1
|
Conley J, Genenger B, Ashford B, Ranson M. Micro RNA Dysregulation in Keratinocyte Carcinomas: Clinical Evidence, Functional Impact, and Future Directions. Int J Mol Sci 2024; 25:8493. [PMID: 39126067 PMCID: PMC11313315 DOI: 10.3390/ijms25158493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The keratinocyte carcinomas, basal cell carcinoma (BCC), and cutaneous squamous cell carcinoma (cSCC), are the most common cancers in humans. Recently, an increasing body of literature has investigated the role of miRNAs in keratinocyte carcinoma pathogenesis, progression and their use as therapeutic agents and targets, or biomarkers. However, there is very little consistency in the literature regarding the identity of and/or role of individual miRNAs in cSCC (and to a lesser extent BCC) biology. miRNA analyses that combine clinical evidence with experimental elucidation of targets and functional impact provide far more compelling evidence than studies purely based on clinical findings or bioinformatic analyses. In this study, we review the clinical evidence associated with miRNA dysregulation in KCs, assessing the quality of validation evidence provided, identify gaps, and provide recommendations for future studies based on relevant studies that investigated miRNA levels in human cSCC and BCC. Furthermore, we demonstrate how miRNAs contribute to the regulation of a diverse network of cellular functions, and that large-scale changes in tumor cell biology can be attributed to miRNA dysregulation. We highlight the need for further studies investigating the role of miRNAs as communicators between different cell types in the tumor microenvironment. Finally, we explore the clinical benefits of miRNAs as biomarkers of keratinocyte carcinoma prognosis and treatment.
Collapse
Affiliation(s)
- Jessica Conley
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2500, Australia; (J.C.); (B.G.)
| | - Benjamin Genenger
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2500, Australia; (J.C.); (B.G.)
| | - Bruce Ashford
- Illawarra Shoalhaven Local Health District (ISLHD), NSW Health, Wollongong, NSW 2500, Australia;
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Marie Ranson
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2500, Australia; (J.C.); (B.G.)
| |
Collapse
|
2
|
Yang L, Wu W, Lyu L, Tu Y, Gu H, Chen X, Chai Y, Man M, He L. MiRNA-224-5p regulates the defective permeability barrier in sensitive skin by targeting claudin-5. Skin Res Technol 2024; 30:e13720. [PMID: 38743384 PMCID: PMC11093069 DOI: 10.1111/srt.13720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/14/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Sensitive skin is hypersensitive to various external stimuli and a defective epidermal permeability barrier is an important clinical feature of sensitive skin. Claudin-5 (CLDN5) expression levels decrease in sensitive skin. This study aimed to explore the impact of CLDN5 deficiency on the permeability barrier in sensitive skin and the regulatory role of miRNAs in CLDN5 expression. MATERIALS AND METHODS A total of 26 patients were retrospectively enrolled, and the CLDN5 expression and permeability barrier dysfunction in vitro were assessed. Then miRNA-224-5p expression was also assessed in sensitive skin. RESULTS Immunofluorescence and electron microscopy revealed reduced CLDN5 expression, increased miR-224-5p expression, and disrupted intercellular junctions in sensitive skin. CLDN5 knockdown was associated with lower transepithelial electrical resistance (TEER) and Lucifer yellow penetration in keratinocytes and organotypic skin models. The RNA-seq and qRT-PCR results indicated elevated miR-224-5p expression in sensitive skin; MiR-224-5p directly interacted with the 3`UTR of CLDN5, resulting in CLDN5 deficiency in the luciferase reporter assay. Finally, miR-224-5p reduced TEER in keratinocyte cultures. CONCLUSION These results suggest that the miR-224-5p-induced reduction in CLDN5 expression leads to impaired permeability barrier function, and that miR-224-5p could be a potential therapeutic target for sensitive skin.
Collapse
Affiliation(s)
- Li Yang
- Department of DermatologyFirst Affiliated Hospital of Kunming Medical University, Institute of Dermatology & Venereology of Yunnan ProvinceKunmingChina
- Department of DermatologyPeople's Hospital of Henan ProvinceZhengzhouChina
| | - Wen‐Juan Wu
- Department of DermatologyFirst Affiliated Hospital of Kunming Medical University, Institute of Dermatology & Venereology of Yunnan ProvinceKunmingChina
| | - Le‐Chun Lyu
- Department of DermatologyFirst Affiliated Hospital of Kunming Medical University, Institute of Dermatology & Venereology of Yunnan ProvinceKunmingChina
- Department of PhysiologyKunming Medical UniversityKunmingChina
| | - Ying Tu
- Department of DermatologyFirst Affiliated Hospital of Kunming Medical University, Institute of Dermatology & Venereology of Yunnan ProvinceKunmingChina
| | - Hua Gu
- Department of DermatologyFirst Affiliated Hospital of Kunming Medical University, Institute of Dermatology & Venereology of Yunnan ProvinceKunmingChina
| | - Xiang‐Feng Chen
- Department of DermatologyFirst Affiliated Hospital of Kunming Medical University, Institute of Dermatology & Venereology of Yunnan ProvinceKunmingChina
| | - Yan‐Jie Chai
- Department of DermatologyFirst Affiliated Hospital of Kunming Medical University, Institute of Dermatology & Venereology of Yunnan ProvinceKunmingChina
| | - Mao‐Qiang Man
- Dermatology ServiceVeterans Affairs Medical Centerand Department of DermatologyUniversity of CaliforniaSan FranciscoUSA
| | - Li He
- Department of DermatologyFirst Affiliated Hospital of Kunming Medical University, Institute of Dermatology & Venereology of Yunnan ProvinceKunmingChina
- Skin Health Research CenterYunnan Characteristic Plant Extraction LaboratoryKunmingChina
| |
Collapse
|
3
|
Feng H, Hu X, Yan R, Jia X, Feng H, Zhang N, Chen X. MicroRNA-124 plays an inhibitory role in cutaneous squamous cell carcinoma cells via targeting SNAI2, an immunotherapy determinant. Heliyon 2024; 10:e24671. [PMID: 38317973 PMCID: PMC10839798 DOI: 10.1016/j.heliyon.2024.e24671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
MicroRNAs (miRs) play multiple roles during cutaneous squamous cell carcinoma (CSCC) progression. Previous studies suggest miR-124 could inhibit cancer development in CSCC. METHODS Obtained 63 pairs of CSCC and adjacent tissues for analysis. Cultured HaCaT and two CSCC cell lines (A431 and SCL-1) in DMEM (10 % FBS). Transfected cells using Lipofectamine 2000 with various miR-124 mimics, inhibitors, or Snail family transcriptional repressor 2 (SNAI2) expression plasmid. Performed a series of assays, including real-time quantitative PCR, Western blot, CCK8, wound healing, transwell, and luciferase reporter gene assay, to examine the effects of miR-124 on CSCC cells. RESULTS An evident downregulation of miR-124 in CSCC tissues, which was related to advanced disease stage and nodal metastasis. Overexpressing miR-124 could reduce the proliferation, migration, and invasion abilities of CSCC cells. It was verified that miR-124 targets the SNAI2 in CSCC cells. Moreover, ectopic expression of SNAI2 rescued the suppressive effects on CSCC cells induced by miR-124 overexpression. Furthermore, miR-124 increased cell sensitivity to cisplatin. Besides, SNAI2 is a critical factor in the immune-related aspects of CSCC and its modulation may influence the response to immunotherapy. CONCLUSION We demonstrate that miR-124 inhibits CSCC progression through downregulating SNAI2, and thus it may be a molecular candidate for treating CSCC in the clinic.
Collapse
Affiliation(s)
- Hao Feng
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, 410000, China
| | - Xing Hu
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, 410000, China
| | - Renli Yan
- Surgery Center of Women and Children's Hospital, Qingdao University, Qingdao, Shandong, China
| | - Xiaomin Jia
- Department of Pathology, Lhasa People's Hospital, Lhasa, 850, Tibet, 850000, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Nan Zhang
- Department of Medical Cosmetology, The First People's Hospital of Changde City, Changde, Hunan Province, 415000, China
| | - Xiao Chen
- Department of Medical Cosmetology, The First People's Hospital of Changde City, Changde, Hunan Province, 415000, China
| |
Collapse
|
4
|
Yu H, Liu P, Chen T. CircIFFO1 suppresses tumor growth and metastasis of cutaneous squamous cell carcinoma by targeting the miR-424-5p/NFIB axis. Arch Dermatol Res 2023; 315:2585-2596. [PMID: 37405427 DOI: 10.1007/s00403-023-02659-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 06/18/2023] [Indexed: 07/06/2023]
Abstract
Cutaneous squamous cell carcinoma (CSCC) is a severe malignancy derived from the skin. Circular RNAs (circRNAs) play an important role in the pathological process of many malignant tumors. Moreover, circIFFO1 is reported to be down-regulated in CSCC tissues compared with non-lesional skin tissues. This study aimed to explore the specific role and potential mechanism of circIFFO1 in CSCC progression. Cell proliferation ability was analyzed by 3-(4, 5-dimethylthiazol-2-y1)-2,5-diphenyl tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU) incorporation, and colony-formation assays. Cell cycle progression and apoptosis were detected by flow cytometry. Cell migration and invasion were examined by transwell assays. The interaction between microRNA-424-5p (miR-424-5p) and circIFFO1 or nuclear factor I/B (NFIB) was validated by dual-luciferase reporter, RNA pull-down, and RNA immunoprecipitation (RIP) assays. Xenograft tumor assay and immunohistochemistry (IHC) assay were employed to analyze the tumorigenesis in vivo. CircIFFO1 level was down-regulated in CSCC tissues and cell lines. CircIFFO1 overexpression suppressed the proliferation, migration, invasion, and promoted apoptosis of CSCC cells. CircIFFO1 acted as a molecular sponge for miR-424-5p. The anti-tumor effects mediated by circIFFO1 overexpression in CSCC cells could be reversed by miR-424-5p overexpression. miR-424-5p interacted with the 3' untranslated region (3'UTR) of Nuclear Factor I/B (NFIB). miR-424-5p knockdown suppressed the malignant behaviors of CSCC cells, and NFIB knockdown counteracted the anti-tumor effects of miR-424-5p absence in CSCC cells. Additionally, circIFFO1 overexpression restrained xenograft tumor growth in vivo. CircIFFO1 suppressed the malignant behaviors of CSCC by mediating the miR-424-5p/NFIB axis, which provided new insights into the pathogenesis of CSCC.
Collapse
Affiliation(s)
- Hui Yu
- Department of Pathology, Huangdao District Central Hospital, Qingdao, China
| | - Penglin Liu
- Department of Anorectal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tianli Chen
- Department of Dermatology, Huangdao District Central Hospital, No. 9 Huangpujiang Road, Huangdao District, Qingdao City, 266555, Shandong Province, China.
| |
Collapse
|
5
|
Abatti LE, Lado-Fernández P, Huynh L, Collado M, Hoffman M, Mitchell J. Epigenetic reprogramming of a distal developmental enhancer cluster drives SOX2 overexpression in breast and lung adenocarcinoma. Nucleic Acids Res 2023; 51:10109-10131. [PMID: 37738673 PMCID: PMC10602899 DOI: 10.1093/nar/gkad734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023] Open
Abstract
Enhancer reprogramming has been proposed as a key source of transcriptional dysregulation during tumorigenesis, but the molecular mechanisms underlying this process remain unclear. Here, we identify an enhancer cluster required for normal development that is aberrantly activated in breast and lung adenocarcinoma. Deletion of the SRR124-134 cluster disrupts expression of the SOX2 oncogene, dysregulates genome-wide transcription and chromatin accessibility and reduces the ability of cancer cells to form colonies in vitro. Analysis of primary tumors reveals a correlation between chromatin accessibility at this cluster and SOX2 overexpression in breast and lung cancer patients. We demonstrate that FOXA1 is an activator and NFIB is a repressor of SRR124-134 activity and SOX2 transcription in cancer cells, revealing a co-opting of the regulatory mechanisms involved in early development. Notably, we show that the conserved SRR124 and SRR134 regions are essential during mouse development, where homozygous deletion results in the lethal failure of esophageal-tracheal separation. These findings provide insights into how developmental enhancers can be reprogrammed during tumorigenesis and underscore the importance of understanding enhancer dynamics during development and disease.
Collapse
Affiliation(s)
- Luis E Abatti
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Patricia Lado-Fernández
- Laboratory of Cell Senescence, Cancer and Aging, Health Research Institute of Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
- Department of Physiology and Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Linh Huynh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Manuel Collado
- Laboratory of Cell Senescence, Cancer and Aging, Health Research Institute of Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Michael M Hoffman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Liu F, Li S. Non-coding RNAs in skin cancers:Biological roles and molecular mechanisms. Front Pharmacol 2022; 13:934396. [PMID: 36034860 PMCID: PMC9399465 DOI: 10.3389/fphar.2022.934396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cutaneous malignancies, including basal cell carcinoma, cutaneous squamous cell carcinoma, and cutaneous melanoma, are common human tumors. The incidence of cutaneous malignancies is increasing worldwide, and the leading cause of death is malignant invasion and metastasis. The molecular biology of oncogenes has drawn researchers’ attention because of the potential for targeted therapies. Noncoding RNAs, including microRNAs, long noncoding RNAs, and circular RNAs, have been studied extensively in recent years. This review summarizes the aspects of noncoding RNAs related to the metastasis mechanism of skin malignancies. Continuous research may facilitate the identification of new therapeutic targets and help elucidate the mechanism of tumor metastasis, thus providing new opportunities to improve the survival rate of patients with skin malignancies.
Collapse
|
7
|
Lou C, Shi J, Xu Q. Exosomal miR-626 promotes the malignant behavior of oral cancer cells by targeting NFIB. Mol Biol Rep 2022; 49:4829-4840. [PMID: 35711020 DOI: 10.1007/s11033-022-07336-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Tumor-derived exosomes, as emerging regulators of intercellular communication, are important for tumorigenesis and development in multiple tumors. The purpose of this study was to investigate whether exosomal miR-626 exists. More importantly, if exosomal miR-626 exists, the mechanism by which it is transferred into neighboring cancer cells and contributes to tumor progression needs to be clarified. METHODS AND RESULTS The expression of miRNA and mRNA are analyzed by RT-qPCR. Proliferation, colony formation, wound healing, cell cycle are carried out to assess the function of exosomal miR-626. Furthermore, a xenograft experiment is utilized to conform the cancer-promoting role of exosomal miR-626 in oral cancer. Here, we showed that miR-626 is upregulated in oral cancer-derived exosomes and can be transferred between oral cancer cells. Exosomal miR-626 promotes cancer cell proliferation, colony formation, migration and G0/G1-to-S phase transition. Nuclear factor I/B (NFIB), a tumor suppressor gene in various cancers, was predicted to be a potential target of miR-626 by using three algorithms. Luciferase reporter assay data revealed that miR-626 can directly bind to the 3'-UTR of NFIB and subsequently suppress its expression and downstream signaling. Restoration of NFIB expression rescued the malignant phenotype induced by exosomal miR-626. In addition, exosomal miR-626 administration facilitated cancer growth in a xenograft tumor model, accompanied by downregulation of NFIB expression. CONCLUSIONS Our data demonstrate that exosomal miR-626 can facilitate the development of oral cancer by inhibiting the expression of its target NFIB. Exosomal miR-626 might be a therapeutic target for oral cancer.
Collapse
Affiliation(s)
- Chao Lou
- Department of Oral and Maxillofacial-Head Neck Oncology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road 639, 200011, Shanghai, China
| | - Jianbo Shi
- Department of Oral and Maxillofacial-Head Neck Oncology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road 639, 200011, Shanghai, China.
| | - Qin Xu
- Department of Oral and Maxillofacial-Head Neck Oncology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road 639, 200011, Shanghai, China.
| |
Collapse
|
8
|
Lee JS, Kim GH, Lee JH, Ryu JY, Oh EJ, Kim HM, Kwak S, Hur K, Chung HY. MicroRNA-365a/b-3p as a Potential Biomarker for Hypertrophic Scars. Int J Mol Sci 2022; 23:ijms23116117. [PMID: 35682793 PMCID: PMC9181131 DOI: 10.3390/ijms23116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 11/29/2022] Open
Abstract
The clinical aspects of hypertrophic scarring vary according to personal constitution and body part. However, the mechanism of hypertrophic scar (HS) formation remains unclear. MicroRNAs (miRNAs) are known to contribute to HS formation, however, their detailed role remains unknown. In this study, candidate miRNAs were identified and analyzed as biomarkers of hypertrophic scarring for future clinical applications. HSfibroblasts and normal skin fibroblasts from patients were used for profiling and validation of miRNAs. An HS mouse model with xenografted human skin on nude mice was established. The miRNA expression between normal human, normal mouse, and mouse HS skin tissues was compared. Circulating miRNA expression levels in the serum of normal mice and mice with HSs were also analyzed. Ten upregulated and twenty-one downregulated miRNAs were detected. Among these, miR-365a/b-3p and miR-16-5p were identified as candidate miRNAs with statistically significant differences; miR-365a/b-3p was significantly upregulated (p = 0.0244). In mouse studies, miR-365a/b-3p expression levels in skin tissue and serum were higher in mice with HSs than in the control group. These results indicate that miRNAs contribute to hypertrophic scarring and that miR-365a/b-3p may be considered a potential biomarker for HS formation.
Collapse
Affiliation(s)
- Joon Seok Lee
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.S.L.); (J.H.L.); (J.Y.R.); (E.J.O.); (H.M.K.)
| | - Gyeong Hwa Kim
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41199, Korea;
- CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Jong Ho Lee
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.S.L.); (J.H.L.); (J.Y.R.); (E.J.O.); (H.M.K.)
| | - Jeong Yeop Ryu
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.S.L.); (J.H.L.); (J.Y.R.); (E.J.O.); (H.M.K.)
| | - Eun Jung Oh
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.S.L.); (J.H.L.); (J.Y.R.); (E.J.O.); (H.M.K.)
- CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Hyun Mi Kim
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.S.L.); (J.H.L.); (J.Y.R.); (E.J.O.); (H.M.K.)
- CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Suin Kwak
- BK21 FOUR KNU Convergence Educational Program of Biomedical Science for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41199, Korea;
| | - Keun Hur
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41199, Korea;
- CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Science for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41199, Korea;
- Correspondence: (K.H.); (H.Y.C.); Tel.: +82-53-420-4821 (K.H.); +82-53-420-5692 (H.Y.C.); Fax: +82-53-422-1466 (K.H.); +82-53-425-3879 (H.Y.C.)
| | - Ho Yun Chung
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (J.S.L.); (J.H.L.); (J.Y.R.); (E.J.O.); (H.M.K.)
- CMRI, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Science for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41199, Korea;
- Kyungpook National University Bio-Medical Research Institute, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (K.H.); (H.Y.C.); Tel.: +82-53-420-4821 (K.H.); +82-53-420-5692 (H.Y.C.); Fax: +82-53-422-1466 (K.H.); +82-53-425-3879 (H.Y.C.)
| |
Collapse
|
9
|
Transcriptional Regulation of RIP2 Gene by NFIB Is Associated with Cellular Immune and Inflammatory Response to APEC Infection. Int J Mol Sci 2022; 23:ijms23073814. [PMID: 35409172 PMCID: PMC8998712 DOI: 10.3390/ijms23073814] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Avian pathogenic E. coli (APEC) can cause localized or systemic infection, resulting in large economic losses per year, and impact health of humans. Previous studies showed that RIP2 (receptor interacting serine/threonine kinase 2) and its signaling pathway played an important role in immune response against APEC infection. In this study, chicken HD11 cells were used as an in vitro model to investigate the function of chicken RIP2 and the transcription factor binding to the RIP2 core promoter region via gene overexpression, RNA interference, RT-qPCR, Western blotting, dual luciferase reporter assay, CHIP-PCR, CCK-8, and flow cytometry assay following APEC stimulation. Results showed that APEC stimulation promoted RIP2 expression and cells apoptosis, and inhibited cells viability. Knockdown of RIP2 significantly improved cell viability and suppressed the apoptosis of APEC-stimulated cells. Transcription factor NFIB (Nuclear factor I B) and GATA1 (globin transcription factor 1) binding site was identified in the core promoter region of RIP2 from −2300 bp to −1839 bp. However, only NFIB was confirmed to be bound to the core promoter of RIP2. Overexpression of NFIB exacerbated cell injuries with significant reduction in cell viability and increased cell apoptosis and inflammatory cytokines levels, whereas opposite results were observed in NFIB inhibition treatment group. Moreover, RIP2 was up-regulated by NFIB overexpression, and RIP2 silence mitigated the effect of NFIB overexpression in cell apoptosis, inflammation, and activation of NFκB signaling pathways. This study demonstrated that NFIB overexpression accelerated APEC-induced apoptosis and inflammation via up-regulation of RIP2 mediated downstream pathways in chicken HD11 cells.
Collapse
|
10
|
Droll S, Bao X. Oh, the Mutations You'll Acquire! A Systematic Overview of Cutaneous Squamous Cell Carcinoma. Cell Physiol Biochem 2021; 55:89-119. [PMID: 34553848 PMCID: PMC8579759 DOI: 10.33594/000000433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 12/15/2022] Open
Abstract
Nearly two million cases of cutaneous squamous cell carcinoma (cSCC) are diagnosed every year in the United States alone. cSCC is notable for both its prevalence and its propensity for invasion and metastasis. For many patients, surgery is curative. However, patients experiencing immunosuppression or recurrent, advanced, and metastatic disease still face limited therapeutic options and significant mortality. cSCC forms after decades of sun exposure and possesses the highest known mutation rate of all cancers. This mutational burden complicates efforts to identify the primary factors driving cSCC initiation and progression, which in turn hinders the development of targeted therapeutics. In this review, we summarize the mutations and alterations that have been observed in patients’ cSCC tumors, affecting signaling pathways, transcriptional regulators, and the microenvironment. We also highlight novel therapeutic opportunities in development and clinical trials.
Collapse
Affiliation(s)
- Stephenie Droll
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Xiaomin Bao
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA, .,Department of Dermatology, Northwestern University, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
11
|
Su CM, Hsu TW, Sung SY, Huang MT, Chen KC, Huang CY, Chiang CY, Su YH, Chen HA, Liao PH. AXL is crucial for E1A-enhanced therapeutic efficiency of EGFR tyrosine kinase inhibitors through NFI in breast cancer. ENVIRONMENTAL TOXICOLOGY 2021; 36:1278-1287. [PMID: 33734566 DOI: 10.1002/tox.23125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
AXL which is a chemosensitizer protein for breast cancer cells in response to epidermal growth factor receptor-tyrosine kinase inhibitor and suppresses tumor growth. The clinical information show nuclear factor I (NFI)-C and NFI-X expression correlate with AXL expression in breast cancer patients. Following, we establish serial deletions of AXL promoter to identify regions required for Adenovirus-5 early region 1A (E1A)-mediated AXL suppression. All of the NFI family members were extensively studied for their expression and functions in regulating AXL. Moreover, E1A post-transcriptionally downregulates AXL expression through NFI. NFI-C and NFI-X, not NFI-A and NFI-B, resulting in cell death in response to EGFR-TKI. Our finding suggests that NFI-C and NFI-X are crucial regulators for AXL and significantly correlated with poor survival of breast cancer patients.
Collapse
Affiliation(s)
- Chih-Ming Su
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine Taipei Medical University, Taipei City, Taiwan
| | - Tung-Wei Hsu
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Shian-Ying Sung
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, New Taipei City, Taiwan
| | - Ming-Te Huang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine Taipei Medical University, Taipei City, Taiwan
| | - Kuan-Chou Chen
- Department of sport and physical education, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chien Yi Chiang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yen-Hao Su
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine Taipei Medical University, Taipei City, Taiwan
| | - Hsin-An Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine Taipei Medical University, Taipei City, Taiwan
| | - Po-Hsiang Liao
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
12
|
Assessment of MicroRNA (miR)-365 Effects on Oral Squamous Carcinoma Cell Line Phenotypes. Biomolecules 2021; 11:biom11060874. [PMID: 34204617 PMCID: PMC8231162 DOI: 10.3390/biom11060874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
miR-365 is a microRNA that regulates transcription and has been demonstrated to promote oncogenesis and metastasis in some cancers while suppressing these effects in others. Virtually no information is known about the presence or function of miR-365 in oral cancers. Based upon this information, the primary goal of this project was to evaluate the expression of miR-365 in existing oral cancer cell lines. Five commercially available oral cancer cell lines (SCC4, SCC9, SCC15, SCC25, and CAL27) were obtained and cultured. RNA was then screened by PCR using primers specific for miR-365, as well as matrix metalloproteinase (MMP-2) and a downstream cancer stem cell regulator (NKX2.1), and structural and metabolic standards (beta actin, GAPDH). miR-365 was detected among these oral cancers, and some cells also expressed NKX2.1 and MMP-2, which correlated with miR-365 levels. The relative expression of miR-365, NKX2.1, and MMP-2 RNA was higher than expected. Transfection of miR-365 resulted in a significant increase in proliferation, which was not observed in the negative controls. These data appear to confirm miR-365 expression in oral cancers, which may also be correlated with MMP-2 and NKX2.1 expression. Moreover, the fastest growing oral cancers with the highest viability produced the most miR-365. In addition, miR-365 transfected into cells significantly increased growth, even in normal cells. More research is needed to elucidate the pathways responsible for these observations.
Collapse
|
13
|
Chen P, Li C, Huang H, Liang L, Zhang J, Li Q, Wang Q, Zhang S, Zeng K, Zhang X, Liang J. Circular RNA profiles and the potential involvement of down-expression of hsa_circ_0001360 in cutaneous squamous cell carcinogenesis. FEBS Open Bio 2021; 11:1209-1222. [PMID: 33569895 PMCID: PMC8016141 DOI: 10.1002/2211-5463.13114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/27/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Circular RNAs (circRNAs) act as sponges of noncoding RNAs and have been implicated in many pathophysiological processes, including tumor development and progression. However, their roles in cutaneous squamous cell carcinoma (cSCC) are not yet well understood. This study aimed to identify differentially expressed circRNAs and their potential functions in cutaneous squamous cell carcinogenesis. The expression profiles of circRNAs in three paired cSCC and adjacent nontumorous tissues were detected with RNA sequencing and bioinformatics analysis. The candidate circRNAs were validated by PCR, Sanger sequencing and quantitative RT‐PCR in another five matched samples. The biological functions of circRNAs in SCL‐1 cells were assessed using circRNA silencing and overexpression, 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenyl)‐2H‐tetrazolium inner salt (MTS), flow cytometry, transwell and colony formation assays. In addition, the circRNA–miRNA–mRNA interaction networks were predicted by bioinformatics. In summary, 1115 circRNAs, including 457 up‐regulated and 658 down‐regulated circRNAs (fold change ≥ 2 and P < 0.05), were differentially expressed in cSCC compared with adjacent nontumorous tissues. Of four selected circRNAs, two circRNAs (hsa_circ_0000932 and hsa_circ_0001360) were confirmed to be significantly decreased in cSCC using PCR, Sanger sequencing and quantitative RT‐PCR. Furthermore, hsa_circ_0001360 silencing was found to result in a significant increase of the proliferation, migration and invasion but a significant decrease of apoptosis in SCL‐1 cells in vitro, whereas hsa_circ_0001360 overexpression showed the opposite regulatory effects. hsa_circ_0001360 was predicted to interact with five miRNAs and their corresponding genes. In conclusion, circRNA dysregulation may play a critical role in carcinogenesis of cSCC, and hsa_circ_0001360 may have potential as a biomarker for cSCC.
Collapse
Affiliation(s)
- Pingjiao Chen
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changxing Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | - Liuping Liang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Zhang
- Institute of Dermatology, Guangzhou Medical University, China.,Department of Dermatology, Guangzhou Institute of Dermatology, China
| | - Qian Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qi Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sanquan Zhang
- Institute of Dermatology, Guangzhou Medical University, China.,Department of Dermatology, Guangzhou Institute of Dermatology, China
| | - Kang Zeng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xibao Zhang
- Institute of Dermatology, Guangzhou Medical University, China.,Department of Dermatology, Guangzhou Institute of Dermatology, China
| | - Jingyao Liang
- Institute of Dermatology, Guangzhou Medical University, China.,Department of Dermatology, Guangzhou Institute of Dermatology, China
| |
Collapse
|
14
|
Hao D, Wang X, Wang X, Thomsen B, Yang Y, Lan X, Huang Y, Chen H. MicroRNA bta-miR-365-3p inhibits proliferation but promotes differentiation of primary bovine myoblasts by targeting the activin A receptor type I. J Anim Sci Biotechnol 2021; 12:16. [PMID: 33431058 PMCID: PMC7802253 DOI: 10.1186/s40104-020-00528-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/18/2020] [Indexed: 12/29/2022] Open
Abstract
Background MicroRNAs act as post-transcriptional regulators that repress translation or degrade mRNA transcripts. Each microRNA has many mRNA targets and each mRNA may be targeted by several microRNAs. Skeletal muscles express a plethora of microRNA genes that regulate muscle development and function by controlling the expression of protein-coding target genes. To expand our understanding of the role of microRNA, specifically bta-miR-365-3p, in muscle biology, we investigated its functions in regulating primary bovine myoblast proliferation and differentiation. Results Firstly, we found that bta-miR-365-3p was predominantly expressed in skeletal muscle and heart tissue in Chinese Qinchuan beef cattle. Quantitative PCR and western blotting results showed that overexpression of bta-miR-365-3p significantly reduced the expression levels of cyclin D1 (CCND1), cyclin dependent kinase 2 (CDK2) and proliferating cell nuclear antigen (PCNA) but stimulated the expression levels of muscle differentiation markers, i.e., MYOD1, MYOG at both mRNA and protein level. Moreover, downregulation of bta-miR-365-3p increased the expression of CCND1, CDK2 and PCNA but decreased the expression of MYOD1 and MYOG at both mRNA and protein levels. Furthermore, flow cytometry, EdU proliferation assays and immunostaining results showed that increased levels of bta-miR-365-3p suppressed cell proliferation but promoted myotube formation, whereas decreased levels of bta-miR-365-3p resulted in the opposite consequences. Finally, we identified that activin A receptor type I (ACVR1) could be a direct target of bta-miR-365-3p. It was demonstrated that bta-miR-365-3p can bind to the 3’UTR of ACVR1 gene to regulate its expression based on dual luciferase gene reporter assays. Consistently, knock-down of ACVR1 was associated with decreased expressions of CDK2, CCND1 and PCNA but increased expression of MYOG and MYOD1 both at mRNA and protein level. Conclusion Collectively, these data suggested that bta-miR-365-3p represses proliferation but promotes differentiation of bovine myoblasts through several biological mechanisms involving downregulation of ACVR1. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-020-00528-0.
Collapse
Affiliation(s)
- Dan Hao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, 712100, Shaanxi, China.,Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Xiaogang Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, 712100, Shaanxi, China
| | - Xiao Wang
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads, Building 324, 2800, Kongens Lyngby, Denmark
| | - Bo Thomsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | - Yu Yang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, 712100, Shaanxi, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, 712100, Shaanxi, China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, 712100, Shaanxi, China
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
15
|
Chen S, Luo L, Chen H, He C. The Current State of Research Regarding the Role of Non-Coding RNAs in Cutaneous Squamous Cell Carcinoma. Onco Targets Ther 2020; 13:13151-13158. [PMID: 33380805 PMCID: PMC7767711 DOI: 10.2147/ott.s271346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Skin cancers, including those of both both melanoma and non-melanoma subtypes, remain among the most common forms of human cancer. Non-melanoma skin cancers are typically further differentiated into the basal cell carcinoma and cutaneous squamous cell carcinoma (cSCC) categories. Current approaches to diagnosing and treating cSCC remain unsatisfactory, and the prognosis for patients with this disease is relatively poor. Recent advances in high-throughput sequencing have led to an increasingly robust understanding of the diversity of non-coding RNAs (ncRNAs) expressed in both physiological and pathological contexts. These ncRNAs include microRNAs, long ncRNAs, and circular RNAs, all of which have been found to play key functional roles and/or to have value as diagnostic biomarkers or therapeutic targets in a range of different disease contexts. The number of ncRNAs associated with cSCC continues to rise, and as such, there is clear value in comprehensively reviewing the functional roles of these molecules in this form of cancer in order to highlight future avenues for research and clinical development.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Dermatology, No.1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Shenyang, Liaoning 110001, People's Republic of China
| | - Limin Luo
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, People's Republic of China
| | - Hongduo Chen
- Department of Dermatology, No.1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Shenyang, Liaoning 110001, People's Republic of China
| | - Chundi He
- Department of Dermatology, No.1 Hospital of China Medical University, Key Laboratory of Immunodermatology, Shenyang, Liaoning 110001, People's Republic of China
| |
Collapse
|
16
|
Gerloff D, Sunderkötter C, Wohlrab J. Importance of microRNAs in Skin Oncogenesis and Their Suitability as Agents and Targets for Topical Therapy. Skin Pharmacol Physiol 2020; 33:270-279. [PMID: 33080592 DOI: 10.1159/000509879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
Skin cancer is the most common cancer worldwide, with rapidly increasing incidence and consistent mortality. Skin cancer encompasses melanoma and non-melanoma skin cancer, which in turn is mainly divided into cutaneous squamous cell carcinoma and basal cell carcinoma. Small noncoding micro-RNAs (miRNAs) regulate protein expression after transcription and play a role in the development and progression of skin cancer. Deregulated expression of miRNAs in skin cancer is associated with cell proliferation, angiogenesis, metastasis, apoptosis, immune response, and drug resistance. Specific patterns of miRNAs in specific skin cancer types can be used as diagnostic markers. For therapeutic purposes, both miRNA and chemically modified variants thereof as well as miRNA antagonists (antagomiRs) or RNA inhibitors may be applied topically. Due to their specific physicochemical properties, physical or chemical diffusion promoters are used with varying degrees of success. There is no question by now that such preparations have a high potential for the treatment of epithelial skin tumors in particular.
Collapse
Affiliation(s)
- Dennis Gerloff
- Department of Dermatology and Venereology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany,
| | - Cord Sunderkötter
- Department of Dermatology and Venereology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Johannes Wohlrab
- Department of Dermatology and Venereology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Institute of Applied Dermatopharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
17
|
Garofoli M, Volpicella M, Guida M, Porcelli L, Azzariti A. The Role of Non-Coding RNAs as Prognostic Factor, Predictor of Drug Response or Resistance and Pharmacological Targets, in the Cutaneous Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12092552. [PMID: 32911687 PMCID: PMC7565940 DOI: 10.3390/cancers12092552] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Cutaneous squamous cell carcinoma (CSCC) is the most common keratinocyte-derived skin cancer in the Caucasian population. Exposure to UV radiations (UVRs) represents the main risk carcinogenesis, causing a considerable accumulation of DNA damage in epidermal keratinocytes with an uncontrolled hyperproliferation and tumor development. The limited and rarely durable response of CSCC to the current therapeutic options has led researchers to look for new therapeutic strategies. Recently, the multi-omics approaches have contributed to the identification and prediction of the key role of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), circularRNAs (circRNAs) and long non-coding RNAs (lncRNAs) in the regulation of several cellular processes in different tumor types, including CSCC. ncRNAs can modulate transcriptional and post-transcriptional events by interacting either with each other or with DNA and proteins, such as transcription factors and RNA-binding proteins. In this review, the implication of ncRNAs in tumorigenesis and their potential role as diagnostic biomarkers and therapeutic targets in human CSCC are reported.
Collapse
Affiliation(s)
- Marianna Garofoli
- Experimental Pharmacology Laboratory, IRCCS IstitutoTumori Giovanni Paolo II, 70124 Bari, Italy; (M.G.); (L.P.)
| | - Mariateresa Volpicella
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy;
| | - Michele Guida
- Rare Tumors and Melanoma Unit, IRCCS IstitutoTumori Giovanni Paolo II, 70124 Bari, Italy;
| | - Letizia Porcelli
- Experimental Pharmacology Laboratory, IRCCS IstitutoTumori Giovanni Paolo II, 70124 Bari, Italy; (M.G.); (L.P.)
| | - Amalia Azzariti
- Experimental Pharmacology Laboratory, IRCCS IstitutoTumori Giovanni Paolo II, 70124 Bari, Italy; (M.G.); (L.P.)
- Correspondence: ; Tel.: +39-080-555-5986
| |
Collapse
|
18
|
Deng X, Zhen P, Niu X, Dai Y, Wang Y, Zhou M. APE1 promotes proliferation and migration of cutaneous squamous cell carcinoma. J Dermatol Sci 2020; 100:67-74. [PMID: 32951990 DOI: 10.1016/j.jdermsci.2020.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/09/2020] [Accepted: 08/23/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Human Apurinic/Apyrimidinic Endonuclease 1 (APE1/REF-1/HAP1) is a multifunction protein involved in the progression of cancer. But the role of APE1 in cutaneous squamous cell carcinoma (cSCC) is unclear. OBJECTIVE This study is aimed to investigate the basic modulatory mechanism of APE1 in cSCC development and offer a novel potential target for clinical treatment. METHODS The expression of APE1 in cSCC tissues was detected by western blot and immunohistochemistry (IHC) staining. The function of APE1 and miR-27a in cSCC cells was investigated by cell counting kit-8 (CCK-8) assays, colony formation assays and transwell migration assays. Western blot was used to determine the expression of APE1 in cSCC and epithelial-mesenchymal transition (EMT) markers in HSC-1 and HSC-5 cells with APE1 knockdown or overexpression. Double luciferase reporter assays were performed to confirm the interaction of miR-27a and APE1. RESULTS We identified that APE1 was significantly upregulated in human cSCC tissues and cSCC cells and its overexpression promoted cell proliferation, migration and the expression of EMT markers in cSCC cells. Mechanistically, miR-27a was predicted and confirmed as the upstream of APE1. Its downregulation also enhanced the proliferation and migration of cSCC cells. Rescue experiments demonstrated that restoration of APE1 expression significantly abolished the inhibition of cell proliferation and migration mediated by miR-27a. CONCLUSION As a direct gene of miR-27a, APE1 improved cell proliferation and migration to promote the progression of cSCC, which could be considered as a potential therapeutic target for cSCC treatment.
Collapse
Affiliation(s)
- Xuyi Deng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangdong, China
| | - Peilin Zhen
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Guangdong, China
| | - Xinli Niu
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangdong, China
| | - Yu Dai
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Yinghui Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangdong, China; Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Guangdong, China.
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangdong, China.
| |
Collapse
|
19
|
Coon J, Kingsley K, Howard KM. miR-365 (microRNA): Potential Biomarker in Oral Squamous Cell Carcinoma Exosomes and Extracellular Vesicles. Int J Mol Sci 2020; 21:ijms21155317. [PMID: 32727045 PMCID: PMC7432426 DOI: 10.3390/ijms21155317] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/15/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction: miR-365 is a non-coding microRNA that regulates transcription and has been demonstrated to promote oncogenesis and metastasis in some cancers, while suppressing these effects in others. Many microRNAs are produced and then exported extracellularly in exosomes, which are small extracellular vesicles ranging from 30 to 100 nm that are found in eukaryotic fluids and facilitate many cellular functions. Exosomes and extracellular vesicles are produced by many cell types, including oral cancer cells—although no study to date has evaluated miR-365 and oral cancer exosomes or extracellular vesicles. Based on this information, our research question was to evaluate whether oral cancers produce exosomes or extracellular vesicles containing miR-365. Materials and Methods: Two commercially available oral cancer cell lines (SCC25 and CAL27) and a normal oral keratinocyte (OKF4) were grown in serum-free media, supplemented with exosome-depleted fetal bovine serum. Extracellular vesicles and exosomes were then isolated using the Invitrogen total exosome RNA and protein isolation kit for processing using the hsa-miR-365a-5p microRNA qPCR assay kit. Results: RNA was successfully isolated from the exosome-depleted supernatant from each cell line—SCC9, SCC15, SCC25, and CAL27 (oral squamous cell carcinomas) and OKF4 (oral epithelial cell line). Relative concentrations of RNA were similar among each cell line, which were not significantly different, p = 0.233. RNA quality was established by A260:A280 absorbance using a NanoDrop, revealing purity ranging 1.73–1.86. Expression of miR-16 was used to confirm the presence of microRNA from the extracted exosomes and extracellular vesicles. The presence of miR-365 was then confirmed and normalized to miR-16 expression, which demonstrated an increased level of miR-365 in both CAL27 and SCC25. In addition, the normalized relative quantity (RQ) for miR-365 exhibited greater variation among SCC25 (1.382–4.363) than CAL27 cells (1.248–1.536). Conclusions: These results confirm that miR-365 is not only expressed in oral cancer cell lines, but also is subsequently exported into exosomes and extracellular vesicles derived from these cultures. These data may help to contextualize the potential for this microRNA to contribute to the phenotypes and behaviors of oral cancers that express this microRNA. Future research will begin to investigate these potential mechanisms and pathways and to determine if miR-365 may be useful as an oral cancer biomarker for salivary or liquid biopsies.
Collapse
Affiliation(s)
- Jeffery Coon
- Department of Clinical Sciences, Las Vegas—School of Dental Medicine, University of Nevada, 1001 Shadow Lane, Las Vegas, NV 89106, USA;
| | - Karl Kingsley
- Department of Biomedical Sciences and Director of Student Research, Las Vegas—School of Dental Medicine, University of Nevada, 1001 Shadow Lane, Las Vegas, NV 89106, USA
- Correspondence: ; Tel.: +1-702-774-2623; Fax: +1-702-774-2721
| | - Katherine M. Howard
- Department of Biomedical Sciences, Las Vegas—School of Dental Medicine, University of Nevada, 1001 Shadow Lane, Las Vegas, NV 89106, USA;
| |
Collapse
|
20
|
Zhang Z, Jia M, Wen C, He A, Ma Z. Long non-coding RNA SCARNA2 induces cutaneous squamous cell carcinoma progression via modulating miR-342-3p expression. J Gene Med 2020; 22:e3242. [PMID: 32558970 DOI: 10.1002/jgm.3242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play important roles in the progression of tumors. However, the function and expression of SCARNA2 in cutaneous squamous cell carcinoma (cSCC) is still unreported. METHODS A quantitative polymerase chain reaction was applied to study the expression of SCARNA2 and miR-342-3p. Cell counting kit-8, flow cytometry and transwell assays were performed to study cell growth, cycle and cell invasion. RESULTS We found that SCARNA2 expression is up-regulated in cSCC cell lines and SCARNA2 expression is higher in cSCC tissues than in adjacent non-tumor specimens. Ectopic expression of SCARNA2 promoted cell growth, cell cycle and invasion in SCC13 cells. In addition, the data indicate that miR-342-3p expression is down-regulated in cSCC cell lines and miR-342-3p is down-regulated in cSCC tissues compared to adjacent non-tumor specimens. We showed that the SCARNA2 expression is negatively associated with miR-342-3p in cSCC. Moreover, we noted that SCARNA2 sponges miR-342-3p expression in cSCC cells. Overexpression of SCARNA2 suppressed the miR-342-3p expressed in SCC13 cells. We found that elevated expression of SCARNA2 promotes cell growth, cell cycle and invasion via regulating miR-342-3p expression in SCC13 cells. CONCLUSIONS These data suggest that SCARNA2 acts in an oncogenic role and may be a potential target for cSCC.
Collapse
Affiliation(s)
- Zhongzhao Zhang
- Department of Dermatology, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guizhou, 550001, China
| | - Min Jia
- Department of Dermatology, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guizhou, 550001, China
| | - Changhui Wen
- Department of Dermatology, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guizhou, 550001, China
| | - Aijuan He
- Department of Dermatology, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guizhou, 550001, China
| | - Zunfeng Ma
- Department of Dermatology, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guizhou, 550001, China
| |
Collapse
|
21
|
Zhang C, Xie X, Yuan Y, Wang Y, Zhou M, Li X, Zhen P. MiR-664 Protects Against UVB Radiation-Induced HaCaT Cell Damage via Downregulating ARMC8. Dose Response 2020; 18:1559325820929234. [PMID: 32547335 PMCID: PMC7270940 DOI: 10.1177/1559325820929234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/03/2020] [Accepted: 04/17/2020] [Indexed: 11/17/2022] Open
Abstract
Background: MiR-664 has been demonstrated to play an important role in dermal diseases.
However, the functions of miR-664 in ultraviolet B (UVB) radiation-induced
keratinocytes damage remain to be elucidated. Objective: The present study aimed to investigate the molecular mechanisms under the
UVB-induced keratinocytes damage and provide translational insights for
future therapeutics and UVB protection. Methods: HaCaT cells were transfected with miR-664, either alone or combined with UVB
irradiation. Levels of messenger RNA and protein were tested by quantitative
real-time polymerase chain reaction and Western blot analyses. Cell
proliferation, percentage of apoptotic cells, and expression levels of
apoptosis-related factors were measured by Cell Counting Kit-8 assay, flow
cytometry assay, and Western blot analysis, respectively. Results: We found that a significant increase in miR-664 was observed in UVB-induced
HaCaT cells. Overexpressed miR-664 promoted cell vitalities and suppressed
apoptosis of UVB-induced HaCaT cells. Additionally, the loss/gain of
armadillo-repeat-containing protein 8 (ARMC8) rescued/blocked the effects of
miR-664 on the proliferation of UVB-induced HaCaT cells. Conclusions: Our data demonstrate that miR-664 functions as a protective regulator in
UVB-induced HaCaT cells via regulating ARMC8.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiongxiong Xie
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yawen Yuan
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yimeng Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiangzhi Li
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.,Department of Public Health, Medical College, Guangxi University of Science and Technology, Liuzhou, China
| | - Peilin Zhen
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| |
Collapse
|
22
|
Vo TM, Jain S, Burchett R, Monckton EA, Godbout R. A positive feedback loop involving nuclear factor IB and calpain 1 suppresses glioblastoma cell migration. J Biol Chem 2019; 294:12638-12654. [PMID: 31262726 DOI: 10.1074/jbc.ra119.008291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/27/2019] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is a brain tumor that remains largely incurable because of its highly-infiltrative properties. Nuclear factor I (NFI)-type transcription factors regulate genes associated with GBM cell migration and infiltration. We have previously shown that NFI activity depends on the NFI phosphorylation state and that calcineurin phosphatase dephosphorylates and activates NFI. Calcineurin is cleaved and activated by calpain proteases whose activity is, in turn, regulated by an endogenous inhibitor, calpastatin (CAST). The CAST gene is a target of NFI in GBM cells, with differentially phosphorylated NFIs regulating the levels of CAST transcript variants. Here, we uncovered an NFIB-calpain 1-positive feedback loop mediated through CAST and calcineurin. In NFI-hyperphosphorylated GBM cells, NFIB expression decreased the CAST-to-calpain 1 ratio in the cytoplasm. This reduced ratio increased autolysis and activity of cytoplasmic calpain 1. Conversely, in NFI-hypophosphorylated cells, NFIB expression induced differential subcellular compartmentalization of CAST and calpain 1, with CAST localizing primarily to the cytoplasm and calpain 1 to the nucleus. Overall, this altered compartmentalization increased nuclear calpain 1 activity. We also show that nuclear calpain 1, by cleaving and activating calcineurin, induces NFIB dephosphorylation. Of note, knockdown of calpain 1, NFIB, or both increased GBM cell migration and up-regulated the pro-migratory factors fatty acid-binding protein 7 (FABP7) and Ras homolog family member A (RHOA). In summary, our findings reveal bidirectional cross-talk between NFIB and calpain 1 in GBM cells. A physiological consequence of this positive feedback loop appears to be decreased GBM cell migration.
Collapse
Affiliation(s)
- The Minh Vo
- Cross Cancer Institute, Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Saket Jain
- Cross Cancer Institute, Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Rebecca Burchett
- Cross Cancer Institute, Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Elizabeth A Monckton
- Cross Cancer Institute, Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Roseline Godbout
- Cross Cancer Institute, Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| |
Collapse
|
23
|
MicroRNA Dysregulation in Cutaneous Squamous Cell Carcinoma. Int J Mol Sci 2019; 20:ijms20092181. [PMID: 31052530 PMCID: PMC6540078 DOI: 10.3390/ijms20092181] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Cutaneous squamous cell carcinoma (CSCC) is the second most frequent cancer in humans and it can be locally invasive and metastatic to distant sites. MicroRNAs (miRNAs or miRs) are endogenous, small, non-coding RNAs of 19–25 nucleotides in length, that are involved in regulating gene expression at a post-transcriptional level. MicroRNAs have been implicated in diverse biological functions and diseases. In cancer, miRNAs can proceed either as oncogenic miRNAs (onco-miRs) or as tumor suppressor miRNAs (oncosuppressor-miRs), depending on the pathway in which they are involved. Dysregulation of miRNA expression has been shown in most of the tumors evaluated. MiRNA dysregulation is known to be involved in the development of cutaneous squamous cell carcinoma (CSCC). In this review, we focus on the recent evidence about the role of miRNAs in the development of CSCC and in the prognosis of this form of skin cancer.
Collapse
|
24
|
Tamgue O, Gcanga L, Ozturk M, Whitehead L, Pillay S, Jacobs R, Roy S, Schmeier S, Davids M, Medvedeva YA, Dheda K, Suzuki H, Brombacher F, Guler R. Differential Targeting of c-Maf, Bach-1, and Elmo-1 by microRNA-143 and microRNA-365 Promotes the Intracellular Growth of Mycobacterium tuberculosis in Alternatively IL-4/IL-13 Activated Macrophages. Front Immunol 2019; 10:421. [PMID: 30941122 PMCID: PMC6433885 DOI: 10.3389/fimmu.2019.00421] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/18/2019] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) can subvert the host defense by skewing macrophage activation toward a less microbicidal alternative activated state to avoid classical effector killing functions. Investigating the molecular basis of this evasion mechanism could uncover potential candidates for host directed therapy against tuberculosis (TB). A limited number of miRNAs have recently been shown to regulate host-mycobacterial interactions. Here, we performed time course kinetics experiments on bone marrow-derived macrophages (BMDMs) and human monocyte-derived macrophages (MDMs) alternatively activated with IL-4, IL-13, or a combination of IL-4/IL-13, followed by infection with Mtb clinical Beijing strain HN878. MiR-143 and miR-365 were highly induced in Mtb-infected M(IL-4/IL-13) BMDMs and MDMs. Knockdown of miR-143 and miR-365 using antagomiRs decreased the intracellular growth of Mtb HN878, reduced the production of IL-6 and CCL5 and promoted the apoptotic death of Mtb HN878-infected M(IL-4/IL-13) BMDMs. Computational target prediction identified c-Maf, Bach-1 and Elmo-1 as potential targets for both miR-143 and miR-365. Functional validation using luciferase assay, RNA-pulldown assay and Western blotting revealed that c-Maf and Bach-1 are directly targeted by miR-143 while c-Maf, Bach-1, and Elmo-1 are direct targets of miR-365. Knockdown of c-Maf using GapmeRs promoted intracellular Mtb growth when compared to control treated M(IL-4/IL-13) macrophages. Meanwhile, the blocking of Bach-1 had no effect and blocking Elmo-1 resulted in decreased Mtb growth. Combination treatment of M(IL-4/IL-13) macrophages with miR-143 mimics or miR-365 mimics and c-Maf, Bach-1, or Elmo-1 gene-specific GapmeRs restored Mtb growth in miR-143 mimic-treated groups and enhanced Mtb growth in miR-365 mimics-treated groups, thus suggesting the Mtb growth-promoting activities of miR-143 and miR-365 are mediated at least partially through interaction with c-Maf, Bach-1, and Elmo-1. We further show that knockdown of miR-143 and miR-365 in M(IL-4/IL-13) BMDMs decreased the expression of HO-1 and IL-10 which are known targets of Bach-1 and c-Maf, respectively, with Mtb growth-promoting activities in macrophages. Altogether, our work reports a host detrimental role of miR-143 and miR-365 during Mtb infection and highlights for the first time the role and miRNA-mediated regulation of c-Maf, Bach-1, and Elmo-1 in Mtb-infected M(IL-4/IL-13) macrophages.
Collapse
Affiliation(s)
- Ousman Tamgue
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Biochemistry, Faculty of Sciences, University of Douala, Douala, Cameroon
| | - Lorna Gcanga
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lauren Whitehead
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Shandre Pillay
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Raygaana Jacobs
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Sugata Roy
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Sebastian Schmeier
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Malika Davids
- Centre for Lung Infection and Immunity, Department of Medicine and UCT Lung Institute, Division of Pulmonology, University of Cape Town, Cape Town, South Africa
| | - Yulia A. Medvedeva
- Research Center of Biotechnology, Institute of Bioengineering, Russian Academy of Science, Moscow, Russia
- Department of Computational Biology, Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Keertan Dheda
- Centre for Lung Infection and Immunity, Department of Medicine and UCT Lung Institute, Division of Pulmonology, University of Cape Town, Cape Town, South Africa
- Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Harukazu Suzuki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council Immunology of Infectious Diseases, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
25
|
Yuan F, Liu J, Pang H, Tian Y, Yuan K, Li Y, Wang J, Bian S, Zheng Y, Dong D, Li Y, Li M, Jiang C, Hu S, Li Q. MicroRNA-365 suppressed cell proliferation and migration via targeting PAX6 in glioblastoma. Am J Transl Res 2019; 11:361-369. [PMID: 30787993 PMCID: PMC6357310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/28/2018] [Indexed: 06/09/2023]
Abstract
MicroRNAs (miRNAs) act an important role in the progression of tumor. In this study, we showed that the serum expression of miR-365 was downregulated in the glioblastoma compared with in the healthy controls. We also demonstrated that miR-365 expression was downregulated in glioblastoma tissues compared with the adjacent normal tissues. Overexpression of miR-365 suppressed the glioblastoma cell proliferation and migration. Moreover, ectopic expression of miR-365 promoted the expression of Ecadherin while inhibited the expression of N-cadherin and Vimentin in U87 cell. Furthermore, we identified PAX6 as a direct target gene of miR-365 in U87 cell. Overexpression of miR-365 suppressed glioblastoma cell proliferation and migration and epithelial-to-mesenchymal transition through inhibiting PAX6 expression. These results suggested that miR-365 played a tumor suppressor in glioblastoma.
Collapse
Affiliation(s)
- Fei Yuan
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical UniversityHarbin 150086, China
| | - Jie Liu
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical UniversityHarbin 150086, China
| | - Hengyuan Pang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical UniversityHarbin 150086, China
| | - Yu Tian
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical UniversityHarbin 150086, China
| | - Kaikun Yuan
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical UniversityHarbin 150086, China
| | - Yang Li
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical UniversityHarbin 150086, China
| | - Jianjiao Wang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical UniversityHarbin 150086, China
| | - Shan Bian
- Institute of Molecular Biotechnology of The Austrian Academy of SciencesAustrian
| | - Yongri Zheng
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical UniversityHarbin 150086, China
| | - Deli Dong
- Harbin Medical UniversityHarbin 150086, China
| | - Yu Li
- Jiamusi UniversityJiamusi 154007, China
| | - Mao Li
- Harbin No.3 Middle SchoolHarbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical UniversityHarbin 150086, China
| | - Shaoshan Hu
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical UniversityHarbin 150086, China
| | - Qingsong Li
- Department of Neurosurgery, The 2nd Affiliated Hospital, Harbin Medical UniversityHarbin 150086, China
| |
Collapse
|
26
|
Hu X, Liu Y, Ai P, He S, Liu L, Chen C, Tan Y, Wang T. MicroRNA-186 promotes cell proliferation and inhibits cell apoptosis in cutaneous squamous cell carcinoma by targeting RETREG1. Exp Ther Med 2019; 17:1930-1938. [PMID: 30867688 DOI: 10.3892/etm.2019.7154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRs), a class of small non-coding RNAs, have been demonstrated to be involved in the development and progression of human malignancies, including cutaneous squamous cell carcinoma (CSCC). miR-186 serves a suppressive role in certain common types of human cancer; however, its exact function in CSCC has not been reported previously. In the present study, the expression of miR-186 was significantly increased in CSCC tissues compared with adjacent non-tumour tissues. Overexpression of miR-186 significantly promoted CSCC cell proliferation while inhibiting cell apoptosis. Reticulophagy regulator 1 (RETREG1), a gene that is significantly downregulated in CSCC tissues and cell lines, was identified as a novel target of miR-186. In addition, the expression of RETREG1 was inversely correlated with miR-186 expression in CSCC tissues. Furthermore, the expression of RETREG1 was negatively regulated by miR-186 in CSCC cells, and restoration of RETREG1 attenuated the effects of miR-186 on CSCC cells. Taken together, the results of the current study suggest that miR-186 serves an oncogenic role in CSCC and may be used as a potential therapeutic target for the treatment of this disease.
Collapse
Affiliation(s)
- Xinde Hu
- Clinical Laboratory, Second People's Hospital of Shaoyang City, Shaoyang, Hunan 422000, P.R. China
| | - Yifeng Liu
- Department of Dermatology, Second People's Hospital of Shaoyang City, Shaoyang, Hunan 422000, P.R. China
| | - Ping Ai
- Department of General Surgery, Second People's Hospital of Shaoyang City, Shaoyang, Hunan 422000, P.R. China
| | - Shuguang He
- Clinical Laboratory, First Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan 412000, P.R. China
| | - Lingzhi Liu
- Clinical Laboratory, First Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan 412000, P.R. China
| | - Chaoying Chen
- Clinical Laboratory, First Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan 412000, P.R. China
| | - Yuansheng Tan
- Hanpu Science and Teaching Park, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Ting Wang
- Hanpu Science and Teaching Park, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| |
Collapse
|
27
|
Identification of a nine-miRNA signature for the prognosis of Uveal Melanoma. Exp Eye Res 2019; 180:242-249. [PMID: 30615885 DOI: 10.1016/j.exer.2019.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/24/2018] [Accepted: 01/03/2019] [Indexed: 02/05/2023]
Abstract
The present study aims to construct a miRNA-based predictive signature of Uveal melanoma (UM) based on the database of the cancer genome atlas (TCGA). We obtained miRNA expression profiles and clinical information of 80 UM patients from TCGA, and randomly divided them into a training and a testing set. After data processing and forward screening, a total of 204 miRNAs with prognostic value were then examined by the Cox proportional hazard regression model in the training set. Receiver operating curve (ROC) analysis was applied to validate the accuracy of the signature. The biological relevance of putative miRNA target genes was also analyzed using the bioinformatics method. As a result, a linear prognostic model consisting of 9 miRNAs (miR-195, miR-224, miR-365a, miR-365b, miR-452, miR-4709, miR-7702, miR-513c, miR-873) was developed to divide UM patients into a high- and a low-risk group. Patients assigned to the high-risk group had significantly shorter overall survival than those in the low-risk group, which was further confirmed by the Area under curve (AUC) value of 0.858 at 5 year obtained from ROC. Gene Ontology (GO) analysis indicated that predicted target genes of these miRNAs are primarily associated with the modulation of protein expression and function, such as the activity of ubiquitin protein ligase and protein kinase. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that these genes were involved in multiple signaling pathways linked to carcinogenesis. The tumor specific 9-miRNA signature was also verified in the testing and entire set. In summary, based on UM data of TCGA, we identified and validated a 9-miRNA-based prognostic signature.
Collapse
|
28
|
Gil Z. Exosomal transmission between macrophages and cancer cells: new insights to stroma-mediated drug resistance. Oncotarget 2018; 9:37282-37283. [PMID: 30647866 PMCID: PMC6324675 DOI: 10.18632/oncotarget.26463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/07/2018] [Indexed: 12/03/2022] Open
Affiliation(s)
- Ziv Gil
- Ziv Gil: Department of Otolaryngology Head and Neck Surgery, The Laboratory for Applied Cancer Research, The Head and Neck Center, Haifa, Israel; Technion Integrated Cancer Center, Rappaport Institute of Medicine and Research, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
29
|
Wang C, Su K, Zhang Y, Zhang W, Chu D, Zhao Q, Guo R. MicroRNA-365 targets multiple oncogenes to inhibit proliferation, invasion, and self-renewal of aggressive endometrial cancer cells. Cancer Manag Res 2018; 10:5171-5185. [PMID: 30464615 PMCID: PMC6215916 DOI: 10.2147/cmar.s174889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background MicroRNA-365 (miR-365) has been reported to be a tumor suppressor miRNA. However, the role of miR-365 in progression of endometrial cancer (EC) has not been explored, in this study, we have found that re-expression of miRNA-365 inhibits cell proliferation, causes apoptosis and senescence. Materials and methods Overexpression of miR-365 attenuated cell migration and invasion, inhibited sphere-forming capacity, and enhanced the chemosensitivity to paclitaxel. In silico prediction tools identified the potential targets of miR-365. Results We identified EZH2 and FOS as targets of miR-365 and found that downregulating these genes imitated the tumor suppressive effect of miR-365. The outcomes of the study suggested that a reverse correlation existed between low miR-365 and overexpression of FOS and EZH2 in EC tissue specimens. Conclusion The study concludes that miR-365 acts as an important tumor suppressor and contributes by suppressing cell invasiveness, proliferation, and self-renewal in cancer cell lines by regulating multiple oncogenes. We establish that miR-365-EZH2/FOS pathway is an important target for treating EC.
Collapse
Affiliation(s)
- Chunfang Wang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Ke Su
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Yanyan Zhang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Weiwei Zhang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Danxia Chu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Qian Zhao
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Ruixia Guo
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| |
Collapse
|
30
|
Zhang L, Qin H, Wu Z, Chen W, Zhang G. Pathogenic genes related to the progression of actinic keratoses to cutaneous squamous cell carcinoma. Int J Dermatol 2018; 57:1208-1217. [PMID: 30105812 DOI: 10.1111/ijd.14131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 05/11/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Actinic keratosis (AK) is an incipient form of cutaneous squamous cell carcinoma (cSCC). Understanding the differentially expressed genes between AK and cSCC states would be helpful for the early prevention and treatment of cSCC. Consequently, this study aimed to screen the key genes associated with the progression of AK to cSCC. METHODS The microarray dataset GSE45216 was downloaded from the Gene Expression Omnibus, which included 10 AK and 30 primary cSCC skin tissue samples. Differentially expressed genes (DEGs) in cSCC samples, compared to those in AK, were identified. Gene co-expression relationships were investigated, followed by miRNA prediction. The potential functions of the co-expressed genes were predicted by gene ontology (GO) and pathway enrichment analyses. In addition, the transcription factors and drug molecules, significantly related to the co-expressed genes, were obtained. RESULTS A total of 320 DEGs were identified in the cSCC group, relative to the AK group. Moreover, 96 DEGs and 2,390 connecting edges were identified in the gene co-expression network. An miRNA regulatory network was constructed, including 96 DEGs and 16 miRNAs. In addition, three co-expression network modules were obtained; EIF4EBP1, SNX17, PRPF4, NXT1, and UBA5 were significant nodes in the modules. CONCLUSIONS EIF4EBP1, SNX17, PRPF4, NXT1, and UBA5 may be the pathogenic genes contributing to the development of cSCC from AK.
Collapse
Affiliation(s)
- Lianbo Zhang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Haiyan Qin
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zhuoxia Wu
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Wanying Chen
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Guang Zhang
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
31
|
Binenbaum Y, Fridman E, Yaari Z, Milman N, Schroeder A, Ben David G, Shlomi T, Gil Z. Transfer of miRNA in Macrophage-Derived Exosomes Induces Drug Resistance in Pancreatic Adenocarcinoma. Cancer Res 2018; 78:5287-5299. [PMID: 30042153 DOI: 10.1158/0008-5472.can-18-0124] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 05/17/2018] [Accepted: 07/13/2018] [Indexed: 01/01/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is known for its resistance to gemcitabine, which acts to inhibit cell growth by termination of DNA replication. Tumor-associated macrophages (TAM) were recently shown to contribute to gemcitabine resistance; however, the exact mechanism of this process is still unclear. Using a genetic mouse model of PDAC and electron microscopy analysis, we show that TAM communicate with the tumor microenvironment via secretion of approximately 90 nm vesicles, which are selectively internalized by cancer cells. Transfection of artificial dsDNA (barcode fragment) to murine peritoneal macrophages and injection to mice bearing PDAC tumors revealed a 4-log higher concentration of the barcode fragment in primary tumors and in liver metastasis than in normal tissue. These macrophage-derived exosomes (MDE) significantly decreased the sensitivity of PDAC cells to gemcitabine, in vitro and in vivo This effect was mediated by the transfer of miR-365 in MDE. miR-365 impaired activation of gemcitabine by upregulation of the triphospho-nucleotide pool in cancer cells and the induction of the enzyme cytidine deaminase; the latter inactivates gemcitabine. Adoptive transfer of miR-365 in TAM induced gemcitabine resistance in PDAC-bearing mice, whereas immune transfer of the miR-365 antagonist recovered the sensitivity to gemcitabine. Mice deficient of Rab27 a/b genes, which lack exosomal secretion, responded significantly better to gemcitabine than did wildtype. These results identify MDE as key regulators of gemcitabine resistance in PDAC and demonstrate that blocking miR-365 can potentiate gemcitabine response.Significance: Harnessing macrophage-derived exosomes as conveyers of antagomiRs augments the effect of chemotherapy against cancer, opening new therapeutic options against malignancies where resistance to nucleotide analogs remains an obstacle to overcome. Cancer Res; 78(18); 5287-99. ©2018 AACR.
Collapse
Affiliation(s)
- Yoav Binenbaum
- The Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Clinical Research Institute at Rambam Healthcare Campus, Haifa, Israel
| | - Eran Fridman
- The Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Clinical Research Institute at Rambam Healthcare Campus, Haifa, Israel
| | - Zvi Yaari
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Technion, Israel Institute of Technology, Haifa, Israel
| | - Neta Milman
- The Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Clinical Research Institute at Rambam Healthcare Campus, Haifa, Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Technion, Israel Institute of Technology, Haifa, Israel
| | - Gil Ben David
- The Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Clinical Research Institute at Rambam Healthcare Campus, Haifa, Israel
| | - Tomer Shlomi
- Departments of Computer Science and Biology, Technion, Israel Institute of Technology, Haifa, Israel
| | - Ziv Gil
- The Laboratory for Applied Cancer Research, Department of Otolaryngology Head and Neck Surgery, Clinical Research Institute at Rambam Healthcare Campus, Haifa, Israel. .,Technion Integrated Cancer Center, Rappaport Institute of Medicine and Research, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
32
|
Xia Y, Chang X, Lian S, Zhu W. WW domain-containing E3 ubiquitin protein ligase 1 depletion evokes antitumor effect in cutaneous squamous cell carcinoma by inhibiting signal transducer and activator of transcription 3 signaling pathway. J Int Med Res 2018; 46:2898-2912. [PMID: 29888632 PMCID: PMC6124284 DOI: 10.1177/0300060518778905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) has been implicated in tumor progression. We aimed to investigate the role of WWP1 in cutaneous squamous cell carcinoma (CSCC). Methods WWP1 gene and protein levels were detected using semi-quantitative reverse transcription-polymerase chain reaction, immunohistochemistry and western blotting. The effects of WWP1 on cell cycle, apoptosis, cell migration and invasion were examined by flow cytometry, wound healing and Transwell assays, respectively. The antitumor efficacy of WWP1 small interfering RNA was determined in CSCC tumor xenografts in mice. Results WWP1 expression was significantly higher in CSCC tissues and cells than in normal skin and cells, respectively. WWP1 expression was significantly associated with histological grade, invasion depth and lymph node metastasis in patients with CSCC. High expression predicted metastatic potential and an unfavorable prognosis. WWP1 downregulation suppressed tumor growth in vitro and in vivo, reduced cell migration and invasion, arrested the cell cycle in G0/G1 and induced apoptosis in A431 cells. WWP1 depletion also decreased phosphorylated signal transducer and activator of transcription 3 (STAT3), matrix metalloproteinase-2, cyclin D1 and Bcl-2, but did not affect total STAT3. Conclusions WWP1 is a potential target for the diagnosis, prognosis and therapy of patients with CSCC.
Collapse
Affiliation(s)
- Yonghua Xia
- Department of Dermatology and Venerology, Xuanwu Hospital, Capital Medical University, Xicheng District, Beijing, P.R. China
| | - Xiao Chang
- Department of Dermatology and Venerology, Xuanwu Hospital, Capital Medical University, Xicheng District, Beijing, P.R. China
| | - Shi Lian
- Department of Dermatology and Venerology, Xuanwu Hospital, Capital Medical University, Xicheng District, Beijing, P.R. China
| | - Wei Zhu
- Department of Dermatology and Venerology, Xuanwu Hospital, Capital Medical University, Xicheng District, Beijing, P.R. China
| |
Collapse
|
33
|
Zhu Y, Wen X, Zhao P. MicroRNA-365 Inhibits Cell Growth and Promotes Apoptosis in Melanoma by Targeting BCL2 and Cyclin D1 (CCND1). Med Sci Monit 2018; 24:3679-3692. [PMID: 29858490 PMCID: PMC6011806 DOI: 10.12659/msm.909633] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 05/14/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND MicroRNA-365 (miR-365) is involved in the development of a variety of cancers. However, it remains largely unknown if and how miRNAs-365 plays a role in melanoma development. MATERIAL AND METHODS In this study, we overexpressed miR-365 in melanoma cell lines A375 and A2058, via transfection of miR-365 mimics oligos. We then investigated alterations in a series of cancer-related phenotypes, including cell viability, cell cycle, apoptosis, colony formation, and migration and invasion capacities. We also validated cyclin D1 (CCND1) and BCL2 apoptosis regulator (BCL2) as direct target genes of miR-365 by luciferase reporter assay and investigated their roles in miR-365 caused phenotypic changes. To get a more general view of miR-365's biological functions, candidate target genes of miR-365 were retrieved via searching online databases, which were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses for potential biological functions. We then analyzed The Cancer Genome Atlas (TCGA) Skin Cutaneous Melanoma (SKCM) dataset for correlation between miR-365 level and clinicopathological features of patients, and for survival of patients with high and low miR-365 levels. RESULTS We found that miR-365 was downregulated in melanoma cells. Overexpression of miR-365 remarkably suppressed cell proliferation, induced cell cycle arrest and apoptosis, and compromised the migration and invasion capacities in A375 and A2058 cell lines. We also found that the phenotypic alterations by miR-365 were partially due to downregulation of CCND1 and BCL2 oncogenes. The bioinformatics analysis revealed that predicted targets of miR-365 were widely involved in transcriptional regulation and cancer-related signaling pathways. However, analysis of SKCM dataset failed to find differences in miR-365 level among melanoma patients at different clinicopathologic stages. The Kaplan-Meier analysis also failed to discover significant differences in overall survival and disease-free survival between patients with high and low miR-365 levels. CONCLUSIONS Our findings suggested that miR-365 might be an important novel regulator for melanoma formation and development, however, the in vivo roles in melanoma developments need further investigation.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Stomatology, Xi’an Medical University, Xi’an, Shaanxi, P.R. China
| | - Xing Wen
- Department of Stomatology, Xi’an Gao Xin Hospital, Xi’an, Shaanxi, P.R. China
| | - Peng Zhao
- Oncology Ward Three, Tang Du Hospital, Xi’an, Shaanxi, P.R. China
| |
Collapse
|
34
|
Wang Y, Zhang S, Bao H, Mu S, Zhang B, Ma H, Ma S. MicroRNA-365 promotes lung carcinogenesis by downregulating the USP33/SLIT2/ROBO1 signalling pathway. Cancer Cell Int 2018; 18:64. [PMID: 29743814 PMCID: PMC5930950 DOI: 10.1186/s12935-018-0563-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/21/2018] [Indexed: 12/19/2022] Open
Abstract
Background Abnormal microRNA expression is closely related to cancer occurrence and development. miR-365a-3p plays an oncogenic role in skin cancer, but its role in lung cancer remains unclear. In this study, we aimed to investigate its role and underlying molecular mechanisms in lung cancer. Methods Western blot and real-time quantitative PCR (qPCR) were used to detect the expression of miR-365a-3p in lung adenocarcinoma and lung cancer cell lines. The effects of miR-365a-3p on lung cancer cell proliferation, migration, and invasion were also explored in vitro. The potential miR-365a-3p that targets USP33 was determined by dual luciferase reporter assay and verified by qPCR and western blot analysis. miR-365a-3p acts as an oncogene by promoting lung carcinogenesis via the downregulation of the miR-365a/USP33/SLIT2/ROBO1 axis based on western blot analysis. Subcutaneous tumourigenesis further demonstrated that miR-365a-3p promotes tumour formation in vivo. Results miR-365a-3p was upregulated in lung adenocarcinoma and lung cancer cell lines. Overexpression of miR-365a-3p promoted and inhibition of miR-365a-3p suppressed the proliferation, migration, and invasion of lung cancer cells. We identified USP33 as the downstream target of miR-365a-3p and observed a negative correlation between miR-365a-3p and USP33 expression in lung adenocarcinoma patients. The miR-365/USP33/SLIT2/ROBO1 axis, a new mechanism, was reported to inhibit the invasion and metastasis of lung cancer. A nude mouse model of lung cancer further verified these findings. Conclusions In summary, miR-365a-3p acts as an oncogene by promoting lung carcinogenesis via the downregulation of the USP33/SLIT2/ROBO1 signalling pathway, making the miR-365/USP33/SLIT2/ROBO1 axis a new mechanism of lung cancer promotion and a novel therapeutic target for predicting prognosis and response to gene therapy. Electronic supplementary material The online version of this article (10.1186/s12935-018-0563-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuhuan Wang
- 1Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Shuhua Zhang
- 1Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Hejing Bao
- Department of Oncology, Chongqing Three Gorges Center Hospital, Chongqing, China
| | - Shukun Mu
- 1Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Baishen Zhang
- 1Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Hao Ma
- 3Department of Clinical Medicine, Tianjin Medical University College, Tianjin, China
| | - Shudong Ma
- 1Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China
| |
Collapse
|
35
|
Chen L, Huang X, Chen X. miR-365 Suppresses Cholangiocarcinoma Cell Proliferation and Induces Apoptosis by Targeting E2F2. Oncol Res 2018; 26:1375-1382. [PMID: 29471889 PMCID: PMC7844787 DOI: 10.3727/096504018x15188352857437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cholangiocarcinoma (CCA) is one of the most malignant adenocarcinomas arising from bile duct epithelial cells. However, the molecular mechanism regulating CCA development and progression still needs to be investigated. Here we found that miR-365 was downregulated in CCA tissues compared with adjacent normal tissues. By functional experiments, we found that overexpression of miR-365 significantly inhibited CCA cell proliferation and promoted cellular apoptosis in vitro. Furthermore, administration with miR-365 markedly suppressed the growth of tumor tissues in vivo. Mechanistically, we identified E2F2 as the target gene of miR-365 in CCA cells. We found that overexpression significantly inhibited the expression of E2F2 in CCA cells, and there was an inverse correlation between the expression levels of E2F2 and miR-365 in CCA tissues. We also found that E2F2 was highly expressed in CCA tissues and cell lines. Restoration of E2F2 in miR-365-overexpressing CCA cells promoted cell viability and reduced cellular apoptosis in CCA. Collectively, our study demonstrated the essential role of miR-365 and its functional mechanism in CCA cells, which provided a new insight on the design of therapeutic targets for CCA treatment.
Collapse
Affiliation(s)
- Lunjian Chen
- Department of Hepatobiliary Surgery, The Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, P.R. China
| | - Xiaorong Huang
- Otorhinolaryngology Center, The Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, P.R. China
| | - Xinxin Chen
- Department of Preventive Health Care, First Affiliated Hospital of Medical College of Shihezi University, Shihezi, P.R. China
| |
Collapse
|
36
|
Adenoid cystic carcinoma: emerging role of translocations and gene fusions. Oncotarget 2018; 7:66239-66254. [PMID: 27533466 PMCID: PMC5323230 DOI: 10.18632/oncotarget.11288] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/28/2016] [Indexed: 12/24/2022] Open
Abstract
Adenoid cystic carcinoma (ACC), the second most common salivary gland malignancy, is notorious for poor prognosis, which reflects the propensity of ACC to progress to clinically advanced metastatic disease. Due to high long-term mortality and lack of effective systemic treatment, the slow-growing but aggressive ACC poses a particular challenge in head and neck oncology. Despite the advancements in cancer genomics, up until recently relatively few genetic alterations critical to the ACC development have been recognized. Although the specific chromosomal translocations resulting in MYB-NFIB fusions provide insight into the ACC pathogenesis and represent attractive diagnostic and therapeutic targets, their clinical significance is unclear, and a substantial subset of ACCs do not harbor the MYB-NFIB translocation. Strategies based on detection of newly described genetic events (such as MYB activating super-enhancer translocations and alterations affecting another member of MYB transcription factor family-MYBL1) offer new hope for improved risk assessment, therapeutic intervention and tumor surveillance. However, the impact of these approaches is still limited by an incomplete understanding of the ACC biology, and the manner by which these alterations initiate and drive ACC remains to be delineated. This manuscript summarizes the current status of gene fusions and other driver genetic alterations in ACC pathogenesis and discusses new therapeutic strategies stemming from the current research.
Collapse
|
37
|
Li H, Lin L, Li L, Zhou L, Zhang Y, Hao S, Ding Z. Exosomal small RNA sequencing uncovers the microRNA dose markers for power frequency electromagnetic field exposure. Biomarkers 2018; 23:315-327. [PMID: 29297241 DOI: 10.1080/1354750x.2018.1423707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE The potential health risks caused by power frequency electromagnetic field (PFEMF) have led to increase public health concerns. However, the diagnosis and prognosis remain challenging in determination of exact dose of PFEMF exposure. MATERIALS AND METHODS Mice were exposed to different magnetic doses of PFEMF for the following isolation of serum exosomes, microRNAs (miRNAs) extraction and small RNA sequencing. After small RNA sequencing, bioinformatic analysis, quantitative real-time PCR (qRT-PCR) validation and serum exosomal miRNA biomarkers were determined. RESULTS Significantly changed serum exosomal miRNA as biomarkers of 0.1, 0.5, 2.5 mT and common PFEMF exposure were confirmed. Gene ontology (GO) and Kyoto encyclopaedia of genes and genomes (KEGG) pathway analysis of the downstream target genes of the above-identified exosomal miRNA markers indicated that, exosomal miRNA markers were predicted to be involved in critical pathophysiological processes of neural system and cancer- or other disease-related signalling pathways. CONCLUSIONS Aberrantly-expressed serum exosomal miRNAs, including miR-128-3p for 0.1 mT, miR-133a-3p for 0.5 mT, miR-142a-5p for 2.5 mT, miR-218-5p and miR-199a-3p for common PFEMF exposure, suggested a series of informative markers for not only identifying the exact dose of PFEMF exposure, also consolidating the base for future clinical intervention.
Collapse
Affiliation(s)
- Hualiang Li
- a Electric Power Research Institute of Guangdong Power Grid , Guangzhou , PR China
| | - Lin Lin
- b Department of Obstetrics , The Sixth Affiliated Hospital of Sun Yat-sen University , Guangzhou , PR China
| | - Li Li
- a Electric Power Research Institute of Guangdong Power Grid , Guangzhou , PR China
| | - Liang Zhou
- c Department of Radiation Medicine, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research , Southern Medical University , Guangzhou , PR China
| | - Ying Zhang
- c Department of Radiation Medicine, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research , Southern Medical University , Guangzhou , PR China
| | - Shuai Hao
- c Department of Radiation Medicine, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research , Southern Medical University , Guangzhou , PR China
| | - Zhenhua Ding
- c Department of Radiation Medicine, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research , Southern Medical University , Guangzhou , PR China
| |
Collapse
|
38
|
Xu Y, Chu H, Zhou Y, Wang J, Dong C, Yin R. miR-365 functions as a tumor suppressor by directly targeting CYR61 in osteosarcoma. Biomed Pharmacother 2017; 98:531-537. [PMID: 29287201 DOI: 10.1016/j.biopha.2017.12.086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/06/2017] [Accepted: 12/18/2017] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence indicates that microRNAs(miRNAs) are often aberrantly expressed in osteosarcoma (OS) and play critical roles in OS tumorigenesis. Therefore, the discovery of miRNAs may provide a new and powerful tool for understanding the mechanismof OS initiation and development. The aim of this study was to investigate the functional significance of miR-365 and identify its possible mechanism in OS cells. Here, wefound that the expression level of miR-365 is significantly downregulated in OS tissues and cell lines, and its expression isassociated with the clinical stage, distant metastasis, tumor grade, and poor overall survival rate. The overexpression of miR-365 is able to inhibit cell proliferation, migration, and invasion in Saos-2 and MG-63 cells. Moreover, the cysteine-rich angiogenic inducer 61 (CYR61) has been identified as a target of miR-365 in OS cells, and its expression is found to be significantly increased in OS tissues, which is negatively correlated with miR-365. Furthermore, CYR61 overexpression significantly attenuated the suppressive effects of miR-365 on the proliferation, migration, and invasion of Saos-2 and MG-63 cells. Therefore, we consider that miR-365 acts as a tumor suppressor in OS, partly, by targeting CYR61 expression.
Collapse
Affiliation(s)
- Yawei Xu
- College of Bioengineering, Jilin Agricultural Science and Technology University, Jilin City 132101, PR China
| | - Haijiao Chu
- College of Bioengineering, Jilin Agricultural Science and Technology University, Jilin City 132101, PR China
| | - Yan Zhou
- College of Bioengineering, Jilin Agricultural Science and Technology University, Jilin City 132101, PR China
| | - Junling Wang
- College of Bioengineering, Jilin Agricultural Science and Technology University, Jilin City 132101, PR China
| | - Changying Dong
- College of Bioengineering, Jilin Agricultural Science and Technology University, Jilin City 132101, PR China
| | - Rui Yin
- College of Bioengineering, Jilin Agricultural Science and Technology University, Jilin City 132101, PR China.
| |
Collapse
|
39
|
Li S, Luo C, Zhou J, Zhang Y. MicroRNA-34a directly targets high-mobility group box 1 and inhibits the cancer cell proliferation, migration and invasion in cutaneous squamous cell carcinoma. Exp Ther Med 2017; 14:5611-5618. [PMID: 29285100 DOI: 10.3892/etm.2017.5245] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/11/2017] [Indexed: 12/13/2022] Open
Abstract
Cutaneous squamous cell carcinoma (CSCC) is the second most common type of skin cancer with increasing incidence. In recent years, several microRNAs (miRs) have been demonstrated to serve an oncogenic or tumor suppressive role in CSCC. However, the exact role of miR-34a in CSCC and the underlying regulatory mechanism remain unclear. The present study aimed to investigate the regulatory mechanism of miR-34a in the malignant phenotypes of CSCC cells using MTT assay, wound healing assay and transwell assay. It was observed that miR-34a was significantly downregulated in CSCC tissues and cell lines, and low miR-34a expression was associated with the aggressive progression of CSCC. Restoration of miR-34a significantly suppressed the proliferation, migration and invasion of CSCC SCL-1 cells. High-mobility group box 1 (HMGB1) was then identified as a target gene of miR-34a in SCL-1 cells using bioinformatics prediction. The expression of HMGB1 was significantly upregulated in the CSCC tissues and cell lines. Furthermore, the protein expression of HMGB1 was negatively regulated by miR-34a in SCL-1 cells, while overexpression of HMGB1 impaired the inhibitory effects of miR-34a on SCL-1 cells. These findings suggest that miR-34a represses the malignant phenotypes of CSCC cells, at least partly, via the inhibition of HMGB1. Therefore, miR-34a may be used as a promising therapeutic candidate for CSCC.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Plastic and Reconstructive Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100144, P.R. China
| | - Chengqun Luo
- Department of Burns, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jun Zhou
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yong Zhang
- Department of Cosmetic and Plastic Surgery, The Third People's Hospital of Huaihua, Huaihua, Hunan 418000, P.R. China
| |
Collapse
|
40
|
He RQ, Pang YY, Zhang R, Liang HW, Li CY, Ma J, Feng ZB, Peng ZG, Chen G. Down-regulation of MiR-365 as a novel indicator to assess the progression and metastasis of hepatocellular carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:9164-9176. [PMID: 31966789 PMCID: PMC6965901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 04/20/2017] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) are involved in the pathogenesis of diverse types of malignancies, including hepatocellular carcinoma (HCC). However, miR-365 has rarely been reported in HCC. The purpose of the current study was to identify the clinical relevance of miR-365 in HCC and examine the potential downstream signaling effectors.Using real-time RT-qPCR, we confirmed that miR-365 expression was markedly decreased in HCC tissues (3.5138 ± 2.2527) compared to that in paraneoplastic liver tissues (6.5950 ± 4.1230, P<0.001). Receiver operating characteristic curves to assess the diagnostic value of miR-365 in HCC demonstrated that the area under the curve was 0.757. Furthermore, down-regulation of miR-365 was remarkably correlated to the number of tumor nodes, status of metastasis, clinical TNM stage, portal vein tumor embolus and vaso-invasion. In addition to the clinical value of miR-365, a total of 238 downstream direct targets selected by online predictive algorithms and key genes generated from natural language processing and the Cancer Genome Atlas (TCGA) were pooled for bioinformatics analysis. These potential targets were mainly enriched in the Ras Pathway using PANTHER analysis and the 'Pathways in Cancer' using Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. In conclusion, down-regulated miR-365 may contribute to the progression and metastasis of HCC via targeting multiple signaling pathways, and miR-365 may act as a novel biomarker for HCC.
Collapse
Affiliation(s)
- Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University6 Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Yu-Yan Pang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Rui Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Hai-Wei Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Chun-Yao Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University6 Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Zhi-Gang Peng
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University6 Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Nanning, Guangxi Zhuang Autonomous Region, P. R. China
| |
Collapse
|
41
|
Zhou L, Gao R, Wang Y, Zhou M, Ding Z. Loss of BAX by miR-365 Promotes Cutaneous Squamous Cell Carcinoma Progression by Suppressing Apoptosis. Int J Mol Sci 2017; 18:ijms18061157. [PMID: 28556798 PMCID: PMC5485981 DOI: 10.3390/ijms18061157] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/03/2017] [Accepted: 05/26/2017] [Indexed: 12/31/2022] Open
Abstract
Pro-apoptotic BCL2 associated X (BAX) is traditionally thought to be regulated by anti-apoptotic BCL-2 family members, like BCL2-like 1 (BCL-XL), at the protein level. However, the posttranscriptional regulation of BAX is under explored. In this study, we identified BAX as the novel downstream target of miR-365, which is supported by gain- and loss-of-function studies of onco-miR-365. Loss of BAX by either RNA interference or highly-expressed miR-365 in cells of cutaneous squamous cell carcinoma (CSCC) enhanced the tumor resistance against apoptosis, while repressing cell proliferation, migration, and invasiveness. In vivo experiment confirmed that BAX knockdown promotes the growth of CSCC xenografts. Collectively, our results find a miR-365-BAX axis for alleviating the pro-apoptotic effects of BAX, which promotes CSCC development and may facilitate the generation of novel therapeutic regimens to the clinical treatment of CSCC.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Ruirui Gao
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Yinghui Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Zhenhua Ding
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
42
|
Becker-Santos DD, Lonergan KM, Gronostajski RM, Lam WL. Nuclear Factor I/B: A Master Regulator of Cell Differentiation with Paradoxical Roles in Cancer. EBioMedicine 2017; 22:2-9. [PMID: 28596133 PMCID: PMC5552107 DOI: 10.1016/j.ebiom.2017.05.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 11/16/2022] Open
Abstract
Emerging evidence indicates that nuclear factor I/B (NFIB), a transcription factor required for proper development and regulation of cellular differentiation in several tissues, also plays critical roles in cancer. Despite being a metastatic driver in small cell lung cancer and melanoma, it has become apparent that NFIB also exhibits tumour suppressive functions in many malignancies. The contradictory contributions of NFIB to both the inhibition and promotion of tumour development and progression, corroborates its diverse and context-dependent roles in many tissues and cell types. Considering the frequent involvement of NFIB in cancer, a better understanding of its multifaceted nature may ultimately benefit the development of novel strategies for the management of a broad spectrum of malignancies. Here we discuss recent findings which bring to light NFIB as a crucial and paradoxical player in cancer. NFIB, a versatile regulator of cell differentiation, is emerging as a crucial driver of cancer metastasis. Paradoxically, NFIB also exhibits tumour suppressive functions in several cancer types. A deeper understanding of the multifaceted and context-dependent nature of NFIB has the potential to improve the clinical management of a variety of cancers.
Collapse
Affiliation(s)
- Daiana D Becker-Santos
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada; Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada.
| | - Kim M Lonergan
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Richard M Gronostajski
- Department of Biochemistry, Program in Genetics, Genomics and Bioinformatics, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada; Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
43
|
Emerging genotype-phenotype relationships in patients with large NF1 deletions. Hum Genet 2017; 136:349-376. [PMID: 28213670 PMCID: PMC5370280 DOI: 10.1007/s00439-017-1766-y] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/08/2017] [Indexed: 02/07/2023]
Abstract
The most frequent recurring mutations in neurofibromatosis type 1
(NF1) are large deletions encompassing the NF1
gene and its flanking regions (NF1
microdeletions). The majority of these deletions encompass 1.4-Mb and are associated
with the loss of 14 protein-coding genes and four microRNA genes. Patients with
germline type-1 NF1 microdeletions frequently
exhibit dysmorphic facial features, overgrowth/tall-for-age stature, significant
delay in cognitive development, large hands and feet, hyperflexibility of joints and
muscular hypotonia. Such patients also display significantly more cardiovascular
anomalies as compared with patients without large deletions and often exhibit
increased numbers of subcutaneous, plexiform and spinal neurofibromas as compared
with the general NF1 population. Further, an extremely high burden of internal
neurofibromas, characterised by >3000 ml tumour volume, is encountered
significantly, more frequently, in non-mosaic NF1
microdeletion patients than in NF1 patients lacking such deletions. NF1 microdeletion patients also have an increased risk of
malignant peripheral nerve sheath tumours (MPNSTs); their lifetime MPNST risk is
16–26%, rather higher than that of NF1 patients with intragenic NF1 mutations (8–13%). NF1 microdeletion patients, therefore, represent a high-risk group for
the development of MPNSTs, tumours which are very aggressive and difficult to treat.
Co-deletion of the SUZ12 gene in addition to
NF1 further increases the MPNST risk in
NF1 microdeletion patients. Here, we summarise
current knowledge about genotype–phenotype relationships in NF1 microdeletion patients and discuss the potential role of the genes
located within the NF1 microdeletion interval
whose haploinsufficiency may contribute to the more severe clinical
phenotype.
Collapse
|
44
|
Liu Y, Zhang W, Liu S, Liu K, Ji B, Wang Y. miR-365 targets ADAM10 and suppresses the cell growth and metastasis of hepatocellular carcinoma. Oncol Rep 2017; 37:1857-1864. [PMID: 28184920 DOI: 10.3892/or.2017.5423] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/09/2016] [Indexed: 11/06/2022] Open
Abstract
Expression of miR-365 has been reported to be downregulated in hepatocellular carcinoma (HCC). However, the biological function and underlying mechanism of miR-365 in HCC growth and metastasis remain unclear. The aim of the present study was to explore the role of miR-365 in HCC progression. We found that miR-365 expression was downregulated in HCC tissues and cell lines. Further results showed that low expression of miR-365 was significantly associated with tumor-node-metastasis (TNM) stage and lymph node metastasis. Functional assays revealed that overexpression of miR-365 significantly inhibited cell proliferation, colony formation, migration and invasion of HCC cells in vitro, and suppressed tumor growth in vivo. Mechanistic investigations demonstrated that ADAM10 (a disintegrin and metalloproteinase 10) is a target of miR-365 in HCC. In addition, knockdown of ADAM10 in HepG2 cells significantly inhibited cell proliferation, colony formation, migration and invasion, which mimicked the suppressive effects induced by miR-365 overexpression. Restoration of ADAM10 expression partially reversed the suppressive effects mediated by miR-365 overexpression. Taken together, these results indicate that miR-365 functions as a tumor-suppressor in HCC through targeting ADAM10, and may serve as a promising candidate for therapeutic applications in HCC treatment.
Collapse
Affiliation(s)
- Yahui Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Songyang Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bai Ji
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yingchao Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
45
|
Association of Polymorphisms in three pri-miRNAs that Target Pepsinogen C with the Risk and Prognosis of Gastric Cancer. Sci Rep 2017; 7:39528. [PMID: 28067243 PMCID: PMC5220333 DOI: 10.1038/srep39528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022] Open
Abstract
We aimed to explore the associations of polymorphisms in three microRNAs (miRNAs) (let-7e rs8111742, miR-365b rs121224 and miR-4795 rs1002765) that target PGC with the risk and prognosis of gastric cancer/atrophic gastritis. Sequenom’s MassArray was used to genotype the miRNA polymorphisms in 724 gastric cancer cases, 862 atrophic gastritis cases and 862 controls in a Chinese population. We found that let-7e rs8111742 and miR-4795 rs1002765 were associated with the risk of gastric cancer in the H. pylori-positive subgroup. MiR-365b rs121224 was associated with the risk of intestinal-type gastric cancer in the alcohol consumption subgroup. Intestinal-type gastric cancer patients at Borrmann stages III-IV who carry the miR-365b rs121224 GG genotype had better prognosis compared with those who carry the CG or CC genotypes. MiR-365b rs121224 was associated with Lauren typing and TNM staging, in which the distribution of GG genotype carriers in intestinal-type gastric cancer and the TNM stage I-II subgroup was higher than that of CG or CC genotypes, which contrasted with the distribution in diffuse-type gastric cancer or TNM III-IV groups. These findings suggested that the polymorphisms in these miRNAs might be biomarkers for gastric cancer risk and prognosis, especially for populations infected with Helicobacter pylori or who consume alcohol.
Collapse
|
46
|
Wang Y, Xu C, Wang Y, Zhang X. MicroRNA-365 inhibits ovarian cancer progression by targeting Wnt5a. Am J Cancer Res 2017; 7:1096-1106. [PMID: 28560060 PMCID: PMC5446477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 04/20/2017] [Indexed: 03/11/2023] Open
Abstract
MicroRNA-365 (miR-365) has been reported to play an important role in tumorigenesis in many types of cancers; however, the role of miR-365 in the carcinogenesis of ovarian cancer remains unknown. In this study, we focused on the roles and underlying mechanisms of miR-365 in ovarian cancer. Here, we found that miR-365 expression level was significantly decreased in ovarian cancer tissues and cell lines, and that low miR-365 expression was negatively significantly associated with advanced stages as defined by the International Federation of Gynecology and Obstetrics (FIGO), histological grading, and lymph node metastasis. Further functional assays showed that transfection with a miR-365 mimic significantly decreased ovarian cancer cell proliferation, colony formation, migration, and invasion. In addition, Wnt5a was identified as a target gene of miR-365 in ovarian cancer by bioinformatic analysis, luciferase reporter assay, qPCR, and western blot. Wnt5a expression levels were upregulated and inversely correlated with miR-365 expression in ovarian cancer tissues (r = -0.638, P < 0.0001). Overexpression of Wnt5a could effectively reverse the miR-365 overexpression-induced suppression of proliferation and invasion in ovarian cancer cells. Additionally, in vivo studies utilizing a xenograft model demonstrated that overexpression of miR-365 could reduce tumor growth by repressing Wnt5a. Taken together, these findings suggest that miR-365 may be a promising candidate for therapeutic application in ovarian cancer treatment.
Collapse
Affiliation(s)
- Yanli Wang
- Department of Gynecology, The First Hospital of Jilin UniversityChangchun 130021, China
| | - Chunling Xu
- Department of Ophthalmology, The Second Hospital of Jilin UniversityChangchun 130041, China
| | - Yun Wang
- The Affiliated Hospital, Changchun University of Chinese Medicine1478# Gongnong Road, Chaoyang District, Changchun 130021, China
| | - Xiaomeng Zhang
- Department of Ophthalmology, The Second Hospital of Jilin UniversityChangchun 130041, China
| |
Collapse
|
47
|
Toll A, Salgado R, Espinet B, Díaz-Lagares A, Hernández-Ruiz E, Andrades E, Sandoval J, Esteller M, Pujol RM, Hernández-Muñoz I. MiR-204 silencing in intraepithelial to invasive cutaneous squamous cell carcinoma progression. Mol Cancer 2016; 15:53. [PMID: 27457246 PMCID: PMC4960761 DOI: 10.1186/s12943-016-0537-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/29/2016] [Indexed: 12/21/2022] Open
Abstract
Background Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer and frequently progresses from an actinic keratosis (AK), a sun-induced keratinocyte intraepithelial neoplasia (KIN). Epigenetic mechanisms involved in the phenomenon of progression from AK to cSCC remain to be elicited. Methods Expression of microRNAs in sun-exposed skin, AK and cSCC was analysed by Agilent microarrays. DNA methylation of miR-204 promoter was determined by bisulphite treatment and pyrosequencing. Identification of miR-204 targets and pathways was accomplished in HaCat cells. Immunofluorescence and immunohistochemistry were used to analyze STAT3 activation and PTPN11 expression in human biopsies. Results cSCCs display a marked downregulation of miR-204 expression when compared to AK. DNA methylation of miR-204 promoter was identified as one of the repressive mechanisms that accounts for miR-204 silencing in cSCC. In HaCaT cells miR-204 inhibits STAT3 and favours the MAPK signaling pathway, likely acting through PTPN11, a nuclear tyrosine phosphatase that is a direct miR-204 target. In non-peritumoral AK lesions, activated STAT3, as detected by pY705-STAT3 immunofluorescence, is retained in the membrane and cytoplasm compartments, whereas AK lesions adjacent to cSCCs display activated STAT3 in the nuclei. Conclusions Our data suggest that miR-204 may act as a “rheostat” that controls the signalling towards the MAPK pathway or the STAT3 pathway in the progression from AK to cSCC. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0537-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Agustí Toll
- Department of Dermatology, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain. .,Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.
| | - Rocío Salgado
- Cytogenetics Molecular Biology Laboratory, Department of Pathology, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Blanca Espinet
- Cytogenetics Molecular Biology Laboratory, Department of Pathology, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Angel Díaz-Lagares
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | | | - Evelyn Andrades
- Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Juan Sandoval
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Ramón M Pujol
- Department of Dermatology, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain.,Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Inmaculada Hernández-Muñoz
- Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.
| |
Collapse
|
48
|
Stringer BW, Bunt J, Day BW, Barry G, Jamieson PR, Ensbey KS, Bruce ZC, Goasdoué K, Vidal H, Charmsaz S, Smith FM, Cooper LT, Piper M, Boyd AW, Richards LJ. Nuclear factor one B (NFIB) encodes a subtype-specific tumour suppressor in glioblastoma. Oncotarget 2016; 7:29306-20. [PMID: 27083054 PMCID: PMC5045397 DOI: 10.18632/oncotarget.8720] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/28/2016] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is an essentially incurable and rapidly fatal cancer, with few markers predicting a favourable prognosis. Here we report that the transcription factor NFIB is associated with significantly improved survival in GBM. NFIB expression correlates inversely with astrocytoma grade and is lowest in mesenchymal GBM. Ectopic expression of NFIB in low-passage, patient-derived classical and mesenchymal subtype GBM cells inhibits tumourigenesis. Ectopic NFIB expression activated phospho-STAT3 signalling only in classical and mesenchymal GBM cells, suggesting a mechanism through which NFIB may exert its context-dependent tumour suppressor activity. Finally, NFIB expression can be induced in GBM cells by drug treatment with beneficial effects.
Collapse
Affiliation(s)
- Brett W. Stringer
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Jens Bunt
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Bryan W. Day
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Guy Barry
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Paul R. Jamieson
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Kathleen S. Ensbey
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Zara C. Bruce
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Kate Goasdoué
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Hélène Vidal
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Sara Charmsaz
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Fiona M. Smith
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Leanne T. Cooper
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Michael Piper
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Andrew W. Boyd
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Department of Medicine, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Linda J. Richards
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Queensland, Australia
| |
Collapse
|
49
|
Yu X, Li Z. The role of miRNAs in cutaneous squamous cell carcinoma. J Cell Mol Med 2015; 20:3-9. [PMID: 26508273 PMCID: PMC4717857 DOI: 10.1111/jcmm.12649] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/08/2015] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRs) are small, noncoding RNAs that negatively regulate gene expressions at posttranscriptional level. Each miR can control hundreds of gene targets and play important roles in various biological and pathological processes such as hematopoiesis, organogenesis, cell apoptosis and proliferation. Aberrant miR expression contributes to initiation and cell progression of cancers. Accumulating studies have found that miRs play a significant role in cutaneous squamous cell carcinoma (cSCC). Deregulations of miRs may contribute to cSCC carcinogenesis is through acting as oncogenic or tumour suppressive miRs. In this study, we summarized the recent data available on cSCC‐associated miRs. In particular, we will discuss the contribution of miR to the initiation and progression of cSCCs. Although there are many obstacles to be overcome, clinical use of miRs as biomarkers for diagnosis, prediction of prognosis and target for therapies, will be a promising area in the future with more expression and functional role of miRs revealed.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
50
|
Luo Q, Li W, Zhao T, Tian X, Liu Y, Zhang X. Role of miR-148a in cutaneous squamous cell carcinoma by repression of MAPK pathway. Arch Biochem Biophys 2015; 583:47-54. [DOI: 10.1016/j.abb.2015.07.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/31/2015] [Accepted: 07/31/2015] [Indexed: 12/20/2022]
|