1
|
Krzysiek-Maczka G, Brzozowski T, Ptak-Belowska A. Helicobacter pylori-activated fibroblasts as a silent partner in gastric cancer development. Cancer Metastasis Rev 2023; 42:1219-1256. [PMID: 37460910 PMCID: PMC10713772 DOI: 10.1007/s10555-023-10122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/20/2023] [Indexed: 12/18/2023]
Abstract
The discovery of Helicobacter pylori (Hp) infection of gastric mucosa leading to active chronic gastritis, gastroduodenal ulcers, and MALT lymphoma laid the groundwork for understanding of the general relationship between chronic infection, inflammation, and cancer. Nevertheless, this sequence of events is still far from full understanding with new players and mediators being constantly identified. Originally, the Hp virulence factors affecting mainly gastric epithelium were proposed to contribute considerably to gastric inflammation, ulceration, and cancer. Furthermore, it has been shown that Hp possesses the ability to penetrate the mucus layer and directly interact with stroma components including fibroblasts and myofibroblasts. These cells, which are the source of biophysical and biochemical signals providing the proper balance between cell proliferation and differentiation within gastric epithelial stem cell compartment, when exposed to Hp, can convert into cancer-associated fibroblast (CAF) phenotype. The crosstalk between fibroblasts and myofibroblasts with gastric epithelial cells including stem/progenitor cell niche involves several pathways mediated by non-coding RNAs, Wnt, BMP, TGF-β, and Notch signaling ligands. The current review concentrates on the consequences of Hp-induced increase in gastric fibroblast and myofibroblast number, and their activation towards CAFs with the emphasis to the altered communication between mesenchymal and epithelial cell compartment, which may lead to inflammation, epithelial stem cell overproliferation, disturbed differentiation, and gradual gastric cancer development. Thus, Hp-activated fibroblasts may constitute the target for anti-cancer treatment and, importantly, for the pharmacotherapies diminishing their activation particularly at the early stages of Hp infection.
Collapse
Affiliation(s)
- Gracjana Krzysiek-Maczka
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Tomasz Brzozowski
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Agata Ptak-Belowska
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland
| |
Collapse
|
2
|
Yang Y, Meng WJ, Wang ZQ. The origin of gastric cancer stem cells and their effects on gastric cancer: Novel therapeutic targets for gastric cancer. Front Oncol 2022; 12:960539. [PMID: 36185219 PMCID: PMC9520244 DOI: 10.3389/fonc.2022.960539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
Gastric cancer (GC) is one of the most prevalent malignancies and the most common causes of cancer-related mortality worldwide. Furthermore, the prognosis of advanced GC remains poor even after surgery combined with chemoradiotherapy. As a small group of cells with unlimited differentiation and self-renewal ability in GC, accumulating evidence shows that GC stem cells (GCSCs) are closely associated with the refractory characteristics of GC, such as drug resistance, recurrence, and metastasis. With the extensive development of research on GCSCs, GCSCs seem to be promising therapeutic targets for GC. However, the relationship between GCSCs and GC is profound and intricate, and its mechanism of action is still under exploration. In this review, we elaborate on the source and key concepts of GCSCs, systematically summarize the role of GCSCs in GC and their underlying mechanisms. Finally, we review the latest information available on the treatment of GC by targeting GCSCs. Thus, this article may provide a theoretical basis for the future development of the novel targets based on GCSCs for the treatment of GC.
Collapse
|
3
|
Wuputra K, Ku CC, Pan JB, Liu CJ, Liu YC, Saito S, Kato K, Lin YC, Kuo KK, Chan TF, Chong IW, Lin CS, Wu DC, Yokoyama KK. Stem Cell Biomarkers and Tumorigenesis in Gastric Cancer. J Pers Med 2022; 12:jpm12060929. [PMID: 35743714 PMCID: PMC9224738 DOI: 10.3390/jpm12060929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Stomach cancer has a high mortality, which is partially caused by an absence of suitable biomarkers to allow detection of the initiation stages of cancer progression. Thus, identification of critical biomarkers associated with gastric cancer (GC) is required to advance its clinical diagnoses and treatment. Recent studies using tracing models for lineage analysis of GC stem cells indicate that the cell fate decision of the gastric stem cells might be an important issue for stem cell plasticity. They include leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5+), Cholecystokinin receptor 2 (Cckr2+), and axis inhibition protein 2 (Axin2+) as the stem cell markers in the antrum, Trefoil Factor 2 (TFF2+), Mist1+ stem cells, and Troy+ chief cells in the corpus. By contrast, Estrogen receptor 1 (eR1), Leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1), SRY (sex determining region Y)-box 2 (Sox2), and B lymphoma Mo-MLV insertion region 1 homolog (Bmi1) are rich in both the antrum and corpus regions. These markers might help to identify the cell-lineage identity and analyze the plasticity of each stem cell population. Thus, identification of marker genes for the development of GC and its environment is critical for the clinical application of cancer stem cells in the prevention of stomach cancers.
Collapse
Affiliation(s)
- Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Jia-Bin Pan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Chung-Jung Liu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Chang Liu
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Shigeo Saito
- Saito Laboratory of Cell Technology, Yaita 329-2192, Japan;
- Horus Co., Ltd., Nakano, Tokyo 164-0001, Japan
| | - Kohsuke Kato
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, The University of Tsukuba, Tsukuba 305-8577, Japan;
| | - Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Kung-Kai Kuo
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Division of General & Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Te-Fu Chan
- Department of Obstetrics and Genecology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Inn-Wen Chong
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-S.L.)
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Obstetrics and Genecology, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
| | - Kazunari K. Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-S.L.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (K.-K.K.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan;
- Correspondence: ; Tel.: +886-7312-1101 (ext. 2729); Fax: +886-7313-3849
| |
Collapse
|
4
|
Tobe Y, Uehara T, Nakajima T, Iwaya M, Kobayashi Y, Kinugawa Y, Kuraishi Y, Ota H. LGR5-Expressing Cells in the Healing Process of Post-ESD Ulcers in Gastric Corpus. Dig Dis Sci 2022; 67:2134-2142. [PMID: 34081250 DOI: 10.1007/s10620-021-07059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 05/11/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND LGR5 is a promising stem cell marker in gastric pylorus, but there are few reports on its expression in human gastric corpus. AIMS To investigate the involvement of LGR5 expression in gastric corpus ulcer regeneration in humans. METHODS LGR5 expression was analyzed in five post-ESD ulcers during the healing process of regenerating epithelial cells of the gastric corpus. LGR5 expression was detected by mRNA in situ hybridization using an RNA scope kit. Immunohistochemistry of MUC6, HIK1083, and pepsinogen 1 (PG1) was performed to identify cell differentiation. RESULTS We defined MUC6+/HIK1083-/PG1-, MUC6+/HIK1083+/PG1-, MUC6+/HIK1083+/PG1+, MUC6+/HIK1083-/PG1+, and MUC6-/HIK1083-/PG1+cells as pseudopyloric mucosa (PPM) phase 1 (PPM1), PPM phase 2 (PPM2), PPM phase 3 (PPM3), immature chief cells (ICC), and mature chief cells (MCC) in order from the ulcer center, respectively. In the regenerated mucosa around post-ESD ulcers, LGR5 expression was observed throughout the gland in PPM1-PPM3, but it was limited to the bottom of the gland in ICC and MCC. Furthermore, LGR5 expression was not identified in the normal gastric corpus. The H-score of PPM2 was significantly higher than that of PPM3 (P = 0.0313). The H-score of PPM3 was significantly higher than that of ICC (P = 0.0313). The LGR5 H-score was higher at the immature stage, which decreased gradually with progression of the differentiation stage. CONCLUSIONS LGR5 expression appears to contribute to mucosal regeneration in the human gastric corpus. The application of LGR5 expression analysis to mucosal regeneration and fundic gland-type gastric tumors is expected.
Collapse
Affiliation(s)
- Yosuke Tobe
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
| | - Tomoyuki Nakajima
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Mai Iwaya
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Yukihiro Kobayashi
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Yasuhiro Kinugawa
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Yasuhiro Kuraishi
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroyoshi Ota
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.,Department of Biomedical Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
5
|
Otaegi-Ugartemendia M, Matheu A, Carrasco-Garcia E. Impact of Cancer Stem Cells on Therapy Resistance in Gastric Cancer. Cancers (Basel) 2022; 14:cancers14061457. [PMID: 35326607 PMCID: PMC8946717 DOI: 10.3390/cancers14061457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
Gastric cancer (GC) is the fourth leading cause of cancer death worldwide, with an average 5-year survival rate of 32%, being of 6% for patients presenting distant metastasis. Despite the advances made in the treatment of GC, chemoresistance phenomena arise and promote recurrence, dissemination and dismal prognosis. In this context, gastric cancer stem cells (gCSCs), a small subset of cancer cells that exhibit unique characteristics, are decisive in therapy failure. gCSCs develop different protective mechanisms, such as the maintenance in a quiescent state as well as enhanced detoxification procedures and drug efflux activity, that make them insusceptible to current treatments. This, together with their self-renewal capacity and differentiation ability, represents major obstacles for the eradication of this disease. Different gCSC regulators have been described and used to isolate and characterize these cell populations. However, at the moment, no therapeutic strategy has achieved the effective targeting of gCSCs. This review will focus on the properties of cancer stem cells in the context of therapy resistance and will summarize current knowledge regarding the impact of the gCSC regulators that have been associated with GC chemoradioresistance.
Collapse
Affiliation(s)
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (M.O.-U.); (A.M.)
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Estefania Carrasco-Garcia
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (M.O.-U.); (A.M.)
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-943-006296
| |
Collapse
|
6
|
Yoshizawa T, Uehara T, Iwaya M, Asaka S, Kobayashi S, Nakajima T, Kinugawa Y, Nagaya T, Kamakura M, Shimizu A, Kubota K, Notake T, Masuo H, Hosoda K, Sakai H, Hayashi H, Umemura K, Kamachi A, Goto T, Tomida H, Yamazaki S, Ota H, Soejima Y. Correlation of LGR5 expression and clinicopathological features in intrahepatic cholangiocarcinoma. Pathol Res Pract 2022; 232:153832. [DOI: 10.1016/j.prp.2022.153832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
|
7
|
Hsieh HL, Yu MC, Cheng LC, Yeh TS, Tsai MM. Molecular mechanism of therapeutic approaches for human gastric cancer stem cells. World J Stem Cells 2022; 14:76-91. [PMID: 35126829 PMCID: PMC8788185 DOI: 10.4252/wjsc.v14.i1.76] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/15/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is a primary cause of cancer-related mortality worldwide, and even after therapeutic gastrectomy, survival rates remain poor. The presence of gastric cancer stem cells (GCSCs) is thought to be the major reason for resistance to anticancer treatment (chemotherapy or radiotherapy), and for the development of tumor recurrence, epithelial–mesenchymal transition, and metastases. Additionally, GCSCs have the capacity for self-renewal, differentiation, and tumor initiation. They also synthesize antiapoptotic factors, demonstrate higher performance of drug efflux pumps, and display cell plasticity abilities. Moreover, the tumor microenvironment (TME; tumor niche) that surrounds GCSCs contains secreted growth factors and supports angiogenesis and is thus responsible for the maintenance of the growing tumor. However, the genesis of GCSCs is unclear and exploration of the source of GCSCs is essential. In this review, we provide up-to-date information about GCSC-surface/intracellular markers and GCSC-mediated pathways and their role in tumor development. This information will support improved diagnosis, novel therapeutic approaches, and better prognosis using GCSC-targeting agents as a potentially effective treatment choice following surgical resection or in combination with chemotherapy and radiotherapy. To date, most anti-GCSC blockers when used alone have been reported as unsatisfactory anticancer agents. However, when used in combination with adjuvant therapy, treatment can improve. By providing insights into the molecular mechanisms of GCSCs associated with tumors in GC, the aim is to optimize anti-GCSCs molecular approaches for GC therapy in combination with chemotherapy, radiotherapy, or other adjuvant treatment.
Collapse
Affiliation(s)
- Hsi-Lung Hsieh
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Chin Yu
- Department of General Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of General Surgery, New Taipei Municipal TuCheng Hospital, New Taipei 236, Taiwan
| | - Li-Ching Cheng
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Ta-Sen Yeh
- Department of General Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ming-Ming Tsai
- Department of Nursing, Division of Basic Medical Sciences, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of General Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| |
Collapse
|
8
|
Kwak MH, Yang SM, Yun SK, Kim S, Choi MG, Park JM. Identification and validation of LGR5-binding peptide for molecular imaging of gastric cancer. Biochem Biophys Res Commun 2021; 580:93-99. [PMID: 34628260 DOI: 10.1016/j.bbrc.2021.09.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022]
Abstract
Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) is a stem cell marker in gastric cancer. In this study, we aimed to produce the LGR5-targeting peptide probe for the use of molecular imaging for gastric cancer. We used phage display libraries to produce a LGR5-specific peptide probe. This peptide was validated for targeting gastric cancer with in vitro and in vivo studies. This peptide was tagged with fluorescein isothiocyanate (FITC) and cyanine 5.5 (Cy5.5). We used two normal and three gastric cancer cell lines. Immunocytochemistry (ICC) and fluorescence-activated cell sorting (FACS) analysis were used to validate the target specificity of the peptide. After three rounds of bio-panning, we found a novel 7-mer peptides, IPQILSI (IPQ∗). FITC-conjugated IPQ∗ showed 2 to 10 times higher fluorescence in gastric cancer cells vs. control cells in ICC. This discrimination was consistently observed using Cy5.5-conjugated IPQ∗ in ICC. FACS analysis showed right shift of peak point in gastric cancers compared to the control cells. In the peritoneal metastasis animal model, we could find Cy5.5-conjugated IPQ∗ accumulated specifically to gastric tumors. In conclusion, IPQ∗ peptide showed a specific probe for gastric cancer diagnosis. This probe can be applied to theragnosis for gastric cancer diagnosis including peritoneal metastasis.
Collapse
Affiliation(s)
- Moon Hwa Kwak
- Catholic Photomedicine Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Department of Medical Life Sciences, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung Mok Yang
- Catholic Photomedicine Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seul Ki Yun
- Catholic Photomedicine Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Department of Medical Life Sciences, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sol Kim
- Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Myung-Gyu Choi
- Catholic Photomedicine Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jae Myung Park
- Catholic Photomedicine Research Institute, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
9
|
Cancerous and non-neoplastic stem cells in the stomach similarly express CD44 and CD133. Acta Histochem 2021; 123:151787. [PMID: 34517259 DOI: 10.1016/j.acthis.2021.151787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/14/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022]
Abstract
CD44 and CD133 have been considered as cancer stem cell (CSC) markers. Stem cell markers are rarely described in healthy stomach tissues. However, the clinicopathological and prognostic value of CD44 and CD133 in gastric cancer remains controversial. This study investigated the expression of CD44 and CD133 in gastric cancer and non-neoplastic gastric mucosa. We used samples of primary gastric adenocarcinomas (n = 69), metastatic lymph nodes (n = 30), intestinal metaplasia (n = 17), and histologically normal gastric tissues of surgical margins (n = 54). The expression of CD44 and CD133 were studied in samples by immunohistochemistry. Fisher's exact test and a logistic regression model were used in this study. CD44 expression was observed in 12% of samples with intestinal metaplasia, 20% with lymph node metastases, 22% with normal mucosa, to 30% of samples with primary tumors. Most of these positive tumors showed immunostaining in less than 4% of cancerous cells, mainly in the diffuse type. CD133 expression was observed in 7% (intestinal metaplasia) to 46% (normal mucosa). In the positive cases of cancer (24%), in most of them, less than 3% of cells were marked. CD44 and CD133 expression in the histologically normal gastric mucosa was restricted to the deeper regions of the gastric crypts at the level where stem cells and progenitor cells are usually found. CD44 and CD133 expression occurs in few gastric cancer cells, mainly in diffuse carcinomas, and are expressed in histologically normal gastric mucosae. None of the markers are specific for cancer and are also present in intestinal metaplasia and the normal mucosa.
Collapse
|
10
|
Patil K, Khan FB, Akhtar S, Ahmad A, Uddin S. The plasticity of pancreatic cancer stem cells: implications in therapeutic resistance. Cancer Metastasis Rev 2021; 40:691-720. [PMID: 34453639 PMCID: PMC8556195 DOI: 10.1007/s10555-021-09979-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
The ever-growing perception of cancer stem cells (CSCs) as a plastic state rather than a hardwired defined entity has evolved our understanding of the functional and biological plasticity of these elusive components in malignancies. Pancreatic cancer (PC), based on its biological features and clinical evolution, is a prototypical example of a CSC-driven disease. Since the discovery of pancreatic CSCs (PCSCs) in 2007, evidence has unraveled their control over many facets of the natural history of PC, including primary tumor growth, metastatic progression, disease recurrence, and acquired drug resistance. Consequently, the current near-ubiquitous treatment regimens for PC using aggressive cytotoxic agents, aimed at ‘‘tumor debulking’’ rather than eradication of CSCs, have proven ineffective in providing clinically convincing improvements in patients with this dreadful disease. Herein, we review the key hallmarks as well as the intrinsic and extrinsic resistance mechanisms of CSCs that mediate treatment failure in PC and enlist the potential CSC-targeting ‘natural agents’ that are gaining popularity in recent years. A better understanding of the molecular and functional landscape of PCSC-intrinsic evasion of chemotherapeutic drugs offers a facile opportunity for treating PC, an intractable cancer with a grim prognosis and in dire need of effective therapeutic advances.
Collapse
Affiliation(s)
- Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Farheen B Khan
- Department of Biology, College of Science, The United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar. .,Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar. .,Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
11
|
de Brito BB, Lemos FFB, Carneiro CDM, Viana AS, Barreto NMPV, Assis GADS, Braga BDC, Santos MLC, Silva FAFD, Marques HS, Silva NOE, de Melo FF. Immune response to Helicobacter pylori infection and gastric cancer development. World J Meta-Anal 2021; 9:257-276. [DOI: 10.13105/wjma.v9.i3.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/24/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric adenocarcinoma is a global health concern, and Helicobacter pylori (H. pylori) infection is the main risk factor for its occurrence. Of note, the immune response against the pathogen seems to be a determining factor for gastric oncogenesis, and increasing evidence have emphasized several host and bacterium factors that probably influence in this setting. The development of an inflammatory process against H. pylori involves a wide range of mechanisms such as the activation of pattern recognition receptors and intracellular pathways resulting in the production of proinflammatory cytokines by gastric epithelial cells. This process culminates in the establishment of distinct immune response profiles that result from the cytokine-induced differentiation of T naïve cells into specific T helper cells. Cytokines released from each type of T helper cell orchestrate the immune system and interfere in the development of gastric cancer in idiosyncratic ways. Moreover, variants in genes such as single nucleotide polymorphisms have been associated with variable predispositions for the occurrence of gastric malignancy because they influence both the intensity of gene expression and the affinity of the resultant molecule with its receptor. In addition, various repercussions related to some H. pylori virulence factors seem to substantially influence the host immune response against the infection, and many of them have been associated with gastric tumorigenesis.
Collapse
Affiliation(s)
- Breno Bittencourt de Brito
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Caroline da Mota Carneiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Andressa Santos Viana
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | | | - Barbara Dicarlo Costa Braga
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Maria Luísa Cordeiro Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45031900, Bahia, Brazil
| | - Natália Oliveira e Silva
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
12
|
Razmi M, Ghods R, Vafaei S, Sahlolbei M, Saeednejad Zanjani L, Madjd Z. Clinical and prognostic significances of cancer stem cell markers in gastric cancer patients: a systematic review and meta-analysis. Cancer Cell Int 2021; 21:139. [PMID: 33639931 PMCID: PMC7912890 DOI: 10.1186/s12935-021-01840-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/17/2021] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer (GC) is considered one of the most lethal malignancies worldwide, which is accompanied by a poor prognosis. Although reports regarding the importance of cancer stem cell (CSC) markers in gastric cancer progression have rapidly developed over the last few decades, their clinicopathological and prognostic values in gastric cancer still remain inconclusive. Therefore, the current meta-analysis aimed to quantitatively re-evaluate the association of CSC markers expression, overall and individually, with GC patients’ clinical and survival outcomes. Methods Literature databases including PubMed, Scopus, ISI Web of Science, and Embase were searched to identify the eligible articles. Hazard ratios (HRs) or odds ratios (ORs) with 95% confidence intervals (CIs) were recorded or calculated to determine the relationships between CSC markers expression positivity and overall survival (OS), disease-free survival (DFS)/relapse-free survival (RFS), disease-specific survival (DSS)/ cancer-specific survival (CSS), and clinicopathological features. Results We initially retrieved 4,425 articles, of which a total of 66 articles with 89 studies were considered as eligible for this meta-analysis, comprising of 11,274 GC patients. Overall data analyses indicated that the overexpression of CSC markers is associated with TNM stage (OR = 2.19, 95% CI 1.84–2.61, P = 0.013), lymph node metastasis (OR = 1.76, 95% CI 1.54–2.02, P < 0.001), worse OS (HR = 1.65, 95% CI 1.54–1.77, P < 0.001), poor CSS/DSS (HR = 1.69, 95% CI 1.33–2.15, P < 0.001), and unfavorable DFS/RFS (HR = 2.35, 95% CI 1.90–2.89, P < 0.001) in GC patients. However, CSC markers expression was found to be slightly linked to tumor differentiation (OR = 1.25, 95% CI 1.01–1.55, P = 0.035). Sub-analysis demonstrated a significant positive relationship between most of the individual markers, specially Gli-1, Oct-4, CD44, CD44V6, and CD133, and clinical outcomes as well as the reduced survival, whereas overexpression of Lgr-5, Nanog, and sonic hedgehog (Shh) was not found to be related to the majority of clinical outcomes in GC patients. Conclusion The expression of CSC markers is mostly associated with worse outcomes in patients with GC, both overall and individual. The detection of a combined panel of CSC markers might be appropriate as a prognostic stratification marker to predict tumor aggressiveness and poor prognosis in patients with GC, which probably results in identifying novel potential targets for therapeutic approaches.
Collapse
Affiliation(s)
- Mahdieh Razmi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sahlolbei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran. .,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Dannheisig DP, Bächle J, Tasic J, Keil M, Pfister AS. The Wnt/β-Catenin Pathway is Activated as a Novel Nucleolar Stress Response. J Mol Biol 2020; 433:166719. [PMID: 33221336 DOI: 10.1016/j.jmb.2020.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022]
Abstract
Ribosomes are mandatory for growth and survival. The complex process of ribosome biogenesis is located in nucleoli and requires action of the RNA polymerases I-III, together with a multitude of processing factors involved in rRNA cleavage and maturation. Impaired ribosome biogenesis and loss of nucleolar integrity triggers nucleolar stress, which classically stabilizes the tumor suppressor p53 and induces cell cycle arrest and apoptosis. Nucleolar stress is implemented in modern anti-cancer therapies, however, also emerges as contributor to diverse pathological conditions. These include ribosomopathies, such as the Shwachman Bodian Diamond Syndrome (SBDS), which are not only characterized by nucleolar stress, but paradoxically also increased cancer incidence. Wnt signaling is tightly coupled to cell proliferation and is constitutively activated in various tumor types. In addition, the Wnt/β-Catenin pathway regulates ribosome formation. Here, we demonstrate that induction of nucleolar stress by different strategies stimulates the Wnt/β-Catenin pathway. We show that depletion of the key ribosomopathy factor SBDS, or the nucleolar factors Nucleophosmin (NPM), Pescadillo 1 (PES1) or Peter Pan (PPAN) by si RNA-mediated knockdown or CRISPR/Cas9 strategy activates Wnt/β-Catenin signaling in a β-Catenin-dependent manner and stabilizes β-Catenin in human cancer cells. Moreover, triggering nucleolar stress by the chemotherapeutic agents Actinomycin D or the RNA polymerase I inhibitor CX-5461 stimulates expression of Wnt/β-Catenin targets, which is followed by the p53 target CDKN1A (p21). As PPAN expression is induced by Wnt/β-Catenin signaling, our data establish a novel feedback mechanism and reveal that nucleolar stress over-activates the Wnt/β-Catenin pathway, which most likely serves as compensatory mechanism to sustain ribosome biogenesis.
Collapse
Affiliation(s)
- David P Dannheisig
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Jana Bächle
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Jasmin Tasic
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Marina Keil
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Astrid S Pfister
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany.
| |
Collapse
|
14
|
Khomiak A, Brunner M, Kordes M, Lindblad S, Miksch RC, Öhlund D, Regel I. Recent Discoveries of Diagnostic, Prognostic and Predictive Biomarkers for Pancreatic Cancer. Cancers (Basel) 2020; 12:E3234. [PMID: 33147766 PMCID: PMC7692691 DOI: 10.3390/cancers12113234] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a dismal prognosis that is frequently diagnosed at an advanced stage. Although less common than other malignant diseases, it currently ranks as the fourth most common cause of cancer-related death in the European Union with a five-year survival rate of below 9%. Surgical resection, followed by adjuvant chemotherapy, remains the only potentially curative treatment but only a minority of patients is diagnosed with locally resectable, non-metastatic disease. Patients with advanced disease are treated with chemotherapy but high rates of treatment resistance and unfavorable side-effect profiles of some of the used regimens remain major challenges. Biomarkers reflect pathophysiological or physiological processes linked to a disease and can be used as diagnostic, prognostic and predictive tools. Thus, accurate biomarkers can allow for better patient stratification and guide therapy choices. Currently, the only broadly used biomarker for PDAC, CA 19-9, has multiple limitations and the need for novel biomarkers is urgent. In this review, we highlight the current situation, recent discoveries and developments in the field of biomarkers of PDAC and their potential clinical applications.
Collapse
Affiliation(s)
- Andrii Khomiak
- Shalimov National Institute of Surgery and Transplantology, 03058 Kyiv, Ukraine;
| | - Marius Brunner
- Department of Gastroenterology, Endocrinology and Gastrointestinal Oncology, University Medical Center, 37075 Goettingen, Germany;
| | - Maximilian Kordes
- Department of Upper Abdominal Diseases, Karolinska University Hospital, 14186 Stockholm, Sweden;
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 17177 Stockholm, Sweden
| | - Stina Lindblad
- Department of Radiation Sciences, Sweden and Wallenberg Centre for Molecular Medicine, Umeå University, 90187 Umeå, Sweden;
| | - Rainer Christoph Miksch
- Department of General, Visceral and Transplantation Surgery, University Hospital, LMU Munich, 81377 Munich, Germany;
| | - Daniel Öhlund
- Department of Radiation Sciences, Sweden and Wallenberg Centre for Molecular Medicine, Umeå University, 90187 Umeå, Sweden;
| | - Ivonne Regel
- Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
15
|
Piao L, Che N, Li H, Li M, Feng Y, Liu X, Kim S, Jin Y, Xuan Y. SETD8 promotes stemness characteristics and is a potential prognostic biomarker of gastric adenocarcinoma. Exp Mol Pathol 2020; 117:104560. [PMID: 33127342 DOI: 10.1016/j.yexmp.2020.104560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 12/26/2022]
Abstract
SETD8 is a lysine methyltransferase containing an SET domain, which is involved in the carcinogenesis of many cancer types through monomethylation of the histone H4 lysine 20. However, its prognostic value and underlying mechanisms in gastric adenocarcinoma (GA) have not been extensively studied. Here, we assessed SETD8 expression and its relationship with clinicopathological parameters, cancer stemness-related proteins, cell cycle-related proteins, and PI3K/Akt pathway proteins in GA. SETD8 expression in GA tissues was correlated with the primary tumor stage, lymph node metastasis, tumor size, gross type, and clinical stage. SETD8 was an independent predictor of poor overall survival of patients with GA. Cox regression analysis showed that SETD8 is a potential biomarker of unfavorable clinical outcomes in patients with GA. Moreover, SETD8 overexpression was associated with cancer stemness-related genes, cell cycle-related genes, and PI3K/Akt/NF-κB pathway genes in clinical GA tissue samples. SETD8 silencing downregulated the expression of cancer stemness-associated genes (LSD1 and SOX2) and inhibited GA cell proliferation, spheroid formation, invasion, and migration. Additionally, LY294002 significantly reduced the expression of SETD8, pAkt-Ser473, pPI3K-p85, and NFκB-p65 in MKN74 and MKN28 cells. SETD8 may be a novel cancer stemness-associated protein and potential prognostic biomarker in GA.
Collapse
Affiliation(s)
- Lihua Piao
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Histology and Embryology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Nan Che
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Haoyue Li
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Mengxuan Li
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Anatomy, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Ying Feng
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Xingzhe Liu
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China
| | - Seokhyung Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University College of Medicine, Seoul 110-745, Republic of Korea
| | - Yu Jin
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Anatomy, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China.
| | - Yanhua Xuan
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji 133002, Jilin Province, PR China.
| |
Collapse
|
16
|
Yoon JY, Brezden-Masley C, Streutker CJ. Lgr5 and stem/progenitor gene expression in gastric/gastroesophageal junction carcinoma - significance of potentially retained stemness. BMC Cancer 2020; 20:860. [PMID: 32894084 PMCID: PMC7487651 DOI: 10.1186/s12885-020-07362-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Background Gastric/gastroesophageal junction (GEJ) adenocarcinomas are heterogeneous, comprising four molecularly distinct subtypes, namely EBV-positive, microsatellite instability (MSI), chromosomal instability (CIN) and genomically stable (GS) subtypes, and a part of this heterogeneity may hypothesized to be different cells-of-origin. Stem/progenitor cell hierarchy in the stomach is complex, which include the Lgr5(+) gastric stem cells (GSCs). Methods While previous studies have focused on non-nuclear Lgr5 expression, nuclear Lgr5 expression has been reported in a subset of stem cells, and we examined nuclear Lgr5 expression in a local cohort of 95 cases of gastric/GEJ adenocarcinoma. mRNA levels for LGR5 and other stem cell marker genes were examined in the TCGA cohort. Results We observed nuclear Lgr5 expression in a 18/95 cases. Near mutual exclusivity was seen between nuclear Lgr5 and strong non-nuclear Lgr5. Both strong non-nuclear and nuclear Lgr5 expression tended to be seen more frequently with the intestinal histotype and approximated CIN molecular subtype. With respect to overall survival (OS), nuclear Lgr5 expression appears to be protective, with the worst survival being seen in the cases lacking nuclear Lgr5 and with low non-nuclear Lgr5 expression. When compared to other stem/progenitor cell markers, LGR5 mRNA expression clusters with other GSC marker genes, including VIL1. Higher expression of these GSC marker genes was associated with better OS. Conclusions Our results show that Lgr5 expression is dynamic in gastric/GEJ adenocarcinoma and heterogeneous across the several disease attributes. We postulate that this may reflect “retained stemness” in the form of Lgr5High-GSC signature that appears to be associated with better survival.
Collapse
Affiliation(s)
- Ju-Yoon Yoon
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Catherine J Streutker
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. .,Department of Pathology, St. Michael's Hospital, St. Michael's Hospital, Unity Health Toronto, Rm 2-099CC, 30 Bond Street, Toronto, Ontario, M5B-1W8, Canada.
| |
Collapse
|
17
|
Correlation of clinicopathological features and LGR5 expression in colon adenocarcinoma. Ann Diagn Pathol 2020; 48:151587. [PMID: 32829068 DOI: 10.1016/j.anndiagpath.2020.151587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022]
Abstract
Colon cancer stem cells (CSCs) are closely related to tumorigenesis and treatment response, and LGR5 is currently the most robust and reliable CSC marker in colorectal cancer (CRC). However, LGR5 expression in CRC tumor budding (TB) is not well understood. We examined the clinicopathological and prognostic significance of LGR5 in CRC TB. LGR5 expression was evaluated by RNAscope, a newly developed RNA in situ hybridization technique, using a tissue microarray consisting of 55 patient samples of TB in colon adenocarcinoma (CA) selected from the medical archives at our hospital. Patients were stratified into negative and positive LGR5 expression groups. Tumor-infiltrating lymphocytes (TILs) and histological grade were lower in the LGR5-positive group compared with the LGR5-negative group (P = .0407 and P = .0436, respectively). There was no significant difference in overall survival between the LGR5-positive group and the LGR5-negative group (log-rank test, P = .6931). LGR5 expression did not remain a predictor of prognosis in univariate analysis (OR = 0.84, 95% CI: 0.33-2.02, P = .6928). LGR5 expression may be affected by TILs, which have been demonstrated to be associated with worse prognosis in the budding area of CA and is an important potential marker of prognosis.
Collapse
|
18
|
Qi W, Yang Z, Feng Y, Li H, Che N, Liu L, Xuan Y. Gli1 regulates stemness characteristics in gastric adenocarcinoma. Diagn Pathol 2020; 15:60. [PMID: 32430068 PMCID: PMC7236965 DOI: 10.1186/s13000-020-00949-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
Background Glioma-associated oncogene homolog 1 (Gli1), affects the progression and the stemness characteristics of malignant carcinoma. The aim of the present study was to identify the relation between Glioma-associated oncogene homolog 1 (Gli1) and stemness and determine its clinical significance in gastric adenocarcinoma (GA). We investigated Gli1 expression and its correlation with other stemness-associated proteins in 169 GA samples and 5 GA cell lines. Methods To elucidate the role of Gli1 in the clinicopathological significance and stemness of GA, tissues samples from 169 GA patients were collected for immunohistochemistry (IHC). Additionally, MKN74, MKN28, NCI-N87, SNU638, AGS cells were collected for western blotting, MKN28 cells were collected for spheroid formation assay. Results Results showed that Gli1 expression was closely related to tumor grade, primary tumor (pT) stage, distant metastasis, clinical stage, gross type, microvessel density, and shorter overall survival (OS). Cox regression analysis verified that Gli1 was an independent prognostic factor for OS. Furthermore, Gli1 expression correlated with the expression of stemness-related genes, CD44, LSD1, and Sox9. Gli1 inhibitor GANT61 significantly decreased the expression of CD44 and LSD1, and spheroid formation ability of the MKN28 cells. Conclusions In conclusion, Gli1 may be a poor prognostic indicator and a potential cancer stemness-related protein in GA.
Collapse
Affiliation(s)
- Wenbo Qi
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, China.,Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Zhaoting Yang
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, China.,Department of Pathology, Yanbian University College of Medicine, Yanji, China
| | - Ying Feng
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, China.,Department of Pathology, Yanbian University College of Medicine, Yanji, China
| | - Haoyue Li
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, China.,Department of Pathology, Yanbian University College of Medicine, Yanji, China
| | - Nan Che
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, China.,Department of Pathology, Yanbian University College of Medicine, Yanji, China
| | - Lan Liu
- Department of Pathology, Affiliated Hospital of Yanbian University, Yanji, China.
| | - Yanhua Xuan
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, China. .,Department of Pathology, Yanbian University College of Medicine, Yanji, China.
| |
Collapse
|
19
|
Ogasawara S, Uehara T, Nakajima T, Iwaya M, Maeno K, Tsuchiya S, Ota H, Ito KI. Correlation of Clinicopathological Features and LGR5 Expression in Triple-Negative Breast Cancer. Ann Diagn Pathol 2020; 46:151491. [PMID: 32163872 DOI: 10.1016/j.anndiagpath.2020.151491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/10/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022]
Abstract
LGR5 is the most robust known stem cell marker for gastrointestinal tumors, but there are few reports in breast cancer. Triple negative breast cancer (TNBC) is the most malignant subtype of breast cancer, and thus identification of new cancer stem cell populations in TNBC may help to identify targeted therapies. LGR5 expression was evaluated by RNAscope, a newly developed RNA in situ hybridization technique, using a tissue microarray consisting of 43 patient samples of TNBC selected from the medical archives at our hospital. Patients were stratified into negative and positive LGR5 expression groups. Tumor necrosis was greater in the LGR5-positive group compared with the LGR5-negative group (P = .026). Mitosis tended to show a high value in the LGR5-positive group compared with the LGR5-negative group (P = .0831), while stage tended to show a high stage in the LGR5-positive group compared with the LGR5-negative group (P = .0617). Cox proportional hazards models revealed that the LGR5-positive group (overall survival (OS) = 2.12; 95% CI: 2.12-2.12; P = 0.1575) had no relationship with OS. LGR5 expression is associated with tumor necrosis of TNBC and suggested higher malignant potential.
Collapse
Affiliation(s)
- Souya Ogasawara
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Tomoyuki Nakajima
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Mai Iwaya
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kazuma Maeno
- Division of Breast, Endocrine and Respiratory Surgery, Department of Surgery (II), , Shinshu University School of Medicine, Matsumoto, Japan
| | | | - Hiroyoshi Ota
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan; Department of Biomedical Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ken-Ichi Ito
- Division of Breast, Endocrine and Respiratory Surgery, Department of Surgery (II), , Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
20
|
Expression of LGR5, FZD7, TROY, and MIST1 in Perioperatively Treated Gastric Carcinomas and Correlation with Therapy Response. DISEASE MARKERS 2019; 2019:8154926. [PMID: 31827644 PMCID: PMC6885822 DOI: 10.1155/2019/8154926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 09/17/2019] [Accepted: 10/17/2019] [Indexed: 01/10/2023]
Abstract
The cancer stem cell model is considered as a putative cause of resistance to chemotherapy and disease recurrence in malignant tumors. In this study, we tested the hypothesis that the response to neoadjuvant/perioperative chemotherapy correlates with the expression of four different putative cancer stem cell markers of gastric cancer (GC), i.e., LGR5, FZD7, TROY, and MIST1. The expression of LGR5, FZD7, TROY, and MIST1 was assessed by immunohistochemistry in 119 perioperatively treated GCs including pretherapeutic biopsies, resected primary GCs, and corresponding nodal and distant metastases. All four markers were detected in our cohort with variable prevalence and histoanatomical distributions. Few tumor cells expressed TROY. LGR5, FZD7, and MIST1 were coexpressed in 41.2% and completely absent in 6.2%. The prevalence of LGR5- and FZD7-positive GCs was higher and of TROY-positive GCs lower in perioperatively treated GCs compared with treatment-naïve tumors. LGR5, FZD7, and MIST1 in the primary tumors correlated significantly with their expression in the corresponding lymph node metastasis. An increased expression of LGR5 in primary GC correlated significantly with tumor regression. The expression of MIST1 in lymph node metastases correlated significantly with the number of lymph node metastases as well as overall and tumor-specific survival. FZD7 did not correlate with any clinicopathological patient characteristic. Our study on clinical patient samples shows that GCs may coexpress independently different stem cell markers; that neoadjuvant/perioperative treatment of GC significantly impacts on the expression of stem cell markers, which cannot be predicted by the analysis of pretherapeutic biopsies; and that their expression and tumor biological effect are heterogeneous and have to be viewed as a function of histoanatomical distribution.
Collapse
|
21
|
Kuraishi Y, Uehara T, Kobayashi Y, Nakajima T, Watanabe T, Shimizu A, Ota H, Tanaka E. Correlation of clinicopathological features and leucine-rich repeat-containing G-protein-coupled receptor 5 expression in pancreatic ductal adenocarcinoma. Pathol Res Pract 2019; 215:152623. [PMID: 31543221 DOI: 10.1016/j.prp.2019.152623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/25/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer. Previous studies have established leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) as a cancer stem cell marker in gastrointestinal cancers. However, few reports have examined LGR5 in PDAC. Here we examined LGR5 expression and its clinicopathological significance in PDAC. We evaluated LGR5 expression in 78 PDAC patients who underwent surgical resection in our institution using RNAscope, a newly described RNA in situ hybridization technique. All 78 PDAC cases expressed LGR5 in cancer tissues, and LGR5 expression was prominent in the gland-forming part. LGR5 expression was significantly higher in patients with low histological grade (G1-G2) (p < 0.001) and early clinical stage (p = 0.004). Univariate analysis showed that low LGR5 expression (p = 0.034) was significantly associated with worse overall survival. However, LGR5 expression did not remain a predictor of prognosis in multivariate analysis (p = 0.639). All PDAC cases showed LGR5 expression to varying degrees, indicating LGR5 might be a cancer stem cell marker of PDAC, as in gastrointestinal cancer. Reduced LGR5 expression in tumor cells was associated with worse prognosis in PDAC. Further studies are required to elucidate the relationship between tumor progression and LGR5 expression in PDAC.
Collapse
Affiliation(s)
- Yasuhiro Kuraishi
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Yukihiro Kobayashi
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tomoyuki Nakajima
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takayuki Watanabe
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Akira Shimizu
- Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroyoshi Ota
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan; Department of Biomedical Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Eiji Tanaka
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
22
|
Fischer AS, Sigal M. The Role of Wnt and R-spondin in the Stomach During Health and Disease. Biomedicines 2019; 7:E44. [PMID: 31248166 PMCID: PMC6631168 DOI: 10.3390/biomedicines7020044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022] Open
Abstract
The Wnt signaling pathway is one of the most prominent developmental signals. In addition to its functions in development, there is emerging evidence that it is also crucial for various organ functions in adult organisms, where Wnt signaling controls tissue stem cell behavior, proliferation and differentiation. Deregulation of Wnt signaling is involved in various pathological conditions and has been linked to malignant tissue transformation in different organ systems. The study of the Wnt signaling pathway has revealed a complex regulatory network that tightly balances the quality and strength of Wnt signaling in tissues. In this context, R-spondins are secreted proteins that stabilize Wnt receptors and enhance Wnt signaling. In this review we focus on new insights into the regulatory function of Wnt and R-spondin signaling in the stomach. In addition to its function in the healthy state, we highlight the connection between Wnt signaling and infection with Helicobacter pylori (H. pylori), a pathogen that colonizes the stomach and is the main risk factor for gastric cancer. In addition to experimental data that link Wnt signaling to carcinogenesis, we discuss that Wnt signaling is affected in a substantial proportion of patients with gastric cancer, and provide examples for potential clinical implications for altered Wnt signaling in gastric cancer.
Collapse
Affiliation(s)
- Anne-Sophie Fischer
- Department of Hepatology and Gastroenterology, Charité University Medicine, 10117 Berlin, Germany.
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany.
- Berlin Institute of Health, 10117 Berlin, Germany.
| | - Michael Sigal
- Department of Hepatology and Gastroenterology, Charité University Medicine, 10117 Berlin, Germany.
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany.
- Berlin Institute of Health, 10117 Berlin, Germany.
| |
Collapse
|
23
|
Correlation of clinicopathological features and LGR5 expression in colon adenocarcinoma. Ann Diagn Pathol 2019; 40:161-165. [PMID: 31100646 DOI: 10.1016/j.anndiagpath.2019.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 01/16/2023]
Abstract
Colon cancer stem cells (CSCs) are closely related to tumorigenesis and treatment response, and LGR5 is currently the most robust and reliable CSC marker in colorectal cancer (CRC). However, LGR5 expression in CRC tumor budding (TB) is not well understood. We examined the clinicopathological and prognostic significance of LGR5 in CRC TB. LGR5 expression was evaluated by RNAscope, a newly developed RNA in situ hybridization technique, using a tissue microarray consisting of 55 patient samples of TB in colon adenocarcinoma (CA) selected from the medical archives at our hospital. Patients were stratified into negative and positive LGR5 expression groups. Inflammatory cell infiltration was weaker and histological grade was lower in the LGR5-positive group compared with the LGR5-negative group (P = 0.0407 and P = 0.0436, respectively). There was a significant difference in OS between the LGR5-positive group and LGR5-negative group (log-rank test, P = 0.0088). Cox proportional hazards models revealed that the LGR5-positive group (Overall survival (OS) = 0.37, 95% CI: 0.17-0.79, P = 0.0101) had better OS. LGR5 expression may be affected by inflammatory cell infiltration in the budding area of CA and is an important potential marker of prognosis.
Collapse
|
24
|
Saberi S, Piryaei A, Mirabzadeh E, Esmaeili M, Karimi T, Momtaz S, Abdirad A, Sodeifi N, Mohagheghi MA, Baharvand H, Mohammadi M. Immunohistochemical Analysis of LGR5 and TROY Expression in Gastric Carcinogenesis Demonstrates an Inverse Trend. IRANIAN BIOMEDICAL JOURNAL 2019; 23. [PMID: 30501144 PMCID: PMC6707110 DOI: 10.29252/.23.2.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Background Two of the Wnt signaling pathway target genes, tumor necrosis factor receptor family member (TROY) and leucine-rich G-protein coupled receptor (LGR5), are involved in the generation and maintenance of gastrointestinal epithelium. A negative modulatory role has recently been assigned to TROY, in this pathway. Here, we have examined their simultaneous expression in gastric carcinogenesis. Methods Tumor and paired adjacent tissues of intestinal-type gastric cancer (GC) patients (n = 30) were evaluated for LGR5 and TROY expression by immunohistochemistry. The combination of the percentage of positively¬ stained cells and the intensity of staining was defined as the composite score and compared between groups. The obtained findings were re-evaluated in a mouse model. Results TROY expression in the tumor tissue was significantly lower than that of the adjacent tissue (2.5 ± 0.9 vs. 3.3 ± 0.9, p = 0.004), which was coincident with higher LGR5 expression (3.6 ± 1.1 vs. 2.7 ± 0.9, p = 0.001). This observation was prominent at stages II/III of GC, leading to a statistically significant mean difference of expression between these two molecules (p = 0.005). In the H. pylori infected-mouse model, this inverse expression was observed in transition from early (8-16 w) to late (26-50 w) time points, post treatment (p = 0.002). Conclusion Our data demonstrates an inverse trend between TROY down-regulation and LGR5 up-regulation in GC tumors, as well as in response to H. pylori infection in mice. These findings support a potential negative modulatory role for TROY on LGR5 expression.
Collapse
Affiliation(s)
- Samaneh Saberi
- HPGC Research Group, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; ,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Esmat Mirabzadeh
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Esmaeili
- HPGC Research Group, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Toktam Karimi
- HPGC Research Group, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sara Momtaz
- HPGC Research Group, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Afshin Abdirad
- Department of Pathology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Sodeifi
- Department of Andrology at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; ,Corresponding Authors: Marjan Mohammadi, HPGC Research Group, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; E-mail: marjan.mohammadi2010@gmail or . Hossein Baharvand , Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; E-mail:
| | - Marjan Mohammadi
- HPGC Research Group, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; ,Corresponding Authors: Marjan Mohammadi, HPGC Research Group, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; E-mail: marjan.mohammadi2010@gmail or . Hossein Baharvand , Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; E-mail:
| |
Collapse
|
25
|
Souza SMD, Valiente AEF, Sá KM, Juanes CDC, Rodrigues BJ, Farias ACC, Campelo CC, Silva PGDB, Almeida PRCD. Immunoexpression of LGR4 and Β-Catenin in Gastric Cancer and Normal Gastric Mucosa. Asian Pac J Cancer Prev 2019; 20:519-527. [PMID: 30803215 PMCID: PMC6897001 DOI: 10.31557/apjcp.2019.20.2.519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background: We evaluated the immunoexpression of LGR4 and β-catenin in primary gastric carcinomas, lymph node metastases and histologically normal gastric mucosa in the surgical margins of gastric primary tumours. Methods: We performed a cross-sectional, observational study, based on 75 gastric carcinoma specimens from gastrectomies conducted at the hospital of the Federal University of Ceará, Brazil. The samples were analysed by tissue microarray and immunohistochemistry. Chi-square, Fisher’s exact test and Pearson’s linear regression were used in this study. Results: LGR4 expression was greater in the histologically normal gastric mucosa (basal third of the epithelial thickness) of the tumour surgical resection margin than in the cases of primary carcinomas (P<0.001, mainly diffuse-histotype cancer margins), and also in the number of cells stained in the normal mucosa (P<0.0001). Primary intestinal-type carcinomas showed greater positivity for LGR4 than diffuse tumours (59% vs 13%, P<0.0001) and in these the positivity was higher in the metastases (P=0.0242). The membranous immunoexpression of β-catenin was ubiquitous in the normal mucosa and present in 2/3 of the positive carcinomas. In only one case, nuclear β-catenin expression was observed. Most LGR4-positive cases were stained for membranous β-catenin but not the opposite (P<0.01). Conclusion: LGR4 is a likely biomarker of stem cells in the normal gastric mucosa and carcinomas of the stomach, not specific to cancer cells and positively associated with cell proliferation. LGR4 immunoexpression is more frequent and found in a larger number of cells in normal tissues than in tumour samples. Expression of β-catenin in the junctional membrane-complex occurred predominantly, in positive cases of gastric carcinomas and very rarely in the nucleus. LGR4 apparently influenced the membranous expression of β-catenin. These findings suggest a controversial role for LGR4, related to proliferative status and inversely related to tumour progression, in contrast to most previous reports.
Collapse
Affiliation(s)
- Susana Moreira de Souza
- Department of Pathology and Forensic Medicine, Faculty of Medicine, Federal University of Ceará, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu XS, Lin XK, Mei Y, Ahmad S, Yan CX, Jin HL, Yu H, Chen C, Lin CZ, Yu JR. Regulatory T Cells Promote Overexpression of Lgr5 on Gastric Cancer Cells via TGF-beta1 and Confer Poor Prognosis in Gastric Cancer. Front Immunol 2019; 10:1741. [PMID: 31417548 PMCID: PMC6682668 DOI: 10.3389/fimmu.2019.01741] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/10/2019] [Indexed: 01/26/2023] Open
Abstract
Background: The leucine-rich repeat containing G protein-coupled receptor 5 (Lgr5) is considered a cancer stem cell marker, and is often overexpressed in tumors. The interaction between Lgr5 and the immune-related tumor microenvironment is not completely understood. The aim of this study was to examine the role of Lgr5 in the microenvironment of gastric cancer (GC), and to explore possible immunological mechanisms influencing Lgr5 expression that are governed by regulatory T cells. Methods: Lgr5 expression was examined in 180 GC tumors by immunohistochemistry, and in 80 pairs of GC tumors for analysis of Th1/Th2 cytokines by ELISA. In addition, SGC7901 cells were co-cultured with patient-derived Tregs, varying concentrations of TGF-β1, TGF-β1 neutralizing antibody, or TGF-β receptor inhibitor SB431542, and Lgr5 and β-catenin expression were examined by qRT-PCR and western blot. Results: In this study, an immunosuppressive microenvironment was associated with high Lgr5 expression in GC. Furthermore, Lgr5 expression was up-regulated in GC cells co-cultured with Tregs or treated with exogenous TGF-β1. This up-regulation was partially inhibited by the TGF-β1 neutralizing antibody, or TGF-β1 receptor antagonist SB431542. β-catenin was up-regulated with high Lgr5 expression induced by exogenous TGF-β1, and this up-regulation was inhibited by SB431542. An increased number of Tregs and high Lgr5 expression in GC tissues were significantly associated with low overall survival. Conclusion: Tregs promoted increased Lgr5 expression in GC cells via TGF-β1 and TGF-β1 signaling pathway, which may involve activation of the Wnt signaling pathway. High Lgr5 expression via TGF-β confer poor prognosis in gastric cancer.
Collapse
Affiliation(s)
- Xiao-Sun Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | - Xian-Ke Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Mei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sabir Ahmad
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chong-Xian Yan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Long Jin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cai-Zhao Lin
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ji-Ren Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Ji-Ren Yu
| |
Collapse
|
27
|
Carrasco-Garcia E, García-Puga M, Arevalo S, Matheu A. Towards precision medicine: linking genetic and cellular heterogeneity in gastric cancer. Ther Adv Med Oncol 2018; 10:1758835918794628. [PMID: 30181784 PMCID: PMC6116075 DOI: 10.1177/1758835918794628] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Molecular and cellular heterogeneity are phenomena that are revolutionizing
oncology research and becoming critical to the idea of personalized medicine.
Recent comprehensive molecular profiling has identified molecular subtypes of
gastric cancer (GC) and linked them to clinical information. Moreover, GC stem
cells (gCSCs) have been identified and found to be responsible for GC initiation
and progression, Helicobacter pylori oncogenic action and
therapy resistance. Addressing molecular heterogeneity is critical for achieving
an optimal therapeutic approach against GC as well as targeting gCSCs. In this
review, we outline the implications of molecular and cellular heterogeneity in
the treatment of GC and we summarize the clinical impact of the most important
regulators of gCSCs.
Collapse
Affiliation(s)
- Estefania Carrasco-Garcia
- Cellular Oncology Group, Biodonostia Health Research Institute, Gipuzkoa, Spain CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes), Madrid, Spain
| | - Mikel García-Puga
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Sara Arevalo
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, Paseo Dr. Beguiristain s/n, Gipuzkoa, 20014, Spain IKERBASQUE, Basque Foundation, Bilbao, Spain CIBER de Fragilidad y Envejecimiento Saludable (CIBERfes) Madrid, Spain
| |
Collapse
|
28
|
Wang W, Ding S, Zhang H, Li J, Zhan J, Zhang H. G protein-coupled receptor LGR6 is an independent risk factor for colon adenocarcinoma. Front Med 2018; 13:482-491. [PMID: 29971639 DOI: 10.1007/s11684-018-0633-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/18/2017] [Indexed: 02/07/2023]
Abstract
LGR6 is a member of the G protein-coupled receptor family that plays a tumor-suppressive role in colon cancer. However, the relationship between LGR6 expression in patients and clinicopathological factors remains unclear. This study aimed to clarify whether the expression level of LGR6 is correlated with colon adenocarcinoma progression. Immunohistochemistry was used to detect LGR6 expression in colon adenoma tissues (n = 21), colon adenocarcinoma tissues (n = 156), and adjacent normal tissues (n = 124). The expression levels of LGR6 in colon adenoma and adenocarcinoma were significantly higher than those in normal colon epithelial tissues (P < 0.001). Low LGR6 expression predicted a short overall survival in patients with colon adenocarcinoma (log-rank test, P = 0.016). Univariate and multivariate survival analyses showed that, in addition to N and M classification, LGR6 expression served as an independent prognostic factor. Thus, low expression of LGR6 can be used as an independent prognostic parameter in patients with colon adenocarcinoma.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China.
| | - Hejun Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China
| | - Jun Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China
| | - Jun Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), and State Key Laboratory of Natural and Biomimetic Drugs, and Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing, 100191, China.
| | - Hongquan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), and State Key Laboratory of Natural and Biomimetic Drugs, and Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
29
|
Gao JP, Xu W, Liu WT, Yan M, Zhu ZG. Tumor heterogeneity of gastric cancer: From the perspective of tumor-initiating cell. World J Gastroenterol 2018; 24:2567-2581. [PMID: 29962814 PMCID: PMC6021770 DOI: 10.3748/wjg.v24.i24.2567] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/30/2018] [Accepted: 05/26/2018] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) remains one of the most common and malignant types of cancer due to its rapid progression, distant metastasis, and resistance to conventional chemotherapy, although efforts have been made to understand the underlying mechanism of this resistance and to improve clinical outcome. It is well recognized that tumor heterogeneity, a fundamental feature of malignancy, plays an essential role in the cancer development and chemoresistance. The model of tumor-initiating cell (TIC) has been proposed to explain the genetic, histological, and phenotypical heterogeneity of GC. TIC accounts for a minor subpopulation of tumor cells with key characteristics including high tumorigenicity, maintenance of self-renewal potential, giving rise to both tumorigenic and non-tumorigenic cancer cells, and resistance to chemotherapy. Regarding tumor-initiating cell of GC (GATIC), substantial studies have been performed to (1) identify the putative specific cell markers for purification and functional validation of GATICs; (2) trace the origin of GATICs; and (3) decode the regulatory mechanism of GATICs. Furthermore, recent studies demonstrate the plasticity of GATIC and the interaction between GATIC and its surrounding factors (TIC niche or tumor microenvironment). All these investigations pave the way for the development of GATIC-targeted therapy, which is in the phase of preclinical studies and clinical trials. Here, we interpret the heterogeneity of GC from the perspectives of TIC by reviewing the above-mentioned fundamental and clinical studies of GATICs. Problems encountered during the GATIC investigations and the potential solutions are also discussed.
Collapse
Affiliation(s)
- Jian-Peng Gao
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Wei Xu
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Wen-Tao Liu
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Min Yan
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Zheng-Gang Zhu
- Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| |
Collapse
|
30
|
Wang W, Wan L, Wu S, Yang J, Zhou Y, Liu F, Wu Z, Cheng Y. Mesenchymal marker and LGR5 expression levels in circulating tumor cells correlate with colorectal cancer prognosis. Cell Oncol (Dordr) 2018; 41:495-504. [PMID: 29949050 DOI: 10.1007/s13402-018-0386-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2018] [Indexed: 12/18/2022] Open
Abstract
PURPOSE The presence of circulating tumor cells (CTCs) has been found to correlate with colorectal cancer (CRC) prognosis, whereas epithelial-mesenchymal transition (EMT) in CTCs has been found to be associated with CRC metastasis. LGR5 is a known target of Wnt signaling and plays an important role in CRC development. The aim of this study was to assess the clinical relevance of EMT and LGR5 expression in CTCs from CRC patients. METHODS Sixty-six CRC patients were included in this study. The detection and expression of EMT phenotypes in CTCs from these patients were assessed using CanPatrol™ CTC enrichment and mRNA in situ hybridization (ISH), respectively. LGR5 expression in the CTCs was assessed using mRNA ISH. RESULTS CTCs were detected in 86.4% (57/66) of the CRC patients included. Both the numbers of total CTCs and of CTCs displaying a mesenchymal phenotype (M+ CTCs) were found to significantly correlate with advanced disease stages and the occurrence of metastasis (p < 0.05). An adjusted multivariate analysis also indicated that the number of M+ CTCs significantly correlated with the occurrence of metastasis (p = 0.031). Additionally, we found that a high LGR5 expression level significantly correlated with the occurrence of metastasis (p < 0.05). We also found that the presence of ≥ 6 CTCs or ≥ 3 M+ CTCs per 5 ml blood significantly correlated with disease progression (p < 0.05). Patients with ≥ 6 CTCs or ≥ 3 M+ CTCs per 5 ml blood were found to exhibit poorer progression-free survival (PFS) and overall survival (OS) rates (p < 0.05 in all cases). Using Cox regression analyses, we found that only total CTC numbers remained as independent prognostic factors for a worse PFS (p = 0.043). CONCLUSIONS From our data we conclude that CTC numbers and EMT phenotypes may serve as prognostic markers for disease progression and metastasis in CRC patients. In addition, we conclude that LGR5 expression in CTCs may serve as a marker for CRC metastasis.
Collapse
Affiliation(s)
- Wuyi Wang
- Department of Gastrointestinal Surgery, The 1st Affiliated Hospital of CQMU, Chongqing, China
| | - Lin Wan
- Department of Gastrointestinal Surgery, The 1st Affiliated Hospital of CQMU, Chongqing, China
| | | | - Jianguo Yang
- Department of Gastrointestinal Surgery, The 1st Affiliated Hospital of CQMU, Chongqing, China
| | - Yang Zhou
- Department of Gastrointestinal Surgery, The 1st Affiliated Hospital of CQMU, Chongqing, China
| | - Fang Liu
- SurExam Bio-Tech Co., Guangzhou, China
| | | | - Yong Cheng
- Department of Gastrointestinal Surgery, The 1st Affiliated Hospital of CQMU, Chongqing, China.
| |
Collapse
|
31
|
Rosiq S, Hammam O, Abdelalim A, Anas A, Khalil H, Amer M. Colonic Stem Cells Expression of Lgr5 and CD133 Proteins as Predictive Markers in Colorectal Cancer among Egyptian Patients. Open Access Maced J Med Sci 2018; 6:968-974. [PMID: 29983786 PMCID: PMC6026422 DOI: 10.3889/oamjms.2018.208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 12/26/2022] Open
Abstract
AIM: Colorectal cancer is the fourth common tumour in Egypt after lymphoid, breast and urinary tumours. The study aims to assess the expression of Lgr5 and CD133 in pre-malignant (adenomatous polyps and IBD), malignant colorectal lesions and normal colonic mucosa by immunohistochemical staining. MATERIAL AND METHODS: This prospective study was done on 100 patients presenting with colonic symptoms, patients were divided into four groups; group I including 20 patients in the control group, group II including 20 ulcerative colitis (U.C) patients, group III including 20 patients with adenomatous polyps and group IV including 40 patients with colorectal cancer (CRC). RESULTS: Lgr5 and CD133 expression was significantly higher in carcinoma than in adenomas, IBD and normal mucosa (P < 0.001). Lrg5 and CD133 was positively correlated with histological grade (P = 0.001), depth of invasion (P = 0.001), lymph node metastasis (P < 0.001), distant metastasis (P < 0.004) and TNM stage (P < 0.001). CONCLUSION: Role of Lgr5 and CD133 as stem cell marker was expressed and presented with different expression in the normal colonic mucosa, adenoma and CRC and showed increased expression in an advanced stage of CRC. This may suggest its possible involvement in colorectal tumorigenesis and invasion.
Collapse
Affiliation(s)
- Saed Rosiq
- Tropical Medicine Department, Al Azhar University, Cairo, Egypt
| | - Olfat Hammam
- Pathology Department, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Ahmed Abdelalim
- Tropical Medicine Department, Al Azhar University, Cairo, Egypt
| | - Amgad Anas
- Hepato-Gastroenterology, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Heba Khalil
- Pathology Department, Theodor Bilharz Research Institute, Imbaba, Giza, Egypt
| | - Mosbah Amer
- Tropical Medicine Department, Nasser Institute Hospital, Cairo, Egypt
| |
Collapse
|
32
|
Wang F, Dai CQ, Zhang LR, Bing C, Qin J, Liu YF. Downregulation of Lgr6 inhibits proliferation and invasion and increases apoptosis in human colorectal cancer. Int J Mol Med 2018; 42:625-632. [PMID: 29693156 DOI: 10.3892/ijmm.2018.3633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/30/2018] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to analyze the role of leucine‑rich repeat‑containing G‑protein coupled receptor 6 (Lgr6) in the proliferation and invasion of colorectal cancer (CRC) cells, and to investigate its possible mechanisms. The expression of Lgr6 in CRC tissues was observed by real time‑quantitative polymerase chain reaction and western blotting. Then cell viability, apoptosis and cell invasion was measured by MTT, flow cytometry or Matrigel‑Transwell system, respectively in CRC cells after transfected with Lgr6 siRNA or Lgr6 vector. Furthermore, the expression of apoptosis‑associated protein and PI3K/AKT signaling (phosphorylated‑PI3K, phosphorylated‑AKT, t‑PI3K, t‑AKT) were measured by real‑time PCR/or western blot analysis. The results demonstrated that the level of Lgr6 was higher in CRC tissues than that in adjacent tissues, and Lgr6 overexpression increased CRC proliferation, and invasion of CRC cells in vitro. Notably, suppressing the expression of Lgr6 in CRC cells increased the expression of B‑cell lymphoma-2 (Bcl‑2)‑associated X protein and caspase‑3, but decreased the expression of Bcl‑2 at the mRNA and protein levels. Lgr6 also had the ability to regulate the phosphoinositide 3‑kinase/AKT signaling pathway. It was concluded that Lgr6 has a tumor‑promoting role in the development of CRC, and may serve as a potential diagnostic and prognostic biomarker for the disease.
Collapse
Affiliation(s)
- Fei Wang
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Chun-Qian Dai
- Department of General Surgery, Rudong No. 2 People's Hospital, Rudong, Jiangsu 226400, P.R. China
| | - Li-Rong Zhang
- Department of General Surgery, Rudong No. 2 People's Hospital, Rudong, Jiangsu 226400, P.R. China
| | - Cao Bing
- Department of General Surgery, Rudong No. 2 People's Hospital, Rudong, Jiangsu 226400, P.R. China
| | - Jun Qin
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Yi-Fei Liu
- Department of Pathology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, P.R. China
| |
Collapse
|
33
|
Capillary morphogenesis gene 2 maintains gastric cancer stem-like cell phenotype by activating a Wnt/β-catenin pathway. Oncogene 2018; 37:3953-3966. [PMID: 29662192 PMCID: PMC6053357 DOI: 10.1038/s41388-018-0226-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/29/2017] [Accepted: 02/23/2018] [Indexed: 02/07/2023]
Abstract
A growing body of evidence shows that the development and progression of gastric cancer (GC) is mainly associated to the presence of gastric cancer stem-like cells (GCSLCs). However, it is unclear how GCSLC population is maintained. This study aimed to explore the role of capillary morphogenesis gene 2 (CMG2) in GCSLC maintenance and the relevance to GC progression. We found that CMG2 was highly expressed in GC tissues and the expression levels were associated with the invasion depth and lymph node metastasis of GC, and inversely correlated with the survival of GC patients. Sorted CMG2High GC cells preferentially clustered in CD44High stem-like cell population, which expressed high levels of stemness-related genes with increased capabilities of self-renewal and tumorigenicity. Depletion of CMG2 gene resulted in reduction of GCSLC population with attenuated stemness and decrease of invasive and metastatic capabilities with subdued epithelial–mesenchymal transition phenotype in GC cells. Mechanistically, CMG2 interacted with LRP6 in GCSLCs to activate a Wnt/β-catenin pathway. Thus, our results demonstrate that CMG2 promotes GC progression by maintaining GCSLCs and can serve as a new prognostic indicator and a target for human GC therapy.
Collapse
|
34
|
Xi HQ, Zhang KC, Li JY, Cui JX, Gao YH, Wei B, Huang D, Chen L. RNAi-mediated inhibition of Lgr5 leads to decreased angiogenesis in gastric cancer. Oncotarget 2018; 8:31581-31591. [PMID: 28404940 PMCID: PMC5458231 DOI: 10.18632/oncotarget.15770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/11/2017] [Indexed: 02/06/2023] Open
Abstract
Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) is a novel gastric cancer marker. However, it is unclear whether it can play roles in tumor angiogenesis. In this study, we aim to investigate the role of Lgr5 on gastric cancer angiogenesis. Lgr5, VEGF expression levels and microvessel density (MVD) were detected in tumor tissue. Then, Lgr5 mRNA was downregulated by small interference RNA technique. Western blotting and real-time quantitative PCR (qRT-PCR) were performed to detect the expression of Lgr5 and VEGF protein and mRNA in Lgr5 siRNA-transfected gastric cancer cells. The effect of silencing Lgr5 on angiogenesis was examined by assessing human umbilical vein endothelia cell (HUVEC) capillary tube formation. The results indicated that Lgr5 expression was upregulated in gastric cancer and positively correlated with VEGF (r=0.305, P=0.001) and MVD (r=0.312, P=0.001). Silencing of Lgr5 expression resulted in suppression of VEGF mRNA and protein (all P=0.001). Moreover, when HUVECs were stimulated with conditioned medium from Lgr5 siRNA-transfected gastric cancer cells, tube formation was significantly decreased (2.51 ± 0.19 mm/mm2) compared with the treatment with regular cell culture medium (DMEM) (7.34 ± 0.30 mm/mm2) or medium from control siRNA-transfected cells (7.18 ± 0.33 mm/mm2) (all P=0.001). In conclusion, Lgr5 plays important roles in angiogenesis. Lgr5-specific siRNA could be designed into an effective therapeutic agent to inhibit gastric cancer angiogenesis.
Collapse
Affiliation(s)
- Hong-Qing Xi
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Ke-Cheng Zhang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Ji-Yang Li
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Jian-Xin Cui
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Yun-He Gao
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Bo Wei
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Dongsheng Huang
- Department of General Surgery, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Lin Chen
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
35
|
Dame MK, Attili D, McClintock SD, Dedhia PH, Ouillette P, Hardt O, Chin AM, Xue X, Laliberte J, Katz EL, Newsome GM, Hill DR, Miller AJ, Tsai YH, Agorku D, Altheim CH, Bosio A, Simon B, Samuelson LC, Stoerker JA, Appelman HD, Varani J, Wicha MS, Brenner DE, Shah YM, Spence JR, Colacino JA. Identification, isolation and characterization of human LGR5-positive colon adenoma cells. Development 2018; 145:dev.153049. [PMID: 29467240 DOI: 10.1242/dev.153049] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 02/06/2018] [Indexed: 01/02/2023]
Abstract
The intestine is maintained by stem cells located at the base of crypts and distinguished by the expression of LGR5. Genetically engineered mouse models have provided a wealth of information about intestinal stem cells, whereas less is known about human intestinal stem cells owing to difficulty detecting and isolating these cells. We established an organoid repository from patient-derived adenomas, adenocarcinomas and normal colon, which we analyzed for variants in 71 colorectal cancer (CRC)-associated genes. Normal and neoplastic colon tissue organoids were analyzed by immunohistochemistry and fluorescent-activated cell sorting for LGR5. LGR5-positive cells were isolated from four adenoma organoid lines and were subjected to RNA sequencing. We found that LGR5 expression in the epithelium and stroma was associated with tumor stage, and by integrating functional experiments with LGR5-sorted cell RNA sequencing data from adenoma and normal organoids, we found correlations between LGR5 and CRC-specific genes, including dickkopf WNT signaling pathway inhibitor 4 (DKK4) and SPARC-related modular calcium binding 2 (SMOC2). Collectively, this work provides resources, methods and new markers to isolate and study stem cells in human tissue homeostasis and carcinogenesis.
Collapse
Affiliation(s)
- Michael K Dame
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Durga Attili
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Priya H Dedhia
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter Ouillette
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Olaf Hardt
- Miltenyi Biotec GmbH, Bergisch Gladbach, 51429, Germany
| | - Alana M Chin
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiang Xue
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Julie Laliberte
- Department of Research and Development, Progenity, Inc., Ann Arbor, MI 48109, USA
| | - Erica L Katz
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gina M Newsome
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - David R Hill
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alyssa J Miller
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - David Agorku
- Miltenyi Biotec GmbH, Bergisch Gladbach, 51429, Germany
| | - Christopher H Altheim
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andreas Bosio
- Miltenyi Biotec GmbH, Bergisch Gladbach, 51429, Germany
| | - Becky Simon
- BioCentury Publications, Redwood City, CA 94065, USA
| | - Linda C Samuelson
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jay A Stoerker
- Department of Research and Development, Progenity, Inc., Ann Arbor, MI 48109, USA
| | - Henry D Appelman
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - James Varani
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Max S Wicha
- Department of Internal Medicine, Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Dean E Brenner
- Department of Internal Medicine, Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yatrik M Shah
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jason R Spence
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA .,Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| |
Collapse
|
36
|
Xu X, Lv Q, Xie P, Wei S, Wang C. Study on the Relationship between Expression of LGR5 and Clinicopathological Characteristics in Gastric Cancer Patients. Health (London) 2018. [DOI: 10.4236/health.2018.101013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Kalantari E, Asadi Lari MH, Roudi R, Korourian A, Madjd Z. Lgr5High/DCLK1High phenotype is more common in early stage and intestinal subtypes of gastric carcinomas. Cancer Biomark 2017; 20:563-573. [DOI: 10.3233/cbm-170383] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Elham Kalantari
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Asadi Lari
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Raheleh Roudi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Korourian
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
|
39
|
Qin G, Lian J, Yue D, Chen X, Nan S, Qi Y, Li B, Cui G, Li X, Zhao S, Zhang Y. Musashi1, a potential prognostic marker in esophageal squamous cell carcinoma. Oncol Rep 2017; 38:1724-1732. [PMID: 28713964 PMCID: PMC5549024 DOI: 10.3892/or.2017.5809] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 06/21/2017] [Indexed: 12/11/2022] Open
Abstract
Esophageal cancer ranks as the sixth leading cause of cancer-related deaths worldwide. Cancer stemness is mainly considered to be the key factor for cancer recurrence particularly in esophageal cancer. It is important to identify cancer stem cell markers as targets in future therapies. The present study aimed to investigate the expression of putative cancer stem cell-related marker musashi1 (Msi1) and assess the correlation with clinicopathologcal status of esophageal squamous cell carcinoma (ESCC) cases. We then clarified the role of Msi1 in esophageal cancer cells during proliferation, apoptosis, sphere formation and migration. Finally, we investigated the relationship of Msi1 with the prognosis of ESCC patients. ESCC tissue samples from 93 patients and 20 paired histologically normal tissues were procured for immunohistochemical analysis. We analyzed the characteristics of Msi1, using sphere formation and anchorage independent growth. Moreover, using flow cytometry and Cell Counting Kit-8 (CCK-8) assay, we investigated the role of Msi1 in cancer cell proliferation and apoptosis. Furthermore, we clarified the role of Msi1 in the process of sphere formation and migration of ESCC cells through knockdown of Msi1 expression by siRNA in ESCC cell lines. The results revealed that there was a higher expression of Msi1 in ESCC specimens compared with normal tissues. In addition, Msi1 expression was significantly associated with clinical stage and lymph node metastasis. Most importantly, the increased immunocytochemical staining of Msi1 in spheroid cells revealed the stemness characteristics of Msi1 in ESCC. In addition, we found that silencing of Msi1 decreased cell proliferation, migration and induced apoptosis in TE-7 and KYSE70 cells. Furthermore, downregulation of Msi1 attenuated the sphere formation ability of ESCC cells. Patients with higher expression of Msi1 had a shorter survival. In conclusion, Msi1 acts as a stemness-associated gene in esophageal cancer cell lines and could serve as a prognostic marker in patients with ESCC.
Collapse
Affiliation(s)
- Guohui Qin
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Jingyao Lian
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Dongli Yue
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Xinfeng Chen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Shufeng Nan
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Yu Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Bing Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Guanghui Cui
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Xiangnan Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Song Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
40
|
Abstract
Cancer stem cells (CSCs), with their self-renewal ability and multilineage differentiation potential, are a critical subpopulation of tumor cells that can drive tumor initiation, growth, and resistance to therapy. Like embryonic and adult stem cells, CSCs express markers that are not expressed in normal somatic cells and are thus thought to contribute towards a 'stemness' phenotype. This review summarizes the current knowledge of stemness-related markers in human cancers, with a particular focus on important transcription factors, protein surface markers and signaling pathways.
Collapse
Affiliation(s)
- Wenxiu Zhao
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Yvonne Li
- Dana Farber cancer Institute and Harvard Medical School, Boston, Massachusetts 02115
| | - Xun Zhang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
41
|
Wilhelm F, Simon E, Böger C, Behrens HM, Krüger S, Röcken C. Novel Insights into Gastric Cancer: Methylation of R-spondins and Regulation of LGR5 by SP1. Mol Cancer Res 2017; 15:776-785. [PMID: 28219935 DOI: 10.1158/1541-7786.mcr-16-0472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/17/2017] [Accepted: 02/04/2017] [Indexed: 11/16/2022]
Abstract
Recently, it was shown that leucine-rich repeat-containing receptor 5 (LGR5)-expressing stem cells are the cellular origin of intestinal-type gastric cancer. The aim of our study was to uncover regulatory mechanisms of LGR5 expression in gastric mucosa and their implications for cancer development. Reporter assays identified an LGR5 promoter fragment, which is highly relevant for active LGR5 expression. Chromatin immunoprecipitation verified that SP1 is bound within this region, and reporter activity increased in SP1 transfected cells. Subsequently, the expression of R-spondins (RSPO1 and RSPO2), ligands of LGR5, was explored in neoplastic and nonneoplastic gastric tissue and gastric cancer cell lines. Using IHC, distinct spatial expression patterns of LGR5, RSPO1, and RSPO2 were found in nonneoplastic stomach mucosa and gastric cancer. RSPO expression was lower in gastric cancer compared with nonneoplastic mucosa on both the transcriptional (P = 0.003 for RSPO1 and P = 0.000 for RSPO2; n = 50) and the translational level. Methylation-specific PCR showed higher methylation levels of RSPO1/2 and reexpression of RSPOs in the gastric cancer cell lines MKN45 and MKN74 were induced by demethylating 5-aza-C treatment. Finally, expression patterns of LGR5 and RSPO were similar in gastric cancer.Implications: This report identifies a regulatory mechanism of LGR5 expression in gastric carcinogenesis, with SP1 as an important component of the transcriptional complex and LGR5 activity, which is modulated by its ligands RSPO1 and RSPO2, whose expression is modulated by methylation.Visual Overview: http://mcr.aacrjournals.org/content/15/6/776/F1.large.jpg. Mol Cancer Res; 15(6); 776-85. ©2017 AACR.
Collapse
Affiliation(s)
- Franziska Wilhelm
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| | - Eva Simon
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| | - Christine Böger
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| | | | - Sandra Krüger
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany.
| |
Collapse
|
42
|
Nakajima T, Uehara T, Maruyama Y, Iwaya M, Kobayashi Y, Ota H. Distribution of Lgr5-positive cancer cells in intramucosal gastric signet-ring cell carcinoma. Pathol Int 2017; 66:518-23. [PMID: 27593551 DOI: 10.1111/pin.12451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/19/2016] [Accepted: 07/28/2016] [Indexed: 01/10/2023]
Abstract
Leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5) is a putative intestinal stem cell marker that is also expressed in various tumors. To analyze its pathological characteristics in mucosal gastric signet-ring cell carcinoma (SRCC), we investigated Lgr5 expression in 35 intramucosal gastric SRCC patients using RNAscope, a newly developed RNA in situ hybridization technique. Lgr5 expression in individual tumor cells was scored semi-quantitatively from 0 to 400. Ki67 was also examined by immunohistochemistry, with a linear arrangement of Ki67-expressing cells present in 20 of 35 cases. This area of Ki67-expressing cells was topographically divided into upper, middle, and lower regions. All cases with linear Ki67 expression patterns also had Lgr5-positive cells arranged in a linear fashion in the lower area-which was distinct from the area of high Ki67 expression. The rate of Ki67 positivity in Lgr5-positive cells was significantly lower than that of Lgr5-negative cells in areas of high Ki67 expression. In intramucosal SRCC, the low mitotic activity of Lgr5-positive cells suggests that they may represent cancer stem cells as seen in other types of stomach carcinomas. Intramucosal SRCC may therefore contain stem cells expressing Lgr5 in the lower area of the lamina propria, akin to normal gastric pyloric mucosa.
Collapse
Affiliation(s)
- Tomoyuki Nakajima
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yasuhiro Maruyama
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Mai Iwaya
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yukihiro Kobayashi
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroyoshi Ota
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Biomedical Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
43
|
Zhang J, Xu K, Shi L, Zhang L, Zhao Z, Xu H, Liang F, Li H, Zhao Y, Xu X, Tian Y. Overexpression of MicroRNA-216a Suppresses Proliferation, Migration, and Invasion of Glioma Cells by Targeting Leucine-Rich Repeat-Containing G Protein-Coupled Receptor 5. Oncol Res 2017; 25:1317-1327. [PMID: 28256193 PMCID: PMC7840945 DOI: 10.3727/096504017x14874323871217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Increasing studies have suggested that microRNAs (miRNAs) are involved in the development of gliomas. MicroRNA-216a has been reported to be a tumor-associated miRNA in many types of cancer, either as an oncogene or as a tumor suppressor. However, little is known about the function of miR-216a in gliomas. The present study was designed to explore the potential role of miR-216a in gliomas. We found that miR-216a was significantly decreased in glioma tissues and cell lines. Overexpression of miR-216a significantly suppressed the proliferation, migration, and invasion of glioma cells. Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) was identified as a target gene of miR-216a in glioma cells by bioinformatics analysis, dual-luciferase reporter assay, real-time quantitative polymerase chain reaction, and Western blot analysis. Moreover, miR-216a overexpression inhibited the Wnt/β-catenin signaling pathway. The restoration of LGR5 expression markedly reversed the antitumor effect of miR-216a in glioma cells. Taken together, these findings suggest a tumor suppressor role for miR-216a in gliomas, which inhibits glioma cell proliferation, migration, and invasion by targeting LGR5. Our study suggests that miR-216a may serve as a potential therapeutic target for future glioma treatment.
Collapse
|
44
|
Distinct expression profile of stem cell markers, LGR5 and LGR6, in basaloid skin tumors. Virchows Arch 2017; 470:301-310. [DOI: 10.1007/s00428-016-2061-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/21/2016] [Accepted: 12/20/2016] [Indexed: 01/22/2023]
|
45
|
Choi YJ, Kim N, Lee HS, Park SM, Park JH, Yoon H, Shin CM, Park YS, Kim JW, Lee DH. Expression of Leucine-rich Repeat-containing G-protein Coupled Receptor 5 and CD44: Potential Implications for Gastric Cancer Stem Cell Marker. J Cancer Prev 2016; 21:279-287. [PMID: 28053963 PMCID: PMC5207613 DOI: 10.15430/jcp.2016.21.4.279] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The human leucine-rich repeat-containing G-protein coupled receptor (LGR) 5 and CD44 are one of the candidates for the marker of gastric cancer stem cells. We compared the expressions of two genes among control, dysplasia and cancer groups. METHODS We compared the mRNA expression of LGR5, CD44 and CD44v8-10 and immunohistochemistry (IHC) of LGR5 and CD44 in gastric antral mucosa of 45 controls, 36 patients with gastric dysplasia, and 39 patients with early gastric cancer. Additionally, IHC of LGR5 in gastric body mucosa was analyzed. Normal mucosa adjacent to dysplastic or cancer lesions was used for the quantitative real-time-PCR and IHC. RESULTS Immunoreactivity of LGR5 in base of antral mucosa was higher in non-cancerous tissues of cancer than those of control (P = 0.006), whereas the expression of LGR5 mRNA was not different among the three groups. Immunostaining of LGR5 was much stronger in the antrum than in the body of stomach (P < 0.001). Although there was no difference in antral immunointensity of LGR5 according to the severity of intestinal metaplasia, stronger immunostaining was found in the body with an aggravation of intestinal metaplasia (P trend < 0.001). The expression of CD44v8-10 mRNA was higher in cancer patients than control subjects and patients with dysplasia (P = 0.018 and 0.009) while the expression of CD44 mRNA was higher in the control groups than the others. CONCLUSIONS IHC of LGR5 in crypt base and CD44 may be used for gastric CSC markers. LGR5 expression may be associated with the developing of corporal intestinal metaplasia. The expression of CD44v8-10 mRNA would be more suitable for gastric cancer stem cell marker than CD44 or LGR5 mRNA.
Collapse
Affiliation(s)
- Yoon Jin Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea; Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seon Mee Park
- Department of Internal Medicine, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Korea
| | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Cheol Min Shin
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Young Soo Park
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jin-Wook Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
46
|
Vange P, Bruland T, Bakke I. Authors' reply - Re: Wang et al. Controversial role of the possible oxyntic stem cell marker ASPM in gastric cancer. J Pathol 2016; 241:562-563. [PMID: 27990644 DOI: 10.1002/path.4862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 12/08/2016] [Accepted: 12/14/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Pål Vange
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,The Central Norway Regional Health Authority (RHA), Norway
| | - Torunn Bruland
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,The Central Norway Regional Health Authority (RHA), Norway
| | - Ingunn Bakke
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,The Central Norway Regional Health Authority (RHA), Norway
| |
Collapse
|
47
|
López-Gómez M, Casado E, Muñoz M, Alcalá S, Moreno-Rubio J, D'Errico G, Jiménez-Gordo AM, Salinas S, Sainz B. Current evidence for cancer stem cells in gastrointestinal tumors and future research perspectives. Crit Rev Oncol Hematol 2016; 107:54-71. [PMID: 27823652 DOI: 10.1016/j.critrevonc.2016.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/22/2016] [Accepted: 08/17/2016] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) are a very heterogeneous subpopulation of "stem-like" cancer cells that have been identified in many cancers, including leukemias and solid tumors. It is believed that CSCs drive tumor growth, malignant behavior and are responsible for the initiation of metastatic spread. In addition, CSCs have been implicated in chemotherapy and radiotherapy resistance. Current evidence supports the theory that CSCs share at least two main features of normal stem cells: self-renewal and differentiation, properties that contribute to tumor survival even in the presence of aggressive chemotherapy; however, the mechanism(s) governing the unique biology of CSCs remain unclear. In the field of gastrointestinal cancer, where we face very low survival rates across different tumor types, unraveling the role of CSCs in gastrointestinal tumors should improve our knowledge of cancer biology and chemoresistance, ultimately benefiting patient survival. Towards this end, much effort is being invested in the characterization of CSCs as a means of overcoming drug resistance and controlling metastatic spread. In this review we will cover the concept of CSCs, the current evidence for CSCs in gastrointestinal tumors and future research directions.
Collapse
Affiliation(s)
- Miriam López-Gómez
- Medical Oncology Department, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain; Precision Oncology Laboratory, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain.
| | - Enrique Casado
- Medical Oncology Department, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain; Precision Oncology Laboratory, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain
| | - Marta Muñoz
- Pathological Anatomy Department, Infanta Sofía University Hospital, S.S Reyes, Madrid, Spain
| | - Sonia Alcalá
- Department of Biochemistry, Autónoma University of Madrid, Madrid, Spain; Cancer Biology Department, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Enfermedades Crónicas y Cáncer Area, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Juan Moreno-Rubio
- Precision Oncology Laboratory, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain
| | - Gabriele D'Errico
- Department of Biochemistry, Autónoma University of Madrid, Madrid, Spain
| | - Ana María Jiménez-Gordo
- Medical Oncology Department, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain; Precision Oncology Laboratory, Infanta Sofía University Hospital, S.S. Reyes, Madrid, Spain
| | - Silvia Salinas
- Pathological Anatomy Department, Infanta Sofía University Hospital, S.S Reyes, Madrid, Spain
| | - Bruno Sainz
- Department of Biochemistry, Autónoma University of Madrid, Madrid, Spain; Cancer Biology Department, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Enfermedades Crónicas y Cáncer Area, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
48
|
Wilhelm F, Böger C, Krüger S, Behrens HM, Röcken C. Troy is expressed in human stomach mucosa and a novel putative prognostic marker of intestinal type gastric cancer. Oncotarget 2016; 8:50557-50569. [PMID: 28881583 PMCID: PMC5584167 DOI: 10.18632/oncotarget.10672] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 06/01/2016] [Indexed: 02/07/2023] Open
Abstract
Epithelial stem cells of gastrointestinal tissues are characterized and controlled by an active Wnt signaling. Recently, the Wnt target gene Troy has been proposed as a neoplastic marker in the murine intestine. In this study, we explored the putative tumor biological significance of Troy in humans by using immunohistochemistry (104 cases), quantitative RT-PCR (50 cases) and cell culture experiments (MKN45, MKN74). In the non-neoplastic gastric mucosa, Troy was expressed by Muc5AC-positive foveolar epithelium, parietal cells, chief cells and cells of the intestinal metaplasia. In gastric cancer, Troy was found in the desmoplastic stroma and tumor cells. The overall staining intensity of the tumor cells was lower compared with the adjacent non-neoplastic mucosa, Troy was found significantly more commonly in intestinal compared with diffuse type gastric cancer (p=0.001) and correlated inversely with tumor grade (p<0.001) and nodal spread (p=0.025). In the intestinal type, loss of Troy-expression was associated with a significantly worse overall survival (p=0.006). Subsequent cell culture experiments showed a Wnt dependent expression of Troy and a reduced colony formation ability of Troy-overexpressing MKN45-cells. Our results lead to the conjecture that Troy is also a negative regulator of WNT signaling in gastric cancer, which affects patient outcome.
Collapse
Affiliation(s)
- Franziska Wilhelm
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| | - Christine Böger
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| | - Sandra Krüger
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| | | | - Christoph Röcken
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
49
|
Jang BG, Lee BL, Kim WH. Prognostic significance of leucine-rich-repeat-containing G-protein-coupled receptor 5, an intestinal stem cell marker, in gastric carcinomas. Gastric Cancer 2016; 19:767-77. [PMID: 26386561 DOI: 10.1007/s10120-015-0543-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 09/07/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cells expressing LGR5, an intestinal stem cell marker, have been suggested as cancer stem cells in human colon cancers. Previously, we discovered that LGR5-expressing cells exist in the gastric antrum and remarkably increase in number in intestinal metaplasia. In addition, most gastric adenomas contain abundant LGR5-expressing cells coexpressing intestinal stem cell signatures. However, LGR5 expression in gastric cancers (GCs) and its prognostic significance remain unknown. METHODS We examined the LGR5 expression in GC tissues by real time-PCR and RNA in situ hybridization, and analyzed its clinicopathological relevance and prognostic value. The effects of LGR5 on cancer cell proliferation and migration were assessed with an in vitro transfection technique. RESULTS LGR5 expression was significantly lower in GCs than in matched nontumorous gastric mucosa. RNA in situ hybridization on tissue microarrays showed that 7 % of GCs were positive for LGR5. LGR5 positivity was associated with old age, well to moderate differentiation, and nuclear β-catenin positivity. Although LGR5 did not show any prognostic significance for all GC cases, it was associated with poor survival in GCs with nuclear β-catenin expression. LGR5 expression was induced by transfection in GC cell lines with abnormal Wnt activation, which, however, showed no influence on the growth and migration of GC cells. CONCLUSION A small portion of GCs expressed LGR5. Although LGR5 was associated with poor survival in GCs with nuclear β-catenin, LGR5 expression in GC cells had no effects on the growth and migration, requiring a further study exploring a biological role of LGR5 in GCs.
Collapse
Affiliation(s)
- Bo Gun Jang
- Department of Pathology, Jeju National University Hospital, Jeju, Korea
| | - Byung Lan Lee
- Department of Anatomy, Seoul National University College of Medicine, 28 Yeongeon-dong, Jongno-gu, Seoul, 110-799, Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, 28 Yeongeon-dong, Jongno-gu, Seoul, 110-799, Korea.
| |
Collapse
|
50
|
Hayakawa Y, Sethi N, Sepulveda AR, Bass AJ, Wang TC. Oesophageal adenocarcinoma and gastric cancer: should we mind the gap? Nat Rev Cancer 2016; 16:305-18. [PMID: 27112208 DOI: 10.1038/nrc.2016.24] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over recent decades we have witnessed a shift in the anatomical distribution of gastric cancer (GC), which increasingly originates from the proximal stomach near the junction with the oesophagus. In parallel, there has been a dramatic rise in the incidence of oesophageal adenocarcinoma (OAC) in the lower oesophagus, which is associated with antecedent Barrett oesophagus (BO). In this context, there has been uncertainty regarding the characterization of adenocarcinomas spanning the area from the lower oesophagus to the distal stomach. Most relevant to this discussion is the distinction, if any, between OAC and intestinal-type GC of the proximal stomach. It is therefore timely to review our current understanding of OAC and intestinal-type GC, integrating advances from cell-of-origin studies and comprehensive genomic alteration analyses, ultimately enabling better insight into the relationship between these two cancers.
Collapse
Affiliation(s)
- Yoku Hayakawa
- Division of Digestive and Liver Diseases and Herbert Irving Cancer Research Center, Columbia University College of Physicians and Surgeons, 1130 St Nicholas Avenue, New York, New York 10032, USA
| | - Nilay Sethi
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Antonia R Sepulveda
- Division of Clinical Pathology and Cell Biology, Department of Pathology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases and Herbert Irving Cancer Research Center, Columbia University College of Physicians and Surgeons, 1130 St Nicholas Avenue, New York, New York 10032, USA
| |
Collapse
|