1
|
Guo X, Xu J, Lu X, Zheng X, Chen X, Sun Z, Shen B, Tang H, Duan Y, Zhou Z, Feng X, Chen Y, Wang J, Pang J, Jiang Q, Huang B, Gu N, Li J. Chenodeoxycholic Acid-Modified Polyethyleneimine Nano-Composites Deliver Low-Density Lipoprotein Receptor Genes for Lipid-Lowering Therapy by Targeting the Liver. Adv Healthc Mater 2024; 13:e2400254. [PMID: 38857027 DOI: 10.1002/adhm.202400254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Lipid-lowering drugs, especially statins, are extensively utilized in clinical settings for the prevention of hyperlipidemia. Nevertheless, prolonged usage of current lipid-lowering medications is associated with significant adverse reactions. Therefore, it is imperative to develop novel therapeutic agents for lipid-lowering therapy. In this study, a chenodeoxycholic acid and lactobionic acid double-modified polyethyleneimine (PDL) nanocomposite as a gene delivery vehicle for lipid-lowering therapy by targeting the liver, are synthesized. Results from the in vitro experiments demonstrate that PDL exhibits superior transfection efficiency compared to polyethyleneimine in alpha mouse liver 12 (AML12) cells and effectively carries plasmids. Moreover, PDL can be internalized by AML12 cells and rapidly escape lysosomal entrapment. Intravenous administration of cyanine5.5 (Cy5.5)-conjugated PDL nanocomposites reveals their preferential accumulation in the liver compared to polyethyleneimine counterparts. Systemic delivery of low-density lipoprotein receptor plasmid-loaded PDL nanocomposites into mice leads to reduced levels of low-density lipoprotein cholesterol (LDL-C) and triglycerides (TC) in the bloodstream without any observed adverse effects on mouse health or well-being. Collectively, these findings suggest that low-density lipoprotein receptor plasmid-loaded PDL nanocomposites hold promise as potential therapeutics for lipid-lowering therapy.
Collapse
Affiliation(s)
- Xiaotang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Jiming Xu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Xiyuan Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Xiaoyan Zheng
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Xi Chen
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210029, P. R. China
- Department of Ophthalmology, Northern Jiangsu People's Hospital, Yangzhou, 225001, P. R. China
| | - Zhenning Sun
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Beilei Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Hao Tang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yiman Duan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Zhengwei Zhou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Xu Feng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Junjie Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Jing Pang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Bin Huang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Ning Gu
- Medical School, Nanjing University, Nanjing, 210093, P. R. China
| | - Juxue Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210029, P. R. China
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, P. R. China
| |
Collapse
|
2
|
Tsujita K, Yokote K, Ako J, Tanigawa R, Tajima S, Suganami H. Efficacy and Safety of Pitavastatin/Ezetimibe Fixed-Dose Combination vs. Pitavastatin: Phase III, Double-Blind, Randomized Controlled Trial. J Atheroscler Thromb 2023; 30:1580-1600. [PMID: 36908150 PMCID: PMC10627746 DOI: 10.5551/jat.64006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/23/2023] [Indexed: 03/13/2023] Open
Abstract
AIM We compared the efficacy and safety of pitavastatin/ezetimibe fixed-dose combination with those of pitavastatin monotherapy in patients with hypercholesterolemia. METHODS This trial was a multicenter, randomized, double-blind, active-controlled, parallel-group trial. A total of 293 patients were randomly assigned into four groups receiving 2 mg pitavastatin, 4 mg pitavastatin, 2 mg pitavastatin/10 mg ezetimibe (K-924 LD), and 4 mg pitavastatin/10 mg ezetimibe (K-924 HD) once daily for 12 weeks. RESULTS The percentage changes in low-density lipoprotein cholesterol (LDL-C), the primary endpoint, were -39.5% for 2 mg pitavastatin, -45.2% for 4 mg pitavastatin, -51.4% for K-924 LD, and -57.8% for K-924 HD. Compared with pitavastatin monotherapy, the pitavastatin/ezetimibe fixed-dose combination significantly reduced LDL-C, total cholesterol, and non-high-density lipoprotein cholesterol. Meanwhile, the cholesterol synthesis marker, lathosterol, was significantly decreased with pitavastatin monotherapy and the pitavastatin/ezetimibe fixed-dose combination, although the decrease was attenuated in the latter. On the other hand, the cholesterol absorption markers, beta-sitosterol and campesterol, were reduced with the fixed-dose combination but not with pitavastatin monotherapy. The incidence of adverse events and adverse drug reactions was not significantly different between the two groups receiving the fixed-dose combination and monotherapy. The mean values of laboratory tests that are related to liver function and myopathy increased but remained within the reference range in all groups. CONCLUSIONS The pitavastatin/ezetimibe fixed-dose combination showed an excellent LDL-C-reducing effect by the complementary pharmacological action of each component, and its safety profile was similar to that of pitavastatin monotherapy (ClinicalTrials.gov Identifier: NCT04289649).
Collapse
Affiliation(s)
- Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Junya Ako
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Ryohei Tanigawa
- Clinical Development Department, Kowa Company Ltd., Tokyo, Japan
| | - Sachiko Tajima
- Medical Affairs Department, Kowa Company, Ltd., Tokyo, Japan
| | | |
Collapse
|
3
|
Loh WJ, Watts GF. Xenosterolemia in clinical practice: what is in a name? Curr Opin Endocrinol Diabetes Obes 2023; 30:123-127. [PMID: 36597814 DOI: 10.1097/med.0000000000000795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW The aim of this study was to assess the potential value of the measurement of plasma xenosterols (or phytosterols) concentrations in clinical practice. RECENT FINDINGS Recent genetic studies suggest that individuals with elevated plasma phytosterol concentrations due to monogenic and polygenic variants are at an increased risk of coronary artery disease. This supports early observations that elevated plasma phytosterol concentrations are per se atherogenic. SUMMARY Measurement of plasma phytosterols can identify individuals with xenosterolemia (or phytosterolemia). This may be clinically useful in four ways: Establishing a diagnosis and informing management of patients with homozygous phytosterolemia; Providing a comprehensive differential diagnosis for familial hypercholesterolemia; Providing an index of cholesterol absorption that may inform personalized pharmacotherapy; and Informing more precise assessment of risk of cardiovascular disease.
Collapse
Affiliation(s)
- Wann Jia Loh
- School of Medicine, University of Western Australia
- Department of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
- Department of Endocrinology, Changi General Hospital, Changi
- Duke-NUS Medical School, Singapore, Singapore
| | - Gerald F Watts
- School of Medicine, University of Western Australia
- Department of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
4
|
Windler E, Beil FU, Berthold HK, Gouni-Berthold I, Kassner U, Klose G, Lorkowski S, März W, Parhofer KG, Plat J, Silbernagel G, Steinhagen-Thiessen E, Weingärtner O, Zyriax BC, Lütjohann D. Phytosterols and Cardiovascular Risk Evaluated against the Background of Phytosterolemia Cases-A German Expert Panel Statement. Nutrients 2023; 15:nu15040828. [PMID: 36839186 PMCID: PMC9963617 DOI: 10.3390/nu15040828] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
Phytosterols (PSs) have been proposed as dietary means to lower plasma LDL-C. However, concerns are raised that PSs may exert atherogenic effects, which would offset this benefit. Phytosterolemia was thought to mimic increased plasma PSs observed after the consumption of PS-enriched foods. This expert statement examines the possibility of specific atherogenicity of PSs based on sterol metabolism, experimental, animal, and human data. Observational studies show no evidence that plasma PS concentrations would be associated with an increased risk of atherosclerosis or cardiovascular (CV) events. Since variants of the ABCG5/8 transporter affect the absorption of cholesterol and non-cholesterol sterols, Mendelian randomization studies examining the effects of ABCG5/8 polymorphisms cannot support or refute the potential atherogenic effects of PSs due to pleiotropy. In homozygous patients with phytosterolemia, total PS concentrations are ~4000% higher than under physiological conditions. The prevalence of atherosclerosis in these individuals is variable and may mainly relate to concomitant elevated LDL-C. Consuming PS-enriched foods increases PS concentrations by ~35%. Hence, PSs, on a molar basis, would need to have 20-40 times higher atherogenicity than cholesterol to offset their cholesterol reduction benefit. Based on their LDL-C lowering and absence of adverse safety signals, PSs offer a dietary approach to cholesterol management. However, their clinical benefits have not been established in long-term CV endpoint studies.
Collapse
Affiliation(s)
- Eberhard Windler
- Preventive Medicine, University Heart Center, University Hospital Hamburg-Eppendorf, Hamburg-Eppendorf, Martinistr. 52-Bldg. N26, 20246 Hamburg, Germany
| | - Frank-Ulrich Beil
- Ambulanzzentrum, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Heiner K. Berthold
- Department of Internal Medicine and Geriatrics, Bethel Clinic, 33611 Bielefeld, Germany
| | - Ioanna Gouni-Berthold
- Center for Endocrinology, Diabetes and Preventive Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Ursula Kassner
- Lipid Clinic at the Interdisciplinary Metabolism Center, Charite-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Gerald Klose
- Praxen Dres. T. Beckenbauer & S. Maierhof, Am Markt 11, 28195 Bremen und Dres. I. van de Loo & K. Spieker, Gerold Janssen Straße 2 A, 28359 Bremen, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Science and Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Friedrich Schiller University Jena, Dornburger Str. 25, 07743 Jena, Germany
| | - Winfried März
- SYNLAB Akademie für Ärztliche Fortbildung, SYNLAB Holding Deutschland GmbH, P5,7, 68161 Mannheim, Germany
- Medical Clinic V, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8010 Graz, Austria
- Correspondence:
| | - Klaus G. Parhofer
- Medizinische Klinik IV, Klinikum der Universität München, Grosshadern, Marchioninistr. 15, 81377 München, Germany
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Günter Silbernagel
- Division of Vascular Medicine, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Elisabeth Steinhagen-Thiessen
- Arbeitsbereich Lipidstoffwechsel der Medizinischen Klinik für Endokrinologie und Stoffwechselmedizin, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Oliver Weingärtner
- Klinik für Innere Medizin I, Universitätskliniken Jena, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Birgit-Christiane Zyriax
- Midwifery Science—Health Care Research and Prevention, Research Group, Preventive Medicine and Nutrition, Institute for Health Services Research in Dermatology and Nursing (IVDP), University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, 53127 Bonn, Germany
| |
Collapse
|
5
|
Could Lowering Phytosterol Absorption as Part of Lipid-Lowering Therapy Have a Beneficial Effect on Residual Risk? Metabolites 2023; 13:metabo13020145. [PMID: 36837764 PMCID: PMC9964413 DOI: 10.3390/metabo13020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Plant sterols are molecules that are structurally similar to cholesterol and provided only as dietary sources (e.g., vegetables, fruits, nuts, cereals) since they cannot be synthesized by humans. Sterol-enriched diets (≥2 g/day) may decrease total and low-density lipoprotein cholesterol concentrations by 5-10%, either alone or when added to statins, since they antagonize dietary cholesterol absorption in the intestine. On the other hand, increased serum phytosterol concentrations, (including when associated with sitosterolemia, a rare genetic defect) may contribute to atherosclerotic risk, although a threshold for such a role has not been established. Medications such as ezetimibe may effectively reduce cholesterol and phytosterol absorption. Whether the therapeutic approach associated with the reduction of phytosterol absorption is also translated into a reduction in a patient's residual cardiovascular risk needs to be established.
Collapse
|
6
|
Infection with the hepatitis C virus causes viral genotype-specific differences in cholesterol metabolism and hepatic steatosis. Sci Rep 2022; 12:5562. [PMID: 35365728 PMCID: PMC8975940 DOI: 10.1038/s41598-022-09588-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/22/2022] [Indexed: 01/04/2023] Open
Abstract
Lipids play essential roles in the hepatitis C virus (HCV) life cycle and patients with chronic HCV infection display disordered lipid metabolism which resolves following successful anti-viral therapy. It has been proposed that HCV genotype 3 (HCV-G3) infection is an independent risk factor for hepatocellular carcinoma and evidence suggests lipogenic proteins are involved in hepatocarcinogenesis. We aimed to characterise variation in host lipid metabolism between participants chronically infected with HCV genotype 1 (HCV-G1) and HCV-G3 to identify likely genotype-specific differences in lipid metabolism. We combined several lipidomic approaches: analysis was performed between participants infected with HCV-G1 and HCV-G3, both in the fasting and non-fasting states, and after sustained virological response (SVR) to treatment. Sera were obtained from 112 fasting patients (25% with cirrhosis). Serum lipids were measured using standard enzymatic methods. Lathosterol and desmosterol were measured by gas-chromatography mass spectrometry (MS). For further metabolic insight on lipid metabolism, ultra-performance liquid chromatography MS was performed on all samples. A subgroup of 13 participants had whole body fat distribution determined using in vivo magnetic resonance imaging and spectroscopy. A second cohort of (non-fasting) sera were obtained from HCV Research UK for comparative analyses: 150 treatment naïve patients and 100 non-viraemic patients post-SVR. HCV-G3 patients had significantly decreased serum apoB, non-HDL cholesterol concentrations, and more hepatic steatosis than those with HCV-G1. HCV-G3 patients also had significantly decreased serum levels of lathosterol, without significant reductions in desmosterol. Lipidomic analysis showed lipid species associated with reverse cholesterol transport pathway in HCV-G3. We demonstrated that compared to HCV-G1, HCV-G3 infection is characterised by low LDL cholesterol levels, with preferential suppression of cholesterol synthesis via lathosterol, associated with increasing hepatic steatosis. The genotype-specific lipid disturbances may shed light on genotypic variations in liver disease progression and promotion of hepatocellular cancer in HCV-G3.
Collapse
|
7
|
Vecka M, Dušejovská M, Staňková B, Rychlík I, Žák A. A Matched Case-Control Study of Noncholesterol Sterols and Fatty Acids in Chronic Hemodialysis Patients. Metabolites 2021; 11:774. [PMID: 34822432 PMCID: PMC8618803 DOI: 10.3390/metabo11110774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022] Open
Abstract
Dyslipidemia is common among patients on hemodialysis, but its etiology is not fully understood. Although changes in cholesterol homeostasis and fatty acid metabolism play an important role during dialysis, the interaction of these metabolic pathways has yet to be studied in sufficient detail. In this study, we enrolled 26 patients on maintenance hemodialysis treatment (high-volume hemodiafiltration, HV HDF) without statin therapy (17 men/9 women) and an age/gender-matched group of 26 individuals without signs of nephropathy. The HV-HDF group exhibited more frequent signs of cardiovascular disease, disturbed saccharide metabolism, and altered lipoprotein profiles, manifesting in lower HDL-C, and raised concentrations of IDL-C and apoB-48 (all p < 0.01). HV-HDF patients had higher levels of campesterol (p < 0.01) and β-sitosterol (p = 0.06), both surrogate markers of cholesterol absorption and unchanged lathosterol concentrations. Fatty acid (FA) profiles were changed mostly in cholesteryl esters, with a higher content of saturated and n-3 polyunsaturated fatty acids (PUFA) in the HV-HDF group. However, n-6 PUFA in cholesteryl esters were less abundant (p < 0.001) in the HV-HDF group. Hemodialysis during end-stage kidney disease induces changes associated with higher absorption of cholesterol and disturbed lipoprotein metabolism. Changes in fatty acid metabolism reflect the combined effect of renal insufficiency and its comorbidities, mostly insulin resistance.
Collapse
Affiliation(s)
- Marek Vecka
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08 Prague, Czech Republic; (M.D.); (B.S.); (A.Ž.)
- Institute of Clinical Chemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Na Bojišti 3, 121 08 Prague, Czech Republic
| | - Magdalena Dušejovská
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08 Prague, Czech Republic; (M.D.); (B.S.); (A.Ž.)
| | - Barbora Staňková
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08 Prague, Czech Republic; (M.D.); (B.S.); (A.Ž.)
| | - Ivan Rychlík
- Department of Internal Medicine, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, Šrobárova 50, 100 34 Prague, Czech Republic;
| | - Aleš Žák
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08 Prague, Czech Republic; (M.D.); (B.S.); (A.Ž.)
| |
Collapse
|
8
|
Abstract
The choice of lipid-modifying treatment is largely based on the absolute level of cardiovascular risk and baseline lipid profile. Statins are the first-line treatment for most patients requiring reduction of low-density-lipoprotein cholesterol (LDL-C) and ezetimibe and proprotein convertase subtilisin/kexin type 9 inhibitors can be added to reach LDL-C targets. Statins have some adverse effects that are somewhat predictable based on phenotypic and genetic factors. Fibrates or omega-3 fatty acids can be added if triglyceride levels remain elevated. The RNA-targeted therapeutics in development offer the possibility of selective liver targeting for specific lipoproteins such as lipoprotein(a) and long-term reduction of LDL-C with infrequent administration of a small-interfering RNA may help to overcome the problem of adherence to therapy.
Collapse
Affiliation(s)
- Brian Tomlinson
- Faculty of Medicine, Macau University of Science & Technology, Macau 999078, PR China
| | - Chen-Hsiu Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| | - Paul Chan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| | - Christopher Wk Lam
- Faculty of Medicine, Macau University of Science & Technology, Macau 999078, PR China
| |
Collapse
|
9
|
Climent E, Bea AM, Benaiges D, Brea-Hernando Á, Pintó X, Suárez-Tembra M, Perea V, Plana N, Blanco-Vaca F, Pedro-Botet J. LDL Cholesterol Reduction Variability with Different Types and Doses of Statins in Monotherapy or Combined with Ezetimibe. Results from the Spanish Arteriosclerosis Society Dyslipidaemia Registry. Cardiovasc Drugs Ther 2021; 36:301-308. [PMID: 33555511 DOI: 10.1007/s10557-020-07137-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE Low-density lipoprotein (LDL) cholesterol reduction by statin therapy is dose-dependent, varies among different statins, and has wide inter-individual variability. The present study aimed to compare mean LDL cholesterol reduction and its variability achieved with different doses of the three statins most frequently used in monotherapy or combined with ezetimibe in a real clinical setting. METHODS Of 5620 cases with primary hypercholesterolemia on the Spanish Arteriosclerosis Society Registry, 1004 with non-familial hypercholesterolemia and complete information on drug therapy and lipid profile were included. RESULTS The lowest mean percentage LDL cholesterol reduction was observed with simvastatin 10 mg (32.5 ± 18.5%), while the highest mean percentage LDL reduction was obtained with rosuvastatin 40 mg (58.7 ± 18.8%). As to combined treatment, the lowest and highest mean percentage LDL cholesterol reductions were obtained with simvastatin 10 mg combined with ezetimibe (50.6 ± 24.6%) and rosuvastatin 40 mg combined with ezetimibe (71.6 ± 11.1%), respectively. Factors associated with a suboptimal response were male sex, lower age, body mass index, and baseline LDL cholesterol levels. Combined treatment was associated with less variability in LDL cholesterol reduction (OR 0.603, p < 0.001). CONCLUSION In a real clinical setting, rosuvastatin was superior to the other statins in lowering LDL cholesterol, both as monotherapy or combined with ezetimibe. Factors associated with a suboptimal response in LDL cholesterol decline were male sex, age, body mass index, and baseline LDL cholesterol levels. Combined treatment was associated with less variability in LDL cholesterol improvement.
Collapse
Affiliation(s)
- Elisenda Climent
- Endocrinology and Nutrition Department, Hospital Universitario del Mar, Paseo Marítimo, 25-29, E-08003, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Campus Universitari Mar, Dr. Aiguader, 80, E-08003, Barcelona, Spain
| | - Ana M Bea
- Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), CIBERCV, Zaragoza, Spain
| | - David Benaiges
- Endocrinology and Nutrition Department, Hospital Universitario del Mar, Paseo Marítimo, 25-29, E-08003, Barcelona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Campus Universitari Mar, Dr. Aiguader, 80, E-08003, Barcelona, Spain.,Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader, 80, E-08003, Barcelona, Spain
| | - Ángel Brea-Hernando
- Unidad de Lípidos y Riesgo Cardiovascular, Hospital San Pedro, Logroño, Spain
| | - Xavier Pintó
- Unidad de Lípidos y Riesgo Cardiovascular, Servicio de M. Interna, Hospital Universitario de Bellvitge, Barcelona, Spain
| | | | - Verónica Perea
- Endocrinology and Nutrition Department, Hospital Universitari Mútua de Terrassa, Terrassa, Spain
| | - Núria Plana
- Unidad de Medicina Vascular y Metabolismo (UVASMET), Hospital Universitari Sant Joan, IISPV, CIBERDEM, Reus, Tarragona, Spain
| | - Francisco Blanco-Vaca
- Biochemistry Service, HSCSP-IIB Sant Pau, Barcelona, Spain.,Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Pedro-Botet
- Endocrinology and Nutrition Department, Hospital Universitario del Mar, Paseo Marítimo, 25-29, E-08003, Barcelona, Spain. .,Department of Medicine, Universitat Autònoma de Barcelona, Campus Universitari Mar, Dr. Aiguader, 80, E-08003, Barcelona, Spain. .,Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Dr. Aiguader, 80, E-08003, Barcelona, Spain.
| | | |
Collapse
|
10
|
Schade DS, Shey L, Eaton RP. Cholesterol Review: A Metabolically Important Molecule. Endocr Pract 2021; 26:1514-1523. [PMID: 33471744 DOI: 10.4158/ep-2020-0347] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/27/2020] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Cholesterol is an important molecule in humans and both its excess and its deficiency cause disease. Most clinicians appreciate its role in stabilizing cellular plasma membranes but are unaware of its myriad other functions. METHODS This review highlights cholesterol's newly recognized important roles in human physiology and pathophysiology. RESULTS The basis for cholesterol's ubiquitous presence in eukaryote organisms is its three part structure involving hydrophilic, hydrophobic, and rigid domains. This structure permits cholesterol to regulate multiple cellular processes ranging from membrane fluidity and permeability to gene transcription. Cholesterol not only serves as a molecule of regulation itself, but also forms the backbone of all steroid hormones and vitamin D analogs. Cholesterol is responsible for growth and development throughout life and may be useful as an anticancer facilitator. Because humans have a limited ability to catabolize cholesterol, it readily accumulates in the body when an excess from the diet or a genetic abnormality occurs. This accumulation results in the foremost cause of death and disease (atherosclerosis) in the Western world. Identification of cholesterol's disease-producing capabilities dates back 5,000 years to the Tyrolean iceman and more recently to ancient mummies from many cultures throughout the world. In contrast, a deficiency of cholesterol in the circulation may result in an inability to distribute vitamins K and E to vital organs with serious consequences. CONCLUSION Understanding the benefits and hazards of cholesterol in the clinical setting will improve the endocrinologist's ability to control diseases associated with this unique molecule. ABBREVIATIONS CVD = cardiovascular disease; HDL = high-density lipoprotein; LDL = low-density lipoprotein; NPC1L1 = Niemann-Pick C-1-like-1 protein; U.S. = United States; USDA = U.S. Department of Agriculture.
Collapse
Affiliation(s)
- David S Schade
- From the (1)University of New Mexico School of Medicine, Department of Internal Medicine, Division of Endocrinology and Metabolism, Albuquerque, New Mexico, and the.
| | - Lynda Shey
- University of New Mexico Hospital, Diabetes Comprehensive Care Center, Albuquerque, New Mexico
| | - R Philip Eaton
- From the (1)University of New Mexico School of Medicine, Department of Internal Medicine, Division of Endocrinology and Metabolism, Albuquerque, New Mexico, and the
| |
Collapse
|
11
|
Recent Updates and Advances in the Use of Glycated Albumin for the Diagnosis and Monitoring of Diabetes and Renal, Cerebro- and Cardio-Metabolic Diseases. J Clin Med 2020; 9:jcm9113634. [PMID: 33187372 PMCID: PMC7697299 DOI: 10.3390/jcm9113634] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus is a heterogeneous and dysmetabolic chronic disease in which the laboratory plays a fundamental role, from diagnosis to monitoring therapy and studying complications. Early diagnosis and good glycemic control should start as early as possible to delay and prevent metabolic and cardio-vascular complications secondary to this disease. Glycated hemoglobin is currently used as the reference parameter. The accuracy of the glycated hemoglobin dosage may be compromised in subjects suffering from chronic renal failure and terminal nephropathy, affected by the reduction in the survival of erythrocytes, with consequent decrease in the time available for glucose to attach to the hemoglobin. In the presence of these renal comorbidities as well as hemoglobinopathies and pregnancy, glycated hemoglobin is not reliable. In such conditions, dosage of glycated albumin can help. Glycated albumin is not only useful for short-term diagnosis and monitoring but predicts the risk of diabetes, even in the presence of euglycemia. This protein is modified in subjects who do not yet have a glycemic alteration but, as a predictive factor, heralds the risk of diabetic disease. This review summarizes the importance of glycated albumin as a biomarker for predicting and stratifying the cardiovascular risk linked to multiorgan metabolic alterations.
Collapse
|
12
|
Patwardhan VG, Mughal ZM, Padidela R, Chiplonkar SA, Khadilkar VV, Khadilkar AV. To study impact of treatment with Rosuvastatin versus Atorvastatin on 25 hydroxy Vitamin D concentrations among adult Indian men- a randomized control trial. Indian J Pharmacol 2020; 52:365-371. [PMID: 33283767 PMCID: PMC8025761 DOI: 10.4103/ijp.ijp_93_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/25/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Dyslipidemias are on the rise and are increasingly being treated with statins. As the metabolism of cholecalciferol and cholesterol are interrelated, reduction in cholesterol synthesis by statins is likely to affect Vitamin D status. OBJECTIVES (1) The aim is to study the effect of treatment with statins (Atorvastatin/Rosuvastatin) on 25-hydroxy-Vitamin-D (25OHD) among newly detected subjects with dyslipidemia for 6 months (2) To study the impact of 25OHD concentrations on the efficacy of statin treatment. MATERIALS AND METHODS This was a prospective, balanced randomized (1:1), open-label, parallel-group study, in apparently healthy Indian adult men (south Asian, 40-60 years). At baseline, serum lipids and 25OHD concentrations were measured. Based on the Adult Treatment Panel III guidelines, subjects were divided as per lipid concentrations into controls (who did not require statin treatment) and intervention (who required statin treatment) groups. Random allocation of subjects was done in two groups for receiving intervention for 6 months: Atorvastatin group (n = 52, received Atorvastatin) or Rosuvastatin group (n = 52, received Rosuvastatin). Lipids and 25OHD concentrations were measured at the end line. RESULTS Atorvastatin group presented significant reduction (P < 0.05) in 25OHD, total cholesterol (TC) and low-density-lipoprotein-cholesterol (LDL-C) concentrations at the end line. In the Rosuvastatin group, significant drop in TC, LDL-C and high-density lipoprotein cholesterol (concentrations (P < 0.05) was observed, while 25OHD concentrations showed no significant change. Mean 25OHD concentrations were significantly correlated with a reduction in LDL-C concentrations in Atorvastatin group. CONCLUSIONS Treatment with Atorvastatin resulted in a reduction in 25OHD concentrations; further, its efficacy in reducing LDL-C concentrations was related to the 25OHD concentrations.
Collapse
Affiliation(s)
- Vivek G. Patwardhan
- Department of Pediatric Growth and Endocrine Unit, Hirabai Cowasji Jehangir Medical Research Institute, Jehangir Hospital, Pune, Maharashtra, India
| | - Zulf M. Mughal
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK
| | - Raja Padidela
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK
| | - Shashi A. Chiplonkar
- Department of Pediatric Growth and Endocrine Unit, Hirabai Cowasji Jehangir Medical Research Institute, Jehangir Hospital, Pune, Maharashtra, India
| | - Vaman V. Khadilkar
- Department of Pediatric Growth and Endocrine Unit, Hirabai Cowasji Jehangir Medical Research Institute, Jehangir Hospital, Pune, Maharashtra, India
| | - Anuradha V. Khadilkar
- Department of Pediatric Growth and Endocrine Unit, Hirabai Cowasji Jehangir Medical Research Institute, Jehangir Hospital, Pune, Maharashtra, India
| |
Collapse
|
13
|
Weingärtner O, Patel SB, Lütjohann D. It’s time to personalize and optimize lipid-lowering therapy. Eur Heart J 2020; 41:2629-2631. [DOI: 10.1093/eurheartj/ehaa445] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Collapse
Affiliation(s)
- Oliver Weingärtner
- Klinik für Innere Medizin I, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Shailesh B Patel
- Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA
| | - Dieter Lütjohann
- Institut für Klinische Chemie und Klinische Pharmakologie, Universitätsklinikum Bonn, Bonn, Germany
| |
Collapse
|
14
|
Roy D, Mahapatra T, Manna K, Kar A, Rana MS, Roy A, Bose PK, Banerjee B, Paul S, Chakraborty S. Comparing effectiveness of high-dose Atorvastatin and Rosuvastatin among patients undergone Percutaneous Coronary Interventions: A non-concurrent cohort study in India. PLoS One 2020; 15:e0233230. [PMID: 32428019 PMCID: PMC7237007 DOI: 10.1371/journal.pone.0233230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/30/2020] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Atorvastatin-80mg/day and Rosuvastatin-40mg/day are the commonest high-dose statin (3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitors) regimes for post-PCI (Percutaneous Coronary Interventions) patients to lower (by ≥50%) blood low-density-lipoprotein cholesterol (LDL-C). Dearth of conclusive evidence from developing world, regarding overall safety, tolerability and comparative effectiveness (outcome/safety/tolerability/endothelial inflammation control) of Rosuvastatin over Atorvastatin in high-dose, given its higher cost, called for an overall and comparative assessment among post-PCI patients in a tertiary cardiac-care hospital of Kolkata, India. METHODS A record-based non-concurrent cohort study was conducted involving 942 post-PCI patients, aged 18-75 years, on high-dose statin for three months and followed up for ≥one year. Those on Atorvastatin-80mg (n = 321) and Rosuvastatin-40mg (n = 621) were compared regarding outcome (death/non-fatal myocardial infarction: MI/repeated hospitalization/target-vessel revascularisation/control of LDL and high-sensitivity C-reactive protein: hsCRP), safety (transaminitis/myopathy/myalgia/myositis/rhabdomyolysis), tolerability (gastroesophageal reflux disease: GERD/gastritis) and inflammation control adjusting for socio-demographics, tobacco-use, medications and comorbidities using SAS-9.4. RESULTS Groups varied minimally regarding distribution of age/gender/tobacco-use/medication/comorbidity/baseline (pre-PCI) LDL and hs-CRP level. During one-year post-PCI follow up, none died. One acute MI and two target vessel revascularizations occurred per group. Repeated hospitalization for angina/stroke was 2.18% in Atorvastatin group vs. 2.90% in Rosuvastatin group. At three-months follow up, GERD/Gastritis (2.18% vs 4.83%), uncontrolled hs-CRP (22.74% vs 31.08%) and overall non-tolerability (4.67% vs. 8.21%) were lower for Atorvastatin group. Multiple logistic regression did show that compared to Atorvastatin-80mg, Rosuvastatin-40mg regime had poorer control of hs-CRP (A3OR = 1.45,p = 0.0202), higher (A3OR = 2.07) adverse effects, poorer safety profile (A3OR = 1.23), higher GERD/Gastritis (A3OR = 1.50) and poorer overall tolerability (A3OR = 1.50). CONCLUSION Post-PCI high dose statins were effective, safe and well-tolerated. High dose Rosuvastatin as compared to high dose Atorvastatin were similar in their clinical efficacy. Patients treated with Atrovastatin had significantly lower number of patients with hs-CRP (high-sensitivity C-reactive protein)/C-reactive protein (CRP) level beyond comparable safe limit and relatively better tolerated as opposed to Rosuvastatin-40mg.Thus given the lower price, Atorvastatin 80mg/day appeared to be more cost-effective. A head-to-head cost-effectiveness as well as efficacy trial may be the need of the hour.
Collapse
Affiliation(s)
- Debabrata Roy
- Department of Cardiology, Narayana Hrudayalaya Rabindranath Tagore International Institute of Cardiac Sciences, Kolkata, West Bengal, India
- * E-mail:
| | - Tanmay Mahapatra
- Mission Arogya Health and Information Technology Research Foundation, Kolkata, West Bengal, India
| | - Kaushik Manna
- Department of Cardiology, Narayana Hrudayalaya Rabindranath Tagore International Institute of Cardiac Sciences, Kolkata, West Bengal, India
| | - Ayan Kar
- Department of Cardiology, Narayana Hrudayalaya Rabindranath Tagore International Institute of Cardiac Sciences, Kolkata, West Bengal, India
| | - Md Saiyed Rana
- Department of Cardiology, Narayana Hrudayalaya Rabindranath Tagore International Institute of Cardiac Sciences, Kolkata, West Bengal, India
| | - Abhishek Roy
- Department of Cardiology, Narayana Hrudayalaya Rabindranath Tagore International Institute of Cardiac Sciences, Kolkata, West Bengal, India
| | - Pallab Kumar Bose
- Department of Cardiology, Narayana Hrudayalaya Rabindranath Tagore International Institute of Cardiac Sciences, Kolkata, West Bengal, India
| | - Barnali Banerjee
- Mission Arogya Health and Information Technology Research Foundation, Kolkata, West Bengal, India
| | - Srutarshi Paul
- Mission Arogya Health and Information Technology Research Foundation, Kolkata, West Bengal, India
| | - Sandipta Chakraborty
- Mission Arogya Health and Information Technology Research Foundation, Kolkata, West Bengal, India
| |
Collapse
|
15
|
Chihara A, Tanaka A, Morimoto T, Sakuma M, Shimabukuro M, Nomiyama T, Arasaki O, Ueda S, Node K. Differences in lipid metabolism between anagliptin and sitagliptin in patients with type 2 diabetes on statin therapy: a secondary analysis of the REASON trial. Cardiovasc Diabetol 2019; 18:158. [PMID: 31733647 PMCID: PMC6858725 DOI: 10.1186/s12933-019-0965-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/10/2019] [Indexed: 12/14/2022] Open
Abstract
Background Anagliptin, a dipeptidyl peptidase-4 inhibitor, is reported to reduce the level of low-density lipoprotein cholesterol (LDL-C). The underlying mechanism of this effect and effect on lipid metabolism however remains uncertain. Aim and methods We therefore evaluate the effects of anagliptin on lipid metabolism-related markers compared with those of sitagliptin. The study was a secondary analysis using data obtained from the Randomized Evaluation of Anagliptin versus Sitagliptin On low-density lipoproteiN cholesterol in diabetes (REASON) trial. This trial in patients with type 2 diabetes at a high risk of cardiovascular events and on statin therapy showed that anagliptin reduced LDL-C levels to a greater extent than sitagliptin. Cholesterol absorption (campesterol and sitosterol) and synthesis (lathosterol) markers were measured at baseline and 52 weeks in the study cohort (n = 353). Results There was no significant difference in the changes of campesterol or sitosterol between the two treatment groups (p = 0.85 and 0.55, respectively). Lathosterol concentration was increased significantly at 52 weeks with sitagliptin treatment (baseline, 1.2 ± 0.7 μg/mL vs. 52 weeks, 1.4 ± 1.0 μg/mL, p = 0.02), whereas it did not change in the anagliptin group (baseline, 1.3 ± 0.8 μg/mL vs. 52 weeks, 1.3 ± 0.7 μg/mL, p = 0.99). The difference in absolute change between the two groups showed a borderline significance (p = 0.06). Conclusion These findings suggest that anagliptin reduces LDL-C level by suppressing excess cholesterol synthesis, even in combination with statin therapy. Trial registration ClinicalTrials.gov number NCT02330406. https://clinicaltrials.gov/ct2/show/NCT02330406; registered January 5, 2015.
Collapse
Affiliation(s)
- Atsuko Chihara
- Department of Cardiovascular Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Atsushi Tanaka
- Department of Cardiovascular Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan.
| | - Takeshi Morimoto
- Department of Clinical Epidemiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Mio Sakuma
- Department of Clinical Epidemiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Michio Shimabukuro
- Department of Diabetes, Endocrinology and Metabolism, Fukushima Medical University, Fukushima, Japan
| | - Takashi Nomiyama
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University, Fukuoka, Japan
| | - Osamu Arasaki
- Department of Cardiology, Tomishiro Central Hospital, Tomigusuku, Japan
| | - Shinichiro Ueda
- Department of Pharmacology and Therapeutics, University of the Ryukyus, Nishihara, Japan
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| |
Collapse
|
16
|
Low serum lathosterol levels associate with fatal cardiovascular disease and excess all-cause mortality: a prospective cohort study. Clin Res Cardiol 2019; 108:1381-1385. [PMID: 30949753 DOI: 10.1007/s00392-019-01474-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/28/2019] [Indexed: 10/27/2022]
Abstract
IMPORTANCE A more precise identification of patients at "high cardiovascular risk" is preeminent in cardiovascular risk stratification. OBJECTIVE To investigate the relationships between markers of cholesterol homeostasis, cardiovascular events and all-cause mortality. DESIGN, SETTING AND PARTICIPANTS We quantified markers of cholesterol homeostasis by gas chromatography-mass spectrometry in 377 subjects with suspected coronary artery disease, who were not on lipid-lowering drugs at baseline. All patients were followed for occurrence of cardiovascular events and mortality over a period of 4.9 +/- 1.7 years. The standardized mortality ratio (SMR) was calculated as the ratio of the observed and the expected deaths based on the death rates of the Regional Databases Germany, and Poisson regression (rate ratio, RR) was used to compare subgroups. The SMR and RR were standardized for sex, age category and calendar period. In addition, Cox regression (Hazard ratio, HR) was used to determine the effect of co-variables on (cardiovascular) mortality within the cohort. MAIN OUTCOMES Cardiovascular events, cardiovascular mortality and all-cause mortality. RESULTS A total of 42 deaths were observed in 1818 person-years corresponding with an SMR of 0.99 (95% CI 0.71-1.33; p = 0.556). A fatal cardiovascular event occurred in 26 patients. Lower levels of lathosterol were associated with increased cardiovascular mortality (HR 1.59; 95% CI: 1.16-2.17; p = 0.004) and excess all-cause mortality (HR 1.41; 95% CI: 1.09-1.85; p = 0.011). Lower lathosterol tertile compared to the adjacent higher tertile was associated with 1.6 times higher all-cause mortality risk (RR 1.60; 95% CI 1.07-2.40; p for trend = 0.022). This corresponded with a 2.3 times higher mortality risk of a lathosterol-LDL ratio equal to or below the median (RR 2.29; 95% CI 1.19-4.43; p = 0.013). None of the other cholesterol homeostasis markers were associated with cardiovascular and all-cause mortality. CONCLUSIONS In patients not on lipid-lowering agents, low serum lathosterol correlated with increased risk of cardiovascular events and excess all-cause mortality.
Collapse
|
17
|
Lütjohann D, Stellaard F, Mulder MT, Sijbrands EJG, Weingärtner O. The emerging concept of "individualized cholesterol-lowering therapy": A change in paradigm. Pharmacol Ther 2019; 199:111-116. [PMID: 30877023 DOI: 10.1016/j.pharmthera.2019.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/06/2019] [Indexed: 12/17/2022]
Abstract
High LDL-cholesterol concentrations constitute a risk for atherosclerotic cardiovascular disease. By consensus, cholesterol-lowering therapy is initiated with a statin that reduces endogenous cholesterol synthesis, upregulates hepatic LDL receptor activity, increases LDL clearance and lowers LDL-cholesterol concentrations in the bloodstream. The efficacy of statin treatment is dose dependent and achieves a risk reduction of up to 50%. However, a substantial body of evidence suggests that a quarter of statin-treated patients do not respond adequately as a result of low endogenous cholesterol synthesis. In humans fractional cholesterol absorption varies from 20% to 80%. High cholesterol absorbers, which are characterized by a low-to-normal cholesterol synthesis, exhibit poor responsiveness to statin treatment. On the other hand, the cholesterol absorption inhibitor ezetimibe effectively reduces serum cholesterol levels in these patients. On this background, we suggest to "get personal" and individualize cholesterol-lowering therapies, according to the individual's status of cholesterol synthesis and absorption.
Collapse
Affiliation(s)
- Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Frans Stellaard
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Monique T Mulder
- Department of Internal Medicine, Section of Pharmacology Vascular and Metabolic Diseases, Cardiovascular Research School COEUR, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eric J G Sijbrands
- Department of Internal Medicine, Section of Pharmacology Vascular and Metabolic Diseases, Cardiovascular Research School COEUR, Erasmus Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
18
|
Jones PJH, Shamloo M, MacKay DS, Rideout TC, Myrie SB, Plat J, Roullet JB, Baer DJ, Calkins KL, Davis HR, Barton Duell P, Ginsberg H, Gylling H, Jenkins D, Lütjohann D, Moghadasian M, Moreau RA, Mymin D, Ostlund RE, Ras RT, Ochoa Reparaz J, Trautwein EA, Turley S, Vanmierlo T, Weingärtner O. Progress and perspectives in plant sterol and plant stanol research. Nutr Rev 2018; 76:725-746. [PMID: 30101294 PMCID: PMC6130982 DOI: 10.1093/nutrit/nuy032] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Current evidence indicates that foods with added plant sterols or stanols can lower serum levels of low-density lipoprotein cholesterol. This review summarizes the recent findings and deliberations of 31 experts in the field who participated in a scientific meeting in Winnipeg, Canada, on the health effects of plant sterols and stanols. Participants discussed issues including, but not limited to, the health benefits of plant sterols and stanols beyond cholesterol lowering, the role of plant sterols and stanols as adjuncts to diet and drugs, and the challenges involved in measuring plant sterols and stanols in biological samples. Variations in interindividual responses to plant sterols and stanols, as well as the personalization of lipid-lowering therapies, were addressed. Finally, the clinical aspects and treatment of sitosterolemia were reviewed. Although plant sterols and stanols continue to offer an efficacious and convenient dietary approach to cholesterol management, long-term clinical trials investigating the endpoints of cardiovascular disease are still lacking.
Collapse
Affiliation(s)
- Peter J H Jones
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maryam Shamloo
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- George and Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dylan S MacKay
- George and Fay Yee Centre for Healthcare Innovation, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Todd C Rideout
- Department of Exercise and Nutrition Sciences, University of Buffalo, Buffalo, New York, USA
| | - Semone B Myrie
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jogchum Plat
- Department of Human Biology, Maastricht University, Maastricht, the Netherlands
| | - Jean-Baptiste Roullet
- Division of Metabolism, Child Development and Rehabilitation Center—Portland, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| | - David J Baer
- US Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, Maryland, USA
| | - Kara L Calkins
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA; and the UCLA Mattel’s Children’s Hospital, Los Angeles, California, USA
| | | | - P Barton Duell
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Henry Ginsberg
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, New York, USA
| | - Helena Gylling
- University of Helsinki and the Helsinki University Central Hospital, Helsinki, Finland
| | - David Jenkins
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada; and the Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Mohammad Moghadasian
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert A Moreau
- Eastern Regional Research Center, US Department of Agriculture, Agricultural Research Service, Wyndmoor, Pennsylvania, USA
| | - David Mymin
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard E Ostlund
- Division of Endocrinology, Metabolism and Lipid Research, Washington University, St Louis, USA
| | - Rouyanne T Ras
- Unilever Research & Development Vlaardingen, Vlaardingen, the Netherlands
| | | | - Elke A Trautwein
- Unilever Research & Development Vlaardingen, Vlaardingen, the Netherlands
| | | | - Tim Vanmierlo
- Department of Immunology and Biochemistry, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Oliver Weingärtner
- Klinik für Innere Medizin I, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena, Germany; Abteilung für Kardiologie, Klinikum Oldenburg, European Medical School Oldenburg-Groningen, Oldenburg, Germany
| |
Collapse
|
19
|
Brandt EJ, Benes LB, Lee L, Dayspring TD, Sorrentino M, Davidson M. The Effect of Proprotein Convertase Subtilisin/Kexin Type 9 Inhibition on Sterol Absorption Markers in a Cohort of Real-World Patients. J Cardiovasc Pharmacol Ther 2018; 24:54-61. [DOI: 10.1177/1074248418780733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background: Proprotein convertase subtilisin/kexin type 9 (PCSK9) is expressed in multiple tissues, including the small intestine. The effect of PCSK9 inhibition on cholesterol absorption is not known. Objectives: Measure serum cholesterol absorption markers before and after initiation of PCSK9 inhibitors. Methods: Single-center retrospective cohort of patients administered evolocumab and alirocumab between July 2015 and January 2017. Paired t tests were used to compare mean serum cholesterol marker concentrations, and ratios to total cholesterol, before and after PCSK9 inhibitor initiation. Analyses were repeated for those taking and not taking statins and taking or not taking ezetimibe at both initiation and follow-up, for each PCSK9 inhibitor, and based on follow-up time (<60, 60-120, and >120 days). Results: There were 62 possible participants, 34 were excluded for lack of data or unknown PCSK9 inhibitor initiation date. Average follow-up was 92.5 days. Mean campesterol (before 3.14 μg/mL, 95% CI: 2.79-4.38 μg/mL; after 2.09 μg/mL, 95% CI: 1.87-2.31 μg/mL; P < .0001), sitosterol (before 2.46 μg/mL, 95% CI: 2.23-2.70 μg/mL; after 1.62 μg/mL, 95% CI: 1.48-1.75 μg/mL; P < .0001), and cholestanol (before 3.25 μg/mL, 95% CI: 3.04-3.47 μg/mL; after 2.08 μg/mL, 95% CI: 1.96-2.21 μg/mL; P < .0001) all significantly decreased at follow-up. There was no significant change in absorption marker to total cholesterol ratios. Findings were not influenced by statin or ezetimibe use or nonuse, which PCSK9 inhibitor was prescribed, or time to follow-up. Conclusion: Proprotein convertase subtilisin/kexin type 9 inhibition was associated with decreased cholesterol absorption markers.
Collapse
Affiliation(s)
- Eric J. Brandt
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Lane B. Benes
- Division of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Linda Lee
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Matthew Sorrentino
- Division of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Michael Davidson
- Division of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
20
|
Scolaro B, Nogueira MS, Paiva A, Bertolami A, Barroso LP, Vaisar T, Heffron SP, Fisher EA, Castro IA. Statin dose reduction with complementary diet therapy: A pilot study of personalized medicine. Mol Metab 2018; 11:137-144. [PMID: 29503145 PMCID: PMC6001350 DOI: 10.1016/j.molmet.2018.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Statin intolerance, whether real or perceived, is a growing issue in clinical practice. Our aim was to evaluate the effects of reduced-dose statin therapy complemented with nutraceuticals. METHODS First phase: Initially, 53 type 2 diabetic statin-treated patients received a supplementation with fish oil (1.7 g EPA + DHA/day), chocolate containing plant sterols (2.2 g/day), and green tea (two sachets/day) for 6 weeks. Second phase: "Good responders" to supplementation were identified after multivariate analysis (n = 10), and recruited for a pilot protocol of statin dose reduction. "Good responders" were then provided with supplementation for 12 weeks: standard statin therapy was kept during the first 6 weeks and reduced by 50% from weeks 6-12. RESULTS First phase: After 6 weeks of supplementation, plasma LDL-C (-13.7% ± 3.7, P = .002) and C-reactive protein (-35.5% ± 5.9, P = .03) were reduced. Analysis of lathosterol and campesterol in plasma suggested that intensity of LDL-C reduction was influenced by cholesterol absorption rate rather than its synthesis. Second phase: no difference was observed for plasma lipids, inflammation, cholesterol efflux capacity, or HDL particles after statin dose reduction when compared to standard therapy. CONCLUSIONS Although limited by the small sample size, our study demonstrates the potential for a new therapeutic approach combining lower statin dose and specific dietary compounds. Further studies should elucidate "good responders" profile as a tool for personalized medicine. This may be particularly helpful in the many patients with or at risk for CVD who cannot tolerate high dose statin therapy. TRIAL REGISTRATION ClinicalTrials.gov, NCT02732223.
Collapse
Affiliation(s)
- Bianca Scolaro
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes, 580, B14 - 05508-900, São Paulo, Brazil
| | - Marina S Nogueira
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes, 580, B14 - 05508-900, São Paulo, Brazil
| | - Aline Paiva
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes, 580, B14 - 05508-900, São Paulo, Brazil
| | - Adriana Bertolami
- Dyslipidemia Medical Section, Dante Pazzanese Institute of Cardiology, Av. Dr. Dante Pazzanese, 500, 04012-909, São Paulo, Brazil
| | - Lucia P Barroso
- Department of Statistics, Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão, 1010, 05508-090, São Paulo, Brazil
| | - Tomas Vaisar
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Sean P Heffron
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Edward A Fisher
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Inar A Castro
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes, 580, B14 - 05508-900, São Paulo, Brazil.
| |
Collapse
|
21
|
Gojkovic T, Vladimirov S, Spasojevic-Kalimanovska V, Zeljkovic A, Vekic J, Arsenijevic J, Djuricic I, Sobajic S, Jelic-Ivanovic Z. Preanalytical and analytical challenges in gas chromatographic determination of cholesterol synthesis and absorption markers. Clin Chim Acta 2017; 478:74-81. [PMID: 29274328 DOI: 10.1016/j.cca.2017.12.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 12/15/2017] [Accepted: 12/20/2017] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Cholesterol homeostasis disruption contributes to the development of different pathologies. Non-cholesterol sterols (NCSs) serve as cholesterol synthesis markers (desmosterol and lathosterol), and cholesterol absorption surrogate markers (campesterol, stigmasterol and β-sitosterol). The study aimed to resolve certain new pre-analytical and analytical problems and ensure a reliable and validated method. MATERIALS AND METHODS Method optimization, validation and stability studies were executed in human serum and plasma. Freeze-thaw cycles were done with and without antioxidant. Gas chromatography-mass spectrometer (GC-MS) was used for NCSs confirmation and plasticizer identification, while GC-flame ionization detector (GC-FID) was used for NCSs quantitation. RESULTS Intra- and inter-assay variabilities for all NCSs were 2.75-9.55% and 5.80-7.75% for plasma and 3.10-5.72% and 3.05-10.92% for serum, respectively. Recovery studies showed satisfactory percentage errors for all NCSs: 93.4-105.7% in plasma and 87.5-106.9 in serum. Derivatized samples were stable up to 7days at -20°C and derivatization yield was affected by presence of plasticizers. Fatty acid amids were identified as interfering plastic leachates. Statistically different NCSs concentrations were observed after the 1st freeze-thaw cycle, in antioxidant-free samples, and after the 4th cycle in antioxidant-enriched samples. CONCLUSIONS All of the in-house procedures proved to be useful for minimizing the preanalytical and analytical variations, as proven by the validation results.
Collapse
Affiliation(s)
- Tamara Gojkovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Serbia.
| | - Sandra Vladimirov
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Serbia
| | | | - Aleksandra Zeljkovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Serbia
| | - Jelena Vekic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Serbia
| | - Jelena Arsenijevic
- Department of Pharmacognosy, Faculty of Pharmacy, University of Belgrade, Serbia
| | - Ivana Djuricic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Sladjana Sobajic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Zorana Jelic-Ivanovic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Serbia
| |
Collapse
|
22
|
Leohr JK, Luffer-Atlas D, Luo MJ, DeBrota DJ, Green C, Mabry TE, Suico JG. Serum Lipid and Protein Changes in Healthy Dyslipidemic Subjects Given a Selective Inhibitor of p70 S6 Kinase-1. J Clin Pharmacol 2017; 58:412-424. [PMID: 29178617 DOI: 10.1002/jcph.1032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/16/2017] [Indexed: 11/08/2022]
Abstract
The safety, pharmacokinetic, and pharmacodynamic effects of LY2584702, a selective inhibitor for p70 S6 serine/threonine protein kinase-1, were evaluated in healthy dyslipidemic volunteers. LY2584702 was tolerated well as a monotherapy and dose-dependently reduced low-density lipoprotein cholesterol and triglycerides by up to 60% and 50%, respectively, without significantly changing high-density lipoprotein cholesterol levels in plasma. LY2584702 also dose-dependently decreased factor V activity. Alanine aminotransferase elevations were noted in 2 subjects when LY2584702 was given with atorvastatin. We suspect that the formation of 4-aminopyrazolo[3,4-d]pyrimidine (4-APP) during metabolism may have contributed to some of the adverse effects of LY2584702, and the contribution of 4-APP to the pharmacology merits further investigation. Although clinical investigation of LY2584702 has been terminated because of hepatotoxicity risk, we suggest that a selective inhibitor of p70 S6 serine/threonine protein kinase-1 with a larger margin of safety and without the possibility of being metabolized to 4-APP may be useful in the treatment of dyslipidemia.
Collapse
Affiliation(s)
| | | | - M Jane Luo
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Colin Green
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | |
Collapse
|
23
|
Brinton EA, Hopkins PN, Hegele RA, Geller AS, Polisecki EY, Diffenderfer MR, Schaefer EJ. The association between hypercholesterolemia and sitosterolemia, and report of a sitosterolemia kindred. J Clin Lipidol 2017; 12:152-161. [PMID: 29169939 DOI: 10.1016/j.jacl.2017.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Sitosterolemia is associated with increases in intestinal sterol absorption, low-density lipoprotein cholesterol (LDL-C), and cardiovascular disease risk. OBJECTIVE We examined the relationship between hypercholesterolemia and sitosterolemia in a large population and report a new sitosterolemia case. METHODS Plasma sterol concentrations were measured by gas chromatography/mass spectrometry, and LDL-C by direct assay. RESULTS Of 207,926 subjects tested, 4.3% had LDL-C ≥190 mg/dL. Plasma β-sitosterol concentrations ≥8.0 mg/L (99th percentile) were found in 4.3% of these subjects vs 0.72% with LDL-C <130 mg/dL. Among all subjects, 0.050% had β-sitosterol levels ≥15.0 mg/L, consistent with sitosterolemia, while among those with LDL-C ≥190 mg/dL, 0.334% had this rare disorder. A 13-year-old boy with the highest LDL-C (679 mg/dL) of all subjects had planar xanthomas and a β-sitosterol level of 53.5 mg/L (normal <3.3 mg/L). He was a compound heterozygote for 2 ABCG8 mutations (p.N409D and an intron 11+2T>A splice site mutation). On a low-cholesterol and plant-sterol diet, his LDL-C decreased to 485 mg/dL (-29%) and β-sitosterol to 44.6 mg/L (-27%). On atorvastatin 20 mg/d, his LDL-C decreased to 299 mg/dL (-38%). With added ezetimibe 10 mg/d, his LDL-C normalized to 60 mg/dL (-80% further decrease); and his β-sitosterol decreased to 14.1 mg/L (-68% further decrease). CONCLUSIONS Our data indicate that about 4% of subjects with LDL-C concentrations ≥190 mg/dL have plasma β-sitosterol concentrations above the 99th percentile and about 0.3% have concentrations consistent with sitosterolemia. Therefore, this diagnosis should be considered in such patients.
Collapse
Affiliation(s)
| | - Paul N Hopkins
- Division of Cardiovascular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Robert A Hegele
- London Regional Research Centre, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Andrew S Geller
- Boston Heart Diagnostics, Framingham, MA, USA; Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | | | - Margaret R Diffenderfer
- Boston Heart Diagnostics, Framingham, MA, USA; Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Ernst J Schaefer
- Boston Heart Diagnostics, Framingham, MA, USA; Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA.
| |
Collapse
|
24
|
Weingärtner O, Lütjohann D, Plösch T, Elsässer A. Individualized lipid-lowering therapy to further reduce residual cardiovascular risk. J Steroid Biochem Mol Biol 2017; 169:198-201. [PMID: 27215141 DOI: 10.1016/j.jsbmb.2016.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 11/24/2022]
Abstract
Hypercholesterolemia is a major risk factor for cardiovascular diseases. Serum cholesterol concentrations are regulated by enteral absorption, biliary secretion, and hepatic synthesis. Statins inhibit the rate-limiting enzyme of cholesterol synthesis, HMG-CoA-reductase, and reduce serum cholesterol concentrations as well as cardiovascular morbidity and mortality. Some studies indicate that patients with high baseline cholesterol absorption may show only a small response to statin treatment in terms of cholesterol lowering. Data from genetic association studies and from the IMPROVE-IT trial show that reducing intestinal cholesterol absorption via NCP1L1 further reduces cardiovascular risk. However, some patients do not attain LDL-cholesterol targets on combination therapy. For these patients PCSK9-antibody treatment and lipid-apheresis are options to be considered. This article reviews the current literature on this issue and suggests 'individualized lipid-lowering therapy' as an approach to optimize and personalize lipid-lowering treatment of patients with hypercholesterolemia to further reduce residual cardiovascular risk.
Collapse
Affiliation(s)
- Oliver Weingärtner
- Department of Cardiology, University Hospital Oldenburg, European Medical School Oldenburg-Groningen, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Bonn, Germany
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Albrecht Elsässer
- Department of Cardiology, University Hospital Oldenburg, European Medical School Oldenburg-Groningen, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
25
|
Gojkovic T, Vladimirov S, Spasojevic-Kalimanovska V, Zeljkovic A, Vekic J, Kalimanovska-Ostric D, Djuricic I, Sobajic S, Jelic-Ivanovic Z. Can non-cholesterol sterols and lipoprotein subclasses distribution predict different patterns of cholesterol metabolism and statin therapy response? Clin Chem Lab Med 2017; 55:447-457. [PMID: 27718480 DOI: 10.1515/cclm-2016-0505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/29/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cholesterol homeostasis disorders may cause dyslipidemia, atherosclerosis progression and coronary artery disease (CAD) development. Evaluation of non-cholesterol sterols (NCSs) as synthesis and absorption markers, and lipoprotein particles quality may indicate the dyslipidemia early development. This study investigates associations of different cholesterol homeostasis patterns with low-density (LDL) and high-density lipoproteins (HDL) subclasses distribution in statin-treated and statin-untreated CAD patients, and potential use of aforementioned markers for CAD treatment optimization. METHODS The study included 78 CAD patients (47 statin-untreated and 31 statin-treated) and 31 controls (CG). NCSs concentrations were quantified using gas chromatography- flame ionization detection (GC-FID). Lipoprotein subclasses were separated by gradient gel electrophoresis. RESULTS In patients, cholesterol-synthesis markers were significantly higher comparing to CG. Cholesterol-synthesis markers were inversely associated with LDL size in all groups. For cholesterol homeostasis estimation, each group was divided to good and/or poor synthetizers and/or absorbers according to desmosterol and β-sitosterol median values. In CG, participants with reduced cholesterol absorption, the relative proportion of small, dense LDL was higher in those with increased cholesterol synthesis compared to those with reduced synthesis (p<0.01). LDL I fraction was significantly higher in poor synthetizers/poor absorbers subgroup compared to poor synthetizers/good absorbers (p<0.01), and good synthetizers/poor absorbers (p<0.01). Statin-treated patients with increased cholesterol absorption had increased proportion of LDL IVB (p<0.05). CONCLUSIONS The results suggest the existence of different lipoprotein abnormalities according to various patterns of cholesterol homeostasis. Desmosterol/β-sitosterol ratio could be used for estimating individual propensity toward dyslipidemia development and direct the future treatment.
Collapse
|
26
|
Corsini A. Low-density lipoprotein cholesterol variability increases the risk of cardiovascular events. J Cardiovasc Med (Hagerstown) 2017; 18 Suppl 1:e91-e93. [DOI: 10.2459/jcm.0000000000000462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Peach M, Xu R, Fitzpatrick D, Hamilton L, Somaratne R, Scott R, Wasserman SM, Djedjos CS. Effect of evolocumab on cholesterol synthesis and absorption. J Lipid Res 2016; 57:2217-2224. [PMID: 27707817 DOI: 10.1194/jlr.p071704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/28/2016] [Indexed: 11/20/2022] Open
Abstract
The effects of cholesterol-lowering drugs, including those that reduce cholesterol synthesis (statins) and those that reduce cholesterol absorption (ezetimibe), on cholesterol absorption and synthesis are well understood. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors are a novel class of cholesterol-lowering drugs that robustly reduce LDL-cholesterol (LDL-C), but little is known about their effects on cholesterol absorption and synthesis. We evaluated how treatment with evolocumab, a fully human monoclonal IgG2 antibody to PCSK9, affects markers of cholesterol synthesis and absorption by measuring these markers in patients from an evolocumab clinical trial. At 2 weeks, changes in β-sitosterol/total cholesterol (TC) from baseline were 4% for placebo, 10% for evolocumab 140 mg (nonsignificant vs. placebo), and 26% for evolocumab 420 mg (P < 0.001 vs. placebo). Changes in campesterol/TC at week 2, relative to baseline between placebo and evolocumab, were all nonsignificant. Evolocumab had a modest effect on markers of cholesterol synthesis. At 2 weeks, changes in desmosterol/TC were 1% for placebo, 7% for evolocumab 140 mg (nonsignificant vs. placebo), and 15% for evolocumab 420 mg (P < 0.01 vs. placebo). Changes from baseline in lathosterol/TC at week 2 between placebo and evolocumab were nonsignificant. These results suggest that evolocumab has a modest effect on cholesterol synthesis and absorption despite significant LDL-C lowering.
Collapse
Affiliation(s)
| | - Ren Xu
- Amgen Inc., Thousand Oaks, CA
| | | | | | | | | | | | | |
Collapse
|
28
|
Barrios V, Escobar C. Improving cardiovascular protection: focus on a cardiovascular polypill. Future Cardiol 2016; 12:181-96. [DOI: 10.2217/fca.15.80] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lack of adherence may explain, at least in part, the poor cardiovascular risk factors control observed in patients with ischemic heart disease, increasing the risk of developing new events. Polypill improves medication adherence, which may actually reduce blood pressure and LDL cholesterol compared with the drugs given separately. The fixed combination of acetylsalicylic acid 100 mg + ramipril 2.5, 5, or 10 mg + either simvastatin 40 mg or atorvastatin 20 mg is the unique cardiovascular polypill that has been registered in 22 countries worldwide. The polypill-containing simvastatin has been specifically tested in a clinical trial including only patients with ischemic heart disease. The FOCUS study showed that patients treated with the polypill showed a higher adherence compared with those receiving separate medications.
Collapse
Affiliation(s)
- Vivencio Barrios
- Department of Cardiology, University Hospital Ramon y Cajal, School of Medicine. University of Alcalá, Madrid, Spain
| | - Carlos Escobar
- Cardiology Department, University Hospital La Paz, Madrid, Spain
| |
Collapse
|
29
|
Suh S, Jung CH, Hong SJ, Kim JS, Song BJ, Sohn HS, Choi SH. Economic Evaluation of Rosuvastatin and Atorvastatin for the Treatment of Dyslipidemia from a Korean Health System Perspective. J Lipid Atheroscler 2016. [DOI: 10.12997/jla.2016.5.1.61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sunghwan Suh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dong-A University Medical Center, Busan, Korea
| | - Chang Hee Jung
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soon-Jun Hong
- Division of Cardiology, Korea University College of Medicine, Seoul, Korea
| | - Jung-Sun Kim
- Division of Cardiology, Yonsei University College of Medicine, Seoul, Korea
| | - Byung Ju Song
- College of Pharmacy, CHA University, Gyeonggi-do, Korea
| | | | - Sung Hee Choi
- Division of Endocrinology and Metabolism, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
30
|
Ascaso JF, Carmena R. Importancia de la dislipidemia en la enfermedad cardiovascular: un punto de vista. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2015; 27:301-8. [DOI: 10.1016/j.arteri.2015.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 11/16/2022]
|
31
|
Dayspring TD, Varvel SA, Ghaedi L, Thiselton DL, Bruton J, McConnell JP. Biomarkers of cholesterol homeostasis in a clinical laboratory database sample comprising 667,718 patients. J Clin Lipidol 2015; 9:807-816. [PMID: 26687702 DOI: 10.1016/j.jacl.2015.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/29/2015] [Accepted: 08/21/2015] [Indexed: 02/05/2023]
Abstract
BACKGROUND Circulating noncholesterol sterols/stanols (NCS) are used in clinical lipidology as surrogate measures of cholesterol synthesis and absorption, where they can be valuable tools in assessing cholesterol metabolism and personalizing therapies in patients with dyslipidemia. OBJECTIVES To describe the distributions of plasma NCS concentrations and inter-NCS correlations in a large cohort of American patients constituting a clinical laboratory database, and to investigate the relationship between circulating NCS, age, sex, and apolipoprotein E (APOE) genotype. METHODS A total of 667,718 patient blood samples submitted for testing to Health Diagnostic Laboratory, Inc. (Richmond, VA) were analyzed for cholesterol absorption markers (sitosterol, campesterol, and cholestanol) and one cholesterol synthesis marker (desmosterol). NCS percentiles were determined, along with intermarker correlations (Pearson's R). Analysis of variance was used to assess the effect of age and sex on NCS level, and to evaluate the relationship between cholesterol synthesis/absorption status and APOE genotype in a subset of 336,866 patients. RESULTS Mean NCS concentrations were: sitosterol, 2.45 μg/mL; campesterol, 3.3 μg/mL; cholestanol, 2.92 μg/mL; and desmosterol 0.99 μg/mL. The correlations between each NCS and its ratio to total cholesterol ranged from 0.72 (cholestanol) to 0.94 (desmosterol). NCS levels were significantly affected by age and sex (P < .0001), and prevalence of cholesterol hyperabsorption was higher in APOE ε4 allele carriers compared with the other APOE genotypes. CONCLUSIONS We have described sample distributions of NCS biomarkers and characterized their relationship to age, sex, and APOE genotype. These data may facilitate research into altered cholesterol homeostasis and human disease, and help physicians optimize lipid-lowering therapies.
Collapse
Affiliation(s)
- Thomas D Dayspring
- Clinical Education Department, Foundation for Health Improvement and Technology (FHIT), Richmond, VA, USA; Clinical Affairs Department, Health Diagnostic Laboratory, Inc., Richmond, VA, USA.
| | - Stephen A Varvel
- Clinical Affairs Department, Health Diagnostic Laboratory, Inc., Richmond, VA, USA
| | - Leila Ghaedi
- Clinical Affairs Department, Health Diagnostic Laboratory, Inc., Richmond, VA, USA
| | - Dawn L Thiselton
- Clinical Affairs Department, Health Diagnostic Laboratory, Inc., Richmond, VA, USA
| | - James Bruton
- Clinical Affairs Department, Health Diagnostic Laboratory, Inc., Richmond, VA, USA
| | - Joseph P McConnell
- Clinical Affairs Department, Health Diagnostic Laboratory, Inc., Richmond, VA, USA
| |
Collapse
|
32
|
Malina DMT, Fonseca FA, Barbosa SA, Kasmas SH, Machado VA, França CN, Borges NC, Moreno RA, Izar MC. Additive effects of plant sterols supplementation in addition to different lipid-lowering regimens. J Clin Lipidol 2015; 9:542-52. [PMID: 26228672 DOI: 10.1016/j.jacl.2015.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/06/2015] [Accepted: 04/21/2015] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Plant sterol (PS) supplementation has been widely used alone or combined with lipid-lowering therapies (LLTs) to reduce low-density lipoprotein (LDL) cholesterol. The effects of PS added to high-intensity LLT are less reported, especially regarding the effects on cholesterol synthesis and absorption. METHODS A prospective, randomized, open-label study, with parallel arms and blinded end points was designed to evaluate the effects of addition of PS to LLT on LDL cholesterol, markers of cholesterol synthesis, and absorption. Eighty-six patients of both genders were submitted to a 4-wk run-in period with atorvastatin 10 mg (baseline). Following, subjects received atorvastatin 40 mg, ezetimibe 10 mg, or combination of both drugs for another 4-wk period (phase I). In phase II, capsules containing 2.0 g of PSs were added to previous assigned treatments for 4 wk. Lipids, apolipoproteins, plasma campesterol, β-sitosterol, and desmosterol levels were assayed at all time points. Within and between-group analyses were performed. RESULTS Compared with baseline, atorvastatin 40 mg reduced total and LDL cholesterol (3% and 22%, respectively, P < .05), increased β-sitosterol, campesterol/cholesterol, and β-sitosterol/cholesterol ratios (39%, 47%, and 32%, respectively, P < .05); ezetimibe 10 mg reduced campesterol and campesterol/cholesterol ratio (67% and 70%, respectively, P < .05), and the combined therapy decreased total and LDL cholesterol (22% and 38%, respectively, P < .05), campesterol, β-sitosterol, and campesterol/cholesterol ratio (54%, 40%, and 27%, P < .05). Addition of PS further reduced total and LDL cholesterol by ∼ 7.7 and 6.5%, respectively, in the atorvastatin therapy group and 5.0 and 4.0% in the combined therapy group (P < .05, for all), with no further effects in absorption or synthesis markers. CONCLUSIONS PS added to LLT can further improve lipid profile, without additional effects on intestinal sterol absorption or synthesis.
Collapse
Affiliation(s)
- Daniela M T Malina
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Francisco A Fonseca
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Sílvio A Barbosa
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Soraia H Kasmas
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Valéria A Machado
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Carolina N França
- Health Sciences Post-Graduation Division, University of Santo Amaro-UNISA, Sao Paulo, Brazil
| | | | | | - Maria C Izar
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
33
|
Rosuvastatin Enhances the Catabolism of LDL apoB-100 in Subjects with Combined Hyperlipidemia in a Dose Dependent Manner. Lipids 2015; 50:447-58. [PMID: 25809021 DOI: 10.1007/s11745-015-4005-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/20/2015] [Indexed: 10/23/2022]
Abstract
Dose-associated effects of rosuvastatin on the metabolism of apolipoprotein (apo) B-100 in triacylglycerol rich lipoprotein (TRL, d < 1.019 g/ml) and low density lipoprotein (LDL) and of apoA-I in high density lipoprotein (HDL) were assessed in subjects with combined hyperlipidemia. Our primary hypothesis was that maximal dose rosuvastatin would decrease the apoB-100 production rate (PR), as well as increase apoB-100 fractional catabolic rate (FCR). Eight subjects received placebo, rosuvastatin 5 mg/day, and rosuvastatin 40 mg/day for 8 weeks each in sequential order. The kinetics of apoB-100 in TRL and LDL and apoA-I in HDL were determined at the end of each phase using stable isotope methodology, gas chromatography-mass spectrometry, and multicompartmental modeling. Rosuvastatin at 5 and 40 mg/day decreased LDL cholesterol by 44 and 54% (both P < 0.0001), triacylglycerol by 14% (ns) and 35% (P < 0.01), apoB by 30 and 36% (both P < 0.0001), respectively, and had no significant effects on HDL cholesterol or apoA-I levels. Significant decreases in plasma markers of cholesterol synthesis and increases in cholesterol absorption markers were observed. Rosuvastatin 5 and 40 mg/day increased TRL apoB-100 FCR by 36 and 46% (both ns) and LDL apoB-100 by 63 and 102% (both P < 0.05), respectively. HDL apoA-I PR increased with low dose rosuvastatin (12%, P < 0.05) but not with maximal dose rosuvastatin. Neither rosuvastatin dose altered apoB-100 PR or HDL apoA-I FCR. Our data indicate that maximal dose rosuvastatin treatment in subjects with combined hyperlipidemia resulted in significant increases in the catabolism of LDL apoB-100, with no significant effects on apoB-100 production or HDL apoA-I kinetics.
Collapse
|
34
|
Abstract
BACKGROUND This represents the first update of this review, which was published in 2012. Atorvastatin is one of the most widely prescribed drugs and the most widely prescribed statin in the world. It is therefore important to know the dose-related magnitude of effect of atorvastatin on blood lipids. OBJECTIVES Primary objective To quantify the effects of various doses of atorvastatin on serum total cholesterol, low-density lipoprotein (LDL)-cholesterol, high-density lipoprotein (HDL)-cholesterol and triglycerides in individuals with and without evidence of cardiovascular disease. The primary focus of this review was determination of the mean per cent change from baseline of LDL-cholesterol. Secondary objectives • To quantify the variability of effects of various doses of atorvastatin.• To quantify withdrawals due to adverse effects (WDAEs) in placebo-controlled randomised controlled trials (RCTs). SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (Issue 11, 2013), MEDLINE (1966 to December Week 2 2013), EMBASE (1980 to December Week 2 2013), Web of Science (1899 to December Week 2 2013) and BIOSIS Previews (1969 to December Week 2 2013). We applied no language restrictions. SELECTION CRITERIA Randomised controlled and uncontrolled before-and-after trials evaluating the dose response of different fixed doses of atorvastatin on blood lipids over a duration of three to 12 weeks. DATA COLLECTION AND ANALYSIS Two review authors independently assessed eligibility criteria for studies to be included and extracted data. We collected information on withdrawals due to adverse effects from placebo-controlled trials. MAIN RESULTS In this update, we found an additional 42 trials and added them to the original 254 studies. The update consists of 296 trials that evaluated dose-related efficacy of atorvastatin in 38,817 participants. Included are 242 before-and-after trials and 54 placebo-controlled RCTs. Log dose-response data from both trial designs revealed linear dose-related effects on blood total cholesterol, LDL-cholesterol, HDL-cholesterol and triglycerides. The Summary of findings table 1 documents the effect of atorvastatin on LDL-cholesterol over the dose range of 10 to 80 mg/d, which is the range for which this systematic review acquired the greatest quantity of data. Over this range, blood LDL-cholesterol is decreased by 37.1% to 51.7% (Summary of findings table 1). The slope of dose-related effects on cholesterol and LDL-cholesterol was similar for atorvastatin and rosuvastatin, but rosuvastatin is about three-fold more potent. Subgroup analyses suggested that the atorvastatin effect was greater in females than in males and was greater in non-familial than in familial hypercholesterolaemia. Risk of bias for the outcome of withdrawals due to adverse effects (WDAEs) was high, but the mostly unclear risk of bias was judged unlikely to affect lipid measurements. Withdrawals due to adverse effects were not statistically significantly different between atorvastatin and placebo groups in these short-term trials (risk ratio 0.98, 95% confidence interval 0.68 to 1.40). AUTHORS' CONCLUSIONS This update resulted in no change to the main conclusions of the review but significantly increases the strength of the evidence. Studies show that atorvastatin decreases blood total cholesterol and LDL-cholesterol in a linear dose-related manner over the commonly prescribed dose range. New findings include that atorvastatin is more than three-fold less potent than rosuvastatin, and that the cholesterol-lowering effects of atorvastatin are greater in females than in males and greater in non-familial than in familial hypercholesterolaemia. This review update does not provide a good estimate of the incidence of harms associated with atorvastatin because included trials were of short duration and adverse effects were not reported in 37% of placebo-controlled trials.
Collapse
Affiliation(s)
- Stephen P Adams
- University of British ColumbiaDepartment of Anesthesiology, Pharmacology and Therapeutics2176 Health Sciences Mall, Medical Block CVancouverBCCanadaV6T 1Z3
| | - Michael Tsang
- McMaster UniversityDepartment of Internal Medicine, Internal Medicine Residency Office, Faculty of Medicine1200 Main Street WestHSC 3W10HamiltonONCanadaL8N 3N5
| | - James M Wright
- University of British ColumbiaDepartment of Anesthesiology, Pharmacology and Therapeutics2176 Health Sciences Mall, Medical Block CVancouverBCCanadaV6T 1Z3
| | | |
Collapse
|
35
|
Abstract
BACKGROUND Rosuvastatin is one of the most potent statins and is currently widely prescribed. It is therefore important to know the dose-related magnitude of effect of rosuvastatin on blood lipids. OBJECTIVES Primary objective To quantify the effects of various doses of rosuvastatin on serum total cholesterol, low-density lipoprotein (LDL)-cholesterol, high-density lipoprotein (HDL)-cholesterol, non-HDL-cholesterol and triglycerides in participants with and without evidence of cardiovascular disease. Secondary objectives To quantify the variability of the effect of various doses of rosuvastatin.To quantify withdrawals due to adverse effects (WDAEs) in the randomized placebo-controlled trials. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) Issue 10 of 12, 2014 in The Cochrane Library, MEDLINE (1946 to October week 5 2014), EMBASE (1980 to 2014 week 44), Web of Science Core Collection (1970 to 5 November 2014) and BIOSIS Citation Index (1969 to 31 October 2014). No language restrictions were applied. SELECTION CRITERIA Randomized controlled and uncontrolled before-and-after trials evaluating the dose response of different fixed doses of rosuvastatin on blood lipids over a duration of three to 12 weeks. DATA COLLECTION AND ANALYSIS Two review authors independently assessed eligibility criteria for studies to be included and extracted data. WDAEs information was collected from the placebo-controlled trials. MAIN RESULTS One-hundred and eight trials (18 placebo-controlled and 90 before-and-after) evaluated the dose-related efficacy of rosuvastatin in 19,596 participants. Rosuvastatin 10 to 40 mg/day caused LDL-cholesterol decreases of 46% to 55%, when all the trials were combined using the generic inverse variance method. The quality of evidence for these effects is high. Log dose-response data over doses of 1 to 80 mg, revealed strong linear dose-related effects on blood total cholesterol, LDL-cholesterol and non-HDL-cholesterol. When compared to atorvastatin, rosuvastatin was about three-fold more potent at reducing LDL-cholesterol. There was no dose-related effect of rosuvastatin on blood HDL-cholesterol, but overall, rosuvastatin increased HDL by 7%. There is a high risk of bias for the trials in this review, which would affect WDAEs, but unlikely to affect the lipid measurements. WDAEs were not statistically different between rosuvastatin and placebo in 10 of 18 of these short-term trials (risk ratio 0.84; 95% confidence interval 0.48 to 1.47). AUTHORS' CONCLUSIONS The total blood total cholesterol, LDL-cholesterol and non-HDL-cholesterol-lowering effect of rosuvastatin was linearly dependent on dose. Rosuvastatin log dose-response data were linear over the commonly prescribed dose range. Based on an informal comparison with atorvastatin, this represents a three-fold greater potency. This review did not provide a good estimate of the incidence of harms associated with rosuvastatin because of the short duration of the trials and the lack of reporting of adverse effects in 44% of the placebo-controlled trials.
Collapse
Affiliation(s)
- Stephen P Adams
- University of British ColumbiaDepartment of Anesthesiology, Pharmacology and Therapeutics2176 Health Sciences Mall, Medical Block CVancouverCanadaV6T 1Z3
| | - Sarpreet S Sekhon
- University of British ColumbiaDepartment of Anesthesiology, Pharmacology and Therapeutics2176 Health Sciences Mall, Medical Block CVancouverCanadaV6T 1Z3
| | - James M Wright
- University of British ColumbiaDepartment of Anesthesiology, Pharmacology and Therapeutics2176 Health Sciences Mall, Medical Block CVancouverCanadaV6T 1Z3
| |
Collapse
|
36
|
Bertolami A, Botelho PB, Macedo LF, Abdalla DS, Faludi AA, Galasso M, Castro IA. Effect of plant sterols compared with ezetimibe on oxidative stress in patients treated with statins. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
37
|
van de Pas NCA, Rullmann JAC, Woutersen RA, van Ommen B, Rietjens IMCM, de Graaf AA. Predicting individual responses to pravastatin using a physiologically based kinetic model for plasma cholesterol concentrations. J Pharmacokinet Pharmacodyn 2014; 41:351-62. [PMID: 25106950 DOI: 10.1007/s10928-014-9369-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 07/03/2014] [Indexed: 12/17/2022]
Abstract
We used a previously developed physiologically based kinetic (PBK) model to analyze the effect of individual variations in metabolism and transport of cholesterol on pravastatin response. The PBK model is based on kinetic expressions for 21 reactions that interconnect eight different body cholesterol pools including plasma HDL and non-HDL cholesterol. A pravastatin pharmacokinetic model was constructed and the simulated hepatic pravastatin concentration was used to modulate the reaction rate constant of hepatic free cholesterol synthesis in the PBK model. The integrated model was then used to predict plasma cholesterol concentrations as a function of pravastatin dose. Predicted versus observed values at 40 mg/d pravastatin were 15 versus 22 % reduction of total plasma cholesterol, and 10 versus 5.6 % increase of HDL cholesterol. A population of 7,609 virtual subjects was generated using a Monte Carlo approach, and the response to a 40 mg/d pravastatin dose was simulated for each subject. Linear regression analysis of the pravastatin response in this virtual population showed that hepatic and peripheral cholesterol synthesis had the largest regression coefficients for the non-HDL-C response. However, the modeling also showed that these processes alone did not suffice to predict non-HDL-C response to pravastatin, contradicting the hypothesis that people with high cholesterol synthesis rates are good statin responders. In conclusion, we have developed a PBK model that is able to accurately describe the effect of pravastatin treatment on plasma cholesterol concentrations and can be used to provide insight in the mechanisms behind individual variation in statin response.
Collapse
Affiliation(s)
- Niek C A van de Pas
- The Netherlands Organization for Applied Scientific Research (TNO), Utrechtseweg 48, P.O. Box 360, 3700 AJ, Zeist, The Netherlands
| | | | | | | | | | | |
Collapse
|
38
|
A moderate-fat diet containing pistachios improves emerging markers of cardiometabolic syndrome in healthy adults with elevated LDL levels. Br J Nutr 2014; 112:744-52. [PMID: 25008473 DOI: 10.1017/s0007114514001561] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A randomised, cross-over, controlled-feeding study was conducted to evaluate the cholesterol-lowering effects of diets containing pistachios as a strategy for increasing total fat (TF) levels v. a control (step I) lower-fat diet. Ex vivo techniques were used to evaluate the effects of pistachio consumption on lipoprotein subclasses and functionality in individuals (n 28) with elevated LDL levels ( ≥ 2·86 mmol/l). The following test diets (SFA approximately 8 % and cholesterol < 300 mg/d) were used: a control diet (25 % TF); a diet comprising one serving of pistachios per d (1PD; 30 % TF); a diet comprising two servings of pistachios per d (2PD; 34 % TF). A significant decrease in small and dense LDL (sdLDL) levels was observed following the 2PD dietary treatment v. the 1PD dietary treatment (P= 0·03) and following the 2PD dietary treatment v. the control treatment (P= 0·001). Furthermore, reductions in sdLDL levels were correlated with reductions in TAG levels (r 0·424, P= 0·025) following the 2PD dietary treatment v. the control treatment. In addition, inclusion of pistachios increased the levels of functional α-1 (P= 0·073) and α-2 (P= 0·056) HDL particles. However, ATP-binding cassette transporter A1-mediated serum cholesterol efflux capacity (P= 0·016) and global serum cholesterol efflux capacity (P= 0·076) were only improved following the 2PD dietary treatment v. the 1PD dietary treatment when baseline C-reactive protein status was low ( < 103μg/l). Moreover, a significant decrease in the TAG:HDL ratio was observed following the 2PD dietary treatment v. the control treatment (P= 0·036). There was a significant increase in β-sitosterol levels (P< 0·0001) with the inclusion of pistachios, confirming adherence to the study protocol. In conclusion, the inclusion of pistachios in a moderate-fat diet favourably affects the cardiometabolic profile in individuals with an increased risk of CVD.
Collapse
|
39
|
Hiro T, Hirayama A, Ueda Y, Komatsu S, Matsuoka H, Takayama T, Ishihara M, Hayashi T, Saito S, Kodama K. Rationale and design of a randomized clinical study to investigate the effect of ezetimibe, a cholesterol absorption inhibitor, on the regression of intracoronary plaque evaluated by non-obstructive angioscopy and ultrasound: The ZIPANGU study. J Cardiol 2014; 64:501-7. [PMID: 24725763 DOI: 10.1016/j.jjcc.2014.02.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 02/20/2014] [Accepted: 02/25/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND PURPOSE It is well recognized that low-density lipoprotein cholesterol (LDL-C)-lowering therapy is effective for primary and secondary prevention of cerebrovascular/cardiovascular disease. Ezetimibe, an inhibitor of the Niemann-Pick C1-Like 1 cholesterol transporter, is a relatively new drug for LDL-C-lowering therapy in addition to statins. However, comparison between an aggressive LDL-C-lowering therapy with a combination of statin and ezetimibe versus a standard LDL-C-lowering therapy with statin alone is still unclear in terms of their effects on stabilization and volume regression of coronary plaque. The ZIPANGU (Ezetimibe clinical investigation for the regression of intracoronary plaque evaluated by angioscopy and ultrasound) study is aimed at comparing these two types of therapy based on indices of plaque characteristics using non-obstructive coronary angioscopy and intravascular ultrasound. METHODS The study is a multi-center, prospective, randomized, open-label, blinded-endpoint trial. Through a centralized enrollment method, patients will be allocated to either monotherapy with atorvastatin alone or to combination therapy with atorvastatin (maximum: 20mg/day) and ezetimibe (10mg/day). The target LDL-C level will be <100mg/dL for the monotherapy group and <70mg/dL for the combination therapy group. At the baseline and the follow-up period of 9 months, non-obstructive coronary angioscopy and intravascular ultrasound will be performed to compare the changes in plaque color and volume between the two groups. CONCLUSIONS The ZIPANGU study will clarify whether combination therapy with statins and ezetimibe is better for stabilizing coronary plaque as secondary prevention than monotherapy by statins alone. The study will give new insights into lipid-lowering guidelines in Japan.
Collapse
Affiliation(s)
- Takafumi Hiro
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan.
| | - Atsushi Hirayama
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yasunori Ueda
- Cardiovascular Division, Osaka Police Hospital, Osaka, Japan
| | - Sei Komatsu
- Cardiovascular Center, Amagasaki Central Hospital, Amagasaki, Japan
| | - Hiroshi Matsuoka
- Department of Cardiovascular Medicine, Ehime Prefectural Imabari Hospital, Imabari, Japan
| | - Tadateru Takayama
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Masaharu Ishihara
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center Hospital, Suita, Japan
| | | | - Satoshi Saito
- Division of Cardiovascular Medicine, Keiai Hospital, Tokyo, Japan
| | - Kazuhisa Kodama
- Cardiovascular Center, Amagasaki Central Hospital, Amagasaki, Japan; Second Research Team, J-MIC Committee, Japan Health Promotion Foundation, Tokyo, Japan
| | | |
Collapse
|
40
|
Wu AH. Biomarkers for Cholesterol Absorption and Synthesis in Hyperlipidemic Patients. Clin Lab Med 2014; 34:157-66, viii. [DOI: 10.1016/j.cll.2013.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Chuang JC, Valasek MA, Lopez AM, Posey KS, Repa JJ, Turley SD. Sustained and selective suppression of intestinal cholesterol synthesis by Ro 48-8071, an inhibitor of 2,3-oxidosqualene:lanosterol cyclase, in the BALB/c mouse. Biochem Pharmacol 2014; 88:351-63. [PMID: 24486573 DOI: 10.1016/j.bcp.2014.01.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 01/11/2023]
Abstract
The small intestine plays a fundamentally important role in regulating whole body cholesterol balance and plasma lipoprotein composition. This is articulated through the interplay of a constellation of genes that ultimately determines the net amount of chylomicron cholesterol delivered to the liver. Major advances in our insights into regulation of the cholesterol absorption pathway have been made using genetically manipulated mouse models and agents such as ezetimibe. One unresolved question is how a sustained pharmacological inhibition of intestinal cholesterol synthesis in vivo may affect cholesterol handling by the absorptive cells. Here we show that the lanosterol cyclase inhibitor, Ro 48-8071, when fed to BALB/c mice in a chow diet (20 mg/day/kg body weight), leads to a rapid and sustained inhibition (>50%) of cholesterol synthesis in the whole small intestine. Sterol synthesis was also reduced in the large intestine and stomach. In contrast, hepatic cholesterol synthesis, while markedly suppressed initially, rebounded to higher than baseline rates within 7 days. Whole body cholesterol synthesis, fractional cholesterol absorption, and fecal neutral and acidic sterol excretion were not consistently changed with Ro 48-8071 treatment. There were no discernible effects of this agent on intestinal histology as determined by H&E staining and the level of Ki67, an index of proliferation. The mRNA expression for multiple genes involved in intestinal cholesterol regulation including NPC1L1 was mostly unchanged although there was a marked rise in the mRNA level for the PXR target genes CYP3A11 and CES2A.
Collapse
Affiliation(s)
- Jen-Chieh Chuang
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| | - Mark A Valasek
- Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| | - Adam M Lopez
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| | - Kenneth S Posey
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| | - Joyce J Repa
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States; Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| | - Stephen D Turley
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| |
Collapse
|
42
|
Wu AHB, Ruan W, Todd J, Lynch KL. Biological variation of β-sitosterol, campesterol, and lathosterol as cholesterol absorption and synthesis biomarkers. Clin Chim Acta 2014; 430:43-7. [PMID: 24394292 DOI: 10.1016/j.cca.2013.12.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 12/26/2013] [Accepted: 12/27/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND The analysis of blood for β-sitosterol and campesterol is the measures of cholesterol absorption while lathosterol is a measure of cholesterol synthesis. METHODS The biological variability of β-sitosterol, campesterol, and lathosterol was measured using liquid-chromatography tandem mass spectrometry from a cohort of 25 apparently healthy subjects, where blood was taken once every weeks for 6 weeks. The analytical, intra-individual, and group inter-individual variations (CVA, CV(I), and CV(G), respectively) were calculated. RESULTS Using absolute values, the CVI for β-sitosterol, campesterol, and lathosterol was 11.8%, 11.8%, and 22.5%, respectively, and the CV(G) was 28.5%, 28.8%, and 52.0%, respectively. This produced reference change values of about 24-36% for declining values and 32-47% for increasing values. The index of individuality was between 0.41 and 0.58, indicating that population based reference values are of little use for these biomarkers. The number of points needed for a homeostatic setpoint was 5 samples for β-sitosterol and campesterol, and 19 samples for lathosterol. Similar findings were observed for values when normalized to total cholesterol. These results were higher than the biological variation for total, low density and high density cholesterol obtained from the literature. Results were essentially identical when sterol values were corrected to their respective total cholesterol concentration. CONCLUSIONS The establishment of the biological variation for these biomarkers enables their use in the interpretation of results from clinical trials and lipid lowering treatment of patients at risk for cardiovascular disease in clinical practice.
Collapse
Affiliation(s)
- Alan H B Wu
- Clinical Chemistry Laboratory, Department of Laboratory Medicine, San Francisco General Hospital, University of California, San Francisco, CA, United States.
| | - Weiming Ruan
- Clinical Chemistry Laboratory, Department of Laboratory Medicine, San Francisco General Hospital, University of California, San Francisco, CA, United States
| | - John Todd
- Singluex Inc., Alameda, CA, United States
| | - Kara L Lynch
- Clinical Chemistry Laboratory, Department of Laboratory Medicine, San Francisco General Hospital, University of California, San Francisco, CA, United States
| |
Collapse
|
43
|
Simvastatin treatment upregulates intestinal lipid secretion pathways in a rodent model of the metabolic syndrome. Atherosclerosis 2013; 232:141-8. [PMID: 24401228 DOI: 10.1016/j.atherosclerosis.2013.10.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 10/15/2013] [Accepted: 10/30/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Statins are widely used for the treatment of hyperlipidemia to reduce cardiovascular disease (CVD) risk. Intriguingly, recent reports suggest that whilst statins are effective in reducing hepatic cholesterol synthesis, they in turn may up-regulate intestinal cholesterol absorption. The direct effects and/or mechanisms of this phenomenon remain largely unknown. The aim of this study was to investigate the potential for statins to increase intestinal lipid absorption and/or secretion in a rodent model of the metabolic syndrome (MetS). METHODS AND RESULTS Mets JCR:LA-cp rats received a 1% cholesterol diet containing Simvastatin (0.01% w/w), for 8 weeks. Fasting and postprandial plasma biochemical profile was assessed using enzymatic assays and a modified apoB48 (chylomicron; CM) western blotting protocol. Statin treatment reduced fasting plasma TG (-49%), cholesterol (-24%) and postprandial plasma apoB48 (-58%). The intestinal secretion of lipids into mesenteric lymph was assessed using lymph fistulae procedures. Interestingly, MetS rats treated with statin secreted greater cholesterol (1.9-fold) and TG (1.5-fold) per apoB48 particle, into mesenteric lymph. This was shown to be as a result of simvastatin-induced increase in intestinal cholesterol absorption (31.5%). Experiments using in vivo inhibition of lipoprotein lipase (LPL; poloxamer-407) demonstrated statin treatment reduced hepatic cholesterol secretion (-49%), but significantly increased hepatic (73%) TG secretion in MetS rats. Statin treatment also increased the expression of genes involved in lipid synthesis (Hmgcr, Srebp1, Fas, Acc; 33-67%) and reduced those involved in efflux (Abca1, Abcg8; -36 to 73%) in enterocytes and liver of MetS rats versus untreated control. CONCLUSIONS In a rodent model of MetS, statin treatment adversely up-regulates intestinal lipid secretion as a result of increased intestinal cholesterol absorption, and increases the intestinal expression of genes involved in lipid synthesis; effects which may confound clinical benefits to remnant dyslipidemia.
Collapse
|
44
|
Kane L, Moore K, Lütjohann D, Bikle D, Schwartz JB. Vitamin D3 effects on lipids differ in statin and non-statin-treated humans: superiority of free 25-OH D levels in detecting relationships. J Clin Endocrinol Metab 2013; 98:4400-9. [PMID: 24030939 PMCID: PMC3816263 DOI: 10.1210/jc.2013-1922] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Inverse associations between 25-OH vitamin D levels and cardiovascular morbidity and mortality have been reported. OBJECTIVES Our goals were to 1) investigate effects of correcting inadequate D status on lipids, 2) determine whether free 25-OH D is better correlated with lipids than total 25-OH D. DESIGN A randomized, double-blind placebo-controlled trial was performed. SETTING Participants resided in the general community. PARTICIPANTS Adults with inadequate D status were randomized to D3: 14 men, 12 women, age 60 ± 8 years (mean ± SD) or placebo: 12 men, 11 women: 59 ±12 years. INTERVENTION Responses to 12-week oral vitamin D3 titrated (1000-3000 IU/d) to achieve 25-OH D levels ≥25 ng/mL were compared to placebo. MAIN OUTCOME MEASURES Measurements were 25-OH D (tandem mass spectometry), free 25-OH D (direct immunoassay), lipids (directly measured triglyceride, cholesterol, and subfractions; plant sterols and cholesterol synthesis precursors), and safety labs before and after 6 and 12 weeks D3 or placebo. Data were analyzed by repeated measures ANOVA and linear regression. RESULTS Vitamin D3 was titrated to 1000 IU/d in 15/26 (58%), to 2000 IU/d in 10, and 3000 IU/d in one patient. D3 had no effect on cholesterol or cholesterol subfractions except for trends for decreases in atorvastatin-treated patients (cholesterol, P = .08; low-density lipoprotein [LDL] cholesterol, P = .05). Decreased campesterol concentrations (P = .05) were seen with D3 but not placebo in statin-treated patients. Relationships between total 25-OH D and lipids were not detected, but inverse linear relationships were detected between free 25-OH D and triglycerides (P = .03 for all participants [n = 49], P = .03 in all statin-treated [n = 19], and P = .0009 in atorvastatin-treated [n = 11]), and between free 25-OH D and LDL cholesterol (P = .08 overall, P = .02 in all statin-treated, and P = .03 for atorvastatin-treated), and total cholesterol (P = .09 overall; P = .04 for all statin-treated, and P = .05 for atorvastatin-treated). CONCLUSIONS Vitamin D lipid-lowering effects appear limited to statin-treated patients and are likely due to decreased cholesterol absorption. Relationships between lipids and D metabolites were only detected when free 25-OH D was measured, suggesting the superiority of determining free 25-OH D levels compared to total 25-OH vitamin D levels when analyzing biologic responses.
Collapse
Affiliation(s)
- Lynn Kane
- MD, 302 Silver Avenue, San Francisco, CA 94112.
| | | | | | | | | |
Collapse
|
45
|
Brouwers MCGJ, Konrad RJ, van Himbergen TM, Isaacs A, Otokozawa S, Troutt JS, Schaefer EJ, van Greevenbroek MMJ, Stalenhoef AFH, de Graaf J. Plasma proprotein convertase subtilisin kexin type 9 levels are related to markers of cholesterol synthesis in familial combined hyperlipidemia. Nutr Metab Cardiovasc Dis 2013; 23:1115-1121. [PMID: 23333725 DOI: 10.1016/j.numecd.2012.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 10/13/2012] [Accepted: 11/24/2012] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Two recent independent studies showed that patients with familial combined hyperlipidemia (FCHL) have elevated plasma levels of proprotein convertase subtilisin kexin type 9 (PCSK9) and markers of cholesterol synthesis. Both PCSK9 expression and cholesterol synthesis are downstream effects of hepatic activation of sterol regulatory element binding protein 2 (SREBP2). The present study was conducted to study the relationship between plasma PCSK9 and markers of cholesterol synthesis in FCHL. METHODS AND RESULTS Markers of cholesterol synthesis (squalene, desmosterol, lathosterol), cholesterol absorption (campesterol, sitosterol, cholestanol) and PCSK9 were measured in plasma of FCHL patients (n = 103) and their normolipidemic relatives (NLR; n = 240). Plasma PCSK9, lathosterol and desmosterol levels were higher in FCHL patients than their NLR (p < 0.001, age and sex adjusted). Heritability calculations demonstrated that 35% of the variance in PCSK9 levels could be explained by additive genetic effects (p < 0.001). Significant age- and sex-adjusted correlations were observed for the relationship between PCSK9 and lathosterol, both unadjusted and adjusted for cholesterol, in the overall FCHL population (both p < 0.001). Multivariate regression analyses, with PCSK9 as the dependent variable, showed that the regression coefficient for FCHL status decreased by 25% (from 0.8 to 0.6) when lathosterol was included. Nevertheless, FCHL status remained an independent contributor to plasma PCSK9 (p < 0.001). CONCLUSIONS The present study confirms the previously reported high and heritable PCSK9 levels in FCHL patients. Furthermore, we now show that high PCSK9 levels are, in part, explained by plasma lathosterol, suggesting that SREBP2 activation partly accounts for elevated PCSK9 levels in FCHL.
Collapse
Affiliation(s)
- M C G J Brouwers
- Department of Internal Medicine, divisions of General Internal Medicine and Endocrinology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Qi Y, Liu J, Ma C, Wang W, Liu X, Wang M, Lv Q, Sun J, Liu J, Li Y, Zhao D. Association between cholesterol synthesis/absorption markers and effects of cholesterol lowering by atorvastatin among patients with high risk of coronary heart disease. J Lipid Res 2013; 54:3189-97. [PMID: 23964121 DOI: 10.1194/jlr.p040360] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
No indices are currently available to facilitate clinicians to identify patients who need either statin monotherapy or statin-ezetimibe combined treatment. We aimed to investigate whether cholesterol synthesis and absorption markers can predict the cholesterol-lowering response to statin. Total 306 statin-naïve patients with high risk of coronary heart disease (CHD) were treated with atorvastatin 20 mg/day for 1 month. Cholesterol synthesis and absorption markers and LDL cholesterol (LDL-C) levels were measured before and after treatment. Atorvastatin decreased LDL-C by 36.8% (range: decrease of 74.5% to increase of 31.9%). Baseline cholesterol synthesis marker lathosterol and cholesterol absorption marker campesterol codetermined the effect of atorvastatin treatment. The effect of cholesterol lowering by atorvastatin was significantly associated with baseline lathosterol levels but modified bidirectionally by baseline campesterol levels. In patients with the highest baseline campesterol levels, atorvastatin treatment decreased cholesterol absorption by 46.1%, which enhanced the effect of LDL-C lowering. Atorvastatin treatment increased cholesterol absorption by 52.3% in those with the lowest baseline campesterol levels, which attenuated the effect of LDL-C reduction. Especially those with the highest lathosterol but the lowest campesterol levels at baseline had significantly less LDL-C reduction than those with the same baseline lathosterol levels but the highest campesterol levels (27.3% versus 42.4%, P = 0.002). These results suggest that combined patterns of cholesterol synthesis/absorption markers, rather than each single marker, are potential predictors of the LDL-C-lowering effects of atorvastatin in high-risk CHD patients.
Collapse
Affiliation(s)
- Yue Qi
- Departments of Epidemiology Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gas chromatography analysis of serum cholesterol synthesis and absorption markers used to predict the efficacy of simvastatin in patients with coronary heart disease. Clin Biochem 2013; 46:993-998. [PMID: 23598259 DOI: 10.1016/j.clinbiochem.2013.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/27/2013] [Accepted: 04/05/2013] [Indexed: 12/21/2022]
Abstract
OBJECTIVES We investigated the changes in cholesterol absorption and synthesis markers before and after simvastatin therapy in Chinese patients with coronary heart disease. DESIGN AND METHOD We developed a gas chromatography method to identify cholesterol synthesis and absorption markers and measured them in patients with coronary heart disease. We then tested their use in predicting the efficacy of simvastatin in lowering cholesterol. Serum samples from 45 patients and 38 healthy humans (controls) were analyzed in a gas chromatography-flame ionization detector. RESULTS Squalene and five non-cholesterol sterols--desmosterol and lathosterol (synthesis markers) and campesterol, stigmasterol, and sitosterol (absorption markers)--were detected. The recovery rates of the markers were 95-102%. After simvastatin treatment for four weeks, the total cholesterol and low-density lipoprotein cholesterol levels had significantly decreased from the baseline values (p<0.05). The baseline lathosterol level was significantly higher in good responders than in poor responders (p<0.05), and the stigmasterol level was significantly lower in good responders than in poor responders (p<0.05). CONCLUSIONS This method should be suitable for the detection of serum squalene and non-cholesterol markers and can be used to predict the efficacy of simvastatin in patients with coronary heart disease.
Collapse
|
48
|
Nehme MA, Upadhyay A. Ezetimibe in the Treatment of Patients with Metabolic Diseases. EUROPEAN ENDOCRINOLOGY 2013; 9:55-60. [PMID: 30349611 PMCID: PMC6193517 DOI: 10.17925/ee.2013.09.01.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 02/28/2013] [Indexed: 06/08/2023]
Abstract
Dyslipidemia is an established risk factor for cardiovascular disease. While statin therapy remains the most important component of dyslipidemia management, a substantial proportion of patients on statin monotherapy fails to achieve guideline-recommended lipid levels. Ezetimibe is a second-line lipid-lowering agent that reduces sterol absorption, and has a favorable effect on lipid profile. This article reviews studies examining the role of ezetimibe on lipid profile, metabolic biomarkers, and cardiovascular outcomes in individuals with metabolic diseases. Special focus is given to studies in patients with dyslipidemia, Type 2 diabetes, and the metabolic syndrome. The controversy surrounding the role of ezetimibe in mitigating atherosclerosis is also highlighted. The article concludes that the ezetimibe-statin combination improves lipid parameters and helps attain guideline-recommended lipid goals in patients with metabolic diseases. However, further research is needed to better understand the role of ezetimibe monotherapy, and the impact of ezetimibe on clinical cardiovascular outcomes.
Collapse
|
49
|
Abstract
BACKGROUND Atorvastatin is one of the most widely prescribed drugs and the most widely prescribed statin in the world. It is therefore important to know the dose-related magnitude of effect of atorvastatin on blood lipids. OBJECTIVES To quantify the dose-related effects of atorvastatin on blood lipids and withdrawals due to adverse effects (WDAE). SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) on The Cochrane Library Issue 4, 2011, MEDLINE (1966 to November 2011), EMBASE (1980 to November 2011), ISI Web of Science (1899 to November 2011) and BIOSIS Previews (1969 to November 2011). No language restrictions were applied. SELECTION CRITERIA Randomised controlled and uncontrolled before-and-after trials evaluating the dose response of different fixed doses of atorvastatin on blood lipids over a duration of 3 to 12 weeks. DATA COLLECTION AND ANALYSIS Two review authors independently assessed trial quality and extracted data. WDAE information was collected from the placebo-controlled trials. MAIN RESULTS Two hundred fifty-four trials evaluated the dose-related efficacy of atorvastatin in 33,505 participants. Log dose-response data revealed linear dose-related effects on blood total cholesterol, low-density lipoprotein (LDL)-cholesterol and triglycerides. Combining all the trials using the generic inverse variance fixed-effect model for doses of 10 to 80 mg/day resulted in decreases of 36% to 53% for LDL-cholesterol. There was no significant dose-related effects of atorvastatin on blood high-density lipoprotein (HDL)-cholesterol. WDAE were not statistically different between atorvastatin and placebo for these short-term trials (risk ratio 0.99; 95% confidence interval 0.68 to 1.45). AUTHORS' CONCLUSIONS Blood total cholesterol, LDL-cholesterol and triglyceride lowering effect of atorvastatin was dependent on dose. Log dose-response data was linear over the commonly prescribed dose range. Manufacturer-recommended atorvastatin doses of 10 to 80 mg/day resulted in 36% to 53% decreases of LDL-cholesterol. The review did not provide a good estimate of the incidence of harms associated with atorvastatin because of the short duration of the trials and the lack of reporting of adverse effects in 37% of the placebo-controlled trials.
Collapse
Affiliation(s)
- Stephen P Adams
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver,
| | | | | |
Collapse
|
50
|
Thongtang N, Lin J, Schaefer EJ, Lowe RS, Tomassini JE, Shah AK, Tershakovec AM. Effects of ezetimibe added to statin therapy on markers of cholesterol absorption and synthesis and LDL-C lowering in hyperlipidemic patients. Atherosclerosis 2012; 225:388-96. [PMID: 23040830 PMCID: PMC3749834 DOI: 10.1016/j.atherosclerosis.2012.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 08/10/2012] [Accepted: 09/02/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Statins inhibit cholesterol synthesis but can upregulate cholesterol absorption, with higher doses producing larger effects. Ezetimibe inhibits cholesterol absorption but also upregulates synthesis. We tested whether ezetimibe added to on-going statin therapy would be most effective in lowering LDL-cholesterol (LDL-C) in subjects on high-potency statins and whether these effects would be related to alterations in cholesterol absorption (β-sitosterol) and synthesis (lathosterol) markers. METHODS Hypercholesterolemic subjects (n = 874) on statins received ezetimibe 10 mg/day. Plasma lipids, lathosterol, and β-sitosterol were measured at baseline and on treatment. Subjects were divided into low- (n = 133), medium- (n = 582), and high- (n = 159) statin potency groups defined by predicted LDL-C-lowering effects of each ongoing statin type and dose (reductions of ~20-30%, ~31-45%, or ~46-55%, respectively). RESULTS The high-potency group had significantly lower baseline lathosterol (1.93 vs. 2.58 vs. 3.17 μmol/l; p < 0.001) and higher baseline β-sitosterol values (6.21 vs. 4.58 vs. 4.51 μmol/l, p < 0.001) than medium-/low-potency groups. Ezetimibe treatment in the high-potency group produced significantly greater reductions from baseline in LDL-C than medium-/low-potency groups (-29.1% vs. -25.0% vs. -22.7%; p < 0.001) when evaluating unadjusted data. These effects and group differences were significantly (p < 0.05) related to greater β-sitosterol reductions and smaller lathosterol increases. However, LDL-C reduction differences between groups were no longer significant after controlling for placebo effects, due mainly to modest LDL-C lowering by placebo in the high-potency group. CONCLUSION Patients on high-potency statins have the lowest levels of cholesterol synthesis markers and the highest levels of cholesterol absorption markers at baseline, and the greatest reduction in absorption markers and the smallest increases in synthesis markers with ezetimibe addition. Therefore, such patients may be good candidates for ezetimibe therapy if additional LDL-C lowering is needed.
Collapse
Affiliation(s)
- Nuntakorn Thongtang
- Lipid Metabolism Laboratory, Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111, USA.
| | | | | | | | | | | | | |
Collapse
|