1
|
Galichet C, Rizzoti K, Lovell-Badge R. Hypopituitarism in Sox3 null mutants correlates with altered NG2-glia in the median eminence and is influenced by aspirin and gut microbiota. PLoS Genet 2024; 20:e1011395. [PMID: 39325695 PMCID: PMC11426531 DOI: 10.1371/journal.pgen.1011395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/13/2024] [Indexed: 09/28/2024] Open
Abstract
The median eminence (ME), located at the base of the hypothalamus, is an essential centre of information exchange between the brain and the pituitary. We and others previously showed that mutations and duplications affecting the transcription factor SOX3/Sox3 result in hypopituitarism, and this is likely of hypothalamic origin. We demonstrate here that the absence of Sox3 predominantly affects the ME with phenotypes that first occur in juvenile animals, despite the embryonic onset of SOX3 expression. In the pituitary, reduction in hormone levels correlates with a lack of endocrine cell maturation. In parallel, ME NG2-glia renewal and oligodendrocytic differentiation potential are affected. We further show that low-dose aspirin treatment, which is known to affect NG2-glia, or changes in gut microbiota, rescue both proliferative defects and hypopituitarism in Sox3 mutants. Our study highlights a central role of NG2-glia for ME function during a transitional period of post-natal development and indicates their sensitivity to extrinsic signals.
Collapse
Affiliation(s)
- Christophe Galichet
- Stem Cell Biology and Developmental Genetics Lab, The Francis Crick Institute, London, United Kingdom
- Neurobiological Research Facility, UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London, United Kingdom
| | - Karine Rizzoti
- Stem Cell Biology and Developmental Genetics Lab, The Francis Crick Institute, London, United Kingdom
| | - Robin Lovell-Badge
- Stem Cell Biology and Developmental Genetics Lab, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
2
|
Vargas Y, Castro Tron AE, Rodríguez Rodríguez A, Uribe RM, Joseph-Bravo P, Charli JL. Thyrotropin-Releasing Hormone and Food Intake in Mammals: An Update. Metabolites 2024; 14:302. [PMID: 38921437 PMCID: PMC11205479 DOI: 10.3390/metabo14060302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Thyrotropin-releasing hormone (TRH; pGlu-His-Pro-NH2) is an intercellular signal produced mainly by neurons. Among the multiple pharmacological effects of TRH, that on food intake is not well understood. We review studies demonstrating that peripheral injection of TRH generally produces a transient anorexic effect, discuss the pathways that might initiate this effect, and explain its short half-life. In addition, central administration of TRH can produce anorexic or orexigenic effects, depending on the site of injection, that are likely due to interaction with TRH receptor 1. Anorexic effects are most notable when TRH is injected into the hypothalamus and the nucleus accumbens, while the orexigenic effect has only been detected by injection into the brain stem. Functional evidence points to TRH neurons that are prime candidate vectors for TRH action on food intake. These include the caudal raphe nuclei projecting to the dorsal motor nucleus of the vagus, and possibly TRH neurons from the tuberal lateral hypothalamus projecting to the tuberomammillary nuclei. For other TRH neurons, the anatomical or physiological context and impact of TRH in each synaptic domain are still poorly understood. The manipulation of TRH expression in well-defined neuron types will facilitate the discovery of its role in food intake control in each anatomical scene.
Collapse
Affiliation(s)
| | | | | | | | | | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Avenida Universidad 2001, Cuernavaca 62210, Mexico; (Y.V.); (A.E.C.T.); (A.R.R.); (R.M.U.); (P.J.-B.)
| |
Collapse
|
3
|
Istiban MN, De Fruyt N, Kenis S, Beets I. Evolutionary conserved peptide and glycoprotein hormone-like neuroendocrine systems in C. elegans. Mol Cell Endocrinol 2024; 584:112162. [PMID: 38290646 PMCID: PMC11004728 DOI: 10.1016/j.mce.2024.112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
Peptides and protein hormones form the largest group of secreted signals that mediate intercellular communication and are central regulators of physiology and behavior in all animals. Phylogenetic analyses and biochemical identifications of peptide-receptor systems reveal a broad evolutionary conservation of these signaling systems at the molecular level. Substantial progress has been made in recent years on characterizing the physiological and putative ancestral roles of many peptide systems through comparative studies in invertebrate models. Several peptides and protein hormones are not only molecularly conserved but also have conserved roles across animal phyla. Here, we focus on functional insights gained in the nematode Caenorhabditis elegans that, with its compact and well-described nervous system, provides a powerful model to dissect neuroendocrine signaling networks involved in the control of physiology and behavior. We summarize recent discoveries on the evolutionary conservation and knowledge on the functions of peptide and protein hormone systems in C. elegans.
Collapse
Affiliation(s)
- Majdulin Nabil Istiban
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Nathan De Fruyt
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Signe Kenis
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
4
|
Wiggenhorn AL, Abuzaid HZ, Coassolo L, Li VL, Tanzo JT, Wei W, Lyu X, Svensson KJ, Long JZ. A class of secreted mammalian peptides with potential to expand cell-cell communication. Nat Commun 2023; 14:8125. [PMID: 38065934 PMCID: PMC10709327 DOI: 10.1038/s41467-023-43857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Peptide hormones and neuropeptides are signaling molecules that control diverse aspects of mammalian homeostasis and physiology. Here we provide evidence for the endogenous presence of a sequence diverse class of blood-borne peptides that we call "capped peptides." Capped peptides are fragments of secreted proteins and defined by the presence of two post-translational modifications - N-terminal pyroglutamylation and C-terminal amidation - which function as chemical "caps" of the intervening sequence. Capped peptides share many regulatory characteristics in common with that of other signaling peptides, including dynamic physiologic regulation. One capped peptide, CAP-TAC1, is a tachykinin neuropeptide-like molecule and a nanomolar agonist of mammalian tachykinin receptors. A second capped peptide, CAP-GDF15, is a 12-mer peptide cleaved from the prepropeptide region of full-length GDF15 that, like the canonical GDF15 hormone, also reduces food intake and body weight. Capped peptides are a potentially large class of signaling molecules with potential to broadly regulate cell-cell communication in mammalian physiology.
Collapse
Affiliation(s)
- Amanda L Wiggenhorn
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Hind Z Abuzaid
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Laetitia Coassolo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Veronica L Li
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Julia T Tanzo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Xuchao Lyu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Jonathan Z Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA.
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Cheng X, Zhang H, Guan S, Zhao Q, Shan Y. Receptor modulators associated with the hypothalamus -pituitary-thyroid axis. Front Pharmacol 2023; 14:1291856. [PMID: 38111381 PMCID: PMC10725963 DOI: 10.3389/fphar.2023.1291856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis maintains normal metabolic balance and homeostasis in the human body through positive and negative feedback regulation. Its main regulatory mode is the secretion of thyrotropin (TSH), thyroid hormones (TH), and thyrotropin-releasing hormone (TRH). By binding to their corresponding receptors, they are involved in the development and progression of several systemic diseases, including digestive, cardiovascular, and central nervous system diseases. The HPT axis-related receptors include thyrotropin receptor (TSHR), thyroid hormone receptor (TR), and thyrotropin-releasing hormone receptor (TRHR). Recently, research on regulators has become popular in the field of biology. Several HPT axis-related receptor modulators have been used for clinical treatment. This study reviews the developments and recent findings on HPT axis-related receptor modulators. This will provide a theoretical basis for the development and utilisation of new modulators of the HPT axis receptors.
Collapse
Affiliation(s)
- Xianbin Cheng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
- Postdoctoral Research Workstation, Changchun Gangheng Electronics Company Limited, Changchun, China
| | - Hong Zhang
- Department of Thyroid Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Shanshan Guan
- College of Biology and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Qi Zhao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
6
|
Bolton TA, Panciera DL. Influence of medications on thyroid function in dogs: An update. J Vet Intern Med 2023; 37:1626-1640. [PMID: 37498128 PMCID: PMC10473007 DOI: 10.1111/jvim.16823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
Erroneous thyroid function test results can occur because of drugs that alter thyroid hormone physiology in one or more aspects, including synthesis, secretion, distribution, and metabolism. Research since publication of the last review in the Journal of Veterinary Internal Medicine (JVIM) 20 years ago has evaluated the effects of amiodarone, zonisamide, inhalant anesthetics, clomipramine, trilostane, and toceranib on thyroid function tests in the dog. In addition, recent work on the effects of glucocorticoids, sulfonamides, phenobarbital, and nonsteroidal anti-inflammatory drugs will be reviewed. Awareness of these effects is necessary to avoid misdiagnosis of hypothyroidism and unnecessary treatment.
Collapse
Affiliation(s)
- Timothy A. Bolton
- Department of Small Animal Clinical SciencesVirginia‐Maryland College of Veterinary MedicineBlacksburgVirginiaUSA
| | - David L. Panciera
- Department of Small Animal Clinical SciencesVirginia‐Maryland College of Veterinary MedicineBlacksburgVirginiaUSA
| |
Collapse
|
7
|
Besci Ö, Fırat SN, Özen S, Çetinkaya S, Akın L, Kör Y, Pekkolay Z, Özalkak Ş, Özsu E, Erdeve ŞS, Poyrazoğlu Ş, Berberoğlu M, Aydın M, Omma T, Akıncı B, Demir K, Oral EA. A National Multicenter Study of Leptin and Leptin Receptor Deficiency and Systematic Review. J Clin Endocrinol Metab 2023; 108:2371-2388. [PMID: 36825860 DOI: 10.1210/clinem/dgad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/25/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
CONTEXT Homozygous leptin (LEP) and leptin receptor (LEPR) variants lead to childhood-onset obesity. OBJECTIVE To present new cases with LEP and LEPR deficiency, report the long-term follow-up of previously described patients, and to define, based on all reported cases in literature, genotype-phenotype relationships. METHODS Our cohort included 18 patients (LEP = 11, LEPR = 7), 8 of whom had been previously reported. A systematic literature review was conducted in July 2022. Forty-two of 47 studies on LEP/LEPR were selected. RESULTS Of 10 new cases, 2 novel pathogenic variants were identified in LEP (c.16delC) and LEPR (c.40 + 5G > C). Eleven patients with LEP deficiency received metreleptin, 4 of whom had been treated for over 20 years. One patient developed loss of efficacy associated with neutralizing antibody development. Of 152 patients, including 134 cases from the literature review in addition to our cases, frameshift variants were the most common (48%) in LEP and missense variants (35%) in LEPR. Patients with LEP deficiency were diagnosed at a younger age [3 (9) vs 7 (13) years, P = .02] and had a higher median body mass index (BMI) SD score [3.1 (2) vs 2.8 (1) kg/m2, P = 0.02], which was more closely associated with frameshift variants (P = .02). Patients with LEP deficiency were more likely to have hyperinsulinemia (P = .02). CONCLUSION Frameshift variants were more common in patients with LEP deficiency whereas missense variants were more common in LEPR deficiency. Patients with LEP deficiency were identified at younger ages, had higher BMI SD scores, and had higher rates of hyperinsulinemia than patients with LEPR deficiency. Eleven patients benefitted from long-term metreleptin, with 1 losing efficacy due to neutralizing antibodies.
Collapse
Affiliation(s)
- Özge Besci
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, İzmir 35340, Turkey
| | - Sevde Nur Fırat
- Division of Endocrinology and Metabolism, University of Health Sciences Ankara Training and Research Hospital, Ankara 06230, Turkey
| | - Samim Özen
- Division of Pediatric Endocrinology, Faculty of Medicine, Ege University, İzmir 35100, Turkey
| | - Semra Çetinkaya
- Division of Pediatric Endocrinology, Health Sciences University, Dr Sami Ulus Obstetrics and Gynecology, Children's Health and Disease, Health Implementation and Research Center, Ankara 06010, Turkey
| | - Leyla Akın
- Division of Pediatric Endocrinology, Faculty of Medicine, Ondokuz Mayıs University, Samsun 55030, Turkey
| | - Yılmaz Kör
- Division of Pediatric Endocrinology, Ministry of Health, Adana Public Hospitals Association, Adana City Hospital, Adana 01040, Turkey
| | - Zafer Pekkolay
- Division of Endocrinology and Metabolism, Dicle University Faculty of Medicine, Diyarbakır 21280, Turkey
| | - Şervan Özalkak
- Division Pediatric Endocrinology, Diyarbakir Gazi Yaşargil Training and Research Hospital, Diyarbakır 21070, Turkey
| | - Elif Özsu
- Department of Pediatric Endocrinology, Ankara University Faculty of Medicine, Ankara 06100, Turkey
| | - Şenay Savaş Erdeve
- Division of Pediatric Endocrinology, Health Sciences University, Dr Sami Ulus Obstetrics and Gynecology, Children's Health and Disease, Health Implementation and Research Center, Ankara 06010, Turkey
| | - Şükran Poyrazoğlu
- Department of Pediatric Endocrinology, Istanbul University Istanbul Faculty of Medicine, İstanbul 34098, Turkey
| | - Merih Berberoğlu
- Department of Pediatric Endocrinology, Ankara University Faculty of Medicine, Ankara 06100, Turkey
| | - Murat Aydın
- Division of Pediatric Endocrinology, Faculty of Medicine, Ondokuz Mayıs University, Samsun 55030, Turkey
| | - Tülay Omma
- Division of Endocrinology and Metabolism, University of Health Sciences Ankara Training and Research Hospital, Ankara 06230, Turkey
| | - Barış Akıncı
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dokuz Eylul University, İzmir 35340, Turkey
| | - Korcan Demir
- Division of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, İzmir 35340, Turkey
| | - Elif Arioglu Oral
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
8
|
Raise-Abdullahi P, Meamar M, Vafaei AA, Alizadeh M, Dadkhah M, Shafia S, Ghalandari-Shamami M, Naderian R, Afshin Samaei S, Rashidy-Pour A. Hypothalamus and Post-Traumatic Stress Disorder: A Review. Brain Sci 2023; 13:1010. [PMID: 37508942 PMCID: PMC10377115 DOI: 10.3390/brainsci13071010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Humans have lived in a dynamic environment fraught with potential dangers for thousands of years. While fear and stress were crucial for the survival of our ancestors, today, they are mostly considered harmful factors, threatening both our physical and mental health. Trauma is a highly stressful, often life-threatening event or a series of events, such as sexual assault, war, natural disasters, burns, and car accidents. Trauma can cause pathological metaplasticity, leading to long-lasting behavioral changes and impairing an individual's ability to cope with future challenges. If an individual is vulnerable, a tremendously traumatic event may result in post-traumatic stress disorder (PTSD). The hypothalamus is critical in initiating hormonal responses to stressful stimuli via the hypothalamic-pituitary-adrenal (HPA) axis. Linked to the prefrontal cortex and limbic structures, especially the amygdala and hippocampus, the hypothalamus acts as a central hub, integrating physiological aspects of the stress response. Consequently, the hypothalamic functions have been attributed to the pathophysiology of PTSD. However, apart from the well-known role of the HPA axis, the hypothalamus may also play different roles in the development of PTSD through other pathways, including the hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-gonadal (HPG) axes, as well as by secreting growth hormone, prolactin, dopamine, and oxytocin. This review aims to summarize the current evidence regarding the neuroendocrine functions of the hypothalamus, which are correlated with the development of PTSD. A better understanding of the role of the hypothalamus in PTSD could help develop better treatments for this debilitating condition.
Collapse
Affiliation(s)
| | - Morvarid Meamar
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Alizadeh
- Department of Basic Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sakineh Shafia
- Immunogenetics Research Center, Department of Physiology, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Ramtin Naderian
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed Afshin Samaei
- Department of Neurology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
9
|
Kenis S, Istiban MN, Van Damme S, Vandewyer E, Watteyne J, Schoofs L, Beets I. Ancestral glycoprotein hormone-receptor pathway controls growth in C. elegans. Front Endocrinol (Lausanne) 2023; 14:1200407. [PMID: 37409228 PMCID: PMC10319355 DOI: 10.3389/fendo.2023.1200407] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/23/2023] [Indexed: 07/07/2023] Open
Abstract
In vertebrates, thyrostimulin is a highly conserved glycoprotein hormone that, besides thyroid stimulating hormone (TSH), is a potent ligand of the TSH receptor. Thyrostimulin is considered the most ancestral glycoprotein hormone and orthologs of its subunits, GPA2 and GPB5, are widely conserved across vertebrate and invertebrate animals. Unlike TSH, however, the functions of the thyrostimulin neuroendocrine system remain largely unexplored. Here, we identify a functional thyrostimulin-like signaling system in Caenorhabditis elegans. We show that orthologs of GPA2 and GPB5, together with thyrotropin-releasing hormone (TRH) related neuropeptides, constitute a neuroendocrine pathway that promotes growth in C. elegans. GPA2/GPB5 signaling is required for normal body size and acts through activation of the glycoprotein hormone receptor ortholog FSHR-1. C. elegans GPA2 and GPB5 increase cAMP signaling by FSHR-1 in vitro. Both subunits are expressed in enteric neurons and promote growth by signaling to their receptor in glial cells and the intestine. Impaired GPA2/GPB5 signaling causes bloating of the intestinal lumen. In addition, mutants lacking thyrostimulin-like signaling show an increased defecation cycle period. Our study suggests that the thyrostimulin GPA2/GPB5 pathway is an ancient enteric neuroendocrine system that regulates intestinal function in ecdysozoans, and may ancestrally have been involved in the control of organismal growth.
Collapse
Affiliation(s)
- Signe Kenis
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Majdulin Nabil Istiban
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Sara Van Damme
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Elke Vandewyer
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jan Watteyne
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity Group, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Pascual Alonso I, Almeida García F, Valdés Tresanco ME, Arrebola Sánchez Y, Ojeda Del Sol D, Sánchez Ramírez B, Florent I, Schmitt M, Avilés FX. Marine Invertebrates: A Promissory Still Unexplored Source of Inhibitors of Biomedically Relevant Metallo Aminopeptidases Belonging to the M1 and M17 Families. Mar Drugs 2023; 21:md21050279. [PMID: 37233473 DOI: 10.3390/md21050279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Proteolytic enzymes, also known as peptidases, are critical in all living organisms. Peptidases control the cleavage, activation, turnover, and synthesis of proteins and regulate many biochemical and physiological processes. They are also involved in several pathophysiological processes. Among peptidases, aminopeptidases catalyze the cleavage of the N-terminal amino acids of proteins or peptide substrates. They are distributed in many phyla and play critical roles in physiology and pathophysiology. Many of them are metallopeptidases belonging to the M1 and M17 families, among others. Some, such as M1 aminopeptidases N and A, thyrotropin-releasing hormone-degrading ectoenzyme, and M17 leucyl aminopeptidase, are targets for the development of therapeutic agents for human diseases, including cancer, hypertension, central nervous system disorders, inflammation, immune system disorders, skin pathologies, and infectious diseases, such as malaria. The relevance of aminopeptidases has driven the search and identification of potent and selective inhibitors as major tools to control proteolysis with an impact in biochemistry, biotechnology, and biomedicine. The present contribution focuses on marine invertebrate biodiversity as an important and promising source of inhibitors of metalloaminopeptidases from M1 and M17 families, with foreseen biomedical applications in human diseases. The results reviewed in the present contribution support and encourage further studies with inhibitors isolated from marine invertebrates in different biomedical models associated with the activity of these families of exopeptidases.
Collapse
Affiliation(s)
- Isel Pascual Alonso
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Fabiola Almeida García
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Mario Ernesto Valdés Tresanco
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Daniel Ojeda Del Sol
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | | | - Isabelle Florent
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR7245), Muséum National d'Histoire Naturelle, CNRS, CP52, 57 Rue Cuvier, 75005 Paris, France
| | - Marjorie Schmitt
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA UMR 7042, 68000 Mulhouse, France
| | - Francesc Xavier Avilés
- Institute for Biotechnology and Biomedicine and Department of Biochemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
11
|
Wang B, Zhang J, Zhang D, Lu C, Liu H, Gao Q, Niu T, Yin M, Cui S. Casein Kinase 1α as a Novel Factor Affects Thyrotropin Synthesis via PKC/ERK/CREB Signaling. Int J Mol Sci 2023; 24:7034. [PMID: 37108197 PMCID: PMC10138882 DOI: 10.3390/ijms24087034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Casein kinase 1α (CK1α) is present in multiple cellular organelles and plays various roles in regulating neuroendocrine metabolism. Herein, we investigated the underlying function and mechanisms of CK1α-regulated thyrotropin (thyroid-stimulating hormone (TSH)) synthesis in a murine model. Immunohistochemistry and immunofluorescence staining were performed to detect CK1α expression in murine pituitary tissue and its localization to specific cell types. Tshb mRNA expression in anterior pituitary was detected using real-time and radioimmunoassay techniques after CK1α activity was promoted and inhibited in vivo and in vitro. Relationships among TRH/L-T4, CK1α, and TSH were analyzed with TRH and L-T4 treatment, as well as thyroidectomy, in vivo. In mice, CK1α was expressed at higher levels in the pituitary gland tissue than in the thyroid, adrenal gland, or liver. However, inhibiting endogenous CK1α activity in the anterior pituitary and primary pituitary cells significantly increased TSH expression and attenuated the inhibitory effect of L-T4 on TSH. In contrast, CK1α activation weakened TSH stimulation by thyrotropin-releasing hormone (TRH) by suppressing protein kinase C (PKC)/extracellular signal-regulated kinase (ERK)/cAMP response element binding (CREB) signaling. CK1α, as a negative regulator, mediates TRH and L-T4 upstream signaling by targeting PKC, thus affecting TSH expression and downregulating ERK1/2 phosphorylation and CREB transcriptional activity.
Collapse
Affiliation(s)
- Bingjie Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (B.W.)
| | - Jinglin Zhang
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (B.W.)
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, China
| | - Chenyang Lu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (B.W.)
| | - Hui Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (B.W.)
| | - Qiao Gao
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, China
| | - Tongjuan Niu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (B.W.)
| | - Mengqing Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (B.W.)
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (B.W.)
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
12
|
Leptin Increases: Physiological Roles in the Control of Sympathetic Nerve Activity, Energy Balance, and the Hypothalamic-Pituitary-Thyroid Axis. Int J Mol Sci 2023; 24:ijms24032684. [PMID: 36769012 PMCID: PMC9917048 DOI: 10.3390/ijms24032684] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 02/04/2023] Open
Abstract
It is well established that decreases in plasma leptin levels, as with fasting, signal starvation and elicit appropriate physiological responses, such as increasing the drive to eat and decreasing energy expenditure. These responses are mediated largely by suppression of the actions of leptin in the hypothalamus, most notably on arcuate nucleus (ArcN) orexigenic neuropeptide Y neurons and anorexic pro-opiomelanocortin neurons. However, the question addressed in this review is whether the effects of increased leptin levels are also significant on the long-term control of energy balance, despite conventional wisdom to the contrary. We focus on leptin's actions (in both lean and obese individuals) to decrease food intake, increase sympathetic nerve activity, and support the hypothalamic-pituitary-thyroid axis, with particular attention to sex differences. We also elaborate on obesity-induced inflammation and its role in the altered actions of leptin during obesity.
Collapse
|
13
|
Singh O, Singh D, Mitra S, Kumar A, Lechan RM, Singru PS. TRH and NPY Interact to Regulate Dynamic Changes in Energy Balance in the Male Zebra Finch. Endocrinology 2023; 164:6845693. [PMID: 36423209 DOI: 10.1210/endocr/bqac195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
In contrast to mammals, birds have a higher basal metabolic rate and undertake wide range of energy-demanding activities. As a consequence, food deprivation for birds, even for a short period, poses major energy challenge. The energy-regulating hypothalamic homeostatic mechanisms, although extensively studied in mammals, are far from clear in the case of birds. We focus on the interplay between neuropeptide Y (NPY) and thyrotropin-releasing hormone (TRH), 2 of the most important hypothalamic signaling agents, in modulating the energy balance in a bird model, the zebra finch, Taeniopygia guttata. TRH neurons were confined to a few nuclei in the preoptic area and hypothalamus, and fibers widely distributed. The majority of TRH neurons in the hypothalamic paraventricular nucleus (PVN) whose axons terminate in median eminence were contacted by NPY-containing axons. Compared to fed animals, fasting significantly reduced body weight, PVN pro-TRH messenger RNA (mRNA) and TRH immunoreactivity, but increased NPY mRNA and NPY immunoreactivity in the infundibular nucleus (IN, avian homologue of mammalian arcuate nucleus) and PVN. Refeeding for a short duration restored PVN pro-TRH and IN NPY mRNA, and PVN NPY innervation to fed levels. Compared to control tissues, treatment of the hypothalamic superfused slices with NPY or an NPY-Y1 receptor agonist significantly reduced TRH immunoreactivity, a response blocked by treatment with a Y1-receptor antagonist. We describe a detailed neuroanatomical map of TRH-equipped elements, identify new TRH-producing neuronal groups in the avian brain, and demonstrate rapid restoration of the fasting-induced suppression of PVN TRH following refeeding. We further show that NPY via Y1 receptors may regulate PVN TRH neurons to control energy balance in T. guttata.
Collapse
Affiliation(s)
- Omprakash Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatani 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Devraj Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatani 752050, India
| | - Saptarsi Mitra
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatani 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| | - Anal Kumar
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatani 752050, India
| | - Ronald M Lechan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, USA
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, Jatani 752050, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
14
|
Fitzgerald SP, Bean NG, Falhammar H, Hoermann R. Physiological linkage of thyroid and pituitary sensitivities. Endocrine 2023; 79:143-151. [PMID: 36115005 PMCID: PMC9813051 DOI: 10.1007/s12020-022-03184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/28/2022] [Indexed: 01/09/2023]
Abstract
OBJECTIVES The sensitivities of the pituitary to thyroxine feedback, and the thyroid to thyrotropin stimulation determine the free thyroxine /thyrotropin feedback loop and can be described mathematically by two curves. It is not well understood how the two curves combine in a healthy population with normal thyroid function to express the individual balance points that are observed. This study was directed at this issue testing the possibilities of random combination and directed linkage between the two curves. METHODS We reverse-engineered two sets of population data, on the assumption of independent combinations of thyroid and pituitary sensitivities, to obtain estimates of the curve describing thyroid sensitivity. Sensitivity studies were performed. RESULTS No analysis resulted in a physiologically feasible estimate of the curve describing thyroid sensitivity. There was evidence of linkage of the two curves in terms of their combination throughout the normal range. Thyroid response curves reflecting a low free thyroxine response to thyrotropin tended to be combined in individuals with thyrotropin curves reflecting a high thyrotropin response to free thyroxine, and vice versa. CONCLUSIONS Thyroid and pituitary sensitivities are linked, being combined in individuals in a non-random directed pattern. Direct mutual interaction may contribute to this linkage. This linkage precludes the derivation of the curves describing these sensitivities from population data of the free thyroxine and thyrotropin relationship and complicates their derivation by physiological experimentation. This linkage and probable interaction may also bestow evolutionary advantage by minimising inter-individual variation in free thyroxine levels and by augmenting homeostasis.
Collapse
Affiliation(s)
- Stephen Paul Fitzgerald
- The Departments of General Medicine and Endocrinology, The Royal Adelaide Hospital, Adelaide, SA, Australia.
- The University of Adelaide, School of Medicine, Adelaide, SA, Australia.
| | - Nigel G Bean
- School of Mathematical Sciences and ARC Centre of Excellence for Mathematical and Statistical Frontiers, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Henrik Falhammar
- Department of Endocrinology, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Rudolf Hoermann
- Klinikum Lüdenscheid, Paulmannshöherstr. 14, 58515, Lüdenscheid, Germany
- 113 Andersons Road, Yandina, QLD, 4561, Australia
| |
Collapse
|
15
|
Vargas Y, Parra-Montes de Oca M, Sánchez-Jaramillo E, Jaimes-Hoy L, Sánchez-Islas E, Uribe RM, Joseph-Bravo P, Charli JL. Sex-dependent and -independent regulation of thyrotropin-releasing hormone expression in the hypothalamic dorsomedial nucleus by negative energy balance, exercise, and chronic stress. Brain Res 2022; 1796:148083. [PMID: 36108782 DOI: 10.1016/j.brainres.2022.148083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/23/2022] [Accepted: 09/07/2022] [Indexed: 12/30/2022]
Abstract
The dorsomedial nucleus of the hypothalamus (DMH) is part of the brain circuits that modulate organism responses to the circadian cycle, energy balance, and psychological stress. A large group of thyrotropin-releasing hormone (Trh) neurons is localized in the DMH; they comprise about one third of the DMH neurons that project to the lateral hypothalamus area (LH). We tested their response to various paradigms. In male Wistar rats, food restriction during adulthood, or chronic variable stress (CVS) during adolescence down-regulated adult DMH Trh mRNA levels compared to those in sedentary animals fed ad libitum; two weeks of voluntary wheel running during adulthood enhanced DMH Trh mRNA levels compared to pair-fed rats. Except for their magnitude, female responses to exercise were like those in male rats; in contrast, in female rats CVS did not change DMH Trh mRNA levels. A very strong negative correlation between DMH Trh mRNA levels and serum corticosterone concentration in rats of either sex was lost in CVS rats. CVS canceled the response to food restriction, but not that to exercise in either sex. TRH receptor 1 (Trhr) cells were numerous along the rostro-caudal extent of the medial LH. In either sex, fasting during adulthood reduced DMH Trh mRNA levels, and increased LH Trhr mRNA levels, suggesting fasting may inhibit the activity of TRHDMH->LH neurons. Thus, in Wistar rats DMH Trh mRNA levels are regulated by negative energy balance, exercise and chronic variable stress through sex-dependent and -independent pathways.
Collapse
Affiliation(s)
- Yamili Vargas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, Mexico
| | - Marco Parra-Montes de Oca
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, Mexico
| | - Edith Sánchez-Jaramillo
- Laboratorio de Neuroendocrinología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Ciudad de México 14370, Mexico
| | - Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, Mexico
| | - Eduardo Sánchez-Islas
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz (INPRFM), Ciudad de México 14370, Mexico
| | - Rosa María Uribe
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, Mexico
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, Mexico
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
16
|
de Oliveira LS, da Silva TQM, Barbosa EM, Dos Anjos Cordeiro JM, Santos LC, Henriques PC, Santos BR, Gusmao DDO, de Macedo IO, Szawka RE, Silva JF. Kisspeptin Treatment Restores Ovarian Function in Rats with Hypothyroidism. Thyroid 2022; 32:1568-1579. [PMID: 35765915 DOI: 10.1089/thy.2021.0638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background: Hypothyroidism causes ovarian dysfunction and infertility in women, in addition to being associated with hyperprolactinemia and reduced hypothalamic expression of kisspeptin (Kp). However, it remains unknown whether and how Kp is able to reverse the ovarian dysfunction caused by hypothyroidism. Methods: Hypothyroidism was induced in adult female Wistar rats using 6-propyl-2-thiouracil for 3 months. In the last month, half of the animals received Kp10. Blood samples were collected for dosage of free thyroxine, thyrotropin (TSH), luteinizing hormone (LH), prolactin (PRL), progesterone (P4), and estradiol (E2), and uteruses and ovaries were collected for histomorphometry. Body and ovarian weight and the number of corpora lutea were also evaluated. Half of the brains were evaluated by immunohistochemistry to Kp, and the other half had the arcuate nucleus of hypothalamus (ARC) and preoptic area microdissected for gene evaluation of Kiss1, Nkb, Pdyn, and Gnrh1. The pituitary gland and corpora lutea were also dissected for gene evaluation. Results: Hypothyroidism kept the animals predominantly acyclic and promoted a reduction in ovarian weight, number of corpora lutea, endometrial thickness, number of endometrial glands, and plasma LH, in addition to increasing the luteal messenger RNA (mRNA) expression of Star and Cyp11a1 and reducing 20αHsd. An increase in plasma PRL and P4 levels was also caused by hypothyroidism. Kp immunoreactivity and Kiss1 and Nkb mRNA levels in the ARC and Kiss1 in the anteroventral periventricular nucleus of hypothalamus were reduced in hypothyroid rats. Hypothyroid animals had lower pituitary gene expression of Gnrhr, Lhb, Prl, and Drd2, and an increase in Tshb. The treatment with Kp10 restored estrous cyclicality, plasma LH, ovarian and uterine morphology, and Cyp11a1, 3βHsd, and 20αHsd mRNA levels in the corpora lutea. Kp10 treatment did not alter gene expression for Kiss1 or Nkb in the ARC of hypothyroid rats. Nevertheless, Kp10 increased Lhb mRNA levels and reduced Tshb in the pituitary compared with the hypothyroid group. Conclusions: The present findings characterize the inhibitory effects of hypothyroidism on the hypothalamic-pituitary-gonadal axis in female rats and demonstrate that Kp10 is able to reverse the ovarian dysfunction caused by hypothyroidism, regardless of hyperprolactinemia.
Collapse
Affiliation(s)
- Luciana Santos de Oliveira
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Ilheus, Brazil
| | | | - Erikles Macedo Barbosa
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Ilheus, Brazil
| | | | - Luciano Cardoso Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Ilheus, Brazil
| | - Patrícia Costa Henriques
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bianca Reis Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Ilheus, Brazil
| | - Daniela de Oliveira Gusmao
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabella Oliveira de Macedo
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Ilheus, Brazil
| | - Raphael Escorsim Szawka
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Ilheus, Brazil
| |
Collapse
|
17
|
Henriquez AR, Snow SJ, Jackson TW, House JS, Motsinger-Reif AA, Ward-Caviness CK, Schladweiler MC, Alewel DI, Miller CN, Farraj AK, Hazari MS, Grindstaff R, Diaz-Sanchez D, Ghio AJ, Kodavanti UP. Stress Drivers of Glucose Dynamics during Ozone Exposure Measured Using Radiotelemetry in Rats. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:127006. [PMID: 36542476 PMCID: PMC9770052 DOI: 10.1289/ehp11088] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND Inhaled irritant air pollutants may trigger stress-related metabolic dysfunction associated with altered circulating adrenal-derived hormones. OBJECTIVES We used implantable telemetry in rats to assess real-time changes in circulating glucose during and after exposure to ozone and mechanistically linked responses to neuroendocrine stress hormones. METHODS First, using a cross-over design, we monitored glucose during ozone exposures (0.0, 0.2, 0.4, and 0.8 ppm) and nonexposure periods in male Wistar Kyoto rats implanted with glucose telemeters. A second cohort of unimplanted rats was exposed to ozone (0.0, 0.4 or 0.8 ppm) for 30 min, 1 h, 2 h, or 4 h with hormones measured immediately post exposure. We assessed glucose metabolism in sham and adrenalectomized rats, with or without supplementation of adrenergic/glucocorticoid receptor agonists, and in a separate cohort, antagonists. RESULTS Ozone (0.8 ppm) was associated with significantly higher blood glucose and lower core body temperature beginning 90 min into exposure, with reversal of effects 4-6 h post exposure. Glucose monitoring during four daily 4-h ozone exposures revealed duration of glucose increases, adaptation, and diurnal variations. Ozone-induced glucose changes were preceded by higher levels of adrenocorticotropic hormone, corticosterone, and epinephrine but lower levels of thyroid-stimulating hormone, prolactin, and luteinizing hormones. Higher glucose and glucose intolerance were inhibited in rats that were adrenalectomized or treated with adrenergic plus glucocorticoid receptor antagonists but exacerbated by agonists. DISCUSSION We demonstrated the temporality of neuroendocrine-stress-mediated biological sequalae responsible for ozone-induced glucose metabolic dysfunction and mechanism in a rodent model. Stress hormones assessment with real-time glucose monitoring may be useful in identifying interactions among irritant pollutants and stress-related illnesses. https://doi.org/10.1289/EHP11088.
Collapse
Affiliation(s)
- Andres R. Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina, USA
| | - Samantha J. Snow
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Thomas W. Jackson
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina, USA
| | - John S. House
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Alison A. Motsinger-Reif
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Cavin K. Ward-Caviness
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Mette C. Schladweiler
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Devin I. Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, North Carolina, USA
| | - Colette N. Miller
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Aimen K. Farraj
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Mehdi S. Hazari
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Rachel Grindstaff
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - David Diaz-Sanchez
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Andrew J. Ghio
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Urmila P. Kodavanti
- Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| |
Collapse
|
18
|
Trubacova R, Drastichova Z, Novotny J. Biochemical and physiological insights into TRH receptor-mediated signaling. Front Cell Dev Biol 2022; 10:981452. [PMID: 36147745 PMCID: PMC9485831 DOI: 10.3389/fcell.2022.981452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Thyrotropin-releasing hormone (TRH) is an important endocrine agent that regulates the function of cells in the anterior pituitary and the central and peripheral nervous systems. By controlling the synthesis and release of thyroid hormones, TRH affects many physiological functions, including energy homeostasis. This hormone exerts its effects through G protein-coupled TRH receptors, which signal primarily through Gq/11 but may also utilize other G protein classes under certain conditions. Because of the potential therapeutic benefit, considerable attention has been devoted to the synthesis of new TRH analogs that may have some advantageous properties compared with TRH. In this context, it may be interesting to consider the phenomenon of biased agonism and signaling at the TRH receptor. This possibility is supported by some recent findings. Although knowledge about the mechanisms of TRH receptor-mediated signaling has increased steadily over the past decades, there are still many unanswered questions, particularly about the molecular details of post-receptor signaling. In this review, we summarize what has been learned to date about TRH receptor-mediated signaling, including some previously undiscussed information, and point to future directions in TRH research that may offer new insights into the molecular mechanisms of TRH receptor-triggered actions and possible ways to modulate TRH receptor-mediated signaling.
Collapse
|
19
|
Yang F, Zhang H, Meng X, Li Y, Zhou Y, Ling S, Sun D, Lv P, Liu L, Shi P, Tian C. Structural insights into thyrotropin-releasing hormone receptor activation by an endogenous peptide agonist or its orally administered analogue. Cell Res 2022; 32:858-861. [PMID: 35352031 PMCID: PMC9437008 DOI: 10.1038/s41422-022-00646-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/04/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Fan Yang
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Huanhuan Zhang
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Xianyu Meng
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Yingge Li
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Yingxin Zhou
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Shenglong Ling
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Demeng Sun
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Pei Lv
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Liu
- Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Pan Shi
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China.
| | - Changlin Tian
- The First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China.
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China.
| |
Collapse
|
20
|
Effects of iodine excess on serum thyrotropin-releasing hormone levels and type 2 deiodinase in the hypothalamus of Wistar rats. Br J Nutr 2022; 127:1631-1638. [PMID: 34250878 DOI: 10.1017/s0007114521002592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Iodine is an important element in thyroid hormone biosynthesis. Thyroid function is regulated by the hypothalamic-pituitary-thyroid axis. Excessive iodine leads to elevated thyroid-stimulating hormone (TSH) levels, but the mechanism is not yet clear. Type 2 deiodinase (Dio2) is a Se-containing protease that plays a vital role in thyroid function. The purpose of this study was to explore the role of hypothalamus Dio2 in regulating TSH increase caused by excessive iodine and to determine the effects of iodine excess on thyrotropin-releasing hormone (TRH) levels. Male Wistar rats were randomised into five groups and administered different iodine dosages (folds of physiological dose): normal iodine, 3-fold iodine, 6-fold iodine, 10-fold iodine and 50-fold iodine. Rats were euthanised at 4, 8, 12 or 24 weeks after iodine administration. Serum TRH, TSH, total thyroxine (TT4) and total triiodothyronine (TT3) were determined. Hypothalamus tissues were frozen and sectioned to evaluate the expression of Dio2, Dio2 activity and monocarboxylate transporter 8 (MCT8). Prolonged high iodine intake significantly increased TSH expression (P < 0·05) but did not affect TT3 and TT4 levels. Prolonged high iodine intake decreased serum TRH levels in the hypothalamus (P < 0·05). Dio2 expression and activity in the hypothalamus exhibited an increasing trend compared at each time point with increasing iodine intake (P < 0·05). Hypothalamic MCT8 expression was increased in rats with prolonged high iodine intake (P < 0·05). These results indicate that iodine excess affects the levels of Dio2, TRH and MCT8 in the hypothalamus.
Collapse
|
21
|
Spinelli E, Werner Junior J. Human adaptative behavior to Antarctic conditions: A review of physiological aspects. WIREs Mech Dis 2022; 14:e1556. [PMID: 35419979 DOI: 10.1002/wsbm.1556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/08/2022]
Abstract
The Antarctic environment induces adaptive metabolic and neuroendocrine changes associated with survival, as well as increased risks to physical and mental health. Circadian disruption has been observed in Antarctic expeditioners. The main consequences appear in quality of sleep, which can affect physical and cognitive performance. Physiological adaptation to cold is mediated by the norepinephrine and thyroid hormones (T3 and 3,5-T2 metabolite). The observed changes in the hypothalamic-pituitary-thyroid (HPT) axis of expeditioners varied according to temperature, photoperiod, time spent in the cold environment and stress level. The decrease in T3 levels has frequently been associated with mood swings. Psychological and physical stressors cause disturbances in the hypothalamic-pituitary-adrenal (HPA) axis, with consequent maintenance of high cortisol levels, leading to memory impairment, immunosuppression, and cardiometabolic and reproductive disorders. Preventive measures, such as provision of adequate food, well-established eating times, physical activity and even the use of phototherapy, can all help maintain the circadian rhythm. In addition, the use of high-tech clothing and room temperature control in research stations provide greater protection against the effects of intense cold. However, psychological stress requires a more individualized approach based on the crew's sociocultural characteristics, but it can be mitigated by mental healthcare and training in coping strategies. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Cardiovascular Diseases > Environmental Factors Metabolic Diseases > Environmental Factors.
Collapse
Affiliation(s)
- Eliani Spinelli
- School of Pharmacy, Fluminense Federal University, Rio de Janeiro, Brazil
| | | |
Collapse
|
22
|
Deligiorgi MV, Siasos G, Vakkas L, Trafalis DT. Charting the Unknown Association of COVID-19 with Thyroid Cancer, Focusing on Differentiated Thyroid Cancer: A Call for Caution. Cancers (Basel) 2021; 13:5785. [PMID: 34830939 PMCID: PMC8616091 DOI: 10.3390/cancers13225785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Conceived of as the "silver lining" of the dark cloud of the coronavirus disease 2019 (COVID-19) pandemic, lessons taught by this catastrophe should be leveraged by medical authorities and policy makers to optimize health care globally. A major lesson is that resilient health systems should absorb sudden shocks incited by overwhelming health emergencies without compromising the continuum of care of chronic diseases, especially of cancer. METHODS The present review dissects the association between COVID-19 and thyroid cancer (TC), especially with differentiated TC (DTC), focusing on available data, knowledge gaps, current challenges, and future perspectives. RESULTS Obesity has been incriminated in terms of both COVID-19 severity and a rising incidence of TC, especially of DTC. The current conceptualization of the pathophysiological landscape of COVID-19-(D)TC association implicates an interplay between obesity, inflammation, immunity, and oxidative stress. Whether COVID-19 could aggravate the health burden posed by (D)TC or vice versa has yet to be clarified. Improved understanding and harnessing of the pathophysiological landscape of the COVID-19-(D)TC association will empower a mechanism-guided, safe, evidence-based, and risk-stratified management of (D)TC in the COVID-19 era and beyond. CONCLUSION A multidisciplinary patient-centered decision-making will ensure high-quality (D)TC care for patients, with or without COVID-19.
Collapse
Affiliation(s)
- Maria V. Deligiorgi
- Clinical Pharmacology Unit–Department of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias St., 11527 Athens, Greece; (L.V.); (D.T.T.)
| | - Gerasimos Siasos
- First Department of Cardiology, Hippokration General Hospital of Athens, Faculty of Mediine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Lampros Vakkas
- Clinical Pharmacology Unit–Department of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias St., 11527 Athens, Greece; (L.V.); (D.T.T.)
| | - Dimitrios T. Trafalis
- Clinical Pharmacology Unit–Department of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias St., 11527 Athens, Greece; (L.V.); (D.T.T.)
| |
Collapse
|
23
|
Markov AG, Shadrin LV, Kruglova NM, Fedorova AA, Razgovorova IA, Chernysheva MP. Is Thyrotropin-Releasing Hormone an Integrator of Prolactin- and Oxytocin-Dependent Processes in the Mammary Gland and Maternal Behavior of Lactating Mice? J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021050203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Parra-Montes de Oca MA, Sotelo-Rivera I, Gutiérrez-Mata A, Charli JL, Joseph-Bravo P. Sex Dimorphic Responses of the Hypothalamus-Pituitary-Thyroid Axis to Energy Demands and Stress. Front Endocrinol (Lausanne) 2021; 12:746924. [PMID: 34745011 PMCID: PMC8565401 DOI: 10.3389/fendo.2021.746924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
The hypothalamus-pituitary-thyroid-axis (HPT) is one of the main neuroendocrine axes that control energy expenditure. The activity of hypophysiotropic thyrotropin releasing hormone (TRH) neurons is modulated by nutritional status, energy demands and stress, all of which are sex dependent. Sex dimorphism has been associated with sex steroids whose concentration vary along the life-span, but also to sex chromosomes that define not only sexual characteristics but the expression of relevant genes. In this review we describe sex differences in basal HPT axis activity and in its response to stress and to metabolic challenges in experimental animals at different stages of development, as well as some of the limited information available on humans. Literature review was accomplished by searching in Pubmed under the following words: "sex dimorphic" or "sex differences" or "female" or "women" and "thyrotropin" or "thyroid hormones" or "deiodinases" and "energy homeostasis" or "stress". The most representative articles were discussed, and to reduce the number of references, selected reviews were cited.
Collapse
Affiliation(s)
| | | | | | | | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| |
Collapse
|
25
|
Fallahshahroudi A, Johnsson M, Sorato E, Ubhayasekera SJKA, Bergquist J, Altimiras J, Jensen P. Effects of the domestic thyroid stimulating hormone receptor (TSHR) variant on the hypothalamic-pituitary-thyroid axis and behavior in chicken. Genetics 2021; 217:1-9. [PMID: 33683367 DOI: 10.1093/genetics/iyaa050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Domestic chickens are less fearful, have a faster sexual development, grow bigger, and lay more eggs than their primary ancestor, the red junglefowl. Several candidate genetic variants selected during domestication have been identified, but only a few studies have directly linked them with distinct phenotypic traits. Notably, a variant of the thyroid stimulating hormone receptor (TSHR) gene has been under strong positive selection over the past millennium, but it's function and mechanisms of action are still largely unresolved. We therefore assessed the abundance of the domestic TSHR variant and possible genomic selection signatures in an extensive data set comprising multiple commercial and village chicken populations as well as wild-living extant members of the genus Gallus. Furthermore, by mean of extensive backcrossing we introgressed the wild-type TSHR variant from red junglefowl into domestic White Leghorn chickens and investigated gene expression, hormone levels, cold adaptation, and behavior in chickens possessing either the wild-type or domestic TSHR variant. While the domestic TSHR was the most common variant in all studied domestic populations and in one of two red junglefowl population, it was not detected in the other Gallus species. Functionally, the individuals with the domestic TSHR variant had a lower expression of the TSHR in the hypothalamus and marginally higher in the thyroid gland than wild-type TSHR individuals. Expression of TSHB and DIO2, two regulators of sexual maturity and reproduction in birds, was higher in the pituitary gland of the domestic-variant chickens. Furthermore, the domestic variant was associated with higher activity in the open field test. Our findings confirm that the spread of the domestic TSHR variant is limited to domesticated chickens, and to a lesser extent, their wild counterpart, the red junglefowl. Furthermore, we showed that effects of genetic variability in TSHR mirror key differences in gene expression and behavior previously described between the red junglefowl and domestic chicken.
Collapse
Affiliation(s)
- Amir Fallahshahroudi
- Department of Medical Biochemistry and Microbiology, Biomedical Center (BMC), Uppsala University, Uppsala 752 37, Sweden
| | - Martin Johnsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Enrico Sorato
- Reneco International Wildlife Consultants, Abu Dhabi, UAE
| | | | - Jonas Bergquist
- Department of Chemistry, Biomedical Center (BMC), Uppsala University, Uppsala 75124, Sweden
| | - Jordi Altimiras
- AVIAN Behavioural Genomics and Physiology Group, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Per Jensen
- AVIAN Behavioural Genomics and Physiology Group, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| |
Collapse
|
26
|
Jaimes-Hoy L, Pérez-Maldonado A, Narváez Bahena E, de la Cruz Guarneros N, Rodríguez-Rodríguez A, Charli JL, Soberón X, Joseph-Bravo P. Sex Dimorphic Changes in Trh Gene Methylation and Thyroid-Axis Response to Energy Demands in Maternally Separated Rats. Endocrinology 2021; 162:bqab110. [PMID: 34043769 DOI: 10.1210/endocr/bqab110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Indexed: 12/18/2022]
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis regulates energy balance through the pleiotropic action of thyroid hormones. HPT basal activity and stimulation by cold or voluntary exercise are repressed by previous chronic stress in adults. Maternal separation (MS) modifies HPT basal activity; we thus studied the response of the axis to energy demands and analyzed possible epigenetic changes on Trh promoter. Nonhandled (NH) or MS male Wistar rats were cold exposed 1 h at adulthood; Trh expression in the hypothalamic paraventricular nucleus (PVN) and serum thyrotropin (TSH) concentration were increased only in NH rats. Two weeks of voluntary exercise decreased fat mass and increased Trh expression, and thyroid hormones concentration changed proportionally to running distance in NH male rats and MS male rats. Although NH females ran more than MS and much more than males, exercise decreased body weight and fat mass only in NH rats with no change on any parameter of the HPT axis but increased Pomc expression in arcuate-nucleus of NH and Npy in MS females. Overall, the methylation pattern of PVN Trh gene promoter was similar in NH males and females; MS modified methylation of specific CpG sites, a thyroid hormone receptor (THR)-binding site present after the initiation site was hypomethylated in MS males; in MS females, the THR binding site of the proximal promoter (site 4) and 2 sites in the first intron were hypermethylated. Our studies showed that, in a sex-dimorphic manner, MS blunted the responses of HPT axis to energy demands in adult animals and caused methylation changes on Trh promoter that could alter T3 feedback.
Collapse
Affiliation(s)
- Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Adrián Pérez-Maldonado
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Elian Narváez Bahena
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Natalia de la Cruz Guarneros
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Adair Rodríguez-Rodríguez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| | - Xavier Soberón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
- Instituto Nacional de Medicina Genómica, Ciudad de México, México
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, México
| |
Collapse
|
27
|
Patisaul HB. Endocrine disrupting chemicals (EDCs) and the neuroendocrine system: Beyond estrogen, androgen, and thyroid. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:101-150. [PMID: 34452685 DOI: 10.1016/bs.apha.2021.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hundreds of anthropogenic chemicals occupy our bodies, a situation that threatens the health of present and future generations. This chapter focuses on endocrine disrupting compounds (EDCs), both naturally occurring and man-made, that affect the neuroendocrine system to adversely impact health, with an emphasis on reproductive and metabolic pathways. The neuroendocrine system is highly sexually dimorphic and essential for maintaining homeostasis and appropriately responding to the environment. Comprising both neural and endocrine components, the neuroendocrine system is hormone sensitive throughout life and touches every organ system in the body. The integrative nature of the neuroendocrine system means that EDCs can have multi-system effects. Additionally, because gonadal hormones are essential for the sex-specific organization of numerous neuroendocrine pathways, endocrine disruption of this programming can lead to permanent deficits. Included in this review is a brief history of the neuroendocrine disruption field and a thorough discussion of the most common and less well understood neuroendocrine disruption modes of action. Also provided are extensive examples of how EDCs are likely contributing to neuroendocrine disorders such as obesity, and evidence that they have the potential for multi-generational effects.
Collapse
Affiliation(s)
- Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
28
|
Lazcano I, Rodríguez Rodríguez A, Uribe RM, Orozco A, Joseph-Bravo P, Charli JL. Evolution of thyrotropin-releasing factor extracellular communication units. Gen Comp Endocrinol 2021; 305:113642. [PMID: 33039406 DOI: 10.1016/j.ygcen.2020.113642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 09/12/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
Abstract
Thyroid hormones (THs) are ancient signaling molecules that contribute to the regulation of metabolism, energy homeostasis and growth. In vertebrates, the hypothalamus-pituitary-thyroid (HPT) axis links the corresponding organs through hormonal signals, including thyrotropin releasing factor (TRF), and thyroid stimulating hormone (TSH) that ultimately activates the synthesis and secretion of THs from the thyroid gland. Although this axis is conserved among most vertebrates, the identity of the hypothalamic TRF that positively regulates TSH synthesis and secretion varies. We review the evolution of the hypothalamic factors that induce TSH secretion, including thyrotropin-releasing hormone (TRH), corticotrophin-releasing hormone (CRH), urotensin-1-3, and sauvagine, and non-mammalian glucagon-like peptide in metazoans. Each of these peptides is part of an extracellular communication unit likely composed of at least 3 elements: the peptide, G-protein coupled receptor and bioavailability regulator, set up on the central neuroendocrine articulation. The bioavailability regulators include a TRH-specific ecto-peptidase, pyroglutamyl peptidase II, and a CRH-binding protein, that together with peptide secretion/transport rate and transduction coupling and efficiency at receptor level shape TRF signal intensity and duration. These vertebrate TRF communication units were coopted from bilaterian ancestors. The bona fide elements appeared early in chordates, and are either used alternatively, in parallel, or sequentially, in different vertebrate classes to control centrally the activity of the HPT axis. Available data also suggest coincidence between apparition of ligand and bioavailability regulator.
Collapse
Affiliation(s)
- Iván Lazcano
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Adair Rodríguez Rodríguez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Rosa María Uribe
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Aurea Orozco
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico.
| |
Collapse
|
29
|
Keestra S, Högqvist Tabor V, Alvergne A. Reinterpreting patterns of variation in human thyroid function: An evolutionary ecology perspective. Evol Med Public Health 2020; 9:93-112. [PMID: 34557302 PMCID: PMC8454515 DOI: 10.1093/emph/eoaa043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022] Open
Abstract
Two hundred million people worldwide experience some form of thyroid disorder, with women being especially at risk. However, why human thyroid function varies between populations, individuals, and across the lifespan has attracted little research to date. This limits our ability to evaluate the conditions under which patterns of variation in thyroid function are best understood as 'normal' or 'pathological'. In this review, we aim to spark interest in research aimed at understanding the causes of variation in thyroid phenotypes. We start by assessing the biomedical literature on thyroid imbalance to discuss the validity of existing reference intervals for diagnosis and treatment across individuals and populations. We then propose an evolutionary ecological framework for understanding the phylogenetic, genetic, ecological, developmental, and physiological causes of normal variation in thyroid function. We build on this approach to suggest testable predictions for how environmental challenges interact with individual circumstances to influence the onset of thyroid disorders. We propose that dietary changes, ecological disruptions of co-evolutionary processes during pregnancy and with pathogens, emerging infections, and exacerbated stress responses can contribute to explaining the onset of thyroid diseases. For patients to receive the best personalized care, research into the causes of thyroid variation at multiple levels is needed.
Collapse
Affiliation(s)
- Sarai Keestra
- School of Anthropology & Museum Ethnography,
University of Oxford, Oxford, UK
- Amsterdam UMC, University of
Amsterdam, Amsterdam, The
Netherlands
| | | | - Alexandra Alvergne
- School of Anthropology & Museum Ethnography,
University of Oxford, Oxford, UK
- ISEM, Université de Montpellier, CNRS, IRD,
EPHE, Montpellier, France
| |
Collapse
|
30
|
Colella M, Cuomo D, Giacco A, Mallardo M, De Felice M, Ambrosino C. Thyroid Hormones and Functional Ovarian Reserve: Systemic vs. Peripheral Dysfunctions. J Clin Med 2020; 9:E1679. [PMID: 32492950 PMCID: PMC7355968 DOI: 10.3390/jcm9061679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Thyroid hormones (THs) exert pleiotropic effects in different mammalian organs, including gonads. Genetic and non-genetic factors, such as ageing and environmental stressors (e.g., low-iodine intake, exposure to endocrine disruptors, etc.), can alter T4/T3 synthesis by the thyroid. In any case, peripheral T3, controlled by tissue-specific enzymes (deiodinases), receptors and transporters, ensures organ homeostasis. Conflicting reports suggest that both hypothyroidism and hyperthyroidism, assessed by mean of circulating T4, T3 and Thyroid-Stimulating Hormone (TSH), could affect the functionality of the ovarian reserve determining infertility. The relationship between ovarian T3 level and functional ovarian reserve (FOR) is poorly understood despite that the modifications of local T3 metabolism and signalling have been associated with dysfunctions of several organs. Here, we will summarize the current knowledge on the role of TH signalling and its crosstalk with other pathways in controlling the physiological and premature ovarian ageing and, finally, in preserving FOR. We will consider separately the reports describing the effects of circulating and local THs on the ovarian health to elucidate their role in ovarian dysfunctions.
Collapse
Affiliation(s)
- Marco Colella
- Department of Science and Technology, University of Sannio, via De Sanctis, 82100 Benevento, Italy; (M.C.); (A.G.)
- IRGS, Biogem-Scarl, Via Camporeale, Ariano Irpino, 83031 Avellino, Italy
| | - Danila Cuomo
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA;
| | - Antonia Giacco
- Department of Science and Technology, University of Sannio, via De Sanctis, 82100 Benevento, Italy; (M.C.); (A.G.)
| | - Massimo Mallardo
- Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Mario De Felice
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA;
- Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
- IEOS-CNR, Via Pansini 6, 80131 Naples, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, via De Sanctis, 82100 Benevento, Italy; (M.C.); (A.G.)
- IRGS, Biogem-Scarl, Via Camporeale, Ariano Irpino, 83031 Avellino, Italy
- IEOS-CNR, Via Pansini 6, 80131 Naples, Italy
| |
Collapse
|
31
|
Charli JL, Rodríguez-Rodríguez A, Hernández-Ortega K, Cote-Vélez A, Uribe RM, Jaimes-Hoy L, Joseph-Bravo P. The Thyrotropin-Releasing Hormone-Degrading Ectoenzyme, a Therapeutic Target? Front Pharmacol 2020; 11:640. [PMID: 32457627 PMCID: PMC7225337 DOI: 10.3389/fphar.2020.00640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Thyrotropin releasing hormone (TRH: Glp-His-Pro-NH2) is a peptide mainly produced by brain neurons. In mammals, hypophysiotropic TRH neurons of the paraventricular nucleus of the hypothalamus integrate metabolic information and drive the secretion of thyrotropin from the anterior pituitary, and thus the activity of the thyroid axis. Other hypothalamic or extrahypothalamic TRH neurons have less understood functions although pharmacological studies have shown that TRH has multiple central effects, such as promoting arousal, anorexia and anxiolysis, as well as controlling gastric, cardiac and respiratory autonomic functions. Two G-protein-coupled TRH receptors (TRH-R1 and TRH-R2) transduce TRH effects in some mammals although humans lack TRH-R2. TRH effects are of short duration, in part because the peptide is hydrolyzed in blood and extracellular space by a M1 family metallopeptidase, the TRH-degrading ectoenzyme (TRH-DE), also called pyroglutamyl peptidase II. TRH-DE is enriched in various brain regions but is also expressed in peripheral tissues including the anterior pituitary and the liver, which secretes a soluble form into blood. Among the M1 metallopeptidases, TRH-DE is the only member with a very narrow specificity; its best characterized biological substrate is TRH, making it a target for the specific manipulation of TRH activity. Two other substrates of TRH-DE, Glp-Phe-Pro-NH2 and Glp-Tyr-Pro-NH2, are also present in many tissues. Analogs of TRH resistant to hydrolysis by TRH-DE have prolonged central efficiency. Structure-activity studies allowed the identification of residues critical for activity and specificity. Research with specific inhibitors has confirmed that TRH-DE controls TRH actions. TRH-DE expression by β2-tanycytes of the median eminence of the hypothalamus allows the control of TRH flux into the hypothalamus-pituitary portal vessels and may regulate serum thyrotropin secretion. In this review we describe the critical evidences that suggest that modification of TRH-DE activity in tanycytes, and/or in other brain regions, may generate beneficial consequences in some central and metabolic disorders and identify potential drawbacks and missing information needed to test these hypotheses.
Collapse
Affiliation(s)
- Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | | | | | | | | | | | | |
Collapse
|
32
|
Ciani E, Haug TM, Maugars G, Weltzien FA, Falcón J, Fontaine R. Effects of Melatonin on Anterior Pituitary Plasticity: A Comparison Between Mammals and Teleosts. Front Endocrinol (Lausanne) 2020; 11:605111. [PMID: 33505357 PMCID: PMC7831660 DOI: 10.3389/fendo.2020.605111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023] Open
Abstract
Melatonin is a key hormone involved in the photoperiodic signaling pathway. In both teleosts and mammals, melatonin produced in the pineal gland at night is released into the blood and cerebrospinal fluid, providing rhythmic information to the whole organism. Melatonin acts via specific receptors, allowing the synchronization of daily and annual physiological rhythms to environmental conditions. The pituitary gland, which produces several hormones involved in a variety of physiological processes such as growth, metabolism, stress and reproduction, is an important target of melatonin. Melatonin modulates pituitary cellular activities, adjusting the synthesis and release of the different pituitary hormones to the functional demands, which changes during the day, seasons and life stages. It is, however, not always clear whether melatonin acts directly or indirectly on the pituitary. Indeed, melatonin also acts both upstream, on brain centers that control the pituitary hormone production and release, as well as downstream, on the tissues targeted by the pituitary hormones, which provide positive and negative feedback to the pituitary gland. In this review, we describe the known pathways through which melatonin modulates anterior pituitary hormonal production, distinguishing indirect effects mediated by brain centers from direct effects on the anterior pituitary. We also highlight similarities and differences between teleosts and mammals, drawing attention to knowledge gaps, and suggesting aims for future research.
Collapse
Affiliation(s)
- Elia Ciani
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Trude M. Haug
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Gersende Maugars
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Finn-Arne Weltzien
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Jack Falcón
- Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS FRE 2030, SU, IRD 207, UCN, UA, Paris, France
| | - Romain Fontaine
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
- *Correspondence: Romain Fontaine,
| |
Collapse
|
33
|
Sinha P, Chakrabarti N, Ghosh N, Mitra S, Dalui S, Bhattacharyya A. Alterations of thyroidal status in brain regions and hypothalamo-pituitary-blood-thyroid-axis associated with dopaminergic depletion in substantia nigra and ROS formation in different brain regions after MPTP treatment in adult male mice. Brain Res Bull 2020; 156:131-140. [PMID: 31891753 DOI: 10.1016/j.brainresbull.2019.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022]
Abstract
MPTP produces oxidative stress, damages niagrostriatal dopaminergic neurons and develops Parkinsonism in rodents. Due to paucity of information, the thyroidal status in brain regions and peripheral tissues during different post-treatment days in MPTP-induced mice had been executed in the present study. MPTP depleted tyrosine hydroxylase protein expressions that signify the dopaminergic neuronal damage in substantia nigra. MPTP elevated ROS formation differentially in brain regions (cerebral cortex, hippocampus, substantia nigra) with maximal elevation at hippocampus. The changes in thyroid hormone (T4 and T3) levels indicate that brain regions might combat the adverse situation by keeping the levels of thyroid hormones either unchanged or in the elevated conditions in the latter phases (day-3 and day-7), apart from the depletion of thyroid hormones in certain brain regions (T4 in SN and hippocampus, T3 in hippocampus) as the immediate (day-1) effects after MPTP treatment. MPTP caused alterations of cellular morphology, RNA:Protein ratio and TPO protein expression, concomitantly depleted TPO mRNA expression and elevated TSH levels in the thyroid gland. Although T4 levels changed differentially, T3 levels remained unaltered in thyroid gland throughout the post-treatment days. Results have been discussed mentioning the putative role of T4 and TSH in apoptosis and/or proliferation/differentiation of thyrocytes. In blood, T4 levels remained unchanged while the changes in T3 and TSH levels did not signify the clinical feature of hypo/hyperthyroidism of animals. In the pituitary, both T4 and T3 levels remained elevated where TSH differentially altered (elevated followed by depletion) during post-treatment days. Notably, T4, T3 and TSH levels did not alter in hypothalamus except initial (day-1) depletion of the T4 level. Therefore, the feedback control mechanism of hypothalamo-pituitary-blood-thyroid-axis failed to occur after MPTP treatment. Overall, MPTP altered thyroidal status in the brain and peripheral tissues while both events might occur in isolation as well.
Collapse
Affiliation(s)
- Priyobrata Sinha
- Immunology Lab, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India; Department of Physiology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009, India
| | - Nilkanta Chakrabarti
- Department of Physiology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009, India; Centres with Potential for Excellence in Particular Areas (CPEPA, UGC), Centre for "Electrophysiology & Neuroimaging Studies Including Mathematical Modeling" India.
| | - Nabanita Ghosh
- Immunology Lab, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Soham Mitra
- Immunology Lab, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Shauryabrota Dalui
- Immunology Lab, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Arindam Bhattacharyya
- Immunology Lab, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India.
| |
Collapse
|
34
|
Vélez EJ, Unniappan S. A Comparative Update on the Neuroendocrine Regulation of Growth Hormone in Vertebrates. Front Endocrinol (Lausanne) 2020; 11:614981. [PMID: 33708174 PMCID: PMC7940767 DOI: 10.3389/fendo.2020.614981] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/31/2020] [Indexed: 12/22/2022] Open
Abstract
Growth hormone (GH), mainly produced from the pituitary somatotrophs is a key endocrine regulator of somatic growth. GH, a pleiotropic hormone, is also involved in regulating vital processes, including nutrition, reproduction, physical activity, neuroprotection, immunity, and osmotic pressure in vertebrates. The dysregulation of the pituitary GH and hepatic insulin-like growth factors (IGFs) affects many cellular processes associated with growth promotion, including protein synthesis, cell proliferation and metabolism, leading to growth disorders. The metabolic and growth effects of GH have interesting applications in different fields, including the livestock industry and aquaculture. The latest discoveries on new regulators of pituitary GH synthesis and secretion deserve our attention. These novel regulators include the stimulators adropin, klotho, and the fibroblast growth factors, as well as the inhibitors, nucleobindin-encoded peptides (nesfatin-1 and nesfatin-1-like peptide) and irisin. This review aims for a comparative analysis of our current understanding of the endocrine regulation of GH from the pituitary of vertebrates. In addition, we will consider useful pharmacological molecules (i.e. stimulators and inhibitors of the GH signaling pathways) that are important in studying GH and somatotroph biology. The main goal of this review is to provide an overview and update on GH regulators in 2020. While an extensive review of each of the GH regulators and an in-depth analysis of specifics are beyond its scope, we have compiled information on the main endogenous and pharmacological regulators to facilitate an easy access. Overall, this review aims to serve as a resource on GH endocrinology for a beginner to intermediate level knowledge seeker on this topic.
Collapse
|
35
|
Wu YH, Cui XY, Yang W, Fan DY, Liu D, Wang PG, An J. Zika Virus Infection in Hypothalamus Causes Hormone Deficiencies and Leads to Irreversible Growth Delay and Memory Impairment in Mice. Cell Rep 2019; 25:1537-1547.e4. [PMID: 30404008 DOI: 10.1016/j.celrep.2018.10.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 09/04/2018] [Accepted: 10/02/2018] [Indexed: 12/23/2022] Open
Abstract
Zika virus (ZIKV) can cause microcephaly in the fetus. However, its effects on body growth and the development of children with postnatal ZIKV infection are largely unknown. To examine this, we intraperitoneally challenged mouse pups with ZIKV. Infection causes an irreversible growth delay and deficits in spatial learning and memory, with growth-relevant hormones significantly reduced during infection. These effects are associated with ZIKV RNA expression in the hypothalamus, blood, and brain but not in the pituitary and thyroid. Infection is also associated with hypothalamic inflammation, and ZIKV antigen is detectable in neuroendocrine cells producing thyrotropin-releasing hormone. Moreover, early administration of growth hormone could significantly improve growth delay. Our results demonstrate that ZIKV can infect the hypothalamus, causing multi-hormone deficiencies and delayed growth and development in a mouse model. Therefore, prospective multidisciplinary follow-up of ZIKV-infected children may be necessary to understand potential effects of this virus on childhood development.
Collapse
Affiliation(s)
- Yan-Hua Wu
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiao-Yun Cui
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Yang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Dong-Ying Fan
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Dong Liu
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100093, China
| | - Pei-Gang Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100093, China.
| |
Collapse
|
36
|
Klatt A, Salzmann E, Schneider LJ, Reifschneider A, Korneck M, Hermle P, Bürkle A, Stoll D, Kadereit S. Toxicity of ionizing radiation (IR) in a human induced pluripotent stem cell (hiPSC)-derived 3D early neurodevelopmental model. Arch Toxicol 2019; 93:2879-2893. [DOI: 10.1007/s00204-019-02553-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/22/2019] [Indexed: 01/04/2023]
|
37
|
Rodríguez-Rodríguez A, Lazcano I, Sánchez-Jaramillo E, Uribe RM, Jaimes-Hoy L, Joseph-Bravo P, Charli JL. Tanycytes and the Control of Thyrotropin-Releasing Hormone Flux Into Portal Capillaries. Front Endocrinol (Lausanne) 2019; 10:401. [PMID: 31293518 PMCID: PMC6603095 DOI: 10.3389/fendo.2019.00401] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022] Open
Abstract
Central and peripheral mechanisms that modulate energy intake, partition and expenditure determine energy homeostasis. Thyroid hormones (TH) regulate energy expenditure through the control of basal metabolic rate and thermogenesis; they also modulate food intake. TH concentrations are regulated by the hypothalamus-pituitary-thyroid (HPT) axis, and by transport and metabolism in blood and target tissues. In mammals, hypophysiotropic thyrotropin-releasing hormone (TRH) neurons of the paraventricular nucleus of the hypothalamus integrate energy-related information. They project to the external zone of the median eminence (ME), a brain circumventricular organ rich in neuron terminal varicosities and buttons, tanycytes, other glial cells and capillaries. These capillary vessels form a portal system that links the base of the hypothalamus with the anterior pituitary. Tanycytes of the medio-basal hypothalamus express a repertoire of proteins involved in transport, sensing, and metabolism of TH; among them is type 2 deiodinase, a source of 3,3',5-triiodo-L-thyronine necessary for negative feedback on TRH neurons. Tanycytes subtypes are distinguished by position and phenotype. The end-feet of β2-tanycytes intermingle with TRH varicosities and terminals in the external layer of the ME and terminate close to the ME capillaries. Besides type 2 deiodinase, β2-tanycytes express the TRH-degrading ectoenzyme (TRH-DE); this enzyme likely controls the amount of TRH entering portal vessels. TRH-DE is rapidly upregulated by TH, contributing to TH negative feedback on HPT axis. Alterations in energy balance also regulate the expression and activity of TRH-DE in the ME, making β2-tanycytes a hub for energy-related regulation of HPT axis activity. β2-tanycytes also express TRH-R1, which mediates positive effects of TRH on TRH-DE activity and the size of β2-tanycyte end-feet contacts with the basal lamina adjacent to ME capillaries. These end-feet associations with ME capillaries, and TRH-DE activity, appear to coordinately control HPT axis activity. Thus, down-stream of neuronal control of TRH release by action potentials arrival in the external layer of the median eminence, imbricated intercellular processes may coordinate the flux of TRH into the portal capillaries. In conclusion, β2-tanycytes appear as a critical cellular element for the somatic and post-secretory control of TRH flux into portal vessels, and HPT axis regulation in mammals.
Collapse
Affiliation(s)
- Adair Rodríguez-Rodríguez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Iván Lazcano
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Edith Sánchez-Jaramillo
- Laboratorio de Neuroendocrinología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Rosa María Uribe
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
38
|
Dos-Santos RC, Reis LC, Perello M, Ferguson AV, Mecawi AS. The actions of ghrelin in the paraventricular nucleus: energy balance and neuroendocrine implications. Ann N Y Acad Sci 2019; 1455:81-97. [PMID: 31008525 DOI: 10.1111/nyas.14087] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/28/2019] [Accepted: 03/10/2019] [Indexed: 12/15/2022]
Abstract
Ghrelin is a peptide mainly produced and secreted by the stomach. Since its discovery, the impact of ghrelin on the regulation of food intake has been the most studied function of this hormone; however, ghrelin affects a wide range of physiological systems, many of which are controlled by the hypothalamic paraventricular nucleus (PVN). Several pathways may mediate the effects of ghrelin on PVN neurons, such as direct or indirect effects mediated by circumventricular organs and/or the arcuate nucleus. The ghrelin receptor is expressed in PVN neurons, and the peripheral or intracerebroventricular administration of ghrelin affects PVN neuronal activity. Intra-PVN application of ghrelin increases food intake and decreases fat oxidation, which chronically contribute to the increased adiposity. Additionally, ghrelin modulates the neuroendocrine axes controlled by the PVN, increasing the release of vasopressin and oxytocin by magnocellular neurons and corticotropin-releasing hormone by neuroendocrine parvocellular neurons, while possibly inhibiting the release of thyrotropin-releasing hormone. Thus, the PVN is an important target for the actions of ghrelin. Our review discusses the mechanisms of ghrelin actions in the PVN, and its potential implications for energy balance, neuroendocrine, and integrative physiological control.
Collapse
Affiliation(s)
- Raoni C Dos-Santos
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Luís C Reis
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Mario Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, La Plata, Argentina
| | - Alastair V Ferguson
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - André S Mecawi
- Laboratory of Neuroendocrinology, Department of Biophysics, Paulista Medical School, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
39
|
Tian F, Liu S, Shi J, Qi H, Zhao K, Xie B. Transcriptomic profiling reveals molecular regulation of seasonal reproduction in Tibetan highland fish, Gymnocypris przewalskii. BMC Genomics 2019; 20:2. [PMID: 30606119 PMCID: PMC6318897 DOI: 10.1186/s12864-018-5358-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 12/09/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The Tibetan highland fish, Gymnocypris przewalskii, migrates from Lake Qinghai to its spawning grounds every summer. This seasonal reproduction is critically regulated by intrinsic and extrinsic signals. However, the molecular mechanisms that process environmental oscillations to initiate the seasonal mating are largely unknown. RESULTS A transcriptomic analysis was conducted on the brain and gonad of male and female G. przewalskii in reproductive and nonreproductive seasons. We obtained 2034, 760, 1158 and 17,856 differentially expressed genes between the reproductively active and dormant female brain, male brain, ovary and testis. Among these genes, DIO2 was upregulated in the reproductively active brain and gonad of both males and females. Neuroactive ligand-receptor genes were activated in male and female brain. Functional enrichment analysis suggested that retinol metabolism was uniquely stimulated in reproductively active males. Genes involved in GnRH signaling and sex hormone synthesis exhibited higher expression levels in brain and gonad during the reproductive season. A co-expression network classified all the genes into 9 modules. The network pinpointed CDC42 as the hub gene that connected the pathways in responsible for modulating reproduction in G. przewalskii. Meanwhile, the sex pheromone receptor gene prostaglandin receptor was identified to link to multiple endocrine receptors, such as GnRHR2 in the network. CONCLUSIONS The current study profiled transcriptomic variations between reproductively active and dormant fish, highlighting the potential regulatory mechanisms of seasonal reproduction in G. przewalskii. Our data suggested that the seasonal regulation of reproduction in G. przewalskii was controlled by the external stimulation of photoperiodic variations. The activated transcription of neuroendocrine and sex hormone synthesis genes contributed to seasonal reproduction regulation in G. przewalskii, which was presumably influenced by the increased day-length during the breeding season.
Collapse
Affiliation(s)
- Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Province Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Sijia Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Province Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianquan Shi
- The Rescue and Rehabilitation Center of Naked Carps in Lake Qinghai, Xining, Qinghai, China
| | - Hongfang Qi
- The Rescue and Rehabilitation Center of Naked Carps in Lake Qinghai, Xining, Qinghai, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Province Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China.
| | - Baosheng Xie
- State Key Laboratory of Plateau Ecology and Agriculture, College of Ecol-Environmental Engineering, Qinghai University, Xining, Qinghai, China.
| |
Collapse
|
40
|
Zada MH, Kubek M, Khan W, Kumar A, Domb A. Dispersible hydrolytically sensitive nanoparticles for nasal delivery of thyrotropin releasing hormone (TRH). J Control Release 2019; 295:278-289. [PMID: 30610951 DOI: 10.1016/j.jconrel.2018.12.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 12/30/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022]
Abstract
Nose-to-brain delivery of drugs is affected by nanoparticles (NPs) deposited on the olfactory surface and absorbed directly into the brain. Thyrotropin releasing hormone (TRH), a water soluble drug used for treating suicidal patients, was incorporated into a fast degrading poly(sebacic anhydride) (PSA) NPs. NPs were prepared by a solvent-antisolvent process under strict anhydrous environment to obtain high TRH loading and to avoid premature PSA degradation and TRH release. PSA and TRH were dissolved in a mixture of dichloromethane and ethanol and added dropwise to a dispersion of mannitol particles in heptane as an antisolvent. Mannitol powder was included in the antisolvent, so that formed NPs adhered to the mannitol microparticles for easy isolation and immediate dispersion in water prior to use. The size, surface charge, and morphology of the TRH-PSA NPs were determined using dynamic light scattering (DLS), zeta-potential, and Scanning Electron Microscopy (SEM), respectively. The NPs prepared were uniform and spherical of ~250 nm. Further, the in vitro release profile of TRH from NPs lasted for 12 h with most TRH released within the first hour in water. Concentration dependent cell toxicity studies revealed low toxicity level at low concentrations of the NPs. Surface adsorption of the NPs was also uniform on the cell surface as examined through the odyssey near infrared fluorescence (NIR) images using Indocyanine green (ICG). The NPs are designed to enable direct delivery to the olfactory epithelium using a refillable nasal atomizer that deposits mist onto the olfactory neuro-epithelium.
Collapse
Affiliation(s)
- Moran Haim Zada
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Michael Kubek
- Anatomy & Cell Biology, Indiana University, HITS 0030L, ANAT, Indianapolis, IN, United States
| | - Wahid Khan
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Awanish Kumar
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Abraham Domb
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
41
|
Jaimes-Hoy L, Romero F, Charli JL, Joseph-Bravo P. Sex Dimorphic Responses of the Hypothalamus-Pituitary-Thyroid Axis to Maternal Separation and Palatable Diet. Front Endocrinol (Lausanne) 2019; 10:445. [PMID: 31354623 PMCID: PMC6637657 DOI: 10.3389/fendo.2019.00445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/20/2019] [Indexed: 12/27/2022] Open
Abstract
Neonatal stress contributes to the development of obesity and has long-lasting effects on elements of the hypothalamus-pituitary-thyroid (HPT) axis. Given the importance of thyroid hormones in metabolic regulation, we studied the effects of maternal separation and a high-fat/high-carbohydrate diet (HFC), offered from puberty or adulthood, on HPT axis activity of adult male and female Wistar rats. Pups were non-handled (NH) or maternally separated (MS) 3 h/day at postnatal days (Pd) 2-21. In a first experiment, at Pd60, rats had access to chow or an HFC diet (cookies, peanuts, chow) for 1 month. Male and female NH and MS rats that consumed the HFC diet increased their caloric intake, body weight, and serum insulin levels; fat weight increased in all groups except in MS males, and serum leptin concentration increased only in females. Mediobasal hypothalamus (MBH) Pomc expression increased in NH-HFC females and Npy decreased in NH-HFC males. MS males showed insulinemia and hypercortisolemia that was attenuated by the HFC diet. The HPT axis activity response to an HFC diet was sex-specific; expression of MBH thyrotropin-releasing hormone-degrading ectoenzyme (Trhde) increased in NH and MS males; serum TSH concentration decreased in NH males, and T4 increased in NH females. In a second experiment, rats were fed chow or an HFC diet from Pd30 or 60 until Pd160 and exposed to 1 h restraint before sacrifice. Regardless of neonatal stress, age of diet exposition, or sex, the HFC diet increased body and fat weight and serum leptin concentration; it induced insulinemia in males, but in females only in Pd30 rats. The HFC diet's capacity to curtail the hypothalamus-pituitary-adrenal axis response to restraint was impaired in MS males. In restrained rats, expression of Trh in the paraventricular nucleus of the hypothalamus, Dio2 and Trhde in MBH, and serum thyroid hormone concentration were altered differently depending on sex, age of diet exposition, and neonatal stress. In conclusion, metabolic alterations associated to an HFC-diet-induced obesity are affected by sex or time of exposition, while various parameters of the HPT axis activity are additionally altered by MS, pointing to the complex interplay that these developmental influences exert on HPT axis activity in adult rats.
Collapse
|
42
|
Parra-Montes de Oca MA, Gutiérrez-Mariscal M, Salmerón-Jiménez MF, Jaimes-Hoy L, Charli JL, Joseph-Bravo P. Voluntary Exercise-Induced Activation of Thyroid Axis and Reduction of White Fat Depots Is Attenuated by Chronic Stress in a Sex Dimorphic Pattern in Adult Rats. Front Endocrinol (Lausanne) 2019; 10:418. [PMID: 31297093 PMCID: PMC6607407 DOI: 10.3389/fendo.2019.00418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/11/2019] [Indexed: 12/25/2022] Open
Abstract
The activity of the hypothalamus-pituitary-thyroid (HPT) axis is inhibited by energy deficit, by acute or chronic stress, but activated by cold exposure or exercise. Because stress curtails acute cold induced activation of HPT, we evaluated the effect of chronic stress on HPT axis response to voluntary exercise, a persistent energy-demanding situation. Adult male and female Wistar rats were exposed to restraint stress, 30 min/day for 2 weeks, or to isolation (Iso) [post-natal day [PND] 30-63]. Exercise was performed (7 p.m.-7 a.m.) in a running wheel, sedentary controls stayed in individual cages (Sed); at 7 a.m. they were housed with their cage mate or individually (Iso); food intake by the exercised group was measured day and night to pair-fed Sed. At sacrifice, hormones, mRNA levels and tissue weights were quantified. Control or restrained adult rats had access to running wheel daily for 2 weeks. Compared to C, exercise decreased white adipose tissue (WAT) mass in females and males, increased hypothalamic paraventricular nucleus (PVN)-Trh expression in males proportionally to exercise performed, and increased TSH and T4 serum concentration in females. These changes were not detected in restrained groups. Starting at PND 63 control (2/cage) and isolated (1/cage) rats either exercised on 10 alternated nights or were sedentary. In control male animals, compared to Sed rats, exercise did not decrease WAT mass, nor changed HPT axis activity, but increased Pomc and deiodinase 2 (Dio2) expression in mediobasal hypothalamus (MBH), adrenergic receptor β3 and uncoupling protein-1 in brown adipose tissue. In control female animals, exercise decreased WAT mass, increased Pomc, Dio2, and Trhde expression in MBH, and TSH serum concentration. Iso females had lower TSH and T4 serum concentration, Dio2 and Trhde expression in MBH than controls. The stress response was higher in isolated males than females, but in males it did not alter the effects of exercise, in contrast to isolated females that had a blunted response to exercise compared to controls. In conclusion, chronic stress interferes with metabolic effects produced by exercise, such as loss of WAT mass, coincident with dampening of HPT activity.
Collapse
|
43
|
Zhang Z, Boelen A, Kalsbeek A, Fliers E. TRH Neurons and Thyroid Hormone Coordinate the Hypothalamic Response to Cold. Eur Thyroid J 2018; 7:279-288. [PMID: 30574457 PMCID: PMC6276749 DOI: 10.1159/000493976] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/21/2018] [Indexed: 12/28/2022] Open
Abstract
Thyroid hormone (TH) plays a key role in regulating body temperature in mammals. Cold exposure stimulates the hypothalamus-pituitary-thyroid (HPT) axis at the hypothalamic level by activating hypophysiotropic thyrotropin-releasing hormone (TRH)-producing neurons, ultimately resulting in increased plasma TH concentrations. Importantly, the local TH metabolism within various cold-responsive organs enables tissue-specific action of TH on heat production and adaption to cold independently of the circulating TH levels. In addition to these neuroendocrine effects, TRH neurons in the hypothalamus also have neural connections with brown adipose tissue (BAT), probably contributing to regulation of thermogenesis by the autonomic nervous system. Recent studies have demonstrated that intrahypothalamic TH has profound metabolic effects on BAT, the liver, and the heart that are mediated via the autonomic nervous system. These effects originate in various hypothalamic nuclei, including the paraventricular nucleus (PVN), the ventromedial nucleus, and recently reported neurons in the anterior hypothalamic area, indicating a potential central function for TH on thermoregulation. Finally, although robust stimulation of the thermogenic program in BAT was shown upon TH administration in the ventromedial hypothalamus, the physiological relevance of these neurally mediated effects of TH is unclear at present. This review provides an overview of studies reporting the role of TH in cold defense, with a focus on recent literature evidencing the centrally mediated effects of TRH and TH.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anita Boelen
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- *Eric Fliers, Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, NL–1105AZ Amsterdam (The Netherlands), E-Mail
| |
Collapse
|
44
|
Endocrine Modulation in Long-Term Karate Practitioners. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1074801. [PMID: 30410552 PMCID: PMC6206564 DOI: 10.1155/2018/1074801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 01/12/2023]
Abstract
Purpose Karate is a martial arts discipline which is widely practiced in the Western world as a form of self-defense, as well as a discipline to achieve physical and mental balance. However, little is known with respect to its specific psychobiological effects, particularly in relation to the influence that it may exert on the endocrine system. Thus, in the present study, we examined the effects of karate on several hormonal parameters of the Hypothalamic-Pituitary-Adrenal and Hypothalamic-Pituitary-Thyroid axes in long-time practitioners. Methods Twenty-two healthy volunteer subjects (12 experimental and 10 controls) participated in the study. Experimental subjects were karate players with a minimum of 3 years of practice in this discipline. Blood samples for the quantification of hormonal parameters were taken in both groups. The Mann-Whitney U test was performed for each variable in order to analyze the differences between groups. Results Statistically significant differences were found in cortisol and thyroid hormones, with the karate group showing lower levels of these hormones as compared to control. Conclusions These findings, therefore, reveal that long-term karate practice is associated with a significant endocrine modulation, which suggests interesting psychobiological and clinical implications. Further research is needed to verify these preliminary results, as well as properly assessing its possible use as a psychosomatic intervention tool.
Collapse
|
45
|
Dos-Santos RC, Grover HM, Reis LC, Ferguson AV, Mecawi AS. Electrophysiological Effects of Ghrelin in the Hypothalamic Paraventricular Nucleus Neurons. Front Cell Neurosci 2018; 12:275. [PMID: 30210300 PMCID: PMC6121211 DOI: 10.3389/fncel.2018.00275] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/07/2018] [Indexed: 12/05/2022] Open
Abstract
The paraventricular nucleus (PVN) is involved in the control of sympathetic tone and the secretion of hormones, both functions known to be influenced by ghrelin, suggesting direct effect of ghrelin in this nucleus. However, the effects of ghrelin on the excitability of different PVN neuronal populations have not been demonstrated. This study assessed the effects of ghrelin on the activity of PVN neurons, correlating the responses to subpopulations of PVN neurons. We used a 64 multielectrode array to examine the effects of ghrelin administration on extracellular spike frequency in PVN neurons recorded in brain slices obtained from male Sprague-Dawley rats. Bath administration of 10 nM ghrelin increased (29/97, 30%) or decreased (37/97, 38%) spike frequency in PVN neurons. The GABAA and glutamate receptors antagonists abolish the decrease in spike frequency, without changes in the proportion of increases in spike frequency (23/53, 43%) induced by ghrelin. The results indicate a direct effect of ghrelin increasing PVN neurons activity and a synaptic dependent effect decreasing PVN neurons activity. The patch clamp recordings showed similar proportions of PVN neurons influenced by 10 nM ghrelin (33/95, 35% depolarized; 29/95, 30% hyperpolarized). Using electrophysiological fingerprints to identify specific subpopulations of PVN neurons we observed that the majority of pre-autonomic neurons (11/18 -61%) were depolarized by ghrelin, while both neuroendocrine (29% depolarizations, 40% hyperpolarizations), and magnocellular neurons (29% depolarizations, 21% hyperpolarizations) showed mixed responses. Finally, to correlate the electrophysiological response and the neurochemical phenotype of PVN neurons, cell cytoplasm was collected after recordings and RT-PCR performed to assess the presence of mRNA for vasopressin, oxytocin, thyrotropin (TRH) and corticotropin (CRH) releasing hormones. The single-cell RT-PCR showed that most TRH-expressing (4/5) and CRH-expressing (3/4) neurons are hyperpolarized in response to ghrelin. In conclusion, ghrelin either directly increases or indirectly decreases the activity of PVN neurons, this suggests that ghrelin acts on inhibitory PVN neurons that, in turn, decrease the activity of TRH-expressing and CRH-expressing neurons in the PVN.
Collapse
Affiliation(s)
- Raoni C Dos-Santos
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Hanna M Grover
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Luís C Reis
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | | | - André S Mecawi
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil.,Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Kumar N, Krishnani KK, Kumar P, Sharma R, Baitha R, Singh DK, Singh NP. Dietary nano-silver: Does support or discourage thermal tolerance and biochemical status in air-breathing fish reared under multiple stressors? J Therm Biol 2018; 77:111-121. [PMID: 30196889 DOI: 10.1016/j.jtherbio.2018.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/25/2018] [Accepted: 08/18/2018] [Indexed: 12/21/2022]
Abstract
Unexpected fluctuations in weather parameters due to global climate change have been observed in all ecosystems worldwide. The aquatic ecosystem shelters a great diversity of fishes in the upper region of the ecosystem which adversely get affected due to their poikilothermic nature. The present study was designed to elucidate the impact of critical temperature minima (CTMin), lethal temperature minima (LTMin), critical temperature maxima (CTMax), and lethal temperature maxima (LTMax) on Channa striatus. Biologically synthesized silver nanoparticles (Ag-NPs) were evaluated for their potential to enhance thermal tolerance and improve the activities of biochemical enzymes of C. striatus reared under lead (Pb) and high temperature (34 °C) for 50 days. Three iso-caloric and iso-nitrogenous diets which included a basal diet and two supplemented diets with Ag-NPs @ 0.5 mg/kg, and 1 mg/kg were used in the study. Results suggested that CTMin and LTMin were significantly (p < 0.01) reduced and CTMax and LTMax were enhanced in the group fed with 0.5 mg/kg Ag-NPs supplemented feed. Pre-exposure to high temperature led to enhanced CTMax and LTMax in C. striatus. The biochemical enzymes involved in protein metabolism, carbohydrate metabolism, acetylcholine esterase and antioxidant activities were found to be normal in fish fed with 0.5 mg/kg Ag-NPs supplemented diet. Bioaccumulation of silver and Pb was determined in different fish tissues and experimental water. Overall, the incorporation of Ag-NPs at 0.5 mg/kg in diet can confer protection to fish against Pb and thermal stress and enhance thermal tolerance of C. striatus.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management (NIASM), Baramati, Pune 413115, India.
| | - K K Krishnani
- ICAR-National Institute of Abiotic Stress Management (NIASM), Baramati, Pune 413115, India
| | - Paritosh Kumar
- ICAR-National Institute of Abiotic Stress Management (NIASM), Baramati, Pune 413115, India
| | - Rupam Sharma
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai 400061, India
| | - Raju Baitha
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, India
| | - Dilip Kumar Singh
- ICAR-Central Institute of Fisheries Education, Salt Lake City, Kolkata Center, Kolkata 700091, India
| | - Narendra Pratap Singh
- ICAR-National Institute of Abiotic Stress Management (NIASM), Baramati, Pune 413115, India
| |
Collapse
|
47
|
Integrating Thyroid Hormone Signaling in Hypothalamic Control of Metabolism: Crosstalk Between Nuclear Receptors. Int J Mol Sci 2018; 19:ijms19072017. [PMID: 29997323 PMCID: PMC6073315 DOI: 10.3390/ijms19072017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 12/18/2022] Open
Abstract
The obesity epidemic is well recognized as a significant global health issue. A better understanding of the energy homeostasis mechanisms could help to identify promising anti-obesity therapeutic strategies. It is well established that the hypothalamus plays a pivotal role governing energy balance. The hypothalamus consists of tightly interconnected and specialized neurons that permit the sensing and integration of several peripheral inputs, including metabolic and hormonal signals for an appropriate physiological response. Current evidence shows that thyroid hormones (THs) constitute one of the key endocrine factors governing the regulation and the integration of metabolic homeostasis at the hypothalamic level. THs modulate numerous genes involved in the central control of metabolism, as TRH (Thyrotropin-Releasing Hormone) and MC4R (Melanocortin 4 Receptor). THs act through their interaction with thyroid hormone receptors (TRs). Interestingly, TH signaling, especially regarding metabolic regulations, involves TRs crosstalk with other metabolically linked nuclear receptors (NRs) including PPAR (Peroxisome proliferator-activated receptor) and LXR (Liver X receptor). In this review, we will summarize current knowledge on the important role of THs integration of metabolic pathways in the central regulation of metabolism. Particularly, we will shed light on the crosstalk between TRs and other NRs in controlling energy homeostasis. This could be an important track for the development of attractive therapeutic compounds.
Collapse
|
48
|
Santos-Silva AP, Andrade MN, Pereira-Rodrigues P, Paiva-Melo FD, Soares P, Graceli JB, Dias GRM, Ferreira ACF, de Carvalho DP, Miranda-Alves L. Frontiers in endocrine disruption: Impacts of organotin on the hypothalamus-pituitary-thyroid axis. Mol Cell Endocrinol 2018; 460:246-257. [PMID: 28774778 DOI: 10.1016/j.mce.2017.07.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/29/2017] [Accepted: 07/29/2017] [Indexed: 10/19/2022]
Abstract
Endocrine disruptors (EDs), chemical substances widely used in industry and ubiquitously distributed in the environment, are able to interfere with the synthesis, release, transport, metabolism, receptor binding, action, or elimination of endogenous hormones. EDs affect homeostasis mainly by acting on nuclear and nonnuclear steroid receptors but also on serotonin, dopamine, norepinephrine and orphan receptors in addition to thyroid hormone receptors. Tributyltin (TBT), an ED widely used as a pesticide and biocide in antifouling paints, has well-documented actions that include inhibiting aromatase and affecting the nuclear receptors PPARγ and RXR. TBT exposure in humans and experimental models has been shown to mainly affect reproductive function and adipocyte differentiation. Since thyroid hormones play a fundamental role in regulating the basal metabolic rate and energy homeostasis, it is crucial to clarify the effects of TBT on the hypothalamus-pituitary-thyroid axis. Therefore, we review herein the main effects of TBT on important metabolic pathways, with emphasis on disruption of the thyroid axis that could contribute to the development of endocrine and metabolic disorders, such as insulin resistance and obesity.
Collapse
Affiliation(s)
- Ana Paula Santos-Silva
- Grupo de Pesquisa, Desenvolvimento e Inovação em Endocrinologia Experimental-GPDIEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Marcelle Novaes Andrade
- Grupo de Pesquisa, Desenvolvimento e Inovação em Endocrinologia Experimental-GPDIEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | - Paula Pereira-Rodrigues
- Grupo de Pesquisa, Desenvolvimento e Inovação em Endocrinologia Experimental-GPDIEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Francisca Diana Paiva-Melo
- Grupo de Pesquisa, Desenvolvimento e Inovação em Endocrinologia Experimental-GPDIEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil
| | - Paula Soares
- Institute for Research and Innovation in Health, University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) - Cancer Signalling & Metabolism, Porto, Portugal; Medical Faculty, University of Porto, Porto, Portugal; Department of Pathology and Oncology, Medical Faculty of Porto University, Porto, Portugal
| | | | - Glaecir Roseni Mundstock Dias
- Grupo de Pesquisa, Desenvolvimento e Inovação em Endocrinologia Experimental-GPDIEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Andrea Claudia Freitas Ferreira
- Grupo de Pesquisa, Desenvolvimento e Inovação em Endocrinologia Experimental-GPDIEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil; Polo de Xerém/NUMPEX, Universidade Federal do Rio de Janeiro, Brazil
| | - Denise Pires de Carvalho
- Grupo de Pesquisa, Desenvolvimento e Inovação em Endocrinologia Experimental-GPDIEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Grupo de Pesquisa, Desenvolvimento e Inovação em Endocrinologia Experimental-GPDIEEx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Brazil; Pós-graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
49
|
Fanibunda SE, Desouza LA, Kapoor R, Vaidya RA, Vaidya VA. Thyroid Hormone Regulation of Adult Neurogenesis. VITAMINS AND HORMONES 2018; 106:211-251. [DOI: 10.1016/bs.vh.2017.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
T-Time again - The diversity of actions of thyroid hormones (TH), their aminergic (TAM) and acetic acid (TAc) metabolites. Mol Cell Endocrinol 2017; 458:1-5. [PMID: 29169509 DOI: 10.1016/j.mce.2017.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|