tissue damage. For example, hypoxia induces changes in regulatory T cell and macrophage metabolic profiles, including generation of 2-hydroxyglutarate, which inhibits demethylase reactions to modulate cell fate and function. Reactive oxygen species abundant in oxidative environments cause damage to mitochondrial DNA, initiating signaling pathways that likewise control pro-repair cell function. Nutrient depletion following tissue damage also affects pro-repair cell function through metabolic signaling pathways, specifically those sensitive to the redox state of the cell. The study of immunometabolism as an immediate sensor and regulator of the tissue-damaged environment provides opportunities to consider mechanisms that facilitate healthy repair of tissue injury.
Collapse
|