1
|
Li Y, Van Dam NT, Wang Z, Zhou J, Xu P, Luo Y. The role of loss aversion in social conformity: psychological and neural representations. Cereb Cortex 2024; 34:bhae414. [PMID: 39417701 DOI: 10.1093/cercor/bhae414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/27/2024] [Indexed: 10/19/2024] Open
Abstract
The impact of others' choices on decision-making is influenced by individual preferences. However, the specific roles of individual preferences in social decision-making remain unclear. In this study, we examine the contributions of risk and loss preferences as well as social influence in decision-making under uncertainty using a gambling task. Our findings indicate that while both individual preferences and social influence affect decision-making in social contexts, loss aversion plays a dominant role, especially in individuals with high loss aversion. This phenomenon is accompanied by increased functional connectivity between the anterior insular cortex and the temporoparietal junction. These results highlight the critical involvement of loss aversion and the anterior insular cortex-temporoparietal junction neural pathway in social decision-making under uncertainty. Our findings provide a computational account of how individual preferences and social information collectively shape our social decision-making behaviors.
Collapse
Affiliation(s)
- Yiman Li
- School of Psychology, Shenzhen University, Center for Brain Disorders and Cognitive Science, Shenzhen 518060, China
| | - Nicholas T Van Dam
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhihao Wang
- Centre d'Economie de la Sorbonne, Panthéon-Sorbonne University, 75005 Paris, France
| | - Jiali Zhou
- School of Psychology, Shenzhen University, Center for Brain Disorders and Cognitive Science, Shenzhen 518060, China
| | - Pengfei Xu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing 100875, China
- Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen 518107, China
| | - Yuejia Luo
- School of Psychology, Shenzhen University, Center for Brain Disorders and Cognitive Science, Shenzhen 518060, China
- Institute for Neuropsychological Rehabilitation, University of Health and Rehabilitation Sciences, Qingdao 266113, China
- The State Key Lab of Cognitive and Learning, Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Tang H, Bartolo R, Averbeck BB. Ventral frontostriatal circuitry mediates the computation of reinforcement from symbolic gains and losses. Neuron 2024:S0896-6273(24)00642-1. [PMID: 39321792 DOI: 10.1016/j.neuron.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/12/2024] [Accepted: 08/28/2024] [Indexed: 09/27/2024]
Abstract
Reinforcement learning (RL), particularly in primates, is often driven by symbolic outcomes. However, it is usually studied with primary reinforcers. To examine the neural mechanisms underlying learning from symbolic outcomes, we trained monkeys on a task in which they learned to choose options that led to gains of tokens and avoid choosing options that led to losses of tokens. We then recorded simultaneously from the orbitofrontal cortex (OFC), ventral striatum (VS), amygdala (AMY), and mediodorsal thalamus (MDt). We found that the OFC played a dominant role in coding token outcomes and token prediction errors. The other areas contributed complementary functions, with the VS coding appetitive outcomes and the AMY coding the salience of outcomes. The MDt coded actions and relayed information about tokens between the OFC and VS. Thus, the OFC leads the processing of symbolic RL in the ventral frontostriatal circuitry.
Collapse
Affiliation(s)
- Hua Tang
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA.
| | - Ramon Bartolo
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA; Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Bruno B Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20814, USA.
| |
Collapse
|
3
|
Zhou X, Xiao Q, Liu Y, Chen S, Xu X, Zhang Z, Hong Y, Shao J, Chen Y, Chen Y, Wang L, Yang F, Tu J. Astrocyte-mediated regulation of BLA WFS1 neurons alleviates risk-assessment deficits in DISC1-N mice. Neuron 2024; 112:2197-2217.e7. [PMID: 38642554 DOI: 10.1016/j.neuron.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/10/2024] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
Assessing and responding to threats is vital in everyday life. Unfortunately, many mental illnesses involve impaired risk assessment, affecting patients, families, and society. The brain processes behind these behaviors are not well understood. We developed a transgenic mouse model (disrupted-in-schizophrenia 1 [DISC1]-N) with a disrupted avoidance response in risky settings. Our study utilized single-nucleus RNA sequencing and path-clamp coupling with real-time RT-PCR to uncover a previously undescribed group of glutamatergic neurons in the basolateral amygdala (BLA) marked by Wolfram syndrome 1 (WFS1) expression, whose activity is modulated by adjacent astrocytes. These neurons in DISC1-N mice exhibited diminished firing ability and impaired communication with the astrocytes. Remarkably, optogenetic activation of these astrocytes reinstated neuronal excitability via D-serine acting on BLAWFS1 neurons' NMDA receptors, leading to improved risk-assessment behavior in the DISC1-N mice. Our findings point to BLA astrocytes as a promising target for treating risk-assessment dysfunctions in mental disorders.
Collapse
Affiliation(s)
- Xinyi Zhou
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurology, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Qian Xiao
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yaohui Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, China
| | - Shuai Chen
- University of Chinese of Academy of Sciences, Beijing 100049, China
| | - Xirong Xu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China
| | - Zhigang Zhang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuchuan Hong
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China
| | - Jie Shao
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurology, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Yuewen Chen
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yu Chen
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Fan Yang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Jie Tu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
4
|
Combrisson E, Basanisi R, Gueguen MCM, Rheims S, Kahane P, Bastin J, Brovelli A. Neural interactions in the human frontal cortex dissociate reward and punishment learning. eLife 2024; 12:RP92938. [PMID: 38941238 PMCID: PMC11213568 DOI: 10.7554/elife.92938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024] Open
Abstract
How human prefrontal and insular regions interact while maximizing rewards and minimizing punishments is unknown. Capitalizing on human intracranial recordings, we demonstrate that the functional specificity toward reward or punishment learning is better disentangled by interactions compared to local representations. Prefrontal and insular cortices display non-selective neural populations to rewards and punishments. Non-selective responses, however, give rise to context-specific interareal interactions. We identify a reward subsystem with redundant interactions between the orbitofrontal and ventromedial prefrontal cortices, with a driving role of the latter. In addition, we find a punishment subsystem with redundant interactions between the insular and dorsolateral cortices, with a driving role of the insula. Finally, switching between reward and punishment learning is mediated by synergistic interactions between the two subsystems. These results provide a unifying explanation of distributed cortical representations and interactions supporting reward and punishment learning.
Collapse
Affiliation(s)
- Etienne Combrisson
- Institut de Neurosciences de la Timone, Aix Marseille UniversitéMarseilleFrance
| | - Ruggero Basanisi
- Institut de Neurosciences de la Timone, Aix Marseille UniversitéMarseilleFrance
| | - Maelle CM Gueguen
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut NeurosciencesGrenobleFrance
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and University of LyonLyonFrance
| | - Philippe Kahane
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut NeurosciencesGrenobleFrance
| | - Julien Bastin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut NeurosciencesGrenobleFrance
| | - Andrea Brovelli
- Institut de Neurosciences de la Timone, Aix Marseille UniversitéMarseilleFrance
| |
Collapse
|
5
|
Zhu J, Katahira K, Hirakawa M, Nakao T. Internally Formed Preferences for Options only Influence Initial Decisions in Gambling Tasks, while the Gambling Outcomes do not Alter these Preferences. J Gambl Stud 2024:10.1007/s10899-024-10326-2. [PMID: 38922495 DOI: 10.1007/s10899-024-10326-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
All humans must engage in decision-making. Decision-making processes can be broadly classified into internally guided decision-making (IDM), which is determined by individuals' internal value criteria, such as preference, or externally guided decision-making (EDM), which is determined by environmental external value criteria, such as monetary rewards. However, real-life decisions are never made simply using one kind of decision-making, and the relationship between IDM and EDM remains unclear. This study had individuals perform gambling tasks requiring the EDM using stimuli that formed preferences through the preference judgment task as the IDM. Computational model analysis revealed that strong preferences in the IDM affected initial choice behavior in the EDM. Moreover, through the analysis of the subjective preference evaluation after the gambling tasks, we found that even when stimuli that were preferred in the IDM were perceived as less valuable in the EDM, the preference for IDM was maintained after EDM. These results indicate that although internal criteria, such as preferences, influence EDM, the results show that internal and external criteria differ.
Collapse
Affiliation(s)
- Jianhong Zhu
- Graduate School of Humanities and Social Sciences, Hiroshima University, 1-1-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8524, Japan.
| | - Kentaro Katahira
- Department of Cognitive and Psychological Sciences, Graduate School of Informatics, Nagoya University, Furo, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Makoto Hirakawa
- Graduate School of Humanities and Social Sciences, Hiroshima University, 1-1-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8524, Japan
| | - Takashi Nakao
- Graduate School of Humanities and Social Sciences, Hiroshima University, 1-1-1 Kagamiyama, Higashi-hiroshima, Hiroshima, 739-8524, Japan
| |
Collapse
|
6
|
Neukam PT, Müller DK, Deza-Lougovski YI, Pooseh S, Witt SH, Rietschel M, Smolka MN. Connection Failure: Differences in White Matter Microstructure Are Associated with 5-HTTLPR but Not with Risk Seeking for Losses. Int J Mol Sci 2024; 25:6666. [PMID: 38928372 PMCID: PMC11203796 DOI: 10.3390/ijms25126666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
S/S carriers of 5-HTTLPR have been found to be more risk seeking for losses compared to L/L carriers. This finding may be the result of reduced top-down control from the frontal cortex due to altered signal pathways involving the amygdala and ventral striatum. The serotonergic system is known to be involved in neurodevelopment and neuroplasticity. Therefore, the aim of this study was to investigate whether structural differences in white matter can explain the differences in risk-seeking behaviour. Lower structural connectivity in S/S compared to L/L carriers and a negative relationship between risk seeking for losses and connectivity were assumed. Diffusion-weighted imaging was used to compute diffusion parameters for the frontostriatal and uncinate tract in 175 genotyped individuals. The results showed no significant relationship between diffusion parameters and risk seeking for losses. Furthermore, we did not find significant differences in diffusion parameters of the S/S vs. L/L group. There were only group differences in the frontostriatal tract showing stronger structural connectivity in the S/L group, which is also reflected in the whole brain approach. Therefore, the data do not support the hypothesis that the association between 5-HTTLPR and risk seeking for losses is related to differences in white matter pathways implicated in decision-making.
Collapse
Affiliation(s)
- Philipp T. Neukam
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Dirk K. Müller
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Shakoor Pooseh
- Center for Interdisciplinary Digital Sciences (CIDS), Technische Universität Dresden, 01069 Dresden, Germany;
| | - Stephanie H. Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, University of Heidelberg, 68159 Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, University of Heidelberg, 68159 Mannheim, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, 01307 Dresden, Germany;
| |
Collapse
|
7
|
Tang H, Bartolo-Orozco R, Averbeck BB. Ventral frontostriatal circuitry mediates the computation of reinforcement from symbolic gains and losses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587097. [PMID: 38617219 PMCID: PMC11014508 DOI: 10.1101/2024.04.03.587097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Reinforcement learning (RL), particularly in primates, is often driven by symbolic outcomes. However, it is usually studied with primary reinforcers. To examine the neural mechanisms underlying learning from symbolic outcomes, we trained monkeys on a task in which they learned to choose options that led to gains of tokens and avoid choosing options that led to losses of tokens. We then recorded simultaneously from the orbitofrontal cortex (OFC), ventral striatum (VS), amygdala (AMY), and the mediodorsal thalamus (MDt). We found that the OFC played a dominant role in coding token outcomes and token prediction errors. The other areas contributed complementary functions with the VS coding appetitive outcomes and the AMY coding the salience of outcomes. The MDt coded actions and relayed information about tokens between the OFC and VS. Thus, OFC leads the process of symbolic reinforcement learning in the ventral frontostriatal circuitry.
Collapse
|
8
|
Fang X, Kerschreiter R, Yang YF, Niedeggen M. Preexposure to one social threat alters responses to another social threat: Behavioral and electrophysiological evidence. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:126-142. [PMID: 38200281 PMCID: PMC10827860 DOI: 10.3758/s13415-023-01151-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
A recent Cyberball study has indicated that the experience of loss of control can affect how people process subsequent social exclusion. This "preexposure effect" supports the idea of a common cognitive system involved in the processing of different types of social threats. To test the validity of this assumption in the current study, we reversed the sequence of the preexposure setup. We measured the effects of social exclusion on the subsequent processing of loss of control utilizing event-related brain potentials (ERPs) and self-reports. In the control group (CG, n = 26), the transition to loss of control elicited significant increases in both the P3 amplitude and the self-reported negative mood. Replicating the results of the previous preexposure study, these effects were significantly reduced by the preexposure to an independent social threat (here: social exclusion). In contrast to previous findings, these effects were not modulated by the discontinuation (EG1disc, n = 25) or continuation (EG2cont, n = 24) of the preexposure threat. Given that the P3 effect is related to the violation of subjective expectations, these results support the notion that preexposure to a specific social threat has widespread effects on the individuals' expectancy of upcoming social participation and control.
Collapse
Affiliation(s)
- Xu Fang
- Department of Education and Psychology, Division of Experimental Psychology and Neuropsychology, Freie Universität Berlin, Habelschwerdter Allee 45, 14159, Berlin, Germany.
| | - Rudolf Kerschreiter
- Department of Education and Psychology, Division of Social, Organizational, and Economic Psychology, Freie Universität Berlin, Berlin, Germany
| | - Yu-Fang Yang
- Department of Education and Psychology, Division of Experimental Psychology and Neuropsychology, Freie Universität Berlin, Habelschwerdter Allee 45, 14159, Berlin, Germany
| | - Michael Niedeggen
- Department of Education and Psychology, Division of Experimental Psychology and Neuropsychology, Freie Universität Berlin, Habelschwerdter Allee 45, 14159, Berlin, Germany
| |
Collapse
|
9
|
Macoveanu J, Kjærstad HL, Halvorsen KS, Fisher PM, Vinberg M, Kessing LV, Miskowiak KW. Trajectory of reward-related abnormalities in unaffected relatives of patients with bipolar disorder - A longitudinal fMRI study. J Psychiatr Res 2024; 170:217-224. [PMID: 38157669 DOI: 10.1016/j.jpsychires.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/14/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
First-degree relatives of patients with bipolar disorder are at heightened risk of mood episodes, which may be attributed to the existence of endophenotypes i.e., heritable (neuro)biological changes present in patients and their unaffected relatives (UR). In this longitudinal MRI study, we aim to investigate the trajectories of aberrant reward-related functional changes identified in UR vs healthy controls (HC). Sixty-eight UR and 65 HC of similar age and gender distribution underwent MRI at baseline while performing a card guessing task. Of these, 29 UR and 36 HC were investigated with the same protocol following a 16-month period in average. We first identified brain regions showing group differences in the neural response to expected value (EV) and reward prediction error (PE) at baseline and analyzed how the reward-related response in these regions changed over time in UR vs HC. Relative to HC at baseline, UR showed lower EV signal in the right ventrolateral prefrontal cortex (vlPFC) and paracingulate gyrus and lower PE signal in the left vlPFC and dorsomedial PFC. The trajectories of these abnormalities in UR showed a normalization of the prefrontal EV signals, whereas the PE signals which correlated with depressive symptoms remained stable over time. While the UR showed both blunted EV and PE signals, none of these abnormalities increased over time, which is consistent with the observed stable mood symptoms.
Collapse
Affiliation(s)
- Julian Macoveanu
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Denmark; Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Denmark.
| | - Hanne Lie Kjærstad
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Denmark; Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Denmark
| | - Kaja Sofie Halvorsen
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Denmark
| | - Patrick M Fisher
- Neurobiology Research Unit, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Maj Vinberg
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Denmark; Psychiatric Research Unit, Psychiatric Centre North Zealand, Hillerød, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Lars Vedel Kessing
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Kamilla Woznica Miskowiak
- Neurocognition and Emotion in Affective Disorders (NEAD) Centre, Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Denmark; Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Frederiksberg Hospital, Mental Health Services, Capital Region of Denmark, Denmark; Department of Psychology, University of Copenhagen, Denmark
| |
Collapse
|
10
|
Ma Y, Guo C, Luo Y, Gao S, Sun J, Chen Q, Lv X, Cao J, Lei Z, Fang J. Altered neural activity in the reward-related circuit associated with anhedonia in mild to moderate Major Depressive Disorder. J Affect Disord 2024; 345:216-225. [PMID: 37866737 DOI: 10.1016/j.jad.2023.10.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Anhedonia is a significant predictor of disease progression and treatment outcomes in Major Depressive Disorder (MDD), linked to reward network dysfunctions. However, understanding of its underlying neural mechanisms remains limited. This study aimed to investigate the brain functional mechanisms underlying MDD with anhedonia using resting-state functional magnetic resonance imaging (rs-fMRI). METHODS The Snaith-Hamilton Pleasure Scale (SHAPS) was used to evaluation MDD with anhedonia (anMDD) and non-anhedonia MDD (non-anMDD). Forty-eight patients with anMDD, Forty-four patients with non-anMDD, and Fifty healthy controls (HCs) were enrolled for the fMRI scans. A seed-based functional connectivity (FC) method was employed to explore reward network abnormalities. RESULTS anMDD patients exhibited lower FC values in Ventral Striatum (VS), right lateral Ventral Tegmental Area (VTA_R), left Thalamus (THA_L), and higher FC values in Ventromedial Prefrontal Cortex (vmPFC), left Anterior Insula (AI_L), and Presupplementary Motor Area (Pre-SMA) compared to HCs. Comparing anMDD to non-anMDD, significant differences were observed in FC values of VS, vmPFC, Pre-SMA, and THA_L regions. Correlation analysis revealed positive correlations between FC values of VS_R and NAc_R, as well as THA_L and Cerebellum_Crus1_L, with SHAPS scores. Negative correlations were observed between FC values of Pre-SMA and the right caudate, and between vmPFC and Frontal_Mid_Orb_L, and SHAPS scores. CONCLUSION Both anMDD and non-anMDD groups demonstrated abnormal FCs in the reward network. These findings indicate distinct roles of reward-related circuits in the two subtypes, contributing to a refined understanding of depression phenotypes and potential directions for targeted interventions.
Collapse
Affiliation(s)
- Yue Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunlei Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Luo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Shanshan Gao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jifei Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingyan Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xueyu Lv
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiudong Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhang Lei
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiliang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
11
|
Jiang L, Wang G, Zhang S, Ye J, He R, Chen B, Si Y, Yao D, Yu J, Wan F, Xu P, Yu L, Li F. Feedback-related brain activity in individual decision: evidence from a gambling EEG study. Cereb Cortex 2024; 34:bhad430. [PMID: 37950878 DOI: 10.1093/cercor/bhad430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/13/2023] Open
Abstract
In this study, based on scalp electroencephalogram (EEG), we conducted cortical source localization and functional network analyses to investigate the underlying mechanism explaining the decision processes when individuals anticipate maximizing gambling benefits, particularly in situations where the decision outcomes are inconsistent with the profit goals. The findings shed light on the feedback monitoring process, wherein incongruity between outcomes and gambling goals triggers a more pronounced medial frontal negativity and activates the frontal lobe. Moreover, long-range theta connectivity is implicated in processing surprise and uncertainty caused by inconsistent feedback conditions, while middle-range delta coupling reflects a more intricate evaluation of feedback outcomes, which subsequently modifies individual decision-making for optimizing future rewards. Collectively, these findings deepen our comprehension of decision-making under circumstances where the profit goals are compromised by decision outcomes and provide electrophysiological evidence supporting adaptive adjustments in individual decision strategies to achieve maximum benefit.
Collapse
Affiliation(s)
- Lin Jiang
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Guangying Wang
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Silai Zhang
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jiayu Ye
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Runyang He
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Baodan Chen
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yajing Si
- School of Psychology, Xinxiang Medical University, Xinxiang 453003, China
| | - Dezhong Yao
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, China
- School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Yu
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Feng Wan
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Peng Xu
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, China
- Radiation Oncology Key Laboratory of Sichuan Province, Chengdu 610042, China
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Liang Yu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Fali Li
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Life Science and Technology, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu 611731, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, China
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| |
Collapse
|
12
|
Sun S, Yu H, Yu R, Wang S. Functional connectivity between the amygdala and prefrontal cortex underlies processing of emotion ambiguity. Transl Psychiatry 2023; 13:334. [PMID: 37898626 PMCID: PMC10613296 DOI: 10.1038/s41398-023-02625-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/30/2023] Open
Abstract
Processing facial expressions of emotion draws on a distributed brain network. In particular, judging ambiguous facial emotions involves coordination between multiple brain areas. Here, we applied multimodal functional connectivity analysis to achieve network-level understanding of the neural mechanisms underlying perceptual ambiguity in facial expressions. We found directional effective connectivity between the amygdala, dorsomedial prefrontal cortex (dmPFC), and ventromedial PFC, supporting both bottom-up affective processes for ambiguity representation/perception and top-down cognitive processes for ambiguity resolution/decision. Direct recordings from the human neurosurgical patients showed that the responses of amygdala and dmPFC neurons were modulated by the level of emotion ambiguity, and amygdala neurons responded earlier than dmPFC neurons, reflecting the bottom-up process for ambiguity processing. We further found parietal-frontal coherence and delta-alpha cross-frequency coupling involved in encoding emotion ambiguity. We replicated the EEG coherence result using independent experiments and further showed modulation of the coherence. EEG source connectivity revealed that the dmPFC top-down regulated the activities in other brain regions. Lastly, we showed altered behavioral responses in neuropsychiatric patients who may have dysfunctions in amygdala-PFC functional connectivity. Together, using multimodal experimental and analytical approaches, we have delineated a neural network that underlies processing of emotion ambiguity.
Collapse
Affiliation(s)
- Sai Sun
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University 6-3 Aramaki aza Aoba, Aoba-ku, Sendai, 980-8578, Japan.
- Research Institute of Electrical Communication, Tohoku University 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| | - Hongbo Yu
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Rongjun Yu
- Department of Management, Marketing, and Information Systems, Hong Kong Baptist University, Hong Kong, China
| | - Shuo Wang
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
13
|
Kim S, Beck MR, Cho YS. Loss aversion in the control of attention. Psychon Bull Rev 2023; 30:1887-1894. [PMID: 37040019 DOI: 10.3758/s13423-023-02287-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2023] [Indexed: 04/12/2023]
Abstract
Loss aversion is a psychological bias where an increase in loss is perceived as being larger than an equivalent increase in gain. In the present study, two experiments were conducted to explore whether attentional control reflects loss aversion. Participants performed a visual search task. On each trial, a red target and a green target were presented simultaneously, and participants were free to search for either one. Participants always gained points when they searched for a gain color target (e.g., red). However, they gained or lost points when they searched for a gain-loss color target (e.g., green). In Experiment 1, the expected values of the gain color and the gain-loss color were equal. Therefore, for maximizing the reward, participants did not need to preferably search for a particular color. However, results showed that participants searched for the gain color target more than the gain-loss color target, suggesting stronger attentional control for the gain color than the gain-loss color. In Experiment 2, even though the expected value of the gain-loss color was greater than that of the gain color, attention was allocated to the gain color more than to the gain-loss color. The results imply that attentional control can operate in accordance with the loss aversion principle when the boundary conditions for loss aversion in a repeated binary decision-making task were met.
Collapse
Affiliation(s)
- Sunghyun Kim
- School of Psychology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea.
| | - Melissa R Beck
- Department of Psychology, Louisiana State University, Baton Rouge, LA, USA
| | - Yang Seok Cho
- School of Psychology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Korea
| |
Collapse
|
14
|
Tsai CG, Fu YF, Li CW. Prediction errors arising from switches between major and minor modes in music: An fMRI study. Brain Cogn 2023; 169:105987. [PMID: 37126951 DOI: 10.1016/j.bandc.2023.105987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
The major and minor modes in Western music have positive and negative connotations, respectively. The present fMRI study examined listeners' neural responses to switches between major and minor modes. We manipulated the final chords of J. S. Bach's keyboard pieces so that each major-mode passage ended with either the major (Major-Major) or minor (Major-Minor) tonic chord, and each minor-mode passage ended with either the minor (Minor-Minor) or major (Minor-Major) tonic chord. If the final major and minor chords have positive and negative reward values respectively, the Major-Minor and Minor-Major stimuli would cause negative and positive reward prediction errors (RPEs) respectively in a listener's brain. We found that activity in a frontoparietal network was significantly higher for Major-Minor than for Major-Major. Based on previous research, these results support the idea that a major-to-minor switch causes negative RPE. The contrast of Minor-Major minus Minor-Minor yielded activation in the ventral insula and visual cortex, speaking against the idea that a minor-to-major switch causes positive RPE. We discuss our results in relation to executive functions and the emotional connotations of major versus minor modes.
Collapse
Affiliation(s)
- Chen-Gia Tsai
- Graduate Institute of Musicology, National Taiwan University, Taipei, Taiwan; Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Yi-Fan Fu
- Department of Bio-Industry Communication and Development, National Taiwan University, Taipei, Taiwan
| | - Chia-Wei Li
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
15
|
Jia R, Ruderman L, Pietrzak RH, Gordon C, Ehrlich D, Horvath M, Mirchandani S, DeFontes C, Southwick S, Krystal JH, Harpaz-Rotem I, Levy I. Neural valuation of rewards and punishments in posttraumatic stress disorder: a computational approach. Transl Psychiatry 2023; 13:101. [PMID: 36977676 PMCID: PMC10050320 DOI: 10.1038/s41398-023-02388-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is associated with changes in fear learning and decision-making, suggesting involvement of the brain's valuation system. Here we investigate the neural mechanisms of subjective valuation of rewards and punishments in combat veterans. In a functional MRI study, male combat veterans with a wide range of posttrauma symptoms (N = 48, Clinician Administered PTSD Scale, CAPS-IV) made a series of choices between sure and uncertain monetary gains and losses. Activity in the ventromedial prefrontal cortex (vmPFC) during valuation of uncertain options was associated with PTSD symptoms, an effect which was consistent for gains and losses, and specifically driven by numbing symptoms. In an exploratory analysis, computational modeling of choice behavior was used to estimate the subjective value of each option. The neural encoding of subjective value varied as a function of symptoms. Most notably, veterans with PTSD exhibited enhanced representations of the saliency of gains and losses in the neural valuation system, especially in ventral striatum. These results suggest a link between the valuation system and the development and maintenance of PTSD, and demonstrate the significance of studying reward and punishment processing within subject.
Collapse
Affiliation(s)
- Ruonan Jia
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Lital Ruderman
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Robert H Pietrzak
- National Center for PTSD, West Haven VA Medical Center, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Charles Gordon
- National Center for PTSD, West Haven VA Medical Center, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Daniel Ehrlich
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Mark Horvath
- National Center for PTSD, West Haven VA Medical Center, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Serena Mirchandani
- National Center for PTSD, West Haven VA Medical Center, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Clara DeFontes
- National Center for PTSD, West Haven VA Medical Center, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Steven Southwick
- National Center for PTSD, West Haven VA Medical Center, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - John H Krystal
- National Center for PTSD, West Haven VA Medical Center, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- Wu-Tsai Institute, Yale University, New Haven, CT, USA
| | - Ilan Harpaz-Rotem
- National Center for PTSD, West Haven VA Medical Center, West Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- Wu-Tsai Institute, Yale University, New Haven, CT, USA
| | - Ifat Levy
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA.
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA.
- National Center for PTSD, West Haven VA Medical Center, West Haven, CT, USA.
- Department of Psychology, Yale University, New Haven, CT, USA.
- Wu-Tsai Institute, Yale University, New Haven, CT, USA.
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
16
|
Xu Q, He S, Li Z, Duan R, Li P. Voluntary or reluctant? Social influence in charitable giving: an ERP study. Soc Cogn Affect Neurosci 2023; 18:7070418. [PMID: 36881686 PMCID: PMC10013733 DOI: 10.1093/scan/nsad010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 01/20/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Social information has substantial influences on prosocial behavior. In this study, we performed an event-related potential (ERP) experiment to examine the effect of social influence on giving. The participants were allowed to form an initial decision on how much money to donate to a charity provided the program's average donation amount and to make a second donation decision. Social influence varied in different directions (upward, downward and equal) by altering the relative donation amount between the average donation amount and the participants' first donation amount. The behavioral results showed that participants increased their donation amount in the upward condition and decreased it in the downward condition. The ERP results revealed that upward social information evoked larger feedback-related negativity (FRN) amplitudes and smaller P3 amplitudes than in the downward and equal conditions. Furthermore, the pressure ratings, rather than the happiness ratings, were associated with the FRN patterns across the three conditions. We argue that people in social situations are more likely to increase their donations owing to pressure than voluntary altruism. Our study provides the first ERP evidence that different directions of social information evoke different neural responses in time course processing.
Collapse
Affiliation(s)
- Qiang Xu
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Shengnan He
- Department of Moral Education, The 21st Primary School Xiangzhou Zhuhai, Zhuhai 519000, China
| | - Zhurong Li
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Ran Duan
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Peng Li
- School of Psychology, Shenzhen University, Shenzhen 518060, China.,Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
17
|
Speer SPH, Keysers C, Barrios JC, Teurlings CJS, Smidts A, Boksem MAS, Wager TD, Gazzola V. A multivariate brain signature for reward. Neuroimage 2023; 271:119990. [PMID: 36878456 DOI: 10.1016/j.neuroimage.2023.119990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/07/2023] Open
Abstract
The processing of reinforcers and punishers is crucial to adapt to an ever changing environment and its dysregulation is prevalent in mental health and substance use disorders. While many human brain measures related to reward have been based on activity in individual brain regions, recent studies indicate that many affective and motivational processes are encoded in distributed systems that span multiple regions. Consequently, decoding these processes using individual regions yields small effect sizes and limited reliability, whereas predictive models based on distributed patterns yield larger effect sizes and excellent reliability. To create such a predictive model for the processes of rewards and losses, termed the Brain Reward Signature (BRS), we trained a model to predict the signed magnitude of monetary rewards on the Monetary Incentive Delay task (MID; N = 39) and achieved a highly significant decoding performance (92% for decoding rewards versus losses). We subsequently demonstrate the generalizability of our signature on another version of the MID in a different sample (92% decoding accuracy; N = 12) and on a gambling task from a large sample (73% decoding accuracy, N = 1084). We further provided preliminary data to characterize the specificity of the signature by illustrating that the signature map generates estimates that significantly differ between rewarding and negative feedback (92% decoding accuracy) but do not differ for conditions that differ in disgust rather than reward in a novel Disgust-Delay Task (N = 39). Finally, we show that passively viewing positive and negatively valenced facial expressions loads positively on our signature, in line with previous studies on morbid curiosity. We thus created a BRS that can accurately predict brain responses to rewards and losses in active decision making tasks, and that possibly relates to information seeking in passive observational tasks.
Collapse
Affiliation(s)
- Sebastian P H Speer
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; Brain and Cognition, Department of Psychology, University of Amsterdam, The Netherlands
| | | | - Cas J S Teurlings
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Ale Smidts
- Rotterdam School of Management, Erasmus University, 3062 PA Rotterdam, The Netherlands
| | - Maarten A S Boksem
- Rotterdam School of Management, Erasmus University, 3062 PA Rotterdam, The Netherlands
| | - Tor D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Sun S, Yu H, Yu R, Wang S. Functional connectivity between the amygdala and prefrontal cortex underlies processing of emotion ambiguity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525116. [PMID: 36747862 PMCID: PMC9900805 DOI: 10.1101/2023.01.24.525116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Processing facial expressions of emotion draws on a distributed brain network. In particular, judging ambiguous facial emotions involves coordination between multiple brain areas. Here, we applied multimodal functional connectivity analysis to achieve network-level understanding of the neural mechanisms underlying perceptual ambiguity in facial expressions. We found directional effective connectivity between the amygdala, dorsomedial prefrontal cortex (dmPFC), and ventromedial PFC, supporting both bottom-up affective processes for ambiguity representation/perception and top-down cognitive processes for ambiguity resolution/decision. Direct recordings from the human neurosurgical patients showed that the responses of amygdala and dmPFC neurons were modulated by the level of emotion ambiguity, and amygdala neurons responded earlier than dmPFC neurons, reflecting the bottom-up process for ambiguity processing. We further found parietal-frontal coherence and delta-alpha cross-frequency coupling involved in encoding emotion ambiguity. We replicated the EEG coherence result using independent experiments and further showed modulation of the coherence. EEG source connectivity revealed that the dmPFC top-down regulated the activities in other brain regions. Lastly, we showed altered behavioral responses in neuropsychiatric patients who may have dysfunctions in amygdala-PFC functional connectivity. Together, using multimodal experimental and analytical approaches, we have delineated a neural network that underlies processing of emotion ambiguity. Significance Statement A large number of different brain regions participate in emotion processing. However, it remains elusive how these brain regions interact and coordinate with each other and collectively encode emotions, especially when the task requires orchestration between different brain areas. In this study, we employed multimodal approaches that well complemented each other to comprehensively study the neural mechanisms of emotion ambiguity. Our results provided a systematic understanding of the amygdala-PFC network underlying emotion ambiguity with fMRI-based connectivity, EEG coordination of cortical regions, synchronization of brain rhythms, directed information flow of the source signals, and latency of single-neuron responses. Our results further shed light on neuropsychiatric patients who have abnormal amygdala-PFC connectivity.
Collapse
|
19
|
Zalachoras I, Ramos-Fernández E, Hollis F, Trovo L, Rodrigues J, Strasser A, Zanoletti O, Steiner P, Preitner N, Xin L, Astori S, Sandi C. Glutathione in the nucleus accumbens regulates motivation to exert reward-incentivized effort. eLife 2022; 11:77791. [DOI: 10.7554/elife.77791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Emerging evidence is implicating mitochondrial function and metabolism in the nucleus accumbens in motivated performance. However, the brain is vulnerable to excessive oxidative insults resulting from neurometabolic processes, and whether antioxidant levels in the nucleus accumbens contribute to motivated performance is not known. Here, we identify a critical role for glutathione (GSH), the most important endogenous antioxidant in the brain, in motivation. Using proton magnetic resonance spectroscopy at ultra-high field in both male humans and rodent populations, we establish that higher accumbal GSH levels are highly predictive of better, and particularly, steady performance over time in effort-related tasks. Causality was established in in vivo experiments in rats that, first, showed that downregulating GSH levels through micro-injections of the GSH synthesis inhibitor buthionine sulfoximine in the nucleus accumbens impaired effort-based reward-incentivized performance. In addition, systemic treatment with the GSH precursor N-acetyl-cysteine increased accumbal GSH levels in rats and led to improved performance, potentially mediated by a cell-type-specific shift in glutamatergic inputs to accumbal medium spiny neurons. Our data indicate a close association between accumbal GSH levels and an individual’s capacity to exert reward-incentivized effort over time. They also suggest that improvement of accumbal antioxidant function may be a feasible approach to boost motivation.
Collapse
Affiliation(s)
- Ioannis Zalachoras
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Eva Ramos-Fernández
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Fiona Hollis
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine
| | - Laura Trovo
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, Vers-chez-les-Blanc
| | - João Rodrigues
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Alina Strasser
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Olivia Zanoletti
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Pascal Steiner
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, Vers-chez-les-Blanc
| | - Nicolas Preitner
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé SA, Vers-chez-les-Blanc
| | - Lijing Xin
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), EPFL
| | - Simone Astori
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| | - Carmen Sandi
- Laboratory of Behavioral Genetics (LGC), Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)
| |
Collapse
|
20
|
Decreased reward circuit connectivity during reward anticipation in major depression. Neuroimage Clin 2022; 36:103226. [PMID: 36257119 PMCID: PMC9668633 DOI: 10.1016/j.nicl.2022.103226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 09/21/2022] [Accepted: 10/08/2022] [Indexed: 11/11/2022]
Abstract
An important symptom of major depressive disorder (MDD) is the inability to experience pleasure, possibly due to a dysfunction of the reward system. Despite promising insights regarding impaired reward-related processing in MDD, circuit-level abnormalities remain largely unexplored. Furthermore, whereas studies contrasting experimental conditions from incentive tasks have revealed important information about reward processing, temporal difference modeling of reward-related prediction error (PE) signals might give a more accurate representation of the reward system. We used a monetary incentive delay task during functional MRI scanning to explore PE-related striatal and ventral tegmental area (VTA) activation in response to anticipation and delivery of monetary rewards in 24 individuals with MDD versus 24 healthy controls (HCs). Furthermore, we investigated group differences in temporal difference related connectivity with a generalized psychophysiological interaction (gPPI) analysis with the VTA, ventral striatum (VS) and dorsal striatum (DS) as seeds during reward versus neutral, both in anticipation and delivery. Relative to HCs, MDD patients displayed a trend-level (p = 0.052) decrease in temporal difference-related activation in the VS during reward anticipation and delivery combined. Moreover, gPPI analyses revealed that during reward anticipation, MDD patients exhibited decreased functional connectivity between the VS and anterior cingulate cortex / medial prefrontal cortex, anterior cingulate gyrus, angular/middle orbital gyrus, left insula, superior/middle frontal gyrus (SFG/MFG) and precuneus/superior occipital gyrus/cerebellum compared to HC. Moreover, MDD patients showed decreased functional connectivity between the VTA and left insula compared to HC during reward anticipation. Exploratory analysis separating medication free patients from patients using antidepressant revealed that these decreased functional connectivity patterns were mainly apparent in the MDD group that used antidepressants. These results suggest that MDD is characterized by alterations in reward circuit connectivity rather than isolated activation impairments. These findings represent an important extension of the existing literature since improved understanding of neural pathways underlying depression-related reward dysfunctions, may help currently unmet diagnostic and therapeutic efforts.
Collapse
|
21
|
Dorsolateral prefrontal cortex plays causal role in probability weighting during risky choice. Sci Rep 2022; 12:16115. [PMID: 36167703 PMCID: PMC9515118 DOI: 10.1038/s41598-022-18529-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
In this study, we provide causal evidence that the dorsolateral prefrontal cortex (DLPFC) supports the computation of subjective value in choices under risk via its involvement in probability weighting. Following offline continuous theta-burst transcranial magnetic stimulation (cTBS) of the DLPFC subjects (N = 30, mean age 23.6, 56% females) completed a computerized task consisting of 96 binary lottery choice questions presented in random order. Using the hierarchical Bayesian modeling approach, we then estimated the structural parameters of risk preferences (the degree of risk aversion and the curvature of the probability weighting function) and analyzed the obtained posterior distributions to determine the effect of stimulation on model parameters. On a behavioral level, temporary downregulation of the left DLPFC excitability through cTBS decreased the likelihood of choosing an option with higher expected reward while the probability of choosing a riskier lottery did not significantly change. Modeling the stimulation effects on risk preference parameters showed anecdotal evidence as assessed by Bayes factors that probability weighting parameter increased after the left DLPFC TMS compared to sham.
Collapse
|
22
|
Zamfir E, Dayan P. Interactions between attributions and beliefs at trial-by-trial level: Evidence from a novel computer game task. PLoS Comput Biol 2022; 18:e1009920. [PMID: 36155635 PMCID: PMC9536582 DOI: 10.1371/journal.pcbi.1009920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 10/06/2022] [Accepted: 08/28/2022] [Indexed: 11/19/2022] Open
Abstract
Inferring causes of the good and bad events that we experience is part of the process of building models of our own capabilities and of the world around us. Making such inferences can be difficult because of complex reciprocal relationships between attributions of the causes of particular events, and beliefs about the capabilities and skills that influence our role in bringing them about. Abnormal causal attributions have long been studied in connection with psychiatric disorders, notably depression and paranoia; however, the mechanisms behind attributional inferences and the way they can go awry are not fully understood. We administered a novel, challenging, game of skill to a substantial population of healthy online participants, and collected trial-by-trial time series of both their beliefs about skill and attributions about the causes of the success and failure of real experienced outcomes. We found reciprocal relationships that provide empirical confirmation of the attribution-self representation cycle theory. This highlights the dynamic nature of the processes involved in attribution, and validates a framework for developing and testing computational accounts of attribution-belief interactions. As part of interpreting our experiences, we spontaneously make causal attributions and use them to update our beliefs about the world, ourselves and others. This has long been a topic of interest, particularly within psychiatry. Some theories assume that people have stable “attributional styles”, others focus on the changing nature of attribution-making and on the relationships between attributions and one’s beliefs about the self, suggesting that the two are mutually connected. In this area of research, people have traditionally been asked to imagine themselves experiencing various significant life events and report on how they would interpret those, or have been exposed to artificial and highly simplified situations in the lab. In this work, we introduce a new task to study relationships between causal attributions and beliefs: repeatedly playing an engaging and relatively complex game of skill. We show that we can detect mutual influences between attributions and beliefs at the level of individual wins and losses. This has implications for how everyday successes and failures impact our beliefs about ourselves and our well-being. It also could help understand how our interpretations of negative experiences can spiral out of control, affecting our mental health.
Collapse
Affiliation(s)
- Elena Zamfir
- Department of Education, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Peter Dayan
- Max Plack Institute for Biological Cybernetics, Tuebingen, Germany
| |
Collapse
|
23
|
Wassum KM. Amygdala-cortical collaboration in reward learning and decision making. eLife 2022; 11:e80926. [PMID: 36062909 PMCID: PMC9444241 DOI: 10.7554/elife.80926] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/22/2022] [Indexed: 12/16/2022] Open
Abstract
Adaptive reward-related decision making requires accurate prospective consideration of the specific outcome of each option and its current desirability. These mental simulations are informed by stored memories of the associative relationships that exist within an environment. In this review, I discuss recent investigations of the function of circuitry between the basolateral amygdala (BLA) and lateral (lOFC) and medial (mOFC) orbitofrontal cortex in the learning and use of associative reward memories. I draw conclusions from data collected using sophisticated behavioral approaches to diagnose the content of appetitive memory in combination with modern circuit dissection tools. I propose that, via their direct bidirectional connections, the BLA and OFC collaborate to help us encode detailed, outcome-specific, state-dependent reward memories and to use those memories to enable the predictions and inferences that support adaptive decision making. Whereas lOFC→BLA projections mediate the encoding of outcome-specific reward memories, mOFC→BLA projections regulate the ability to use these memories to inform reward pursuit decisions. BLA projections to lOFC and mOFC both contribute to using reward memories to guide decision making. The BLA→lOFC pathway mediates the ability to represent the identity of a specific predicted reward and the BLA→mOFC pathway facilitates understanding of the value of predicted events. Thus, I outline a neuronal circuit architecture for reward learning and decision making and provide new testable hypotheses as well as implications for both adaptive and maladaptive decision making.
Collapse
Affiliation(s)
- Kate M Wassum
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
- Brain Research Institute, University of California, Los AngelesLos AngelesUnited States
- Integrative Center for Learning and Memory, University of California, Los AngelesLos AngelesUnited States
- Integrative Center for Addictive Disorders, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
24
|
Mallorquí A, Martínez-Zamora MA, Carmona F. Anhedonia in endometriosis: An unexplored symptom. Front Psychol 2022; 13:935349. [PMID: 36118502 PMCID: PMC9481352 DOI: 10.3389/fpsyg.2022.935349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Anhedonia is the diminished motivation and sensitivity to pleasurable stimuli. It has been reported to be more prevalent in patients with chronic pain as compared to healthy controls. Endometriosis is a chronic inflammatory systemic disease with a significant psychosocial impact that compromises wellbeing and the day-to-day life of patients. Women with endometriosis show significant psychological distress, even more pervasive when chronic pelvic pain is present. In the current review we will discuss the role of anhedonia in endometriotic chronic pelvic pain. We will also present new lines of research that could lead to more fully clarifying the psychological impact of endometriosis and its detrimental repercussions to quality of life and mental health.
Collapse
Affiliation(s)
- Aida Mallorquí
- Clinical Health Psychology Section, Institute of Neuroscience (ICN), Hospital Clínic of Barcelona, Barcelona, Spain
| | - María-Angeles Martínez-Zamora
- Department of Gynecology, Clinic Institute of Gynecology, Obstetrics and Neonatology, Hospital Clinic of Barcelona, Faculty of Medicine, University of Barcelona, Institut d´Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- *Correspondence: María-Angeles Martínez-Zamora,
| | - Francisco Carmona
- Department of Gynecology, Clinic Institute of Gynecology, Obstetrics and Neonatology, Hospital Clinic of Barcelona, Faculty of Medicine, University of Barcelona, Institut d´Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
25
|
Macoveanu J, Stougaard ME, Kjærstad HL, Knudsen GM, Vinberg M, Kessing LV, Miskowiak KW. Trajectory of aberrant reward processing in patients with bipolar disorder - A longitudinal fMRI study. J Affect Disord 2022; 312:235-244. [PMID: 35760195 DOI: 10.1016/j.jad.2022.06.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Bipolar disorder (BD), and especially the mania phenotype, is characterized by heightened reward responsivity and aberrant reward processing. In this longitudinal fMRI study, we investigated neuronal response during reward anticipation as the computed expected value (EV) and outcome evaluation as reward prediction error (RPE) in recently diagnosed patients with BD. METHODS Eighty remitted patients with BD and 60 healthy controls (HC) underwent fMRI during which they performed a card guessing task. Of these, 41 patients and 36 HC were re-scanned after 16 months. We compared reward-related neural activity between groups at baseline and longitudinally and assessed the impact of mood relapse. RESULTS Patients showed lower RPE signal in areas of the ventrolateral prefrontal cortex (vlPFC) than HC. In these regions, the HC showed decrease in RPE signal over time, which was absent in patients. Patients further exhibited decreased EV signal in the occipital cortex across baseline and follow-up. Patients who remained in remission showed normalization of the EV signal at follow-up. Baseline activity in the identified regions was not associated with subsequent relapse. LIMITATIONS Follow-up scans were only available in a relatively small sample. Medication status, follow-up time and BD illness duration prior to diagnosis varied. CONCLUSIONS Lower RPE signal in the vlPFC in patients with BD at baseline and its lack of normative reduction over time may represent a trait marker of dysfunctional reward-based learning or habituation. The increase in EV signal in the occipital cortex over time in patients who remained in remission may indicate normalization of reward anticipation activity.
Collapse
Affiliation(s)
- J Macoveanu
- Copenhagen Affective Disorder research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - M E Stougaard
- Copenhagen Affective Disorder research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - H L Kjærstad
- Copenhagen Affective Disorder research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - G M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - M Vinberg
- Copenhagen Affective Disorder research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark; Mental Health Centre, Northern Zealand, Copenhagen University Hospital-Mental Health Services CPH, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - L V Kessing
- Copenhagen Affective Disorder research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - K W Miskowiak
- Copenhagen Affective Disorder research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark; Department of Psychology, University of Copenhagen, Denmark.
| |
Collapse
|
26
|
Horing B, Büchel C. The human insula processes both modality-independent and pain-selective learning signals. PLoS Biol 2022; 20:e3001540. [PMID: 35522696 PMCID: PMC9116652 DOI: 10.1371/journal.pbio.3001540] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/18/2022] [Accepted: 04/15/2022] [Indexed: 12/02/2022] Open
Abstract
Prediction errors (PEs) are generated when there are differences between an expected and an actual event or sensory input. The insula is a key brain region involved in pain processing, and studies have shown that the insula encodes the magnitude of an unexpected outcome (unsigned PEs). In addition to signaling this general magnitude information, PEs can give specific information on the direction of this deviation-i.e., whether an event is better or worse than expected. It is unclear whether the unsigned PE responses in the insula are selective for pain or reflective of a more general processing of aversive events irrespective of modality. It is also unknown whether the insula can process signed PEs at all. Understanding these specific mechanisms has implications for understanding how pain is processed in the brain in both health and in chronic pain conditions. In this study, 47 participants learned associations between 2 conditioned stimuli (CS) with 4 unconditioned stimuli (US; painful heat or loud sound, of one low and one high intensity each) while undergoing functional magnetic resonance imaging (fMRI) and skin conductance response (SCR) measurements. We demonstrate that activation in the anterior insula correlated with unsigned intensity PEs, irrespective of modality, indicating an unspecific aversive surprise signal. Conversely, signed intensity PE signals were modality specific, with signed PEs following pain but not sound located in the dorsal posterior insula, an area implicated in pain intensity processing. Previous studies have identified abnormal insula function and abnormal learning as potential causes of pain chronification. Our findings link these results and suggest that a misrepresentation of learning relevant PEs in the insular cortex may serve as an underlying factor in chronic pain.
Collapse
Affiliation(s)
- Björn Horing
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
27
|
Hernandez CM, McQuail JA, Ten Eyck TW, Wheeler AR, Labiste CC, Setlow B, Bizon J. GABA B receptors in prelimbic cortex and basolateral amygdala differentially influence intertemporal decision making and decline with age. Neuropharmacology 2022; 209:109001. [PMID: 35189132 DOI: 10.1016/j.neuropharm.2022.109001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022]
Abstract
The ability to decide adaptively between immediate vs. delayed gratification (intertemporal choice) is critical for well-being and is associated with a range of factors that influence quality of life. In contrast to young adults, many older adults show enhanced preference for delayed gratification; however, the neural mechanisms underlying this age difference in intertemporal choice are largely un-studied. Changes in signaling through GABAB receptors (GABABRs) mediate several age-associated differences in cognitive processes linked to intertemporal choice. The current study used a rat model to determine how GABABRs in two brain regions known to regulate intertemporal choice (prelimbic cortex; PrL and basolateral amygdala; BLA) contribute to age differences in this form of decision making in male rats. As in humans, aged rats showed enhanced preference for large, delayed over small, immediate rewards during performance in an intertemporal choice task in operant test chambers. Activation of PrL GABABRs via microinfusion of the agonist baclofen increased choice of large, delayed rewards in young adult rats but did not influence choice in aged rats. Conversely, infusion of baclofen into the BLA strongly reduced choice of large, delayed rewards in both young adult and aged rats. Aged rats further showed a significant reduction in expression of GABABR1 subunit isoforms in the prefrontal cortex, a discovery that is consonant with the null effect of intra-PrL baclofen on intertemporal choice in aged rats. In contrast, expression of GABABR subunits was generally conserved with age in the BLA. Jointly, these findings elucidate a role for GABABRs in intertemporal choice and identify fundamental features of brain maturation and aging that mediate an improved ability to delay gratification.
Collapse
Affiliation(s)
- Caesar M Hernandez
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA; Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Joseph A McQuail
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA; Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine - Columbia, Columbia, SC, 29208, USA
| | - Tyler W Ten Eyck
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Alexa-Rae Wheeler
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
| | - Chase C Labiste
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
| | - Barry Setlow
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA; Department of Psychiatry, University of Florida, Gainesville, FL, 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Jennifer Bizon
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
28
|
Primate anterior insular cortex represents economic decision variables proposed by prospect theory. Nat Commun 2022; 13:717. [PMID: 35132070 PMCID: PMC8821715 DOI: 10.1038/s41467-022-28278-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/13/2022] [Indexed: 11/17/2022] Open
Abstract
In humans, risk attitude is highly context-dependent, varying with wealth levels or for different potential outcomes, such as gains or losses. These behavioral effects have been modelled using prospect theory, with the key assumption that humans represent the value of each available option asymmetrically as a gain or loss relative to a reference point. It remains unknown how these computations are implemented at the neuronal level. Here we show that macaques, like humans, change their risk attitude across wealth levels and gain/loss contexts using a token gambling task. Neurons in the anterior insular cortex (AIC) encode the ‘reference point’ (i.e., the current wealth level of the monkey) and reflect ‘loss aversion’ (i.e., option value signals are more sensitive to change in the loss than in the gain context) as postulated by prospect theory. In addition, changes in the activity of a subgroup of AIC neurons correlate with the inter-trial fluctuations in choice and risk attitude. Taken together, we show that the primate AIC in risky decision-making may be involved in monitoring contextual information used to guide the animal’s willingness to accept risk. Prospect theory predicts irrational effects in human decision-making, but relies on ad-hoc assumptions. Here, authors provide a neural basis for this by showing that anterior insular cortex encodes key economic variables proposed by prospect theory.
Collapse
|
29
|
Hobbs C, Vozarova P, Sabharwal A, Shah P, Button K. Is depression associated with reduced optimistic belief updating? ROYAL SOCIETY OPEN SCIENCE 2022; 9:190814. [PMID: 35127107 PMCID: PMC8808098 DOI: 10.1098/rsos.190814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 01/07/2022] [Indexed: 05/04/2023]
Abstract
When asked to evaluate their probability of experiencing a negative life event, healthy individuals update their beliefs more following good news than bad. This is referred to as optimistic belief updating. By contrast, individuals with depression update their beliefs by a similar amount, showing reduced optimism. We conducted the first independent replication of this effect and extended this work to examine whether reduced optimistic belief updating in depression also occurs for positive life events. Replicating previous research, healthy and depression groups differed in belief updating for negative events (β = 0.71, 95% CI: 0.24, 1.18). Whereas healthy participants updated their beliefs more following good news than bad, individuals experiencing depression lacked this bias. However, our findings for positive events were inconclusive. While we did not find statistical evidence that patterns of belief updating between groups varied by valence (β = -0.51, 95% CI: -1.16, 0.15), mean update scores suggested that both groups showed largely similar updating for positive life events. Our results add confidence to previous findings that depression is characterized by negative future expectations maintained by reduced updating in response to good news. However, further research is required to understand the specificity of this to negative events, and into refining methods for quantifying belief updating in clinical and non-clinical research.
Collapse
Affiliation(s)
- Catherine Hobbs
- Department of Psychology, University of Bath, 10 West, Bath BA2 7AY
| | - Petra Vozarova
- Department of Psychology, University of Bath, 10 West, Bath BA2 7AY
| | | | - Punit Shah
- Department of Psychology, University of Bath, 10 West, Bath BA2 7AY
| | - Katherine Button
- Department of Psychology, University of Bath, 10 West, Bath BA2 7AY
| |
Collapse
|
30
|
Zhou X, Xiao Q, Tu J. Diverse risk-avoidance behaviors in DISC1 mice are associated with different neuronal firing patterns in BLA neurons. Biochem Biophys Res Commun 2022; 587:107-112. [PMID: 34871997 DOI: 10.1016/j.bbrc.2021.11.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 10/25/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022]
Abstract
It is very important to maintain normal levels of risk avoidance in daily life. We found that DISC1-NTM mice, which are a model for mental disorders, had a phenotype marked by a risk-avoidance impairment as measured in an open-field test (OFT). We used optogenetic methods to modulate glutamatergic neurons in the basolateral amygdala (BLA) in an attempt to rescue this risk-avoidance impairment. We found that photostimulation of BLA neurons at 20 Hz modified DISC1-NTM mouse behavior from low risk avoidance to high risk avoidance. We observed following photostimulation that, compared to controls, the number of entries to the center of the open field was lower and less time was spent in the central area. We also found that the time spent immobile was higher during photostimulation compared with WT mice. We also used a lower photostimulation frequency of 5 Hz, which activated BLA glutamatergic neurons and rescued the risk-avoidance impairment in DISC1-NTM mice. Our findings confirm that the BLA participates in diverse risk-avoidance behavior. Our results are also a reminder that differences in neuronal firing patterns within the same pathway may lead to different physiological functions.
Collapse
Affiliation(s)
- Xinyi Zhou
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of Chinese of Academy of Sciences, Beijing, 100049, China
| | - Qian Xiao
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Jie Tu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of Chinese of Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
31
|
Cao Z, Ottino-Gonzalez J, Cupertino RB, Juliano A, Chaarani B, Banaschewski T, Bokde ALW, Quinlan EB, Desrivières S, Flor H, Grigis A, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Paus T, Poustka L, Hohmann S, Millenet S, Fröhner JH, Robinson L, Smolka MN, Walter H, Winterer J, Schumann G, Whelan R, Mackey S, Garavan H. Characterizing reward system neural trajectories from adolescence to young adulthood. Dev Cogn Neurosci 2021; 52:101042. [PMID: 34894615 PMCID: PMC8668439 DOI: 10.1016/j.dcn.2021.101042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/05/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Mixed findings exist in studies comparing brain responses to reward in adolescents and adults. Here we examined the trajectories of brain response, functional connectivity and task-modulated network properties during reward processing with a large-sample longitudinal design. Participants from the IMAGEN study performed a Monetary Incentive Delay task during fMRI at timepoint 1 (T1; n = 1304, mean age=14.44 years old) and timepoint 2 (T2; n = 1241, mean age=19.09 years). The Alcohol Use Disorders Identification Test (AUDIT) was administrated at both T1 and T2 to assess a participant’s alcohol use during the past year. Voxel-wise linear mixed effect models were used to compare whole brain response as well as functional connectivity of the ventral striatum (VS) during reward anticipation (large reward vs no-reward cue) between T1 and T2. In addition, task-modulated networks were constructed using generalized psychophysiological interaction analysis and summarized with graph theory metrics. To explore alcohol use in relation to development, participants with no/low alcohol use at T1 but increased alcohol use to hazardous use level at T2 (i.e., participants with AUDIT≤2 at T1 and ≥8 at T2) were compared against those with consistently low scores (i.e., participants with AUDIT≤2 at T1 and ≤7 at T2). Across the whole sample, lower brain response during reward anticipation was observed at T2 compared with T1 in bilateral caudate nucleus, VS, thalamus, midbrain, dorsal anterior cingulate as well as left precentral and postcentral gyrus. Conversely, greater response was observed bilaterally in the inferior and middle frontal gyrus and right precentral and postcentral gyrus at T2 (vs. T1). Increased functional connectivity with VS was found in frontal, temporal, parietal and occipital regions at T2. Graph theory metrics of the task-modulated network showed higher inter-regional connectivity and topological efficiency at T2. Interactive effects between time (T1 vs. T2) and alcohol use group (low vs. high) on the functional connectivity were observed between left middle temporal gyrus and right VS and the characteristic shortest path length of the task-modulated networks. Collectively, these results demonstrate the utility of the MID task as a probe of typical brain response and network properties during development and of differences in these features related to adolescent drinking, a reward-related behaviour associated with heightened risk for future negative health outcomes. Imaging data during reward anticipation at T1 (age 14) and T2 (age 19) was compared. Brain response decreased in subcortical areas and increased in cortical areas at T2. Functional connectivity (FC) with the ventral striatum increased at T2. Topological efficiency of task-modulated network increased at T2. The developmental pattern was altered in those who increased drinking most at T2.
Collapse
Affiliation(s)
- Zhipeng Cao
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT 05401, USA.
| | - Jonatan Ottino-Gonzalez
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT 05401, USA
| | - Renata B Cupertino
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT 05401, USA
| | - Anthony Juliano
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT 05401, USA
| | - Bader Chaarani
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT 05401, USA
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim 68159, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin D2, Ireland
| | - Erin Burke Quinlan
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London SE5 8AF, United Kingdom
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London SE5 8AF, United Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim 68159, Germany; Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim 68131, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, D-10587, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie"; Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette 91191, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie"; Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette 91191, France; AP-HP. Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, 75013, Paris
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie"; Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette 91191, France; Psychiatry Department, EPS Barthélémy Durand, 91152 Etampes, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim 68159, Germany; Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim 68159, Germany; Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel 24118, Germany
| | | | - Tomáš Paus
- Departments of Psychiatry and Neuroscience and Centre Hospitalier Universitaire Sainte Justine, University of Montreal, Montreal, Quebec H3T 1C5, Canada; Departments of Psychology and Psychiatry, University of Toronto, Toronto, Ontario M6A 2E1, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, Göttingen 37075, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim 68159, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim 68159, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden 01062, Germany
| | - Lauren Robinson
- Department of Psychological Medicine, Section for Eating Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden 01062, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
| | - Jeanne Winterer
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany; Department of Education and Psychology, Freie Universität Berlin, Berlin 14195, Germany
| | - Gunter Schumann
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London SE5 8AF, United Kingdom; PONS Research Group, Dept of Psychiatry and Psychotherapy, Campus Charite Mitte, Humboldt University, Berlin D-10099 and Leibniz Institute for Neurobiology, Magdeburg 39118, Germany; Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai 200433, PR China
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin D2, Ireland
| | - Scott Mackey
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT 05401, USA
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT 05401, USA
| | | |
Collapse
|
32
|
Panitz C, Endres D, Buchholz M, Khosrowtaj Z, Sperl MFJ, Mueller EM, Schubö A, Schütz AC, Teige-Mocigemba S, Pinquart M. A Revised Framework for the Investigation of Expectation Update Versus Maintenance in the Context of Expectation Violations: The ViolEx 2.0 Model. Front Psychol 2021; 12:726432. [PMID: 34858264 PMCID: PMC8632008 DOI: 10.3389/fpsyg.2021.726432] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022] Open
Abstract
Expectations are probabilistic beliefs about the future that shape and influence our perception, affect, cognition, and behavior in many contexts. This makes expectations a highly relevant concept across basic and applied psychological disciplines. When expectations are confirmed or violated, individuals can respond by either updating or maintaining their prior expectations in light of the new evidence. Moreover, proactive and reactive behavior can change the probability with which individuals encounter expectation confirmations or violations. The investigation of predictors and mechanisms underlying expectation update and maintenance has been approached from many research perspectives. However, in many instances there has been little exchange between different research fields. To further advance research on expectations and expectation violations, collaborative efforts across different disciplines in psychology, cognitive (neuro)science, and other life sciences are warranted. For fostering and facilitating such efforts, we introduce the ViolEx 2.0 model, a revised framework for interdisciplinary research on cognitive and behavioral mechanisms of expectation update and maintenance in the context of expectation violations. To support different goals and stages in interdisciplinary exchange, the ViolEx 2.0 model features three model levels with varying degrees of specificity in order to address questions about the research synopsis, central concepts, or functional processes and relationships, respectively. The framework can be applied to different research fields and has high potential for guiding collaborative research efforts in expectation research.
Collapse
Affiliation(s)
- Christian Panitz
- Department of Psychology, University of Marburg, Marburg, Germany.,Department of Psychology, University of Leipzig, Leipzig, Germany.,Center for the Study of Emotion and Attention, University of Florida, Gainesville, FL, United States
| | - Dominik Endres
- Department of Psychology, University of Marburg, Marburg, Germany
| | - Merle Buchholz
- Department of Psychology, University of Marburg, Marburg, Germany
| | - Zahra Khosrowtaj
- Department of Psychology, University of Marburg, Marburg, Germany
| | - Matthias F J Sperl
- Department of Psychology, University of Marburg, Marburg, Germany.,Department of Psychology, University of Giessen, Giessen, Germany
| | - Erik M Mueller
- Department of Psychology, University of Marburg, Marburg, Germany
| | - Anna Schubö
- Department of Psychology, University of Marburg, Marburg, Germany
| | | | | | - Martin Pinquart
- Department of Psychology, University of Marburg, Marburg, Germany
| |
Collapse
|
33
|
Srirangarajan T, Mortazavi L, Bortolini T, Moll J, Knutson B. Multi-band FMRI compromises detection of mesolimbic reward responses. Neuroimage 2021; 244:118617. [PMID: 34600102 PMCID: PMC8626533 DOI: 10.1016/j.neuroimage.2021.118617] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/09/2022] Open
Abstract
Recent innovations in Functional Magnetic Resonance Imaging (FMRI) have sped data collection by enabling simultaneous scans of neural activity in multiple brain locations, but have these innovations come at a cost? In a meta-analysis and preregistered direct comparison of original data, we examined whether acquiring FMRI data with multi-band versus single-band scanning protocols might compromise detection of mesolimbic activity during reward processing. Meta-analytic results (n = 44 studies; cumulative n = 5005 subjects) indicated that relative to single-band scans, multi-band scans showed significantly decreased effect sizes for reward anticipation in the Nucleus Accumbens (NAcc) by more than half. Direct within-subject comparison of single-band versus multi-band scanning data (multi-band factors = 4 and 8; n = 12 subjects) acquired during repeated administration of the Monetary Incentive Delay task indicated that reductions in temporal signal-to-noise ratio could account for compromised detection of task-related responses in mesolimbic regions (i.e., the NAcc). Together, these findings imply that researchers should opt for single-band over multi-band scanning protocols when probing mesolimbic responses with FMRI. The findings also have implications for inferring mesolimbic activity during related tasks and rest, for summarizing historical results, and for using neuroimaging data to track individual differences in reward-related brain activity.
Collapse
Affiliation(s)
- Tara Srirangarajan
- Department of Psychology, Stanford University, Stanford, CA, United States
| | - Leili Mortazavi
- Department of Psychology, Stanford University, Stanford, CA, United States
| | - Tiago Bortolini
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Jorge Moll
- Department of Psychology, Stanford University, Stanford, CA, United States; D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Brian Knutson
- Department of Psychology, Stanford University, Stanford, CA, United States.
| |
Collapse
|
34
|
Kim H, Nanavaty N, Ahmed H, Mathur VA, Anderson BA. Motivational Salience Guides Attention to Valuable and Threatening Stimuli: Evidence from Behavior and Functional Magnetic Resonance Imaging. J Cogn Neurosci 2021; 33:2440-2460. [PMID: 34407195 DOI: 10.1162/jocn_a_01769] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rewarding and aversive outcomes have opposing effects on behavior, facilitating approach and avoidance, although we need to accurately anticipate each type of outcome to behave effectively. Attention is biased toward stimuli that have been learned to predict either type of outcome, and it remains an open question whether such orienting is driven by separate systems for value- and threat-based orienting or whether there exists a common underlying mechanism of attentional control driven by motivational salience. Here, we provide a direct comparison of the neural correlates of value- and threat-based attentional capture after associative learning. Across multiple measures of behavior and brain activation, our findings overwhelmingly support a motivational salience account of the control of attention. We conclude that there exists a core mechanism of experience-dependent attentional control driven by motivational salience and that prior characterizations of attention as being value driven or supporting threat monitoring need to be revisited.
Collapse
|
35
|
Hippmann B, Tzvi E, Göttlich M, Weiblen R, Münte TF, Jessen S. Effective connectivity underlying reward-based executive control. Hum Brain Mapp 2021; 42:4555-4567. [PMID: 34173997 PMCID: PMC8410574 DOI: 10.1002/hbm.25564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022] Open
Abstract
Motivational influences on cognitive control play an important role in shaping human behavior. Cognitive facilitation through motivators such as prospective reward or punishment is thought to depend on regions from the dopaminergic mesocortical network, primarily the ventral tegmental area (VTA), inferior frontal junction (IFJ), and anterior cingulate cortex (ACC). However, how interactions between these regions relate to motivated control remains elusive. In the present functional magnetic resonance imaging study, we used dynamic causal modeling (DCM) to investigate effective connectivity between left IFJ, ACC, and VTA in a task-switching paradigm comprising three distinct motivational conditions (prospective monetary reward or punishment and a control condition). We found that while prospective punishment significantly facilitated switching between tasks on a behavioral level, interactions between IFJ, ACC, and VTA were characterized by modulations through prospective reward but not punishment. Our DCM results show that IFJ and VTA modulate ACC activity in parallel rather than by interaction to serve task demands in reward-based cognitive control. Our findings further demonstrate that prospective reward and punishment differentially affect neural control mechanisms to initiate decision-making.
Collapse
Affiliation(s)
| | - Elinor Tzvi
- Department of NeurologyUniversity of LeipzigLeipzigGermany
| | | | - Ronja Weiblen
- Department of NeurologyUniversity of LübeckLübeckGermany
| | | | - Sarah Jessen
- Department of NeurologyUniversity of LübeckLübeckGermany
| |
Collapse
|
36
|
Morris A, Phillips J, Huang K, Cushman F. Generating Options and Choosing Between Them Depend on Distinct Forms of Value Representation. Psychol Sci 2021; 32:1731-1746. [PMID: 34570638 DOI: 10.1177/09567976211005702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Humans have a remarkable capacity for flexible decision-making, deliberating among actions by modeling their likely outcomes. This capacity allows us to adapt to the specific features of diverse circumstances. In real-world decision-making, however, people face an important challenge: There are often an enormous number of possibilities to choose among, far too many for exhaustive consideration. There is a crucial, understudied prechoice step in which, among myriad possibilities, a few good candidates come quickly to mind. How do people accomplish this? We show across nine experiments (N = 3,972 U.S. residents) that people use computationally frugal cached value estimates to propose a few candidate actions on the basis of their success in past contexts (even when irrelevant for the current context). Deliberative planning is then deployed just within this set, allowing people to compute more accurate values on the basis of context-specific criteria. This hybrid architecture illuminates how typically valuable thoughts come quickly to mind during decision-making.
Collapse
Affiliation(s)
- Adam Morris
- Department of Psychology, Harvard University
| | | | - Karen Huang
- McCourt School of Public Policy, Georgetown University
| | | |
Collapse
|
37
|
Ben-Zion Z, Shany O, Admon R, Keynan NJ, Avisdris N, Balter SR, Shalev AY, Liberzon I, Hendler T. Neural Responsivity to Reward versus Punishment Shortly after Trauma Predicts Long-term Development of Post-Traumatic Stress Symptoms. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 7:150-161. [PMID: 34534702 DOI: 10.1016/j.bpsc.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/11/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Processing negative and positive valenced stimuli involve multiple brain regions including the amygdala and ventral striatum (VS). Post-Traumatic Stress Disorder (PTSD) is often associated with hyper-responsivity to negatively valenced, yet recent evidence also points to deficient positive valence functioning. It is yet unclear what is the relative contribution of such opposing valence processing shortly after trauma to the development of chronic PTSD. METHODS Neurobehavioral indicators of motivational positive vs. negative valence sensitivities were longitudinally assessed in 171 adults (87 females, age=34.19±11.47 years) at 1-, 6-, and 14-months following trauma exposure (TP1, TP2, TP3). Using a gambling fMRI paradigm, amygdala and VS functionality (activity and functional connectivity with the prefrontal cortex) in response to rewards vs. punishments were assessed with relation to PTSD severity at different time-points. The effect of valence processing was depicted behaviorally by the amount of risk taken to maximize reward. RESULTS PTSD severity at TP1 was associated with greater neural functionality in the amygdala (but not the VS) towards punishments vs. rewards, and fewer risky choices. PTSD severity at TP3 was associated with decreased neural functionality in both the VS and amygdala towards rewards vs. punishments at TP1 (but not with risky behavior). Explainable machine learning revealed the primacy of VS biased processing, over the amygdala, in predicting PTSD severity at TP3. CONCLUSIONS These results highlight the importance of biased neural responsivity to positive relative to negative motivational outcomes in PTSD development. Novel therapeutic strategies early after trauma may thus target both valence fronts.
Collapse
Affiliation(s)
- Ziv Ben-Zion
- Sagol Brain Institute Tel-Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel; Yale School of Medicine, Yale University, New Haven, Connecticut, United States; United States Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, West Haven, Connecticut, United States
| | - Ofir Shany
- Sagol Brain Institute Tel-Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel; School of Psychological Sciences, Faculty of Social Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Roee Admon
- School of Psychological Sciences, University of Haifa, Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Nimrod Jackob Keynan
- Sagol Brain Institute Tel-Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Netanell Avisdris
- Sagol Brain Institute Tel-Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel; School of Computer Science and Engineering, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shira Reznik Balter
- Sagol Brain Institute Tel-Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Arieh Y Shalev
- Department of Psychiatry, NYU Langone Medical Center, New York, NY, USA
| | - Israel Liberzon
- Department of Psychiatry, Texas A&M Health Science Center, TX, USA
| | - Talma Hendler
- Sagol Brain Institute Tel-Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel; School of Psychological Sciences, Faculty of Social Sciences, Tel-Aviv University, Tel-Aviv, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
38
|
Macoveanu J, Meluken I, Chase HW, Phillips ML, Kessing LV, Siebner HR, Vinberg M, Miskowiak KW. Reduced frontostriatal response to expected value and reward prediction error in remitted monozygotic twins with mood disorders and their unaffected high-risk co-twins. Psychol Med 2021; 51:1637-1646. [PMID: 32115012 DOI: 10.1017/s0033291720000367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Depressive episodes experienced in unipolar (UD) and bipolar (BD) disorders are characterized by anhedonia and have been associated with abnormalities in reward processes related to reward valuation and error prediction. It remains however unclear whether these deficits are associated with familial vulnerability to mood disorders. METHODS In a functional magnetic resonance imaging study, we evaluated differences in the expected value (EV) and reward prediction error (RPE) signals in ventral striatum (VS) and prefrontal cortex between three groups of monozygotic twins: affected twins in remission for either UD or BD (n = 53), their high-risk unaffected co-twins (n = 34), and low-risk twins with no family history of mood disorders (n = 25). RESULTS Compared to low-risk twins, affected twins showed lower EV signal bilaterally in the frontal poles and lower RPE signal bilaterally in the VS, left frontal pole and superior frontal gyrus. The high-risk group did not show a significant change in the EV or RPE signals in frontostriatal regions, yet both reward signals were consistently lower compared with low-risk twins in all regions where the affected twins showed significant reductions. CONCLUSION Our findings strengthen the notion that reduced valuation of expected rewards and reduced error-dependent reward learning may underpin core symptom of depression such as loss of interest in rewarding activities. The trend reduction in reward-related signals in unaffected co-twins warrants further investigation of this effect in larger samples and prospective follow-up to confirm possible association with increased familial vulnerability to mood disorders.
Collapse
Affiliation(s)
- Julian Macoveanu
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Iselin Meluken
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Henry W Chase
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lars Vedel Kessing
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
- Faculty of Medical and Health Sciences, Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Maj Vinberg
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Kamilla W Miskowiak
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
Abstract
Social science is entering a golden age, marked by the confluence of explosive growth in new data and analytic methods, interdisciplinary approaches, and a recognition that these ingredients are necessary to solve the more challenging problems facing our world. We discuss how developing a "lingua franca" can encourage more interdisciplinary research, providing two case studies (social networks and behavioral economics) to illustrate this theme. Several exemplar studies from the past 12 y are also provided. We conclude by addressing the challenges that accompany these positive trends, such as career incentives and the search for unifying frameworks, and associated best practices that can be employed in response.
Collapse
|
40
|
Anatomical dissociation of intracerebral signals for reward and punishment prediction errors in humans. Nat Commun 2021; 12:3344. [PMID: 34099678 PMCID: PMC8184756 DOI: 10.1038/s41467-021-23704-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 05/06/2021] [Indexed: 11/17/2022] Open
Abstract
Whether maximizing rewards and minimizing punishments rely on distinct brain systems remains debated, given inconsistent results coming from human neuroimaging and animal electrophysiology studies. Bridging the gap across techniques, we recorded intracerebral activity from twenty participants while they performed an instrumental learning task. We found that both reward and punishment prediction errors (PE), estimated from computational modeling of choice behavior, correlate positively with broadband gamma activity (BGA) in several brain regions. In all cases, BGA scaled positively with the outcome (reward or punishment versus nothing) and negatively with the expectation (predictability of reward or punishment). However, reward PE were better signaled in some regions (such as the ventromedial prefrontal and lateral orbitofrontal cortex), and punishment PE in other regions (such as the anterior insula and dorsolateral prefrontal cortex). These regions might therefore belong to brain systems that differentially contribute to the repetition of rewarded choices and the avoidance of punished choices. Whether maximizing rewards and minimizing punishments rely on distinct brain learning systems remains debated. Here, using intracerebral recordings in humans, the authors provide evidence for brain regions differentially engaged in signaling reward and punishment prediction errors that prescribe repetition versus avoidance of past choices.
Collapse
|
41
|
Grégoire L, Kim H, Anderson BA. Punishment-modulated attentional capture is context specific. MOTIVATION SCIENCE 2021; 7:165-175. [PMID: 35342778 PMCID: PMC8942113 DOI: 10.1037/mot0000211] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Attention prioritizes stimuli previously associated with punishment. Despite the importance of this process for survival and adaptation, the potential generalization of punishment-related attentional biases has been largely ignored in the literature. This study aimed to determine whether stimulus-punishment associations learned in a specific context bias attention in another context (in which the stimulus was never paired with punishment). We examined this issue using an antisaccade task in which participants had to shift their gaze in the opposite direction of a colored square during stimulus-outcome learning. Two contexts and three colors were employed. One color was associated with punishment (i.e., electrical shock) in one context and never paired with punishment in the other context. For a second color, the punishment-context relationship was reversed. A third color never paired with shock in either context (neutral) was included in Experiment 1 but absent in Experiment 2. Participants then performed search for a shape-defined target in an extinction phase (in which no shock was delivered) in which attentional bias for the colors was assessed. Context was manipulated via the background image upon which the stimuli were presented. In each of the two experiments, a bias to selectively orient toward the color that had been associated with punishment in the current context was observed, suggesting that punishment-modulated attentional priority is context specific.
Collapse
|
42
|
Lokshina Y, Nickelsen T, Liberzon I. Reward Processing and Circuit Dysregulation in Posttraumatic Stress Disorder. Front Psychiatry 2021; 12:559401. [PMID: 34122157 PMCID: PMC8193060 DOI: 10.3389/fpsyt.2021.559401] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 04/23/2021] [Indexed: 11/30/2022] Open
Abstract
Past decades have witnessed substantial progress in understanding of neurobiological mechanisms that contribute to generation of various PTSD symptoms, including intrusive memories, physiological arousal and avoidance of trauma reminders. However, the neurobiology of anhedonia and emotional numbing in PTSD, that have been conceptualized as reward processing deficits - reward wanting (anticipation of reward) and reward liking (satisfaction with reward outcome), respectively, remains largely unexplored. Empirical evidence on reward processing in PTSD is rather limited, and no studies have examined association of reward processing abnormalities and neurocircuitry-based models of PTSD pathophysiology. The manuscript briefly summarizes "state of the science" of both human reward processing, and of PTSD implicated neurocircuitry, as well as empirical evidence of reward processing deficits in PTSD. We then summarize current gaps in the literature and outline key future directions, further illustrating it by the example of two alternative explanations of PTSD pathophysiology potentially affecting reward processing via different neurobiological pathways. Studying reward processing in PTSD will not only advance the understanding of their link, but also could enhance current treatment approaches by specifically targeting anhedonia and emotional symptoms in PTSD patients.
Collapse
Affiliation(s)
- Yana Lokshina
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, College Station, TX, United States
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Tetiana Nickelsen
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, College Station, TX, United States
| | - Israel Liberzon
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, College Station, TX, United States
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
43
|
Van Dessel J, Danckaerts M, Moerkerke M, Van der Oord S, Morsink S, Lemiere J, Sonuga-Barke E. Dissociating brain systems that respond to contingency and valence during monetary loss avoidance in adolescence. Brain Cogn 2021; 150:105723. [PMID: 33812271 DOI: 10.1016/j.bandc.2021.105723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/03/2021] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
Negative reinforcement processes allow individuals to avoid negative and/or harmful outcomes. They depend on the brain's ability to differentiate; (i) contingency from non-contingency, separately from (ii) judgements about positive and negative valence. Thirty-three males (8-18 years) performed a cued reaction-time task during fMRI scanning to differentiate the brain's responses to contingency and valence during loss avoidance. In two conditions, cues indicated no -contingency between participants' responses and monetary loss - (1) CERTAIN LOSS (negative valence) of €0.20, €1 or €5 or (2) CERTAIN LOSS AVOIDANCE (positive valence). In a third condition, cues indicated a contingency between short reaction times and avoidance of monetary loss. As expected participants had shorter reaction times in this latter condition where CONDITIONAL LOSS AVOIDANCE cues activated salience and motor-response-preparation brain networks - independent of the relative valence of the contrast (CERTAIN LOSS or CERTAIN LOSS AVOIDANCE). Effects of valence were seen toward the session's end where CERTAIN LOSS AVOIDANCE cues activated ventral striatum, medial-orbitofrontal cortex and medial-temporal areas more than CERTAIN LOSS. CONDITIONAL LOSS AVOIDANCE trials with feedback indicating "success" activated ventral striatum more than "failure feedback". The findings support the hypothesis that brain networks controlling contingency and valence processes during negative reinforcement are dissociable.
Collapse
Affiliation(s)
- Jeroen Van Dessel
- Center for Developmental Psychiatry, Department of Neurosciences, UPC - KU Leuven, Leuven, Belgium.
| | - Marina Danckaerts
- Center for Developmental Psychiatry, Department of Neurosciences, UPC - KU Leuven, Leuven, Belgium
| | - Matthijs Moerkerke
- Center for Developmental Psychiatry, Department of Neurosciences, UPC - KU Leuven, Leuven, Belgium
| | - Saskia Van der Oord
- Clinical Psychology, KU Leuven, Leuven, Belgium; Developmental Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Sarah Morsink
- Center for Developmental Psychiatry, Department of Neurosciences, UPC - KU Leuven, Leuven, Belgium
| | - Jurgen Lemiere
- Center for Developmental Psychiatry, Department of Neurosciences, UPC - KU Leuven, Leuven, Belgium
| | - Edmund Sonuga-Barke
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK; Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| |
Collapse
|
44
|
Rothkirch M, Wieser M, Sterzer P. Associations with monetary values do not influence access to awareness for faces. PeerJ 2021; 9:e10875. [PMID: 33777515 PMCID: PMC7971078 DOI: 10.7717/peerj.10875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/11/2021] [Indexed: 11/20/2022] Open
Abstract
Human faces can convey socially relevant information in various ways. Since the early detection of such information is crucial in social contexts, socially meaningful information might also have privileged access to awareness. This is indeed suggested by previous research using faces with emotional expressions. However, the social relevance of emotional faces is confounded with their physical stimulus characteristics. Here, we sought to overcome this problem by manipulating the relevance of face stimuli through classical conditioning: Participants had to learn the association between different face exemplars and high or low amounts of positive and negative monetary outcomes. Before and after the conditioning procedure, the time these faces needed to enter awareness was probed using continuous flash suppression, a variant of binocular rivalry. While participants successfully learned the association between the face stimuli and the respective monetary outcomes, faces with a high monetary value did not enter visual awareness faster than faces with a low monetary value after conditioning, neither for rewarding nor for aversive outcomes. Our results tentatively suggest that behaviorally relevant faces do not have privileged access to awareness when the assessment of the faces' relevance is dependent on the processing of face identity, as this requires complex stimulus processing that is likely limited at pre-conscious stages.
Collapse
Affiliation(s)
- Marcus Rothkirch
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Maximilian Wieser
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Philipp Sterzer
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Psychotherapy, Berlin, Germany.,Bernstein Center for Computational Neuroscience, Humboldt Universität Berlin, Berlin, Germany
| |
Collapse
|
45
|
Alabi OO, Davatolhagh MF, Robinson M, Fortunato MP, Vargas Cifuentes L, Kable JW, Fuccillo MV. Disruption of Nrxn1α within excitatory forebrain circuits drives value-based dysfunction. eLife 2020; 9:e54838. [PMID: 33274715 PMCID: PMC7759380 DOI: 10.7554/elife.54838] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 12/03/2020] [Indexed: 01/17/2023] Open
Abstract
Goal-directed behaviors are essential for normal function and significantly impaired in neuropsychiatric disorders. Despite extensive associations between genetic mutations and these disorders, the molecular contributions to goal-directed dysfunction remain unclear. We examined mice with constitutive and brain region-specific mutations in Neurexin1α, a neuropsychiatric disease-associated synaptic molecule, in value-based choice paradigms. We found Neurexin1α knockouts exhibited reduced selection of beneficial outcomes and impaired avoidance of costlier options. Reinforcement modeling suggested that this was driven by deficits in updating and representation of value. Disruption of Neurexin1α within telencephalic excitatory projection neurons, but not thalamic neurons, recapitulated choice abnormalities of global Neurexin1α knockouts. Furthermore, this selective forebrain excitatory knockout of Neurexin1α perturbed value-modulated neural signals within striatum, a central node in feedback-based reinforcement learning. By relating deficits in value-based decision-making to region-specific Nrxn1α disruption and changes in value-modulated neural activity, we reveal potential neural substrates for the pathophysiology of neuropsychiatric disease-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Opeyemi O Alabi
- Department of NeurosciencePhiladelphiaUnited States
- Neuroscience Graduate Group, Perelman School of MedicinePhiladelphiaUnited States
| | - M Felicia Davatolhagh
- Department of NeurosciencePhiladelphiaUnited States
- Neuroscience Graduate Group, Perelman School of MedicinePhiladelphiaUnited States
| | | | | | - Luigim Vargas Cifuentes
- Department of NeurosciencePhiladelphiaUnited States
- Neuroscience Graduate Group, Perelman School of MedicinePhiladelphiaUnited States
| | - Joseph W Kable
- Department of Psychology, University of PennsylvaniaPhiladelphiaUnited States
| | | |
Collapse
|
46
|
Macoveanu J, Kjaerstad HL, Chase HW, Frangou S, Knudsen GM, Vinberg M, Kessing LV, Miskowiak KW. Abnormal prefrontal cortex processing of reward prediction errors in recently diagnosed patients with bipolar disorder and their unaffected relatives. Bipolar Disord 2020; 22:849-859. [PMID: 32301215 DOI: 10.1111/bdi.12915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Bipolar disorder (BD) has been associated with abnormal reward functioning including pleasure-seeking and impulsivity. Here we sought to clarify whether these changes can be attributed to abnormalities in the neural processing of reward valuation or error prediction. Moreover, we tested whether abnormalities in these processes are associated with familial vulnerability to BD. METHODS We obtained functional magnetic resonance imaging data from patients with recently diagnosed BD (n = 85), their unaffected first-degree relatives (n = 44), and healthy control participants (n = 66) while they were performing a monetary card game. We used a region-of-interest approach to test for group differences in the activation of the midbrain, the ventral striatum, and the prefrontal cortex during reward valuation and error prediction. RESULTS Patients with BD showed decreased prediction error signal in ventrolateral prefrontal cortex and the unaffected relatives showed decreased prediction error signal in the supplementary motor area in comparison to healthy controls. There were no significant group differences in the activation of the ventral striatum during the task. In healthy controls, prediction error signal in dorsal anterior cingulate cortex correlated with an out-of-scanner measure of motor inhibition but this association was absent in patients and relatives. CONCLUSIONS The findings indicate that abnormal reward processing in BD is primarily related to deficits in the engagement of prefrontal regions involved in inhibitory control during error prediction. In contrast, deficient activation in supplementary motor cortex involved in planning of movement emerged as a familial vulnerability to BD.
Collapse
Affiliation(s)
- Julian Macoveanu
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hanne L Kjaerstad
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Henry W Chase
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Denmark.,Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Maj Vinberg
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Lars V Kessing
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Kamilla W Miskowiak
- Copenhagen Affective Disorder Research Center (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
47
|
Suzuki S, Lawlor VM, Cooper JA, Arulpragasam AR, Treadway MT. Distinct regions of the striatum underlying effort, movement initiation and effort discounting. Nat Hum Behav 2020; 5:378-388. [PMID: 33230282 PMCID: PMC8555699 DOI: 10.1038/s41562-020-00972-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/18/2020] [Indexed: 11/10/2022]
Abstract
The ventral striatum is believed to encode the subjective value of cost-benefit options; however, this effect has notably been absent during choices that involve physical effort. Previous work in freely moving animals has revealed opposing striatal signals, with greater response to increasing effort demands and reduced responses to rewards requiring effort. Yet, the relationship between these conflicting signals remains unknown. Using functional magnetic resonance imaging with a naturalistic maze-navigation paradigm, we identified functionally segregated regions within the ventral striatum that separately encoded effort activation, movement initiation and effort discounting of rewards. In addition, activity in regions associated with effort activation and discounting oppositely predicted striatal encoding of effort during effort-based decision-making. Our results suggest that the dorsomedial region hitherto associated with action may instead represent the cost of effort and raise fundamental questions regarding the interpretation of striatal 'reward' signals in the context of effort demands. This has implications for uncovering the neural architecture underlying motivated behaviour.
Collapse
Affiliation(s)
- Shosuke Suzuki
- Translational Research in Affective Disorders Laboratory, Department of Psychology, Emory University, Atlanta, GA, USA
| | - Victoria M Lawlor
- Translational Research in Affective Disorders Laboratory, Department of Psychology, Emory University, Atlanta, GA, USA
| | - Jessica A Cooper
- Translational Research in Affective Disorders Laboratory, Department of Psychology, Emory University, Atlanta, GA, USA
| | - Amanda R Arulpragasam
- Translational Research in Affective Disorders Laboratory, Department of Psychology, Emory University, Atlanta, GA, USA
| | - Michael T Treadway
- Translational Research in Affective Disorders Laboratory, Department of Psychology, Emory University, Atlanta, GA, USA. .,Department of Psychiatry and Behavioral Science, Emory University, Atlanta, GA, USA.
| |
Collapse
|
48
|
Blini E, Tilikete C, Chelazzi L, Farnè A, Hadj-Bouziane F. The role of the vestibular system in value attribution to positive and negative reinforcers. Cortex 2020; 133:215-235. [PMID: 33130427 DOI: 10.1016/j.cortex.2020.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 01/06/2023]
Abstract
Somatic inputs originating from bioregulatory processes can guide cognition and behavior. One such bodily signal, mostly overlooked so far, is represented by visuo-vestibular coupling and its alteration, which in extreme cases may result in motion sickness. We argued that the inherently perturbed interoceptive state that follows can be a powerful determinant of human motivated behavior, resulting in a blunted response to appetitive stimuli and an exaggerated response to noxious ones. We sought to assess such differential impact of visuo-vestibular mismatches on value through a task involving conflict monitoring. We therefore administered to 42 healthy participants a modified version of the Flankers task, in which distractors (arrows, pointing in either a congruent or incongruent direction) signaled the availability of monetary incentives (gains, losses, or neutral trials). While performing the task, participants received either galvanic vestibular stimulation (GVS), or sham stimulation. We have found impaired behavioral performances when value, which was attached to task-irrelevant information, was at stake. Gains and losses, interestingly, dissociated, and only the latter caused enhanced interference costs in the task, suggesting that negative incentives may be more effective in capturing human attention than positive ones. Finally, we have found some weak evidence for GVS to further increase the processing of losses, as suggested by even larger interference costs in this condition. Results were, however, overall ambiguous, and suggest that much more research is needed to better understand the link between the vestibular system and motivation.
Collapse
Affiliation(s)
- Elvio Blini
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon, Lyon, France; Department of General Psychology, University of Padova, Padova, Italy.
| | - Caroline Tilikete
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon, Lyon, France; Hospices Civils de Lyon, Neuro-Ophthalmology and Neurocognition, Hôpital Neurologique Pierre Wertheimer, Bron, France
| | - Leonardo Chelazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; National Institute of Neuroscience - Verona Unit, Verona, Italy
| | - Alessandro Farnè
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon, Lyon, France; Hospices Civils de Lyon, Neuro-Immersion Platform, Lyon, France
| | - Fadila Hadj-Bouziane
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France; University of Lyon, Lyon, France.
| |
Collapse
|
49
|
Duarte IC, Coelho G, Brito-Costa S, Cayolla R, Afonso S, Castelo-Branco M. Ventral Caudate and Anterior Insula Recruitment During Value Estimation of Passionate Rewarding Cues. Front Neurosci 2020; 14:678. [PMID: 32848534 PMCID: PMC7403482 DOI: 10.3389/fnins.2020.00678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/02/2020] [Indexed: 12/25/2022] Open
Abstract
“Wanting”, a component of reward processing, is a motivational property that guides decision making in goal-oriented behavior. This includes behavior aiming at supporting relational bonds, even at the group level. Accordingly, group belongingness works as this motivational property, which is fundamentally different from romantic or maternal love. While primary rewards (or learned associations, such as money) have been largely used to study the conceptual framework associated with “wanting,” other cues triggering behavior, such as passionate motives, are less well-studied. We investigated the neural correlates of value estimation of a passion-driven incentive in neuropsychologically defined football fans. We asked the participants (n = 57) to compute the value of football tickets (the cues that trigger passionate behavior in this “tribal love” context). The trials were all different, comprising tickets for different matches. The participants had no restrictions on the amount to be introduced. This enabled a parametric functional magnetic resonance imaging design based on the explicit estimated value given by the participants in a trial-by-trial approach. Using a whole-brain approach (to prevent biased focus on value-related regions), only the activity in the ventral caudate and left anterior insula showed a critical relationship with the reported value. Higher normalized values led to more activity in the striatum and left insula. The parametric map shows that these regions encode the magnitude of incentive by indexing self-relevant value. Other regions were involved in value computation, such as the ventromedial prefrontal cortex, lateral orbitofrontal cortex, and dorsolateral prefrontal cortex, but did not exhibit parametric patterns. The involvement of the nucleus accumbens in value estimation was only found in region of interest -based analysis, which emphasizes the role of the ventral caudate for the presently studied social “reinforcer” cue.
Collapse
Affiliation(s)
- Isabel Catarina Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research, Institute for Nuclear Sciences Applied to Health, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Gonçalo Coelho
- Coimbra Institute for Biomedical Imaging and Translational Research, Institute for Nuclear Sciences Applied to Health, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sónia Brito-Costa
- Human Potential Development Center, Institute of Applied Research, Polytechnic Institute of Coimbra, Coimbra, Portugal
| | - Ricardo Cayolla
- Department of Economics, Management, Industrial Engineering and Tourism, University of Aveiro, Aveiro, Portugal.,Porto Business School, University of Porto, Porto, Portugal
| | - Sónia Afonso
- Coimbra Institute for Biomedical Imaging and Translational Research, Institute for Nuclear Sciences Applied to Health, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research, Institute for Nuclear Sciences Applied to Health, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
50
|
Kim AJ, Anderson BA. The effect of concurrent reward on aversive information processing in the brain. Neuroimage 2020; 217:116890. [PMID: 32360930 PMCID: PMC7474551 DOI: 10.1016/j.neuroimage.2020.116890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 11/28/2022] Open
Abstract
Neural networks for the processing of appetitive and aversive information, in isolation, have been well characterized. However, how the brain integrates competing signals associated with simultaneous appetitive and aversive information is less clear. In particular, it is unknown how the presence of concurrent reward modulates the processing of an aversive event throughout the brain. Here, we utilized a four-armed bandit task in an fMRI study to measure the representation of an aversive electric shock with and without the simultaneous receipt of monetary reward. Using a region of interest (ROI) approach, we first identified regions activated by the experience of aversive electric shock, and then measured how this shock-related activation is modulated by concurrent reward using independent data. Informed by prior literature and our own preliminary data, analyses focused on the dorsolateral prefrontal cortex, anterior and posterior insula, anterior cingulate cortex, and the thalamus and somatosensory cortex. We hypothesized that the neural response to punishment in these ROIs would be attenuated by the presence of concurrent reward. However, we found no evidence of concurrent reward attenuating the neural response to punishment in any ROI and also no evidence of concurrent punishment attenuating the neural response to reward in exploratory analyses. Altogether, our findings are consistent with the idea that neural networks responsible for the processing of reward and punishment signals are largely independent of one another, and that representations of overall value or utility are arrived at through the integration of separate reward and punishment signals at later stages of information processing.
Collapse
Affiliation(s)
- Andy J Kim
- Texas A&M University, Department of Psychological & Brain Sciences, Texas A&M Institute for Neuroscience, 4235 TAMU College Station, TX, 77843-4235, USA.
| | - Brian A Anderson
- Texas A&M University, Department of Psychological & Brain Sciences, Texas A&M Institute for Neuroscience, 4235 TAMU College Station, TX, 77843-4235, USA.
| |
Collapse
|