1
|
Poudel SP, Behura SK. Relevance of the regulation of the brain-placental axis to the nocturnal bottleneck of mammals. Placenta 2024; 155:11-21. [PMID: 39121583 DOI: 10.1016/j.placenta.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Evolutionary theory suggests that the ancestors of all placental animals were nocturnal. Visual perceptive function of mammalian brain has evolved extensively, but nearly 70 % of today's mammals are still nocturnal. While placental influence on brain development is known, if placenta plays a role in the visual perceptive function of mammalian brain remains untested. The present study aims to test this hypothesis. METHODS In this study, single-nuclei RNA sequencing was performed to identify genes expressed in the pig placenta and fetal brain, and then compared with the orthologous genes expressed in the placenta and fetal brain cells of mouse. Differential gene expression analysis was performed to identify placental genes regulated differentially between nocturnal and diurnal animals. Phylogenetic modeling was performed to test correlated evolution between placenta type, and the nocturnal or diurnal activity among different mammals. RESULTS The results showed that genes differentially regulated in the fetal brain were related to visual perception whereas the placental genes were related to the nocturnal or diurnal activity in placental animals. Phylogenetic modeling of these genes in thirty-four diverse mammalian species showed evidence for evolutionary link between placenta and the nocturnal/diurnal activity in animals. DISCUSSION The findings of this study suggest that the placenta plays a role in the evolution of visual perceptive function of brain to shape the nocturnal or diurnal activity of placental animals.
Collapse
Affiliation(s)
- Shankar P Poudel
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA; MU Institute for Data Science and Informatics, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA; Interdisciplinary Reproduction and Health Group, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA; Interdisciplinary Neuroscience Program, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA.
| |
Collapse
|
2
|
Liu D, Pu Z, Li B, Tan G, Xie T, Shen Y. Chrdl1-mediated BMP4 inhibition disrupts the balance between retinal neurons and Müller Glia. Cell Death Discov 2024; 10:367. [PMID: 39152126 PMCID: PMC11329631 DOI: 10.1038/s41420-024-02129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024] Open
Abstract
Chordin-like 1 (CHRDL1) is a secreted protein that serves as an endogenous antagonist of bone morphogenetic proteins (BMPs). In the developing retina, Bmp4 has been demonstrated to be essential for sustaining the proliferation of progenitor cells and facilitating the differentiation of glial cells. Despite these efforts, the precise effects of Bmp4 inhibition on the developing retina are yet to be fully understood. We sought to address this question by overexpressing Chrdl1 in the developing retina. In this study, we explored the impact of Bmp4 inhibition on the developing mouse retina by conditionally overexpressing the Bmp4 inhibitor Chrdl1. Initially, we characterized the expression patterns of Bmp4 and Chrdl1 in the developing mouse retina from E10.5 to P12.5. Additionally, we utilized various molecular markers to demonstrate that Bmp4 inhibition disrupts both neuronal and Müller glial differentiation in the developing mouse retina. Moreover, through the application of RNA-seq analysis, distinctively expressed retinal genes under the modulation of Bmp4 signaling were discerned, encompassing the upregulation of Id1/2/3/4 and Hes1/5, as well as the downregulation of Neurod1/2/4 and Bhlhe22/23. Lastly, electroretinogram (ERG) and optomotor response (OMR) assays were conducted to illustrate that Bmp4 inhibition impairs the functional connectivity of various cells in the retina and consequently affects visual function. Collectively, this study demonstrates that inhibiting Bmp4 promotes the differentiation of retinal neurons over Müller glia by activating the expression of genes associated with neuron specification. These findings offer molecular insights into the role of Bmp4 signaling in mammalian retinal development.
Collapse
Affiliation(s)
- Dongmei Liu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, 710061, P. R. China
| | - Zeyuan Pu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Baige Li
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Gao Tan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China
| | - Ting Xie
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, P. R. China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, P. R. China.
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, Hubei, 430060, P. R. China.
| |
Collapse
|
3
|
Singh PNP, Gu W, Madha S, Lynch AW, Cejas P, He R, Bhattacharya S, Muñoz Gomez M, Oser MG, Brown M, Long HW, Meyer CA, Zhou Q, Shivdasani RA. Transcription factor dynamics, oscillation, and functions in human enteroendocrine cell differentiation. Cell Stem Cell 2024; 31:1038-1057.e11. [PMID: 38733993 DOI: 10.1016/j.stem.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
Enteroendocrine cells (EECs) secrete serotonin (enterochromaffin [EC] cells) or specific peptide hormones (non-EC cells) that serve vital metabolic functions. The basis for terminal EEC diversity remains obscure. By forcing activity of the transcription factor (TF) NEUROG3 in 2D cultures of human intestinal stem cells, we replicated physiologic EEC differentiation and examined transcriptional and cis-regulatory dynamics that culminate in discrete cell types. Abundant EEC precursors expressed stage-specific genes and TFs. Before expressing pre-terminal NEUROD1, post-mitotic precursors oscillated between transcriptionally distinct ASCL1+ and HES6hi cell states. Loss of either factor accelerated EEC differentiation substantially and disrupted EEC individuality; ASCL1 or NEUROD1 deficiency had opposing consequences on EC and non-EC cell features. These TFs mainly bind cis-elements that are accessible in undifferentiated stem cells, and they tailor subsequent expression of TF combinations that underlie discrete EEC identities. Thus, early TF oscillations retard EEC maturation to enable accurate diversity within a medically important cell lineage.
Collapse
Affiliation(s)
- Pratik N P Singh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Wei Gu
- Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shariq Madha
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Allen W Lynch
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Paloma Cejas
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ruiyang He
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Swarnabh Bhattacharya
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Miguel Muñoz Gomez
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Clifford A Meyer
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Qiao Zhou
- Division of Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Ramesh A Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Departments of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
4
|
Singh PNP, Gu W, Madha S, Lynch AW, Cejas P, He R, Bhattacharya S, Gomez MM, Oser MG, Brown M, Long HW, Meyer CA, Zhou Q, Shivdasani RA. Transcription factor dynamics, oscillation, and functions in human enteroendocrine cell differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574746. [PMID: 38260422 PMCID: PMC10802488 DOI: 10.1101/2024.01.09.574746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Enteroendocrine cells (EECs), which secrete serotonin (enterochromaffin cells, EC) or a dominant peptide hormone, serve vital physiologic functions. As with any adult human lineage, the basis for terminal cell diversity remains obscure. We replicated human EEC differentiation in vitro , mapped transcriptional and chromatin dynamics that culminate in discrete cell types, and studied abundant EEC precursors expressing selected transcription factors (TFs) and gene programs. Before expressing the pre-terminal factor NEUROD1, non-replicating precursors oscillated between epigenetically similar but transcriptionally distinct ASCL1 + and HES6 hi cell states. Loss of either factor substantially accelerated EEC differentiation and disrupted EEC individuality; ASCL1 or NEUROD1 deficiency had opposing consequences on EC and hormone-producing cell features. Expressed late in EEC differentiation, the latter TFs mainly bind cis -elements that are accessible in undifferentiated stem cells and tailor the subsequent expression of TF combinations that specify EEC types. Thus, TF oscillations retard EEC maturation to enable accurate EEC diversification.
Collapse
|
5
|
Zhang X, Leavey P, Appel H, Makrides N, Blackshaw S. Molecular mechanisms controlling vertebrate retinal patterning, neurogenesis, and cell fate specification. Trends Genet 2023; 39:736-757. [PMID: 37423870 PMCID: PMC10529299 DOI: 10.1016/j.tig.2023.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
This review covers recent advances in understanding the molecular mechanisms controlling neurogenesis and specification of the developing retina, with a focus on insights obtained from comparative single cell multiomic analysis. We discuss recent advances in understanding the mechanisms by which extrinsic factors trigger transcriptional changes that spatially pattern the optic cup (OC) and control the initiation and progression of retinal neurogenesis. We also discuss progress in unraveling the core evolutionarily conserved gene regulatory networks (GRNs) that specify early- and late-state retinal progenitor cells (RPCs) and neurogenic progenitors and that control the final steps in determining cell identity. Finally, we discuss findings that provide insight into regulation of species-specific aspects of retinal patterning and neurogenesis, including consideration of key outstanding questions in the field.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Ophthalmology, Columbia University School of Medicine, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University School of Medicine, New York, NY, USA.
| | - Patrick Leavey
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haley Appel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Neoklis Makrides
- Department of Ophthalmology, Columbia University School of Medicine, New York, NY, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Single-cell multiome of the human retina and deep learning nominate causal variants in complex eye diseases. CELL GENOMICS 2022; 2:100164. [PMID: 36277849 PMCID: PMC9584034 DOI: 10.1016/j.xgen.2022.100164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Genome-wide association studies (GWASs) of eye disorders have identified hundreds of genetic variants associated with ocular disease. However, the vast majority of these variants are noncoding, making it challenging to interpret their function. Here we present a joint single-cell atlas of gene expression and chromatin accessibility of the adult human retina with more than 50,000 cells, which we used to analyze single-nucleotide polymorphisms (SNPs) implicated by GWASs of age-related macular degeneration, glaucoma, diabetic retinopathy, myopia, and type 2 macular telangiectasia. We integrate this atlas with a HiChIP enhancer connectome, expression quantitative trait loci (eQTL) data, and base-resolution deep learning models to predict noncoding SNPs with causal roles in eye disease, assess SNP impact on transcription factor binding, and define their known and novel target genes. Our efforts nominate pathogenic SNP-target gene interactions for multiple vision disorders and provide a potentially powerful resource for interpreting noncoding variation in the eye.
Collapse
|
7
|
Bradshaw SN, Allison WT. Hagfish to Illuminate the Developmental and Evolutionary Origins of the Vertebrate Retina. Front Cell Dev Biol 2022; 10:822358. [PMID: 35155434 PMCID: PMC8826474 DOI: 10.3389/fcell.2022.822358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
The vertebrate eye is a vital sensory organ that has long fascinated scientists, but the details of how this organ evolved are still unclear. The vertebrate eye is distinct from the simple photoreceptive organs of other non-vertebrate chordates and there are no clear transitional forms of the eye in the fossil record. To investigate the evolution of the eye we can examine the eyes of the most ancient extant vertebrates, the hagfish and lamprey. These jawless vertebrates are in an ideal phylogenetic position to study the origin of the vertebrate eye but data on eye/retina development in these organisms is limited. New genomic and gene expression data from hagfish and lamprey suggest they have many of the same genes for eye development and retinal neurogenesis as jawed vertebrates, but functional work to determine if these genes operate in retinogenesis similarly to other vertebrates is missing. In addition, hagfish express a marker of proliferative retinal cells (Pax6) near the margin of the retina, and adult retinal growth is apparent in some species. This finding of eye growth late into hagfish ontogeny is unexpected given the degenerate eye phenotype. Further studies dissecting retinal neurogenesis in jawless vertebrates would allow for comparison of the mechanisms of retinal development between cyclostome and gnathostome eyes and provide insight into the evolutionary origins of the vertebrate eye.
Collapse
Affiliation(s)
| | - W. Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
West ER, Cepko CL. Development and diversification of bipolar interneurons in the mammalian retina. Dev Biol 2021; 481:30-42. [PMID: 34534525 DOI: 10.1016/j.ydbio.2021.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022]
Abstract
The bipolar interneurons of the mammalian retina have evolved as a diverse set of cells with distinct subtype characteristics, which reflect specialized contributions to visual circuitry. Fifteen subtypes of bipolar interneurons have been identified in the mouse retina, each with characteristic gene expression, morphology, and light responses. This review provides an overview of the developmental events that underlie the generation of the diverse bipolar cell class, summarizing the current knowledge of genetic programs that establish and maintain bipolar subtype fates, as well as the events that shape the final distribution of bipolar subtypes. With much left to be discovered, bipolar interneurons present an ideal model system for studying the interplay between cell-autonomous and non-cell-autonomous mechanisms that influence neuronal subtype development within the central nervous system.
Collapse
Affiliation(s)
- Emma R West
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Constance L Cepko
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Zilova L, Weinhardt V, Tavhelidse T, Schlagheck C, Thumberger T, Wittbrodt J. Fish primary embryonic pluripotent cells assemble into retinal tissue mirroring in vivo early eye development. eLife 2021; 10:e66998. [PMID: 34252023 PMCID: PMC8275126 DOI: 10.7554/elife.66998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Organoids derived from pluripotent stem cells promise the solution to current challenges in basic and biomedical research. Mammalian organoids are however limited by long developmental time, variable success, and lack of direct comparison to an in vivo reference. To overcome these limitations and address species-specific cellular organization, we derived organoids from rapidly developing teleosts. We demonstrate how primary embryonic pluripotent cells from medaka and zebrafish efficiently assemble into anterior neural structures, particularly retina. Within 4 days, blastula-stage cell aggregates reproducibly execute key steps of eye development: retinal specification, morphogenesis, and differentiation. The number of aggregated cells and genetic factors crucially impacted upon the concomitant morphological changes that were intriguingly reflecting the in vivo situation. High efficiency and rapid development of fish-derived organoids in combination with advanced genome editing techniques immediately allow addressing aspects of development and disease, and systematic probing of impact of the physical environment on morphogenesis and differentiation.
Collapse
Affiliation(s)
- Lucie Zilova
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Venera Weinhardt
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Tinatini Tavhelidse
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Christina Schlagheck
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
- Heidelberg International Biosciences Graduate School HBIGS and HeiKa Graduate School on “Functional Materials”HeidelbergGermany
| | - Thomas Thumberger
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| | - Joachim Wittbrodt
- Centre for Organismal Studies Heidelberg, Heidelberg UniversityHeidelbergGermany
| |
Collapse
|
10
|
Kaufman ML, Goodson NB, Park KU, Schwanke M, Office E, Schneider SR, Abraham J, Hensley A, Jones KL, Brzezinski JA. Initiation of Otx2 expression in the developing mouse retina requires a unique enhancer and either Ascl1 or Neurog2 activity. Development 2021; 148:dev199399. [PMID: 34143204 PMCID: PMC8254865 DOI: 10.1242/dev.199399] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/10/2021] [Indexed: 11/20/2022]
Abstract
During retinal development, a large subset of progenitors upregulates the transcription factor Otx2, which is required for photoreceptor and bipolar cell formation. How these retinal progenitor cells initially activate Otx2 expression is unclear. To address this, we investigated the cis-regulatory network that controls Otx2 expression in mice. We identified a minimal enhancer element, DHS-4D, that drove expression in newly formed OTX2+ cells. CRISPR/Cas9-mediated deletion of DHS-4D reduced OTX2 expression, but this effect was diminished in postnatal development. Systematic mutagenesis of the enhancer revealed that three basic helix-loop-helix (bHLH) transcription factor-binding sites were required for its activity. Single cell RNA-sequencing of nascent Otx2+ cells identified the bHLH factors Ascl1 and Neurog2 as candidate regulators. CRISPR/Cas9 targeting of these factors showed that only the simultaneous loss of Ascl1 and Neurog2 prevented OTX2 expression. Our findings suggest that Ascl1 and Neurog2 act either redundantly or in a compensatory fashion to activate the DHS-4D enhancer and Otx2 expression. We observed redundancy or compensation at both the transcriptional and enhancer utilization levels, suggesting that the mechanisms governing Otx2 regulation in the retina are flexible and robust.
Collapse
Affiliation(s)
- Michael L. Kaufman
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Noah B. Goodson
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ko Uoon Park
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael Schwanke
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emma Office
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sophia R. Schneider
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joy Abraham
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Austin Hensley
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L. Jones
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Joseph A. Brzezinski
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Development of the vertebrate retinal direction-selective circuit. Dev Biol 2021; 477:273-283. [PMID: 34118273 DOI: 10.1016/j.ydbio.2021.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/17/2021] [Accepted: 06/04/2021] [Indexed: 01/13/2023]
Abstract
The vertebrate retina contains an array of neural circuits that detect distinct features in visual space. Direction-selective (DS) circuits are an evolutionarily conserved retinal circuit motif - from zebrafish to rodents to primates - specialized for motion detection. During retinal development, neuronal subtypes that wire DS circuits form exquisitely precise connections with each other to shape the output of retinal ganglion cells tuned for specific speeds and directions of motion. In this review, we follow the chronology of DS circuit development in the vertebrate retina, including the cellular, molecular, and activity-dependent mechanisms that regulate the formation of DS circuits, from cell birth and migration to synapse formation and refinement. We highlight recent findings that identify genetic programs critical for specifying neuronal subtypes within DS circuits and molecular interactions essential for responses along the cardinal axes of motion. Finally, we discuss the roles of DS circuits in visual behavior and in certain human visual disease conditions. As one of the best-characterized circuits in the vertebrate retina, DS circuits represent an ideal model system for studying the development of neural connectivity at the level of individual genes, cells, and behavior.
Collapse
|
12
|
Wu M, Deng Q, Lei X, Du Y, Shen Y. Elavl2 Regulates Retinal Function Via Modulating the Differentiation of Amacrine Cells Subtype. Invest Ophthalmol Vis Sci 2021; 62:1. [PMID: 34061953 PMCID: PMC8185395 DOI: 10.1167/iovs.62.7.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose The neuronal ELAV-like proteins (nElavls; Elavl2, Elavl3, Elavl4) have been known to regulate neuronal differentiation, maintenance, and axonogenesis in the brain. However, the specific role of nElavls in retina remains unclear. Here, we attempted to identify the expression pattern of Elavl2 during retinogenesis and aimed to decipher the function of Elavl2 in the retina. Methods We have used the Cre-loxP system to conditionally inactivate Elavl2 in order to examine its role in developing retina. Eyes were collected for histology, immunohistochemistry, and TUNEL analysis to identify the structure of retina, and examined by RNA sequencing to analyze the function and pathway enrichment of differentially expressed genes in transgenic mice. Moreover, the mechanism by which Elavl2 regulates the differentiation of amacrine cells (ACs) was explored by RNA immunoprecipitation assays. Finally, eyes were functionally assessed by whole-cell patch-clamp, electroretinography (ERG) and optomotor response. Results Elavl2 was expressed in retinal progenitor cells and retinal ganglion cells (RGCs), ACs, and horizontal cells. Retina-specific ablation of Elavl2 led to the loss of ACs and the transcription factors involved in ACs differentiation were also downregulated. In addition, the spontaneous activities of RGCs were obviously increased in Elavl2-deficient mice. Meanwhile, the loss of ACs that induced by Elavl2 deficiency lead to a decrease in ERG responses and visual acuity. Conclusions Elavl2 is an intrinsic factor that involved in the differentiation of ACs subtype during retinogenesis, and essential for maintaining the normal retinal function.
Collapse
Affiliation(s)
- Mengjuan Wu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Qinqin Deng
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Xinlan Lei
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Yuxin Du
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
13
|
Goel M, Dhingra NK. bFGF and insulin lead to migration of Müller glia to photoreceptor layer in rd1 mouse retina. Neurosci Lett 2021; 755:135936. [PMID: 33910061 DOI: 10.1016/j.neulet.2021.135936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Müller glia can act as endogenous stem cells and regenerate the missing neurons in the injured or degenerating retina in lower vertebrates. However, mammalian Müller glia, although can sometimes express stem cell markers and specific neuronal proteins in response to injury or degeneration, do not differentiate into functional neurons. We asked whether bFGF and insulin would stimulate the Müller glia to migrate, proliferate and differentiate into photoreceptors in rd1 mouse. We administered single or repeated (two or three) intravitreal injections of basic fibroblast growth factor (bFGF;200 μg) and insulin (2 μg) in 2-week-old rd1 mice. Müller glia were checked for proliferation, migration and differentiation using immunostaining. A single injection resulted within 5 days in a decrease in the numbers of Müller glia in the inner nuclear layer (INL) and a corresponding increase in the outer nuclear layer (ONL). The total number of Müller glia in the INL and ONL was unaltered, suggesting that they did not proliferate, but migrated from INL to ONL. However, maintaining the Müller cells in the ONL for two weeks or longer required repeated injections of bFGF and insulin. Interestingly, all Müller cells in the ONL expressed chx10, a stem cell marker. We did not find any immunolabeling for rhodopsin, m-opsin or s-opsin in the Müller glia in the ONL.
Collapse
Affiliation(s)
- Manvi Goel
- National Brain Research Centre, Manesar, Gurgaon, Haryana 122051, India.
| | | |
Collapse
|
14
|
Hatakeyama J, Shimamura K. The Pace of Neurogenesis Is Regulated by the Transient Retention of the Apical Endfeet of Differentiating Cells. Cereb Cortex 2020; 29:3725-3737. [PMID: 30307484 DOI: 10.1093/cercor/bhy252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 01/08/2023] Open
Abstract
The development of the mammalian cerebral cortex involves a variety of temporally organized events such as successive waves of neuronal production and the transition of progenitor competence for each neuronal subtype generated. The number of neurons generated in a certain time period, that is, the rate of neuron production, varies across the regions of the brain and the specific developmental stage; however, the underlying mechanism of this process is poorly understood. We have recently found that nascent neurons communicate with undifferentiated progenitors and thereby regulate neurogenesis, through a transiently retained apical endfoot that signals via the Notch pathway. Here, we report that the retention time length of the neuronal apical endfoot correlates with the rate of neuronal production in the developing mouse cerebral cortex. We further demonstrate that a forced reduction or extension of the retention period through the disruption or stabilization of adherens junction, respectively, resulted in the acceleration or deceleration of neurogenesis, respectively. Our results suggest that the apical endfeet of differentiating cells serve as a pace controller for neurogenesis, thereby assuring the well-proportioned laminar organization of the neocortex.
Collapse
Affiliation(s)
- Jun Hatakeyama
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Kenji Shimamura
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| |
Collapse
|
15
|
Pax6 modulates intra-retinal axon guidance and fasciculation of retinal ganglion cells during retinogenesis. Sci Rep 2020; 10:16075. [PMID: 32999322 PMCID: PMC7527980 DOI: 10.1038/s41598-020-72828-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
Intra-retinal axon guidance involves a coordinated expression of transcription factors, axon guidance genes, and secretory molecules within the retina. Pax6, the master regulator gene, has a spatio-temporal expression typically restricted till neurogenesis and fate-specification. However, our observation of persistent expression of Pax6 in mature RGCs led us to hypothesize that Pax6 could play a major role in axon guidance after fate specification. Here, we found significant alteration in intra-retinal axon guidance and fasciculation upon knocking out of Pax6 in E15.5 retina. Through unbiased transcriptome profiling between Pax6fl/fl and Pax6−/− retinas, we revealed the mechanistic insight of its role in axon guidance. Our results showed a significant increase in the expression of extracellular matrix molecules and decreased expression of retinal fate specification and neuron projection guidance molecules. Additionally, we found that EphB1 and Sema5B are directly regulated by Pax6 owing to the guidance defects and improper fasciculation of axons. We conclude that Pax6 expression post fate specification of RGCs is necessary for regulating the expression of axon guidance genes and most importantly for maintaining a conducive ECM through which the nascent axons get guided and fasciculate to reach the optic disc.
Collapse
|
16
|
Notch Signaling and Embryonic Development: An Ancient Friend, Revisited. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:9-37. [PMID: 32060869 DOI: 10.1007/978-3-030-34436-8_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The evolutionary highly conserved Notch pathway, which first developed during evolution in metazoans and was first discovered in fruit flies (Drosophila melanogaster), governs many core processes including cell fate decisions during embryonic development. A huge mountain of scientific evidence convincingly demonstrates that Notch signaling represents one of the most important pathways that regulate embryogenesis from sponges, roundworms, Drosophila melanogaster, and mice to humans. In this review, we give a brief introduction on how Notch orchestrates the embryonic development of several selected tissues, summarizing some of the most relevant findings in the central nervous system, skin, kidneys, liver, pancreas, inner ear, eye, skeleton, heart, and vascular system.
Collapse
|
17
|
Salehi H, Razavi S, Esfandiari E, Kazemi M, Amini S, Amirpour N. Application of Hanging Drop Culture for Retinal Precursor-Like Cells Differentiation of Human Adipose-Derived Stem Cells Using Small Molecules. J Mol Neurosci 2019; 69:597-607. [PMID: 31363912 DOI: 10.1007/s12031-019-01388-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022]
Abstract
Retinal degenerative diseases lead to blindness due to poorly regenerative potential of the retina. Recently, cell therapy is more considered for degenerative diseases. Autologous mesenchymal stem cells derived from adipose tissue are a suitable source for this purpose. Therefore, we conducted a stepwise efficient method to differentiate human adipose-derived stem cells (hADSCs) into retinal precursor-like cells in vitro. We compared two differentiation protocols, monolayer and hanging drop cultures. Through the defined medium and 3D hanging drop culture method, we could achieve up to 75% retinal precursor gene expression profile (PAX6, RAX, CHX10, and CRX) from hADSCs. By imitation of in vivo development, for direct conversion of stem cells into retinal cells, the suppression of the BMP, Nodal, and Wnt signaling pathways was carried out by using three small molecules. The hADSCs were primarily differentiated into anterior neuroectodermal cells by expression of OTX2, SIX3, and Β-TUB III and then the differentiated cells were propelled into the retinal cells. According to our data from real-time PCR, RT-PCR, immunocytochemistry, and functional assay, it seems that the hanging drop method improved retinal precursor differentiation yield which these precursor-like cells respond to glutamate neurotransmitter. Regarding the easy accessibility and immunosuppressive properties of hADSCs and more efficient hanging drop method, this study may be useful for future autologous cell therapy of retinal degenerative disorders.
Collapse
Affiliation(s)
- Hossein Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahnaz Razavi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ebrahim Esfandiari
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetic, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahram Amini
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Noushin Amirpour
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
18
|
Hu Y, Wang X, Hu B, Mao Y, Chen Y, Yan L, Yong J, Dong J, Wei Y, Wang W, Wen L, Qiao J, Tang F. Dissecting the transcriptome landscape of the human fetal neural retina and retinal pigment epithelium by single-cell RNA-seq analysis. PLoS Biol 2019; 17:e3000365. [PMID: 31269016 PMCID: PMC6634428 DOI: 10.1371/journal.pbio.3000365] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/16/2019] [Accepted: 06/25/2019] [Indexed: 12/21/2022] Open
Abstract
The developmental pathway of the neural retina (NR) and retinal pigment epithelium (RPE) has been revealed by extensive research in mice. However, the molecular mechanisms underlying the development of the human NR and RPE, as well as the interactions between these two tissues, have not been well defined. Here, we analyzed 2,421 individual cells from human fetal NR and RPE using single-cell RNA sequencing (RNA-seq) technique and revealed the tightly regulated spatiotemporal gene expression network of human retinal cells. We identified major cell classes of human fetal retina and potential crucial transcription factors for each cell class. We dissected the dynamic expression patterns of visual cycle- and ligand-receptor interaction-related genes in the RPE and NR. Moreover, we provided a map of disease-related genes for human fetal retinal cells and highlighted the importance of retinal progenitor cells as potential targets of inherited retinal diseases. Our findings captured the key in vivo features of the development of the human NR and RPE and offered insightful clues for further functional studies.
Collapse
Affiliation(s)
- Yuqiong Hu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Xiaoye Wang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Boqiang Hu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Yunuo Mao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Yidong Chen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Liying Yan
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Jun Yong
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Ji Dong
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Yuan Wei
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Wei Wang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
| | - Lu Wen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology, Third Hospital, College of Life Sciences, Peking University, Beijing, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Biomedical Pioneering Innovation Center, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
19
|
Jin C, Ou Q, Li Z, Wang J, Zhang J, Tian H, Xu JY, Gao F, Lu L, Xu GT. The combination of bFGF and CHIR99021 maintains stable self-renewal of mouse adult retinal progenitor cells. Stem Cell Res Ther 2018; 9:346. [PMID: 30545413 PMCID: PMC6292077 DOI: 10.1186/s13287-018-1091-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/13/2018] [Accepted: 11/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Millions of people are affected with retinal diseases that eventually cause blindness, and retinal progenitor cell (RPC) transplantation is a promising therapeutic avenue. However, RPC expansion and the underlying regulation mechanisms remain elusive. METHODS Adult mouse neural RPCs (mNRPCs) were isolated and amplified with the combination of basic fibroblast growth factor (bFGF) and glycogen synthase kinase 3 (GSK3) inhibitor CHIR99021. The progenitor characteristics were evaluated with RT-PCR, immunocytochemistry (ICC), western blot, flow cytometry, and transcriptome analysis prior to transplantation. By treating cells with or without bFGF and CHIR99021 at different time points, the mechanism for mNRPCs' self-renewal was investigated by transcriptome analysis and western blot assay. RESULTS mNRPCs were self-renewing in the presence of bFGF and CHIR99021 and showed prominent RPC characteristics. bFGF was essential in promoting cell cycle by facilitating G1/S and G2/M transitions. bFGF combined with CHIR99021 activated the non-canonical Wnt5A/Ca2+ pathway and form a calcium homeostasis. In addition, the self-renewing mNRPCs could differentiate into rod photoreceptor-like cells and retinal pigment epithelium (RPE)-like cells by in vitro induction. When green fluorescent protein (GFP)-labeled cells were transplanted into the subretinal space (SRS) of Pde6b (rd1) mice (also known as RD1 mice, or rodless mice), the cells survived for more than 12 weeks and migrated into the retina. Parts of the recipient retina showed positive expression of photoreceptor marker rhodopsin. Transplanted cells can migrate into the retina, mainly into the inner cell layer (INL) and ganglion cell layer (GCL). Some cells can differentiate into astrocytes and amacrine cells. Cultured mNRPCs did not form tumors after transplanted into NOD/SCID mice for 6 months. CONCLUSIONS Present study developed an approach to maintain long-term self-renewal of RPCs from adult retinal tissues and revealed that activation of the non-canonical Wnt5A/Ca2+ pathway may participate in regulating RPC self-renewal in vitro. This study presents a very promising platform to expand RPCs for future therapeutic application.
Collapse
Affiliation(s)
- Caixia Jin
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200072, China.,Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, 200092, China.,Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Qingjian Ou
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200072, China.,Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, 200092, China.,Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Zongyi Li
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200072, China.,Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, 266071, China
| | - Juan Wang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200072, China.,Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, 200092, China.,Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jieping Zhang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200072, China.,Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, 200092, China.,Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Haibin Tian
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200072, China.,Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, 200092, China.,Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jing-Ying Xu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200072, China.,Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, 200092, China.,Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Furong Gao
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200072, China.,Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, 200092, China.,Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200072, China. .,Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, 200092, China. .,Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200072, China. .,Department of Regenerative Medicine and Stem Cell Research Center, Tongji University School of Medicine, Shanghai, 200092, China. .,Department of Pharmacology, Tongji University School of Medicine, Shanghai, 200092, China. .,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
20
|
Ando M, Goto M, Hojo M, Kita A, Kitagawa M, Ohtsuka T, Kageyama R, Miyamoto S. The proneural bHLH genes Mash1, Math3 and NeuroD are required for pituitary development. J Mol Endocrinol 2018; 61:127-138. [PMID: 30307165 DOI: 10.1530/jme-18-0090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multiple signaling molecules and transcription factors are required for pituitary development. Activator-type bHLH genes Mash1, Math, NeuroD (Neurod) and Neurogenin (Neurog) are well known as key molecules in neural development. Although analyses of targeted mouse mutants have demonstrated involvement of these bHLH genes in pituitary development, studies with single-mutant mice could not elucidate their exact functions, because they cooperatively function and compensate each other. The aim of this study was to elucidate the roles of Mash1, Math3 and NeuroD in pituitary development. Mash1;Math3;NeuroD triple-mutant mice were analyzed by immunohistochemistry and quantitative real-time RT-PCR. Misexpression studies with retroviruses in pituisphere cultures were also performed. The triple-mutant adenohypophysis was morphologically normal, though the lumen of the neurohypophysis remained unclosed. However, in triple-mutant pituitaries, somatotropes, gonadotropes and corticotropes were severely decreased, whereas lactotropes were increased. Misexpression of Mash1 alone with retrovirus could not induce generation of hormonal cells, though Mash1 was involved in differentiation of pituitary progenitor cells. These data suggest that Mash1, Math3 and NeuroD cooperatively control the timing of pituitary progenitor cell differentiation and that they are also required for subtype specification of pituitary hormonal cells. Mash1 is necessary for corticotroph and gonadotroph differentiation, and compensated by Math3 and NeuroD. Math3 is necessary for somatotroph differentiation, and compensated by Mash1 and NeuroD. Neurog2 may compensate Mash1, Math3 and NeuroD during pituitary development. Furthermore, Mash1, Math3 and NeuroD are required for neurohypophysis development. Thus, Mash1, Math3 and NeuroD are required for pituitary development, and compensate each other.
Collapse
Affiliation(s)
- Mitsushige Ando
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Masanori Goto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Masato Hojo
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Neurosurgery, Shiga Medical Center for Adults, Shiga, Japan
| | - Aya Kita
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Masashi Kitagawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Toshiyuki Ohtsuka
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
21
|
Suzuki-Kerr H, Iwagawa T, Sagara H, Mizota A, Suzuki Y, Watanabe S. Pivotal roles of Fezf2 in differentiation of cone OFF bipolar cells and functional maturation of cone ON bipolar cells in retina. Exp Eye Res 2018; 171:142-154. [DOI: 10.1016/j.exer.2018.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/05/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
|
22
|
Abstract
Neurogenesis is the process of forming neurons and is essential during vertebrate development to produce most of the neurons of the adult brain. However, neurogenesis continues throughout life at distinct locations in the vertebrate brain. Neural stem cells (NSCs) are the origin of both embryonic and adult neurogenesis, but their activity and fate are tightly regulated by their local milieu or niche. In this chapter, we will discuss the role of Notch signaling in the control of neurogenesis and regeneration in the embryo and adult. Notch-dependence is a common feature among NSC populations, we will discuss how differences in Notch signaling might contribute to heterogeneity among adult NSCs. Understanding the fate of multiple NSC populations with distinct functions could be important for effective brain regeneration.
Collapse
|
23
|
Remez LA, Onishi A, Menuchin-Lasowski Y, Biran A, Blackshaw S, Wahlin KJ, Zack DJ, Ashery-Padan R. Pax6 is essential for the generation of late-born retinal neurons and for inhibition of photoreceptor-fate during late stages of retinogenesis. Dev Biol 2017; 432:140-150. [PMID: 28993200 DOI: 10.1016/j.ydbio.2017.09.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/08/2016] [Accepted: 09/23/2017] [Indexed: 12/16/2022]
Abstract
In the developing retina, as in other regions of the CNS, neural progenitors give rise to individual cell types during discrete temporal windows. Pax6 is expressed in retinal progenitor cells (RPCs) throughout the course of retinogenesis, and has been shown to be required during early retinogenesis for generation of most early-born cell types. In this study, we examined the function of Pax6 in postnatal mouse retinal development. We found that Pax6 is essential for the generation of late-born interneurons, while inhibiting photoreceptor differentiation. Generation of bipolar interneurons requires Pax6 expression in RPCs, while Pax6 is required for the generation of glycinergic, but not for GABAergic or non-GABAergic-non-glycinergic (nGnG) amacrine cell subtypes. In contrast, overexpression of either full-length Pax6 or its 5a isoform in RPCs induces formation of cells with nGnG amacrine features, and suppresses generation of other inner retinal cell types. Moreover, overexpression of both Pax6 variants prevents photoreceptor differentiation, most likely by inhibiting Crx expression. Taken together, these data show that Pax6 acts in RPCs to control differentiation of multiple late-born neuronal cell types.
Collapse
Affiliation(s)
- Liv Aleen Remez
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Akishi Onishi
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Yotam Menuchin-Lasowski
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Assaf Biran
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Karl J Wahlin
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, United States
| | - Donlad J Zack
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
24
|
Analysis of expression of transcription factors in early human retina. Int J Dev Neurosci 2017; 60:94-102. [PMID: 28377129 DOI: 10.1016/j.ijdevneu.2017.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 01/04/2017] [Accepted: 01/21/2017] [Indexed: 01/19/2023] Open
Abstract
The retina originates in the central nervous system. Due to its accessibility and simplicity, the retina has become an invaluable model for studying the basic mechanisms involved in development. To date, considerable knowledge regarding the interactions among genes that coordinate retinal development has been gained from extensive research in model animals. However, our understanding of retinal development in humans remains undeveloped. Here, we analyze the expression of transcription factors that are involved in the early development of the retina in human embryos at 6-12 weeks post-conception. Our work demonstrates that early developing neural retinas can be divided into two layers, the outer and inner neuroblast layers. Eye-field transcription factors and those related to the early development of the retina have distinct expression patterns in the two layers. Cell-type-specific transcription factors emerge at 8 weeks. These data provide clear and systemic structures for early retinal development in human.
Collapse
|
25
|
Sengupta D, Kar S. Unraveling the differential dynamics of developmental fate in central and peripheral nervous systems. Sci Rep 2016; 6:36397. [PMID: 27805068 PMCID: PMC5090986 DOI: 10.1038/srep36397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 10/14/2016] [Indexed: 12/01/2022] Open
Abstract
Bone morphogenetic protein 2 (BMP2), differentially regulates the developmental lineage commitment of neural stem cells (NSC’s) in central and peripheral nervous systems. However, the precise mechanism beneath such observations still remains illusive. To decipher the intricacies of this mechanism, we propose a generic mathematical model of BMP2 driven differentiation regulation of NSC’s. The model efficiently captures the dynamics of the wild-type as well as various mutant and over-expression phenotypes for NSC’s in central nervous system. Our model predicts that the differential developmental dynamics of the NSC’s in peripheral nervous system can be reconciled by altering the relative positions of the two mutually interconnected bi-unstable switches inherently present in the steady state dynamics of the crucial developmental fate regulatory proteins as a function of BMP2 dose. This model thus provides a novel mechanistic insight and has the potential to deliver exciting therapeutic strategies for neuronal regeneration from NSC’s of different origin.
Collapse
Affiliation(s)
- Dola Sengupta
- Department of Chemistry, IIT Bombay, Powai, Mumbai - 400076, India
| | - Sandip Kar
- Department of Chemistry, IIT Bombay, Powai, Mumbai - 400076, India
| |
Collapse
|
26
|
Dinet V, Ciccotosto GD, Delaunay K, Borras C, Ranchon-Cole I, Kostic C, Savoldelli M, El Sanharawi M, Jonet L, Pirou C, An N, Abitbol M, Arsenijevic Y, Behar-Cohen F, Cappai R, Mascarelli F. Amyloid Precursor-Like Protein 2 deletion-induced retinal synaptopathy related to congenital stationary night blindness: structural, functional and molecular characteristics. Mol Brain 2016; 9:64. [PMID: 27267879 PMCID: PMC4897877 DOI: 10.1186/s13041-016-0245-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/30/2016] [Indexed: 12/03/2022] Open
Abstract
Background Amyloid precursor protein knockout mice (APP-KO) have impaired differentiation of amacrine and horizontal cells. APP is part of a gene family and its paralogue amyloid precursor-like protein 2 (APLP2) has both shared as well as distinct expression patterns to APP, including in the retina. Given the impact of APP in the retina we investigated how APLP2 expression affected the retina using APLP2 knockout mice (APLP2-KO). Results Using histology, morphometric analysis with noninvasive imaging technique and electron microscopy, we showed that APLP2-KO retina displayed abnormal formation of the outer synaptic layer, accompanied with greatly impaired photoreceptor ribbon synapses in adults. Moreover, APLP2-KO displayed a significant decease in ON-bipolar, rod bipolar and type 2 OFF-cone bipolar cells (36, 21 and 63 %, respectively). Reduction of the number of bipolar cells was accompanied with disrupted dendrites, reduced expression of metabotropic glutamate receptor 6 at the dendritic tips and alteration of axon terminals in the OFF laminae of the inner plexiform layer. In contrast, the APP-KO photoreceptor ribbon synapses and bipolar cells were intact. The APLP2-KO retina displayed numerous phenotypic similarities with the congenital stationary night blindness, a non-progressive retinal degeneration disease characterized by the loss of night vision. The pathological phenotypes in the APLP2-KO mouse correlated to altered transcription of genes involved in pre- and postsynatic structure/function, including CACNA1F, GRM6, TRMP1 and Gα0, and a normal scotopic a-wave electroretinogram amplitude, markedly reduced scotopic electroretinogram b-wave and modestly reduced photopic cone response. This confirmed the impaired function of the photoreceptor ribbon synapses and retinal bipolar cells, as is also observed in congenital stationary night blindness. Since congenital stationary night blindness present at birth, we extended our analysis to retinal differentiation and showed impaired differentiation of different bipolar cell subtypes and an altered temporal sequence of development from OFF to ON laminae in the inner plexiform layer. This was associated with the altered expression patterns of bipolar cell generation and differentiation factors, including MATH3, CHX10, VSX1 and OTX2. Conclusions These findings demonstrate that APLP2 couples retina development and synaptic genes and present the first evidence that APLP2 expression may be linked to synaptic disease. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0245-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Virginie Dinet
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Giuseppe D Ciccotosto
- Department of Pathology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Kimberley Delaunay
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Céline Borras
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Isabelle Ranchon-Cole
- Laboratoire de Biophysique Sensorielle, Université Clermont 1, Clermont-Ferrand, France
| | - Corinne Kostic
- Unit of Gene Therapy & Stem Cell Biology, University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | - Michèle Savoldelli
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Mohamed El Sanharawi
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Laurent Jonet
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Caroline Pirou
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Na An
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Marc Abitbol
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Yvan Arsenijevic
- Unit of Gene Therapy & Stem Cell Biology, University of Lausanne, Jules-Gonin Eye Hospital, Lausanne, Switzerland
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France
| | - Roberto Cappai
- Department of Pathology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Frédéric Mascarelli
- Centre de Recherche des Cordeliers, Université Paris Descartes, Université Pierre et Marie Curie, Paris, France.
| |
Collapse
|
27
|
Wang Z, Yasugi S, Ishii Y. Chx10 functions as a regulator of molecular pathways controlling the regional identity in the primordial retina. Dev Biol 2016; 413:104-11. [PMID: 27001188 DOI: 10.1016/j.ydbio.2016.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/01/2016] [Accepted: 03/17/2016] [Indexed: 11/29/2022]
Abstract
The light-sensitive neural retina (NR) and the retinal pigmented epithelium (RPE) develop from a common primordium, the optic vesicle, raising the question of how they acquire and maintain distinct identities. Here, we demonstrate that sustained misexpression of the Chx10 homeobox gene in the presumptive RPE in chick suppresses accumulation of melanin pigments and promotes ectopic NR-like neural differentiation. This phenotypic change involved ectopic expression of NR transcription factor genes, Sox2, Six3, Rx1 and Optx2, which, when misexpressed, counteracted RPE development without upregulating Chx10. These results suggest that Chx10 can function as a cell autonomous regulator of the regional identity in the primordial retina, presumably through a downstream transcriptional cascade.
Collapse
Affiliation(s)
- Zi Wang
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Sadao Yasugi
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Yasuo Ishii
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| |
Collapse
|
28
|
Abstract
Photoreceptors have been the most intensively studied retinal cell type. Early lineage studies showed that photoreceptors are produced by retinal progenitor cells (RPCs) that produce only photoreceptor cells and by RPCs that produce both photoreceptor cells and other retinal cell types. More recent lineage studies have shown that there are intrinsic, molecular differences among these RPCs and that these molecular differences operate in gene regulatory networks (GRNs) that lead to the choice of the rod versus the cone fate. In addition, there are GRNs that lead to the choice of a photoreceptor fate and that of another retinal cell type. An example of such a GRN is one that drives the binary fate choice between a rod photoreceptor and bipolar cell. This GRN has many elements, including both feedforward and feedback regulatory loops, highlighting the complexity of such networks. This and other examples of retinal cell fate determination are reviewed here, focusing on the events that direct the choice of rod and cone photoreceptor fate.
Collapse
Affiliation(s)
- Constance L Cepko
- Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
29
|
Expression and function of the LIM-homeodomain transcription factor Islet-1 in the developing and mature vertebrate retina. Exp Eye Res 2015; 138:22-31. [DOI: 10.1016/j.exer.2015.06.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 11/19/2022]
|
30
|
Orieux G, Slembrouck A, Bensaïd M, Sahel JA, Goureau O. The protein tyrosine phosphatase interacting protein 51 (PTPIP51) is required for the differentiation of photoreceptors. Neuroscience 2015; 300:276-85. [DOI: 10.1016/j.neuroscience.2015.05.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/24/2015] [Accepted: 05/12/2015] [Indexed: 02/05/2023]
|
31
|
Stenkamp DL. Development of the Vertebrate Eye and Retina. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:397-414. [PMID: 26310167 DOI: 10.1016/bs.pmbts.2015.06.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The mature, functional, and healthy eye is generated by the coordinated regulatory interaction of numerous and diverse developing tissues. The neural retina of the eye must undergo the neurogenesis of multiple retinal cell types in the correct ratios and spatial patterns. This chapter provides an overview of retinal development, and includes a summary of the process of eye organogenesis, a discussion of major principles of retinal neurogenesis, and describes some of the key molecular factors critical for retinal development. Defects in many of these factors underlie diseases of the eye, and an understanding of the process of retinal development will be critical for successful future applications of regenerative therapies for eye disease.
Collapse
Affiliation(s)
- Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.
| |
Collapse
|
32
|
Transcription factor PRDM8 is required for rod bipolar and type 2 OFF-cone bipolar cell survival and amacrine subtype identity. Proc Natl Acad Sci U S A 2015; 112:E3010-9. [PMID: 26023183 DOI: 10.1073/pnas.1505870112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Retinal bipolar (BP) cells mediate the earliest steps in image processing in the visual system, but the genetic pathways that regulate their development and function are incompletely known. We identified PRDI-BF1 and RIZ homology domain containing 8 (PRDM8) as a highly conserved transcription factor that is abundantly expressed in mouse retina. During development and in maturity, PRDM8 is expressed strongly in BP cells and a fraction of amacrine and ganglion cells. To determine whether Prdm8 is essential to BP cell development or physiology, we targeted the gene in mice. Prdm8(EGFP/EGFP) mice showed nonprogressive b-wave deficits on electroretinograms, consistent with compromised BP cell function or circuitry resembling the incomplete form of human congenital stationary night blindness (CSNB). BP cell specification was normal in Prdm8(EGFP/EGFP) retina as determined by VSX2(+) cell numbers and retinal morphology at postnatal day 6. BP subtype differentiation was impaired, however, as indicated by absent or diminished expression of BP subtype-specific markers, including the putative PRDM8 regulatory target PKCα (Prkca) and its protein. By adulthood, rod bipolar (RB) and type 2 OFF-cone bipolar (CB) cells were nearly absent from Prdm8-null mice. Although no change was detected in total amacrine cell (AC) numbers, increased PRKCA(+) and cholinergic ACs and decreased GABAergic ACs were seen, suggesting an alteration in amacrine subtype identity. These findings establish that PRDM8 is required for RB and type 2 OFF-CB cell survival and amacrine subtype identity, and they present PRDM8 as a candidate gene for human CSNB.
Collapse
|
33
|
Parameswaran S, Xia X, Hegde G, Ahmad I. Hmga2 regulates self-renewal of retinal progenitors. Development 2014; 141:4087-97. [PMID: 25336737 DOI: 10.1242/dev.107326] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vertebrate retina, histogenesis occurs over an extended period. To sustain the temporal generation of diverse cell types, retinal progenitor cells (RPCs) must self-renew. However, self-renewal and regulation of RPCs remain poorly understood. Here, we demonstrate that cell-extrinsic factors coordinate with the epigenetic regulator high-mobility group AT-hook 2 (Hmga2) to regulate self-renewal of late retinal progenitor cells (RPCs). We observed that a small subset of RPCs was capable of clonal propagation and retained multipotentiality of parents in the presence of endothelial cells (ECs), known self-renewal regulators in various stem cell niches. The self-renewing effects, also observed in vivo, involve multiple intercellular signaling pathways, engaging Hmga2. As progenitors exhaust during retinal development, expression of Hmga2 progressively decreases. Analyses of Hmga2-expression perturbation, in vitro and in vivo, revealed that Hmga2 functionally helps to mediate cell-extrinsic influences on late-retinal progenitor self-renewal. Our results provide a framework for integrating the diverse intercellular influences elicited by epigenetic regulators for self-renewal in a dynamic stem cell niche: the developing vertebrate retina.
Collapse
Affiliation(s)
- Sowmya Parameswaran
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Xiaohuan Xia
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ganapati Hegde
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Iqbal Ahmad
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
34
|
The guanine nucleotide exchange factor Vav3 regulates differentiation of progenitor cells in the developing mouse retina. Cell Tissue Res 2014; 359:423-440. [PMID: 25501893 DOI: 10.1007/s00441-014-2050-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
The seven main cell types in the mammalian retina arise from multipotent retinal progenitor cells, a process that is tightly regulated by intrinsic and extrinsic signals. However, the molecular mechanisms that control proliferation, differentiation and cell-fate decisions of retinal progenitor cells are not fully understood yet. Here, we report that the guanine nucleotide exchange factor Vav3, a regulator of Rho-GTPases, is involved in retinal development. We demonstrate that Vav3 is expressed in the mouse retina during the embryonic period. In order to study the role of Vav3 in the developing retina, we generate Vav3-deficient mice. The loss of Vav3 results in an accelerated differentiation of retinal ganglion cells and cone photoreceptors during early and late embryonic development. We provide evidence that more retinal progenitor cells express the late progenitor marker Sox9 in Vav3-deficient mice than in wild-types. This premature differentiation is compensated during the postnatal period and late-born cell types such as bipolar cells and Müller glia display normal numbers. Taken together, our data imply that Vav3 is a regulator of retinal progenitor cell differentiation, thus highlighting a novel role for guanine nucleotide exchange factors in retinogenesis.
Collapse
|
35
|
Intrinsically different retinal progenitor cells produce specific types of progeny. Nat Rev Neurosci 2014; 15:615-27. [DOI: 10.1038/nrn3767] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Kuribayashi H, Baba Y, Watanabe S. BMP signaling participates in late phase differentiation of the retina, partly via upregulation of Hey2. Dev Neurobiol 2014; 74:1172-83. [PMID: 24890415 DOI: 10.1002/dneu.22196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/25/2014] [Accepted: 05/24/2014] [Indexed: 11/11/2022]
Abstract
Bone morphogenetic protein (BMP) plays pivotal roles in early retinal development. However, its roles in the late phase of retinal development remain unclear. We found that BMP receptors and ligands were expressed in the postnatal mouse retina. Furthermore, immunostaining revealed that phosphorylated Smads were enriched in various cells types in the inner nuclear layer postnatally. However, phosphorylated Smads were not detected in photoreceptors, suggesting that BMP may play roles in retinal cells in the inner nuclear layer. Forced expression of constitutively active BMP receptors during retinal development resulted in an increased number of bipolar cells and Müller glia and a decreased number of rod photoreceptors; however, proliferation was not perturbed. The expression of dominant negative BMP receptors resulted in a decreased number of Müller glia and bipolar cells. In addition, inhibiting BMP signaling in retinal monolayer cultures abrogated Müller glial process extension, suggesting that BMP signaling also plays a role in the maturation of Müller glia. The expression of the basic helix-loop-helix transcription factor Hey2 was induced by BMP signaling in retinas. The coexpression of sh-Hey2 with constitutively active BMP receptors suggested that the effects of BMP signaling on retinal differentiation could be attributed partly to the induction of Hey2 by BMP. We propose that BMP signaling plays pivotal roles in the differentiation of retinal progenitor cells into late differentiating retinal cell types and in the maturation of Müller glia; these effects were mediated, at least in part, by Hey2.
Collapse
Affiliation(s)
- Hiroshi Kuribayashi
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
37
|
Hatakeyama J, Wakamatsu Y, Nagafuchi A, Kageyama R, Shigemoto R, Shimamura K. Cadherin-based adhesions in the apical endfoot are required for active Notch signaling to control neurogenesis in vertebrates. Development 2014; 141:1671-82. [PMID: 24715457 DOI: 10.1242/dev.102988] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development of the vertebrate brain requires an exquisite balance between proliferation and differentiation of neural progenitors. Notch signaling plays a pivotal role in regulating this balance, yet the interaction between signaling and receiving cells remains poorly understood. We have found that numerous nascent neurons and/or intermediate neurogenic progenitors expressing the ligand of Notch retain apical endfeet transiently at the ventricular lumen that form adherens junctions (AJs) with the endfeet of progenitors. Forced detachment of the apical endfeet of those differentiating cells by disrupting AJs resulted in precocious neurogenesis that was preceded by the downregulation of Notch signaling. Both Notch1 and its ligand Dll1 are distributed around AJs in the apical endfeet, and these proteins physically interact with ZO-1, a constituent of the AJ. Furthermore, live imaging of a fluorescently tagged Notch1 demonstrated its trafficking from the apical endfoot to the nucleus upon cleavage. Our results identified the apical endfoot as the central site of active Notch signaling to securely prohibit inappropriate differentiation of neural progenitors.
Collapse
Affiliation(s)
- Jun Hatakeyama
- Department of Brain Morphogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Ascl1 as a novel player in the Ptf1a transcriptional network for GABAergic cell specification in the retina. PLoS One 2014; 9:e92113. [PMID: 24643195 PMCID: PMC3958475 DOI: 10.1371/journal.pone.0092113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/17/2014] [Indexed: 11/19/2022] Open
Abstract
In contrast with the wealth of data involving bHLH and homeodomain transcription factors in retinal cell type determination, the molecular bases underlying neurotransmitter subtype specification is far less understood. Using both gain and loss of function analyses in Xenopus, we investigated the putative implication of the bHLH factor Ascl1 in this process. We found that in addition to its previously characterized proneural function, Ascl1 also contributes to the specification of the GABAergic phenotype. We showed that it is necessary for retinal GABAergic cell genesis and sufficient in overexpression experiments to bias a subset of retinal precursor cells towards a GABAergic fate. We also analysed the relationships between Ascl1 and a set of other bHLH factors using an in vivo ectopic neurogenic assay. We demonstrated that Ascl1 has unique features as a GABAergic inducer and is epistatic over factors endowed with glutamatergic potentialities such as Neurog2, NeuroD1 or Atoh7. This functional specificity is conferred by the basic DNA binding domain of Ascl1 and involves a specific genetic network, distinct from that underlying its previously demonstrated effects on catecholaminergic differentiation. Our data show that GABAergic inducing activity of Ascl1 requires the direct transcriptional regulation of Ptf1a, providing therefore a new piece of the network governing neurotransmitter subtype specification during retinogenesis.
Collapse
|
39
|
Reconciling competence and transcriptional hierarchies with stochasticity in retinal lineages. Curr Opin Neurobiol 2014; 27:68-74. [PMID: 24637222 PMCID: PMC4127786 DOI: 10.1016/j.conb.2014.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/11/2014] [Accepted: 02/17/2014] [Indexed: 12/04/2022]
Abstract
Problems with a strict retinal competence model are explained. The apparent conflict between transcriptional hierarchies and stochasticity is resolved. The underlying nature of retinal progenitor cell stochasticity is discussed. Key issues that can be addressed in the face of stochasticity are enumerated.
Recent advances suggest that there is a stochastic contribution to the proliferation and fate choice of retinal progenitors. How does this stochasticity fit with the progression of temporal competence and the transcriptional hierarchies that also influence cell division and cell fate in the developing retina? Where may stochasticity arise in the system and how do we make progress in this field when we may never fully explain the behavior of individual progenitor cells?
Collapse
|
40
|
Goetz JJ, Farris C, Chowdhury R, Trimarchi JM. Making of a retinal cell: insights into retinal cell-fate determination. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 308:273-321. [PMID: 24411174 DOI: 10.1016/b978-0-12-800097-7.00007-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Understanding the process by which an uncommitted dividing cell produces particular specialized cells within a tissue remains a fundamental question in developmental biology. Many tissues are well suited for cell-fate studies, but perhaps none more so than the developing retina. Traditionally, experiments using the retina have been designed to elucidate the influence that individual environmental signals or transcription factors can have on cell-fate decisions. Despite a substantial amount of information gained through these studies, there is still much that we do not yet understand about how cell fate is controlled on a systems level. In addition, new factors such as noncoding RNAs and regulators of chromatin have been shown to play roles in cell-fate determination and with the advent of "omics" technology more factors will most likely be identified. In this chapter we summarize both the traditional view of retinal cell-fate determination and introduce some new ideas that are providing a challenge to the older way of thinking about the acquisition of cell fates.
Collapse
Affiliation(s)
- Jillian J Goetz
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Caitlin Farris
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Rebecca Chowdhury
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey M Trimarchi
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA.
| |
Collapse
|
41
|
Yip HK. Retinal stem cells and regeneration of vision system. Anat Rec (Hoboken) 2013; 297:137-60. [PMID: 24293400 DOI: 10.1002/ar.22800] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/14/2022]
Abstract
The vertebrate retina is a well-characterized model for studying neurogenesis. Retinal neurons and glia are generated in a conserved order from a pool of mutlipotent progenitor cells. During retinal development, retinal stem/progenitor cells (RPC) change their competency over time under the influence of intrinsic (such as transcriptional factors) and extrinsic factors (such as growth factors). In this review, we summarize the roles of these factors, together with the understanding of the signaling pathways that regulate eye development. The information about the interactions between intrinsic and extrinsic factors for retinal cell fate specification is useful to regenerate specific retinal neurons from RPCs. Recent studies have identified RPCs in the retina, which may have important implications in health and disease. Despite the recent advances in stem cell biology, our understanding of many aspects of RPCs in the eye remains limited. PRCs are present in the developing eye of all vertebrates and remain active in lower vertebrates throughout life. In mammals, however, PRCs are quiescent and exhibit very little activity and thus have low capacity for retinal regeneration. A number of different cellular sources of RPCs have been identified in the vertebrate retina. These include PRCs at the retinal margin, pigmented cells in the ciliary body, iris, and retinal pigment epithelium, and Müller cells within the retina. Because PRCs can be isolated and expanded from immature and mature eyes, it is possible now to study these cells in culture and after transplantation in the degenerated retinal tissue. We also examine current knowledge of intrinsic RPCs, and human embryonic stems and induced pluripotent stem cells as potential sources for cell transplant therapy to regenerate the diseased retina.
Collapse
Affiliation(s)
- Henry K Yip
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Adminstrative Region, People's Republic of China; Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Adminstrative Region, People's Republic of China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Adminstrative Region, People's Republic of China
| |
Collapse
|
42
|
Huang L, Hu F, Feng L, Luo XJ, Liang G, Zeng XY, Yi JL, Gan L. Bhlhb5 is required for the subtype development of retinal amacrine and bipolar cells in mice. Dev Dyn 2013; 243:279-89. [PMID: 24123365 DOI: 10.1002/dvdy.24067] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/19/2013] [Accepted: 09/20/2013] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND BHLHB5, an OLIG-related basic helix-loop-helix transcription factor, is required for the development of a subset of gamma-amino butyric acid-releasing (GABAergic) amacrine cells and OFF-cone bipolar (CB) cells in mouse retinas. In order to determine BHLHB5's functional mechanism in retinogenesis, we used the Cre-loxP recombination system to genetically trace the lineage of BHLHB5+ cells in normal and Bhlhb5-null retinas. The Bhlhb5-Cre knock-in allele was used to activate the constitutive expression of a GFP reporter in the Bhlhb5-expressing cells, and the cell fates of Bhlhb5-lineage cells were identified by using specific cell markers and were compared between normal and Bhlhb5-null retinas. RESULTS In addition to GABAergic amacrine and OFF-CB cells, Bhlhb5 lineage cells give rise to ganglion, glycinergic amacrine, rod bipolar, ON-bipolar, and rod photoreceptor cells during normal retinal development. Targeted deletion of Bhlhb5 resulted in the loss of GABAergic amacrine, glycinergic amacrine, dopaminergic amacrine, and Type 2 OFF-CB cells. Furthermore, in the absence of BHLHB5, a portion of Bhlhb5 lineage cells switch their fate and differentiate into cholinergic amacrine cells. CONCLUSIONS Our data reveal a broad expression pattern of Bhlhb5 throughout retinogenesis and demonstrate the cell-autonomous as well as non-cell-autonomous role of Bhlhb5 in the specification of amacrine and bipolar subtypes.
Collapse
Affiliation(s)
- Liang Huang
- Medical College of Nanchang University, Nanchang, Jiangxi, China; Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China; First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China; Flaum Eye Institute and Department of Ophthalmology, University of Rochester, Rochester, New York
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Dixit R, Tachibana N, Touahri Y, Zinyk D, Logan C, Schuurmans C. Gene expression is dynamically regulated in retinal progenitor cells prior to and during overt cellular differentiation. Gene Expr Patterns 2013; 14:42-54. [PMID: 24148613 DOI: 10.1016/j.gep.2013.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/11/2013] [Accepted: 10/11/2013] [Indexed: 12/27/2022]
Abstract
The retina is comprised of one glial and six neuronal populations that are generated from a multipotent pool of retinal progenitor cells (RPCs) during development. To give rise to these different cell types, RPCs undergo temporal identity transitions, displaying distinct gene expression profiles at different stages of differentiation. Little, however, is known about temporal differences in RPC identities prior to the onset of overt cellular differentiation, during the period when a retinal identity is gradually acquired. Here we examined the sequential onset of expression of regional markers (i.e., homeodomain transcription factors) and cell fate determinants (i.e., basic-helix-loop-helix transcription factors and neurogenic genes) in RPCs from the earliest appearance of a morphologically-distinct retina. By performing a comparative analysis of the expression of a panel of 27 homeodomain, basic-helix-loop-helix and Notch pathway genes between embryonic day (E) 8.75 and postnatal day (P) 9, we identified six distinct RPC molecular profiles. At E8.75, the earliest stage assayed, murine RPCs expressed five homeodomain genes and a single neurogenic gene (Pax6, Six3, Six6, Rx, Otx2, Hes1). This early gene expression profile was remarkably similar to that of 'early' RPCs in the amphibian ciliary marginal zone (CMZ), where RPCs are compartmentalised according to developmental stage, and homologs of Pax6, Six3 and Rx are expressed in the 'early' stem cell zone. As development proceeds, expression of additional homeodomain, bHLH and neurogenic genes was gradually initiated in murine RPCs, allowing distinct genetic profiles to also be defined at E9.5, E10.5, E12.5, E15.5 and P0. In addition, RPCs in the postnatal ciliary margin, where retinal stem cells are retained throughout life, displayed a unique molecular signature, expressing all of the early-onset genes as well as several late-onset markers, indicative of a 'mixed' temporal identity. Taken together, the identification of temporal differences in gene expression in mammalian RPCs during pre-neurogenic developmental stages leads to new insights into how regional identities are progressively acquired during development, while comparisons at later stages highlight the dynamic nature of gene expression in temporally distinct RPC pools.
Collapse
Affiliation(s)
- Rajiv Dixit
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Nobuhiko Tachibana
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Yacine Touahri
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Dawn Zinyk
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Cairine Logan
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada; Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carol Schuurmans
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
44
|
Emerson MM, Surzenko N, Goetz JJ, Trimarchi J, Cepko CL. Otx2 and Onecut1 promote the fates of cone photoreceptors and horizontal cells and repress rod photoreceptors. Dev Cell 2013; 26:59-72. [PMID: 23867227 DOI: 10.1016/j.devcel.2013.06.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 04/22/2013] [Accepted: 06/06/2013] [Indexed: 10/26/2022]
Abstract
Cone photoreceptors carry out phototransduction in daylight conditions and provide the critical first step in color vision. Despite their importance, little is known about the developmental mechanisms involved in their generation, particularly how they are determined relative to rod photoreceptors, the cells that initiate vision in dim light. Here, we report the identification of a cis-regulatory module (CRM) for the thyroid hormone receptor beta (Thrb) gene, an early cone marker. We found that ThrbCRM1 is active in progenitor cells biased to the production of cones and an interneuronal cell type, the horizontal cell (HC). Molecular analysis of ThrbCRM1 revealed that it is combinatorially regulated by the Otx2 and Onecut1 transcription factors. Onecut1 is sufficient to induce cells with the earliest markers of cones and HCs. Conversely, interference with Onecut1 transcriptional activity leads to precocious rod development, suggesting that Onecut1 is critically important in defining cone versus rod fates.
Collapse
Affiliation(s)
- Mark M Emerson
- Departments of Genetics and Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
45
|
Islam MM, Li Y, Luo H, Xiang M, Cai L. Meis1 regulates Foxn4 expression during retinal progenitor cell differentiation. Biol Open 2013; 2:1125-36. [PMID: 24244849 PMCID: PMC3828759 DOI: 10.1242/bio.20132279] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/12/2013] [Indexed: 12/20/2022] Open
Abstract
The transcription factor forkhead box N4 (Foxn4) is a key regulator in a variety of biological processes during development. In particular, Foxn4 plays an essential role in the genesis of horizontal and amacrine neurons from neural progenitors in the vertebrate retina. Although the functions of Foxn4 have been well established, the transcriptional regulation of Foxn4 expression during progenitor cell differentiation remains unclear. Here, we report that an evolutionarily conserved 129 bp noncoding DNA fragment (Foxn4CR4.2 or CR4.2), located ∼26 kb upstream of Foxn4 transcription start site, functions as a cis-element for Foxn4 regulation. CR4.2 directs gene expression in Foxn4-positive cells, primarily in progenitors, differentiating horizontal and amacrine cells. We further determined that the gene regulatory activity of CR4.2 is modulated by Meis1 binding motif, which is bound and activated by Meis1 transcription factor. Deletion of the Meis1 binding motif or knockdown of Meis1 expression abolishes the gene regulatory activity of CR4.2. In addition, knockdown of Meis1 expression diminishes the endogenous Foxn4 expression and affects cell lineage development. Together, we demonstrate that CR4.2 and its interacting Meis1 transcription factor play important roles in regulating Foxn4 expression during early retinogenesis. These findings provide new insights into molecular mechanisms that govern gene regulation in retinal progenitors and specific cell lineage development.
Collapse
Affiliation(s)
- Mohammed M Islam
- Department of Biomedical Engineering, Rutgers University , 599 Taylor Road, Piscataway, NJ 08854 , USA ; Present address: Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
46
|
Pollak J, Wilken MS, Ueki Y, Cox KE, Sullivan JM, Taylor RJ, Levine EM, Reh TA. ASCL1 reprograms mouse Muller glia into neurogenic retinal progenitors. Development 2013; 140:2619-31. [PMID: 23637330 PMCID: PMC3666387 DOI: 10.1242/dev.091355] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2013] [Indexed: 12/14/2022]
Abstract
Non-mammalian vertebrates have a robust ability to regenerate injured retinal neurons from Müller glia (MG) that activate the gene encoding the proneural factor Achaete-scute homolog 1 (Ascl1; also known as Mash1 in mammals) and de-differentiate into progenitor cells. By contrast, mammalian MG have a limited regenerative response and fail to upregulate Ascl1 after injury. To test whether ASCL1 could restore neurogenic potential to mammalian MG, we overexpressed ASCL1 in dissociated mouse MG cultures and intact retinal explants. ASCL1-infected MG upregulated retinal progenitor-specific genes and downregulated glial genes. Furthermore, ASCL1 remodeled the chromatin at its targets from a repressive to an active configuration. MG-derived progenitors differentiated into cells that exhibited neuronal morphologies, expressed retinal subtype-specific neuronal markers and displayed neuron-like physiological responses. These results indicate that a single transcription factor, ASCL1, can induce a neurogenic state in mature MG.
Collapse
Affiliation(s)
- Julia Pollak
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
- Neurobiology and Behavior Program, University of Washington, Seattle, WA 98195, USA
| | - Matthew S. Wilken
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Yumi Ueki
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Kristen E. Cox
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Jane M. Sullivan
- Neurobiology and Behavior Program, University of Washington, Seattle, WA 98195, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Russell J. Taylor
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Edward M. Levine
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA
| | - Thomas A. Reh
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
- Neurobiology and Behavior Program, University of Washington, Seattle, WA 98195, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
47
|
Hufnagel RB, Riesenberg AN, Quinn M, Brzezinski JA, Glaser T, Brown NL. Heterochronic misexpression of Ascl1 in the Atoh7 retinal cell lineage blocks cell cycle exit. Mol Cell Neurosci 2013; 54:108-20. [PMID: 23481413 DOI: 10.1016/j.mcn.2013.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 02/15/2013] [Accepted: 02/18/2013] [Indexed: 12/12/2022] Open
Abstract
Retinal neurons and glia arise from a common progenitor pool in a temporal order, with retinal ganglion cells (RGCs) appearing first, and Müller glia last. The transcription factors Atoh7/Math5 and Ascl1/Mash1 represent divergent bHLH clades, and exhibit distinct spatial and temporal retinal expression patterns, with little overlap during early development. Here, we tested the ability of Ascl1 to change the fate of cells in the Atoh7 lineage when misexpressed from the Atoh7 locus, using an Ascl1-IRES-DsRed2 knock-in allele. In Atoh7(Ascl1KI/+) and Atoh7(Ascl1KI/Ascl1KI) embryos, ectopic Ascl1 delayed cell cycle exit and differentiation, even in cells coexpressing Atoh7. The heterozygous retinas recovered, and eventually produced a normal complement of RGCs, while homozygous substitution of Ascl1 for Atoh7 did not promote postnatal retinal fates precociously, nor rescue Atoh7 mutant phenotypes. However, our analyses revealed two unexpected findings. First, ectopic Ascl1 disrupted cell cycle progression within the marked Atoh7 lineage, but also nonautonomously in other retinal cells. Second, the size of the Atoh7 retinal lineage was unaffected, supporting the idea of a compensatory shift of the non-proliferative cohort to maintain lineage size. Overall, we conclude that Ascl1 acts dominantly to block cell cycle exit, but is incapable of redirecting the fates of early RPCs.
Collapse
Affiliation(s)
- Robert B Hufnagel
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | | | | | | | |
Collapse
|
48
|
Boije H, Shirazi Fard S, Ring H, Hallböök F. Forkheadbox N4 (FoxN4) triggers context-dependent differentiation in the developing chick retina and neural tube. Differentiation 2013; 85:11-9. [PMID: 23314287 DOI: 10.1016/j.diff.2012.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 11/23/2012] [Accepted: 12/08/2012] [Indexed: 02/08/2023]
Abstract
FoxN4, a forkhead box transcription factor, is expressed in the chicken eye field and in retinal progenitor cells (RPCs) throughout development. FoxN4 labelling overlapped with that of Pax6 and Sox2, two crucial transcription factors for RPCs. Later, during neurogenesis in the retina, some cells were intensely and transiently labelled for FoxN4. These cells co-labelled for Lim1, a transcription factor expressed in early-born horizontal cells. The result suggests that high levels of FoxN4 combined with expression of Lim1 define a population of RPCs committed to the horizontal cell fate prior to their last apical mitosis. As these prospective horizontal cells develop, their FoxN4 expression is down-regulated. Previous results suggested that FoxN4 is important for the generation of horizontal and amacrine cells but that it is not sufficient for the generation of horizontal cells (Li et al., 2004). We found that over-expression of FoxN4 in embryonic day 3 chicken retina could activate horizontal cell markers Prox1 and Lim1, and that it generated numerous and ectopically located horizontal cells of both main subtypes. However, genes expressed in photoreceptors, amacrine and ganglion cells were also activated, indicating that FoxN4 triggered the expression of several differentiation factors. This effect was not exclusive for the retina but was also seen when FoxN4 was over-expressed in the mesencephalic neural tube. Combining the results from over-expression and wild-type expression data we suggest a model where a low level of FoxN4 is maintained in RPCs and that increased levels during a restricted period trigger neurogenesis and commitment of RPCs to the horizontal cell fate.
Collapse
Affiliation(s)
- H Boije
- Department of Neuroscience, Biomedical Centre, Uppsala University, Husargatan 3, Uppsala, Sweden
| | | | | | | |
Collapse
|
49
|
Baba Y, Satoh S, Otsu M, Sasaki E, Okada T, Watanabe S. In vitro cell subtype-specific transduction of adeno-associated virus in mouse and marmoset retinal explant culture. Biochimie 2012; 94:2716-22. [DOI: 10.1016/j.biochi.2012.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/10/2012] [Indexed: 01/22/2023]
|
50
|
Gregory-Evans CY, Wallace VA, Gregory-Evans K. Gene networks: dissecting pathways in retinal development and disease. Prog Retin Eye Res 2012; 33:40-66. [PMID: 23128416 DOI: 10.1016/j.preteyeres.2012.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 01/21/2023]
Abstract
During retinal neurogenesis, diverse cellular subtypes originate from multipotent neural progenitors in a spatiotemporal order leading to a highly specialized laminar structure combined with a distinct mosaic architecture. This is driven by the combinatorial action of transcription factors and signaling molecules which specify cell fate and differentiation. The emerging approach of gene network analysis has allowed a better understanding of the functional relationships between genes expressed in the developing retina. For instance, these gene networks have identified transcriptional hubs that have revealed potential targets and pathways for the development of therapeutic options for retinal diseases. Much of the current knowledge has been informed by targeted gene deletion experiments and gain-of-functional analysis. In this review we will provide an update on retinal development gene networks and address the wider implications for future disease therapeutics.
Collapse
Affiliation(s)
- Cheryl Y Gregory-Evans
- Department of Ophthalmology, University of British Columbia, Vancouver, BC V5Z 3N9, Canada.
| | | | | |
Collapse
|