1
|
Hong R, Tong Y, Tang H, Zeng T, Liu R. eMCI: An Explainable Multimodal Correlation Integration Model for Unveiling Spatial Transcriptomics and Intercellular Signaling. RESEARCH (WASHINGTON, D.C.) 2024; 7:0522. [PMID: 39494219 PMCID: PMC11528068 DOI: 10.34133/research.0522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/23/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
Current integration methods for single-cell RNA sequencing (scRNA-seq) data and spatial transcriptomics (ST) data are typically designed for specific tasks, such as deconvolution of cell types or spatial distribution prediction of RNA transcripts. These methods usually only offer a partial analysis of ST data, neglecting the complex relationship between spatial expression patterns underlying cell-type specificity and intercellular cross-talk. Here, we present eMCI, an explainable multimodal correlation integration model based on deep neural network framework. eMCI leverages the fusion of scRNA-seq and ST data using different spot-cell correlations to integrate multiple synthetic analysis tasks of ST data at cellular level. First, eMCI can achieve better or comparable accuracy in cell-type classification and deconvolution according to wide evaluations and comparisons with state-of-the-art methods on both simulated and real ST datasets. Second, eMCI can identify key components across spatial domains responsible for different cell types and elucidate the spatial expression patterns underlying cell-type specificity and intercellular communication, by employing an attribution algorithm to dissect the visual input. Especially, eMCI has been applied to 3 cross-species datasets, including zebrafish melanomas, soybean nodule maturation, and human embryonic lung, which accurately and efficiently estimate per-spot cell composition and infer proximal and distal cellular interactions within the spatial and temporal context. In summary, eMCI serves as an integrative analytical framework to better resolve the spatial transcriptome based on existing single-cell datasets and elucidate proximal and distal intercellular signal transduction mechanisms over spatial domains without requirement of biological prior reference. This approach is expected to facilitate the discovery of spatial expression patterns of potential biomolecules with cell type and cell-cell communication specificity.
Collapse
Affiliation(s)
- Renhao Hong
- School of Mathematics,
South China University of Technology, Guangzhou 510640, China
| | - Yuyan Tong
- School of Mathematics,
South China University of Technology, Guangzhou 510640, China
| | - Hui Tang
- School of Mathematics and Big Data,
Foshan University, Foshan 528000, China
| | - Tao Zeng
- Guangzhou National Laboratory, Guangzhou, China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Rui Liu
- School of Mathematics,
South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
2
|
Takigawa-Imamura H, Fumoto K, Takesue H, Miura T. Exploiting mechanisms for hierarchical branching structure of lung airway. PLoS One 2024; 19:e0309464. [PMID: 39213428 PMCID: PMC11364422 DOI: 10.1371/journal.pone.0309464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The lung airways exhibit distinct features with long, wide proximal branches and short, thin distal branches, crucial for optimal respiratory function. In this study, we investigated the mechanism behind this hierarchical structure through experiments and modeling, focusing on the regulation of branch length and width during the pseudoglandular stage. To evaluate the response of mouse lung epithelium to fibroblast growth factor 10 (FGF10), we monitored the activity of extracellular signal-regulated kinase (ERK). ERK activity exhibited an increase dependent on the curvature of the epithelial tissue, which gradually decreased with the progression of development. We then constructed a computational model that incorporates curvature-dependent growth to predict its impact on branch formation. It was demonstrated that branch length is determined by the curvature dependence of growth. Next, in exploring branch width regulation, we considered the effect of apical constriction, a mechanism we had previously proposed to be regulated by Wnt signaling. Analysis of a mathematical model representing apical constriction showed that branch width is determined by cell shape. Finally, we constructed an integrated computational model that includes curvature-dependent growth and cell shape controls, confirming their coordination in regulating branch formation. This study proposed that changes in the autonomous property of the epithelium may be responsible for the progressive branch morphology.
Collapse
Affiliation(s)
- Hisako Takigawa-Imamura
- Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsumi Fumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiroaki Takesue
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Miura
- Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Yang X, Chen Y, Yang Y, Li S, Mi P, Jing N. The molecular and cellular choreography of early mammalian lung development. MEDICAL REVIEW (2021) 2024; 4:192-206. [PMID: 38919401 PMCID: PMC11195428 DOI: 10.1515/mr-2023-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/08/2024] [Indexed: 06/27/2024]
Abstract
Mammalian lung development starts from a specific cluster of endodermal cells situated within the ventral foregut region. With the orchestrating of delicate choreography of transcription factors, signaling pathways, and cell-cell communications, the endodermal diverticulum extends into the surrounding mesenchyme, and builds the cellular and structural basis of the complex respiratory system. This review provides a comprehensive overview of the current molecular insights of mammalian lung development, with a particular focus on the early stage of lung cell fate differentiation and spatial patterning. Furthermore, we explore the implications of several congenital respiratory diseases and the relevance to early organogenesis. Finally, we summarize the unprecedented knowledge concerning lung cell compositions, regulatory networks as well as the promising prospect for gaining an unbiased understanding of lung development and lung malformations through state-of-the-art single-cell omics.
Collapse
Affiliation(s)
- Xianfa Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| | - Yingying Chen
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| | - Yun Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shiting Li
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan Province, China
| | - Panpan Mi
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Naihe Jing
- Guangzhou National Laboratory, Guangzhou, Guangdong Province, China
| |
Collapse
|
4
|
Parslow VR, Elmore SA, Cochran RZ, Bolon B, Mahler B, Sabio D, Lubeck BA. Histology Atlas of the Developing Mouse Respiratory System From Prenatal Day 9.0 Through Postnatal Day 30. Toxicol Pathol 2024; 52:153-227. [PMID: 39096105 DOI: 10.1177/01926233241252114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Respiratory diseases are one of the leading causes of death and disability around the world. Mice are commonly used as models of human respiratory disease. Phenotypic analysis of mice with spontaneous, congenital, inherited, or treatment-related respiratory tract abnormalities requires investigators to discriminate normal anatomic features of the respiratory system from those that have been altered by disease. Many publications describe individual aspects of normal respiratory tract development, primarily focusing on morphogenesis of the trachea and lung. However, a single reference providing detailed low- and high-magnification, high-resolution images of routine hematoxylin and eosin (H&E)-stained sections depicting all major structures of the entire developing murine respiratory system does not exist. The purpose of this atlas is to correct this deficiency by establishing one concise reference of high-resolution color photomicrographs from whole-slide scans of H&E-stained tissue sections. The atlas has detailed descriptions and well-annotated images of the developing mouse upper and lower respiratory tracts emphasizing embryonic days (E) 9.0 to 18.5 and major early postnatal events. The selected images illustrate the main structures and events at key developmental stages and thus should help investigators both confirm the chronological age of mouse embryos and distinguish normal morphology as well as structural (cellular and organ) abnormalities.
Collapse
Affiliation(s)
| | - Susan A Elmore
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - Robert Z Cochran
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | - Beth Mahler
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - David Sabio
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | - Beth A Lubeck
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
5
|
Ryser MD, Greenwald MA, Sorribes IC, King LM, Hall A, Geradts J, Weaver DL, Mallo D, Holloway S, Monyak D, Gumbert G, Vaez-Ghaemi S, Wu E, Murgas K, Grimm LJ, Maley CC, Marks JR, Shibata D, Hwang ES. Growth Dynamics of Ductal Carcinoma in Situ Recapitulate Normal Breast Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.01.560370. [PMID: 37873488 PMCID: PMC10592867 DOI: 10.1101/2023.10.01.560370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Ductal carcinoma in situ (DCIS) and invasive breast cancer share many morphologic, proteomic, and genomic alterations. Yet in contrast to invasive cancer, many DCIS tumors do not progress and may remain indolent over decades. To better understand the heterogenous nature of this disease, we reconstructed the growth dynamics of 18 DCIS tumors based on the geo-spatial distribution of their somatic mutations. The somatic mutation topographies revealed that DCIS is multiclonal and consists of spatially discontinuous subclonal lesions. Here we show that this pattern of spread is consistent with a new 'Comet' model of DCIS tumorigenesis, whereby multiple subclones arise early and nucleate the buds of the growing tumor. The discontinuous, multiclonal growth of the Comet model is analogous to the branching morphogenesis of normal breast development that governs the rapid expansion of the mammary epithelium during puberty. The branching morphogenesis-like dynamics of the proposed Comet model diverges from the canonical model of clonal evolution, and better explains observed genomic spatial data. Importantly, the Comet model allows for the clinically relevant scenario of extensive DCIS spread, without being subjected to the selective pressures of subclone competition that promote the emergence of increasingly invasive phenotypes. As such, the normal cell movement inferred during DCIS growth provides a new explanation for the limited risk of progression in DCIS and adds biologic rationale for ongoing clinical efforts to reduce DCIS overtreatment.
Collapse
Affiliation(s)
- Marc D. Ryser
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
- Department of Mathematics, Duke University, Durham, NC, USA
| | | | | | - Lorraine M. King
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Allison Hall
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Joseph Geradts
- Department of Pathology, East Carolina University School of Medicine, Greenville, NC, USA
| | - Donald L. Weaver
- Larner College of Medicine, University of Vermont and UVM Cancer Center, Burlington, VT, USA
| | - Diego Mallo
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Shannon Holloway
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Daniel Monyak
- Trinity College of Arts and Sciences, Duke University, Durham, NC
| | - Graham Gumbert
- Trinity College of Arts and Sciences, Duke University, Durham, NC
| | | | - Ethan Wu
- Trinity College of Arts and Sciences, Duke University, Durham, NC
| | - Kevin Murgas
- Department of Biomedical Informatics, Stony Brook University School of Medicine, Stony Brook, NY, USA
| | - Lars J. Grimm
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Carlo C. Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jeffrey R. Marks
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Darryl Shibata
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - E. Shelley Hwang
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
6
|
Huang R, Zhang C, Zheng Y, Zhang W, Huang H, Qiu M, Li J, Li F. ISL1 regulates lung branching morphogenesis via Shh signaling pathway. J Biol Chem 2023; 299:105034. [PMID: 37442233 PMCID: PMC10406864 DOI: 10.1016/j.jbc.2023.105034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Lung branching morphogenesis relies on a complex coordination of multiple signaling pathways and transcription factors. Here, we found that ablation of the LIM homeodomain transcription factor Islet1 (Isl1) in lung epithelium resulted in defective branching morphogenesis and incomplete formation of five lobes. A reduction in mesenchymal cell proliferation was observed in Isl1ShhCre lungs. There was no difference in apoptosis between the wild-type (ShhCre) and Isl1ShhCre embryos. RNA-Seq and in situ hybridization analysis showed that Shh, Ptch1, Sox9, Irx1, Irx2, Tbx2, and Tbx3 were downregulated in the lungs of Isl1ShhCre embryos. ChIP assay implied the Shh gene served as a direct target of ISL1, since the transcription factor ISL1 could bind to the Shh epithelial enhancer sequence (MACS1). Also, activation of the Hedgehog pathway via ectopic gene expression rescued the defects caused by Isl1 ablation, confirming the genetic integration of Hedgehog signaling. In conclusion, our works suggest that epithelial Isl1 regulates lung branching morphogenesis through administrating the Shh signaling mediated epithelial-mesenchymal communications.
Collapse
Affiliation(s)
- Ruiqi Huang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Chujing Zhang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Yuting Zheng
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Wei Zhang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Huarong Huang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | - Jianying Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China.
| | - Feixue Li
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Developmental and Regenerative Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China.
| |
Collapse
|
7
|
Cao S, Feng H, Yi H, Pan M, Lin L, Zhang YS, Feng Z, Liang W, Cai B, Li Q, Xiong Z, Shen Q, Ke M, Zhao X, Chen H, He Q, Min M, Cai Q, Liu H, Wang J, Pei D, Chen J, Ma Y. Single-cell RNA sequencing reveals the developmental program underlying proximal-distal patterning of the human lung at the embryonic stage. Cell Res 2023:10.1038/s41422-023-00802-6. [PMID: 37085732 PMCID: PMC10119843 DOI: 10.1038/s41422-023-00802-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/21/2023] [Indexed: 04/23/2023] Open
Abstract
The lung is the primary respiratory organ in human, in which the proximal airway and the distal alveoli are responsible for air conduction and gas exchange, respectively. However, the regulation of proximal-distal patterning at the embryonic stage of human lung development is largely unknown. Here we investigated the early lung development of human embryos at weeks 4-8 post fertilization (Carnegie stages 12-21) using single-cell RNA sequencing, and obtained a transcriptomic atlas of 169,686 cells. We observed discernible gene expression patterns of proximal and distal epithelia at week 4, upon the initiation of lung organogenesis. Moreover, we identified novel transcriptional regulators of the patterning of proximal (e.g., THRB and EGR3) and distal (e.g., ETV1 and SOX6) epithelia. Further dissection revealed various stromal cell populations, including an early-embryonic BDNF+ population, providing a proximal-distal patterning niche with spatial specificity. In addition, we elucidated the cell fate bifurcation and maturation of airway and vascular smooth muscle progenitor cells at the early stage of lung development. Together, our study expands the scope of human lung developmental biology at early embryonic stages. The discovery of intrinsic transcriptional regulators and novel niche providers deepens the understanding of epithelial proximal-distal patterning in human lung development, opening up new avenues for regenerative medicine.
Collapse
Affiliation(s)
- Shangtao Cao
- Guangzhou Laboratory, Guangzhou, Guangdong, China.
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Huijian Feng
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Hongyan Yi
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Mengjie Pan
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Lihui Lin
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yao Santo Zhang
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Ziyu Feng
- Guangzhou Laboratory, Guangzhou, Guangdong, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weifang Liang
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Baomei Cai
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China
| | - Zhi Xiong
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Qingmei Shen
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Minjing Ke
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xing Zhao
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China
| | - Huilin Chen
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qina He
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China
| | - Mingwei Min
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Quanyou Cai
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - He Liu
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jie Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China.
| | - Jiekai Chen
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China.
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
- University of the Chinese Academy of Sciences, Beijing, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China.
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
8
|
Dean CH, Cheong SS. Simple Models of Lung Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:17-28. [PMID: 37195524 DOI: 10.1007/978-3-031-26625-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Models are essential to further our understanding of lung development and regeneration and to facilitate identification and testing of potential treatments for lung diseases. A wide variety of rodent and human models are available that recapitulate one or more stages of lung development. This chapter describes the existing 'simple' in vitro, in silico and ex vivo models of lung development. We define which stage(s) of development each model recapitulates and highlight their pros and cons.
Collapse
Affiliation(s)
- Charlotte H Dean
- National Heart and Lung Institute, Imperial College London, London, UK.
| | - Sek-Shir Cheong
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
9
|
De Leon N, Tse WH, Ameis D, Keijzer R. Embryology and anatomy of congenital diaphragmatic hernia. Semin Pediatr Surg 2022; 31:151229. [PMID: 36446305 DOI: 10.1016/j.sempedsurg.2022.151229] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prenatal and postnatal treatment modalities for congenital diaphragmatic hernia (CDH) continue to improve, however patients still face high rates of morbidity and mortality caused by severe underlying persistent pulmonary hypertension and pulmonary hypoplasia. Though the majority of CDH cases are idiopathic, it is believed that CDH is a polygenic developmental defect caused by interactions between candidate genes, as well as environmental and epigenetic factors. However, the origin and pathogenesis of these developmental insults are poorly understood. Further, connections between disrupted lung development and the failure of diaphragmatic closure during embryogenesis have not been fully elucidated. Though several animal models have been useful in identifying candidate genes and disrupted signalling pathways, more studies are required to understand the pathogenesis and to develop effective preventative care. In this article, we summarize the most recent litterature on disrupted embryological lung and diaphragmatic development associated with CDH.
Collapse
Affiliation(s)
- Nolan De Leon
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Wai Hei Tse
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Dustin Ameis
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard Keijzer
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
10
|
Long Y, Chen H, Deng J, Ning J, Yang P, Qiao L, Cao Z. Deficiency of endothelial FGFR1 alleviates hyperoxia-induced bronchopulmonary dysplasia in neonatal mice. Front Pharmacol 2022; 13:1039103. [PMID: 36467073 PMCID: PMC9716472 DOI: 10.3389/fphar.2022.1039103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Disrupted neonatal lung angiogenesis and alveologenesis often give rise to bronchopulmonary dysplasia (BPD), the most common chronic lung disease in children. Hyperoxia-induced pulmonary vascular and alveolar damage in premature infants is one of the most common and frequent factors contributing to BPD. The purpose of the present study was to explore the key molecules and the underlying mechanisms in hyperoxia-induced lung injury in neonatal mice and to provide a new strategy for the treatment of BPD. In this work, we reported that hyperoxia decreased the proportion of endothelial cells (ECs) in the lungs of neonatal mice. In hyperoxic lung ECs of neonatal mice, we detected upregulated fibroblast growth factor receptor 1 (FGFR1) expression, accompanied by upregulation of the classic downstream signaling pathway of activated FGFR1, including the ERK/MAPK signaling pathway and PI3K-Akt signaling pathway. Specific deletion of Fgfr1 in the ECs of neonatal mice protected the lungs from hyperoxia-induced lung injury, with improved angiogenesis, alveologenesis and respiratory metrics. Intriguingly, the increased Fgfr1 expression was mainly attributed to aerosol capillary endothelial (aCap) cells rather than general capillary endothelial (gCap) cells. Deletion of endothelial Fgfr1 increased the expression of gCap cell markers but decreased the expression of aCap cell markers. Additionally, inhibition of FGFR1 by an FGFR1 inhibitor improved alveologenesis and respiratory metrics. In summary, this study suggests that in neonatal mice, hyperoxia increases the expression of endothelial FGFR1 in lung ECs and that deficiency of endothelial Fgfr1 can ameliorate hyperoxia-induced BPD. These data suggest that FGFR1 may be a potential therapeutic target for BPD, which will provide a new strategy for the prevention and treatment of BPD.
Collapse
Affiliation(s)
| | | | | | | | | | - Lina Qiao
- *Correspondence: Lina Qiao, ; Zhongwei Cao,
| | | |
Collapse
|
11
|
Borges-Vélez G, Arroyo JA, Cantres-Rosario YM, Rodriguez de Jesus A, Roche-Lima A, Rosado-Philippi J, Rosario-Rodríguez LJ, Correa-Rivas MS, Campos-Rivera M, Meléndez LM. Decreased CSTB, RAGE, and Axl Receptor Are Associated with Zika Infection in the Human Placenta. Cells 2022; 11:3627. [PMID: 36429055 PMCID: PMC9688057 DOI: 10.3390/cells11223627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Zika virus (ZIKV) compromises placental integrity, infecting the fetus. However, the mechanisms associated with ZIKV penetration into the placenta leading to fetal infection are unknown. Cystatin B (CSTB), the receptor for advanced glycation end products (RAGE), and tyrosine-protein kinase receptor UFO (AXL) have been implicated in ZIKV infection and inflammation. This work investigates CSTB, RAGE, and AXL receptor expression and activation pathways in ZIKV-infected placental tissues at term. The hypothesis is that there is overexpression of CSTB and increased inflammation affecting RAGE and AXL receptor expression in ZIKV-infected placentas. Pathological analyses of 22 placentas were performed to determine changes caused by ZIKV infection. Quantitative proteomics, immunofluorescence, and western blot were performed to analyze proteins and pathways affected by ZIKV infection in frozen placentas. The pathological analysis confirmed decreased size of capillaries, hyperplasia of Hofbauer cells, disruption in the trophoblast layer, cell agglutination, and ZIKV localization to the trophoblast layer. In addition, there was a significant decrease in CSTB, RAGE, and AXL expression and upregulation of caspase 1, tubulin beta, and heat shock protein 27. Modulation of these proteins and activation of inflammasome and pyroptosis pathways suggest targets for modulation of ZIKV infection in the placenta.
Collapse
Affiliation(s)
- Gabriel Borges-Vélez
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936, USA
| | - Juan A. Arroyo
- Department of Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA
| | | | - Ana Rodriguez de Jesus
- Center for Collaborative Research in Health Disparities, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936, USA
| | - Abiel Roche-Lima
- Center for Collaborative Research in Health Disparities, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936, USA
| | - Julio Rosado-Philippi
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936, USA
| | - Lester J. Rosario-Rodríguez
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936, USA
| | - María S. Correa-Rivas
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936, USA
| | - Maribel Campos-Rivera
- School of Dental Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936, USA
| | - Loyda M. Meléndez
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936, USA
- Center for Collaborative Research in Health Disparities, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936, USA
| |
Collapse
|
12
|
Gorgisen G, Aydin M, Mboma O, Gökyildirim MY, Chao CM. The Role of Insulin Receptor Substrate Proteins in Bronchopulmonary Dysplasia and Asthma: New Potential Perspectives. Int J Mol Sci 2022; 23:ijms231710113. [PMID: 36077511 PMCID: PMC9456457 DOI: 10.3390/ijms231710113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 01/12/2023] Open
Abstract
Insulin receptor substrates (IRSs) are proteins that are involved in signaling through the insulin receptor (IR) and insulin-like growth factor (IGFR). They can also interact with other receptors including growth factor receptors. Thus, they represent a critical node for the transduction and regulation of multiple signaling pathways in response to extracellular stimuli. In addition, IRSs play a central role in processes such as inflammation, growth, metabolism, and proliferation. Previous studies have highlighted the role of IRS proteins in lung diseases, in particular asthma. Further, the members of the IRS family are the common proteins of the insulin growth factor signaling cascade involved in lung development and disrupted in bronchopulmonary dysplasia (BPD). However, there is no study focusing on the relationship between IRS proteins and BPD yet. Unfortunately, there is still a significant gap in knowledge in this field. Thus, in this review, we aimed to summarize the current knowledge with the major goal of exploring the possible roles of IRS in BPD and asthma to foster new perspectives for further investigations.
Collapse
Affiliation(s)
- Gokhan Gorgisen
- Department of Medical Genetics, Faculty of Medicine, Van Yüzüncü Yil University, Van 65080, Turkey
| | - Malik Aydin
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
- Center for Child and Adolescent Medicine, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Olivier Mboma
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
- Center for Child and Adolescent Medicine, Center for Clinical and Translational Research (CCTR), Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| | - Mira Y. Gökyildirim
- Department of Pediatrics, University Medical Center Rostock, University of Rostock, 18057 Rostock, Germany
| | - Cho-Ming Chao
- Department of Pediatrics, University Medical Center Rostock, University of Rostock, 18057 Rostock, Germany
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35390 Giessen, Germany
- Correspondence: ; Tel.: +49-641-9946735
| |
Collapse
|
13
|
Hitit M, Kose M, Kaya MS, Kırbas M, Dursun S, Alak I, Atli MO. Circulating miRNAs in maternal plasma as potential biomarkers of early pregnancy in sheep. Front Genet 2022; 13:929477. [PMID: 36061213 PMCID: PMC9428447 DOI: 10.3389/fgene.2022.929477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNA (miRNA) plays an important role in the control of gene expression and is implied in many biological functions, including embryo implantation and development. The aim was to assess plasma miRNA profiles during the peri-implantation and ascertain potential candidate miRNA markers for early pregnancy diagnosis in ovine plasma. The plasma samples were obtained from a total of 24 ewes on days 12 (pre-implantation; P12, n = 4), 16 (implantation; P16, n = 4) and 22 (post-implantation; P22, n = 4) after mating, and on their corresponding days of 12 (Pre-C; C12, n = 4), 16 (Imp-C; C16, n = 4) and 22 (Post-C; C22, n = 4) of the estrous cycle. The miRNA profiles in plasma were assessed by microarray technology. We detected the presence of 60 ovine-specific miRNAs in plasma samples. Of these miRNAs, 22 demonstrated a differential expression pattern, especially between the estrous cycle and early pregnancy, and targeted 521 genes. Two miRNAs (oar-miR-218a and oar-miR-1185-3p) were confirmed using RT-qPCR in the ovine plasma samples. Protein-protein interaction (PPI) network of target genes established six functional modules, of which modules 1 and 3 were enriched in the common GO terms, such as inflammatory response, defense response, and regulation of immune response. In contrast, module 2 was enriched in the developmental process involved in reproduction, embryo development, embryonic morphogenesis, and regulation of the developmental process. The results indicate that miRNAs profiles of plasma seemed to be modulated during the peri-implantation stage of pregnancy in ewes. Circulating miRNAs could be promising candidates for diagnosis in early ovine pregnancy.
Collapse
Affiliation(s)
- Mustafa Hitit
- Department of Genetics, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
- *Correspondence: Mustafa Hitit, ; Mehmet Osman Atli,
| | - Mehmet Kose
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Dicle University, Diyarbakir, Turkey
| | - Mehmet Salih Kaya
- Department of Physiology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Mesut Kırbas
- Bahri Dagdas International Agricultural Research Institute, Konya, Turkey
| | - Sukru Dursun
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Aksaray University, Aksaray, Turkey
| | - Ilyas Alak
- Department of Animal Sciences, Vocational School of Technical Sciences, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Mehmet Osman Atli
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Harran University, Sanliurfa, Turkey
- *Correspondence: Mustafa Hitit, ; Mehmet Osman Atli,
| |
Collapse
|
14
|
Stanton AE, Goodwin K, Sundarakrishnan A, Jaslove JM, Gleghorn JP, Pavlovich AL, Nelson CM. Negative Transpulmonary Pressure Disrupts Airway Morphogenesis by Suppressing Fgf10. Front Cell Dev Biol 2021; 9:725785. [PMID: 34926440 PMCID: PMC8673560 DOI: 10.3389/fcell.2021.725785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Mechanical forces are increasingly recognized as important determinants of cell and tissue phenotype and also appear to play a critical role in organ development. During the fetal stages of lung morphogenesis, the pressure of the fluid within the lumen of the airways is higher than that within the chest cavity, resulting in a positive transpulmonary pressure. Several congenital defects decrease or reverse transpulmonary pressure across the developing airways and are associated with a reduced number of branches and a correspondingly underdeveloped lung that is insufficient for gas exchange after birth. The small size of the early pseudoglandular stage lung and its relative inaccessibility in utero have precluded experimental investigation of the effects of transpulmonary pressure on early branching morphogenesis. Here, we present a simple culture model to explore the effects of negative transpulmonary pressure on development of the embryonic airways. We found that negative transpulmonary pressure decreases branching, and that it does so in part by altering the expression of fibroblast growth factor 10 (Fgf10). The morphogenesis of lungs maintained under negative transpulmonary pressure can be rescued by supplementing the culture medium with exogenous FGF10. These data suggest that Fgf10 expression is regulated by mechanical stress in the developing airways. Understanding the mechanical signaling pathways that connect transpulmonary pressure to FGF10 can lead to the establishment of novel non-surgical approaches for ameliorating congenital lung defects.
Collapse
Affiliation(s)
- Alice E Stanton
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Katharine Goodwin
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| | - Aswin Sundarakrishnan
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Jacob M Jaslove
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Jason P Gleghorn
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Amira L Pavlovich
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ, United States.,Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| |
Collapse
|
15
|
Nasri A, Foisset F, Ahmed E, Lahmar Z, Vachier I, Jorgensen C, Assou S, Bourdin A, De Vos J. Roles of Mesenchymal Cells in the Lung: From Lung Development to Chronic Obstructive Pulmonary Disease. Cells 2021; 10:3467. [PMID: 34943975 PMCID: PMC8700565 DOI: 10.3390/cells10123467] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal cells are an essential cell type because of their role in tissue support, their multilineage differentiation capacities and their potential clinical applications. They play a crucial role during lung development by interacting with airway epithelium, and also during lung regeneration and remodeling after injury. However, much less is known about their function in lung disease. In this review, we discuss the origins of mesenchymal cells during lung development, their crosstalk with the epithelium, and their role in lung diseases, particularly in chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Amel Nasri
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
| | - Florent Foisset
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
| | - Engi Ahmed
- Department of Respiratory Diseases, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France; (E.A.); (Z.L.); (I.V.); (A.B.)
- PhyMedExp, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
| | - Zakaria Lahmar
- Department of Respiratory Diseases, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France; (E.A.); (Z.L.); (I.V.); (A.B.)
- PhyMedExp, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
| | - Isabelle Vachier
- Department of Respiratory Diseases, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France; (E.A.); (Z.L.); (I.V.); (A.B.)
| | - Christian Jorgensen
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
| | - Said Assou
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
| | - Arnaud Bourdin
- Department of Respiratory Diseases, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France; (E.A.); (Z.L.); (I.V.); (A.B.)
- PhyMedExp, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
| | - John De Vos
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
- Department of Cell and Tissue Engineering, Université de Montpellier, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France
| |
Collapse
|
16
|
Complete lung agenesis caused by complex genomic rearrangements with neo-TAD formation at the SHH locus. Hum Genet 2021; 140:1459-1469. [PMID: 34436670 PMCID: PMC8460539 DOI: 10.1007/s00439-021-02344-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/10/2021] [Indexed: 11/05/2022]
Abstract
During human organogenesis, lung development is a timely and tightly regulated developmental process under the control of a large number of signaling molecules. Understanding how genetic variants can disturb normal lung development causing different lung malformations is a major goal for dissecting molecular mechanisms during embryogenesis. Here, through exome sequencing (ES), array CGH, genome sequencing (GS) and Hi-C, we aimed at elucidating the molecular basis of bilateral isolated lung agenesis in three fetuses born to a non-consanguineous family. We detected a complex genomic rearrangement containing duplicated, triplicated and deleted fragments involving the SHH locus in fetuses presenting complete agenesis of both lungs and near-complete agenesis of the trachea, diagnosed by ultrasound screening and confirmed at autopsy following termination. The rearrangement did not include SHH itself, but several regulatory elements for lung development, such as MACS1, a major SHH lung enhancer, and the neighboring genes MNX1 and NOM1. The rearrangement incorporated parts of two topologically associating domains (TADs) including their boundaries. Hi-C of cells from one of the affected fetuses showed the formation of two novel TADs each containing SHH enhancers and the MNX1 and NOM1 genes. Hi-C together with GS indicate that the new 3D conformation is likely causative for this condition by an inappropriate activation of MNX1 included in the neo-TADs by MACS1 enhancer, further highlighting the importance of the 3D chromatin conformation in human disease.
Collapse
|
17
|
Lang C, Conrad L, Iber D. Organ-Specific Branching Morphogenesis. Front Cell Dev Biol 2021; 9:671402. [PMID: 34150767 PMCID: PMC8212048 DOI: 10.3389/fcell.2021.671402] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
A common developmental process, called branching morphogenesis, generates the epithelial trees in a variety of organs, including the lungs, kidneys, and glands. How branching morphogenesis can create epithelial architectures of very different shapes and functions remains elusive. In this review, we compare branching morphogenesis and its regulation in lungs and kidneys and discuss the role of signaling pathways, the mesenchyme, the extracellular matrix, and the cytoskeleton as potential organ-specific determinants of branch position, orientation, and shape. Identifying the determinants of branch and organ shape and their adaptation in different organs may reveal how a highly conserved developmental process can be adapted to different structural and functional frameworks and should provide important insights into epithelial morphogenesis and developmental disorders.
Collapse
Affiliation(s)
- Christine Lang
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Lisa Conrad
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
18
|
Archer F, Bobet-Erny A, Gomes M. State of the art on lung organoids in mammals. Vet Res 2021; 52:77. [PMID: 34078444 PMCID: PMC8170649 DOI: 10.1186/s13567-021-00946-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/04/2021] [Indexed: 02/08/2023] Open
Abstract
The number and severity of diseases affecting lung development and adult respiratory function have stimulated great interest in developing new in vitro models to study lung in different species. Recent breakthroughs in 3-dimensional (3D) organoid cultures have led to new physiological in vitro models that better mimic the lung than conventional 2D cultures. Lung organoids simulate multiple aspects of the real organ, making them promising and useful models for studying organ development, function and disease (infection, cancer, genetic disease). Due to their dynamics in culture, they can serve as a sustainable source of functional cells (biobanking) and be manipulated genetically. Given the differences between species regarding developmental kinetics, the maturation of the lung at birth, the distribution of the different cell populations along the respiratory tract and species barriers for infectious diseases, there is a need for species-specific lung models capable of mimicking mammal lungs as they are of great interest for animal health and production, following the One Health approach. This paper reviews the latest developments in the growing field of lung organoids.
Collapse
Affiliation(s)
- Fabienne Archer
- UMR754, IVPC, INRAE, EPHE, Univ Lyon, Université Claude Bernard Lyon 1, 69007, Lyon, France.
| | - Alexandra Bobet-Erny
- UMR754, IVPC, INRAE, EPHE, Univ Lyon, Université Claude Bernard Lyon 1, 69007, Lyon, France
| | - Maryline Gomes
- UMR754, IVPC, INRAE, EPHE, Univ Lyon, Université Claude Bernard Lyon 1, 69007, Lyon, France
| |
Collapse
|
19
|
Lee H, Ko HW. Cell cycle-related kinase is a crucial regulator for ciliogenesis and Hedgehog signaling in embryonic mouse lung development. BMB Rep 2021. [PMID: 32317081 PMCID: PMC7396919 DOI: 10.5483/bmbrep.2020.53.7.295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell cycle-related kinase (CCRK) has a conserved role in ciliogenesis, and Ccrk defects in mice lead to developmental defects, including exencephaly, preaxial polydactyly, skeletal abnormalities, retinal degeneration, and polycystic kidney. Here, we found that Ccrk is highly expressed in mouse trachea and bronchioles. Ccrk mutants exhibited pulmonary hypoplasia and abnormal branching morphogenesis in respiratory organ development. Furthermore, we demonstrated that Ccrk mutant lungs exhibit not only impaired branching morphogenesis but also a significant sacculation deficiency in alveoli associated with reduced epithelial progenitor cell proliferation. In pseudoglandular stages, Ccrk mutant lungs showed a downregulation of Hedgehog (Hh) signaling and defects in cilia morphology and frequency during progenitor-cell proliferation. Interestingly, we observed that activation of the Hh signaling pathway by small-molecule smoothened agonist (SAG) partially rescued bud morphology during branch bifurcation in explants from Ccrk mutant lungs. Therefore, CCRK properly regulates respiratory airway architecture in part through Hh-signal transduction and ciliogenesis.
Collapse
Affiliation(s)
- Hankyu Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea
| | - Hyuk Wan Ko
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
20
|
Miao Q, Chen H, Luo Y, Chiu J, Chu L, Thornton ME, Grubbs BH, Kolb M, Lou J, Shi W. Abrogation of mesenchyme-specific TGF-β signaling results in lung malformation with prenatal pulmonary cysts in mice. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1158-L1168. [PMID: 33881909 DOI: 10.1152/ajplung.00299.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The TGF-β signaling pathway plays a pivotal role in controlling organogenesis during fetal development. Although the role of TGF-β signaling in promoting lung alveolar epithelial growth has been determined, mesenchymal TGF-β signaling in regulating lung development has not been studied in vivo due to a lack of genetic tools for specifically manipulating gene expression in lung mesenchymal cells. Therefore, the integral roles of TGF-β signaling in regulating lung development and congenital lung diseases are not completely understood. Using a Tbx4 lung enhancer-driven Tet-On inducible Cre transgenic mouse system, we have developed a mouse model in which lung mesenchyme-specific deletion of TGF-β receptor 2 gene (Tgfbr2) is achieved. Reduced airway branching accompanied by defective airway smooth muscle growth and later peripheral cystic lesions occurred when lung mesenchymal Tgfbr2 was deleted from embryonic day 13.5 to 15.5, resulting in postnatal death due to respiratory insufficiency. Although cell proliferation in both lung epithelium and mesenchyme was reduced, epithelial differentiation was not significantly affected. Tgfbr2 downstream Smad-independent ERK1/2 may mediate these mesenchymal effects of TGF-β signaling through the GSK3β-β-catenin-Wnt canonical pathway in fetal mouse lung. Our study suggests that Tgfbr2-mediated TGF-β signaling in prenatal lung mesenchyme is essential for lung development and maturation, and defective TGF-β signaling in lung mesenchyme may be related to abnormal airway branching morphogenesis and congenital airway cystic lesions.
Collapse
Affiliation(s)
- Qing Miao
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Allergy, Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Hui Chen
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Yongfeng Luo
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Joanne Chiu
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ling Chu
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Matthew E Thornton
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Brendan H Grubbs
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Martin Kolb
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jianlin Lou
- Institute of Occupational Diseases, Hangzhou Medical College (Zhejiang Academy of Medical Science), Hangzhou, People's Republic of China
| | - Wei Shi
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
21
|
Lenne PF, Munro E, Heemskerk I, Warmflash A, Bocanegra-Moreno L, Kishi K, Kicheva A, Long Y, Fruleux A, Boudaoud A, Saunders TE, Caldarelli P, Michaut A, Gros J, Maroudas-Sacks Y, Keren K, Hannezo E, Gartner ZJ, Stormo B, Gladfelter A, Rodrigues A, Shyer A, Minc N, Maître JL, Di Talia S, Khamaisi B, Sprinzak D, Tlili S. Roadmap for the multiscale coupling of biochemical and mechanical signals during development. Phys Biol 2021; 18. [PMID: 33276350 PMCID: PMC8380410 DOI: 10.1088/1478-3975/abd0db] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
The way in which interactions between mechanics and biochemistry lead to the emergence of complex cell and tissue organization is an old question that has recently attracted renewed interest from biologists, physicists, mathematicians and computer scientists. Rapid advances in optical physics, microscopy and computational image analysis have greatly enhanced our ability to observe and quantify spatiotemporal patterns of signalling, force generation, deformation, and flow in living cells and tissues. Powerful new tools for genetic, biophysical and optogenetic manipulation are allowing us to perturb the underlying machinery that generates these patterns in increasingly sophisticated ways. Rapid advances in theory and computing have made it possible to construct predictive models that describe how cell and tissue organization and dynamics emerge from the local coupling of biochemistry and mechanics. Together, these advances have opened up a wealth of new opportunities to explore how mechanochemical patterning shapes organismal development. In this roadmap, we present a series of forward-looking case studies on mechanochemical patterning in development, written by scientists working at the interface between the physical and biological sciences, and covering a wide range of spatial and temporal scales, organisms, and modes of development. Together, these contributions highlight the many ways in which the dynamic coupling of mechanics and biochemistry shapes biological dynamics: from mechanoenzymes that sense force to tune their activity and motor output, to collectives of cells in tissues that flow and redistribute biochemical signals during development.
Collapse
Affiliation(s)
- Pierre-François Lenne
- Aix-Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| | - Edwin Munro
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, United States of America
| | - Idse Heemskerk
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
| | - Aryeh Warmflash
- Department of Biosciences and Bioengineering, Rice University, Houston, TX, 77005, United States of America
| | | | - Kasumi Kishi
- IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Anna Kicheva
- IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Yuchen Long
- Reproduction et Dévelopement des Plantes, Université de Lyon, École normale supérieure de Lyon, Université Claude Bernard Lyon 1, INRAe, CNRS, 69364 Lyon Cedex 07, France
| | - Antoine Fruleux
- Reproduction et Dévelopement des Plantes, Université de Lyon, École normale supérieure de Lyon, Université Claude Bernard Lyon 1, INRAe, CNRS, 69364 Lyon Cedex 07, France.,LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Arezki Boudaoud
- Reproduction et Dévelopement des Plantes, Université de Lyon, École normale supérieure de Lyon, Université Claude Bernard Lyon 1, INRAe, CNRS, 69364 Lyon Cedex 07, France.,LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Paolo Caldarelli
- Cellule Pasteur UPMC, Sorbonne Université, rue du Dr Roux, 75015 Paris, France.,Department of Developmental and Stem Cell Biology Institut Pasteur, 75724 Paris, Cedex 15, France.,CNRS UMR3738, 75015 Paris, France
| | - Arthur Michaut
- Department of Developmental and Stem Cell Biology Institut Pasteur, 75724 Paris, Cedex 15, France.,CNRS UMR3738, 75015 Paris, France
| | - Jerome Gros
- Department of Developmental and Stem Cell Biology Institut Pasteur, 75724 Paris, Cedex 15, France.,CNRS UMR3738, 75015 Paris, France
| | - Yonit Maroudas-Sacks
- Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Kinneret Keren
- Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel.,Network Biology Research Laboratories and The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Edouard Hannezo
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, 600 16th St. Box 2280, San Francisco, CA 94158, United States of America
| | - Benjamin Stormo
- Department of Biology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 United States of America
| | - Amy Gladfelter
- Department of Biology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 United States of America
| | - Alan Rodrigues
- Laboratory of Morphogenesis, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Amy Shyer
- Laboratory of Morphogenesis, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Nicolas Minc
- Institut Jacques Monod, Université de Paris, CNRS UMR7592, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Jean-Léon Maître
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham NC 27710, United States of America
| | - Bassma Khamaisi
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sham Tlili
- Aix-Marseille University, CNRS, IBDM, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
22
|
Wen X, Zhang H, Xiang B, Zhang W, Gong F, Li S, Chen H, Luo X, Deng J, You Y, Hu Z, Jiang C. Hyperoxia-induced miR-342-5p down-regulation exacerbates neonatal bronchopulmonary dysplasia via the Raf1 regulator Spred3. Br J Pharmacol 2021; 178:2266-2283. [PMID: 33434946 DOI: 10.1111/bph.15371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 12/10/2020] [Accepted: 01/01/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Bronchopulmonary dysplasia (BPD) is the most prevalent chronic paediatric lung disease and is linked to the development of chronic obstructive pulmonary disease. MicroRNA-based regulation of type II alveolar epithelial cell (T2AEC) proliferation and apoptosis is an important factor in the pathogenesis of BPD and warrants further investigation. EXPERIMENTAL APPROACH Two murine models of hyperoxic lung injury (with or without miR-342-5p or Sprouty-related, EVH1 domain-containing protein 3 [Spred3] modulation) were employed: a hyperoxia-induced acute lung injury model (100% O2 on postnatal days 1-7) and the BPD model (100% O2 on postnatal days 1-4, followed by room air for 10 days). Tracheal aspirate pellets from healthy control and moderate/severe BPD neonates were randomly selected for clinical miR-342-5p analysis. KEY RESULTS Hyperoxia decreased miR-342-5p levels in primary T2AECs, MLE12 cells and neonatal mouse lungs. Transgenic miR-342 overexpression in neonatal mice ameliorated survival rates and improved the BPD phenotype and BPD-associated pulmonary arterial hypertension (PAH). T2AEC-specific miR-342 transgenic overexpression, as well as miR-342-5p mimic therapy, also ameliorated the BPD phenotype and associated PAH. miR-342-5p targets the 3'UTR of the Raf1 regulator Spred3, inhibiting Spred3 expression. Treatment with recombinant Spred3 exacerbated the BPD phenotype and associated PAH. Notably, miR-342-5p inhibition under room air conditions did not mimic the BPD phenotype. Moderate/severe BPD tracheal aspirate pellets exhibited decreased miR-342-5p levels relative to healthy control pellets. CONCLUSION AND IMPLICATIONS These findings suggest that miR-342-5p mimic therapy may show promise in the treatment or prevention of BPD.
Collapse
Affiliation(s)
- Xin Wen
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Zhang
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Xiang
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyu Zhang
- Department of Pediatrics, Chongqing Jiulongpo District Maternity Child Health Care Hospital, Chongqing, China
| | - Fang Gong
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Shiling Li
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyan Chen
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xuan Luo
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Deng
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yaoyao You
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Zhangxue Hu
- Department of Pediatrics, Army Medical Center, Army Medical University, Chongqing, China
| | - Changke Jiang
- Department of Pediatrics, Chongqing Yongchuan District Maternity Child Health Care Hospital, Chongqing, China.,Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
Takahashi T, Friedmacher F, Zimmer J, Puri P. Pbx1, Meis1, and Runx1 Expression Is Decreased in the Diaphragmatic and Pulmonary Mesenchyme of Rats with Nitrofen-Induced Congenital Diaphragmatic Hernia. Eur J Pediatr Surg 2021; 31:120-125. [PMID: 32862424 DOI: 10.1055/s-0040-1714736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Congenital diaphragmatic hernia (CDH) and associated pulmonary hypoplasia (PH) are thought to originate from mesenchymal defects in pleuroperitoneal folds (PPFs) and primordial lungs. Pre-B-cell leukemia homeobox 1 (Pbx1), its binding partner myeloid ecotropic integration site 1 (Meis1), and runt-related transcription factor 1 (Runx1) are expressed in diaphragmatic and lung mesenchyme, functioning as transcription cofactors that modulate mesenchymal cell proliferation. Furthermore, Pbx1 -/- mice develop diaphragmatic defects and PH similar to human CDH. We hypothesized that diaphragmatic and pulmonary Pbx1, Meis1, and Runx1 expression is decreased in the nitrofen-induced CDH model. MATERIALS AND METHODS Time-mated rats were exposed to nitrofen or vehicle on gestational day 9 (D9). Fetal diaphragms (n = 72) and lungs (n = 48) were microdissected on D13, D15, and D18, and were divided into control and nitrofen-exposed specimens. Diaphragmatic and pulmonary gene expression levels of Pbx1, Meis1, and Runx1 were analyzed by quantitative real-time polymerase chain reaction. Immunofluorescence-double-staining for Pbx1, Meis1, and Runx1 was combined with mesenchymal/myogenic markers Gata4 and myogenin to evaluate protein expression. RESULTS Relative mRNA expression of Pbx1, Meis1, and Runx1 was significantly decreased in PPFs (D13), developing diaphragms/lungs (D15), and muscularized diaphragms/differentiated lungs (D18) of nitrofen-exposed fetuses compared with controls. Confocal-laser-scanning-microscopy revealed markedly diminished Pbx1, Meis1, and Runx1 immunofluorescence in diaphragmatic and pulmonary mesenchyme, associated with less proliferating mesenchymal cells in nitrofen-exposed fetuses on D13, D15, and D18 compared with controls. CONCLUSION Decreased Pbx1, Meis1, and Runx1 expression during diaphragmatic development and lung branching morphogenesis may reduce mesenchymal cell proliferation, causing malformed PPFs and disrupted airway branching, thus leading to diaphragmatic defects and PH in the nitrofen-induced CDH model.
Collapse
Affiliation(s)
- Toshiaki Takahashi
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland.,Department of Pediatric Surgery, Kansai Medical University, Osaka, Japan
| | - Florian Friedmacher
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland.,Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Julia Zimmer
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland.,Department of Pediatric Surgery, Hannover Medical School, Hannover, Germany
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland.,Beacon Hospital, University College Dublin, Dublin, Ireland
| |
Collapse
|
24
|
Iriana S, Asha K, Repak M, Sharma-Walia N. Hedgehog Signaling: Implications in Cancers and Viral Infections. Int J Mol Sci 2021; 22:1042. [PMID: 33494284 PMCID: PMC7864517 DOI: 10.3390/ijms22031042] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
The hedgehog (SHH) signaling pathway is primarily involved in embryonic gut development, smooth muscle differentiation, cell proliferation, adult tissue homeostasis, tissue repair following injury, and tissue polarity during the development of vertebrate and invertebrate organisms. GLIoma-associated oncogene homolog (GLI) family of zinc-finger transcription factors and smoothened (SMO) are the signal transducers of the SHH pathway. Both SHH ligand-dependent and independent mechanisms activate GLI proteins. Various transcriptional mechanisms, posttranslational modifications (phosphorylation, ubiquitination, proteolytic processing, SUMOylation, and acetylation), and nuclear-cytoplasmic shuttling control the activity of SHH signaling pathway proteins. The dysregulated SHH pathway is associated with bone and soft tissue sarcomas, GLIomas, medulloblastomas, leukemias, and tumors of breast, lung, skin, prostate, brain, gastric, and pancreas. While extensively studied in development and sarcomas, GLI family proteins play an essential role in many host-pathogen interactions, including bacterial and viral infections and their associated cancers. Viruses hijack host GLI family transcription factors and their downstream signaling cascades to enhance the viral gene transcription required for replication and pathogenesis. In this review, we discuss a distinct role(s) of GLI proteins in the process of tumorigenesis and host-pathogen interactions in the context of viral infection-associated malignancies and cancers due to other causes. Here, we emphasize the potential of the Hedgehog (HH) pathway targeting as a potential anti-cancer therapeutic approach, which in the future could also be tested in infection-associated fatalities.
Collapse
|
25
|
Kina YP, Khadim A, Seeger W, El Agha E. The Lung Vasculature: A Driver or Passenger in Lung Branching Morphogenesis? Front Cell Dev Biol 2021; 8:623868. [PMID: 33585463 PMCID: PMC7873988 DOI: 10.3389/fcell.2020.623868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/18/2020] [Indexed: 11/21/2022] Open
Abstract
Multiple cellular, biochemical, and physical factors converge to coordinate organogenesis. During embryonic development, several organs such as the lung, salivary glands, mammary glands, and kidneys undergo rapid, but intricate, iterative branching. This biological process not only determines the overall architecture, size and shape of such organs but is also a pre-requisite for optimal organ function. The lung, in particular, relies on a vast surface area to carry out efficient gas exchange, and it is logical to suggest that airway branching during lung development represents a rate-limiting step in this context. Against this background, the vascular network develops in parallel to the airway tree and reciprocal interaction between these two compartments is critical for their patterning, branching, and co-alignment. In this mini review, we present an overview of the branching process in the developing mouse lung and discuss whether the vasculature plays a leading role in the process of airway epithelial branching.
Collapse
Affiliation(s)
| | | | | | - Elie El Agha
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Institute for Lung Health (ILH), Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
26
|
Jones MR, Chong L, Bellusci S. Fgf10/Fgfr2b Signaling Orchestrates the Symphony of Molecular, Cellular, and Physical Processes Required for Harmonious Airway Branching Morphogenesis. Front Cell Dev Biol 2021; 8:620667. [PMID: 33511132 PMCID: PMC7835514 DOI: 10.3389/fcell.2020.620667] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Airway branching morphogenesis depends on the intricate orchestration of numerous biological and physical factors connected across different spatial scales. One of the key regulatory pathways controlling airway branching is fibroblast growth factor 10 (Fgf10) signaling via its epithelial fibroblast growth factor receptor 2b (Fgfr2b). Fine reviews have been published on the molecular mechanisms, in general, involved in branching morphogenesis, including those mechanisms, in particular, connected to Fgf10/Fgfr2b signaling. However, a comprehensive review looking at all the major biological and physical factors involved in branching, at the different scales at which branching operates, and the known role of Fgf10/Fgfr2b therein, is missing. In the current review, we attempt to summarize the existing literature on airway branching morphogenesis by taking a broad approach. We focus on the biophysical and mechanical forces directly shaping epithelial bud initiation, branch elongation, and branch tip bifurcation. We then shift focus to more passive means by which branching proceeds, via extracellular matrix remodeling and the influence of the other pulmonary arborized networks: the vasculature and nerves. We end the review by briefly discussing work in computational modeling of airway branching. Throughout, we emphasize the known or speculative effects of Fgfr2b signaling at each point of discussion. It is our aim to promote an understanding of branching morphogenesis that captures the multi-scalar biological and physical nature of the phenomenon, and the interdisciplinary approach to its study.
Collapse
Affiliation(s)
- Matthew R. Jones
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Lei Chong
- National Key Clinical Specialty of Pediatric Respiratory Medicine, Discipline of Pediatric Respiratory Medicine, Institute of Pediatrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Saverio Bellusci
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
27
|
Macia I, Aiza G, Ramos R, Escobar I, Rivas F, Ureña A, Aso S, Rosado G, Rodriguez-Taboada P, Deniz C, Nadal E, Capella G. Molecular Nodal Restaging Based on CEACAM5, FGFR2b and PTPN11 Expression Adds No Relevant Clinical Information in Resected Non-Small Cell Lung Cancer. J INVEST SURG 2020; 35:315-324. [PMID: 33342327 DOI: 10.1080/08941939.2020.1857479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND The relapse rate in non-small cell lung cancer (NSCLC) is high, even in localized disease, suggesting that the current approach to pathological staging is insufficiently sensitive to detect occult micrometastases present in resected lymph nodes. Therefore, we aimed to determine the prognostic value of the expression of embryonic molecular markers in histologically-negative lymph nodes of completely-resected NSCLC. METHODS 76 completely-resected NSCLC patients were included: 60 pN0 and 16 pN1. Primary tumors and 347 lymph node were studied. CEACAM5, FGFR2b, and PTPN11 expression levels were evaluated through mRNA analysis using real-time RT-qPCR assay. Statistical analyses included the Kruskal-Wallis test, Kaplan Meier curves, and log-rank tests. RESULTS CEACAM5 expression levels were scored as high in of 90 lymph nodes (26%). The molecular-positive lymph nodes lead to the restaging of 37 (62%) pN0 patients as molecular N1 or N2 and 5 (31%) pN1 cases were reclassified as molecular-positive N2. Surprisingly, molecular-positive patients associated with a better OS (overall survival, p = 0,04). FGFR2b overexpression was observed in 41 (12%) lymph nodes leading to the restaging of 17 patients (22%). Again a trend was observed toward a better DFS (disease-free survival) in the restaged patients (p = 0,09). Accordingly, high expression levels of CEACAM5 or FGFR2b in the primary were related to better DFS (p = 0,06; p < 0,02, respectively). CONCLUSION Molecular nodal restaging based on expression levels of CEACAM5 and/or FGFR2b, does not add relevant clinical information to pathological staging of NSCLC likely related to the better prognosis of their overexpression in primary tumors.
Collapse
Affiliation(s)
- Ivan Macia
- Thoracic Surgery Department, Hospital Universitari de Bellvitge; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL) and Unit of Human Anatomy and Embryology, Department of Pathology and Experimental Therapeutics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Gemma Aiza
- Translational Research Laboratory, Catalan Institute of Oncology and IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ricard Ramos
- Thoracic Surgery Department, Hospital Universitari de Bellvitge; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL) and Unit of Human Anatomy and Embryology, Department of Pathology and Experimental Therapeutics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ignacio Escobar
- Thoracic Surgery Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francisco Rivas
- Thoracic Surgery Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Anna Ureña
- Thoracic Surgery Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Samantha Aso
- Pulmonology Department, Hospital Universitari de Bellvitge and IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Gabriela Rosado
- Thoracic Surgery Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pau Rodriguez-Taboada
- Thoracic Surgery Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Carlos Deniz
- Thoracic Surgery Department, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ernest Nadal
- Medical Oncology Department, Hospital Duran i Reynals, Catalan Institute of Oncology and IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Madrid, Spain
| | - Gabriel Capella
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Madrid, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL. Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
28
|
Halloran D, Durbano HW, Nohe A. Bone Morphogenetic Protein-2 in Development and Bone Homeostasis. J Dev Biol 2020; 8:E19. [PMID: 32933207 PMCID: PMC7557435 DOI: 10.3390/jdb8030019] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the Transforming Growth Factor-Beta (TGF-β) superfamily. These proteins are essential to many developmental processes, including cardiogenesis, neurogenesis, and osteogenesis. Specifically, within the BMP family, Bone Morphogenetic Protein-2 (BMP-2) was the first BMP to be characterized and has been well-studied. BMP-2 has important roles during embryonic development, as well as bone remodeling and homeostasis in adulthood. Some of its specific functions include digit formation and activating osteogenic genes, such as Runt-Related Transcription Factor 2 (RUNX2). Because of its diverse functions and osteogenic potential, the Food and Drug Administration (FDA) approved usage of recombinant human BMP-2 (rhBMP-2) during spinal fusion surgery, tibial shaft repair, and maxillary sinus reconstructive surgery. However, shortly after initial injections of rhBMP-2, several adverse complications were reported, and alternative therapeutics have been developed to limit these side-effects. As the clinical application of BMP-2 is largely implicated in bone, we focus primarily on its role in bone. However, we also describe briefly the role of BMP-2 in development. We then focus on the structure of BMP-2, its activation and regulation signaling pathways, BMP-2 clinical applications, and limitations of using BMP-2 as a therapeutic. Further, this review explores other potential treatments that may be useful in treating bone disorders.
Collapse
Affiliation(s)
| | | | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; (D.H.); (H.W.D.)
| |
Collapse
|
29
|
Palmer MA, Nelson CM. Fusion of airways during avian lung development constitutes a novel mechanism for the formation of continuous lumena in multicellular epithelia. Dev Dyn 2020; 249:1318-1333. [DOI: 10.1002/dvdy.215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/01/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Michael A. Palmer
- Department of Chemical & Biological Engineering Princeton University Princeton New Jersey USA
| | - Celeste M. Nelson
- Department of Chemical & Biological Engineering Princeton University Princeton New Jersey USA
- Department of Molecular Biology Princeton University Princeton New Jersey USA
| |
Collapse
|
30
|
Conway RF, Frum T, Conchola AS, Spence JR. Understanding Human Lung Development through In Vitro Model Systems. Bioessays 2020; 42:e2000006. [PMID: 32310312 PMCID: PMC7433239 DOI: 10.1002/bies.202000006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/28/2020] [Indexed: 12/19/2022]
Abstract
An abundance of information about lung development in animal models exists; however, comparatively little is known about lung development in humans. Recent advances using primary human lung tissue combined with the use of human in vitro model systems, such as human pluripotent stem cell-derived tissue, have led to a growing understanding of the mechanisms governing human lung development. They have illuminated key differences between animal models and humans, underscoring the need for continued advancements in modeling human lung development and utilizing human tissue. This review discusses the use of human tissue and the use of human in vitro model systems that have been leveraged to better understand key regulators of human lung development and that have identified uniquely human features of development. This review also examines the implementation and challenges of human model systems and discusses how they can be applied to address knowledge gaps.
Collapse
Affiliation(s)
- Renee F Conway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
| | - Tristan Frum
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
| | - Ansley S Conchola
- Cell and Molecular Biology (CMB) Training Program, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
- Cell and Molecular Biology (CMB) Training Program, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, 48104, USA
| |
Collapse
|
31
|
Lee SW, Ryu JH, Do MJ, Namkoong E, Lee H, Park K. NiCHE Platform: Nature-Inspired Catechol-Conjugated Hyaluronic Acid Environment Platform for Salivary Gland Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4285-4294. [PMID: 31903749 DOI: 10.1021/acsami.9b20546] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, there has been growing interest in replacing severely damaged salivary glands with artificial salivary gland functional units created in vitro by tissue engineering approaches. Although various materials such as poly(lactic-co-glycolic acid), polylactic acid, poly(glycolic acid), and polyethylene glycol hydrogels have been used as scaffolds for salivary gland tissue engineering, none of them is effective enough to closely recapitulate the branched structural complexity and heterogeneous cell population of native salivary glands. Instead of discovering new biomaterial candidates, we synthesized hyaluronic acid-catechol (HACA) conjugates to establish a versatile hyaluronic acid coating platform named "NiCHE (nature-inspired catechol-conjugated hyaluronic acid environment)" for boosting the salivary gland tissue engineering efficacy of the previously reported biomaterials. By mimicking hyaluronic acid-rich niche in the mesenchyme of embryonic submandibular glands (eSMGs) with NiCHE coating on substrates including polycarbonate membrane, stiff agarose hydrogel, and polycaprolactone scaffold, we observed significantly enhanced cell adhesion, vascular endothelial and progenitor cell proliferation, and branching of in vitro-cultured eSMGs. High mechanical stiffness of the substrate is known to inhibit eSMG growth, but the NiCHE coating significantly reduced such stiffness-induced negative effects, leading to successful differentiation of progenitor cells to functional acinar and myoepithelial cells. These enhancement effects of the NiCHE coating were due to the increased proliferation of vascular endothelial cells via interaction between CD44 and surface-immobilized HAs. As such, our NiCHE coating platform renders any kind of material highly effective for salivary gland tissue culture by mimicking in vivo embryonic mesenchymal HA. Based on our results, we expect the NiCHE coating to expand the range of biomaterial candidates for salivary glands and other branching epithelial organs.
Collapse
Affiliation(s)
- Sang-Woo Lee
- Department of Physiology, School of Dentistry , Seoul National University and Dental Research Institute , Seoul 110-749 , Korea
| | - Ji Hyun Ryu
- Department of Carbon Convergence Engineering , Wonkwang University , Iksan , Jeonbuk 54538 , South Korea
| | - Min Jae Do
- Department of Chemistry, Center for Nature-inspired Technology (CNiT) , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , South Korea
| | - Eun Namkoong
- Department of Physiology, School of Dentistry , Seoul National University and Dental Research Institute , Seoul 110-749 , Korea
| | - Haeshin Lee
- Department of Chemistry, Center for Nature-inspired Technology (CNiT) , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , South Korea
| | - Kyungpyo Park
- Department of Physiology, School of Dentistry , Seoul National University and Dental Research Institute , Seoul 110-749 , Korea
| |
Collapse
|
32
|
сWnt signaling modulation results in a change of the colony architecture in a hydrozoan. Dev Biol 2019; 456:145-153. [PMID: 31473187 DOI: 10.1016/j.ydbio.2019.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/11/2019] [Accepted: 08/28/2019] [Indexed: 01/11/2023]
Abstract
At the polyp stage, most hydrozoan cnidarians form highly elaborate colonies with a variety of branching patterns, which makes them excellent models for studying the evolutionary mechanisms of body plan diversification. At the same time, molecular mechanisms underlying the robust patterning of the architecturally complex hydrozoan colonies remain unexplored. Using non-model hydrozoan Dynamena pumila we showed that the key components of the Wnt/β-catenin (cWnt) pathway (β-catenin, TCF) and the cWnt-responsive gene, brachyury 2, are involved in specification and patterning of the developing colony shoots. Strikingly, pharmacological modulation of the cWnt pathway leads to radical modification of the monopodially branching colony of Dynamena which acquire branching patterns typical for colonies of other hydrozoan species. Our results suggest that modulation of the cWnt signaling is the driving force promoting the evolution of the vast variety of the body plans in hydrozoan colonies and offer an intriguing possibility that the involvement of the cWnt pathway in the regulation of branching morphogenesis might represent an ancestral feature predating the cnidarian-bilaterian split.
Collapse
|
33
|
Spurlin JW, Siedlik MJ, Nerger BA, Pang MF, Jayaraman S, Zhang R, Nelson CM. Mesenchymal proteases and tissue fluidity remodel the extracellular matrix during airway epithelial branching in the embryonic avian lung. Development 2019; 146:dev.175257. [PMID: 31371376 DOI: 10.1242/dev.175257] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 07/16/2019] [Indexed: 12/31/2022]
Abstract
Reciprocal epithelial-mesenchymal signaling is essential for morphogenesis, including branching of the lung. In the mouse, mesenchymal cells differentiate into airway smooth muscle that wraps around epithelial branches, but this contractile tissue is absent from the early avian lung. Here, we have found that branching morphogenesis in the embryonic chicken lung requires extracellular matrix (ECM) remodeling driven by reciprocal interactions between the epithelium and mesenchyme. Before branching, the basement membrane wraps the airway epithelium as a spatially uniform sheath. After branch initiation, however, the basement membrane thins at branch tips; this remodeling requires mesenchymal expression of matrix metalloproteinase 2, which is necessary for branch extension but for not branch initiation. As branches extend, tenascin C (TNC) accumulates in the mesenchyme several cell diameters away from the epithelium. Despite its pattern of accumulation, TNC is expressed exclusively by epithelial cells. Branch extension coincides with deformation of adjacent mesenchymal cells, which correlates with an increase in mesenchymal fluidity at branch tips that may transport TNC away from the epithelium. These data reveal novel epithelial-mesenchymal interactions that direct ECM remodeling during airway branching morphogenesis.
Collapse
Affiliation(s)
- James W Spurlin
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Michael J Siedlik
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Bryan A Nerger
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Mei-Fong Pang
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Sahana Jayaraman
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Rawlison Zhang
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA .,Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
34
|
The effects of tracheal occlusion on Wnt signaling in a rabbit model of congenital diaphragmatic hernia. J Pediatr Surg 2019; 54:937-944. [PMID: 30792093 DOI: 10.1016/j.jpedsurg.2019.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/27/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Tracheal occlusion (TO) reverses pulmonary hypoplasia (PH) in congenital diaphragmatic hernia (CDH), but its mechanism of action remains poorly understood. Wnt signaling plays a critical role in lung development, but few studies exist. The purpose of our study was to a) confirm that our CDH rabbit model produced PH which was reversed by TO and b) determine the effects of CDH +/- TO on Wnt signaling. METHODS CDH was created in fetal rabbits at 23 days, TO at 28 days, and lung collection at 31 days. Lung body weight ratio (LBWR) and mean terminal bronchiole density (MTBD) were determined. mRNA and miRNA expression was determined in the left lower lobe using RT-qPCR. RESULTS Fifteen CDH, 15 CDH + TO, 6 sham CDH, and 15 controls survived and were included in the study. LBWR was low in CDH, while CDH + TO was similar to controls (p = 0.003). MTBD was higher in CDH fetuses and restored to control levels in CDH + TO (p < 0.001). Reference genes TOP1, SDHA, and ACTB were consistently expressed within and between treatment groups. miR-33 and MKI67 were increased, and Lgl1 was decreased in CDH + TO. CONCLUSION TO reversed pulmonary hypoplasia and stimulated early Wnt signaling in CDH fetal rabbits. TYPE OF STUDY Basic science, prospective. LEVEL OF EVIDENCE II.
Collapse
|
35
|
Ford MJ, Yeyati PL, Mali GR, Keighren MA, Waddell SH, Mjoseng HK, Douglas AT, Hall EA, Sakaue-Sawano A, Miyawaki A, Meehan RR, Boulter L, Jackson IJ, Mill P, Mort RL. A Cell/Cilia Cycle Biosensor for Single-Cell Kinetics Reveals Persistence of Cilia after G1/S Transition Is a General Property in Cells and Mice. Dev Cell 2019; 47:509-523.e5. [PMID: 30458140 PMCID: PMC6251972 DOI: 10.1016/j.devcel.2018.10.027] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/04/2018] [Accepted: 10/24/2018] [Indexed: 01/31/2023]
Abstract
The cilia and cell cycles are inextricably linked. Centrioles in the basal body of cilia nucleate the ciliary axoneme and sequester pericentriolar matrix (PCM) at the centrosome to organize the mitotic spindle. Cilia themselves respond to growth signals, prompting cilia resorption and cell cycle re-entry. We describe a fluorescent cilia and cell cycle biosensor allowing live imaging of cell cycle progression and cilia assembly and disassembly kinetics in cells and inducible mice. We define assembly and disassembly in relation to cell cycle stage with single-cell resolution and explore the intercellular heterogeneity in cilia kinetics. In all cells and tissues analyzed, we observed cilia that persist through the G1/S transition and into S/G2/M-phase. We conclude that persistence of cilia after the G1/S transition is a general property. This resource will shed light at an individual cell level on the interplay between the cilia and cell cycles in development, regeneration, and disease. Arl13bCerulean-Fucci2a biosensor labels the cell and cilia cycles Analysis of cells and mice reveals persistence of cilia after the G1/S transition Inducible mouse line allows lineage tracing and ex vivo live imaging Organisms can tolerate artificially lengthened cilia without overt phenotypes.
Collapse
Affiliation(s)
- Matthew J Ford
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Patricia L Yeyati
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Girish R Mali
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Margaret A Keighren
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Scott H Waddell
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Heidi K Mjoseng
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Adam T Douglas
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Emma A Hall
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Asako Sakaue-Sawano
- Centre of Brain Science, Laboratory for Cell Function and Dynamics, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Atsushi Miyawaki
- Centre of Brain Science, Laboratory for Cell Function and Dynamics, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Richard R Meehan
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Luke Boulter
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Ian J Jackson
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK; Roslin Institute, University of Edinburgh, Roslin EH25 9RG, UK
| | - Pleasantine Mill
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK.
| | - Richard L Mort
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Bailrigg, Furness Building, Lancaster LA1 4YG, UK.
| |
Collapse
|
36
|
Fox ZD, Jiang G, Ho KKY, Walker KA, Liu AP, Kunisaki SM. Fetal lung transcriptome patterns in an ex vivo compression model of diaphragmatic hernia. J Surg Res 2018; 231:411-420. [PMID: 30278961 DOI: 10.1016/j.jss.2018.06.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/26/2018] [Accepted: 06/20/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND The purpose of this study was to employ a novel ex vivo lung model of congenital diaphragmatic hernia (CDH) to determine how a mechanical compression affects early pulmonary development. METHODS Day-15 whole fetal rat lungs (n = 6-12/group) from nitrofen-exposed and normal (vehicle only) dams were explanted and cultured ex vivo in compression microdevices (0.2 or 0.4 kPa) for 16 h to mimic physiologic compression forces that occur in CDH in vivo. Lungs were evaluated with significance set at P < 0.05. RESULTS Nitrofen-exposed lungs were hypoplastic and expressed lower levels of surfactant protein C at baseline. Although compression alone did not alter the α-smooth muscle actin (ACTA2) expression in normal lungs, nitrofen-exposed lungs had significantly increased ACTA2 transcripts (0.2 kPa: 2.04 ± 0.15; 0.4 kPa: 2.22 ± 0.11; both P < 0.001). Nitrofen-exposed lungs also showed further reductions in surfactant protein C expression at 0.2 and 0.4 kPa (0.53 ± 0.04, P < 0.01; 0.69 ± 0.23, P < 0.001; respectively). Whereas normal lungs exposed to 0.2 and 0.4 kPa showed significant increases in periostin (POSTN), a mechanical stress-response molecule (1.79 ± 0.10 and 2.12 ± 0.39, respectively; both P < 0.001), nitrofen-exposed lungs had a significant decrease in POSTN expression (0.4 kPa: 0.67 ± 0.15, P < 0.001), which was confirmed by immunohistochemistry. CONCLUSIONS Collectively, these pilot data in a model of CDH lung hypoplasia suggest a primary aberration in response to mechanical stress within the nitrofen lung, characterized by an upregulation of ACTA2 and a downregulation in SPFTC and POSTN. This ex vivo compression system may serve as a novel research platform to better understand the mechanobiology and complex regulation of matricellular dynamics during CDH fetal lung development.
Collapse
Affiliation(s)
- Zachary D Fox
- Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Guihua Jiang
- Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Kenneth K Y Ho
- Mechanical Engineering, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Kendal A Walker
- Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Allen P Liu
- Mechanical Engineering, Michigan Medicine, University of Michigan, Ann Arbor, Michigan
| | - Shaun M Kunisaki
- Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
37
|
Ostrin EJ, Little DR, Gerner-Mauro KN, Sumner EA, Ríos-Corzo R, Ambrosio E, Holt SE, Forcioli-Conti N, Akiyama H, Hanash SM, Kimura S, Huang SXL, Chen J. β-Catenin maintains lung epithelial progenitors after lung specification. Development 2018; 145:dev.160788. [PMID: 29440304 DOI: 10.1242/dev.160788] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/02/2018] [Indexed: 12/18/2022]
Abstract
The entire lung epithelium arises from SRY box 9 (SOX9)-expressing progenitors that form the respiratory tree and differentiate into airway and alveolar cells. Despite progress in understanding their initial specification within the embryonic foregut, how these progenitors are subsequently maintained is less clear. Using inducible, progenitor-specific genetic mosaic mouse models, we showed that β-catenin (CTNNB1) maintains lung progenitors by promoting a hierarchical lung progenitor gene signature, suppressing gastrointestinal (GI) genes, and regulating NK2 homeobox 1 (NKX2.1) and SRY box 2 (SOX2) in a developmental stage-dependent manner. At the early, but not later, stage post-lung specification, CTNNB1 cell-autonomously maintained normal NKX2.1 expression levels and suppressed ectopic SOX2 expression. Genetic epistasis analyses revealed that CTNNB1 is required for fibroblast growth factor (Fgf)/Kirsten rat sarcoma viral oncogene homolog (Kras)-mediated promotion of the progenitors. In silico screening of Eurexpress and translating ribosome affinity purification (TRAP)-RNAseq identified a progenitor gene signature, a subset of which depends on CTNNB1. Wnt signaling also maintained NKX2.1 expression and suppressed GI genes in cultured human lung progenitors derived from embryonic stem cells.
Collapse
Affiliation(s)
- Edwin J Ostrin
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Department of General Internal Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Danielle R Little
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
| | - Kamryn N Gerner-Mauro
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Elizabeth A Sumner
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
| | - Ricardo Ríos-Corzo
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, Mexico
| | - Elizabeth Ambrosio
- School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, Mexico
| | - Samantha E Holt
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Nicolas Forcioli-Conti
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Haruhiko Akiyama
- Department of Orthopedics, Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | - Sam M Hanash
- Department of Clinical Cancer Prevention, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah X L Huang
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, the University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
38
|
Yang Y, Fu Q, Liu Y, Wang X, Dunham R, Liu S, Bao L, Zeng Q, Zhou T, Li N, Qin Z, Jiang C, Gao D, Liu Z. Comparative transcriptome analysis reveals conserved branching morphogenesis related genes involved in chamber formation of catfish swimbladder. Physiol Genomics 2017; 50:67-76. [PMID: 29167198 DOI: 10.1152/physiolgenomics.00089.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The swimbladder is an internal gas-filled organ in teleosts. Its major function is to regulate buoyancy. The swimbladder exhibits great variation in size, shape, and number of compartments or chambers among teleosts. However, genomic control of swimbladder variation is unknown. Channel catfish ( Ictalurus punctatus), blue catfish ( Ictalurus furcatus), and their F1 hybrids of female channel catfish × male blue catfish (C × B hybrid catfish) provide a good model in which to investigate the swimbladder morphology, because channel catfish possess a single-chambered swimbladder, whereas blue catfish possess a bichambered swimbladder; C × B hybrid catfish possess a bichambered swimbladder but with a significantly reduced posterior chamber. Here we determined the transcriptional profiles of swimbladder from channel catfish, blue catfish, and C × B hybrid catfish. We examined their transcriptomes at both the fingerling and adult stages. Through comparative transcriptome analysis, ~4,000 differentially expressed genes (DEGs) were identified. Among these DEGs, members of the Wnt signaling pathway ( wnt1, wnt2, nfatc1, rac2), Hedgehog signaling pathway ( shh), and growth factors ( fgf10, igf-1) were identified. As these genes were known to be important for branching morphogenesis of mammalian lung and of mammary glands, their association with budding of the posterior chamber primordium and progressive development of bichambered swimbladder in fish suggest that these branching morphogenesis-related genes and their functions in branching are evolutionarily conserved across a broad spectrum of species.
Collapse
Affiliation(s)
- Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Qiang Fu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama.,Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, China
| | - Yang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Xiaozhu Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Lisui Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Qifan Zeng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Ning Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Zhenkui Qin
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Chen Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Dongya Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University , Auburn, Alabama
| | - Zhanjiang Liu
- Department of Biology, Syracuse University , Syracuse, New York
| |
Collapse
|
39
|
Genetic Variants in the Hedgehog Interacting Protein Gene Are Associated with the FEV1/FVC Ratio in Southern Han Chinese Subjects with Chronic Obstructive Pulmonary Disease. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2756726. [PMID: 28929109 PMCID: PMC5591965 DOI: 10.1155/2017/2756726] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/11/2017] [Accepted: 07/18/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Convincing evidences have demonstrated the associations between HHIP and FAM13a polymorphisms and COPD in non-Asian populations. Here genetic variants in HHIP and FAM13a were investigated in Southern Han Chinese COPD. METHODS A case-control study was conducted, including 989 cases and 999 controls. The associations between SNPs genotypes and COPD were performed by a logistic regression model; for SNPs and COPD-related phenotypes such as lung function, COPD severity, pack-year of smoking, and smoking status, a linear regression model was employed. Effects of risk alleles, genotypes, and haplotypes of the 3 significant SNPs in the HHIP gene on FEV1/FVC were also assessed in a linear regression model in COPD. RESULTS The mean FEV1/FVC% value was 46.8 in combined COPD population. None of the 8 selected SNPs apparently related to COPD susceptibility. However, three SNPs (rs12509311, rs13118928, and rs182859) in HHIP were associated significantly with the FEV1/FVC% (Pmax = 4.1 × 10-4) in COPD adjusting for gender, age, and smoking pack-years. Moreover, statistical significance between risk alleles and the FEV1/FVC% (P = 2.3 × 10-4), risk genotypes, and the FEV1/FVC% (P = 3.5 × 10-4) was also observed in COPD. CONCLUSIONS Genetic variants in HHIP were related with FEV1/FVC in COPD. Significant relationships between risk alleles and risk genotypes and FEV1/FVC in COPD were also identified.
Collapse
|
40
|
Henno P, Grassin-Delyle S, Belle E, Brollo M, Naline E, Sage E, Devillier P, Israël-Biet D. In smokers, Sonic hedgehog modulates pulmonary endothelial function through vascular endothelial growth factor. Respir Res 2017; 18:102. [PMID: 28535764 PMCID: PMC5442874 DOI: 10.1186/s12931-017-0590-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/17/2017] [Indexed: 02/06/2023] Open
Abstract
Background Tobacco-induced pulmonary vascular disease is partly driven by endothelial dysfunction. The Sonic hedgehog (SHH) pathway is involved in vascular physiology. We sought to establish whether the SHH pathway has a role in pulmonary endothelial dysfunction in smokers. Methods The ex vivo endothelium-dependent relaxation of pulmonary artery rings in response to acetylcholine (Ach) was compared in 34 current or ex-smokers and 8 never-smokers. The results were expressed as a percentage of the contraction with phenylephrine. We tested the effects of SHH inhibitors (GANT61 and cyclopamine), an SHH activator (SAG) and recombinant VEGF on the Ach-induced relaxation. The level of VEGF protein in the pulmonary artery ring was measured in an ELISA. SHH pathway gene expression was quantified in reverse transcriptase–quantitative polymerase chain reactions. Results Ach-induced relaxation was much less intense in smokers than in never-smokers (respectively 24 ± 6% and 50 ± 7% with 10−4M Ach; p = 0.028). All SHH pathway genes were expressed in pulmonary artery rings from smokers. SHH inhibition by GANT61 reduced Ach-induced relaxation and VEGF gene expression in the pulmonary artery ring. Recombinant VEGF restored the ring’s endothelial function. VEGF gene and protein expression levels in the pulmonary artery rings were positively correlated with the degree of Ach-induced relaxation and negatively correlated with the number of pack-years. Conclusion SHH pathway genes and proteins are expressed in pulmonary artery rings from smokers, where they modulate endothelial function through VEGF.
Collapse
Affiliation(s)
- Priscilla Henno
- Sorbonne Paris Cité, Université Paris-Descartes, Paris, France. .,AP-HP, Hôpital Européen Georges Pompidou, Service de Physiologie, Explorations Fonctionnelles Respiratoires et du Sommeil, 75015, Paris, France. .,UPRES EA220, Université Versailles Saint-Quentin, Université Paris-Saclay, F-92150, Suresnes, France.
| | - Stanislas Grassin-Delyle
- Plateforme de Spectrométrie de Masse & INSERM UMR1173, UFR Sciences de la Santé Simone Veil, Université Versailles Saint Quentin, Université Paris-Saclay, 78180, Montigny-le-Bretonneux, France.,Département des Maladies des Voies Respiratoires, Hôpital Foch, F-92150, Suresnes, France
| | - Emeline Belle
- UPRES EA220, Université Versailles Saint-Quentin, Université Paris-Saclay, F-92150, Suresnes, France
| | - Marion Brollo
- UPRES EA220, Université Versailles Saint-Quentin, Université Paris-Saclay, F-92150, Suresnes, France
| | - Emmanuel Naline
- UPRES EA220, Université Versailles Saint-Quentin, Université Paris-Saclay, F-92150, Suresnes, France.,Département des Maladies des Voies Respiratoires, Hôpital Foch, F-92150, Suresnes, France
| | - Edouard Sage
- Service de Chirurgie Thoracique, Département des Maladies des Voies Respiratoires, Hôpital Foch, F-92150, Suresnes, France
| | - Philippe Devillier
- UPRES EA220, Université Versailles Saint-Quentin, Université Paris-Saclay, F-92150, Suresnes, France.,Département des Maladies des Voies Respiratoires, Hôpital Foch, F-92150, Suresnes, France
| | - Dominique Israël-Biet
- Sorbonne Paris Cité, Université Paris-Descartes, Paris, France.,AP-HP; Hôpital Européen Georges Pompidou, Service de Pneumologie, 75015, Paris, France
| |
Collapse
|
41
|
Takahashi T, Friedmacher F, Zimmer J, Puri P. Expression of T-box transcription factors 2, 4 and 5 is decreased in the branching airway mesenchyme of nitrofen-induced hypoplastic lungs. Pediatr Surg Int 2017; 33:139-143. [PMID: 27833996 DOI: 10.1007/s00383-016-4005-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE Pulmonary hypoplasia (PH), characterized by smaller lung size and reduced airway branching, remains a major therapeutic challenge in newborns with congenital diaphragmatic hernia (CDH). T-box transcription factors (Tbx) have been identified as key components of the gene network that regulates fetal lung development. Tbx2, Tbx4 and Tbx5 are expressed throughout the mesenchyme of the developing lung, regulating the process of lung branching morphogenesis. Furthermore, lungs of Tbx2-, Tbx4- and Tbx5-deficient mice are hypoplastic and exhibit decreased lung branching, similar to PH in human CDH. We hypothesized that the expression of Tbx2, Tbx4 and Tbx5 is decreased in the branching airway mesenchyme of hypoplastic rat lungs with nitrofen-induced CDH. METHODS Time-mated rats received either nitrofen or vehicle on gestational day 9 (D9). Fetuses were killed on D15, D18 and D21, and dissected lungs were divided into control and nitrofen-exposed specimens. Pulmonary gene expression of Tbx2, Tbx4 and Tbx5 was investigated by quantitative real-time polymerase chain reaction. Immunofluorescence double staining for Tbx2, Tbx4 and Tbx5 was combined with the mesenchymal marker Fgf10 to assess protein expression and localization in branching airway tissue. RESULTS Relative mRNA levels of Tbx2, Tbx4 and Tbx5 were significantly reduced in lungs of nitrofen-exposed fetuses on D15, D18 and D21 compared to controls. Confocal laser scanning microscopy showed markedly diminished immunofluorescence of Tbx2, Tbx4 and Tbx5 in mesenchymal cells surrounding branching airways of nitrofen-exposed fetuses on D15, D18 and D21 compared to controls. CONCLUSION Decreased expression of Tbx2, Tbx4 and Tbx5 in the pulmonary mesenchyme during fetal lung development may lead to a decrease or arrest of airway branching, thus contributing to PH in the nitrofen-induced CDH model.
Collapse
Affiliation(s)
- Toshiaki Takahashi
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, 12, Ireland
| | - Florian Friedmacher
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, 12, Ireland
| | - Julia Zimmer
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, 12, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, 12, Ireland. .,Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
42
|
Chung SH, Bae CW. Association of Surfactant Protein with Expression of Hoxa5 and Hoxb5 in Rabbit Fetal Lung. Int J Med Sci 2017; 14:1189-1196. [PMID: 29104474 PMCID: PMC5666551 DOI: 10.7150/ijms.20721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/07/2017] [Indexed: 12/31/2022] Open
Abstract
Hox genes regulate organ formation and identity of the embryo, and expressed in specific temporo-spatial patterns in the developing embryo. We compared the expression levels of the Hoxa5, Hoxb5, surfactant protein (SP)-A, and SP-B genes in immature and mature rabbit fetal lung tissues, and to uncover roles for Hoxa5, Hoxb5, SP-A, and SP-B. Cesarean sections were performed after rabbits were divided into two groups of 30-31 days of gestation (term group, n = 24) and 26-27 days of gestation (preterm group, n = 24). mRNA levels of Hoxa5, Hoxb5, SP-A, and SP-B were compared by quantitative reverse transcriptase polymerase chain reaction, and protein expression of Hoxa5 and Hoxb5 was compared by western blot analysis. Fetal lung tissue histology was observed by hematoxylin and eosin (H&E) staining. The relative expression ratios of SP-A and SP-B mRNA in the term to preterm groups were 2.45:1 and 2.94:1, respectively. Hoxb5 mRNA and protein levels decreased in the term group, with a relative expression ratio of 0.48:1 and 0.50:1, however, Hoxa5 mRNA and protein levels increased in the term group with a relative expression ration of 2.99:1 and 2.33:1, respectively, for the term to preterm groups. Moreover, a significant positive correlation was found between the expression of Hoxa5 and SP-A, SP-B in the term group. Hoxa5 gene may be essential for the expression of SP-A and SP-B in term rabbits. The Hoxb5 gene may be an important factor for lung maturation in preterm rabbits.
Collapse
Affiliation(s)
- Sung-Hoon Chung
- Department of Pediatrics, Kyung Hee University School of Medicine, Seoul, Korea
| | - Chong-Woo Bae
- Department of Pediatrics, Kyung Hee University School of Medicine, Seoul, Korea
| |
Collapse
|
43
|
Nardiello C, Mižíková I, Morty RE. Looking ahead: where to next for animal models of bronchopulmonary dysplasia? Cell Tissue Res 2016; 367:457-468. [PMID: 27917436 PMCID: PMC5320021 DOI: 10.1007/s00441-016-2534-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/01/2016] [Indexed: 11/16/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is the most common complication of preterm birth, with appreciable morbidity and mortality in a neonatal intensive care setting. Much interest has been shown in the identification of pathogenic pathways that are amenable to pharmacological manipulation (1) to facilitate the development of novel therapeutic and medical management strategies and (2) to identify the basic mechanisms of late lung development, which remains poorly understood. A number of animal models have therefore been developed and continue to be refined with the aim of recapitulating pathological pulmonary hallmarks noted in lungs from neonates with BPD. These animal models rely on several injurious stimuli, such as mechanical ventilation or oxygen toxicity and infection and sterile inflammation, as applied in mice, rats, rabbits, pigs, lambs and nonhuman primates. This review addresses recent developments in modeling BPD in experimental animals and highlights important neglected areas that demand attention. Additionally, recent progress in the quantitative microscopic analysis of pathology tissue is described, together with new in vitro approaches of value for the study of normal and aberrant alveolarization. The need to examine long-term sequelae of damage to the developing neonatal lung is also considered, as is the need to move beyond the study of the lungs alone in experimental animal models of BPD.
Collapse
Affiliation(s)
- Claudio Nardiello
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany. .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.
| |
Collapse
|
44
|
Kemp MW, Saito M, Usuda H, Molloy TJ, Miura Y, Sato S, Watanabe S, Clarke M, Fossler M, Scmidt A, Kallapur SG, Kramer BW, Newnham JP, Jobe AH. Maternofetal pharmacokinetics and fetal lung responses in chronically catheterized sheep receiving constant, low-dose infusions of betamethasone phosphate. Am J Obstet Gynecol 2016; 215:775.e1-775.e12. [PMID: 27555319 DOI: 10.1016/j.ajog.2016.08.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/24/2016] [Accepted: 08/10/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Antenatal steroids are standard of care for cases of anticipated preterm labor to improve neonatal outcomes. However, steroids are potent drugs, and their use in pregnancy remains largely unoptimized. OBJECTIVE The objective of the study was to measure the maternofetal pharmacokinetics of constant, low-dose intravenous betamethasone phosphate infusions and correlate these data with the transcriptional effect exerted by subclinical betamethasone exposures on the ovine fetal lung. STUDY DESIGN Thirty-two ewes carrying a single fetus had surgery to catheterize fetal and maternal jugular veins at 116 days of gestation (term, 150 days). Animals were recovered for 2 days and then were randomized to receive 2 sequential maternal intravenous infusions of either (n = 4/group) of the following: 1) saline, 0.125, 0.04, or 0.0125 mg/kg betamethasone phosphate over 3 hours; or 2) saline, 0.25, 0.08, or 0.025 mg/kg betamethasone phosphate over 12 hours. Each infusion was separated by 2 days. Fetal lung tissue was collected for analysis using quantitative polymerase chain reaction and an ovine-specific microarray. Plasma betamethasone levels from time-course catheter samples were determined by mass spectrometry. Data were assessed for distribution, variance, and tested by an analysis of variance. RESULTS Betamethasone was detectable (>1 ng/mL) in fetal plasma only in animals randomized to 0.125 mg/kg 3 hour or 0.250 mg/kg 12 hour infusions. Fetal betamethasone half-lives were 1.7-2.8 times greater than maternal values. At maximum concentration, fetal plasma betamethasone levels were approximately 10% of maternal levels. Compared with saline control, all animals, other than those receiving 0.0125 mg/kg 3 hour betamethasone phosphate infusions, had evidence of dose-dependent glucocorticoid transcriptional responses in the fetal lung. CONCLUSION Constant maternal betamethasone infusions delivering substantially lower fetal and maternal betamethasone maximal concentrations than those achieved with current clinical treatment protocols were associated with dose-dependent changes in glucocorticoid-response markers in the fetal lung. Further studies to determine the minimally efficacious dose of steroids for improving outcomes in preterm infants should be viewed as a priority.
Collapse
|
45
|
Chanda D, Kurundkar A, Rangarajan S, Locy M, Bernard K, Sharma NS, Logsdon NJ, Liu H, Crossman DK, Horowitz JC, De Langhe S, Thannickal VJ. Developmental Reprogramming in Mesenchymal Stromal Cells of Human Subjects with Idiopathic Pulmonary Fibrosis. Sci Rep 2016; 6:37445. [PMID: 27869174 PMCID: PMC5116673 DOI: 10.1038/srep37445] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022] Open
Abstract
Cellular plasticity and de-differentiation are hallmarks of tissue/organ regenerative capacity in diverse species. Despite a more restricted capacity for regeneration, humans with age-related chronic diseases, such as cancer and fibrosis, show evidence of a recapitulation of developmental gene programs. We have previously identified a resident population of mesenchymal stromal cells (MSCs) in the terminal airways-alveoli by bronchoalveolar lavage (BAL) of human adult lungs. In this study, we characterized MSCs from BAL of patients with stable and progressive idiopathic pulmonary fibrosis (IPF), defined as <5% and ≥10% decline, respectively, in forced vital capacity over the preceding 6-month period. Gene expression profiles of MSCs from IPF subjects with progressive disease were enriched for genes regulating lung development. Most notably, genes regulating early tissue patterning and branching morphogenesis were differentially regulated. Network interactive modeling of a set of these genes indicated central roles for TGF-β and SHH signaling. Importantly, fibroblast growth factor-10 (FGF-10) was markedly suppressed in IPF subjects with progressive disease, and both TGF-β1 and SHH signaling were identified as critical mediators of this effect in MSCs. These findings support the concept of developmental gene re-activation in IPF, and FGF-10 deficiency as a potentially critical factor in disease progression.
Collapse
Affiliation(s)
- Diptiman Chanda
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ashish Kurundkar
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sunad Rangarajan
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Morgan Locy
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Karen Bernard
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nirmal S Sharma
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Naomi J Logsdon
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hui Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David K Crossman
- Heflin Center for Genomic Science, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stijn De Langhe
- Department of Pediatrics, Division of Cell Biology, National Jewish Health, Denver, CO 80206, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
46
|
Beauchemin KJ, Wells JM, Kho AT, Philip VM, Kamir D, Kohane IS, Graber JH, Bult CJ. Temporal dynamics of the developing lung transcriptome in three common inbred strains of laboratory mice reveals multiple stages of postnatal alveolar development. PeerJ 2016; 4:e2318. [PMID: 27602285 PMCID: PMC4991849 DOI: 10.7717/peerj.2318] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/12/2016] [Indexed: 12/12/2022] Open
Abstract
To characterize temporal patterns of transcriptional activity during normal lung development, we generated genome wide gene expression data for 26 pre- and post-natal time points in three common inbred strains of laboratory mice (C57BL/6J, A/J, and C3H/HeJ). Using Principal Component Analysis and least squares regression modeling, we identified both strain-independent and strain-dependent patterns of gene expression. The 4,683 genes contributing to the strain-independent expression patterns were used to define a murine Developing Lung Characteristic Subtranscriptome (mDLCS). Regression modeling of the Principal Components supported the four canonical stages of mammalian embryonic lung development (embryonic, pseudoglandular, canalicular, saccular) defined previously by morphology and histology. For postnatal alveolar development, the regression model was consistent with four stages of alveolarization characterized by episodic transcriptional activity of genes related to pulmonary vascularization. Genes expressed in a strain-dependent manner were enriched for annotations related to neurogenesis, extracellular matrix organization, and Wnt signaling. Finally, a comparison of mouse and human transcriptomics from pre-natal stages of lung development revealed conservation of pathways associated with cell cycle, axon guidance, immune function, and metabolism as well as organism-specific expression of genes associated with extracellular matrix organization and protein modification. The mouse lung development transcriptome data generated for this study serves as a unique reference set to identify genes and pathways essential for normal mammalian lung development and for investigations into the developmental origins of respiratory disease and cancer. The gene expression data are available from the Gene Expression Omnibus (GEO) archive (GSE74243). Temporal expression patterns of mouse genes can be investigated using a study specific web resource (http://lungdevelopment.jax.org).
Collapse
Affiliation(s)
- Kyle J. Beauchemin
- The Jackson Laboratory, Bar Harbor, ME, United States
- Graduate School of Biomedical Sciences and Engineering, The University of Maine, Orono, ME, United States
| | | | - Alvin T. Kho
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, United States
| | | | - Daniela Kamir
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Isaac S. Kohane
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, United States
| | | | - Carol J. Bult
- The Jackson Laboratory, Bar Harbor, ME, United States
| |
Collapse
|
47
|
Lee CM, Wu J, Xia Y, Hu J. ESE-1 in Early Development: Approaches for the Future. Front Cell Dev Biol 2016; 4:73. [PMID: 27446923 PMCID: PMC4924247 DOI: 10.3389/fcell.2016.00073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/17/2016] [Indexed: 01/14/2023] Open
Abstract
E26 transformation-specific (Ets) family of transcription factors are characterized by the presence of Ets-DNA binding domain and have been found to be highly involved in hematopoiesis and various tissue differentiation. ESE-1, or Elf3 in mice, is a member of epithelium-specific Ets sub-family which is most prominently expressed in epithelial tissues such as the gut, mammary gland, and lung. The role of ESE-1 during embryogenesis had long been alluded from 30% fetal lethality in homozygous knockout mice and its high expression in preimplantation mouse embryos, but there has been no in-depth of analysis of ESE-1 function in early development. With improved proteomics, gene editing tools and increasing knowledge of ESE-1 function in adult tissues, we hereby propose future research directions for the study of ESE-1 in embryogenesis, including studying its regulation at the protein level and at the protein family level, as well as better defining the developmental phase under investigation. Understanding the role of ESE-1 in early development will provide new insights into its involvement in tissue regeneration and cancer, as well as how it functions with other Ets factors as a protein family.
Collapse
Affiliation(s)
- Chan Mi Lee
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, SickKids Research Institute, SickKids HospitalToronto, ON, Canada; Laboratory Medicine and Pathobiology, University of TorontoToronto, ON, Canada
| | - Jing Wu
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, SickKids Research Institute, SickKids Hospital Toronto, ON, Canada
| | - Yi Xia
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, SickKids Research Institute, SickKids HospitalToronto, ON, Canada; Laboratory Medicine and Pathobiology, University of TorontoToronto, ON, Canada
| | - Jim Hu
- Program in Physiology and Experimental Medicine, Peter Gilgan Centre for Research and Learning, SickKids Research Institute, SickKids HospitalToronto, ON, Canada; Laboratory Medicine and Pathobiology, University of TorontoToronto, ON, Canada
| |
Collapse
|
48
|
Zhang ZH, Pan YY, Jing RS, Luan Y, Zhang L, Sun C, Kong F, Li KL, Wang YB. Protective effects of BMSCs in combination with erythropoietin in bronchopulmonary dysplasia-induced lung injury. Mol Med Rep 2016; 14:1302-8. [PMID: 27279073 DOI: 10.3892/mmr.2016.5378] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 05/12/2016] [Indexed: 11/05/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common type of chronic lung disease in infancy, for which no effective therapy is currently available. The aim of the present study was to investigate the effect of treatment with bone marrow mesenchymal stem cells (BMSCs) in combination with recombinant human erythropoietin (rHuEPO) on BPD‑induced mouse lung injury, and discuss the underlying mechanism. The BPD model was established by the exposure of neonatal mice to continuous high oxygen exposure for 14 days, following which 1x106 BMSCs and 5,000 U/kg rHuEPO were injected into the mice 1 h prior to and 7 days following exposure to hyperoxia. The animals received four treatments in total (n=10 in each group). After 14 days, the body weights, airway structure, and levels of matrix metalloproteinase‑9 (MMP‑9) and vascular endothelial growth factor (VEGF) were detected using histological and immunohistochemical analyses. The effect on cell differentiation was observed by examining the presence of platelet endothelial cell adhesion molecule (PECAM) and VEGF using immunofluorescence. Compared with the administration of BMSCs alone, the body weight, airway structure, and the levels of MMP‑9 and VEGF were significantly improved in the BMSCs/rHuEPO group. The results of the present study demonstrated that the intravenous injection of BMSCs significantly improved lung damage in the hyperoxia‑exposed neonatal mouse model. Furthermore, the injection of BMSCs in combination with intraperitoneal injection of rHuEPO had a more marked effect, compared with BMSCs alone, and the mechanism may be mediated by the promoting effects of BMSCs and EPO. The results of the present study provided information, which may assist in future clinical trials.
Collapse
Affiliation(s)
- Zhao-Hua Zhang
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yan-Yan Pan
- Department of Pediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong 066600, P.R. China
| | - Rui-Sheng Jing
- Department of Internal Medicine, Xinji Central Hospital, Changli, Hebei 250000, P.R. China
| | - Yun Luan
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Luan Zhang
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Chao Sun
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Feng Kong
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Kai-Lin Li
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yi-Biao Wang
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
49
|
Tzou D, W Spurlin J, Pavlovich AL, Stewart CR, Gleghorn JP, Nelson CM. Morphogenesis and morphometric scaling of lung airway development follows phylogeny in chicken, quail, and duck embryos. EvoDevo 2016; 7:12. [PMID: 27239263 PMCID: PMC4882856 DOI: 10.1186/s13227-016-0049-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 05/11/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND New branches within the embryonic chicken lung form via apical constriction, in which epithelial cells in the primary bronchus become trapezoidal in shape. These branches form at precise locations along the primary bronchus that scale relative to the size of the organ. Here, we examined the extent to which this scaling relationship and branching mechanism are conserved within lungs of three species of birds. FINDINGS Analyzing the development of embryonic lungs from chicken, quail, and duck, as well as lungs explanted and cultured ex vivo, revealed that the patterns of branching are remarkably conserved. In particular, secondary bronchi form at identical positions in chicken and quail, the patterns of which are indistinguishable, consistent with the close evolutionary relationship of these two species. In contrast, secondary bronchi form at slightly different positions in duck, the lungs of which are significantly larger than those of chicken and quail at the same stage of development. Confocal analysis of fixed specimens revealed that each secondary bronchus forms by apical constriction of the dorsal epithelium of the primary bronchus, a morphogenetic mechanism distinct from that used to create branches in mammalian lungs. CONCLUSIONS Our findings suggest that monopodial branching off the primary bronchus is driven by apical constriction in lungs of chicken, quail, and duck. The relative positions at which these branches form are also conserved relative to the evolutionary relationship of these species. It will be interesting to determine whether these mechanisms hold in more distant species of birds, and why they differ so significantly in mammals.
Collapse
Affiliation(s)
- Daniel Tzou
- Department of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544 USA
| | - James W Spurlin
- Department of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544 USA
| | - Amira L Pavlovich
- Department of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544 USA
| | - Carolyn R Stewart
- Department of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544 USA
| | - Jason P Gleghorn
- Department of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544 USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544 USA ; Department of Molecular Biology, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544 USA
| |
Collapse
|
50
|
Makanya AN. Membrane mediated development of the vertebrate blood-gas-barrier. ACTA ACUST UNITED AC 2016; 108:85-97. [PMID: 26991887 DOI: 10.1002/bdrc.21120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/22/2016] [Indexed: 01/24/2023]
Abstract
During embryonic lung development, establishment of the gas-exchanging units is guided by epithelial tubes lined by columnar cells. Ultimately, a thin blood-gas barrier (BGB) is established and forms the interface for efficient gas exchange. This thin BGB is achieved through processes, which entail lowering of tight junctions, stretching, and thinning in mammals. In birds the processes are termed peremerecytosis, if they involve cell squeezing and constriction, or secarecytosis, if they entail cutting cells to size. In peremerecytosis, cells constrict at a point below the protruding apical part, resulting in fusion of the opposing membranes and discharge of the aposome, or the cell may be squeezed by the more endowed cognate neighbors. Secarecytosis may entail formation of double membranes below the aposome, subsequent unzipping and discharge of the aposome, or vesicles form below the aposome, fuse in a bilateral manner, and release the aposome. These processes occur within limited developmental windows, and are mediated through cell membranes that appear to be of intracellular in origin. In addition, basement membranes (BM) play pivotal roles in differentiation of the epithelial and endothelial layers of the BGB. Laminins found in the BM are particularly important in the signaling pathways that result in formation of squamous pneumocytes and pulmonary capillaries, the two major components of the BGB. Some information exists on the contribution by BM to BGB formation, but little is known regarding the molecules that drive peremerecytosis, or even the origins and composition of the double and vesicular membranes involved in secarecytosis.
Collapse
Affiliation(s)
- Andrew N Makanya
- Department of Vet Anatomy and Physiology, Riverside Drive, Chiromo Campus, University of , Box 30197-00100, Nairobi
| |
Collapse
|