1
|
Duddu AS, Andreas E, Bv H, Grover K, Singh VR, Hari K, Jhunjhunwala S, Cummins B, Gedeon T, Jolly MK. Multistability and predominant hybrid phenotypes in a four node mutually repressive network of Th1/Th2/Th17/Treg differentiation. NPJ Syst Biol Appl 2024; 10:123. [PMID: 39448615 PMCID: PMC11502801 DOI: 10.1038/s41540-024-00433-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/01/2024] [Indexed: 10/26/2024] Open
Abstract
Elucidating the emergent dynamics of cellular differentiation networks is crucial to understanding cell-fate decisions. Toggle switch - a network of mutually repressive lineage-specific transcription factors A and B - enables two phenotypes from a common progenitor: (high A, low B) and (low A, high B). However, the dynamics of networks enabling differentiation of more than two phenotypes from a progenitor cell has not been well-studied. Here, we investigate the dynamics of a four-node network A, B, C, and D inhibiting each other, forming a toggle tetrahedron. Our simulations show that this network is multistable and predominantly allows for the co-existence of six hybrid phenotypes where two of the nodes are expressed relatively high as compared to the remaining two, for instance (high A, high B, low C, low D). Finally, we apply our results to understand naïve CD4+ T cell differentiation into Th1, Th2, Th17 and Treg subsets, suggesting Th1/Th2/Th17/Treg decision-making to be a two-step process.
Collapse
Affiliation(s)
| | - Elizabeth Andreas
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Harshavardhan Bv
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
- IISc Mathematics Initiative, Indian Institute of Science, 560012, Bangalore, India
| | - Kaushal Grover
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vivek Raj Singh
- Undergraduate Program, Indian Institute of Science, Bangalore, 560012, India
| | - Kishore Hari
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
- Department of Physics, Northeastern University, MA, 02115, Boston, USA
- Center for Theoretical Biological Physics, Northeastern University, MA, 02115, Boston, USA
| | | | - Breschine Cummins
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, 59717, USA.
| | - Tomas Gedeon
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, 59717, USA.
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
2
|
Leben R, Rausch S, Elomaa L, Hauser AE, Weinhart M, Fischer SC, Stark H, Hartmann S, Niesner R. Aggregation of adult parasitic nematodes in sex-mixed groups analysed by transient anomalous diffusion formalism. J R Soc Interface 2024; 21:20240327. [PMID: 39379003 PMCID: PMC11461085 DOI: 10.1098/rsif.2024.0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 10/10/2024] Open
Abstract
Intestinal parasitic worms are widespread throughout the world, causing chronic infections in humans and animals. However, very little is known about the locomotion of the worms in the host gut. We studied the movement of Heligmosomoides bakeri, naturally infecting mice, and used as an animal model for roundworm infections. We investigated the locomotion of H. bakeri in simplified environments mimicking key physical features of the intestinal lumen, i.e. medium viscosity and intestinal villi topology. We found that the motion sequence of these nematodes is non-periodic, but the migration could be described by transient anomalous diffusion. Aggregation as a result of biased, enhanced-diffusive locomotion of nematodes in sex-mixed groups was detected. This locomotion is probably stimulated by mating and reproduction, while single nematodes move randomly (diffusive). Natural physical obstacles such as high mucus-like viscosity or villi topology slowed down but did not entirely prevent nematode aggregation. Additionally, the mean displacement rate of nematodes in sex-mixed groups of 3.0 × 10-3 mm s-1 in a mucus-like medium is in good agreement with estimates of migration velocities of 10-4 to 10-3 mm s-1 in the gut. Our data indicate H. bakeri motion to be non-periodic and their migration random (diffusive-like), but triggerable by the presence of kin.
Collapse
Affiliation(s)
- Ruth Leben
- Institute for Immunology, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Dynamic and Functional in vivo Imaging, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany
| | - Sebastian Rausch
- Institute for Immunology, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Laura Elomaa
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Anja E. Hauser
- Department of Rheumatology and Clinical Immunology, Immune Dynamics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt University, Berlin, Germany
- Laboratory for Immune Dynamics, Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany
| | - Marie Weinhart
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Sabine C. Fischer
- Center for Computational and Theoretical Biology, Fakultät für Biologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Holger Stark
- Institute of Theoretical Physics, Technische Universität Berlin, Berlin, Germany
| | - Susanne Hartmann
- Institute for Immunology, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Raluca Niesner
- Dynamic and Functional in vivo Imaging, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Biophysical Analytics, Deutsches Rheuma-Forschungszentrum, A Leibniz Institute, Berlin, Germany
| |
Collapse
|
3
|
Cressler CE, Metz DCG, Chang van Oordt DA, Graham AL. Immunological feedback loops generate parasite persistence thresholds that explain variation in infection duration. Proc Biol Sci 2024; 291:20240934. [PMID: 39317318 PMCID: PMC11421898 DOI: 10.1098/rspb.2024.0934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024] Open
Abstract
Infection duration affects individual host fitness and between-host transmission. Whether an infection is cleared or becomes chronic depends on the complex interaction between host immune responses and parasite growth. Empirical and theoretical studies have suggested that there are critical thresholds of parasite dose that can determine clearance versus chronicity, driven by the ability of the parasite to manipulate host immunity. However, the mammalian immune response is characterized by strong positive and negative feedback loops that could generate duration thresholds even in the absence of direct immunomodulation. Here, we derive and analyse a simple model for the interaction between T-cell subpopulations and parasite growth. We show that whether an infection is cleared or not is very sensitive to the initial immune state, parasite dose and strength of immunological feedbacks. In particular, chronic infections are possible even when parasites provoke a strong and effective immune response and lack any ability to immunomodulate. Our findings indicate that the initial immune state, which often goes unmeasured in empirical studies, is a critical determinant of infection duration. This work also has implications for epidemiological models, as it implies that infection duration will be highly variable among individuals, and dependent on each individual's infection history.
Collapse
Affiliation(s)
- Clayton E. Cressler
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Daniel C. G. Metz
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Andrea L. Graham
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
4
|
Rogozynski NP, Dixon B. The Th1/Th2 paradigm: A misrepresentation of helper T cell plasticity. Immunol Lett 2024; 268:106870. [PMID: 38788801 DOI: 10.1016/j.imlet.2024.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
For decades, the Th1/2 paradigm has been used to classify immune responses as either Th1 or Th2-biased. However, in recent years, a staggering amount of evidence has emerged to support rejection of the classical Th1/Th2 paradigm, such as the discoveries of new helper T cell subsets, helper T cell plasticity and protective mixed-Th1/Th2 responses. This opinion piece investigates the shortcomings of classical Th1/Th2 paradigm in the context of recent works, with the goal of facilitating the development of newer models to represent the diversity of Th cells.
Collapse
Affiliation(s)
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, Canada.
| |
Collapse
|
5
|
Choi S, Jo JC, Lee YJ, Chae SW, Cha HJ. Immunophenotypic classification regarding prognosis in peripheral T cell lymphoma, NOS, and nodal T follicular helper T cell lymphoma, angioimmunoblastic-type. Ann Hematol 2024; 103:2429-2443. [PMID: 38814447 DOI: 10.1007/s00277-024-05817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
This study aimed to determine the clinicopathological predictive factors of peripheral T-cell lymphoma, not otherwise specified (PTCL, NOS), and nodal T-follicular helper cell lymphoma, angioimmunoblastic-type (nTFH, AI-type). In this single-centered, retrospective study, medical records of 59 patients who were diagnosed with PTCL, NOS, or nTFH, AI-type from March 2007 to September 2022 were reviewed. The clinicopathological variables, including immunohistochemistry(IHC) subgroups, distinguishing TBX21 from the GATA3 subgroups were analyzed. Overall, 28 patients (75.7%) in the TBX21 group were PTCL, NOS. There were 9 (24.3%) patients in the GATA3 group. In univariable analyses, lymphoma subtype, age, and performance status were associated with progression-free survival (PFS), and overall survival (OS). In multivariable analyses, lymphoma subtype, and performance status were related to PFS and OS (P = 0.012, P < 0.001, P = 0.006, and P < 0.001, respectively). The GATA3 subgroup tended to have a worse prognosis in univariable analyses; however, it became more insignificant in multivariable when lymphoma subtype and performance status were adjusted (P = 0.065, P = 0.180, P = 0.972, and P = 0.265, respectively). The double-positive group showed variable prognoses of better PFS and worse OS. PD-1 and PD-L1 were associated with the EBV in situ hybridization (P = 0.027, and P = 0.005), and PD-1 was associated with CD30 expression (P = 0.043). This study demonstrated the potential of IHC classification to predict prognosis for PTCL, NOS, as well as nTFH AI-type, although further validation is necessary. Treatments targeting CD30, PD-1, and PD-L1 appear promising for lymphoma treatment.
Collapse
Affiliation(s)
- Soyeon Choi
- Department of Pathology, National Cancer Center, Goyang-si, Korea
| | - Jae-Cheol Jo
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Yoo Jin Lee
- Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Seoung Wan Chae
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Jeong Cha
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Daehakbyungwonro 25, Dong-gu, Ulsan, 44033, Korea.
| |
Collapse
|
6
|
Kandel A, Li L, Wang Y, Tuo W, Xiao Z. Differentiation and Regulation of Bovine Th2 Cells In Vitro. Cells 2024; 13:738. [PMID: 38727273 PMCID: PMC11083891 DOI: 10.3390/cells13090738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Bovine Th2 cells have usually been characterized by IL4 mRNA expression, but it is unclear whether their IL4 protein expression corresponds to transcription. We found that grass-fed healthy beef cattle, which had been regularly exposed to parasites on the grass, had a low frequency of IL4+ Th2 cells during flow cytometry, similar to animals grown in feedlots. To assess the distribution of IL4+ CD4+ T cells across tissues, samples from the blood, spleen, abomasal (draining), and inguinal lymph nodes were examined, which revealed limited IL4 protein detection in the CD4+ T cells across the examined tissues. To determine if bovine CD4+ T cells may develop into Th2 cells, naïve cells were stimulated with anti-bovine CD3 under a Th2 differentiation kit in vitro. The cells produced primarily IFNγ proteins, with only a small fraction (<10%) co-expressing IL4 proteins. Quantitative PCR confirmed elevated IFNγ transcription but no significant change in IL4 transcription. Surprisingly, GATA3, the master regulator of IL4, was highest in naïve CD4+ T cells but was considerably reduced following differentiation. To determine if the differentiated cells were true Th2 cells, an unbiased proteomic assay was carried out. The assay identified 4212 proteins, 422 of which were differently expressed compared to those in naïve cells. Based on these differential proteins, Th2-related upstream components were predicted, including CD3, CD28, IL4, and IL33, demonstrating typical Th2 differentiation. To boost IL4 expression, T cell receptor (TCR) stimulation strength was reduced by lowering anti-CD3 concentrations. Consequently, weak TCR stimulation essentially abolished Th2 expansion and survival. In addition, extra recombinant bovine IL4 (rbIL4) was added during Th2 differentiation, but, despite enhanced expansion, the IL4 level remained unaltered. These findings suggest that, while bovine CD4+ T cells can respond to Th2 differentiation stimuli, the bovine IL4 pathway is not regulated in the same way as in mice and humans. Furthermore, Ostertagia ostertagi (OO) extract, a gastrointestinal nematode in cattle, inhibited signaling via CD3, CD28, IL4, and TLRs/MYD88, indicating that external pathogens can influence bovine Th2 differentiation. In conclusion, though bovine CD4+ T cells can respond to IL4-driven differentiation, IL4 expression is not a defining feature of differentiated bovine Th2 cells.
Collapse
Affiliation(s)
- Anmol Kandel
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.K.); (L.L.)
| | - Lei Li
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.K.); (L.L.)
| | - Yan Wang
- Mass Spectrometry Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA;
| | - Zhengguo Xiao
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.K.); (L.L.)
| |
Collapse
|
7
|
Bensussen A, Torres-Magallanes JA, Álvarez-Buylla ER, de Álvarez-Buylla ER. Hybrid lineages of CD4 + T cells: a handbook update. Front Immunol 2024; 15:1344078. [PMID: 38312841 PMCID: PMC10834732 DOI: 10.3389/fimmu.2024.1344078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
CD4+ T lymphocytes have been classified into several lineages, according to their gene expression profiles and their effector responses. Interestingly, recent evidence is showing that many lineages could yield hybrid phenotypes with unique properties and functions. It has been reported that such hybrid lineages might underlie pathologies or may function as effector cells with protection capacities against molecular threats. In this work, we reviewed the characteristics of the hybrid lineages reported in the literature, in order to identify the expression profiles that characterize them and the markers that could be used to identify them. We also review the differentiation cues that elicit their hybrid origin and what is known about their physiological roles.
Collapse
Affiliation(s)
- Antonio Bensussen
- Laboratorio de Neuroendocrinología, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - José Antonio Torres-Magallanes
- Laboratorio de Neuroendocrinología, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elena Roces de Álvarez-Buylla
- Laboratorio de Neuroendocrinología, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| |
Collapse
|
8
|
Burt P, Thurley K. Distribution modeling quantifies collective T H cell decision circuits in chronic inflammation. SCIENCE ADVANCES 2023; 9:eadg7668. [PMID: 37703364 PMCID: PMC10881075 DOI: 10.1126/sciadv.adg7668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/11/2023] [Indexed: 09/15/2023]
Abstract
Immune responses are tightly regulated by a diverse set of interacting immune cell populations. Alongside decision-making processes such as differentiation into specific effector cell types, immune cells initiate proliferation at the beginning of an inflammation, forming two layers of complexity. Here, we developed a general mathematical framework for the data-driven analysis of collective immune cell dynamics. We identified qualitative and quantitative properties of generic network motifs, and we specified differentiation dynamics by analysis of kinetic transcriptome data. Furthermore, we derived a specific, data-driven mathematical model for T helper 1 versus T follicular helper cell-fate decision dynamics in acute and chronic lymphocytic choriomeningitis virus infections in mice. The model recapitulates important dynamical properties without model fitting and solely by using measured response-time distributions. Model simulations predict different windows of opportunity for perturbation in acute and chronic infection scenarios, with potential implications for optimization of targeted immunotherapy.
Collapse
Affiliation(s)
- Philipp Burt
- Systems Biology of Inflammation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Institute for Theoretical Biophysics, Humboldt University, Berlin, Germany
| | - Kevin Thurley
- Systems Biology of Inflammation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Biomathematics Division, Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
9
|
Fiuza JA, Gannavaram S, Gaze ST, de Ornellas LG, Alves ÉA, Ismail N, Nakhasi HL, Correa-Oliveira R. Deletion of MIF gene from live attenuated LdCen -/- parasites enhances protective CD4 + T cell immunity. Sci Rep 2023; 13:7362. [PMID: 37147351 PMCID: PMC10163264 DOI: 10.1038/s41598-023-34333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/27/2023] [Indexed: 05/07/2023] Open
Abstract
Vaccination with live attenuated Leishmania parasites such as centrin deleted Leishmania donovani (LdCen-/-) against visceral leishmaniasis has been reported extensively. The protection induced by LdCen-/- parasites was mediated by both CD4+ and CD8+ T cells. While the host immune mediators of protection are known, parasite determinants that affect the CD4+ and CD8+ T cell populations remain unknown. Parasite encoded inflammatory cytokine MIF has been shown to modulate the T cell differentiation characteristics by altering the inflammation induced apoptosis during contraction phase in experimental infections with Leishmania or Plasmodium. Neutralization of parasite encoded MIF either by antibodies or gene deletion conferred protection in Plasmodium and Leishmania studies. We investigated if the immunogenicity and protection induced by LdCen-/- parasites is affected by deleting MIF genes from this vaccine strain. Our results showed that LdCen-/-MIF-/- immunized group presented higher percentage of CD4+ and CD8+ central memory T cells, increased CD8+ T cell proliferation after challenge compared to LdCen-/- immunization. LdCen-/-MIF-/- immunized group presented elevated production of IFN-γ+ and TNF-α+ CD4+ T cells concomitant with a reduced parasite load in spleen and liver compared to LdCen-/-group following challenge with L. infantum. Our results demonstrate the role of parasite induced factors involved in protection and long-term immunity of vaccines against VL.
Collapse
Affiliation(s)
- Jacqueline Araújo Fiuza
- Cellular and Molecular Immunology Research Group, René Rachou Institute (FIOCRUZ), Belo Horizonte, Brazil.
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.
| | - Soraya Torres Gaze
- Cellular and Molecular Immunology Research Group, René Rachou Institute (FIOCRUZ), Belo Horizonte, Brazil
| | | | - Érica Alessandra Alves
- Cellular and Molecular Immunology Research Group, René Rachou Institute (FIOCRUZ), Belo Horizonte, Brazil
| | - Nevien Ismail
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Hira Lal Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Rodrigo Correa-Oliveira
- Cellular and Molecular Immunology Research Group, René Rachou Institute (FIOCRUZ), Belo Horizonte, Brazil
| |
Collapse
|
10
|
Friedman MJ, Lee H, Lee JY, Oh S. Transcriptional and Epigenetic Regulation of Context-Dependent Plasticity in T-Helper Lineages. Immune Netw 2023; 23:e5. [PMID: 36911799 PMCID: PMC9995996 DOI: 10.4110/in.2023.23.e5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Th cell lineage determination and functional specialization are tightly linked to the activation of lineage-determining transcription factors (TFs) that bind cis-regulatory elements. These lineage-determining TFs act in concert with multiple layers of transcriptional regulators to alter the epigenetic landscape, including DNA methylation, histone modification and three-dimensional chromosome architecture, in order to facilitate the specific Th gene expression programs that allow for phenotypic diversification. Accumulating evidence indicates that Th cell differentiation is not as rigid as classically held; rather, extensive phenotypic plasticity is an inherent feature of T cell lineages. Recent studies have begun to uncover the epigenetic programs that mechanistically govern T cell subset specification and immunological memory. Advances in next generation sequencing technologies have allowed global transcriptomic and epigenomic interrogation of CD4+ Th cells that extends previous findings focusing on individual loci. In this review, we provide an overview of recent genome-wide insights into the transcriptional and epigenetic regulation of CD4+ T cell-mediated adaptive immunity and discuss the implications for disease as well as immunotherapies.
Collapse
Affiliation(s)
- Meyer J. Friedman
- Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Haram Lee
- College of Pharmacy Korea University, Sejong 30019, Korea
| | - June-Yong Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute of Genetic Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soohwan Oh
- College of Pharmacy Korea University, Sejong 30019, Korea
| |
Collapse
|
11
|
Harlapur P, Duddu AS, Hari K, Kulkarni P, Jolly MK. Functional Resilience of Mutually Repressing Motifs Embedded in Larger Networks. Biomolecules 2022; 12:1842. [PMID: 36551270 PMCID: PMC9775907 DOI: 10.3390/biom12121842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Elucidating the design principles of regulatory networks driving cellular decision-making has important implications for understanding cell differentiation and guiding the design of synthetic circuits. Mutually repressing feedback loops between 'master regulators' of cell fates can exhibit multistable dynamics enabling "single-positive" phenotypes: (high A, low B) and (low A, high B) for a toggle switch, and (high A, low B, low C), (low A, high B, low C) and (low A, low B, high C) for a toggle triad. However, the dynamics of these two motifs have been interrogated in isolation in silico, but in vitro and in vivo, they often operate while embedded in larger regulatory networks. Here, we embed these motifs in complex larger networks of varying sizes and connectivity to identify hallmarks under which these motifs maintain their canonical dynamical behavior. We show that an increased number of incoming edges onto a motif leads to a decay in their canonical stand-alone behaviors. We also show that this decay can be exacerbated by adding self-inhibition but not self-activation loops on the 'master regulators'. These observations offer insights into the design principles of biological networks containing these motifs and can help devise optimal strategies for the integration of these motifs into larger synthetic networks.
Collapse
Affiliation(s)
- Pradyumna Harlapur
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Atchuta Srinivas Duddu
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Kishore Hari
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Prakash Kulkarni
- Department of Medical Oncology and Experimental Therapeutics, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
12
|
Canciello A, Cerveró-Varona A, Peserico A, Mauro A, Russo V, Morrione A, Giordano A, Barboni B. "In medio stat virtus": Insights into hybrid E/M phenotype attitudes. Front Cell Dev Biol 2022; 10:1038841. [PMID: 36467417 PMCID: PMC9715750 DOI: 10.3389/fcell.2022.1038841] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/02/2022] [Indexed: 08/22/2023] Open
Abstract
Epithelial-mesenchymal plasticity (EMP) refers to the ability of cells to dynamically interconvert between epithelial (E) and mesenchymal (M) phenotypes, thus generating an array of hybrid E/M intermediates with mixed E and M features. Recent findings have demonstrated how these hybrid E/M rather than fully M cells play key roles in most of physiological and pathological processes involving EMT. To this regard, the onset of hybrid E/M state coincides with the highest stemness gene expression and is involved in differentiation of either normal and cancer stem cells. Moreover, hybrid E/M cells are responsible for wound healing and create a favorable immunosuppressive environment for tissue regeneration. Nevertheless, hybrid state is responsible of metastatic process and of the increasing of survival, apoptosis and therapy resistance in cancer cells. The present review aims to describe the main features and the emerging concepts regulating EMP and the formation of E/M hybrid intermediates by describing differences and similarities between cancer and normal hybrid stem cells. In particular, the comprehension of hybrid E/M cells biology will surely advance our understanding of their features and how they could be exploited to improve tissue regeneration and repair.
Collapse
Affiliation(s)
- Angelo Canciello
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Adrián Cerveró-Varona
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Alessia Peserico
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Annunziata Mauro
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Andrea Morrione
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Antonio Giordano
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
- Sbarro Health Research Organization (SHRO), Philadelphia, PA, United States
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
13
|
Burt P, Peine M, Peine C, Borek Z, Serve S, Floßdorf M, Hegazy AN, Höfer T, Löhning M, Thurley K. Dissecting the dynamic transcriptional landscape of early T helper cell differentiation into Th1, Th2, and Th1/2 hybrid cells. Front Immunol 2022; 13:928018. [PMID: 36052070 PMCID: PMC9424495 DOI: 10.3389/fimmu.2022.928018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Selective differentiation of CD4+ T helper (Th) cells into specialized subsets such as Th1 and Th2 cells is a key element of the adaptive immune system driving appropriate immune responses. Besides those canonical Th-cell lineages, hybrid phenotypes such as Th1/2 cells arise in vivo, and their generation could be reproduced in vitro. While master-regulator transcription factors like T-bet for Th1 and GATA-3 for Th2 cells drive and maintain differentiation into the canonical lineages, the transcriptional architecture of hybrid phenotypes is less well understood. In particular, it has remained unclear whether a hybrid phenotype implies a mixture of the effects of several canonical lineages for each gene, or rather a bimodal behavior across genes. Th-cell differentiation is a dynamic process in which the regulatory factors are modulated over time, but longitudinal studies of Th-cell differentiation are sparse. Here, we present a dynamic transcriptome analysis following Th-cell differentiation into Th1, Th2, and Th1/2 hybrid cells at 3-h time intervals in the first hours after stimulation. We identified an early bifurcation point in gene expression programs, and we found that only a minority of ~20% of Th cell-specific genes showed mixed effects from both Th1 and Th2 cells on Th1/2 hybrid cells. While most genes followed either Th1- or Th2-cell gene expression, another fraction of ~20% of genes followed a Th1 and Th2 cell-independent transcriptional program associated with the transcription factors STAT1 and STAT4. Overall, our results emphasize the key role of high-resolution longitudinal data for the characterization of cellular phenotypes.
Collapse
Affiliation(s)
- Philipp Burt
- Systems Biology of Inflammation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Institute for Theoretical Biology, Humboldt University, Berlin, Germany
| | - Michael Peine
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin, Berlin, Germany
| | - Caroline Peine
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin, Berlin, Germany
| | - Zuzanna Borek
- Systems Biology of Inflammation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin, Berlin, Germany
- Inflammatory Mechanisms, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Sebastian Serve
- Systems Biology of Inflammation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin, Berlin, Germany
| | - Michael Floßdorf
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ahmed N. Hegazy
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin, Berlin, Germany
- Inflammatory Mechanisms, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Max Löhning
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin, Berlin, Germany
- *Correspondence: Max Löhning, ; Kevin Thurley,
| | - Kevin Thurley
- Systems Biology of Inflammation, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
- Institute for Theoretical Biology, Humboldt University, Berlin, Germany
- Institute for Experimental Oncology, Biomathematics Division, University Hospital Bonn, Bonn, Germany
- *Correspondence: Max Löhning, ; Kevin Thurley,
| |
Collapse
|
14
|
Radtke D, Thuma N, Schülein C, Kirchner P, Ekici AB, Schober K, Voehringer D. Th2 single-cell heterogeneity and clonal distribution at distant sites in helminth-infected mice. eLife 2022; 11:74183. [PMID: 35950748 PMCID: PMC9391044 DOI: 10.7554/elife.74183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Th2 cells provide effector functions in type 2 immune responses to helminths and allergens. Despite knowledge about molecular mechanisms of Th2 cell differentiation, there is little information on Th2 cell heterogeneity and clonal distribution between organs. To address this, we performed combined single-cell transcriptome and T-cell receptor (TCR) clonotype analysis on murine Th2 cells in mesenteric lymph nodes (MLNs) and lung after infection with Nippostrongylus brasiliensis (Nb) as a human hookworm infection model. We find organ-specific expression profiles, but also populations with conserved migration or effector/resident memory signatures that unexpectedly cluster with potentially regulatory Il10posFoxp3neg cells. A substantial MLN subpopulation with an interferon response signature suggests a role for interferon signaling in Th2 differentiation or diversification. Further RNA-inferred developmental directions indicate proliferation as a hub for differentiation decisions. Although the TCR repertoire is highly heterogeneous, we identified expanded clones and CDR3 motifs. Clonal relatedness between distant organs confirmed effective exchange of Th2 effector cells, although locally expanded clones dominated the response. We further cloned an Nb-specific TCR from an expanded clone in the lung effector cluster and describe surface markers that distinguish transcriptionally defined clusters. These results provide insights in Th2 cell subset diversity and clonal relatedness in distant organs.
Collapse
Affiliation(s)
- Daniel Radtke
- Department of Infection Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Natalie Thuma
- Department of Infection Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christine Schülein
- Institute of Clinical Microbiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Philipp Kirchner
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Kilian Schober
- Institute of Clinical Microbiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - David Voehringer
- Department of Infection Biology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
15
|
Hemedan AA, Niarakis A, Schneider R, Ostaszewski M. Boolean modelling as a logic-based dynamic approach in systems medicine. Comput Struct Biotechnol J 2022; 20:3161-3172. [PMID: 35782730 PMCID: PMC9234349 DOI: 10.1016/j.csbj.2022.06.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Molecular mechanisms of health and disease are often represented as systems biology diagrams, and the coverage of such representation constantly increases. These static diagrams can be transformed into dynamic models, allowing for in silico simulations and predictions. Boolean modelling is an approach based on an abstract representation of the system. It emphasises the qualitative modelling of biological systems in which each biomolecule can take two possible values: zero for absent or inactive, one for present or active. Because of this approximation, Boolean modelling is applicable to large diagrams, allowing to capture their dynamic properties. We review Boolean models of disease mechanisms and compare a range of methods and tools used for analysis processes. We explain the methodology of Boolean analysis focusing on its application in disease modelling. Finally, we discuss its practical application in analysing signal transduction and gene regulatory pathways in health and disease.
Collapse
Affiliation(s)
- Ahmed Abdelmonem Hemedan
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anna Niarakis
- Université Paris-Saclay, Laboratoire Européen de Recherche pour la Polyarthrite rhumatoïde – Genhotel, Univ Evry, Evry, France
- Lifeware Group, Inria, Saclay-île de France, 91120 Palaiseau, France
| | - Reinhard Schneider
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marek Ostaszewski
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
16
|
Hertweck A, Vila de Mucha M, Barber PR, Dagil R, Porter H, Ramos A, Lord GM, Jenner RG. The TH1 cell lineage-determining transcription factor T-bet suppresses TH2 gene expression by redistributing GATA3 away from TH2 genes. Nucleic Acids Res 2022; 50:4557-4573. [PMID: 35438764 PMCID: PMC9071441 DOI: 10.1093/nar/gkac258] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 11/12/2022] Open
Abstract
Lineage-determining transcription factors (LD-TFs) drive the differentiation of progenitor cells into a specific lineage. In CD4+ T cells, T-bet dictates differentiation of the TH1 lineage, whereas GATA3 drives differentiation of the alternative TH2 lineage. However, LD-TFs, including T-bet and GATA3, are frequently co-expressed but how this affects LD-TF function is not known. By expressing T-bet and GATA3 separately or together in mouse T cells, we show that T-bet sequesters GATA3 at its target sites, thereby removing GATA3 from TH2 genes. This redistribution of GATA3 is independent of GATA3 DNA binding activity and is instead mediated by the T-bet DNA binding domain, which interacts with the GATA3 DNA binding domain and changes GATA3's sequence binding preference. This mechanism allows T-bet to drive the TH1 gene expression program in the presence of GATA3. We propose that redistribution of one LD-TF by another may be a common mechanism that could explain how specific cell fate choices can be made even in the presence of other transcription factors driving alternative differentiation pathways.
Collapse
Affiliation(s)
- Arnulf Hertweck
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, WC1E 6BT, UK
| | - Maria Vila de Mucha
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, WC1E 6BT, UK
| | - Paul R Barber
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, WC1E 6BT, UK.,Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 1UL, UK
| | - Robert Dagil
- Research Department of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London, WC1E 6XA, UK
| | - Hayley Porter
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, WC1E 6BT, UK
| | - Andres Ramos
- Research Department of Structural and Molecular Biology, University College London, Darwin Building, Gower Street, London, WC1E 6XA, UK
| | - Graham M Lord
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9NT, UK
| | - Richard G Jenner
- UCL Cancer Institute and Cancer Research UK UCL Centre, University College London (UCL), London, WC1E 6BT, UK
| |
Collapse
|
17
|
Smita S, Chikina M, Shlomchik MJ, Tilstra JS. Heterogeneity and clonality of kidney-infiltrating T cells in murine lupus nephritis. JCI Insight 2022; 7:e156048. [PMID: 35271505 PMCID: PMC9089785 DOI: 10.1172/jci.insight.156048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
We previously found that kidney-infiltrating T cells (KITs) in murine lupus nephritis (LN) resembled dysfunctional T cells that infiltrate tumors. This unexpected finding raised the question of how to reconcile the "exhausted" phenotype of KITs with ongoing tissue destruction in LN. To address this, we performed single-cell RNA-Seq and TCR-Seq of KITs in murine lupus models. We found that CD8+ KITs existed first in a transitional state, before clonally expanding and evolving toward exhaustion. On the other hand, CD4+ KITs did not fit into current differentiation paradigms but included both hypoxic and cytotoxic subsets with a pervasive exhaustion signature. Thus, autoimmune nephritis is unlike acute pathogen immunity; rather, the kidney microenvironment suppresses T cells by progressively inducing exhausted states. Our findings suggest that LN, a chronic condition, results from slow evolution of damage caused by dysfunctional T cells and their precursors on the way to exhaustion. These findings have implications for both autoimmunity and tumor immunology.
Collapse
Affiliation(s)
- Shuchi Smita
- Department of Immunology
- Department of Computational and Systems Biology
| | | | | | - Jeremy S. Tilstra
- Department of Medicine, and
- Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Duddu AS, Majumdar SS, Sahoo S, Jhunjhunwala S, Jolly MK. Emergent dynamics of a three-node regulatory network explain phenotypic switching and heterogeneity: a case study of Th1/Th2/Th17 cell differentiation. Mol Biol Cell 2022; 33:ar46. [PMID: 35353012 PMCID: PMC9265159 DOI: 10.1091/mbc.e21-10-0521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Naïve helper (CD4+) T-cells can differentiate into distinct functional subsets including Th1, Th2, and Th17 phenotypes. Each of these phenotypes has a 'master regulator' - T-bet (Th1), GATA3 (Th2) and RORγT (Th17) - that inhibits the other two master regulators. Such mutual repression among them at a transcriptional level can enable multistability, giving rise to six experimentally observed phenotypes - Th1, Th2, Th17, hybrid Th/Th2, hybrid Th2/Th17 and hybrid Th1/Th17. However, the dynamics of switching among these phenotypes, particularly in the case of epigenetic influence, remains unclear. Here, through mathematical modeling, we investigated the coupled transcription-epigenetic dynamics in a three-node mutually repressing network to elucidate how epigenetic changes mediated by any 'master regulator' can influence the transition rates among different cellular phenotypes. We show that the degree of plasticity exhibited by one phenotype depends on relative strength and duration of mutual epigenetic repression mediated among the master regulators in a three-node network. Further, our model predictions can offer putative mechanisms underlying relatively higher plasticity of Th17 phenotype as observed in vitro and in vivo. Together, our modeling framework characterizes phenotypic plasticity and heterogeneity as an outcome of emergent dynamics of a three-node regulatory network, such as the one mediated by T-bet/GATA3/RORγT.
Collapse
Affiliation(s)
- Atchuta Srinivas Duddu
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Sauma Suvra Majumdar
- epartment of Biotechnology, National Institute of Technology, Durgapur 713216, India
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Siddharth Jhunjhunwala
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
19
|
Ding M, Smith KD, Wiesner DL, Nielsen JN, Jackson KM, Nielsen K. Use of Clinical Isolates to Establish Criteria for a Mouse Model of Latent Cryptococcus neoformans Infection. Front Cell Infect Microbiol 2022; 11:804059. [PMID: 35186781 PMCID: PMC8847453 DOI: 10.3389/fcimb.2021.804059] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
The mechanisms of latency in the context of C. neoformans infection remain poorly understood. Two reasons for this gap in knowledge are: 1) the lack of standardized criteria for defining latent cryptococcosis in animal models and 2) limited genetic and immunological tools available for studying host parameters against C. neoformans in non-murine models of persistent infection. In this study, we defined criteria required for latency in C. neoformans infection models and used these criteria to develop a murine model of persistent C. neoformans infection using clinical isolates. We analyzed infections with two clinical C. neoformans strains, UgCl223 and UgCl552, isolated from advanced HIV patients with cryptococcal meningitis. Our data show that the majority of C57BL/6 mice infected with the clinical C. neoformans isolates had persistent, stable infections with low fungal burden, survived beyond 90 days-post infection, exhibited weight gain, had no clinical signs of disease, and had yeast cells contained within pulmonary granulomas with no generalized alveolar inflammation. Infected mice exhibited stable relative frequencies of pulmonary immune cells during the course of the infection. Upon CD4+ T-cell depletion, the CD4DTR mice had significantly increased lung and brain fungal burden that resulted in lethal infection, indicating that CD4+ T-cells are important for control of the pulmonary infection and to prevent dissemination. Cells expressing the Tbet transcription factor were the predominant activated CD4 T-cell subset in the lungs during the latent infection. These Tbet-expressing T-cells had decreased IFNγ production, which may have implications in the capacity of the cells to orchestrate the pulmonary immune response. Altogether, these results indicate that clinical C. neoformans isolates can establish a persistent controlled infection that meets most criteria for latency; highlighting the utility of this new mouse model system for studies of host immune responses that control C. neoformans infections.
Collapse
Affiliation(s)
- Minna Ding
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Kyle D. Smith
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Darin L. Wiesner
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Judith N. Nielsen
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Katrina M. Jackson
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
20
|
Sharaf OF, Ahmed AA, Ibrahim AF, Shariq A, Alkhamiss AS, Alghsham R, Althwab SA, Alghaniam SA, Alhumaydhi FA, Alghamdi R, Alshomar A, Alabdullatif T, Alkhulayfi A, Alghunaim AA, Abdulmonem WA. Modulation of mice immune responses against Schistosoma mansoni infection with anti-schistosomiasis drugs: Role of interleukin-4 and interferon-gamma. Int J Health Sci (Qassim) 2022; 16:3-11. [PMID: 35300269 PMCID: PMC8905037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE Schistosoma mansoni (S. mansoni) is endemic in Africa, the Middle East, South America, and the Caribbean. This study investigated the modulation of immune response against S. mansoni through estimation of interleukin-4 (IL-4) (Th2 cytokine) and interferon-gamma (INF-γ) (Th1 cytokine) under the effect of anti-schistosomal drugs. METHODS Laboratory bred female albino mice (n = 120) were divided into the following groups: untreated mice, S. mansoni infected mice, S. mansoni infected mice treated with artemisinin (ART), arachidonic acid (ARA), nifedipine or praziquantel (PZQ). Levels of IL-4 and INF-γ cytokines in the serum samples of treated and untreated mice were determined by enzyme-linked immunosorbent assay and the results were further validated by measuring the mRNA levels IL-4 and INF-γ using quantitative real-time polymerase chain reaction. RESULTS Anti-schistosomiasis drugs ART and ARA increased the levels of Th2 cytokine IL-4 (P < 0.05), whereas PZQ drug decreased the response of IL-4 (P < 0.05). However, nifedipine was found to be ineffective in modulating the response of IL-4 (P > 0.05). As far as Th-1 cytokine IFN γ was concerned, only PZQ increased its levels (P < 0.05), whereas other tested anti-schistosomiasis drugs; ART, ARA, and nifedipine were found to be infective (P > 0.05). CONCLUSIONS These findings indicated that anti-schistosomiasis drugs ART, ARA, and PZQ play a role in the modulation of expression of Th2 cytokines. Whereas, only PZQ may play a role in the modulation of Th1 cytokines. These findings provide a scope for the formulation of novel anti-schistosomal drugs as well as in the therapeutic management of patients infected with S. mansoni.
Collapse
Affiliation(s)
- Osama F. Sharaf
- Department of Clinical and Molecular Parasitology, National Liver Institute, Menoufia University, Shibin Al kom, Al Menoufia, Egypt
| | - Ahmed A. Ahmed
- Research Center, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Asmaa F. Ibrahim
- Department of Clinical and Molecular Parasitology, National Liver Institute, Menoufia University, Shibin Al kom, Al Menoufia, Egypt
| | - Ali Shariq
- Department of Microbiology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abdullah S. Alkhamiss
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Ruqaih Alghsham
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Sami A. Althwab
- Department of Clinical Nutrition, Qassim Health Affairs, Ministry of Health, Buraidah, Saudi Arabia
| | - Sultan A. Alghaniam
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Rana Alghamdi
- Department of Chemistry, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Alshomar
- Department of Medicine, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Tasleem Alabdullatif
- Department of Pathology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | | | | | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia,Address for correspondence: Dr. Waleed Al Abdulmonem, Department of Pathology, College of Medicine, Qassim University, Qassim, Saudi Arabia. E-mail:
| |
Collapse
|
21
|
Age-dependent rise in IFN-γ competence undermines effective type 2 responses to nematode infection. Mucosal Immunol 2022; 15:1270-1282. [PMID: 35690651 PMCID: PMC9705248 DOI: 10.1038/s41385-022-00519-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023]
Abstract
The efficient induction of type 2 immune responses is central to the control of helminth infections. Previous studies demonstrated that strong Th1 responses driven by intracellular pathogens as well as a bias for type 1 activity in senescent mice impedes the generation of Th2 responses and the control of intestinal nematode infections. Here, we show that the spontaneous differentiation of Th1 cells and their expansion with age restrains type 2 immunity to infection with the small intestinal nematode H. polygyrus much earlier in life than previously anticipated. This includes the more extensive induction of IFN-γ competent, nematode-specific Th2/1 hybrid cells in BALB/c mice older than three months compared to younger animals. In C57BL/6 mice, Th1 cells accumulate more rapidly at steady state, translating to elevated Th2/1 differentiation and poor control of parasite fitness in primary infections experienced at a young age. Blocking of early IFN-γ and IL-12 signals during the first week of nematode infection leads to sharply decreased Th2/1 differentiation and promotes resistance in both mouse lines. Together, these data suggest that IFN-γ competent, type 1 like effector cells spontaneously accumulating in the vertebrate host progressively curtail the effectiveness of anti-nematode type 2 responses with rising host age.
Collapse
|
22
|
Damani-Yokota P, Zhang F, Gillespie A, Park H, Burnside A, Telfer JC, Baldwin CL. Transcriptional programming and gene regulation in WC1 + γδ T cell subpopulations. Mol Immunol 2021; 142:50-62. [PMID: 34959072 DOI: 10.1016/j.molimm.2021.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
γδ T cells represent a high proportion of lymphocytes in the blood of ruminants with the majority expressing lineage-specific glycoproteins from the WC1 family. WC1 receptors are coded for by a multigenic array whose genes have variegated but stable expression among cells in the γδ T cell population. WC1 molecules function as hybrid pattern recognition receptors as well as co-receptors for the TCR and are required for responses by the cells. Because of the variegated gene expression, WC1+ γδ T cells can be divided into two main populations known as WC1.1+ and WC1.2+ based on monoclonal antibody reactivity with the expressed WC1 molecules. These subpopulations differ in their ability to respond to specific pathogens. Here, we showed these populations are established in the thymus and that WC1.1+ and WC1.2+ subpopulations have transcriptional programming that is consistent with stratification towards Tγδ1 or Tγδ17. WC1.1+ cells exhibited the Tγδ1 phenotype with greater transcription of Tbx21 and production of more IFNγ while the WC1.2+ subpopulation tended towards Tγδ17 programming producing higher levels of IL-17 and had greater transcription of Rorc. However, when activated both WC1+ subpopulations' cells transcribed Tbx21 and secreted IFNγ and IL-17 reflecting the complexity of these subpopulations defined by WC1 gene expression. The gene networks involved in development of these two subpopulations including expression of their archetypal genes wc1-3 (WC1.1+) and wc1-4 (WC1.2+) were unknown but we report that SOX-13, a γδ T cell fate-determining transcription factor, has differential occupancy on these WC1 gene loci and suggest a model for development of these subpopulations.
Collapse
Affiliation(s)
- Payal Damani-Yokota
- Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Fengqiu Zhang
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Alexandria Gillespie
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Haeree Park
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Amy Burnside
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Janice C Telfer
- Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| | - Cynthia L Baldwin
- Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
23
|
Paillet J, Plantureux C, Lévesque S, Le Naour J, Stoll G, Sauvat A, Caudana P, Tosello Boari J, Bloy N, Lachkar S, Martins I, Opolon P, Checcoli A, Delaune A, Robil N, de la Grange P, Hamroune J, Letourneur F, Autret G, Leung PS, Gershwin ME, Zhu JS, Kurth MJ, Lekbaby B, Augustin J, Kim Y, Gujar S, Coulouarn C, Fouassier L, Zitvogel L, Piaggio E, Housset C, Soussan P, Maiuri MC, Kroemer G, Pol JG. Autoimmunity affecting the biliary tract fuels the immunosurveillance of cholangiocarcinoma. J Exp Med 2021; 218:e20200853. [PMID: 34495298 PMCID: PMC8429038 DOI: 10.1084/jem.20200853] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/17/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma (CCA) results from the malignant transformation of cholangiocytes. Primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) are chronic diseases in which cholangiocytes are primarily damaged. Although PSC is an inflammatory condition predisposing to CCA, CCA is almost never found in the autoimmune context of PBC. Here, we hypothesized that PBC might favor CCA immunosurveillance. In preclinical murine models of cholangitis challenged with syngeneic CCA, PBC (but not PSC) reduced the frequency of CCA development and delayed tumor growth kinetics. This PBC-related effect appeared specific to CCA as it was not observed against other cancers, including hepatocellular carcinoma. The protective effect of PBC was relying on type 1 and type 2 T cell responses and, to a lesser extent, on B cells. Single-cell TCR/RNA sequencing revealed the existence of TCR clonotypes shared between the liver and CCA tumor of a PBC host. Altogether, these results evidence a mechanistic overlapping between autoimmunity and cancer immunosurveillance in the biliary tract.
Collapse
Affiliation(s)
- Juliette Paillet
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Céleste Plantureux
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Sarah Lévesque
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Julie Le Naour
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Gautier Stoll
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Allan Sauvat
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Pamela Caudana
- Institut Curie, Paris Sciences et Lettres Research University, Institut National de la Santé et de la Recherche Médicale U932, Paris, France
| | - Jimena Tosello Boari
- Institut Curie, Paris Sciences et Lettres Research University, Institut National de la Santé et de la Recherche Médicale U932, Paris, France
| | - Norma Bloy
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine, Kremlin-Bicêtre, France
| | - Sylvie Lachkar
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Isabelle Martins
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Andrea Checcoli
- Institut Curie, Paris Sciences et Lettres Research University, Paris, France
- Institut National de la Santé et de la Recherche Médicale U900, Paris, France
| | | | | | | | - Juliette Hamroune
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France
| | - Franck Letourneur
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France
| | - Gwennhael Autret
- Université de Paris, Paris Cardiovascular Research Centre, Institut National de la Santé et de la Recherche Médicale U970, Paris, France
| | - Patrick S.C. Leung
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis School of Medicine, Davis, CA
| | - M. Eric Gershwin
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis School of Medicine, Davis, CA
| | - Jie S. Zhu
- Department of Chemistry, University of California, Davis, Davis, CA
| | - Mark J. Kurth
- Department of Chemistry, University of California, Davis, Davis, CA
| | - Bouchra Lekbaby
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
| | - Jérémy Augustin
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche Saint-Antoine, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Hôpital Henri-Mondor, Département de Pathologie, Paris, France
| | - Youra Kim
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Cédric Coulouarn
- Institut National de la Santé et de la Recherche Médicale, Université de Rennes 1, Chemistry, Oncogenesis Stress Signaling, UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Laura Fouassier
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
| | - Laurence Zitvogel
- Institut National de la Santé et de la Recherche Médicale U1015, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
| | - Eliane Piaggio
- Centre d'Investigation Clinique Biothérapie 1428, Institut Curie, Paris, France
| | - Chantal Housset
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
- Assistance Publique-Hôpitaux de Paris, Reference Center for Inflammatory Biliary Diseases and Autoimmune Hepatitis, Department of Hepatology, Saint-Antoine Hospital, Paris, France
| | - Patrick Soussan
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris, France
| | - Maria Chiara Maiuri
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Institut Universitaire de France, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Jonathan G. Pol
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale U1138, Université de Paris, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
24
|
Schlosser-Brandenburg J, Ebner F, Klopfleisch R, Kühl AA, Zentek J, Pieper R, Hartmann S. Influence of Nutrition and Maternal Bonding on Postnatal Lung Development in the Newborn Pig. Front Immunol 2021; 12:734153. [PMID: 34484245 PMCID: PMC8415798 DOI: 10.3389/fimmu.2021.734153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/20/2021] [Indexed: 11/30/2022] Open
Abstract
Background Microbial colonization and immune cell maturation coincide at mucosal sites and are decisive for postnatal lung development. How external factors influence neonatal pulmonary immune development is poorly understood. Objective To elucidate the impact of key determinants in early life, nutrition, and maternal bonding, on postnatal lung maturation in a human-relevant animal model. To investigate the underlying immunological changes of impaired lung maturation and study the mechanisms of conversion. Methods Newborn piglets were kept with or without isolation from their mothers and fed bovine milk-based infant formula or received milk of sow. Lung growth, histomorphology, respiratory immune responses, and lung microbiota were analyzed. Mother- and sow-milk-deprived piglets received maternal material or were reintroduced to the maternal environment at varying intervals to study options for reversal. Results Formula feeding combined with isolation of newborn piglets resulted in disturbed postnatal lung maturation. Reduced lung growth correlated with dampened IL-33 expression, impaired lung myeloid cell activation, and decreased Th1 differentiation, along with diminished richness and diversity of the lung microbiota. Transfer of bacteria-enriched maternal material reversed the negative effects on pulmonary immune maturation. Early (within 3 days) but not late (within 7 days) reintroduction to the mother allowed restoration of normal lung development. Conclusion Our findings reveal that lung growth, respiratory immunity, and microbial lung colonization in newborns depend on postnatal diet and maternal contact, and targeting these key regulators could promote lung development during this critical life stage. Summary Disturbances in natural diet and reduced maternal contact during the neonatal period impair postnatal lung maturation. In pediatrics, timely breast milk feeding and intensive maternal bonding represent valuable intervention measures to promote early postnatal lung development.
Collapse
Affiliation(s)
- Josephine Schlosser-Brandenburg
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Friederike Ebner
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Anja A Kühl
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, iPATH.Berlin, Berlin, Germany
| | - Jürgen Zentek
- Department of Veterinary Medicine, Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Robert Pieper
- Department of Veterinary Medicine, Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany.,Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
25
|
Sanguedolce F, Zanelli M, Zizzo M, Luminari S, Martino G, Soriano A, Ricci L, Caprera C, Ascani S. Indolent T-Cell Lymphoproliferative Disorders of the Gastrointestinal Tract (iTLPD-GI): A Review. Cancers (Basel) 2021; 13:cancers13112790. [PMID: 34205136 PMCID: PMC8199971 DOI: 10.3390/cancers13112790] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary This review aims to better define the clinical, pathological, and molecular features of the novel lymphoproliferative disease termed “indolent T-cell lymphoproliferative disorder of the gastro-intestinal tract (iTLPD-GI)”, to discuss potential pitfalls in differentiating this entity from other neoplastic and non-neoplastic disorders arising at the same site, and to point out a biomarker-based approach to the diagnosis. Abstract iTLPD-GI is a low-grade clonal T-cell lymphoproliferative disease arising in GI organs. It is an uncommon disease, and only recently has it been enlisted as a distinct provisional entity in the current WHO Classification. Data from the literature disclose high heterogeneity in terms of pathological and molecular features; on the other hand, establishing an accurate diagnosis of iTLPD-GI is of pivotal importance, since treatment options are different from that of other, more frequent lymphomas that arise in the gastrointestinal tract. In this review, we aimed to better define this novel entity, and to identify useful diagnostic biomarkers; moreover, we provide a biomarker-based approach to the diagnosis and describe the most common issues in differentiating iTLPD-GI from other neoplastic and non-neoplastic disorders.
Collapse
Affiliation(s)
- Francesca Sanguedolce
- Pathology Unit, Policlinico Riuniti, University of Foggia, 71121 Foggia, Italy
- Correspondence: ; Tel.: +39-881-736-315
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Stefano Luminari
- Hematology Unit, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Giovanni Martino
- Hematology Unit, University of Perugia, CREO Perugia, 06124 Perugia, Italy;
| | - Alessandra Soriano
- Gastroenterology Unit, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Linda Ricci
- Pathology Unit, Azienda Ospedaliera S. Maria di Terni, University of Perugia, 05100 Terni, Italy; (L.R.); (C.C.); (S.A.)
| | - Cecilia Caprera
- Pathology Unit, Azienda Ospedaliera S. Maria di Terni, University of Perugia, 05100 Terni, Italy; (L.R.); (C.C.); (S.A.)
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera S. Maria di Terni, University of Perugia, 05100 Terni, Italy; (L.R.); (C.C.); (S.A.)
| |
Collapse
|
26
|
Immunological memory in rheumatic inflammation - a roadblock to tolerance induction. Nat Rev Rheumatol 2021; 17:291-305. [PMID: 33824526 DOI: 10.1038/s41584-021-00601-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/20/2022]
Abstract
Why do we still have no cure for chronic inflammatory diseases? One reason could be that current therapies are based on the assumption that chronic inflammation is driven by persistent 'acute' immune reactions. Here we discuss a paradigm shift by suggesting that beyond these reactions, chronic inflammation is driven by imprinted, pathogenic 'memory' cells of the immune system. This rationale is based on the observation that in patients with chronic inflammatory rheumatic diseases refractory to conventional immunosuppressive therapies, therapy-free remission can be achieved by resetting the immune system; that is, by ablating immune cells and regenerating the immune system from stem cells. The success of this approach identifies antigen-experienced and imprinted immune cells as essential and sufficient drivers of inflammation. The 'dark side' of immunological memory primarily involves memory plasma cells secreting pathogenic antibodies and memory T lymphocytes secreting pathogenic cytokines and chemokines, but can also involve cells of innate immunity. New therapeutic strategies should address the persistence of these memory cells. Selective targeting of pathogenic immune memory cells could be based on their specificity, which is challenging, or on their lifestyle, which differs from that of protective immune memory cells, in particular for pathogenic T lymphocytes. The adaptations of such pathogenic memory cells to chronic inflammation offers entirely new therapeutic options for their selective ablation and the regeneration of immunological tolerance.
Collapse
|
27
|
Brown MC, Mosaheb MM, Mohme M, McKay ZP, Holl EK, Kastan JP, Yang Y, Beasley GM, Hwang ES, Ashley DM, Bigner DD, Nair SK, Gromeier M. Viral infection of cells within the tumor microenvironment mediates antitumor immunotherapy via selective TBK1-IRF3 signaling. Nat Commun 2021; 12:1858. [PMID: 33767151 PMCID: PMC7994570 DOI: 10.1038/s41467-021-22088-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Activating intra-tumor innate immunity might enhance tumor immune surveillance. Virotherapy is proposed to achieve tumor cell killing, while indirectly activating innate immunity. Here, we report that recombinant poliovirus therapy primarily mediates antitumor immunotherapy via direct infection of non-malignant tumor microenvironment (TME) cells, independent of malignant cell lysis. Relative to other innate immune agonists, virotherapy provokes selective, TBK1-IRF3 driven innate inflammation that is associated with sustained type-I/III interferon (IFN) release. Despite priming equivalent antitumor T cell quantities, MDA5-orchestrated TBK1-IRF3 signaling, but not NFκB-polarized TLR activation, culminates in polyfunctional and Th1-differentiated antitumor T cell phenotypes. Recombinant type-I IFN increases tumor-localized T cell function, but does not mediate durable antitumor immunotherapy without concomitant pattern recognition receptor (PRR) signaling. Thus, virus-induced MDA5-TBK1-IRF3 signaling in the TME provides PRR-contextualized IFN responses that elicit functional antitumor T cell immunity. TBK1-IRF3 innate signal transduction stimulates eventual function and differentiation of tumor-infiltrating T cells.
Collapse
Affiliation(s)
- Michael C Brown
- Department of Neurosurgery, Duke University Medical School, Durham, NC, USA
| | - Mubeen M Mosaheb
- Department of Molecular Genetics & Microbiology, Duke University Medical School, Durham, NC, USA
| | - Malte Mohme
- Department of Neurosurgery, University of Hamburg Medical Center, Hamburg, Germany
| | - Zachary P McKay
- Department of Neurosurgery, Duke University Medical School, Durham, NC, USA
| | - Eda K Holl
- Department of Surgery, Duke University Medical School, Durham, NC, USA
| | - Jonathan P Kastan
- University Program in Genetics & Genomics, Duke University, Durham, NC, USA
| | - Yuanfan Yang
- Department of Pathology, Duke University Medical School, Durham, NC, USA
| | - Georgia M Beasley
- Department of Surgery, Duke University Medical School, Durham, NC, USA
| | - E Shelley Hwang
- Department of Surgery, Duke University Medical School, Durham, NC, USA
| | - David M Ashley
- Department of Neurosurgery, Duke University Medical School, Durham, NC, USA
| | - Darell D Bigner
- Department of Neurosurgery, Duke University Medical School, Durham, NC, USA
| | - Smita K Nair
- Department of Surgery, Duke University Medical School, Durham, NC, USA
| | - Matthias Gromeier
- Department of Neurosurgery, Duke University Medical School, Durham, NC, USA. .,Department of Molecular Genetics & Microbiology, Duke University Medical School, Durham, NC, USA.
| |
Collapse
|
28
|
Abstract
Bistable switches that produce all-or-none responses have been found to regulate a number of natural cellular decision making processes, and subsequently synthetic switches were designed to exploit their potential. However, an increasing number of studies, particularly in the context of cellular differentiation, highlight the existence of a mixed state that can be explained by tristable switches. The criterion for designing robust tristable switches still remains to be understood from the perspective of network topology. To address such a question, we calculated the robustness of several 2- and 3-component network motifs, connected via only two positive feedback loops, in generating tristable signal response curves. By calculating the effective potential landscape and following its modifications with the bifurcation parameter, we constructed one-parameter bifurcation diagrams of these models in a high-throughput manner for a large combinations of parameters. We report here that introduction of a self-activatory positive feedback loop, directly or indirectly, into a mutual inhibition loop leads to generating the most robust tristable response. The high-throughput approach of our method further allowed us to determine the robustness of four types of tristable responses that originate from the relative locations of four bifurcation points. Using the method, we also analyzed the role of additional mutual inhibition loops in stabilizing the mixed state.
Collapse
Affiliation(s)
- Anupam Dey
- School of Chemistry, University of Hyderabad, Central University
P.O., Hyderabad 500046, Telangana, India
| | - Debashis Barik
- School of Chemistry, University of Hyderabad, Central University
P.O., Hyderabad 500046, Telangana, India
| |
Collapse
|
29
|
Muñoz M, Hegazy AN, Brunner TM, Holecska V, Marek RM, Fröhlich A, Löhning M. Th2 cells lacking T-bet suppress naive and memory T cell responses via IL-10. Proc Natl Acad Sci U S A 2021; 118:e2002787118. [PMID: 33526653 PMCID: PMC8017670 DOI: 10.1073/pnas.2002787118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exacerbated immune responses and loss of self-tolerance lead to the development of autoimmunity and immunopathology. Novel therapies to target autoreactive T cells are still needed. Here, we report that Th2-polarized T cells lacking the transcription factor T-bet harbor strong immunomodulatory potential and suppress antigen-specific CD8+ T cells via IL-10. Tbx21-/- Th2 cells protected mice against virus-induced type 1 diabetes development and suppressed not only naive but also memory CD8+ T cell responses. IL-10-producing, but not IL-10-deficient Tbx21-/- Th2 cells down-regulated costimulatory molecules on dendritic cells and reduced their IL-12 production after lymphocytic choriomeningitis virus infection. Impaired dendritic cell activation hindered effector and cytotoxic CD8+ T cell development after infection. These findings indicate that Tbx21-/- Th2 cells strongly suppress proinflammatory responses of naive and memory T cells via IL-10. Thus, in vivo IL-10-secreting Th2 cells could harbor a therapeutic potential for the treatment of T cell-mediated inflammatory disorders.
Collapse
Affiliation(s)
- Melba Muñoz
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center, Leibniz Institutes, 10117 Berlin, Germany
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Clinician Scientist Program, Berlin Institute of Health, 10178 Berlin, Germany
| | - Ahmed N Hegazy
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center, Leibniz Institutes, 10117 Berlin, Germany
- Clinician Scientist Program, Berlin Institute of Health, 10178 Berlin, Germany
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Tobias M Brunner
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center, Leibniz Institutes, 10117 Berlin, Germany
| | - Vivien Holecska
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center, Leibniz Institutes, 10117 Berlin, Germany
| | - Roman M Marek
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center, Leibniz Institutes, 10117 Berlin, Germany
| | - Anja Fröhlich
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center, Leibniz Institutes, 10117 Berlin, Germany
| | - Max Löhning
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center, Leibniz Institutes, 10117 Berlin, Germany
| |
Collapse
|
30
|
Molehin AJ. Current Understanding of Immunity Against Schistosomiasis: Impact on Vaccine and Drug Development. Res Rep Trop Med 2020; 11:119-128. [PMID: 33173371 PMCID: PMC7646453 DOI: 10.2147/rrtm.s274518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease inflicting significant morbidity in humans worldwide. The disease is caused by infections with a parasitic trematode belonging to the genus Schistosoma. Over 250 million people are currently infected globally, with an estimated disability-adjusted life-years of 1.9 million attributed to the disease. Current understanding, based on several immunological studies using experimental and human models of schistosomiasis, reveals that complex immune mechanisms play off each other in the acquisition of immune resistance to infection/reinfection. Nevertheless, the precise characteristics of these responses, the specific antigens against which they are elicited, and how these responses are intricately regulated are still being investigated. What is apparent is that immunity to schistosome infections develops slowly and over a prolonged period of time, augmented by the death of adult worms occurring naturally or by praziquantel therapy. In this review, aspects of immunity to schistosomiasis, host–parasite interactions and their impact on schistosomiasis vaccine development are discussed.
Collapse
Affiliation(s)
- Adebayo J Molehin
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.,Center for Tropical Medicine and Infectious Diseases, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
31
|
Zhu X, Zhu J. CD4 T Helper Cell Subsets and Related Human Immunological Disorders. Int J Mol Sci 2020; 21:E8011. [PMID: 33126494 PMCID: PMC7663252 DOI: 10.3390/ijms21218011] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
The immune system plays a critical role in protecting hosts from the invasion of organisms. CD4 T cells, as a key component of the immune system, are central in orchestrating adaptive immune responses. After decades of investigation, five major CD4 T helper cell (Th) subsets have been identified: Th1, Th2, Th17, Treg (T regulatory), and Tfh (follicular T helper) cells. Th1 cells, defined by the expression of lineage cytokine interferon (IFN)-γ and the master transcription factor T-bet, participate in type 1 immune responses to intracellular pathogens such as mycobacterial species and viruses; Th2 cells, defined by the expression of lineage cytokines interleukin (IL)-4/IL-5/IL-13 and the master transcription factor GAΤA3, participate in type 2 immune responses to larger extracellular pathogens such as helminths; Th17 cells, defined by the expression of lineage cytokines IL-17/IL-22 and the master transcription factor RORγt, participate in type 3 immune responses to extracellular pathogens including some bacteria and fungi; Tfh cells, by producing IL-21 and expressing Bcl6, help B cells produce corresponding antibodies; whereas Foxp3-expressing Treg cells, unlike Th1/Th2/Th17/Tfh exerting their effector functions, regulate immune responses to maintain immune cell homeostasis and prevent immunopathology. Interestingly, innate lymphoid cells (ILCs) have been found to mimic the functions of three major effector CD4 T helper subsets (Th1, Th2, and Th17) and thus can also be divided into three major subsets: ILC1s, ILC2s, and ILC3s. In this review, we will discuss the differentiation and functions of each CD4 T helper cell subset in the context of ILCs and human diseases associated with the dysregulation of these lymphocyte subsets particularly caused by monogenic mutations.
Collapse
Affiliation(s)
- Xiaoliang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
32
|
Hellman S, Tydén E, Hjertner B, Nilsfors F, Hu K, Morein B, Fossum C. Cytokine responses to various larval stages of equine strongyles and modulatory effects of the adjuvant G3 in vitro. Parasite Immunol 2020; 43:e12794. [PMID: 32969532 PMCID: PMC7757165 DOI: 10.1111/pim.12794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022]
Abstract
AIMS To generate different larval stages of Strongylus vulgaris and to study cytokine responses in cultures of eqPBMC exposed to defined larval stages of S. vulgaris and cyathostomins with the aim to understand the early immune reaction to these parasites. METHODS AND RESULTS EqPBMC were exposed to S. vulgaris larvae (L3, exsheated L3 and L4) and cyathostomin L3 and analysed for cytokine gene expression. Procedures for decontamination, culturing and attenuation of larvae were established. Transcription of IL-4, IL-5 and IL-13 was induced by both S. vulgaris and cyathostomin L3. Moulting of S. vulgaris from L3 to L4 stage was accompanied by a shift to high expression of IL-5 and IL-9 (exsheated L3 and L4) and IFN-γ (L4 only). In parallel, the adjuvant G3 modified the cytokine profile induced by both parasites by reducing the expression of IL-4, IL-5 and IL-10 while concomitantly enhancing the expression of IFN-γ. CONCLUSION The L4 stage of S. vulgaris generated a cytokine profile different from that induced by the earlier L3 stage of S. vulgaris and cyathostomins. This diversity depending on the life cycle stage will have implications for the choice of antigen and adjuvant in future vaccine design.
Collapse
Affiliation(s)
- Stina Hellman
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, Uppsala, Sweden
| | - Eva Tydén
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, Uppsala, Sweden
| | - Bernt Hjertner
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, Uppsala, Sweden
| | - Frida Nilsfors
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, Uppsala, Sweden
| | - Kefei Hu
- Kefei Hu; R&D Unit, CRODA Denmark A/S, Frederikssund, Denmark
| | - Bror Morein
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, Uppsala, Sweden
| | - Caroline Fossum
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SLU, Uppsala, Sweden
| |
Collapse
|
33
|
Duddu AS, Sahoo S, Hati S, Jhunjhunwala S, Jolly MK. Multi-stability in cellular differentiation enabled by a network of three mutually repressing master regulators. J R Soc Interface 2020; 17:20200631. [PMID: 32993428 DOI: 10.1098/rsif.2020.0631] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Identifying the design principles of complex regulatory networks driving cellular decision-making remains essential to decode embryonic development as well as enhance cellular reprogramming. A well-studied network motif involved in cellular decision-making is a toggle switch-a set of two opposing transcription factors A and B, each of which is a master regulator of a specific cell fate and can inhibit the activity of the other. A toggle switch can lead to two possible states-(high A, low B) and (low A, high B)-and drives the 'either-or' choice between these two cell fates for a common progenitor cell. However, the principles of coupled toggle switches remain unclear. Here, we investigate the dynamics of three master regulators A, B and C inhibiting each other, thus forming three-coupled toggle switches to form a toggle triad. Our simulations show that this toggle triad can lead to co-existence of cells into three differentiated 'single positive' phenotypes-(high A, low B, low C), (low A, high B, low C) and (low A, low B, high C). Moreover, the hybrid or 'double positive' phenotypes-(high A, high B, low C), (low A, high B, high C) and (high A, low B, high C)-can coexist together with 'single positive' phenotypes. Including self-activation loops on A, B and C can increase the frequency of 'double positive' states. Finally, we apply our results to understand cellular decision-making in terms of differentiation of naive CD4+ T cells into Th1, Th2 and Th17 states, where hybrid Th1/Th2 and hybrid Th1/Th17 cells have been reported in addition to the Th1, Th2 and Th17 ones. Our results offer novel insights into the design principles of a multi-stable network topology and provide a framework for synthetic biology to design tristable systems.
Collapse
Affiliation(s)
- Atchuta Srinivas Duddu
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India.,UG Programme, Indian Institute of Science, Bangalore, India
| | - Souvadra Hati
- UG Programme, Indian Institute of Science, Bangalore, India
| | - Siddharth Jhunjhunwala
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
34
|
Jin QW, Zhang NZ, Li WH, Qin HT, Liu YJ, Ohiolei JA, Niu DY, Yan HB, Li L, Jia WZ, Song MX, Fu BQ. Trichinella spiralis Thioredoxin Peroxidase 2 Regulates Protective Th2 Immune Response in Mice by Directly Inducing Alternatively Activated Macrophages. Front Immunol 2020; 11:2015. [PMID: 33072069 PMCID: PMC7544948 DOI: 10.3389/fimmu.2020.02015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/24/2020] [Indexed: 12/25/2022] Open
Abstract
Trichinella infection can induce macrophages into the alternatively activated phenotype, which is primarily associated with the development of a polarized Th2 immune response. In the present study, we examined the immunomodulatory effect of T. spiralis thioredoxin peroxidase-2 (TsTPX2), a protein derived from T. spiralis ES products, in the regulation of Th2 response through direct activation of macrophages. The location of TsTPX2 was detected by immunohistochemistry and immunofluorescence analyses. The immune response in vivo induced by rTsTPX2 was characterized by analyzing the Th2 cytokines and Th1 cytokines in the peripheral blood. The rTsTPX2-activated macrophages (MrTsTPX2) were tested for polarization, their ability to evoke naïve CD4+ T cells, and resistance to the larval infection after adoptive transfer in BALB/c mice. The immunolocalization analysis showed TsTPX2 in cuticles and stichosome of T. spiralis ML. The immunostaining was detected in cuticles and stichosome of T. spiralis Ad3 and ML, as well as in tissue-dwellings around ML after the intestines and muscle tissues of infected mice were incubated with anti-rTsTPX2 antibody. Immunization of BALB/c mice with rTsTPX2 could induce a Th1-suppressing mixed immune response given the increased levels of Th2 cytokines (IL-4 and IL-10) production along with the decreased levels of Th1 cytokines (IFN-γ, IL-12, and TNF-α). In vitro studies showed that rTsTPX2 could directly drive RAW264.7 and peritoneal macrophages to the M2 phenotype. Moreover, MrTsTPX2 could promote CD4+ T cells polarized into Th2 type in vitro. Adoptive transfer of MrTsTPX2 into mice suppressed Th1 responses by enhancing Th2 responses and exhibited a 44.7% reduction in adult worm burden following challenge with T. spiralis infective larval, suggesting that the TsTPX2 is a potential vaccine candidate against trichinosis. Our study showed that TsTPX2 would be at least one of the molecules to switch macrophages into the M2 phenotype during T. spiralis infection, which provides a new therapeutic approach to various inflammatory disorders like allergies or autoimmune diseases.
Collapse
Affiliation(s)
- Qi-Wang Jin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Nian-Zhang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wen-Hui Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong-Tao Qin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yin-Ju Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - John Asekhaen Ohiolei
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dong-Yu Niu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong-Bin Yan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Li Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wan-Zhong Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ming-Xin Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Bao-Quan Fu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
35
|
Schrom EC, Levin SA, Graham AL. Quorum sensing via dynamic cytokine signaling comprehensively explains divergent patterns of effector choice among helper T cells. PLoS Comput Biol 2020; 16:e1008051. [PMID: 32730250 PMCID: PMC7392205 DOI: 10.1371/journal.pcbi.1008051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/13/2020] [Indexed: 12/13/2022] Open
Abstract
In the animal kingdom, various forms of swarming enable groups of autonomous individuals to transform uncertain information into unified decisions which are probabilistically beneficial. Crossing scales from individual to group decisions requires dynamically accumulating signals among individuals. In striking parallel, the mammalian immune system is also a group of decentralized autonomous units (i.e. cells) which collectively navigate uncertainty with the help of dynamically accumulating signals (i.e. cytokines). Therefore, we apply techniques of understanding swarm behavior to a decision-making problem in the mammalian immune system, namely effector choice among CD4+ T helper (Th) cells. We find that incorporating dynamic cytokine signaling into a simple model of Th differentiation comprehensively explains divergent observations of this process. The plasticity and heterogeneity of individual Th cells, the tunable mixtures of effector types that can be generated in vitro, and the polarized yet updateable group effector commitment often observed in vivo are all explained by the same set of underlying molecular rules. These rules reveal that Th cells harness dynamic cytokine signaling to implement a system of quorum sensing. Quorum sensing, in turn, may confer adaptive advantages on the mammalian immune system, especially during coinfection and during coevolution with manipulative parasites. This highlights a new way of understanding the mammalian immune system as a cellular swarm, and it underscores the power of collectives throughout nature.
Collapse
Affiliation(s)
- Edward C. Schrom
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| | - Simon A. Levin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Andrea L. Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
36
|
Tortola L, Jacobs A, Pohlmeier L, Obermair FJ, Ampenberger F, Bodenmiller B, Kopf M. High-Dimensional T Helper Cell Profiling Reveals a Broad Diversity of Stably Committed Effector States and Uncovers Interlineage Relationships. Immunity 2020; 53:597-613.e6. [PMID: 32735846 DOI: 10.1016/j.immuni.2020.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022]
Abstract
CD4+ T helper (Th) cells are fundamental players in immunity. Based on the expression of signature cytokines and transcription factors, several Th subsets have been defined. Th cells are thought to be far more heterogeneous and multifunctional than originally believed, but characterization of the full diversity has been hindered by technical limitations. Here, we employ mass cytometry to analyze the diversity of Th cell responses generated in vitro and in animal disease models, revealing a vast heterogeneity of effector states with distinct cytokine footprints. The diversities of cytokine responses established during primary antigen encounters in Th1- and Th2-cell-polarizing conditions are largely maintained after secondary challenge, regardless of the new inflammatory environment, highlighting many of the identified states as stable Th cell sublineages. We also find that Th17 cells tend to upregulate Th2-cell-associated cytokines upon challenge, indicating a closer developmental connection between Th17 and Th2 cells than previously anticipated.
Collapse
Affiliation(s)
- Luigi Tortola
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland.
| | - Andrea Jacobs
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland
| | - Lea Pohlmeier
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
37
|
Arif S, Gomez-Tourino I, Kamra Y, Pujol-Autonell I, Hanton E, Tree T, Melandri D, Hull C, Wherrett DK, Beam C, Roep BO, Lorenc A, Peakman M. GAD-alum immunotherapy in type 1 diabetes expands bifunctional Th1/Th2 autoreactive CD4 T cells. Diabetologia 2020; 63:1186-1198. [PMID: 32248243 PMCID: PMC7228993 DOI: 10.1007/s00125-020-05130-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/18/2020] [Indexed: 01/13/2023]
Abstract
AIMS/HYPOTHESIS Antigen-specific therapy aims to modify inflammatory T cell responses in type 1 diabetes and restore immune tolerance. One strategy employs GAD65 conjugated to aluminium hydroxide (GAD-alum) to take advantage of the T helper (Th)2-biasing adjuvant properties of alum and thereby regulate pathological Th1 autoimmunity. We explored the cellular and molecular mechanism of GAD-alum action in the setting of a previously reported randomised placebo-controlled clinical trial conducted by Type 1 Diabetes TrialNet. METHODS In the clinical trial conducted by Type 1 Diabetes TrialNet, participants were immunised with 20 μg GAD-alum (twice or three times) or alum alone and peripheral blood mononuclear cell samples were banked at baseline and post treatment. In the present study, GAD-specific T cell responses were measured in these samples and GAD-specific T cell lines and clones were generated, which were then further characterised. RESULTS At day 91 post immunisation, we detected GAD-specific IL-13+ CD4 T cell responses significantly more frequently in participants immunised with GAD-alum (71% and 94% treated twice or three times, respectively) compared with those immunised with alum alone (38%; p = 0.003 and p = 0.0002, respectively) accompanied by high secreted levels of IL-13, IL-4 and IL-5, confirming a GAD-specific, GAD-alum-induced Th2 response. Of note, GAD-specific, IL-13+ CD4 T cells observed after immunisation co-secreted IFN-γ, displaying a bifunctional Th1/Th2 phenotype. Single-cell transcriptome analysis identified IL13 and IFNG expression in concert with the canonical Th2 and Th1 transcription factor genes GATA3 and TBX21, respectively. T cell receptor β-chain (TCRB) CDR3 regions of GAD-specific bifunctional T cells were identified in circulating naive and central memory CD4 T cell pools of non-immunised participants with new-onset type 1 diabetes and healthy individuals, suggesting the potential for bifunctional responses to be generated de novo by GAD-alum immunisation or via expansion from an existing public repertoire. CONCLUSIONS/INTERPRETATION GAD-alum immunisation activates and propagates GAD-specific CD4 T cells with a distinctive bifunctional phenotype, the functional analysis of which might be important in understanding therapeutic responses.
Collapse
Affiliation(s)
- Sefina Arif
- Peter Gorer Department of Immunobiology, King's College London Faculty of Life Sciences and Medicine, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Iria Gomez-Tourino
- Peter Gorer Department of Immunobiology, King's College London Faculty of Life Sciences and Medicine, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Yogesh Kamra
- Peter Gorer Department of Immunobiology, King's College London Faculty of Life Sciences and Medicine, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Irma Pujol-Autonell
- Peter Gorer Department of Immunobiology, King's College London Faculty of Life Sciences and Medicine, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Emily Hanton
- Peter Gorer Department of Immunobiology, King's College London Faculty of Life Sciences and Medicine, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Timothy Tree
- Peter Gorer Department of Immunobiology, King's College London Faculty of Life Sciences and Medicine, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Daisy Melandri
- Peter Gorer Department of Immunobiology, King's College London Faculty of Life Sciences and Medicine, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Caroline Hull
- Peter Gorer Department of Immunobiology, King's College London Faculty of Life Sciences and Medicine, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Diane K Wherrett
- Division of Endocrinology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Craig Beam
- Homer Stryker MD School of Medicine, Western Michigan University, Kalamazoo, MI, USA
| | - Bart O Roep
- Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Anna Lorenc
- Peter Gorer Department of Immunobiology, King's College London Faculty of Life Sciences and Medicine, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK
| | - Mark Peakman
- Peter Gorer Department of Immunobiology, King's College London Faculty of Life Sciences and Medicine, 2nd Floor, Borough Wing, Guy's Hospital, London, SE1 9RT, UK.
- King's Health Partners Institute of Diabetes, Endocrinology and Obesity, King's College Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
38
|
Modulation of T helper 1 and T helper 2 immune balance in a murine stress model during Chlamydia muridarum genital infection. PLoS One 2020; 15:e0226539. [PMID: 32413046 PMCID: PMC7228091 DOI: 10.1371/journal.pone.0226539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/22/2020] [Indexed: 02/08/2023] Open
Abstract
A murine model to study the effect of cold-induced stress (CIS) on Chlamydia muridarum genital infection and immune response has been developed in our laboratory. Previous results in the lab show that CIS increases the intensity of chlamydia genital infection, but little is known about the effects and mechanisms of CIS on the differentiation and activities of CD4+ T cell subpopulations and bone marrow-derived dendritic cells (BMDCs). The factors that regulate the production of T helper 1 (Th1) or T helper 2 (Th2) cytokines are not well defined. In this study, we examined whether CIS modulates the expressions of beta-adrenergic receptor (β-AR), transcription factors, hallmark cytokines of Th1 and Th2, and differentiation of BMDCs during C. muridarum genital infection in the murine model. Our results show that the mRNA level of the beta2-adrenergic receptor (β2-AR) compared to β1-AR and β3-AR was high in the mixed populations of CD4+ T cells and BMDCs. Furthermore, we observed decreased expression of T-bet, low level of Interferon-gamma (IFN-γ) production, increased expression of GATA-3, and Interleukin-4 (IL-4) production in CD4+ T cells of stressed mice. Exposure of BMDCs to Fenoterol, β2-AR agonist, or ICI118,551, β2-AR antagonist, revealed significant β2-AR stimulation or inhibition, respectively, in stressed mice. Moreover, co-culturing of mature BMDCs and naïve CD4+ T cells increased the production of IL-4, IL-10, L-17, and IL-23 cytokines, suggesting that stimulation of β2-AR leads to the increased production of Th2 cytokines. Overall, our results show for the first time that CIS promotes the switching from a Th1 to Th2 cytokine environment. This was evidenced in the murine stress model by the overexpression of GATA-3 concurrent with elevated IL-4 production, reduced T-bet expression, and IFN-γ secretion.
Collapse
|
39
|
Franco da Cunha F, Andrade-Oliveira V, Candido de Almeida D, Borges da Silva T, Naffah de Souza Breda C, Costa Cruz M, Faquim-Mauro EL, Antonio Cenedeze M, Ioshie Hiyane M, Pacheco-Silva A, Aparecida Cavinato R, Torrecilhas AC, Olsen Saraiva Câmara N. Extracellular Vesicles isolated from Mesenchymal Stromal Cells Modulate CD4 + T Lymphocytes Toward a Regulatory Profile. Cells 2020; 9:cells9041059. [PMID: 32340348 PMCID: PMC7226573 DOI: 10.3390/cells9041059] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) can generate immunological tolerance due to their regulatory activity in many immune cells. Extracellular vesicles (EVs) release is a pivotal mechanism by which MSCs exert their actions. In this study, we evaluate whether mesenchymal stromal cell extracellular vesicles (MSC-EVs) can modulate T cell response. MSCs were expanded and EVs were obtained by differential ultracentrifugation of the supernatant. The incorporation of MSC-EVs by T cells was detected by confocal microscopy. Expression of surface markers was detected by flow cytometry or CytoFLEX and cytokines were detected by RT-PCR, FACS and confocal microscopy and a miRNA PCR array was performed. We demonstrated that MSC-EVs were incorporated by lymphocytes in vitro and decreased T cell proliferation and Th1 differentiation. Interestingly, in Th1 polarization, MSC-EVs increased Foxp3 expression and generated a subpopulation of IFN-γ+/Foxp3+T cells with suppressive capacity. A differential expression profile of miRNAs in MSC-EVs-treated Th1 cells was seen, and also a modulation of one of their target genes, TGFbR2. MSC-EVs altered the metabolism of Th1-differentiated T cells, suggesting the involvement of the TGF-β pathway in this metabolic modulation. The addition of MSC-EVs in vivo, in an OVA immunization model, generated cells Foxp3+. Thus, our findings suggest that MSC-EVs are able to specifically modulate activated T cells at an alternative regulatory profile by miRNAs and metabolism shifting.
Collapse
Affiliation(s)
- Flavia Franco da Cunha
- Departamento de Nefrologia, UNIFESP, Rua Pedro de Toledo 669, São Paulo 04039-032, Brazil; (D.C.d.A.); (T.B.d.S.); (M.A.C.); (A.P.-S.); (R.A.C.)
- Correspondence: (F.F.d.C.); (N.O.S.C.)
| | - Vinicius Andrade-Oliveira
- Departamento de Imunologia, USP, Avenida Prof. Lineu Prestes 1730, ICB IV, São Paulo 05508-000, Brazil; (V.A.-O.); (C.N.d.S.B.); (M.C.C.); (M.I.H.)
| | - Danilo Candido de Almeida
- Departamento de Nefrologia, UNIFESP, Rua Pedro de Toledo 669, São Paulo 04039-032, Brazil; (D.C.d.A.); (T.B.d.S.); (M.A.C.); (A.P.-S.); (R.A.C.)
| | - Tamiris Borges da Silva
- Departamento de Nefrologia, UNIFESP, Rua Pedro de Toledo 669, São Paulo 04039-032, Brazil; (D.C.d.A.); (T.B.d.S.); (M.A.C.); (A.P.-S.); (R.A.C.)
| | - Cristiane Naffah de Souza Breda
- Departamento de Imunologia, USP, Avenida Prof. Lineu Prestes 1730, ICB IV, São Paulo 05508-000, Brazil; (V.A.-O.); (C.N.d.S.B.); (M.C.C.); (M.I.H.)
| | - Mario Costa Cruz
- Departamento de Imunologia, USP, Avenida Prof. Lineu Prestes 1730, ICB IV, São Paulo 05508-000, Brazil; (V.A.-O.); (C.N.d.S.B.); (M.C.C.); (M.I.H.)
| | - Eliana L. Faquim-Mauro
- Laboratório de Imunopatologia, Instituto Butantan, Av. Vital Brasil 1500, São Paulo 05503-900, Brazil;
| | - Marcos Antonio Cenedeze
- Departamento de Nefrologia, UNIFESP, Rua Pedro de Toledo 669, São Paulo 04039-032, Brazil; (D.C.d.A.); (T.B.d.S.); (M.A.C.); (A.P.-S.); (R.A.C.)
| | - Meire Ioshie Hiyane
- Departamento de Imunologia, USP, Avenida Prof. Lineu Prestes 1730, ICB IV, São Paulo 05508-000, Brazil; (V.A.-O.); (C.N.d.S.B.); (M.C.C.); (M.I.H.)
| | - Alvaro Pacheco-Silva
- Departamento de Nefrologia, UNIFESP, Rua Pedro de Toledo 669, São Paulo 04039-032, Brazil; (D.C.d.A.); (T.B.d.S.); (M.A.C.); (A.P.-S.); (R.A.C.)
- Hospital Israelita Albert Einstein, Av. Albert Einstein, São Paulo 627–05652-900, Brazil
| | - Regiane Aparecida Cavinato
- Departamento de Nefrologia, UNIFESP, Rua Pedro de Toledo 669, São Paulo 04039-032, Brazil; (D.C.d.A.); (T.B.d.S.); (M.A.C.); (A.P.-S.); (R.A.C.)
| | - Ana Claudia Torrecilhas
- Departamento de Ciências Farmacêuticas, UNIFESP, Rua São Nicolau 210, Diadema 09913-030, São Paulo, Brazil;
| | - Niels Olsen Saraiva Câmara
- Departamento de Nefrologia, UNIFESP, Rua Pedro de Toledo 669, São Paulo 04039-032, Brazil; (D.C.d.A.); (T.B.d.S.); (M.A.C.); (A.P.-S.); (R.A.C.)
- Departamento de Imunologia, USP, Avenida Prof. Lineu Prestes 1730, ICB IV, São Paulo 05508-000, Brazil; (V.A.-O.); (C.N.d.S.B.); (M.C.C.); (M.I.H.)
- Correspondence: (F.F.d.C.); (N.O.S.C.)
| |
Collapse
|
40
|
Qin Z, Wang PY, Wan JJ, Zhang Y, Wei J, Sun Y, Liu X. MicroRNA124-IL6R Mediates the Effect of Nicotine in Inflammatory Bowel Disease by Shifting Th1/Th2 Balance Toward Th1. Front Immunol 2020; 11:235. [PMID: 32153570 PMCID: PMC7050625 DOI: 10.3389/fimmu.2020.00235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/28/2020] [Indexed: 12/20/2022] Open
Abstract
Epidemiological investigations have shown that smoking ameliorates ulcerative colitis (UC) but exacerbates Crohn's disease (CD), diseases that feature a Th2-mediated and Th1-mediated response, respectively. Cigarette extracts, especially nicotine, affect the Th1/Th2 balance. We previously reported that nicotine protects against mouse DSS colitis (similar to UC) by enhancing microRNA-124 (miR-124) expression. Intriguingly, elevation of miR-124 in CD is reported to aggravate the disease. Here we investigate the dual regulation of miR-124 in inflammatory bowel diseases (IBDs), which may explain the similar bidirectional regulation of tobacco. We found that overexpressed miR-124 protected against mouse DSS-induced colitis with a Th1 polarization in peripheral blood lymphocytes and colon tissues, which was also found in human peripheral blood lymphocytes. Conversely, miR-124 knockdown worsened DSS murine colitis with a Th2 polarization. Moreover, knockdown of miR-124 could eliminate the polarization toward Th1 after nicotine treatment, suggesting that miR-124 mediates the effect of nicotine on the Th1/Th2 balance. In addition, interference of IL-6R, which is a downstream target of miR-124, could remarkably weaken the Th1 polarization induced by miR-124. Taken together, these results suggest that nicotine shifts the balance of Th1/Th2 toward Th1 via a miR-124-mediated IL-6R pathway, which might explain its dual role in IBDs.
Collapse
Affiliation(s)
- Zhen Qin
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Peng-Yuan Wang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China.,Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jing-Jing Wan
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China.,Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yu Zhang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China.,Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jie Wei
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yang Sun
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
41
|
Unravelling the complexity of tissue inflammation in uncontrolled and severe asthma. Curr Opin Pulm Med 2020; 25:79-86. [PMID: 30422896 DOI: 10.1097/mcp.0000000000000536] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The clinical and inflammatory heterogeneity in asthma constitutes a major challenge for improved treatment. This review describes the nature of the inflammatory complexity and how it can be decoded to yield improved disease understanding and personalized treatment. The focus is on the difficult task of revealing the immunological complexity as it occurs inside diseased patient tissues. RECENT FINDINGS The inflammatory heterogeneity in asthma stretches beyond the classical division into allergic Th2 eosinophilic versus Th1 and/or Th17 neutrophilic (or paucigranulocytic) phenotypes. Rather than having one distinct type of inflammation, many patients display a patchwork of overlapping immune signatures. The patient diversity is further increased by differences in regard of distal lung involvement. Faced with this staggering complexity, calls have been made for a pragmatic biomarker-guided identification of treatable traits. In parallel, novel high-dimensional analyses and multiplex imaging aid the long-term goal of decoding the underlying molecular endotypes. SUMMARY Asthma is vastly heterogeneous with multiple and superimposed inflammatory and anatomical phenotypes. Despite the intensive research and introduction of highly immune-selective dugs, basic questions remain; especially as still too many of today's uncontrolled patients remain poorly understood. Here, pragmatic biomarker strategies, combined with novel methodological approaches that ultimately reveal the complete immunological complexity, will pave the way for improved differential diagnosis and personalized medication.
Collapse
|
42
|
Knipper JA, Ivens A, Taylor MD. Helminth-induced Th2 cell dysfunction is distinct from exhaustion and is maintained in the absence of antigen. PLoS Negl Trop Dis 2019; 13:e0007908. [PMID: 31815932 PMCID: PMC6922449 DOI: 10.1371/journal.pntd.0007908] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 12/19/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022] Open
Abstract
T cell-intrinsic regulation, such as anergy, adaptive tolerance and exhaustion, is central to immune regulation. In contrast to Type 1 and Type 17 settings, knowledge of the intrinsic fate and function of Th2 cells in chronic Type 2 immune responses is lacking. We previously showed that Th2 cells develop a PD-1/PD-L2-dependent intrinsically hypo-responsive phenotype during infection with the filarial nematode Litomosoides sigmodontis, denoted by impaired functionality and parasite killing. This study aimed to elucidate the transcriptional changes underlying Th2 cell-intrinsic hypo-responsiveness, and whether it represents a unique and stable state of Th2 cell differentiation. We demonstrated that intrinsically hypo-responsive Th2 cells isolated from L. sigmodontis infected mice stably retained their dysfunctional Th2 phenotype upon transfer to naïve recipients, and had a divergent transcriptional profile to classical Th2 cells isolated prior to hypo-responsiveness and from mice exposed to acute Type 2 stimuli. Hypo-responsive Th2 cells displayed a distinct transcriptional profile to exhausted CD4+ T cells, but upregulated Blimp-1 and the anergy/regulatory-associated transcription factors Egr2 and c-Maf, and shared characteristics with tolerised T cells. Hypo-responsive Th2 cells increased mRNA expression of the soluble regulatory factors Fgl2, Cd38, Spp1, Areg, Metrnl, Lgals3, and Csf1, and a subset developed a T-bet+IFN-γ+ Th2/Th1 hybrid phenotype, indicating that they were not functionally inert. Contrasting with their lost ability to produce Th2 cytokines, hypo-responsive Th2 cells gained IL-21 production and IL-21R blockade enhanced resistance to L. sigmodontis. IL-21R blockade also increased the proportion of CD19+PNA+ germinal centre B cells and serum levels of parasite specific IgG1. This indicates a novel regulatory role for IL-21 during filarial infection, both in controlling protection and B cell responses. Thus, Th2 cell-intrinsic hypo-responsiveness is a distinct and stable state of Th2 cell differentiation associated with a switch from a classically active IL-4+IL-5+ Th2 phenotype, to a non-classical dysfunctional and potentially regulatory IL-21+Egr2+c-Maf+Blimp-1+IL-4loIL-5loT-bet+IFN-γ+ Th2 phenotype. This divergence towards alternate Th2 phenotypes during chronicity has broad implications for the outcomes and treatment of chronic Type 2-related infections and diseases.
Collapse
Affiliation(s)
- Johanna A. Knipper
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Alasdair Ivens
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew D. Taylor
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Soderquist CR, Patel N, Murty VV, Betman S, Aggarwal N, Young KH, Xerri L, Leeman-Neill R, Lewis SK, Green PH, Hsiao S, Mansukhani MM, Hsi ED, de Leval L, Alobeid B, Bhagat G. Genetic and phenotypic characterization of indolent T-cell lymphoproliferative disorders of the gastrointestinal tract. Haematologica 2019; 105:1895-1906. [PMID: 31558678 PMCID: PMC7327650 DOI: 10.3324/haematol.2019.230961] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
Indolent T-cell lymphoproliferative disorders of the gastrointestinal tract are rare clonal T-cell diseases that more commonly occur in the intestines and have a protracted clinical course. Different immunophenotypic subsets have been described, but the molecular pathogenesis and cell of origin of these lymphocytic proliferations is poorly understood. Hence, we performed targeted next-generation sequencing and comprehensive immunophenotypic analysis of ten indolent T-cell lymphoproliferative disorders of the gastrointestinal tract, which comprised CD4+ (n=4), CD8+ (n=4), CD4+/CD8+ (n=1) and CD4-/CD8- (n=1) cases. Genetic alterations, including recurrent mutations and novel rearrangements, were identified in 8/10 (80%) of these lymphoproliferative disorders. The CD4+, CD4+/CD8+, and CD4-/CD8- cases harbored frequent alterations of JAK-STAT pathway genes (5/6, 82%); STAT3 mutations (n=3), SOCS1 deletion (n=1) and STAT3-JAK2 rearrangement (n=1), and 4/6 (67%) had concomitant mutations in epigenetic modifier genes (TET2, DNMT3A, KMT2D). Conversely, 2/4 (50%) of the CD8+ cases exhibited structural alterations involving the 3' untranslated region of the IL2 gene. Longitudinal genetic analysis revealed stable mutational profiles in 4/5 (80%) cases and acquisition of mutations in one case was a harbinger of disease transformation. The CD4+ and CD4+/CD8+ lymphoproliferative disorders displayed heterogeneous Th1 (T-bet+), Th2 (GATA3+) or hybrid Th1/Th2 (T-bet+/GATA3+) profiles, while the majority of CD8+ disorders and the CD4-/CD8- disease showed a type-2 polarized (GATA3+) effector T-cell (Tc2) phenotype. Additionally, CD103 expression was noted in 2/4 CD8+ cases. Our findings provide insights into the pathogenetic bases of indolent T-cell lymphoproliferative disorders of the gastrointestinal tract and confirm the heterogeneous nature of these diseases. Detection of shared and distinct genetic alterations of the JAK-STAT pathway in certain immunophenotypic subsets warrants further mechanistic studies to determine whether therapeutic targeting of this signaling cascade is efficacious for a proportion of patients with these recalcitrant diseases.
Collapse
Affiliation(s)
- Craig R Soderquist
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Nupam Patel
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Vundavalli V Murty
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Shane Betman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Nidhi Aggarwal
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ken H Young
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Luc Xerri
- Department of Bio-Pathology, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Rebecca Leeman-Neill
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Suzanne K Lewis
- Department of Medicine, Celiac Disease Center, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Peter H Green
- Department of Medicine, Celiac Disease Center, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Susan Hsiao
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Mahesh M Mansukhani
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Eric D Hsi
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Laurence de Leval
- Institute of Pathology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Bachir Alobeid
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
44
|
Transcription factors gene expression in chronic rhinosinusitis with and without nasal polyps. Radiol Oncol 2019; 53:323-330. [PMID: 31326962 PMCID: PMC6765166 DOI: 10.2478/raon-2019-0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022] Open
Abstract
Background Chronic rhinosinusitis (CRS) current therapeutic approaches still fail in some patients with severe persistent symptoms and recurrences after surgery. We aimed to evaluate the master transcription factors gene expression levels of T cell subtypes in chronic rhinosinusitis with nasal polyps (CRSwNP) and chronic rhinosinusitis without nasal polyps (CRSsNP) that could represent new, up-stream targets for topical DNAzyme treatment. Patients and methods Twenty-two newly diagnosed CRS patients (14 CRSwNP and 8 CRSsNP) were prospectively biopsied and examined histopathologically. Gene expression levels of T-box transcription factor (T-bet, TBX21), GATA binding protein 3 (GATA3), Retinoic acid-related orphan receptor C (RORC) and Forkhead box P3 (FOXP3) were analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). Results Eosinophilic CRSwNP was characterized by higher level of GATA3 gene expression compared to noneosinophilic CRSwNP, whereas there was no difference in T-bet, RORC and FOXP3 between eosinophilic and noneosinophilic CRSwNP. In CRSsNP, we found simultaneous upregulation of T-bet, GATA3 and RORC gene expression levels in comparison to CRSwNP; meanwhile, there was no difference in FOXP3 gene expression between CRSwNP and CRSsNP. Conclusions In eosinophilic CRSwNP, we confirmed the type 2 inflammation by elevated GATA3 gene expression level. In CRSsNP, we unexpectedly found simultaneous upregulation of T-bet and GATA3 that is currently unexplained; however, it might originate from activated CD8+ cells, abundant in nasal mucosa of CRSsNP patients. The elevated RORC in CRSsNP could be part of homeostatic nasal immune response that might be better preserved in CRSsNP patients compared to CRSwNP patients. Further data on transcription factors expression rates in CRS phenotypes are needed.
Collapse
|
45
|
Matthias J, Zielinski CE. Shaping the diversity of Th2 cell responses in epithelial tissues and its potential for allergy treatment. Eur J Immunol 2019; 49:1321-1333. [PMID: 31274191 DOI: 10.1002/eji.201848011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/14/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022]
Abstract
Th2 cells have evolved to protect from large helminth infections and to exert tissue protective functions in response to nonmicrobial noxious stimuli. The initiation, maintenance, and execution of these functions depend on the integration of diverse polarizing cues by cellular sensors and molecular programs as well as the collaboration with cells that are coopted for signal exchange. The complexity of input signals and cellular collaboration generates tissue specific Th2 cell heterogeneity and specialization. In this review, we aim to discuss the advances and recent breakthroughs in our understanding of Th2 cell responses and highlight developmental and functional differences among T cells within the diversifying field of type 2 immunity. We will focus on factors provided by the tissue microenvironment and highlight factors with potential implications for the pathogenesis of allergic skin and lung diseases. Especially new insights into the role of immunometabolism, the microbiota and ionic signals enhance the complexity of Th2 cell regulation and warrant a critical evaluation. Finally, we will discuss how this ensemble of established knowledge and recent breakthroughs about Th2 immunobiology advance our understanding of the pathogenesis of allergic diseases and how this could be exploited for future immunotherapies.
Collapse
Affiliation(s)
- Julia Matthias
- Institute of Virology, Technical University of Munich, 81675, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Christina E Zielinski
- Institute of Virology, Technical University of Munich, 81675, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site, Munich, Germany.,TranslaTUM, Technical University of Munich, 81675, Munich, Germany
| |
Collapse
|
46
|
Xhangolli I, Dura B, Lee G, Kim D, Xiao Y, Fan R. Single-cell Analysis of CAR-T Cell Activation Reveals A Mixed T H1/T H2 Response Independent of Differentiation. GENOMICS PROTEOMICS & BIOINFORMATICS 2019; 17:129-139. [PMID: 31229590 PMCID: PMC6620429 DOI: 10.1016/j.gpb.2019.03.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 03/19/2019] [Indexed: 11/15/2022]
Abstract
The activation mechanism of chimeric antigen receptor (CAR)-engineered T cells may differ substantially from T cells carrying native T cell receptor, but this difference remains poorly understood. We present the first comprehensive portrait of single-cell level transcriptional and cytokine signatures of anti-CD19/4-1BB/CD28/CD3ζ CAR-T cells upon antigen-specific stimulation. Both CD4+ helper T (TH) cells and CD8+ cytotoxic CAR-T cells are equally effective in directly killing target tumor cells and their cytotoxic activity is associated with the elevation of a range of TH1 and TH2 signature cytokines, e.g., interferon γ, tumor necrotic factor α, interleukin 5 (IL5), and IL13, as confirmed by the expression of master transcription factor genes TBX21 and GATA3. However, rather than conforming to stringent TH1 or TH2 subtypes, single-cell analysis reveals that the predominant response is a highly mixed TH1/TH2 function in the same cell. The regulatory T cell activity, although observed in a small fraction of activated cells, emerges from this hybrid TH1/TH2 population. Granulocyte-macrophage colony stimulating factor (GM-CSF) is produced from the majority of cells regardless of the polarization states, further contrasting CAR-T to classic T cells. Surprisingly, the cytokine response is minimally associated with differentiation status, although all major differentiation subsets such as naïve, central memory, effector memory, and effector are detected. All these suggest that the activation of CAR-engineered T cells is a canonical process that leads to a highly mixed response combining both type 1 and type 2 cytokines together with GM-CSF, supporting the notion that polyfunctional CAR-T cells correlate with objective response of patients in clinical trials. This work provides new insights into the mechanism of CAR activation and implies the necessity for cellular function assays to characterize the quality of CAR-T infusion products and monitor therapeutic responses in patients.
Collapse
Affiliation(s)
- Iva Xhangolli
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Burak Dura
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - GeeHee Lee
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Dongjoo Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
47
|
Alvarez F, Fritz JH, Piccirillo CA. Pleiotropic Effects of IL-33 on CD4 + T Cell Differentiation and Effector Functions. Front Immunol 2019; 10:522. [PMID: 30949175 PMCID: PMC6435597 DOI: 10.3389/fimmu.2019.00522] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/26/2019] [Indexed: 12/16/2022] Open
Abstract
IL-33, a member of the IL-1 family of cytokines, was originally described in 2005 as a promoter of type 2 immune responses. However, recent evidence reveals a more complex picture. This cytokine is released locally as an alarmin upon cellular damage where innate cell types respond to IL-33 by modulating their differentiation and influencing the polarizing signals they provide to T cells at the time of antigen presentation. Moreover, the prominent expression of the IL-33 receptor, ST2, on GATA3+ T helper 2 cells (TH2) demonstrated that IL-33 could have a direct impact on T cells. Recent observations reveal that T-bet+ TH1 cells and Foxp3+ regulatory T (TREG) cells can also express the ST2 receptor, either transiently or permanently. As such, IL-33 can have a direct effect on the dynamics of T cell populations. As IL-33 release was shown to play both an inflammatory and a suppressive role, understanding the complex effect of this cytokine on T cell homeostasis is paramount. In this review, we will focus on the factors that modulate ST2 expression on T cells, the effect of IL-33 on helper T cell responses and the role of IL-33 on TREG cell function.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Center, Montréal, QC, Canada
- Centre of Excellence in Translational Immunology, Montréal, QC, Canada
| | - Jörg H. Fritz
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Centre of Excellence in Translational Immunology, Montréal, QC, Canada
- McGill University Research Center on Complex Traits, McGill University, Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Center, Montréal, QC, Canada
- Centre of Excellence in Translational Immunology, Montréal, QC, Canada
- McGill University Research Center on Complex Traits, McGill University, Montréal, QC, Canada
| |
Collapse
|
48
|
Sungnak W, Wang C, Kuchroo VK. Multilayer regulation of CD4 T cell subset differentiation in the era of single cell genomics. Adv Immunol 2019; 141:1-31. [PMID: 30904130 DOI: 10.1016/bs.ai.2018.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD4 T cells are major immune cell types that mediate effector responses appropriate for diverse incoming threats. These cells have been categorized into different subsets based on how they are induced, expression of specific master transcription factors, and the resulting effector cell phenotypes as defined by expression of signature cytokines. However, recent studies assessing the expression of gene modules in single CD4 T cells, rather than expression of one or a few signature genes, have provided a more complex picture in which the canonical model does not fit as cleanly as proposed. Here, we review the concepts of lineage commitment, plasticity and functional heterogeneity in the context of this greater complexity. We then apply our current understanding of CD4 T cell subsets to discuss outstanding questions regarding follicular helper T cells and follicular regulatory T cells with respect to their shared features with other known CD4 T cell subsets.
Collapse
Affiliation(s)
- Waradon Sungnak
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States
| | - Chao Wang
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, United States; Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, United States.
| |
Collapse
|
49
|
Segaliny AI, Li G, Kong L, Ren C, Chen X, Wang JK, Baltimore D, Wu G, Zhao W. Functional TCR T cell screening using single-cell droplet microfluidics. LAB ON A CHIP 2018; 18:3733-3749. [PMID: 30397689 PMCID: PMC6279597 DOI: 10.1039/c8lc00818c] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Adoptive T cell transfer, in particular TCR T cell therapy, holds great promise for cancer immunotherapy with encouraging clinical results. However, finding the right TCR T cell clone is a tedious, time-consuming, and costly process. Thus, there is a critical need for single cell technologies to conduct fast and multiplexed functional analyses followed by recovery of the clone of interest. Here, we use droplet microfluidics for functional screening and real-time monitoring of single TCR T cell activation upon recognition of target tumor cells. Notably, our platform includes a tracking system for each clone as well as a sorting procedure with 100% specificity validated by downstream single cell reverse-transcription PCR and sequencing of TCR chains. Our TCR screening prototype will facilitate immunotherapeutic screening and development of T cell therapies.
Collapse
MESH Headings
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/metabolism
- Cell Line, Tumor
- Equipment Design
- Humans
- Immunotherapy, Adoptive
- Microfluidic Analytical Techniques/instrumentation
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/analysis
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/metabolism
- Single-Cell Analysis/instrumentation
- Single-Cell Analysis/methods
- T-Lymphocytes/chemistry
- T-Lymphocytes/cytology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
Collapse
Affiliation(s)
- Aude I. Segaliny
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| | - Guideng Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, U.S.A
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- Suzhou Institute of Systems Medicine, Suzhou 215123, China
| | - Lingshun Kong
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| | - Ci Ren
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| | - Xiaoming Chen
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| | - Jessica K. Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, U.S.A
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, U.S.A
| | - Guikai Wu
- Amberstone Biosciences LLC, Irvine, CA 92617, U.S.A
| | - Weian Zhao
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, U.S.A
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA 92697, U.S.A
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, U.S.A
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, U.S.A
| |
Collapse
|
50
|
Rausch S, Midha A, Kuhring M, Affinass N, Radonic A, Kühl AA, Bleich A, Renard BY, Hartmann S. Parasitic Nematodes Exert Antimicrobial Activity and Benefit From Microbiota-Driven Support for Host Immune Regulation. Front Immunol 2018; 9:2282. [PMID: 30349532 PMCID: PMC6186814 DOI: 10.3389/fimmu.2018.02282] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/14/2018] [Indexed: 12/04/2022] Open
Abstract
Intestinal parasitic nematodes live in intimate contact with the host microbiota. Changes in the microbiome composition during nematode infection affect immune control of the parasites and shifts in the abundance of bacterial groups have been linked to the immunoregulatory potential of nematodes. Here we asked if the small intestinal parasite Heligmosomoides polygyrus produces factors with antimicrobial activity, senses its microbial environment and if the anti-nematode immune and regulatory responses are altered in mice devoid of gut microbes. We found that H. polygyrus excretory/secretory products exhibited antimicrobial activity against gram+/− bacteria. Parasites from germ-free mice displayed alterations in gene expression, comprising factors with putative antimicrobial functions such as chitinase and lysozyme. Infected germ-free mice developed increased small intestinal Th2 responses coinciding with a reduction in local Foxp3+RORγt+ regulatory T cells and decreased parasite fecundity. Our data suggest that nematodes sense their microbial surrounding and have evolved factors that limit the outgrowth of certain microbes. Moreover, the parasites benefit from microbiota-driven immune regulatory circuits, as an increased ratio of intestinal Th2 effector to regulatory T cells coincides with reduced parasite fitness in germ-free mice.
Collapse
Affiliation(s)
- Sebastian Rausch
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Ankur Midha
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Matthias Kuhring
- Bioinformatics Unit (MF 1), Robert Koch Institute, Berlin, Germany.,Core Unit Bioinformatics, Berlin Institute of Health (BIH), Berlin, Germany.,Berlin Institute of Health Metabolomics Platform, Berlin Institute of Health (BIH), Berlin, Germany.,Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Nicole Affinass
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Aleksandar Radonic
- Centre for Biological Threats and Special Pathogens (ZBS 1), Robert Koch Institute, Berlin, Germany.,Genome Sequencing Unit (MF 2), Robert Koch Institute, Berlin, Germany
| | - Anja A Kühl
- iPATH.Berlin, Core Unit for Immunopathology for Experimental Models, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | | | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|