1
|
Hua Y, Zou Z, Prescimone A, Ward TR, Mayor M, Köhler V. NSPs: chromogenic linkers for fast, selective, and irreversible cysteine modification. Chem Sci 2024; 15:10997-11004. [PMID: 39027294 PMCID: PMC11253191 DOI: 10.1039/d4sc01710b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
The addition of a sulfhydryl group to water-soluble N-alkyl(o-nitrostyryl)pyridinium ions (NSPs) followed by fast and irreversible cyclization and aromatization results in a stable S-C sp2-bond. The reaction sequence, termed Click & Lock, engages accessible cysteine residues under the formation of N-hydroxy indole pyridinium ions. The accompanying red shift of >70 nm to around 385 nm enables convenient monitoring of the labeling yield by UV-vis spectroscopy at extinction coefficients of ≥2 × 104 M-1 cm-1. The versatility of the linker is demonstrated in the stapling of peptides and the derivatization of proteins, including the modification of reduced trastuzumab with Val-Cit-PAB-MMAE. The high stability of the linker in human plasma, fast reaction rates (k app up to 4.4 M-1 s-1 at 20 °C), high selectivity for cysteine, favorable solubility of the electrophilic moiety and the bathochromic properties of the Click & Lock reaction provide an appealing alternative to existing methods for cysteine conjugation.
Collapse
Affiliation(s)
- Yong Hua
- Department of Chemistry, University of Basel St. Johannsring 19 CH-4056 Basel Switzerland
- Department of Chemistry, University of Basel Mattenstrasse 22 CH-4058 Basel Switzerland
| | - Zhi Zou
- Department of Chemistry, University of Basel St. Johannsring 19 CH-4056 Basel Switzerland
- Department of Chemistry, University of Basel Mattenstrasse 22 CH-4058 Basel Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel St. Johannsring 19 CH-4056 Basel Switzerland
- Department of Chemistry, University of Basel Mattenstrasse 22 CH-4058 Basel Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel St. Johannsring 19 CH-4056 Basel Switzerland
- Department of Chemistry, University of Basel Mattenstrasse 22 CH-4058 Basel Switzerland
- National Center of Competence in Research (NCCR) "Molecular Systems Engineering" 4058 Basel Switzerland
| | - Marcel Mayor
- Department of Chemistry, University of Basel St. Johannsring 19 CH-4056 Basel Switzerland
- Department of Chemistry, University of Basel Mattenstrasse 22 CH-4058 Basel Switzerland
- Institute for Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology (KIT) P.O. Box 3640 DE-76021 Karlsruhe Eggenstein-Leopoldshafen Germany
- Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University (SYSU) XinGangXi Road 135 510275 Guangzhou P. R. China
| | - Valentin Köhler
- Department of Chemistry, University of Basel St. Johannsring 19 CH-4056 Basel Switzerland
- Department of Chemistry, University of Basel Mattenstrasse 22 CH-4058 Basel Switzerland
| |
Collapse
|
2
|
Porras JD, Diaz IL, Perez LD. Synthesis of PEGylated amphiphilic block copolymers with pendant linoleic moieties by combining ring-opening polymerization and click chemistry. Biopolymers 2024; 115:e23582. [PMID: 38680100 DOI: 10.1002/bip.23582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
This study focused on synthesizing and characterizing PEGylated amphiphilic block copolymers with pendant linoleic acid (Lin) moieties as an alternative to enhance their potential in drug delivery applications. The synthesis involved a two-step process, starting with ring-opening polymerization of ε-caprolactone (CL) and propargylated cyclic carbonate (MCP) to obtain PEG-b-P(CL-co-MCP) copolymers, which were subsequently modified via click chemistry. Various reaction conditions were explored to improve the yield and efficiency of the click chemistry step. The use of anisole as a solvent, N-(3-azidopropyl)linoleamide as a substrate, and a reaction temperature of 60°C proved to be highly efficient, achieving nearly 100% conversion at a low catalyst concentration. The resulting copolymers exhibited controlled molecular weights and low polydispersity, confirming the successful synthesis. Furthermore, click chemistry allows for the attachment of Lin moieties to the copolymer, enhancing its hydrophobic character, as deduced from their significantly lower critical micelle concentration than that of traditional PEG-b-PCL systems, which is indicative of enhanced stability against dilution. The modified copolymers exhibited improved thermal stability, making them suitable for applications that require high processing temperatures. Dynamic light scattering and transmission electron microscopy confirmed the formation of micellar structures with sizes below 100 nm and minimal aggregate formation. Additionally, 1H NMR spectroscopy in deuterated water revealed the presence of core-shell micelles, which provided higher kinetic stability against dilution.
Collapse
Affiliation(s)
- Julian D Porras
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Bogotá, Colombia
| | - Ivonne L Diaz
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Bogotá, Colombia
| | - Leon D Perez
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Bogotá, Colombia
| |
Collapse
|
3
|
Zangi AR, Amiri A, Pazooki P, Soltanmohammadi F, Hamishehkar H, Javadzadeh Y. Non-viral and viral delivery systems for hemophilia A therapy: recent development and prospects. Ann Hematol 2024; 103:1493-1511. [PMID: 37951852 DOI: 10.1007/s00277-023-05459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/17/2023] [Indexed: 11/14/2023]
Abstract
Recent advancements have focused on enhancing factor VIII half-life and refining its delivery methods, despite the well-established knowledge that factor VIII deficiency is the main clotting protein lacking in hemophilia. Consequently, both viral and non-viral delivery systems play a crucial role in enhancing the quality of life for hemophilia patients. The utilization of viral vectors and the manipulation of non-viral vectors through targeted delivery are significant advancements in the field of cellular and molecular therapies for hemophilia. These developments contribute to the progression of treatment strategies and hold great promise for improving the overall well-being of individuals with hemophilia. This review study comprehensively explores the application of viral and non-viral vectors in cellular (specifically T cell) and molecular therapy approaches, such as RNA, monoclonal antibody (mAb), and CRISPR therapeutics, with the aim of addressing the challenges in hemophilia treatment. By examining these innovative strategies, the study aims to shed light on potential solutions to enhance the efficacy and outcomes of hemophilia therapy.
Collapse
Affiliation(s)
- Ali Rajabi Zangi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166-15731, Iran
| | - Ala Amiri
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Pouya Pazooki
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166-15731, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, 5166-15731, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166-15731, Iran.
| |
Collapse
|
4
|
Kumar V, Barwal A, Sharma N, Mir DS, Kumar P, Kumar V. Therapeutic proteins: developments, progress, challenges, and future perspectives. 3 Biotech 2024; 14:112. [PMID: 38510462 PMCID: PMC10948735 DOI: 10.1007/s13205-024-03958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Proteins are considered magic molecules due to their enormous applications in the health sector. Over the past few decades, therapeutic proteins have emerged as a promising treatment option for various diseases, particularly cancer, cardiovascular disease, diabetes, and others. The formulation of protein-based therapies is a major area of research, however, a few factors still hinder the large-scale production of these therapeutic products, such as stability, heterogenicity, immunogenicity, high cost of production, etc. This review provides comprehensive information on various sources and production of therapeutic proteins. The review also summarizes the challenges currently faced by scientists while developing protein-based therapeutics, along with possible solutions. It can be concluded that these proteins can be used in combination with small molecular drugs to give synergistic benefits in the future.
Collapse
Affiliation(s)
- Vimal Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Arti Barwal
- Department of Microbial Biotechnology, Panjab University, South Campus, Sector-25, Chandigarh, 160014 India
| | - Nitin Sharma
- Department of Biotechnology, Chandigarh Group of Colleges, Mohali, Punjab 140307 India
| | - Danish Shafi Mir
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Pradeep Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229 India
| | - Vikas Kumar
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| |
Collapse
|
5
|
Wang S, Yang L, He W, Zheng M, Zou Y. Cell Membrane Camouflaged Biomimetic Nanoparticles as a Versatile Platform for Brain Diseases Treatment. SMALL METHODS 2024:e2400096. [PMID: 38461538 DOI: 10.1002/smtd.202400096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Although there are various advancements in biomedical in the past few decades, there are still challenges in the treatment of brain diseases. The main difficulties are the inability to deliver a therapeutic dose of the drug to the brain through the blood-brain barrier (BBB) and the serious side effects of the drug. Thus, it is essential to select biocompatible drug carriers and novel therapeutic tools to better enhance the effect of brain disease treatment. In recent years, biomimetic nanoparticles (BNPs) based on natural cell membranes, which have excellent biocompatibility and low immunogenicity, are widely used in the treatment of brain diseases to enable the drug to successfully cross the BBB and target brain lesions. BNPs can prolong the circulation time in vivo, are more conducive to drug aggregation in brain lesions. Cell membranes (CMs) from cancer cells (CCs), red blood cells (RBCs), white blood cells (WBCs), and so on are used as biomimetic coatings for nanoparticles (NPs) to achieve the ability to target, evade clearance, or stimulate the immune system. This review summarizes the application of different cell sources as BNPs coatings in the treatment of brain diseases and discusses the possibilities and challenges of clinical translation.
Collapse
Affiliation(s)
- Shiyu Wang
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Longfei Yang
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Wenya He
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Meng Zheng
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Zou
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
6
|
Abdelgawad HAH, Foster R, Otto M. Nothing short of a revolution: Novel extended half-life factor VIII replacement products and non-replacement agents reshape the treatment landscape in hemophilia A. Blood Rev 2024; 64:101164. [PMID: 38216442 DOI: 10.1016/j.blre.2023.101164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024]
Abstract
Hemophilia A, an X-linked genetic disorder, is characterized by a deficiency or dysfunction of clotting Factor VIII. The treatment landscape has substantially changed by introducing novel extended half-life factor VIII (EHL-FVIII) replacement therapies such as efanesoctocog Alfa and non-factor replacement therapy such as emicizumab. These agents signal a shift from treatments requiring multiple weekly infusions to advanced therapies with long half-lives, offering superior protection against bleeding and improving patient adherence and quality of life. While EHL-FVIII treatment might lead to inhibitor development in some patients, non-factor replacement therapy carries thrombotic risks. Therefore, ongoing research and the generation of robust clinical evidence remain vital to guide the selection of optimal and cost-effective first-line therapies for hemophilia A patients.
Collapse
Affiliation(s)
- Hussien Ahmed H Abdelgawad
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ, USA; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, USA.
| | - Rachel Foster
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Mario Otto
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ, USA; Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, USA.
| |
Collapse
|
7
|
Li S, Ma Y, Cui J, Caruso F, Ju Y. Engineering poly(ethylene glycol) particles for targeted drug delivery. Chem Commun (Camb) 2024; 60:2591-2604. [PMID: 38285062 DOI: 10.1039/d3cc06098e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Poly(ethylene glycol) (PEG) is considered to be the "gold standard" among the stealth polymers employed for drug delivery. Using PEG to modify or engineer particles has thus gained increasing interest because of the ability to prolong blood circulation time and reduce nonspecific biodistribution of particles in vivo, owing to the low fouling and stealth properties of PEG. In addition, endowing PEG-based particles with targeting and drug-loading properties is essential to achieve enhanced drug accumulation at target sites in vivo. In this feature article, we focus on recent work on the synthesis of PEG particles, in which PEG is the main component in the particles. We highlight different synthesis methods used to generate PEG particles, the influence of the physiochemical properties of PEG particles on their stealth and targeting properties, and the application of PEG particles in targeted drug delivery.
Collapse
Affiliation(s)
- Shiyao Li
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yi Ju
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
8
|
Qi P, He Q, Zhang J, Lian Y, Xie T, Dong J, Zhangsun D, Wu Y, Luo S. Enhancing Stability and Albumin Binding Efficiency of α-Conotoxin GI through Fatty Acid Modification. Biochemistry 2023; 62:3373-3382. [PMID: 37967580 DOI: 10.1021/acs.biochem.3c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
α-Conotoxin GI is a competitive blocker of muscle-type acetylcholine receptors and holds the potential for being developed as a molecular probe or a lead compound for drug discovery. In this study, four fatty acid-modified α-conotoxin GI analogues of different lengths were synthesized by using a fatty acid modification strategy. Then, we performed a series of in vitro stability assays, albumin binding assays, and pharmacological activity assays to evaluate these modified mutants. The experimental results showed that the presence of fatty acids significantly enhanced the in vitro stability and albumin binding ability of α-conotoxin GI and that this effect was proportional to the length of the fatty acids used. Pharmacological activity tests showed that the modified mutants maintained a good acetylcholine receptor antagonistic activity. The present study shows that fatty acid modification can be an effective strategy to significantly improve conotoxin stability and albumin binding efficiency while maintaining the original targeting ion channel activity.
Collapse
Affiliation(s)
- Panpan Qi
- School of Medicine, Guangxi University, Guangxi Key Laboratory of Special Biomedicine, Nanning 530004, China
| | - Quankuo He
- School of Medicine, Guangxi University, Guangxi Key Laboratory of Special Biomedicine, Nanning 530004, China
| | - Junjie Zhang
- School of Medicine, Guangxi University, Guangxi Key Laboratory of Special Biomedicine, Nanning 530004, China
| | - Yuanyuan Lian
- School of Medicine, Guangxi University, Guangxi Key Laboratory of Special Biomedicine, Nanning 530004, China
| | - Ting Xie
- School of Medicine, Guangxi University, Guangxi Key Laboratory of Special Biomedicine, Nanning 530004, China
| | - Jianying Dong
- School of Medicine, Guangxi University, Guangxi Key Laboratory of Special Biomedicine, Nanning 530004, China
| | - Dongting Zhangsun
- School of Medicine, Guangxi University, Guangxi Key Laboratory of Special Biomedicine, Nanning 530004, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Yong Wu
- School of Medicine, Guangxi University, Guangxi Key Laboratory of Special Biomedicine, Nanning 530004, China
| | - Sulan Luo
- School of Medicine, Guangxi University, Guangxi Key Laboratory of Special Biomedicine, Nanning 530004, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| |
Collapse
|
9
|
Azeem MK, Islam A, Khan RU, Rasool A, Anees Ur Rehman Qureshi M, Rizwan M, Shuib RK, Rehman A, Sadiqa A. Guar gum/poly ethylene glycol/graphene oxide environmentally friendly hybrid hydrogels for controlled release of boron micronutrient. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231157. [PMID: 38094268 PMCID: PMC10716656 DOI: 10.1098/rsos.231157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/21/2023] [Indexed: 01/11/2024]
Abstract
The present study was aimed at synthesis of polymeric hydrogels for controlled boron (B) release, as B deficiency is a major factor that decreases crops yield. Thus, graphene oxide incorporated guar gum and poly (ethylene glycol) hydrogels were prepared using the Solution Casting method for boron release. 3-Glycidyloxypropyl trimethoxysilane (GLYMOL) was used as a cross-linker. Characterizations of hydrogels were carried out by Fourier Transform Infrared Spectroscopy (FTIR), Thermo-Gravimetric Analysis and Scanning Electron scope. The FTIR outcomes confirmed the existence of functional groups, bindings and development of hydrogel frameworks from incorporated components. The quantity of GLYMOL directly increased the thermal stability and water retention but decreased the swelling %. The maximum swelling for the hydrogel formulations was observed at pH 7. The addition of GLYMOL changed the diffusion from quasi-Fickcian to non-Fickcian diffusion. The maximum swelling quantities of 3822% and 3342% were exhibited by GPP (control) and GPP-8 in distilled water, respectively. Boron release was determined in distilled water and sandy soil by azomethine-H test using UV-Visible spectrophotometer while 85.11% and 73.65% boron was released from BGPP-16, respectively. In short, water retentive, water holding capacities, swelling performances, biodegradability and swelling/deswelling features would offer an ideal platform for boron release in sustained agricultural applications.
Collapse
Affiliation(s)
- Muhammad Khalid Azeem
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, Punjab, Pakistan
| | - Atif Islam
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, Punjab, Pakistan
| | - Rafi Ullah Khan
- Institute of Chemical Engineering and Technology, University of the Punjab, Lahore, Punjab, Pakistan
| | - Atta Rasool
- School of Chemistry, University of the Punjab, Lahore, Punjab, Pakistan
| | | | - Muhammad Rizwan
- Department of Chemistry, University of Lahore 54000, Pakistan
| | - Raa Khimi Shuib
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300, Penang, Malaysia
| | - Abdul Rehman
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300, Penang, Malaysia
- Department of Polymer Engineering, National Textile University, Karachi campus, 74900, Karachi, Pakistan
| | - Ayesha Sadiqa
- Department of Chemistry, University of Lahore 54000, Pakistan
| |
Collapse
|
10
|
Li X, Wang N, Liu Y, Li W, Bai X, Liu P, He CY. Backbone N-methylation of peptides: Advances in synthesis and applications in pharmaceutical drug development. Bioorg Chem 2023; 141:106892. [PMID: 37776681 DOI: 10.1016/j.bioorg.2023.106892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Peptide-based drugs have garnered considerable attention in recent years owing to their increasingly crucial role in the treatment of diverse diseases. However, the limited pharmacokinetic properties of peptides have hindered their full potential. One prominent strategy for enhancing the druggability of peptides is N-methylation, which involves the addition of a methyl group to the nitrogen atom of the peptide backbone. This modification significantly improves the stability, bioavailability, receptor binding affinity and selectivity of peptide drug candidates. In this review, we provide a comprehensive overview of the advancements in synthetic methods for N-methylated peptide synthesis, as well as the associated limitations. Moreover, we explore the versatile effects of N-methylation on various aspects of peptide properties. Furthermore, we emphasize the efforts dedicated to N-methylated peptide pharmaceuticals that have successfully obtained marketing approval.
Collapse
Affiliation(s)
- Xuefei Li
- Key Laboratory of Basic Pharmacology of Ministry of Education, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China; Central Research Institute, United-Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Ningchao Wang
- Central Research Institute, United-Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Yuhang Liu
- Central Research Institute, United-Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - Weipiao Li
- Key Laboratory of Basic Pharmacology of Ministry of Education, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xinyu Bai
- Key Laboratory of Basic Pharmacology of Ministry of Education, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Ping Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Chun-Yang He
- Key Laboratory of Basic Pharmacology of Ministry of Education, Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
11
|
Miao G, He Y, Lai K, Zhao Y, He P, Tan G, Wang X. Accelerated blood clearance of PEGylated nanoparticles induced by PEG-based pharmaceutical excipients. J Control Release 2023; 363:12-26. [PMID: 37717659 DOI: 10.1016/j.jconrel.2023.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
PEGylated nanomedicines have been extensively developed and applied to cancer therapy. However, the antitumor efficacy of these nanoparticles is hampered by the accelerated blood clearance (ABC) effect caused by anti-PEG antibodies in vivo. There is still limited understanding about the cause of pre-existing anti-PEG antibodies in the human body. Herein, we discovered that PEG-based pharmaceutical excipients, commonly used in clinical and daily settings, could induce anti-PEG antibodies in vivo and lead to considerable potential clinical impacts on pharmacokinetics and pharmacodynamics of PEGylated nanoparticles. Specifically, we investigated the ability of poloxamer 188 (F68) and poloxamer 407 (F127), the two most frequently used PEG-based pharmaceutical excipients, to elicit the production of anti-PEG antibodies and influence the pharmacokinetics of PEGylated nanoparticles, with PEGylated liposome nanoparticles (L-NPs) as a model. Anti-PEG IgG and IgM levels were significantly boosted 3.8- and 32.2-fold, respectively, after pre-injection with F68, leading to rapid clearance of subsequently injected L-NPs from circulation due to the capture by neutrophils and monocytes. However, pre-injection of F127 did not induce the production of anti-PEG IgG, although there was a 7.7-fold increase in IgM level, which resulted in minimal effect on circulation time of L-NPs. Furthermore, the potential clinical impacts of F68 and F127 were further inspected for PEGylated liposomal doxorubicin (PLD). It was found that administering F68 prior to treatment led to over a one-third decrease in the antitumor effectiveness of PLD, while F127 had a negligible impact. Our study elucidates the mechanism by which PEG-based pharmaceutical excipients influence the effectiveness of PEGylated nanomedicines. It also highlights the significance of considering the potential for an ABC effect induced by PEG-based pharmaceutical excipients in patients.
Collapse
Affiliation(s)
- Guifeng Miao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong Province, China
| | - Yuejian He
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong Province, China
| | - Keren Lai
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong Province, China
| | - Yan Zhao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong Province, China
| | - Peiyi He
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong Province, China
| | - Guozhu Tan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong Province, China
| | - Xiaorui Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong Province, China.
| |
Collapse
|
12
|
Yue W, Shen J. Local Delivery Strategies for Peptides and Proteins into the CNS: Status Quo, Challenges, and Future Perspectives. Pharmaceuticals (Basel) 2023; 16:810. [PMID: 37375758 DOI: 10.3390/ph16060810] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Over the past decades, peptides and proteins have been increasingly important in the treatment of various human diseases and conditions owing to their specificity, potency, and minimized off-target toxicity. However, the existence of the practically impermeable blood brain barrier (BBB) limits the entry of macromolecular therapeutics into the central nervous systems (CNS). Consequently, clinical translation of peptide/protein therapeutics for the treatment of CNS diseases has been limited. Over the past decades, developing effective delivery strategies for peptides and proteins has gained extensive attention, in particular with localized delivery strategies, due to the fact that they are capable of circumventing the physiological barrier to directly introduce macromolecular therapeutics into the CNS to improve therapeutic effects and reduce systemic side effects. Here, we discuss various local administration and formulation strategies that have shown successes in the treatment of CNS diseases using peptide/protein therapeutics. Lastly, we discuss challenges and future perspectives of these approaches.
Collapse
Affiliation(s)
- Weizhou Yue
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Jie Shen
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
- Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
13
|
Sun Q, Yang Z, Qi X. Design and Application of Hybrid Polymer-Protein Systems in Cancer Therapy. Polymers (Basel) 2023; 15:polym15092219. [PMID: 37177365 PMCID: PMC10181109 DOI: 10.3390/polym15092219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Polymer-protein systems have excellent characteristics, such as non-toxic, non-irritating, good water solubility and biocompatibility, which makes them very appealing as cancer therapeutics agents. Inspiringly, they can achieve sustained release and targeted delivery of drugs, greatly improving the effect of cancer therapy and reducing side effects. However, many challenges, such as reducing the toxicity of materials, protecting the activities of proteins and controlling the release of proteins, still need to be overcome. In this review, the design of hybrid polymer-protein systems, including the selection of polymers and the bonding forms of polymer-protein systems, is presented. Meanwhile, vital considerations, including reaction conditions and the release of proteins in the design process, are addressed. Then, hybrid polymer-protein systems developed in the past decades for cancer therapy, including targeted therapy, gene therapy, phototherapy, immunotherapy and vaccine therapy, are summarized. Furthermore, challenges for the hybrid polymer-protein systems in cancer therapy are exemplified, and the perspectives of the field are covered.
Collapse
Affiliation(s)
- Qi Sun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China
| | - Zhenzhen Yang
- Drug Clinical Trial Center, Peking University Third Hospital, Peking University, Beijing 100191, China
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Xianrong Qi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
14
|
Kheiri S, Kiani M, Tashi H, Shahbazi M, Amini H. Analytical chromatography approaches during the synthesis and conjugation of methoxypolyethylene glycol-succinimidyl butanoate (mPEG-SBA) to epoetin beta. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1221:123679. [PMID: 36966608 DOI: 10.1016/j.jchromb.2023.123679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Conjugation of epoetin beta (EPO) with methoxypolyethylene glycol-succinimidyl butanoate (mPEG-SBA) was studied. The compound mPEG-SBA was synthesized from mPEG, and the obtained intermediates and final product were analyzed by a reversed-phase chromatographic system equipped with an evaporative light scattering detector. Labeling the hydroxyl group in PEGs with benzoyl chloride and succinimide with benzylamine was applied to resolve and characterize different PEGs. The synthesized mPEG-SBA was used for the PEGylation of EPO. A size-exclusion chromatographic method monitored the reaction, simultaneously determining the PEGylated and unreacted EPO and protein aggregates. A borate buffer (0.1 M, pH 7.8) and PEG/protein molar ratio of 3:1 produced a maximum amount of monoPEGylated EPO with the minimum amount of polyPEGylated EPO variants. Although EPO is considered a stable glycoprotein hormone that remains monomeric when refrigerated, PEGylation of EPO with mPEG-SBA resulted in the significant formation of EPO dimer. The formation of EPO dimer and polyPEGylated EPO was pH-dependent, showing higher amounts of aggregates and lower amounts of polyPEGylated forms in lower pH values. Accordingly, aggregated EPO should be considered a major PEGylation-related impurity. In conclusion, the present study highlighted the importance of having suitable analytical approaches in controlling mPEG-SBA synthesis and conjugation to EPO.
Collapse
Affiliation(s)
- Semira Kheiri
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Kiani
- AryaTinaGene Biopharmaceutical Company, Gorgan, Iran
| | - Hossein Tashi
- AryaTinaGene Biopharmaceutical Company, Gorgan, Iran
| | - Majid Shahbazi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran; AryaTinaGene Biopharmaceutical Company, Gorgan, Iran
| | - Hossein Amini
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran; AryaTinaGene Biopharmaceutical Company, Gorgan, Iran.
| |
Collapse
|
15
|
Ibrahim M, Shimizu T, Ando H, Ishima Y, Elgarhy OH, Sarhan HA, Hussein AK, Ishida T. Investigation of anti-PEG antibody response to PEG-containing cosmetic products in mice. J Control Release 2023; 354:260-267. [PMID: 36632951 DOI: 10.1016/j.jconrel.2023.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/18/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Polyethylene glycol (PEG), a polyether compound, is available in molecular weights from ∼300 g/mol to ∼10,000,000 g/mol. In the molecular weight range of ∼750 to ∼5000, PEG is commonly used in bioconjugation technology and nano-formulations to improve the circulation half-life of the formulations and increase their stability. In cosmetics, lower molecular weight PEG compounds such as PEG 60 or PEG 100 are widely used as emulsifiers and skin penetration enhancers. PEG polymers are generally recognized as biologically inert and non-immunogenic. However, it is recently reported that the "pre-existing" anti-PEG antibodies have been detected in high percentages of healthy individuals who have never received treatment with parenteral PEGylated formulations. To the best of our knowledge, we are the first to attempt to find an explanation for the source of pre-existing anti-PEG antibodies in healthy individuals. In a murine study, we demonstrated that topically applied PEG derivatives, present in two commercially available cosmetic products, could efficiently penetrate the stratum corneum and reach the systemic circulation. The skin penetration of PEG derivatives was further enhanced in injured or otherwise compromised skin. Daily application of cosmetic PEG derivatives primed the immune system, inducing anti-PEG IgM production. Anti-PEG IgM was detected by Day 14 in mice with normal skin, while anti-PEG IgM was detected as early as day 7 in mice with compromised skin. In addition, in mice with pre-induced circulating levels of anti-PEG IgM, topically applied PEG derivatives from cosmetic products appeared to bind to the pre-induced anti-PEG IgM, lowering blood levels. Current results indicate that PEG derivatives in cosmetic products may be an important contributor to the source of the "pre-existing" anti-PEG antibodies that have been detected in healthy individuals.
Collapse
Affiliation(s)
- Mohamed Ibrahim
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan
| | - Omar Helmy Elgarhy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Hatem A Sarhan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Amal K Hussein
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan.
| |
Collapse
|
16
|
Theyab A, Alsharif KF, Alzahrani KJ, Oyouni AAA, Hawsawi YM, Algahtani M, Alghamdi S, Alshammary AF. New insight into strategies used to develop long-acting G-CSF biologics for neutropenia therapy. Front Oncol 2023; 12:1026377. [PMID: 36686781 PMCID: PMC9850083 DOI: 10.3389/fonc.2022.1026377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Over the last 20 years, granulocyte colony-stimulating factors (G-CSFs) have become the major therapeutic option for the treatment of patients with neutropenia. Most of the current G-CSFs require daily injections, which are inconvenient and expensive for patients. Increased understanding of G-CSFs' structure, expression, and mechanism of clearance has been very instrumental in the development of new generations of long-acting G-CSFs with improved efficacy. Several approaches to reducing G-CSF clearance via conjugation techniques have been investigated. PEGylation, glycosylation, polysialylation, or conjugation with immunoglobulins or albumins have successfully increased G-CSFs' half-lives. Pegfilgrastim (Neulasta) has been successfully approved and marketed for the treatment of patients with neutropenia. The rapidly expanding market for G-CSFs has increased demand for G-CSF biosimilars. Therefore, the importance of this review is to highlight the principle, elimination's route, half-life, clearance, safety, benefits, and limitations of different strategies and techniques used to increase the half-life of biotherapeutic G-CSFs. Understanding these strategies will allow for a new treatment with more competitive manufacturing and lower unit costs compared with that of Neulasta.
Collapse
Affiliation(s)
- Abdulrahman Theyab
- Department of Laboratory and Blood Bank, Security Forces Hospital, Makkah, Saudi Arabia,College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia,*Correspondence: Abdulrahman Theyab, ; Khalaf F. Alsharif,
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia,*Correspondence: Abdulrahman Theyab, ; Khalaf F. Alsharif,
| | - Khalid J. Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | | | - Yousef MohammedRabaa Hawsawi
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia,Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory and Blood Bank, Security Forces Hospital, Makkah, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Amal F. Alshammary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Li Y, Champion JA. Self-assembling nanocarriers from engineered proteins: Design, functionalization, and application for drug delivery. Adv Drug Deliv Rev 2022; 189:114462. [PMID: 35934126 DOI: 10.1016/j.addr.2022.114462] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/09/2022] [Accepted: 07/15/2022] [Indexed: 01/24/2023]
Abstract
Self-assembling proteins are valuable building blocks for constructing drug nanocarriers due to their self-assembly behavior, monodispersity, biocompatibility, and biodegradability. Genetic and chemical modifications allow for modular design of protein nanocarriers with effective drug encapsulation, targetability, stimuli responsiveness, and in vivo half-life. Protein nanocarriers have been developed to deliver various therapeutic molecules including small molecules, proteins, and nucleic acids with proven in vitro and in vivo efficacy. This article reviews recent advances in protein nanocarriers that are not derived from natural protein nanostructures, such as protein cages or virus like particles. The protein nanocarriers described here are self-assembled from rationally or de novo designed recombinant proteins, as well as recombinant proteins complexed with other biomolecules, presenting properties that are unique from those of natural protein carriers. Design, functionalization, and therapeutic application of protein nanocarriers will be discussed.
Collapse
Affiliation(s)
- Yirui Li
- BioEngineering Program, Georgia Institute of Technology, United States
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, GA 30332, United States; BioEngineering Program, Georgia Institute of Technology, United States.
| |
Collapse
|
18
|
Eco-Friendly Synthesis of PEtOz-PA: A Promising Polymer for the Formulation of Curcumin-Loaded Micelles. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123788. [PMID: 35744914 PMCID: PMC9231041 DOI: 10.3390/molecules27123788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022]
Abstract
The need to develop alternative methods or to use "green" solvents constitutes an essential strategy under the emerging field of green chemistry, particularly in the development of new synthetic strategies in the field of pharmaceutic industry. We report an eco-friendly method of synthesis of poly(2-ethyl-2-oxazoline)-palmitoylate (PEtOz-PA) using Er(OTf)3 as Lewis's acid catalyst in 2-MeTHF. The novel biomolecule derivative was characterized to confirm palmitoyl group substitution and employed for the formulation, characterization, and antioxidant activity evaluation of curcumin-loaded polymeric micelles.
Collapse
|
19
|
Schwarz R, Zitzow E, Fiebig A, Hering S, Humboldt Y, Schoenwaelder N, Kämpfer N, Volkmar K, Hinz B, Kreikemeyer B, Maletzki C, Fiedler T. PEGylation increases antitumoral activity of arginine deiminase of Streptococcus pyogenes. Appl Microbiol Biotechnol 2021; 106:261-271. [PMID: 34910240 PMCID: PMC8720082 DOI: 10.1007/s00253-021-11728-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/04/2022]
Abstract
Abstract Arginine auxotrophy is a metabolic defect that renders tumor cells vulnerable towards arginine-depleting substances, such as arginine deiminase (ADI) from Streptococcus pyogenes (SpyADI). Previously, we confirmed SpyADI susceptibility on patient-derived glioblastoma multiforme (GBM) models in vitro and in vivo. For application in patients, serum half-life of the enzyme has to be increased and immunogenicity needs to be reduced. For this purpose, we conjugated the S. pyogenes-derived SpyADI with 20 kDa polyethylene glycol (PEG20) moieties, achieving a PEGylation of seven to eight of the 26 accessible primary amines of the SpyADI. The PEGylation reduced the overall activity of the enzyme by about 50% without affecting the Michaelis constant for arginine. PEGylation did not increase serum stability of SpyADI in vitro, but led to a longer-lasting reduction of plasma arginine levels in mice. Furthermore, SpyADI-PEG20 showed a higher antitumoral capacity towards GBM cells in vitro than the native enzyme. Key points • PEGylation has no effect on the affinity of SpyADI for arginine • PEGylation increases the antitumoral effects of SpyADI on GBM in vitro • PEGylation prolongs plasma arginine depletion by SpyADI in mice
Collapse
Affiliation(s)
- Rico Schwarz
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany
| | - Eric Zitzow
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany
| | - Adina Fiebig
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany
| | - Silvio Hering
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany
| | - Yvonne Humboldt
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany
| | - Nina Schoenwaelder
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany.,Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Neele Kämpfer
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany.,Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Kerren Volkmar
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany.,Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany.,Division of Immunology, Paul-Ehrlich-Institute, Langen, Germany
| | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany
| | - Claudia Maletzki
- Department of Medicine, Clinic III - Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Tomas Fiedler
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical Centre, Schillingallee 70, 18057, Rostock, Germany.
| |
Collapse
|
20
|
Shah N, Hussain M, Rehan T, Khan A, Khan ZU. Overview of polyethylene glycol-based materials with a special focus on core-shell particles for drug delivery application. Curr Pharm Des 2021; 28:352-367. [PMID: 34514984 DOI: 10.2174/1381612827666210910104333] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/10/2021] [Accepted: 08/13/2021] [Indexed: 11/22/2022]
Abstract
Polyethylene glycols (PEG) are water-soluble nonionic polymeric molecules. PEG and PEG-based materials are used for various important applications such as solvents, adhesives, adsorbents, drug delivery agents, tissue engineering scaffolds, etc. The coating of nanoparticles with PEG forms core-shell nanoparticles. The PEG-based core-shell nanoparticles are synthesized for the development of high-quality drug delivery systems. In the present review, we first explained the basics and various applications of PEGs and PEG-based composites materials and then concentrated on the PEG-based core-shell nanoparticles for biomedical applications specifically their use in drug delivery.
Collapse
Affiliation(s)
- Nasrullah Shah
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP 23200. Pakistan
| | - Manzoor Hussain
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP 23200. Pakistan
| | - Touseef Rehan
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, KP 45000. Pakistan
| | - Abbas Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP 23200. Pakistan
| | - Zubair Ullah Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, KP 23200. Pakistan
| |
Collapse
|
21
|
Saha-Shah A, Sun S, Kong J, Zhong W, Mann BF. Design and Study of PEG Linkers That Enable Robust Characterization of PEGylated Proteins. ACS Pharmacol Transl Sci 2021; 4:1280-1286. [PMID: 34423265 DOI: 10.1021/acsptsci.1c00112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Indexed: 11/30/2022]
Abstract
Several PEGylated therapeutic proteins are approved drugs, and more are under development. However, the synthesis and characterization of these bioconjugates, especially heterogeneous mixtures of PEGylated proteins, are challenging. The present study focuses on the development of PEG linkers that can be installed through biocatalytic route and render much simpler and insightful analytical characterization of PEG-protein conjugates. This linker enables traditional peptide mapping assay to determine protein sequence coverage, natural PTMs, and PEG attachment sites. Novel PEG linkers are cleavable during traditional sample preparation, leaving behind reporter amino acids to allow the determination of PEG attachment sites by peptide mapping. Products of transglutaminase-catalyzed bioconjugation of 5K PEG to Interferon α-2b were analyzed, and K31, K134, and K164 were identified as the PEGylation sites; the former two being newly determined sites demonstrates the sensitivity of the approach. In another instance, conjugation sites on Interleukin-2-PEG conjugation were found to be K31, K47, K48, and K75.
Collapse
Affiliation(s)
- Anumita Saha-Shah
- Process Research and Development, Merck & Co. Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Shuwen Sun
- Process Research and Development, Merck & Co. Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - John Kong
- Process Research and Development, Merck & Co. Inc., 126 E. Lincoln Ave, Rahway, New Jersey 07065, United States
| | - Wendy Zhong
- Process Research and Development, Merck & Co. Inc., 126 E. Lincoln Ave, Rahway, New Jersey 07065, United States
| | - Benjamin F Mann
- Process Research and Development, Merck & Co. Inc., 126 E. Lincoln Ave, Rahway, New Jersey 07065, United States
| |
Collapse
|
22
|
Pires IS, Hammond PT, Irvine DJ. Engineering Strategies for Immunomodulatory Cytokine Therapies - Challenges and Clinical Progress. ADVANCED THERAPEUTICS 2021; 4:2100035. [PMID: 34734110 PMCID: PMC8562465 DOI: 10.1002/adtp.202100035] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Cytokines are immunoregulatory proteins involved in many pathological states with promising potential as therapeutic agents. A diverse array of cytokines have been studied in preclinical disease models since the 1950s, some of which became successful biopharmaceutical products with the advancement of recombinant protein technology in the 1980s. However, following these early approvals, clinical translation of these natural immune signaling molecules has been limited due to their pleiotropic action in many cell types, and the fact that they have evolved to act primarily locally in tissues. These characteristics, combined with poor pharmacokinetics, have hindered the delivery of cytokines via systemic administration routes due to dose-limiting toxicities. However, given their clinical potential and recent clinical successes in cancer immunotherapy, cytokines continue to be extensively pursued in preclinical and clinical studies, and a range of molecular and formulation engineering strategies are being applied to reduce treatment toxicity while maintaining or enhancing therapeutic efficacy. This review provides a brief background on the characteristics of cytokines and their history as clinical therapeutics, followed by a deeper discussion on the engineering strategies developed for cytokine therapies with a focus on the translational relevance of these approaches.
Collapse
Affiliation(s)
- Ivan S Pires
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
23
|
Poulsen C, Pedersen MØ, Wahlund PO, Sjölander A, Thomsen JK, Conde-Frieboes KW, Paulsson JF, Wulff BS, Østergaard S. Rational Development of Stable PYY 3-36 Peptide Y 2 Receptor Agonists. Pharm Res 2021; 38:1369-1385. [PMID: 34272643 DOI: 10.1007/s11095-021-03077-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/25/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE The anorectic effect of PYY3-36 makes it a potential pharmacological weight loss treatment. Modifications of the endogenous peptide to obtain commercially attractive pharmacological and biophysical stability properties are examined. METHODS Half-life extended PYY3-36 analogues were prepared and examined regarding Y2-receptor potency as well as biophysical and stability properties. RESULTS Deamidation of asparagine in position 18 and 29 was observed upon incubation at 37°C. Asparagine in position 18 - but not position 29 - could be substituted to glutamine without detrimental effects on Y2-receptor potency. Covalent dimers were formed via the phenol impurity benzoquinone reacting with two N-terminal residues (Isoleucine-Lysine). Both residues had to be modified to suppress dimerization, which could be done without negatively affecting Y2-receptor potency or other stability/biophysical properties. Introduction of half-life extending modifications in position 30 and 35 eliminated aggregation at 37°C without negatively affecting other stability properties. Placement of a protracting moiety (fatty acid) in the receptor-binding C-terminal region reduced Y2-receptor potency substantially, whereas only minor effects of protractor position were observed on structural, biophysical or stability properties. Lipidated PYY3-36 analogues formed oligomers of various sizes depending on primary structure and solution conditions. CONCLUSIONS By rational design, a chemically and physically stable Y2-receptor selective, half-life extended PYY3-36 peptide has been developed.
Collapse
|
24
|
Cwykiel J, Madajka-Niemeyer M, Siemionow M. Development of Donor Recipient Chimeric Cells of bone marrow origin as a novel approach for tolerance induction in transplantation. Stem Cell Investig 2021; 8:8. [PMID: 33969113 DOI: 10.21037/sci-2020-044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Background Cell therapies and chimerism-based strategies are currently the most successful approach for tolerance induction in transplantation. This study aimed to establish and characterize novel Donor Recipient Chimeric Ccell (DRCC) therapy of bone marrow (BM) origin presenting donor-recipient phenotype to support tolerance induction. Methods Ex vivo fusions of fully MHC-mismatched BM cells from ACI (RT1a) and Lewis (RT1l) rats were performed using polyethylene-glycol (PEG). The creation of rat DRCC was tested by flow cytometry (FC), confocal microscopy and PCR. FC characterized DRCC's phenotype (CD3, CD4, CD8, CD45, CD90, CD11b/c, CD45RA, OX-82, or CD4/CD25) and apoptosis, while mixed lymphocyte reaction assessed DRCC's immunogenicity and colony forming unit assay tested DRCC's differentiation and proliferation. DRCC's polyploidy was evaluated using Hoechst33342 staining and COMET assay tested genotoxicity of fusion procedure. ELISA analyzed the secretion of IL-2, IL-4, IL-10, TGFß1, IFNγ and TNFα by DRCC at day 1, 5 and 14 post-fusion. The DRCC's phenotype after long-term culturing was assessed by reverse-transcription PCR. Results The chimeric state of DRCC was confirmed. Fusion did not change the expression of hematopoietic markers compared to BM controls. Although an increased number of early and late apoptotic (Annexin V+/Sytox blue- and Annexin V+/Sytox blue+, respectively) DRCC was detected at 24h post-fusion, the number significantly decreased at day 5 (38.4%±3.1% and 22.6%±2.5%, vs. 28.3%±2.5% and 13.9%±2.6%, respectively, P<0.05). DRCC presented decreased immunogenicity, increased expression of IL-10 and TGFβ1 and proliferative potential comparable to BM controls. The average percentage of tetraploid DRCC was 3.1%±0.2% compared to 0.96%±0.1% in BM controls. The lack of damage to the DRCC's DNA content supported the DRCC's safety. In culture, DRCC maintained proliferation for up to 28 days while preserving hematopoietic profile. Conclusions This study confirmed feasibility of DRCC creation via ex vivo PEG mediated fusion. The created DRCC revealed pro-tolerogenic properties indicating potential immunomodulatory effect of DRCC therapy when applied in vivo to support tolerance induction in solid organ and vascularized composite allograft transplantation.
Collapse
Affiliation(s)
- Joanna Cwykiel
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA.,Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Maria Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA.,Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Surgery, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
25
|
El-Sherbiny RH, Hassan MM, El-Hossary WH, Shata MS, Darwish WM. Folate-targeted polymeric nanoparticles for efficient dual (chemo-photothermal) therapy of oral squamous carcinoma. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1725756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Randa H. El-Sherbiny
- Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Magda M. Hassan
- Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Wafaa H. El-Hossary
- Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Mona S. Shata
- Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Wael M. Darwish
- Department of Polymers and Pigments, National Research Centre, Giza, Dokki, Egypt
| |
Collapse
|
26
|
Menge T, Rehberg-Weber K, Taipale K, Nastos I, Jauß M. Peginterferon beta-1a was associated with high adherence and satisfaction in patients with multiple sclerosis in a German real-world study. Ther Adv Neurol Disord 2021; 14:17562864211000461. [PMID: 33796146 PMCID: PMC7983429 DOI: 10.1177/17562864211000461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/03/2022] Open
Abstract
Background: Peginterferon beta-1a was developed for treatment of relapsing–remitting multiple sclerosis (RRMS) to provide an interferon with increased exposure to facilitate adherence by reducing frequency of application. This non-interventional observational study investigated the adherence to peginterferon beta-1a in real-world clinical practice settings. Methods: This prospective study was conducted from 1/2015 to 1/2018 at 77 German MS sites. Adult patients with RRMS (previously treated or treatment-naïve) receiving peginterferon beta-1a (125 µg SC every 2 weeks) were eligible for participation. Data were documented every 3 months over 2 years (nine visits). The primary endpoint was the percentage of patients with overall adherence defined as ⩽10% of injections not administered throughout the 24-month observation period. Secondary endpoints included persistence, patient satisfaction, efficacy (relapse activity, disability progression), and tolerability. Patients were invited to participate in an individualised patient support programme. Results: Out of 250 enrolled patients, 190 (aged 18–74 years, 75.3% female) were included in the efficacy analysis. Of those, 74 patients completed the study; 33.2% were treatment-naïve. The proportion of patients with an overall adherence of >90% was 75.7% (95% CI 67.9–81.6). The annualised relapse rate was 0.17. Compared with previous therapies, the scores for treatment satisfaction and convenience were markedly higher with peginterferon beta-1a. Overall, 87.4% participated in the patient support programme, and 47.8% of patients reported adverse events. Conclusions: Adherence to the bi-weekly treatment with peginterferon beta-1a was very high. Although adherence could have been positively influenced by the well-accepted patient support programme, the extent could not be unequivocally evaluated. Clinical disease activity remained low. Peginterferon beta-1a was well tolerated, and there were no new relevant safety findings.
Collapse
Affiliation(s)
- Til Menge
- Centre for Neurology and Neuropsychiatry, LVR-Klinikum Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Bergische Landstr. 2, Düsseldorf, 40629, Germany
| | | | | | - Ilias Nastos
- Neurological Specialist Practice, Bochum, Germany
| | - Marek Jauß
- Ecumenical Hainich Hospital gGmbH, Mühlhausen/Thüringen, Germany
| |
Collapse
|
27
|
Bergmann R, Chollet C, Els-Heindl S, Ullrich M, Berndt N, Pietzsch J, Máthé D, Bachmann M, Beck-Sickinger AG. Development of a ghrelin receptor inverse agonist for positron emission tomography. Oncotarget 2021; 12:450-474. [PMID: 33747360 PMCID: PMC7939532 DOI: 10.18632/oncotarget.27895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022] Open
Abstract
Imaging of Ghrelin receptors in vivo provides unique potential to gain deeper understanding on Ghrelin and its receptors in health and disease, in particular, in cancer. Ghrelin, an octanoylated 28-mer peptide hormone activates the constitutively active growth hormone secretagogue receptor type 1a (GHS-R1a) with nanomolar activity. We developed novel compounds, derived from the potent inverse agonist K-(D-1-Nal)-FwLL-NH2 but structurally varied by lysine conjugation with 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA), palmitic acid and/or diethylene glycol (PEG2) to allow radiolabeling and improve pharmacokinetics, respectively. All compounds were tested for receptor binding, potency and efficacy in vitro, for biodistribution and -kinetics in rats and in preclinical prostate cancer models on mice. Radiolabeling with Cu-64 and Ga-68 was successfully achieved. The Cu-64- or Ga-68-NODAGA-NH-K-K-(D-1-NaI)-F-w-L-L-NH2 radiotracer were specifically accumulated by the GHS-R1a in xenotransplanted human prostate tumor models (PC-3, DU-145) in mice. The tumors were clearly delineated by PET. The radiotracer uptake was also partially blocked by K-(D-1-Nal)-FwLL-NH2 in stomach and thyroid. The presence of the GHS-R1a was also confirmed by immunohistology. In the arterial rat blood plasma, only the original compounds were found. The Cu-64 or Ga-68-NODAGA-NH-K-K-(D-1-NaI)-F-w-L-L-NH2 radiolabeled inverse agonists turned out to be potent and safe. Due to their easy synthesis, high affinity, medium potency, metabolic stability, and the suitable pharmacokinetic profiles, they are excellent tools for imaging and quantitation of GHS-R1a expression in normal and cancer tissues by PET. These compounds can be used as novel biomarkers of the Ghrelin system in precision medicine.
Collapse
Affiliation(s)
- Ralf Bergmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.,These authors contributed equally to this work
| | - Constance Chollet
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, Leipzig, Germany.,These authors contributed equally to this work
| | - Sylvia Els-Heindl
- Institute of Biochemistry, Faculty of Life Sciences, Universität Leipzig, Leipzig, Germany
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Nicole Berndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Tumor Immunology, University Cancer Center, Carl Gustav Carus Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases, Carl Gustav Carus Technische Universität Dresden, Dresden, Germany
| | | |
Collapse
|
28
|
Bioactive Polymeric Materials for the Advancement of Regenerative Medicine. J Funct Biomater 2021; 12:jfb12010014. [PMID: 33672492 PMCID: PMC8006220 DOI: 10.3390/jfb12010014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/13/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Biopolymers are widely accepted natural materials in regenerative medicine, and further development of their bioactivities and discoveries on their composition/function relationships could greatly advance the field. However, a concise insight on commonly investigated biopolymers, their current applications and outlook of their modifications for multibioactivity are scarce. This review bridges this gap for professionals and especially freshmen in the field who are also interested in modification methods not yet in commercial use. A series of polymeric materials in research and development uses are presented as well as challenges that limit their efficacy in tissue regeneration are discussed. Finally, their roles in the regeneration of select tissues including the skin, bone, cartilage, and tendon are highlighted along with modifiable biopolymer moieties for different bioactivities.
Collapse
|
29
|
Development of α-tocopherol nanomicellar formulation using polyethylene glycol monostearate for the oxidative stress-related disease. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Hoguet V, Lasalle M, Maingot M, Dequirez G, Boulahjar R, Leroux F, Piveteau C, Herledan A, Biela A, Dumont J, Chávez-Talavera O, Belloy L, Duplan I, Hennuyer N, Butruille L, Lestavel S, Sevin E, Culot M, Gosselet F, Staels B, Deprez B, Tailleux A, Charton J. Beyond the Rule of 5: Impact of PEGylation with Various Polymer Sizes on Pharmacokinetic Properties, Structure-Properties Relationships of mPEGylated Small Agonists of TGR5 Receptor. J Med Chem 2021; 64:1593-1610. [PMID: 33470812 DOI: 10.1021/acs.jmedchem.0c01774] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PEGylation of therapeutic agents is known to improve the pharmacokinetic behavior of macromolecular drugs and nanoparticles. In this work, we performed the conjugation of polyethylene glycols (220-5000 Da) to a series of non-steroidal small agonists of the bile acids receptor TGR5. A suitable anchoring position on the agonist was identified to retain full agonistic potency with the conjugates. We describe herein an extensive structure-properties relationships study allowing us to finely describe the non-linear effects of the PEG length on the physicochemical as well as the in vitro and in vivo pharmacokinetic properties of these compounds. When appending a PEG of suitable length to the TGR5 pharmacophore, we were able to identify either systemic or gut lumen-restricted TGR5 agonists.
Collapse
Affiliation(s)
- Vanessa Hoguet
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Manuel Lasalle
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Mathieu Maingot
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Geoffroy Dequirez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Rajaa Boulahjar
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Florence Leroux
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, EGID, F-59000 Lille, France
| | - Catherine Piveteau
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Adrien Herledan
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Alexandre Biela
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Julie Dumont
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Oscar Chávez-Talavera
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Loïc Belloy
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Isabelle Duplan
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Nathalie Hennuyer
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Laura Butruille
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Sophie Lestavel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Emmanuel Sevin
- Univ. Artois, UR 2465, Blood-brain barrier laboratory (LBHE), F-62300 Lens, France
| | - Maxime Culot
- Univ. Artois, UR 2465, Blood-brain barrier laboratory (LBHE), F-62300 Lens, France
| | - Fabien Gosselet
- Univ. Artois, UR 2465, Blood-brain barrier laboratory (LBHE), F-62300 Lens, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Benoit Deprez
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, EGID, F-59000 Lille, France
| | - Anne Tailleux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, F-59000 Lille, France
| | - Julie Charton
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1177 - Drugs and Molecules for Living Systems, EGID, F-59000 Lille, France
| |
Collapse
|
31
|
Kukowski B, Rehberg-Weber K, Taipale K, Kowalik A, Oschmann P. Subcutaneous Interferon Beta Therapy in Multiple Sclerosis Patients - Characterization of Injection Site Reactions and Flu-Like Symptoms in a Daily Practice Setting - Results from the Non-Interventional Study PERFECT. Patient Prefer Adherence 2021; 15:1091-1100. [PMID: 34079229 PMCID: PMC8163742 DOI: 10.2147/ppa.s307987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/06/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The purpose of this study was to assess the prevalence of injection site reactions (ISR) and flu-like symptoms (FLS) during treatment with subcutaneous (SC) interferon (IFN) beta therapies and to document measures to mitigate and prevent ISR and FLS. PATIENTS AND METHODS The cross-sectional post-authorization safety study PERFECT was conducted from 11/2017 to 7/2019 in neurology practices in Germany. Adult patients with relapsing-remitting multiple sclerosis (MS) receiving SC IFN beta for ≥3 months were eligible. The primary endpoints were patient-reported prevalence of ISR and FLS. Additional endpoints reported by patients, MS nurses, and neurologists included type, frequency, duration, time of occurrence, and management of ISR and FLS. RESULTS In total, 603 patients (median age 45 years [range 36-53], 74% female) were included in the analysis. Time since MS diagnosis was >5 years in most patients. The majority had received none (64%) or 1 (22%) prior therapy. Current MS therapy in 36%, 32%, and 30% of patients was IFN beta-1b, IFN beta-1a, and peginterferon beta-1a, respectively. ISR and FLS under current therapy were reported by 84% and 68% of patients, respectively. ISR developed within 5 days after injection (84%) and lasted for 2-14 days (53%) in most patients. The most frequent patient-reported symptom was erythema (39%). ISR resolved or abated with systemic treatments or topical ointments. Most frequent preventive measures included alternating injection sites (58%). Occurrence of ISR rarely resulted in treatment interruption (5%). FLS occurred predominantly up to 6 h after injection (40%) and lasted <12 h (26%). The most frequent patient-reported symptoms were fatigue (15%) and aching limbs (15%). Assessments by physicians and MS nurses differed from patient-reported results. CONCLUSION Although ISR were experienced by the majority of patients, they rarely resulted in treatment interruption. In this real-world setting, ISR and FLS management was in line with published expert recommendations.
Collapse
Affiliation(s)
- Borries Kukowski
- Neurologische Gemeinschaftspraxis, Göttingen, Germany
- Correspondence: Borries Kukowski Neurologische Gemeinschaftspraxis, Groner-Tor-Straße 3, Göttingen, 37073, GermanyTel +49 551 46069Fax +49 551 55172 Email
| | | | | | | | - Patrick Oschmann
- Klinik für Neurologie, Klinikum Bayreuth GmbH, Bayreuth, Germany
| |
Collapse
|
32
|
Zahib IR, Md Tahir P, Talib M, Mohamad R, Alias AH, Lee SH. Effects of degree of substitution and irradiation doses on the properties of hydrogel prepared from carboxymethyl-sago starch and polyethylene glycol. Carbohydr Polym 2021; 252:117224. [DOI: 10.1016/j.carbpol.2020.117224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/16/2022]
|
33
|
Manspeaker MP, Thomas SN. Lymphatic immunomodulation using engineered drug delivery systems for cancer immunotherapy. Adv Drug Deliv Rev 2020; 160:19-35. [PMID: 33058931 PMCID: PMC7736326 DOI: 10.1016/j.addr.2020.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
Though immunotherapy has revolutionized the treatment of cancer to improve disease outcomes, an array of challenges remain that limit wider clinical success, including low rate of response and immune-related adverse events. Targeting immunomodulatory drugs to therapeutically relevant tissues offers a way to overcome these challenges by potentially enabling enhanced therapeutic efficacy and decreased incidence of side effects. Research highlighting the importance of lymphatic tissues in the response to immunotherapy has increased interest in the application of engineered drug delivery systems (DDSs) to enable specific targeting of immunomodulators to lymphatic tissues and cells that they house. To this end, a variety of DDS platforms have been developed that enable more efficient uptake into lymphatic vessels and lymph nodes to provide targeted modulation of the immune response to cancer. This can occur either by delivery of immunotherapeutics to lymphatics tissues or by direct modulation of the lymphatic vasculature itself due to their direct involvement in tumor immune processes. This review will highlight DDS platforms that, by enabling the activities of cancer vaccines, chemotherapeutics, immune checkpoint blockade (ICB) antibodies, and anti- or pro-lymphangiogenic factors to lymphatic tissues through directed delivery and controlled release, augment cancer immunotherapy.
Collapse
Affiliation(s)
- Margaret P Manspeaker
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Susan N Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, United States of America.
| |
Collapse
|
34
|
Pfeil J, Simonetti M, Lauer U, Volkmer R, von Thülen B, Durek P, Krähmer R, Leenders F, Hamann A, Hoffmann U. Tolerogenic Immunomodulation by PEGylated Antigenic Peptides. Front Immunol 2020; 11:529035. [PMID: 33162973 PMCID: PMC7581722 DOI: 10.3389/fimmu.2020.529035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/22/2020] [Indexed: 01/29/2023] Open
Abstract
Current treatments for autoimmune disorders rely on non-specific immunomodulatory and global immunosuppressive drugs, which show a variable degree of efficiency and are often accompanied by side effects. In contrast, strategies aiming at inducing antigen-specific tolerance promise an exclusive specificity of the immunomodulation. However, although successful in experimental models, peptide-based tolerogenic "inverse" vaccines have largely failed to show efficacy in clinical trials. Recent studies showed that repetitive T cell epitopes, coupling of peptides to autologous cells, or peptides coupled to nanoparticles can improve the tolerogenic efficacy of peptides, suggesting that size and biophysical properties of antigen constructs affect the induction of tolerance. As these materials bear hurdles with respect to preparation or regulatory aspects, we wondered whether conjugation of peptides to the well-established and clinically proven synthetic material polyethylene glycol (PEG) might also work. We here coupled the T cell epitope OVA323-339 to polyethylene glycols of different size and structure and tested the impact of these nano-sized constructs on regulatory (Treg) and effector T cells in the DO11.10 adoptive transfer mouse model. Systemic vaccination with PEGylated peptides resulted in highly increased frequencies of Foxp3+ Tregs and reduced frequencies of antigen-specific T cells producing pro-inflammatory TNF compared to vaccination with the native peptide. PEGylation was found to extend the bioavailability of the model peptide. Both tolerogenicity and bioavailability were dependent on PEG size and structure. In conclusion, PEGylation of antigenic peptides is an effective and feasible strategy to improve Treg-inducing, peptide-based vaccines with potential use for the treatment of autoimmune diseases, allergies, and transplant rejection.
Collapse
Affiliation(s)
- Jennifer Pfeil
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz Institute (DRFZ), Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Mario Simonetti
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Uta Lauer
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz Institute (DRFZ), Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Rudolf Volkmer
- Institute for Medical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | | | - Pawel Durek
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz Institute (DRFZ), Berlin, Germany
| | | | | | - Alf Hamann
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz Institute (DRFZ), Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Ute Hoffmann
- Experimental Rheumatology, Deutsches Rheuma-Forschungszentrum, a Leibniz Institute (DRFZ), Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
35
|
Lei Q, Lai X, Zhang Y, Li Z, Li R, Zhang W, Ao N, Zhang H. PEGylated Bis-Quaternary Triphenyl-Phosphonium Tosylate Allows for Balanced Antibacterial Activity and Cytotoxicity. ACS APPLIED BIO MATERIALS 2020; 3:6400-6407. [PMID: 35021771 DOI: 10.1021/acsabm.0c00837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Quaternary triphenylphosphonium compounds (TPP+) have been widely recognized as an important antimicrobial because of their fast antimicrobial speed and broad antimicrobial spectrum. However, small-molecule TPP+ compounds have the defects of toxicity, which is the key factor that limits their practical applications. Here, two mono- and one bis-quaternary phosphonium tosylate compounds with different lengths of oligo(ethylene glycol) (OEG) chains and TPP+ as the active moiety were synthesized. Bis-TPP+ have a short OEG chain coupling two TPP+ at both ends, while mono-TPP+ attaches the OEG chain at one end in one molecule. In vitro antibacterial activities were evaluated against both Gram-positive as well as Gram-negative bacteria in terms of the inhibition zone (ZOI) and minimum inhibitory concentration (MIC). To investigate the antibacterial mechanism, β-galactosidase activity was monitored for measuring the degree of membrane permeability correlated to the abilities to disrupt the membranes of bacteria. Moreover, their structure-antibacterial activity and structure-cytotoxicity relationships were further analyzed. The results indicated that bis-TPP+ synthesized can reach the sterilization rate 90% or more against Escherichia coli and Staphylococcus aureus at MICs of 3.1 and 1.5 mg/mL, respectively, and meanwhile, the cell proliferation can reach more than 80%. This paper represents an excellent approach for development of bis-TPP+ bactericidal molecules that would achieve an optimal balance between antimicrobial activity and cytotoxicity.
Collapse
Affiliation(s)
- Qiqi Lei
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Xuexu Lai
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yuwei Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Zhou Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Riwang Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Wenning Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Ningjian Ao
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Hong Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
36
|
Kumar S, Hause G, Binder WH. Bifunctional Peptide-Polymer Conjugate-Based Fibers via a One-Pot Tandem Disulfide Reduction Coupled to a Thio-Bromo "Click" Reaction. ACS OMEGA 2020; 5:19020-19028. [PMID: 32775904 PMCID: PMC7408259 DOI: 10.1021/acsomega.0c02326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/01/2020] [Indexed: 05/20/2023]
Abstract
In view of the potential applications of fibers in material sciences and biomedicine, an effective synthetic strategy is described to construct peptide-based bifunctional polymeric conjugates for supramolecular self-association in solution. A direct coupling method of an α-acyl-brominated peptide Phe-Phe-Phe-Phe (FFFF) with a disulfide-bridged polymeric scaffold of poly(ethylene glycol) (PEG) (M n,GPC = 8700 g mol-1, Đ = 2.02) is reported to readily prepare the bi-headed conjugate FFFF-PEG-FFFF (M n,GPC = 3800 g mol-1, Đ = 1.10) via a one-pot, tandem disulfide reduction (based on tris(2-carboxyethyl)phosphine hydrochloride (TCEP)) coupled to a thio-bromo "click" reaction. The conjugate was investigated via transmission electron microscopy to exploit supramolecular fibril formation and solvent-dependent structuring into macroscale fibers via fibril-fibril interactions and interfibril cross-linking-induced bundling. Circular dichroism spectroscopic analysis is further performed to investigate β-sheet motifs in such fibrous scaffolds. Overall, this synthetic approach opens an attractive approach for a simplified synthesis of PEG-containing peptide conjugates.
Collapse
Affiliation(s)
- Sonu Kumar
- Macromolecular
Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics),
Institute of Chemistry, Martin Luther University
Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale) D-06120, Germany
- Department
of Applied Sciences (Chemistry), Punjab
Engineering College (Deemed to be University), Sector 12, Chandigarh 160012, India
| | - Gerd Hause
- Biocenter, Martin Luther University Halle-Wittenberg, Weinbergweg 22, Halle (Saale) D-06120, Germany
| | - Wolfgang H. Binder
- Macromolecular
Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics),
Institute of Chemistry, Martin Luther University
Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale) D-06120, Germany
| |
Collapse
|
37
|
Porfiryeva NN, Moustafine RI, Khutoryanskiy VV. PEGylated Systems in Pharmaceutics. POLYMER SCIENCE SERIES C 2020. [DOI: 10.1134/s181123822001004x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Kumar S, Hause G, Binder WH. Thio-Bromo "Click" Reaction Derived Polymer-Peptide Conjugates for Their Self-Assembled Fibrillar Nanostructures. Macromol Biosci 2020; 20:e2000048. [PMID: 32285651 DOI: 10.1002/mabi.202000048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/23/2020] [Indexed: 11/06/2022]
Abstract
The synthesis and self-assembly of peptide-polymer conjugates into fibrillar nanostructures are reported, based on the amyloidogenic peptide KLVFF. A strategy for rational synthesis of polymer-peptide conjugates is documented via tethering of the amyloidogenic peptide segment LVFF (Aβ17-20 ) and its modified derivative FFFF to the hydrophilic poly(ethylene glycol) monomethyl ether (mPEG) polymer via thio-bromo based "click" chemistry. The resultant conjugates mPEG-LVFF-OMe and mPEG-FFFF-OMe are purified via preparative gel permeation chromatography technique (with a yield of 61% and 64%, respectively), and are successfully characterized via combination of spectroscopic and chromatographic methods, including electrospray ionization time-of-flight mass spectrometry. The peptide-guided self-assembling behavior of the as-constructed amphiphilic supramolecular materials is further investigated via transmission electron microscopic and circular dichroism spectroscopic analysis, exhibiting fibrillar nanostructure formation in binary aqueous solution mixture.
Collapse
Affiliation(s)
- Sonu Kumar
- Macromolecular Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale), D-06120, Germany.,Department of Applied Sciences (Chemistry), Punjab Engineering College (Deemed to be University), Sector 12, Chandigarh, 160012, India
| | - Gerd Hause
- Biocenter, Martin Luther University Halle-Wittenberg, Weinbergweg 22, Halle (Saale), D-06120, Germany
| | - Wolfgang H Binder
- Macromolecular Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, Halle (Saale), D-06120, Germany
| |
Collapse
|
39
|
Cai Q, Li X, Zhu W. High Molecular Weight Biodegradable Poly(ethylene glycol) via Carboxyl-Ester Transesterification. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02177] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qiuquan Cai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaodong Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Hangzhou 310027, China
| |
Collapse
|
40
|
Coenzyme Q10-Polyethylene Glycol Monostearate Nanoparticles: An Injectable Water-Soluble Formulation. Antioxidants (Basel) 2020; 9:antiox9010086. [PMID: 31963934 PMCID: PMC7023414 DOI: 10.3390/antiox9010086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 12/02/2022] Open
Abstract
Therapeutic applications of coenzyme Q10 (CoQ10) are greatly limited by its lack of solubility in aqueous media. In this study, polyethylene glycol monostearate (stPEG) was used to construct micelles containing CoQ10 as a new formulation. The micellar formulations (stPEG/CoQ10) were prepared using five types of stPEG with 10, 25, 40, 55, and 140 PEG repeat units, respectively. The micellar preparation was simple, consisting of only stPEG and CoQ10. Next, we compared the physical properties and blood circulation of these micelles. The CoQ10 load of this formulation was approximately 15 w/w%. Based on the dynamic light scattering method, the average molecular size of the stPEG/CoQ10 micelles was approximately 15 to 60 nm. The zeta potentials of these micelles were approximately −10 to −25 mV. The micelles using stPEG25, 40, and 55 demonstrated high solubility in water. Furthermore, these micelles had in vitro antioxidant activity. On comparing the blood circulation of micelles using stPEG25, 40, 55, and 140, micelles using stPEG55 had a significantly higher circulation in blood. The stPEG55/CoQ10 micelle demonstrated a protective effect against acetaminophen-induced liver injury in mice. In conclusion, these data indicate that the intravenous administration of the stPEG/CoQ10 micellar aqueous formulation is of great value against oxidant stress.
Collapse
|
41
|
Polyethylene Glycol-Chitosan Oligosaccharide-Coated Superparamagnetic Iron Oxide Nanoparticles: A Novel Drug Delivery System for Curcumin Diglutaric Acid. Biomolecules 2020; 10:biom10010073. [PMID: 31906490 PMCID: PMC7023009 DOI: 10.3390/biom10010073] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/25/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
Curcumin diglutaric acid-loaded polyethylene glycol-chitosan oligosaccharide-coated superparamagnetic iron oxide nanoparticles (CG-PEG-CSO-SPIONs) were fabricated by co-precipitation and optimized using a Box–Behnken statistical design in order to achieve the minimum size, optimal zeta potential (≥ ±20 mV), and maximum loading efficiency and capacity. The results demonstrated that CG-PEG-CSO-SPIONs prepared under the optimal condition were almost spherical in shape with a smooth surface, a diameter of 130 nm, zeta potential of 30.6 mV, loading efficiency of 83.3%, and loading capacity of 8.3%. The vibrating sample magnetometer results of the optimized CG-PEG-CSO-SPIONs showed a superparamagnetic behavior. Fourier transform infrared spectroscopy and X-ray diffraction analyses indicated that the CG physically interacted with PEG-CSO-SPIONs. In addition, the CG-PEG-CSO-SPIONs could be stored dry for up to 12 weeks or in aqueous solution for up to 4 days at either 4 °C or 25 °C with no loss of stability. The CG-PEG-CSO-SPIONs exhibited a sustained release profile up to 72 h under simulated physiological (pH 7.4) and tumor extracellular (pH 5.5) environments. Furthermore, the CG-PEG-CSO-SPIONs showed little non-specific protein binding in the simulated physiological environment. The CG-PEG-CSO-SPIONs enhanced the cellular uptake and cytotoxicity of CG against human colorectal adenocarcinoma HT-29 cells compared to free CG, and more CG was delivered to the cells after applying an external magnetic field. The overall results suggest that PEG-CSO-SPIONs have potential to be used as a novel drug delivery system for CG.
Collapse
|
42
|
Bao C, Xu X, Chen J, Zhang Q. Synthesis of biodegradable protein–poly(ε-caprolactone) conjugates via enzymatic ring opening polymerization. Polym Chem 2020. [DOI: 10.1039/c9py01464k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lipase–poly(HEAA) conjugates act as initiators and catalysts simultaneously for the eROP of ε-CL, forming biodegradable conjugates with amphiphilic graft copolymers.
Collapse
Affiliation(s)
- Chunyang Bao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Xiaoling Xu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Jing Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| | - Qiang Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse
- School of Environmental and Biological Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- P. R. China
| |
Collapse
|
43
|
Ling X, Chen H, Zheng W, Chang L, Wang Y, Liu T. Site-specific protein modification by genetic encoded disulfide compatible thiols. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.04.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
44
|
Ghosn Y, Kamareddine MH, Tawk A, Elia C, El Mahmoud A, Terro K, El Harake N, El-Baba B, Makdessi J, Farhat S. Inorganic Nanoparticles as Drug Delivery Systems and Their Potential Role in the Treatment of Chronic Myelogenous Leukaemia. Technol Cancer Res Treat 2019; 18:1533033819853241. [PMID: 31138064 PMCID: PMC6542119 DOI: 10.1177/1533033819853241] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chronic myeloid leukemia is a myeloproliferative disease where cells of myeloid linage display a t(9;22) chromosomal translocation leading to the formation of the BCR/ABL fusion gene and the continuous activation of tyrosine kinases. This malignancy has a peak incidence at 45 to 85 years, accounting for 15% of all leukemias in adults. Controlling the activity of tyrosine kinase became the main strategy in chronic myeloid leukemia treatment, with imatinib being placed at the forefront of current treatment protocols. New approaches in future anticancer therapy are emerging with nanomedicine being gradually implemented. Setting through a thorough survey of published literature, this review discusses the use of inorganic nanoparticles in chronic myeloid leukemia therapy. After an introduction on the basics of chronic myeloid leukemia, a description of the current treatment modalities of chronic myeloid leukemia and drug-resistance mechanisms is presented. This is followed by a general view on the applications of nanostrategies in medicine and then a detailed breakdown of inorganic nanocarriers and their uses in chronic myeloid leukemia treatment.
Collapse
Affiliation(s)
- Youssef Ghosn
- 1 Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | | | - Antonios Tawk
- 1 Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Carlos Elia
- 2 Faculty of Engineering, Chemical Engineering, University of Balamand, El-Koura, Lebanon
| | - Ahmad El Mahmoud
- 1 Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Khodor Terro
- 1 Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Nadia El Harake
- 1 Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Bachar El-Baba
- 1 Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Joseph Makdessi
- 3 Department of Hematology - Oncology, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Said Farhat
- 4 Department of Gastroenterology, Saint George Hospital University Medical Center, Achrafieh-Beirut, Lebanon
| |
Collapse
|
45
|
Huang YL, Wang J, Jiang YH, Yang PY, Wang GW, Liu F. Development of amphiphile 4-armed PEO-based Ti4+ complex for highly selective enrichment of phosphopeptides. Talanta 2019; 204:670-676. [DOI: 10.1016/j.talanta.2019.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
|
46
|
Hong H, Zhou Z, Zhou K, Liu S, Guo Z, Wu Z. Site-specific C-terminal dinitrophenylation to reconstitute the antibody Fc functions for nanobodies. Chem Sci 2019; 10:9331-9338. [PMID: 32110296 PMCID: PMC7006623 DOI: 10.1039/c9sc03840j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
Nanobodies are a class of camelid-derived single-domain antibodies that have many potential advantages over conventional antibodies and have been utilized to develop new therapeutic strategies for cancer and other diseases. However, nanobodies lack the Fc region of a conventional antibody, which possesses many functions, e.g., eliciting antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), essential for effective immunotherapy. The small molecular size of nanobodies also leads to poor pharmacokinetics, such as short in vivo half-life. To address these deficiencies, an endogenous antibody-based strategy to reconstitute the Fc functions for nanobodies was developed. As a proof-of-principle, an anti-human EGFR nanobody, 7D12, was selected to conduct C-terminal modification with the dinitrophenyl (DNP) hapten through Sortase A-mediated site-specific ligation. It was expected that the DNP motif would recruit endogenous human anti-DNP antibodies to indirectly reinstate the Fc functions. The resultant nanobody-DNP conjugates were shown to exhibit specific and high affinity binding to human EGFR expressed on target cancer cells. It was further proved that in the presence of anti-DNP antibody, these conjugates could mediate potent ADCC and CDC in vitro and exhibit significantly elongated half-life in vivo. Ultimately, it was proven in severe combined immunodeficiency (SCID) mice that treatment with the nanobody 7D12-DNP conjugate and anti-DNP mouse serum could inhibit xenograft tumor growth efficiently. In view of the abundance of anti-DNP and other endogenous antibodies in the human blood system, this could be a generally applicable approach employed to reconstitute the Fc functions for nanobodies and develop nanobody-based cancer immunotherapy and other therapies.
Collapse
Affiliation(s)
- Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi , 214122 , China .
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi , 214122 , China .
| | - Kun Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi , 214122 , China .
| | - Shaozhong Liu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi , 214122 , China .
| | - Zhongwu Guo
- Department of Chemistry , University of Florida , 214 Leigh Hall , Gainesville , Florida 32611 , USA .
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi , 214122 , China .
| |
Collapse
|
47
|
Melnikov MV, Kasatkin DS, Volkov AI, Boyko AN. [The pegylated form of interferon beta in the treatment of multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:136-141. [PMID: 31626182 DOI: 10.17116/jnevro2019119081136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Interferons-beta (IFN-β) along with glatiramer acetate is one of the most commonly used disease modifying treatment (DMT) of multiple sclerosis (MS) associated with effectiveness and acceptable safety profile. At the same time, therapy with IFN-β has a number of limitations associated with a high frequency of injections and production of neutralizing antibodies. The development of the pegylated form of IFN-β (PEG-IFN-β) is aimed at resolving these issues. This article reviewed the mechanism of action, efficacy, safety and tolerability of PEG-IFN-β in the treatment of MS.
Collapse
Affiliation(s)
- M V Melnikov
- Pirogov Russian National Research Medical University, Moscow, Russia; National Research Center Institute of Immunology of the Federal Medical-Biological Agency, Moscow, Russia; Federal Center of Cerebrovascular Pathology and Stroke, Moscow, Russia
| | - D S Kasatkin
- Yaroslavl State Medical University, Yaroslavl, Russia
| | - A I Volkov
- Federal Center of Cerebrovascular Pathology and Stroke, Moscow, Russia
| | - A N Boyko
- Pirogov Russian National Research Medical University, Moscow, Russia; Federal Center of Cerebrovascular Pathology and Stroke, Moscow, Russia
| |
Collapse
|
48
|
Dong YC, Hajfathalian M, Maidment PSN, Hsu JC, Naha PC, Si-Mohamed S, Breuilly M, Kim J, Chhour P, Douek P, Litt HI, Cormode DP. Effect of Gold Nanoparticle Size on Their Properties as Contrast Agents for Computed Tomography. Sci Rep 2019; 9:14912. [PMID: 31624285 PMCID: PMC6797746 DOI: 10.1038/s41598-019-50332-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/10/2019] [Indexed: 01/17/2023] Open
Abstract
Computed tomography (CT) is one of the most commonly used clinical imaging modalities. There have recently been many reports of novel contrast agents for CT imaging. In particular, the development of gold nanoparticles (AuNP) as CT contrast agents is a topic of intense interest. AuNP have favorable characteristics for this application such as high payloads of contrast generating material, strong X-ray attenuation, excellent biocompatibility, tailorable surface chemistry, and tunable sizes and shapes. However, there have been conflicting reports on the role of AuNP size on their contrast generation for CT. We therefore sought to extensively investigate the AuNP size-CT contrast relationship. In order to do this, we synthesized AuNP with sizes ranging from 4 to 152 nm and capped them with 5 kDa m-PEG. The contrast generation of AuNP of different sizes was investigated with three clinical CT, a spectral photon counting CT (SPCCT) and two micro CT systems. X-ray attenuation was quantified as attenuation rate in Hounsfield units per unit concentration (HU/mM). No statistically significant difference in CT contrast generation was found among different AuNP sizes via phantom imaging with any of the systems tested. Furthermore, in vivo imaging was performed in mice to provide insight into the effect of AuNP size on animal biodistribution at CT dose levels, which has not previously been explored. Both in vivo imaging and ex vivo analysis with inductively coupled plasma optical emission spectroscopy (ICP-OES) indicated that AuNP that are 15 nm or smaller have long blood circulation times, while larger AuNP accumulated in the liver and spleen more rapidly. Therefore, while we observed no AuNP size effect on CT contrast generation, there is a significant effect of size on AuNP diagnostic utility.
Collapse
Affiliation(s)
- Yuxi C Dong
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
| | - Maryam Hajfathalian
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
| | - Portia S N Maidment
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
| | - Jessica C Hsu
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
| | - Pratap C Naha
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
| | - Salim Si-Mohamed
- Department of Radiology, Hôpital Cardio-Vasculaire et Pneumologique Louis Pradel, Lyon, France
- Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), UMR CNRS 5220, Inserm U1044, University Lyon1 Claude Bernard, Lyon, France
| | - Marine Breuilly
- Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), UMR CNRS 5220, Inserm U1044, University Lyon1 Claude Bernard, Lyon, France
| | - Johoon Kim
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
| | - Peter Chhour
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
| | - Philippe Douek
- Department of Radiology, Hôpital Cardio-Vasculaire et Pneumologique Louis Pradel, Lyon, France
- Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), UMR CNRS 5220, Inserm U1044, University Lyon1 Claude Bernard, Lyon, France
| | - Harold I Litt
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
- Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA.
- Department of Bioengineering, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA.
- Department of Medicine, Division of Cardiovascular Medicine, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA, 19104, USA.
| |
Collapse
|
49
|
Zhao J, Li Q, Wu J, Zhou C, Cao Y, Li X, Niu J. Structure‐Based Site‐Specific PEGylation of Fibroblast Growth Factor 2 Facilitates Rational Selection of Conjugate Sites. Biotechnol J 2019; 15:e1900203. [DOI: 10.1002/biot.201900203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/26/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Jing Zhao
- School of PharmacyWenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Qi Li
- School of PharmacyWenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Jiamin Wu
- School of PharmacyWenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Chuanren Zhou
- School of PharmacyWenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Yu Cao
- School of PharmacyWenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Xiaokun Li
- School of PharmacyWenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Jianlou Niu
- School of PharmacyWenzhou Medical University Wenzhou Zhejiang 325035 China
| |
Collapse
|
50
|
Gupta V, Bhavanasi S, Quadir M, Singh K, Ghosh G, Vasamreddy K, Ghosh A, Siahaan TJ, Banerjee S, Banerjee SK. Protein PEGylation for cancer therapy: bench to bedside. J Cell Commun Signal 2019; 13:319-330. [PMID: 30499020 PMCID: PMC6732144 DOI: 10.1007/s12079-018-0492-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
PEGylation is a biochemical modification process of bioactive molecules with polyethylene glycol (PEG), which lends several desirable properties to proteins/peptides, antibodies, and vesicles considered to be used for therapy or genetic modification of cells. However, PEGylation of proteins is a complex process and can be carried out using more than one strategy that depends on the nature of the protein and the desired application. Proteins of interest are covalently conjugated or non-covalently complexed with inert PEG strings. Purification of PEGylated protein is another critical step, which is mainly carried out based on electrostatic interactions or molecular sizes using chromatography. Several PEGylated drugs are being used for diseases like anemia, kidney disease, multiple sclerosis, hemophilia and cancers. With the advancement and increased specificity of the PEGylation process, the world of drug therapy, and specifically cancer therapy could benefit by utilizing this technique to create more stable and non-immunogenic therapies. In this article we describe the structure and functions of PEGylation and how this chemistry helps in drug discovery. Moreover, special emphasis has been given to CCN-family proteins that can be targeted or used as therapy to prevent or block cancer progression through PEGylation technology.
Collapse
Affiliation(s)
- Vijayalaxmi Gupta
- Cancer Research Unit, VA Medical Center, Kansas City, MO, 64128, USA
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Sneha Bhavanasi
- Cancer Research Unit, VA Medical Center, Kansas City, MO, 64128, USA
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, 58108, USA.
| | - Kevin Singh
- Cancer Research Unit, VA Medical Center, Kansas City, MO, 64128, USA
| | - Gaurav Ghosh
- Cancer Research Unit, VA Medical Center, Kansas City, MO, 64128, USA
| | - Kritin Vasamreddy
- Cancer Research Unit, VA Medical Center, Kansas City, MO, 64128, USA
| | - Arnab Ghosh
- Cancer Research Unit, VA Medical Center, Kansas City, MO, 64128, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Teruna J Siahaan
- School of Pharmacy-Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, 66047, USA
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO, 64128, USA.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Sushanta K Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, MO, 64128, USA.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|