1
|
Joseph SM, Sathidevi PS. An Automated cDNA Microarray Image Analysis for the Determination of Gene Expression Ratios. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:136-150. [PMID: 34910637 DOI: 10.1109/tcbb.2021.3135650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This paper proposes a fully automated technique for cDNA microarray image analysis. Initially, an effective preprocessing stage combined with gridding is built to get the individual spot regions of images. Current work begins with the proposal of a new rule to get the foreground (spot) and background regions in the spot blocks, which uses TV-L1 image denoising, spot block binarization, and finds the most accurate spot label by measuring the centroid differences of labelled regions in the block with that of the spot block centroid. The credibility of the segmentation rule on real images is evaluated by metrics: mean absolute error (MAE) and coefficient of variation (CV) and on synthetic images by metrics: probability of error (PE) and discrepancy distance (DD). The performance values on real and synthetic datasets reveal better results than the competitive methods. After the segmentation, prior to the spot intensity extraction, background intensity correction and flagging of noisy spots are executed. Using the lowess method, intensities are normalized, and gene expression ratios are determined. To comprehend the linearities of red and green intensities and to discern up and down-regulated genes (abnormal), fold-change factor, scatter and box plots are also used to represent the gene expression levels.
Collapse
|
2
|
Ahn SY, Liu J, Vellampatti S, Wu Y, Um SH. DNA Transformations for Diagnosis and Therapy. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2008279. [PMID: 33613148 PMCID: PMC7883235 DOI: 10.1002/adfm.202008279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/22/2020] [Indexed: 05/03/2023]
Abstract
Due to its unique physical and chemical characteristics, DNA, which is known only as genetic information, has been identified and utilized as a new material at an astonishing rate. The role of DNA has increased dramatically with the advent of various DNA derivatives such as DNA-RNA, DNA-metal hybrids, and PNA, which can be organized into 2D or 3D structures by exploiting their complementary recognition. Due to its intrinsic biocompatibility, self-assembly, tunable immunogenicity, structural programmability, long stability, and electron-rich nature, DNA has generated major interest in electronic and catalytic applications. Based on its advantages, DNA and its derivatives are utilized in several fields where the traditional methodologies are ineffective. Here, the present challenges and opportunities of DNA transformations are demonstrated, especially in biomedical applications that include diagnosis and therapy. Natural DNAs previously utilized and transformed into patterns are not found in nature due to lack of multiplexing, resulting in low sensitivity and high error frequency in multi-targeted therapeutics. More recently, new platforms have advanced the diagnostic ability and therapeutic efficacy of DNA in biomedicine. There is confidence that DNA will play a strong role in next-generation clinical technology and can be used in multifaceted applications.
Collapse
Affiliation(s)
- So Yeon Ahn
- School of Chemical EngineeringSungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Korea
| | - Jin Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaSchool of Chemistry and Chemical Engineering Huazhong University of Science and Technology1037 Luoyu LoadWuhan430074China
| | - Srivithya Vellampatti
- Institute of Convergent Chemical Engineering and TechnologySungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Korea
- Present address:
Progeneer, Inc.#1002, 12, Digital‐ro 31‐gil, Guro‐guSeoul08380Korea
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaSchool of Chemistry and Chemical Engineering Huazhong University of Science and Technology1037 Luoyu LoadWuhan430074China
| | - Soong Ho Um
- School of Chemical EngineeringSKKU Advanced Institute of Nanotechnology (SAINT)Biomedical Institute for Convergence at SKKU (BICS) and Institute of Quantum Biophysics (IQB)Sungkyunkwan University2066, Seobu‐ro, Jangan‐guSuwonGyeonggi‐do16419Korea
- Progeneer Inc.#1002, 12, Digital‐ro 31‐gil, Guro‐guSeoul08380Korea
| |
Collapse
|
3
|
Liu ZL, Ma M. Pathway-based signature transcriptional profiles as tolerance phenotypes for the adapted industrial yeast Saccharomyces cerevisiae resistant to furfural and HMF. Appl Microbiol Biotechnol 2020; 104:3473-3492. [PMID: 32103314 DOI: 10.1007/s00253-020-10434-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/25/2019] [Accepted: 02/04/2020] [Indexed: 10/24/2022]
Abstract
The industrial yeast Saccharomyces cerevisiae has a plastic genome with a great flexibility in adaptation to varied conditions of nutrition, temperature, chemistry, osmolarity, and pH in diversified applications. A tolerant strain against 2-furaldehyde (furfural) and 5-hydroxymethyl-2-furaldehyde (HMF) was successfully obtained previously by adaptation through environmental engineering toward development of the next-generation biocatalyst. Using a time-course comparative transcriptome analysis in response to a synergistic challenge of furfural-HMF, here we report tolerance phenotypes of pathway-based transcriptional profiles as components of the adapted defensive system for the tolerant strain NRRL Y-50049. The newly identified tolerance phenotypes were involved in biosynthesis superpathway of sulfur amino acids, defensive reduction-oxidation reaction process, cell wall response, and endogenous and exogenous cellular detoxification. Key transcription factors closely related to these pathway-based components, such as Yap1, Met4, Met31/32, Msn2/4, and Pdr1/3, were also presented. Many important genes in Y-50049 acquired an enhanced transcription background and showed continued increased expressions during the entire lag phase against furfural-HMF. Such signature expressions distinguished tolerance phenotypes of Y-50049 from the innate stress response of its progenitor NRRL Y-12632, an industrial type strain. The acquired yeast tolerance is believed to be evolved in various mechanisms at the genomic level. Identification of legitimate tolerance phenotypes provides a basis for continued investigations on pathway interactions and dissection of mechanisms of yeast tolerance and adaptation at the genomic level.
Collapse
Affiliation(s)
- Z Lewis Liu
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service,U.S. Department of Agriculture, 1815 N University Street, Peoria, IL, 61604, USA.
| | - Menggen Ma
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service,U.S. Department of Agriculture, 1815 N University Street, Peoria, IL, 61604, USA
| |
Collapse
|
4
|
Ghanem N, Salilew-Wondim D, Hoelker M, Schellander K, Tesfaye D. Transcriptome profile and association study revealed STAT3 gene as a potential quality marker of bovine gametes. ZYGOTE 2020; 28:1-15. [PMID: 31928565 DOI: 10.1017/s0967199419000765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study was aimed to investigate differences in molecular signatures in oocytes derived from Holstein-Friesian heifers with different genetic merit for fertility, euthanized during day 0 or day 12 of the estrous cycle. Moreover, association between single nucleotide polymorphisms (SNPs) of ODC1 and STAT3 genes and bull fertility traits was investigated. The gene expression patterns were analyzed using cDNA array and validated with quantitative real-time polymerase chain reaction (PCR). The result revealed that several genes have shown not only to be regulated by fertility merit but also by the day of oocyte recovery during the estrous cycle. The STAT3 gene was found to be upregulated in oocytes recovered from animals with high fertility merit at both day 0 and day 12. Some other genes like PTTG1, ODC1 and TUBA1C were downregulated at day 0 and upregulated at day 12 in high, compared with low, fertility merit recovered oocytes. In contrast, the transcript abundance of TPM3 was upregulated at day 0 and downregulated at day 12 in high, compared with low, fertility merit recovered oocytes. In addition, ODC1 and STAT3 were found to be associated (P < 0.05) with sperm quality traits as well as flow cytometry parameters. Therefore, the expression of several candidate genes including ODC1 and STAT3 was related to the genetic merit of the cow. In addition polymorphisms in these two genes were found to be associated with bull semen quality.
Collapse
Affiliation(s)
- Nasser Ghanem
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Dessie Salilew-Wondim
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115Bonn, Germany
| | - Michael Hoelker
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115Bonn, Germany
| | - Karl Schellander
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115Bonn, Germany
| | - Dawit Tesfaye
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115Bonn, Germany
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory (ARBL), Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
5
|
Eremina OE, Zatsepin TS, Farzan VM, Veselova IA, Zvereva MI. DNA detection by dye labeled oligonucleotides using surface enhanced Raman spectroscopy. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Rapid pathogen identification using a novel microarray-based assay with purulent meningitis in cerebrospinal fluid. Sci Rep 2018; 8:15965. [PMID: 30374098 PMCID: PMC6206030 DOI: 10.1038/s41598-018-34051-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/24/2018] [Indexed: 11/23/2022] Open
Abstract
In order to improve the diagnosis of pathogenic bacteria in cerebrospinal fluid (CSF) with purulent meningitis, we developed a DNA microarray technique for simultaneous detection and identification of seven target bacterium. DNA were extracted from 24 CSF samples with purulent meningitis (or suspected purulent meningitis). The specific genes of each pathogen were chosen as the amplification target, performed the polymerase chain reaction (PCR), labeled with a fluorescence dye, and hybridized to the oligonucleotide probes on the microarray. There is no significant cross-hybridization fluorescent signal occurred in untargeted bacteria. There were 87.5% (21/24) positive results in DNA microarray compared with the 58.3% (14/24) of the CSF culture test. Of which 58.3% (14/24) of the patients with culture-confirmed purulent meningitis, 37.5% (9/24) patients who were not confirmed by culture test but were demonstrated by the clinical diagnosis and DNA microarray. Multiple bacterial infections were detected in 5 cases by the microarray. In addition, the number of gene copies was carried out to determine the sensitivity of this technique, which was shown to be 3.5 × 101 copies/μL. The results revealed that the microarray technique which target pathogens of the CSF specimen is better specificity, accuracy, and sensitivity than traditional culture method. The microarray method is an effective tool for rapidly detecting more target pathogens and identifying the subtypes of strains which can eliminate the impact of the different individuals with purulent meningitis for prompt diagnosis and treatment.
Collapse
|
7
|
Lee HJ, Georgiadou A, Otto TD, Levin M, Coin LJ, Conway DJ, Cunnington AJ. Transcriptomic Studies of Malaria: a Paradigm for Investigation of Systemic Host-Pathogen Interactions. Microbiol Mol Biol Rev 2018; 82:e00071-17. [PMID: 29695497 PMCID: PMC5968457 DOI: 10.1128/mmbr.00071-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcriptomics, the analysis of genome-wide RNA expression, is a common approach to investigate host and pathogen processes in infectious diseases. Technical and bioinformatic advances have permitted increasingly thorough analyses of the association of RNA expression with fundamental biology, immunity, pathogenesis, diagnosis, and prognosis. Transcriptomic approaches can now be used to realize a previously unattainable goal, the simultaneous study of RNA expression in host and pathogen, in order to better understand their interactions. This exciting prospect is not without challenges, especially as focus moves from interactions in vitro under tightly controlled conditions to tissue- and systems-level interactions in animal models and natural and experimental infections in humans. Here we review the contribution of transcriptomic studies to the understanding of malaria, a parasitic disease which has exerted a major influence on human evolution and continues to cause a huge global burden of disease. We consider malaria a paradigm for the transcriptomic assessment of systemic host-pathogen interactions in humans, because much of the direct host-pathogen interaction occurs within the blood, a readily sampled compartment of the body. We illustrate lessons learned from transcriptomic studies of malaria and how these lessons may guide studies of host-pathogen interactions in other infectious diseases. We propose that the potential of transcriptomic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in study design rather than as a consequence of technological constraints. Further advances will require the integration of transcriptomic data with analytical approaches from other scientific disciplines, including epidemiology and mathematical modeling.
Collapse
Affiliation(s)
- Hyun Jae Lee
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | | | - Thomas D Otto
- Centre of Immunobiology, University of Glasgow, Glasgow, United Kingdom
| | - Michael Levin
- Section of Paediatrics, Imperial College, London, United Kingdom
| | - Lachlan J Coin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - David J Conway
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | |
Collapse
|
8
|
Liu J, Gao W, Pu L, Wei J, Xin Z, Wang Y, Shi T, Guo C. Modulation of hepatic gene expression profiles by vitamin B 1, vitamin B 2, and niacin supplementation in mice exposed to acute hypoxia. Appl Physiol Nutr Metab 2018; 43:844-853. [PMID: 29566343 DOI: 10.1139/apnm-2017-0468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was aimed to observe the effects of vitamin B1, vitamin B2, and niacin supplementation on hepatic gene expression profiles in mice exposed to acute hypoxia. Thirty mice were randomly divided into normal, acute hypoxia, and acute hypoxia plus vitamin B1, vitamin B2, and niacin supplementation groups and fed corresponding diets for 2 weeks and then exposed to a simulated altitude of 6000 m for 8 h. Hepatic gene expression profiles were analyzed using a microarray technique. Several biochemical markers were also assayed. The results showed that a total of 2476 genes were expressed differentially after acute hypoxia exposure (1508 upregulated genes and 968 downregulated genes). Compared with the acute hypoxia group, there were 1382 genes differentially expressed (626 upregulated genes and 756 downregulated genes) in the acute hypoxia plus vitamin B1, vitamin B2, and niacin supplementation group. Pathway analysis indicated that carbohydrate, lipid, and amino acid metabolism, as well as electron transfer chain, were improved to some extent after vitamin B1, vitamin B2, and niacin supplementation. Supportive results were obtained from biochemical assays. Our findings suggest that the supplementation of vitamin B1, vitamin B2, and niacin is beneficial in improving nutritional metabolism partly via gene expression under acute hypoxia condition.
Collapse
Affiliation(s)
- Jin Liu
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin, 300050, China.,Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin, 300050, China
| | - Weina Gao
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin, 300050, China.,Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin, 300050, China
| | - Lingling Pu
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin, 300050, China.,Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin, 300050, China
| | - Jingyu Wei
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin, 300050, China.,Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin, 300050, China
| | - Zhonghao Xin
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin, 300050, China.,Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin, 300050, China
| | - Yawen Wang
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin, 300050, China.,Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin, 300050, China
| | - Tala Shi
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin, 300050, China.,Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin, 300050, China
| | - Changjiang Guo
- Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin, 300050, China.,Department of Nutrition, Tianjin Institute of Health and Environmental Medicine, Tianjin, 300050, China
| |
Collapse
|
9
|
Aerts HJWL. Data Science in Radiology: A Path Forward. Clin Cancer Res 2018; 24:532-534. [PMID: 29097379 PMCID: PMC5810958 DOI: 10.1158/1078-0432.ccr-17-2804] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/20/2017] [Accepted: 10/31/2017] [Indexed: 11/16/2022]
Abstract
Artificial intelligence (AI), especially deep learning, has the potential to fundamentally alter clinical radiology. AI algorithms, which excel in quantifying complex patterns in data, have shown remarkable progress in applications ranging from self-driving cars to speech recognition. The AI application within radiology, known as radiomics, can provide detailed quantifications of the radiographic characteristics of underlying tissues. This information can be used throughout the clinical care path to improve diagnosis and treatment planning, as well as assess treatment response. This tremendous potential for clinical translation has led to a vast increase in the number of research studies being conducted in the field, a number that is expected to rise sharply in the future. Many studies have reported robust and meaningful findings; however, a growing number also suffer from flawed experimental or analytic designs. Such errors could not only result in invalid discoveries, but also may lead others to perpetuate similar flaws in their own work. This perspective article aims to increase awareness of the issue, identify potential reasons why this is happening, and provide a path forward. Clin Cancer Res; 24(3); 532-4. ©2017 AACR.
Collapse
Affiliation(s)
- Hugo J W L Aerts
- Harvard Medical School, Dana-Farber Cancer Institute, and Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
10
|
Transcriptomic Studies of the Effect of nod Gene-Inducing Molecules in Rhizobia: Different Weapons, One Purpose. Genes (Basel) 2017; 9:genes9010001. [PMID: 29267254 PMCID: PMC5793154 DOI: 10.3390/genes9010001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 12/16/2022] Open
Abstract
Simultaneous quantification of transcripts of the whole bacterial genome allows the analysis of the global transcriptional response under changing conditions. RNA-seq and microarrays are the most used techniques to measure these transcriptomic changes, and both complement each other in transcriptome profiling. In this review, we exhaustively compiled the symbiosis-related transcriptomic reports (microarrays and RNA sequencing) carried out hitherto in rhizobia. This review is specially focused on transcriptomic changes that takes place when five rhizobial species, Bradyrhizobium japonicum (=diazoefficiens) USDA 110, Rhizobium leguminosarum biovar viciae 3841, Rhizobium tropici CIAT 899, Sinorhizobium (=Ensifer) meliloti 1021 and S. fredii HH103, recognize inducing flavonoids, plant-exuded phenolic compounds that activate the biosynthesis and export of Nod factors (NF) in all analysed rhizobia. Interestingly, our global transcriptomic comparison also indicates that each rhizobial species possesses its own arsenal of molecular weapons accompanying the set of NF in order to establish a successful interaction with host legumes.
Collapse
|
11
|
Khatibi PA, Chou CJ, Loder AJ, Zurawski JV, Adams MWW, Kelly RM. Impact of growth mode, phase, and rate on the metabolic state of the extremely thermophilic archaeon Pyrococcus furiosus. Biotechnol Bioeng 2017; 114:2947-2954. [PMID: 28840937 DOI: 10.1002/bit.26408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/15/2017] [Accepted: 08/21/2017] [Indexed: 01/05/2023]
Abstract
The archaeon Pyrococcus furiosus is emerging as a metabolic engineering platform for production of fuels and chemicals, such that more must be known about this organism's characteristics in bioprocessing contexts. Its ability to grow at temperatures from 70 to greater than 100°C and thereby avoid contamination, offers the opportunity for long duration, continuous bioprocesses as an alternative to batch systems. Toward that end, we analyzed the transcriptome of P. furiosus to reveal its metabolic state during different growth modes that are relevant to bioprocessing. As cells progressed from exponential to stationary phase in batch cultures, genes involved in biosynthetic pathways important to replacing diminishing supplies of key nutrients and genes responsible for the onset of stress responses were up-regulated. In contrast, during continuous culture, the progression to higher dilution rates down-regulated many biosynthetic processes as nutrient supplies were increased. Most interesting was the contrast between batch exponential phase and continuous culture at comparable growth rates (∼0.4 hr-1 ), where over 200 genes were differentially transcribed, indicating among other things, N-limitation in the chemostat and the onset of oxidative stress. The results here suggest that cellular processes involved in carbon and electron flux in P. furiosus were significantly impacted by growth mode, phase and rate, factors that need to be taken into account when developing successful metabolic engineering strategies.
Collapse
Affiliation(s)
- Piyum A Khatibi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| | - Chung-Jung Chou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| | - Andrew J Loder
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| | - Jeffrey V Zurawski
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
12
|
Acero Sánchez JL, Joda H, Henry OYF, Solnestam BW, Kvastad L, Akan PS, Lundeberg J, Laddach N, Ramakrishnan D, Riley I, Schwind C, Latta D, O'Sullivan CK. Electrochemical Genetic Profiling of Single Cancer Cells. Anal Chem 2017; 89:3378-3385. [PMID: 28211676 DOI: 10.1021/acs.analchem.6b03973] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent understandings in the development and spread of cancer have led to the realization of novel single cell analysis platforms focused on circulating tumor cells (CTCs). A simple, rapid, and inexpensive analytical platform capable of providing genetic information on these rare cells is highly desirable to support clinicians and researchers alike to either support the selection or adjustment of therapy or provide fundamental insights into cell function and cancer progression mechanisms. We report on the genetic profiling of single cancer cells, exploiting a combination of multiplex ligation-dependent probe amplification (MLPA) and electrochemical detection. Cells were isolated using laser capture and lysed, and the mRNA was extracted and transcribed into DNA. Seven markers were amplified by MLPA, which allows for the simultaneous amplification of multiple targets with a single primer pair, using MLPA probes containing unique barcode sequences. Capture probes complementary to each of these barcode sequences were immobilized on a printed circuit board (PCB) manufactured electrode array and exposed to single-stranded MLPA products and subsequently to a single stranded DNA reporter probe bearing a HRP molecule, followed by substrate addition and fast electrochemical pulse amperometric detection. We present a simple, rapid, flexible, and inexpensive approach for the simultaneous quantification of multiple breast cancer related mRNA markers, with single tumor cell sensitivity.
Collapse
Affiliation(s)
- Josep Ll Acero Sánchez
- Universitat Rovira i Virgili , Departament de Enginyeria Química, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Hamdi Joda
- Universitat Rovira i Virgili , Departament de Enginyeria Química, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Olivier Y F Henry
- Universitat Rovira i Virgili , Departament de Enginyeria Química, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Beata W Solnestam
- KTH Royal Institute of Technology , Science for Life Laboratory (SciLifeLab Stockholm), School of Biotechnology, Division of Gene Technology, SE-171 65 Solna, Sweden
| | - Linda Kvastad
- KTH Royal Institute of Technology , Science for Life Laboratory (SciLifeLab Stockholm), School of Biotechnology, Division of Gene Technology, SE-171 65 Solna, Sweden
| | - Pelin S Akan
- KTH Royal Institute of Technology , Science for Life Laboratory (SciLifeLab Stockholm), School of Biotechnology, Division of Gene Technology, SE-171 65 Solna, Sweden
| | - Joakim Lundeberg
- KTH Royal Institute of Technology , Science for Life Laboratory (SciLifeLab Stockholm), School of Biotechnology, Division of Gene Technology, SE-171 65 Solna, Sweden
| | - Nadja Laddach
- MRC-Holland , Willem Schoutenstraat 1, 1057 DL Amsterdam, The Netherlands
| | - Dheeraj Ramakrishnan
- Labman Automation Ltd. , Seamer Hill, Seamer, Stokesley, North Yorkshire TS9 5NQ, United Kingdom
| | - Ian Riley
- Labman Automation Ltd. , Seamer Hill, Seamer, Stokesley, North Yorkshire TS9 5NQ, United Kingdom
| | - Carmen Schwind
- Fraunhofer (ICT-IMM) , Carl-Zeiss-Str. 18-20, 55129 Mainz, Germany
| | - Daniel Latta
- Fraunhofer (ICT-IMM) , Carl-Zeiss-Str. 18-20, 55129 Mainz, Germany
| | - Ciara K O'Sullivan
- Universitat Rovira i Virgili , Departament de Enginyeria Química, Av. Països Catalans 26, 43007 Tarragona, Spain.,Institució Catalana de Recerca i Estudis Avançats , Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
13
|
Microarray dataset on the genome-wide expression profile of an M. smegmatis amtR mutant (JR258) compared to M. smegmatis mc 2155. Data Brief 2016; 10:38-40. [PMID: 27942565 PMCID: PMC5137332 DOI: 10.1016/j.dib.2016.11.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/14/2016] [Accepted: 11/15/2016] [Indexed: 12/04/2022] Open
Abstract
The dataset presented here describes a microarray experiment to identify the AmtR regulon of Mycobacterium smegmatis comparing the transcription profile of a M. smegmatis amtR mutant to M. smegmatis wild-type. The raw and processed microarray data are available in the ArrayExpress database under Accession Number E-MTAB-4857 and interpretation of this data is found in the research article “Structure and function of AmtR in Mycobacterium smegmatis: implications for post-transcriptional regulation of urea metabolism through a small antisense RNA” (Petridis et al., in press) [1].
Collapse
|
14
|
Petridis M, Vickers C, Robson J, McKenzie JL, Bereza M, Sharrock A, Aung HL, Arcus VL, Cook GM. Structure and Function of AmtR in Mycobacterium smegmatis: Implications for Post-Transcriptional Regulation of Urea Metabolism through a Small Antisense RNA. J Mol Biol 2016; 428:4315-4329. [PMID: 27640309 DOI: 10.1016/j.jmb.2016.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 01/19/2023]
Abstract
Soil-dwelling bacteria of the phylum actinomycetes generally harbor either GlnR or AmtR as a global regulator of nitrogen metabolism. Mycobacterium smegmatis harbors both of these canonical regulators; GlnR regulates the expression of key genes involved in nitrogen metabolism, while the function and signal transduction pathway of AmtR in M. smegmatis remains largely unknown. Here, we report the structure and function of the M. smegmatis AmtR and describe the role of AmtR in the regulation of nitrogen metabolism in response to nitrogen availability. To determine the function of AmtR in M. smegmatis, we performed genome-wide expression profiling comparing the wild-type versus an ∆amtR mutant and identified significant changes in the expression of 11 genes, including an operon involved in urea degradation. An AmtR consensus-binding motif (CTGTC-N4-GACAG) was identified in the promoter region of this operon, and ligand-independent, high-affinity AmtR binding was validated by both electrophoretic mobility shift assays and surface plasmon resonance measurements. We confirmed the transcription of a cis-encoded small RNA complementary to the gene encoding AmtR under nitrogen excess, and we propose a post-transcriptional regulatory mechanism for AmtR. The three-dimensional X-ray structure of AmtR at 2.0Å revealed an overall TetR-like dimeric structure, and the alignment of the M. smegmatis AmtR and Corynebacterium glutamicum AmtR regulatory domains showed poor structural conservation, providing a potential explanation for the lack of M. smegmatis AmtR interaction with the adenylylated PII protein. Taken together, our data suggest an AmtR (repressor)/GlnR (activator) competitive binding mechanism for transcriptional regulation of urea metabolism that is controlled by a cis-encoded small antisense RNA.
Collapse
Affiliation(s)
- Michael Petridis
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand.
| | - Chelsea Vickers
- Department of Biological Sciences, University of Waikato, Hamilton 3240, New Zealand.
| | - Jennifer Robson
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand.
| | - Joanna L McKenzie
- Department of Biological Sciences, University of Waikato, Hamilton 3240, New Zealand.
| | - Magdalena Bereza
- Department of Biological Sciences, University of Waikato, Hamilton 3240, New Zealand.
| | - Abigail Sharrock
- Department of Biological Sciences, University of Waikato, Hamilton 3240, New Zealand.
| | - Htin Lin Aung
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand.
| | - Vickery L Arcus
- Department of Biological Sciences, University of Waikato, Hamilton 3240, New Zealand.
| | - Gregory M Cook
- Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand.
| |
Collapse
|
15
|
Popa C, Li L, Gil S, Tatjer L, Hashii K, Tabuchi M, Coll NS, Ariño J, Valls M. The effector AWR5 from the plant pathogen Ralstonia solanacearum is an inhibitor of the TOR signalling pathway. Sci Rep 2016; 6:27058. [PMID: 27257085 PMCID: PMC4891724 DOI: 10.1038/srep27058] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/12/2016] [Indexed: 01/31/2023] Open
Abstract
Bacterial pathogens possess complex type III effector (T3E) repertoires that are translocated inside the host cells to cause disease. However, only a minor proportion of these effectors have been assigned a function. Here, we show that the T3E AWR5 from the phytopathogen Ralstonia solanacearum is an inhibitor of TOR, a central regulator in eukaryotes that controls the switch between cell growth and stress responses in response to nutrient availability. Heterologous expression of AWR5 in yeast caused growth inhibition and autophagy induction coupled to massive transcriptomic changes, unmistakably reminiscent of TOR inhibition by rapamycin or nitrogen starvation. Detailed genetic analysis of these phenotypes in yeast, including suppression of AWR5-induced toxicity by mutation of CDC55 and TPD3, encoding regulatory subunits of the PP2A phosphatase, indicated that AWR5 might exert its function by directly or indirectly inhibiting the TOR pathway upstream PP2A. We present evidence in planta that this T3E caused a decrease in TOR-regulated plant nitrate reductase activity and also that normal levels of TOR and the Cdc55 homologues in plants are required for R. solanacearum virulence. Our results suggest that the TOR pathway is a bona fide T3E target and further prove that yeast is a useful platform for T3E function characterisation.
Collapse
Affiliation(s)
- Crina Popa
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
- Genetics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Liang Li
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - Sergio Gil
- Genetics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Laura Tatjer
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia, Spain
| | - Keisuke Hashii
- Laboratory of Applied Molecular and Cell Biology, Kagawa University, Kagawa, Japan
| | - Mitsuaki Tabuchi
- Laboratory of Applied Molecular and Cell Biology, Kagawa University, Kagawa, Japan
| | - Núria S. Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia, Spain
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
- Genetics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
16
|
Reyes-Pérez A, Vargas MDC, Hernández M, Aguirre-von-Wobeser E, Pérez-Rueda E, Encarnacion S. Transcriptomic analysis of the process of biofilm formation in Rhizobium etli CFN42. Arch Microbiol 2016; 198:847-60. [PMID: 27226009 DOI: 10.1007/s00203-016-1241-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/17/2016] [Accepted: 05/06/2016] [Indexed: 12/19/2022]
Abstract
Organisms belonging to the genus Rhizobium colonize leguminous plant roots and establish a mutually beneficial symbiosis. Biofilms are structured ecosystems in which microbes are embedded in a matrix of extracellular polymeric substances, and their development is a multistep process. The biofilm formation processes of R. etli CFN42 were analyzed at an early (24-h incubation) and mature stage (72 h), comparing cells in the biofilm with cells remaining in the planktonic stage. A genome-wide microarray analysis identified 498 differentially regulated genes, implying that expression of ~8.3 % of the total R. etli gene content was altered during biofilm formation. In biofilms-attached cells, genes encoding proteins with diverse functions were overexpressed including genes involved in membrane synthesis, transport and chemotaxis, repression of flagellin synthesis, as well as surface components (particularly exopolysaccharides and lipopolysaccharides), in combination with the presence of activators or stimulators of N-acyl-homoserine lactone synthesis This suggests that R. etli is able to sense surrounding environmental conditions and accordingly regulate the transition from planktonic and biofilm growth. In contrast, planktonic cells differentially expressed genes associated with transport, motility (flagellar and twitching) and inhibition of exopolysaccharide synthesis. To our knowledge, this is the first report of nodulation and nitrogen assimilation-related genes being involved in biofilm formation in R. etli. These results contribute to the understanding of the physiological changes involved in biofilm formation by bacteria.
Collapse
Affiliation(s)
- Agustín Reyes-Pérez
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico.,Facultad de Ciencias, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Apartado Postal 70-153, C.P. 0415, Cuernavaca, D.F., Mexico.,Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, 62209, Mexico
| | - María Del Carmen Vargas
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico
| | - Magdalena Hernández
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico
| | - Eneas Aguirre-von-Wobeser
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A. C. Coatepec 351, El Haya, Xalapa, Veracruz, Mexico
| | - Ernesto Pérez-Rueda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos, Mexico
| | - Sergio Encarnacion
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
17
|
Katsigiannis S, Zacharia E, Maroulis D. MIGS-GPU: Microarray Image Gridding and Segmentation on the GPU. IEEE J Biomed Health Inform 2016; 21:867-874. [PMID: 26960232 DOI: 10.1109/jbhi.2016.2537922] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Complementary DNA (cDNA) microarray is a powerful tool for simultaneously studying the expression level of thousands of genes. Nevertheless, the analysis of microarray images remains an arduous and challenging task due to the poor quality of the images that often suffer from noise, artifacts, and uneven background. In this study, the MIGS-GPU [Microarray Image Gridding and Segmentation on Graphics Processing Unit (GPU)] software for gridding and segmenting microarray images is presented. MIGS-GPU's computations are performed on the GPU by means of the compute unified device architecture (CUDA) in order to achieve fast performance and increase the utilization of available system resources. Evaluation on both real and synthetic cDNA microarray images showed that MIGS-GPU provides better performance than state-of-the-art alternatives, while the proposed GPU implementation achieves significantly lower computational times compared to the respective CPU approaches. Consequently, MIGS-GPU can be an advantageous and useful tool for biomedical laboratories, offering a user-friendly interface that requires minimum input in order to run.
Collapse
|
18
|
Pastor-Flores D, Ferrer-Dalmau J, Bahí A, Boleda M, Biondi RM, Casamayor A. Depletion of yeast PDK1 orthologs triggers a stress-like transcriptional response. BMC Genomics 2015; 16:719. [PMID: 26391581 PMCID: PMC4578605 DOI: 10.1186/s12864-015-1903-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 09/09/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pkh proteins are the PDK1 orthologs in S. cerevisiae. They have redundant and essential activity and are responsible for the phosphorylation of several members of the AGC family of protein kinases. Pkh proteins have been involved in several cellular functions, including cell wall integrity and endocytosis. However the global expression changes caused by their depletion are still unknown. RESULTS A doxycycline-repressible tetO7 promoter driving the expression of PKH2 in cells carrying deletions of the PKH1 and PKH3 genes allowed us to progressively deplete cells from Pkh proteins when treated with doxycycline. Global gene expression analysis indicate that depletion of Pkh results in the up-regulation of genes involved in the accumulation of glycogen and also of those related to stress responses. Moreover, genes involved in the ion transport were quickly down-regulated when the levels of Pkh decreased. The reduction in the mRNA levels required for protein translation, however, was only observed after longer doxycycline treatment (24 h). We uncovered that Pkh is important for the proper transcriptional response to heat shock, and is mostly required for the effects driven by the transcription factors Hsf1 and Msn2/Msn4, but is not required for down-regulation of the mRNA coding for ribosomal proteins. CONCLUSIONS By using the tetO7 promoter we elucidated for the first time the transcriptomic changes directly or indirectly caused by progressive depletion of Pkh. Furthermore, this system enabled the characterization of the transcriptional response triggered by heat shock in wild-type and Pkh-depleted cells, showing that about 40 % of the observed expression changes were, to some degree, dependent on Pkh.
Collapse
Affiliation(s)
- Daniel Pastor-Flores
- Research Group PhosphoSites, Medizinische Klinik I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany. .,Present address: Division of Redox Regulation, German Cancer Research Center, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Jofre Ferrer-Dalmau
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain. .,Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain.
| | - Anna Bahí
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain. .,Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain.
| | - Martí Boleda
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain. .,Laboratoire d'Ecologie Alpine (LECA), UMR 5553, CNRS-Université Joseph Fourie, BP 53, 38041, Grenoble, France.
| | - Ricardo M Biondi
- Research Group PhosphoSites, Medizinische Klinik I, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| | - Antonio Casamayor
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain. .,Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain.
| |
Collapse
|
19
|
Bergeron S, Laforte V, Lo PS, Li H, Juncker D. Evaluating mixtures of 14 hygroscopic additives to improve antibody microarray performance. Anal Bioanal Chem 2015; 407:8451-62. [PMID: 26345442 DOI: 10.1007/s00216-015-8992-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 11/27/2022]
Abstract
Microarrays allow the miniaturization and multiplexing of biological assays while only requiring minute amounts of samples. As a consequence of the small volumes used for spotting and the assays, evaporation often deteriorates the quality, reproducibility of spots, and the overall assay performance. Glycerol is commonly added to antibody microarray printing buffers to decrease evaporation; however, it often decreases the binding of antibodies to the surface, thereby negatively affecting assay sensitivity. Here, combinations of 14 hygroscopic chemicals were used as additives to printing buffers for contact-printed antibody microarrays on four different surface chemistries. The ability of the additives to suppress evaporation was quantified by measuring the residual buffer volume in open quill pins over time. The seven best additives were then printed either individually or as a 1:1 mixture of two additives, and the homogeneity, intensity, and reproducibility of both the spotted protein and of a fluorescently labeled analyte in an assay were quantified. Among the 28 combinations on the four slides, many were found to outperform glycerol, and the best additive mixtures were further evaluated by changing the ratio of the two additives. We observed that the optimal additive mixture was dependent on the slide chemistry, and that it was possible to increase the binding of antibodies to the surface threefold compared to 50 % glycerol, while decreasing whole-slide coefficient of variation to 5.9 %. For the two best slides, improvements were made for both the limit of detection (1.6× and 5.9×, respectively) and the quantification range (1.2× and 2.1×, respectively). The additive mixtures identified here thus help improve assay reproducibility and performance, and might be beneficial to all types of microarrays that suffer from evaporation of the printing buffers.
Collapse
Affiliation(s)
- Sébastien Bergeron
- McGill University & Genome Quebec Innovation Centre, McGill University, 740 Dr. Penfield Avenue, Montreal, Quebec, Canada, H3A 0G1
- Biomedical Engineering Department, McGill University, 3775 University Street, Montreal, Quebec, Canada, H3A 2B4
| | - Veronique Laforte
- McGill University & Genome Quebec Innovation Centre, McGill University, 740 Dr. Penfield Avenue, Montreal, Quebec, Canada, H3A 0G1
- Biomedical Engineering Department, McGill University, 3775 University Street, Montreal, Quebec, Canada, H3A 2B4
- Neurology and Neurosurgery Department, McGill University, 3801 University Street, Montreal, Quebec, Canada, H3A 2B4
| | - Pik-Shan Lo
- McGill University & Genome Quebec Innovation Centre, McGill University, 740 Dr. Penfield Avenue, Montreal, Quebec, Canada, H3A 0G1
- Biomedical Engineering Department, McGill University, 3775 University Street, Montreal, Quebec, Canada, H3A 2B4
| | - Huiyan Li
- McGill University & Genome Quebec Innovation Centre, McGill University, 740 Dr. Penfield Avenue, Montreal, Quebec, Canada, H3A 0G1
- Biomedical Engineering Department, McGill University, 3775 University Street, Montreal, Quebec, Canada, H3A 2B4
| | - David Juncker
- McGill University & Genome Quebec Innovation Centre, McGill University, 740 Dr. Penfield Avenue, Montreal, Quebec, Canada, H3A 0G1.
- Biomedical Engineering Department, McGill University, 3775 University Street, Montreal, Quebec, Canada, H3A 2B4.
- Neurology and Neurosurgery Department, McGill University, 3801 University Street, Montreal, Quebec, Canada, H3A 2B4.
| |
Collapse
|
20
|
Saberkari H, Bahrami S, Shamsi M, Amoshahy MJ, Ghavifekr HB, Sedaaghi MH. Fully Automated Complementary DNA Microarray Segmentation using a Novel Fuzzy-based Algorithm. JOURNAL OF MEDICAL SIGNALS & SENSORS 2015; 5:182-91. [PMID: 26284175 PMCID: PMC4528357 DOI: 10.4103/2228-7477.161494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/13/2015] [Indexed: 11/29/2022]
Abstract
DNA microarray is a powerful approach to study simultaneously, the expression of 1000 of genes in a single experiment. The average value of the fluorescent intensity could be calculated in a microarray experiment. The calculated intensity values are very close in amount to the levels of expression of a particular gene. However, determining the appropriate position of every spot in microarray images is a main challenge, which leads to the accurate classification of normal and abnormal (cancer) cells. In this paper, first a preprocessing approach is performed to eliminate the noise and artifacts available in microarray cells using the nonlinear anisotropic diffusion filtering method. Then, the coordinate center of each spot is positioned utilizing the mathematical morphology operations. Finally, the position of each spot is exactly determined through applying a novel hybrid model based on the principle component analysis and the spatial fuzzy c-means clustering (SFCM) algorithm. Using a Gaussian kernel in SFCM algorithm will lead to improving the quality in complementary DNA microarray segmentation. The performance of the proposed algorithm has been evaluated on the real microarray images, which is available in Stanford Microarray Databases. Results illustrate that the accuracy of microarray cells segmentation in the proposed algorithm reaches to 100% and 98% for noiseless/noisy cells, respectively.
Collapse
Affiliation(s)
- Hamidreza Saberkari
- Department of Electrical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Sheyda Bahrami
- Department of Electrical Engineering, Sahand University of Technology, Tabriz, Iran
| | - Mousa Shamsi
- Department of Electrical Engineering, Sahand University of Technology, Tabriz, Iran
| | | | | | | |
Collapse
|
21
|
Roberts TC, Hart JR, Kaikkonen MU, Weinberg MS, Vogt PK, Morris KV. Quantification of nascent transcription by bromouridine immunocapture nuclear run-on RT-qPCR. Nat Protoc 2015; 10:1198-211. [PMID: 26182239 PMCID: PMC4790731 DOI: 10.1038/nprot.2015.076] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nuclear run-on (NRO) is a method that measures transcriptional activity via the quantification of biochemically labeled nascent RNA molecules derived from nuclear isolates. Widespread use of this technique has been limited because of its technical difficulty relative to steady-state total mRNA analyses. Here we describe a detailed protocol for the quantification of transcriptional activity in human cell cultures. Nuclei are first isolated and NRO transcription is performed in the presence of bromouridine. Labeled nascent transcripts are purified by immunoprecipitation, and transcript levels are determined by reverse-transcription quantitative PCR (RT-qPCR). Data are then analyzed using standard techniques described elsewhere. This method is rapid (the protocol can be completed in 2 d) and cost-effective, exhibits negligible detection of background noise from unlabeled transcripts, requires no radioactive materials and can be performed from as few as 500,000 nuclei. It also takes advantage of the high sensitivity, specificity and dynamic range of RT-qPCR.
Collapse
Affiliation(s)
- Thomas C. Roberts
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, United Kingdom
- Sanford-Burnham Medical Research Institute, Development, Aging and Regeneration Program, 10901 N. Torrey pines Road, La Jolla, CA, 92037, USA
| | - Jonathan R. Hart
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Minna U. Kaikkonen
- University of Eastern Finland, A.I. Virtanen institute, Department of Biotechnology and Molecular Medicine, P.O.B. 1627, 70211 Kuopio, Finland
| | - Marc S. Weinberg
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
- Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, WITS 2050, South Africa
| | - Peter K. Vogt
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kevin V. Morris
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
- School of Biotechnology and Biomedical Sciences, University of New South Wales, NSW 2052, Australia
| |
Collapse
|
22
|
Essential roles of methionine and S-adenosylmethionine in the autarkic lifestyle of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2015. [PMID: 26221021 DOI: 10.1073/pnas.1513033112] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Multidrug resistance, strong side effects, and compliance problems in TB chemotherapy mandate new ways to kill Mycobacterium tuberculosis (Mtb). Here we show that deletion of the gene encoding homoserine transacetylase (metA) inactivates methionine and S-adenosylmethionine (SAM) biosynthesis in Mtb and renders this pathogen exquisitely sensitive to killing in immunocompetent or immunocompromised mice, leading to rapid clearance from host tissues. Mtb ΔmetA is unable to proliferate in primary human macrophages, and in vitro starvation leads to extraordinarily rapid killing with no appearance of suppressor mutants. Cell death of Mtb ΔmetA is faster than that of other auxotrophic mutants (i.e., tryptophan, pantothenate, leucine, biotin), suggesting a particularly potent mechanism of killing. Time-course metabolomics showed complete depletion of intracellular methionine and SAM. SAM depletion was consistent with a significant decrease in methylation at the DNA level (measured by single-molecule real-time sequencing) and with the induction of several essential methyltransferases involved in biotin and menaquinone biosynthesis, both of which are vital biological processes and validated targets of antimycobacterial drugs. Mtb ΔmetA could be partially rescued by biotin supplementation, confirming a multitarget cell death mechanism. The work presented here uncovers a previously unidentified vulnerability of Mtb-the incapacity to scavenge intermediates of SAM and methionine biosynthesis from the host. This vulnerability unveils an entirely new drug target space with the promise of rapid killing of the tubercle bacillus by a new mechanism of action.
Collapse
|
23
|
Mairhofer J, Wittwer A, Cserjan-Puschmann M, Striedner G. Preventing T7 RNA polymerase read-through transcription-A synthetic termination signal capable of improving bioprocess stability. ACS Synth Biol 2015; 4:265-73. [PMID: 24847676 DOI: 10.1021/sb5000115] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The phage-derived T7 RNA polymerase is the most prominent orthogonal transcriptions system used in the field of synthetic biology. However, gene expression driven by T7 RNA polymerase is prone to read-through transcription due to contextuality of the T7 terminator. The native T7 terminator has a termination efficiency of approximately 80% and therefore provides insufficient insulation of the expression unit. By using a combination of a synthetic T7 termination signal with two well-known transcriptional terminators (rrnBT1 and T7), we have been able to increase the termination efficiency to 99%. To characterize putative effects of an enhanced termination signal on product yield and process stability, industrial-relevant fed batch cultivations have been performed. Fermentation of a E. coli HMS174(DE3) strain carrying a pET30a derivative containing the improved termination signal showed a significant decrease of plasmid copy number (PCN) and an increase in total protein yield under standard conditions.
Collapse
Affiliation(s)
- Juergen Mairhofer
- Department
of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
- Austrian Centre
of Industrial Biotechnology GmbH (ACIB), Petersgasse 14, A-8010 Graz, Austria
| | - Alexander Wittwer
- Department
of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
- Austrian Centre
of Industrial Biotechnology GmbH (ACIB), Petersgasse 14, A-8010 Graz, Austria
| | - Monika Cserjan-Puschmann
- Department
of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
- Austrian Centre
of Industrial Biotechnology GmbH (ACIB), Petersgasse 14, A-8010 Graz, Austria
| | - Gerald Striedner
- Department
of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
- Austrian Centre
of Industrial Biotechnology GmbH (ACIB), Petersgasse 14, A-8010 Graz, Austria
| |
Collapse
|
24
|
Dowd PF, Johnson ET. Environmental effects on resistance gene expression in milk stage popcorn kernels and associations with mycotoxin production. Mycotoxin Res 2014; 31:63-82. [PMID: 25512225 DOI: 10.1007/s12550-014-0215-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/20/2014] [Accepted: 11/24/2014] [Indexed: 11/25/2022]
Abstract
Like other forms of maize, popcorn is subject to increased levels of contamination by a variety of different mycotoxins under stress conditions, although levels generally are less than dent maize under comparable stress. Gene array analysis was used to determine expression differences of disease resistance-associated genes in milk stage kernels from commercial popcorn fields over 3 years. Relatively lower expression of resistance gene types was noted in years with higher temperatures and lower rainfall, which was consistent with prior results for many previously identified resistance response-associated genes. The lower rates of expression occurred for genes such as chitinases, protease inhibitors, and peroxidases; enzymes involved in the synthesis of cell wall barriers and secondary metabolites; and regulatory proteins. However, expression of several specific resistance genes previously associated with mycotoxins, such as aflatoxin in dent maize, was not affected. Insect damage altered the spectrum of resistance gene expression differences compared to undamaged ears. Correlation analyses showed expression differences of some previously reported resistance genes that were highly associated with mycotoxin levels and included glucanases, protease inhibitors, peroxidases, and thionins.
Collapse
Affiliation(s)
- Patrick F Dowd
- Crop BioProtection Research Unit, USDA, Agricultural Research Service, Peoria, IL, USA,
| | | |
Collapse
|
25
|
Yao P, Wang ZB, Ding YY, Ma JM, Hong T, Pan SN, Zhang J. Regulatory network of differentially expressed genes in metastatic osteosarcoma. Mol Med Rep 2014; 11:2104-10. [PMID: 25434727 DOI: 10.3892/mmr.2014.3009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 10/31/2014] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the possible molecular mechanisms underlying the pathogenesis of metastatic osteosarcoma (OS), by examining the microarray expression profiles of normal samples, and metastatic and non‑metastatic OS samples. The GSE9508 gene expression profile was downloaded from the Gene Expression Omnibus database, which included 11 human metastatic OS samples, seven non‑metastatic OS samples and five normal samples. Pretreatment of the data was performed using the BioConductor package in R language, and the differentially expressed genes (DEGs) were identified by a t‑test. Furthermore, function and pathway enrichment analyses of the DEGs were conducted using a molecule annotation system. A differential co‑expression network was also constructed, and the submodules were screened using MCODE in Cytoscape. A total of 965 genes were identified as DEGs in metastatic OS. The DEGs were shown to participate in the regulation of DNA‑dependent transcription, the composition of the nucleus, cytoplasm and membrane, and protein and nucleotide binding. Furthermore, the screened DEGs were significantly associated with the ribosome, axon guidance and the cytokine‑cytokine receptor interaction pathway. Certain hub genes were identified in the constructed differential co‑expression network, including matrix metalloproteinase 1 (MMP1), smoothened (SMO), ewing sarcoma breakpoint region 1 (EWSR1) and fasciculation and elongation protein ζ‑1 (FEZ1). Brain selective kinase 2 (BRSK2) and aldo‑keto reductase family 1 member B10 (AKRIB10) were present in the screened submodules. The results of the present study suggest that genes, including MMP1, SMO, EWSR1, FEZ1, BRSK2 and AKRIB10, may be potential targets for the diagnosis and treatment of metastatic OS.
Collapse
Affiliation(s)
- Peng Yao
- Department of Pain Management, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhi-Bin Wang
- Department of Pain Management, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yuan-Yuan Ding
- Department of Pain Management, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jia-Ming Ma
- Department of Pain Management, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Tao Hong
- Department of Pain Management, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shi-Nong Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
26
|
Katsigiannis S, Zacharia E, Maroulis D. Grow-cut based automatic cDNA microarray image segmentation. IEEE Trans Nanobioscience 2014; 14:138-45. [PMID: 25438323 DOI: 10.1109/tnb.2014.2369961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Complementary DNA (cDNA) microarray is a well-established tool for simultaneously studying the expression level of thousands of genes. Segmentation of microarray images is one of the main stages in a microarray experiment. However, it remains an arduous and challenging task due to the poor quality of images. Images suffer from noise, artifacts, and uneven background, while spots depicted on images can be poorly contrasted and deformed. In this paper, an original approach for the segmentation of cDNA microarray images is proposed. First, a preprocessing stage is applied in order to reduce the noise levels of the microarray image. Then, the grow-cut algorithm is applied separately to each spot location, employing an automated seed selection procedure, in order to locate the pixels belonging to spots. Application on datasets containing synthetic and real microarray images shows that the proposed algorithm performs better than other previously proposed methods. Moreover, in order to exploit the independence of the segmentation task for each separate spot location, both a multithreaded CPU and a graphics processing unit (GPU) implementation were evaluated.
Collapse
|
27
|
Ferreira MRW, Dernowsek J, Passos GA, Bombonato-Prado KF. Undifferentiated pulp cells and odontoblast-like cells share genes involved in the process of odontogenesis. Arch Oral Biol 2014; 60:593-9. [PMID: 25621937 DOI: 10.1016/j.archoralbio.2014.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/22/2014] [Accepted: 09/28/2014] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Expression of a large number of genes during differentiation of undifferentiated pulp cells into odontoblastic cells is still unknown, hence the aim of this investigation was to compare undifferentiated pulp cells (OD-21) and odontoblast-like cells (MDPC-23) through the assessment of cell stimulation and gene expression profiling. DESIGN The cells were cultured and after the experimental periods, there were evaluated cell proliferation and viability as well as alkaline phosphatase activity (ALP) and mineralization nodules. To evaluate gene expression it was used fluorescence cDNA microarray technology in addition to bioinformatics programmes such as SAM (significance analysis of microarrays). Gene expression was validated by Real Time PCR (qPCR). RESULTS The results showed that viability was above 80% in both cells, cell proliferation and ALP activity was higher in MDPC-23 cells and mineralization nodules were present only in the cultures of odontoblast-like cells. There were observed genes associated to odontogenesis with similar behaviour in both cell types, such as Il10, Traf6, Lef1 and Hspa8. Regions of the heatmap showed differences in induction and repression of genes such as Jak2 and Fas. CONCLUSION OD-21 cells share many genes with similar behaviour to MDPC-23 cells, suggesting their potential to differentiate into odontoblasts.
Collapse
Affiliation(s)
- Maidy Rehder Wimmers Ferreira
- Cell Culture Laboratory - Department of Morphology, Stomatology and Physiology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Janaína Dernowsek
- Molecular Immunogenetics Group - Department of Genetics, Faculty of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Geraldo A Passos
- Molecular Immunogenetics Group - Department of Genetics, Faculty of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karina Fittipaldi Bombonato-Prado
- Cell Culture Laboratory - Department of Morphology, Stomatology and Physiology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
28
|
Genomic and transcriptome analyses reveal that MAPK- and phosphatidylinositol-signaling pathways mediate tolerance to 5-hydroxymethyl-2-furaldehyde for industrial yeast Saccharomyces cerevisiae. Sci Rep 2014; 4:6556. [PMID: 25296911 PMCID: PMC4190571 DOI: 10.1038/srep06556] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/10/2014] [Indexed: 12/15/2022] Open
Abstract
The industrial yeast Saccharomyces cerevisiae is a traditional ethanologenic agent and a promising biocatalyst for advanced biofuels production using lignocellulose materials. Here we present the genomic background of type strain NRRL Y-12632 and its transcriptomic response to 5-hydroxymethyl-2-furaldehyde (HMF), a commonly encountered toxic compound liberated from lignocellulosic-biomass pretreatment, in dissecting the genomic mechanisms of yeast tolerance. Compared with the genome of laboratory model strain S288C, we identified more than 32,000 SNPs in Y-12632 with 23,000 missense and nonsense SNPs. Enriched sequence mutations occurred for genes involved in MAPK- and phosphatidylinositol (PI)- signaling pathways in strain Y-12632, with 41 and 13 genes containing non-synonymous SNPs, respectively. Many of these mutated genes displayed consistent up-regulated signature expressions in response to challenges of 30 mM HMF. Analogous single-gene deletion mutations of these genes showed significantly sensitive growth response on a synthetic medium containing 20 mM HMF. Our results suggest at least three MAPK-signaling pathways, especially for the cell-wall integrity pathway, and PI-signaling pathways to be involved in mediation of yeast tolerance against HMF in industrial yeast Saccharomyces cerevisiae. Higher levels of sequence variations were also observed for genes involved in purine and pyrimidine metabolism pathways.
Collapse
|
29
|
|
30
|
Han CM, Katilius E, Santiago JG. Increasing hybridization rate and sensitivity of DNA microarrays using isotachophoresis. LAB ON A CHIP 2014; 14:2958-67. [PMID: 24921466 DOI: 10.1039/c4lc00374h] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We present an on-chip electrokinetic method to increase the reaction kinetics and sensitivity of DNA microarray hybridization. We use isotachophoresis (ITP) to preconcentrate target molecules in solution and transport them over the immobilized probe sites of a microarray, greatly increasing the binding reaction rate. We show theoretically and experimentally that ITP-enhanced microarrays can be hybridized much faster and with higher sensitivity than conventional methods. We demonstrate our assay using a microfluidic system consisting of a PDMS microchannel superstructure bonded onto a glass slide on which 60 spots of 20-27 nt ssDNA oligonucleotide probes are immobilized. Our 30 min assay results in an 8.2 fold higher signal than the conventional overnight hybridization at 100 fM target concentration. We show rapid and quantitative detection over 4 orders of magnitude dynamic range of target concentration with no increase in the nonspecific signal. Our technique can be further multiplexed for higher density microarrays and extended for other reactions of target-surface immobilized ligands.
Collapse
Affiliation(s)
- Crystal M Han
- Department of Mechanical Engineering, Stanford University, CA 94305, USA
| | | | | |
Collapse
|
31
|
The growth and survival of Mycobacterium smegmatis is enhanced by co-metabolism of atmospheric H2. PLoS One 2014; 9:e103034. [PMID: 25058581 PMCID: PMC4109961 DOI: 10.1371/journal.pone.0103034] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 06/27/2014] [Indexed: 02/04/2023] Open
Abstract
The soil bacterium Mycobacterium smegmatis is able to scavenge the trace concentrations of H2 present in the atmosphere, but the physiological function and importance of this activity is not understood. We have shown that atmospheric H2 oxidation in this organism depends on two phylogenetically and kinetically distinct high-affinity hydrogenases, Hyd1 (MSMEG_2262-2263) and Hyd2 (MSMEG_2720-2719). In this study, we explored the effect of deleting Hyd2 on cellular physiology by comparing the viability, energetics, transcriptomes, and metabolomes of wild-type vs. Δhyd2 cells. The long-term survival of the Δhyd2 mutant was significantly reduced compared to the wild-type. The mutant additionally grew less efficiently in a range of conditions, most notably during metabolism of short-chain fatty acids; there was a twofold reduction in growth rate and growth yield of the Δhyd2 strain when acetate served as the sole carbon source. Hyd1 compensated for loss of Hyd2 when cells were grown in a high H2 atmosphere. Analysis of cellular parameters showed that Hyd2 was not necessary to generate the membrane potential, maintain intracellular pH homeostasis, or sustain redox balance. However, microarray analysis indicated that Δhyd2 cells were starved for reductant and compensated by rewiring central metabolism; transcripts encoding proteins responsible for oxidative decarboxylation pathways, the urea cycle, and ABC transporter-mediated import were significantly more abundant in the Δhyd2 mutant. Metabolome profiling consistently revealed an increase in intracellular amino acids in the Δhyd2 mutant. We propose that atmospheric H2 oxidation has two major roles in mycobacterial cells: to generate reductant during mixotrophic growth and to sustain the respiratory chain during dormancy.
Collapse
|
32
|
An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia. Proc Natl Acad Sci U S A 2014; 111:11479-84. [PMID: 25049411 DOI: 10.1073/pnas.1407034111] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Oxygen availability is a major factor and evolutionary force determining the metabolic strategy of bacteria colonizing an environmental niche. In the soil, conditions can switch rapidly between oxia and anoxia, forcing soil bacteria to remodel their energy metabolism accordingly. Mycobacterium is a dominant genus in the soil, and all its species are obligate aerobes. Here we show that an obligate aerobe, the soil actinomycete Mycobacterium smegmatis, adopts an anaerobe-type strategy by activating fermentative hydrogen production to adapt to hypoxia. This process is controlled by the two-component system DosR-DosS/DosT, an oxygen and redox sensor that is well conserved in mycobacteria. We show that DosR tightly regulates the two [NiFe]-hydrogenases: Hyd3 (MSMEG_3931-3928) and Hyd2 (MSMEG_2719-2718). Using genetic manipulation and high-sensitivity GC, we demonstrate that Hyd3 facilitates the evolution of H2 when oxygen is depleted. Combined activity of Hyd2 and Hyd3 was necessary to maintain an optimal NAD(+)/NADH ratio and enhanced adaptation to and survival of hypoxia. We demonstrate that fermentatively-produced hydrogen can be recycled when fumarate or oxygen become available, suggesting Mycobacterium smegmatis can switch between fermentation, anaerobic respiration, and aerobic respiration. Hydrogen metabolism enables this obligate aerobe to rapidly meet its energetic needs when switching between microoxic and anoxic conditions and provides a competitive advantage in low oxygen environments.
Collapse
|
33
|
Johnson ET, Skory C, Dowd PF. Identification of a bioactive Bowman-Birk inhibitor from an insect-resistant early maize inbred. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5458-5465. [PMID: 24869634 DOI: 10.1021/jf501396q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Breeding of maize, Zea mays, has improved insect resistance, but the genetic and biochemical basis of many of these improvements is unknown. Maize oligonucleotide microarrays were utilized to identify differentially expressed genes in leaves of three maize inbreds, parents Oh40B and W8 and progeny Oh43, developed in the 1940s. Oh43 had enhanced leaf resistance to corn earworm larvae, Helicoverpa zea, and fall armyworm larvae, Spodoptera frugiperda, compared to one or both parents. Among ca. 100 significantly differentially expressed genes, expression of a Bowman-Birk trypsin inhibitor (BBI) gene was at least ca. 8-fold higher in Oh43 than in either parent. The Oh43 BBI gene was expressed as a recombinant protein. Purified BBI inhibited trypsin and the growth of fall armyworm larvae when added to insect diet. These experiments indicate that comparative gene expression analysis combined with insect resistance measurements of early inbreds can identify previously unrecognized resistance genes.
Collapse
Affiliation(s)
- Eric T Johnson
- Crop Bioprotection Research Unit and ‡Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture , 1815 North University Street, Peoria, Illinois 61604, United States
| | | | | |
Collapse
|
34
|
Schnell B, Staubli T, Harris NL, Rogler G, Kopf M, Loessner MJ, Schuppler M. Cell-wall deficient L. monocytogenes L-forms feature abrogated pathogenicity. Front Cell Infect Microbiol 2014; 4:60. [PMID: 24904838 PMCID: PMC4033035 DOI: 10.3389/fcimb.2014.00060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/21/2014] [Indexed: 11/29/2022] Open
Abstract
Stable L-forms are cell wall-deficient bacteria which are able to multiply and propagate indefinitely, despite the absence of a rigid peptidoglycan cell wall. We investigated whether L-forms of the intracellular pathogen L. monocytogenes possibly retain pathogenicity, and if they could trigger an innate immune response. While phagocytosis of L. monocytogenes L-forms by non-activated macrophages sometimes resulted in an unexpected persistence of the bacteria in the phagocytes, they were effectively eliminated by IFN-γ preactivated or bone marrow-derived macrophages (BMM). These findings were in line with the observed down-regulation of virulence factors in the cell-wall deficient L. monocytogenes. Absence of Interferon-β (IFN-β) triggering indicated inability of L-forms to escape from the phagosome into the cytosol. Moreover, abrogated cytokine response in MyD88-deficient dendritic cells (DC) challenged with L. monocytogenes L-forms suggested an exclusive TLR-dependent host response. Taken together, our data demonstrate a strong attenuation of Listeria monocytogenes L-form pathogenicity, due to diminished expression of virulence factors and innate immunity recognition, eventually resulting in elimination of L-form bacteria from phagocytes.
Collapse
Affiliation(s)
- Barbara Schnell
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology Zurich (ETHZ) Zurich, Switzerland
| | - Titu Staubli
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology Zurich (ETHZ) Zurich, Switzerland
| | - Nicola L Harris
- School of Life Sciences, The Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL) Lausanne, Switzerland
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital Zurich Zurich, Switzerland
| | - Manfred Kopf
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETHZ) Zurich, Switzerland
| | - Martin J Loessner
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology Zurich (ETHZ) Zurich, Switzerland
| | - Markus Schuppler
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, Swiss Federal Institute of Technology Zurich (ETHZ) Zurich, Switzerland
| |
Collapse
|
35
|
Diggle MA, Clarke SC. Molecular methods for the detection and characterization ofNeisseria meningitidis. Expert Rev Mol Diagn 2014; 6:79-87. [PMID: 16359269 DOI: 10.1586/14737159.6.1.79] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neisseria meningitidis remains a common global cause of morbidity and mortality. The laboratory confirmation of meningococcal disease is, therefore, very important for individual patient management and for public health management. Through surveillance schemes, it provides long-term epidemiologic data that can be used to inform vaccine policy. Traditional methods, such as latex agglutination and the enzyme-linked immunosorbent assay, are still used, but molecular methods are now also established. In this review, molecular methods for the laboratory confirmation and characterization of meningococci are described. PCR is an invaluable tool in modern biology and can be used to predict the group, type and subtype of meningococci. It is now also used in a fluorescence-based format for increased sensitivity and specificity. The method also provides the amplified DNA for other techniques, such as multilocus sequence typing. Other methods for the discrimination of meningococci have also played and continue to play an important part in epidemiology. For example, pulsed-field gel electrophoresis is highly discriminatory, whilst multilocus enzyme electrophoresis provided the basis for the description of global meningococcal clones and formed the foundation for multilocus sequence typing. Other less commonly used methods, such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and pyrosequencing, may increasingly find their way into microbiology reference laboratories. Nevertheless, nucleotide sequencing and laboratory automation have aided the introduction of many methods and provide data that are digitally based and, therefore, highly accurate and portable.
Collapse
Affiliation(s)
- Mathew A Diggle
- Stobhill Hospital, Scottish Meningococcus & Pneumococcus Reference Laboratory, Glasgow, UK
| | | |
Collapse
|
36
|
Ewis AA, Zhelev Z, Bakalova R, Fukuoka S, Shinohara Y, Ishikawa M, Baba Y. A history of microarrays in biomedicine. Expert Rev Mol Diagn 2014; 5:315-28. [PMID: 15934810 DOI: 10.1586/14737159.5.3.315] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental strategy of the current postgenomic era or the era of functional genomics is to expand the scale of biologic research from studying single genes or proteins to studying all genes or proteins simultaneously using a systematic approach. As recently developed methods for obtaining genome-wide mRNA expression data, oligonucleotide and DNA microarrays are particularly powerful in the context of knowing the entire genome sequence and can provide a global view of changes in gene expression patterns in response to physiologic alterations or manipulation of transcriptional regulators. In biomedical research, such an approach will ultimately determine biologic behavior of both normal and diseased tissues, which may provide insights into disease mechanisms and identify novel markers and candidates for diagnostic, prognostic and therapeutic intervention. However, microarray technology is still in a continuous state of evolution and development, and it may take time to implement microarrays as a routine medical device. Many limitations exist and many challenges remain to be achieved to help inclusion of microarrays in clinical medicine. In this review, a brief history of microarrays in biomedical research is provided, including experimental overview, limitations, challenges and future developments.
Collapse
Affiliation(s)
- Ashraf A Ewis
- Single-Molecule Bioanalysis Laboratory, National Institute of Advanced Industrial Science & Technology (AIST), Hayashi-cho 2217-14, Takamatsu City, Kagawa Prefecture, 761-0395 Japan.
| | | | | | | | | | | | | |
Collapse
|
37
|
Lee SY, Jeong JS, Ahn JJ, Lee SW, Seo H, Ahn Y, Hwang SY. Development of electrochemical microbiochip for the biological diagnosis of Neisseria gonorrhoeae. ANAL SCI 2013; 29:1203-8. [PMID: 24334988 DOI: 10.2116/analsci.29.1203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A sexually transmitted disease is an illness that has a high probability of transmission between humans or animals who have sexual contact. Our research is based on the development of a microbiochip for Neisseria gonorrhoeae (N.G.). In our study, we have employed fusion technology between microarray technology and a microfluidic system for quantitative analysis of N.G. A great deal of attention has been focused on electrochemical detection by using a DNA probe, which is a specific DNA sequence and binds to a target biomolecule, because of high affinity, ease of usage, and fast measurement. The microbiochip consisted of two electrode systems and microchannel based PDMS. Our detection principles use electrochemical detection. Consequently, our microbiochip detected 5 ng/mL of N.G. and the correlation rate was over 0.95. We can produce a microbiochip, which could bind to a DNA probe and detect sample of interest. We expect that our electrobiochemical chip will be used for the development of a portable device.
Collapse
Affiliation(s)
- Seung Yong Lee
- Department of Bio-Nanotechnology, Graduate School, Hanyang University
| | | | | | | | | | | | | |
Collapse
|
38
|
Carminati PO, Donaires FS, Marques MM, Donadi EA, Passos GAS, Sakamoto-Hojo ET. Cisplatin associated with LY294002 increases cytotoxicity and induces changes in transcript profiles of glioblastoma cells. Mol Biol Rep 2013; 41:165-77. [DOI: 10.1007/s11033-013-2849-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 10/29/2013] [Indexed: 02/03/2023]
|
39
|
Recent Advances in DNA Microarray Technology: an Overview on Production Strategies and Detection Methods. BIONANOSCIENCE 2013. [DOI: 10.1007/s12668-013-0111-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
40
|
Marisch K, Bayer K, Scharl T, Mairhofer J, Krempl PM, Hummel K, Razzazi-Fazeli E, Striedner G. A comparative analysis of industrial Escherichia coli K-12 and B strains in high-glucose batch cultivations on process-, transcriptome- and proteome level. PLoS One 2013; 8:e70516. [PMID: 23950949 PMCID: PMC3738542 DOI: 10.1371/journal.pone.0070516] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 06/24/2013] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli K-12 and B strains are among the most frequently used bacterial hosts for production of recombinant proteins on an industrial scale. To improve existing processes and to accelerate bioprocess development, we performed a detailed host analysis. We investigated the different behaviors of the E. coli production strains BL21, RV308, and HMS174 in response to high-glucose concentrations. Tightly controlled cultivations were conducted under defined environmental conditions for the in-depth analysis of physiological behavior. In addition to acquisition of standard process parameters, we also used DNA microarray analysis and differential gel electrophoresis (Ettan(TM) DIGE). Batch cultivations showed different yields of the distinct strains for cell dry mass and growth rate, which were highest for BL21. In addition, production of acetate, triggered by excess glucose supply, was much higher for the K-12 strains compared to the B strain. Analysis of transcriptome data showed significant alteration in 347 of 3882 genes common among all three hosts. These differentially expressed genes included, for example, those involved in transport, iron acquisition, and motility. The investigation of proteome patterns additionally revealed a high number of differentially expressed proteins among the investigated hosts. The subsequently selected 38 spots included proteins involved in transport and motility. The results of this comprehensive analysis delivered a full genomic picture of the three investigated strains. Differentially expressed groups for targeted host modification were identified like glucose transport or iron acquisition, enabling potential optimization of strains to improve yield and process quality. Dissimilar growth profiles of the strains confirm different genotypes. Furthermore, distinct transcriptome patterns support differential regulation at the genome level. The identified proteins showed high agreement with the transcriptome data and suggest similar regulation within a host at both levels for the identified groups. Such host attributes need to be considered in future process design and operation.
Collapse
Affiliation(s)
- Karoline Marisch
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Godoy P, Mello S, Magalhães D, Donaires F, Nicolucci P, Donadi E, Passos G, Sakamoto-Hojo E. Ionizing radiation-induced gene expression changes in TP53 proficient and deficient glioblastoma cell lines. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 756:46-55. [DOI: 10.1016/j.mrgentox.2013.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 01/12/2023]
|
42
|
Global Rsh-dependent transcription profile of Brucella suis during stringent response unravels adaptation to nutrient starvation and cross-talk with other stress responses. BMC Genomics 2013; 14:459. [PMID: 23834488 PMCID: PMC3710219 DOI: 10.1186/1471-2164-14-459] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/18/2013] [Indexed: 01/08/2023] Open
Abstract
Background In the intracellular pathogen Brucella spp., the activation of the stringent response, a global regulatory network providing rapid adaptation to growth-affecting stress conditions such as nutrient deficiency, is essential for replication in the host. A single, bi-functional enzyme Rsh catalyzes synthesis and hydrolysis of the alarmone (p)ppGpp, responsible for differential gene expression under stringent conditions. Results cDNA microarray analysis allowed characterization of the transcriptional profiles of the B. suis 1330 wild-type and Δrsh mutant in a minimal medium, partially mimicking the nutrient-poor intramacrophagic environment. A total of 379 genes (11.6% of the genome) were differentially expressed in a rsh-dependent manner, of which 198 were up-, and 181 were down-regulated. The pleiotropic character of the response was confirmed, as the genes encoded an important number of transcriptional regulators, cell envelope proteins, stress factors, transport systems, and energy metabolism proteins. Virulence genes such as narG and sodC, respectively encoding respiratory nitrate reductase and superoxide dismutase, were under the positive control of (p)ppGpp, as well as expression of the cbb3-type cytochrome c oxidase, essential for chronic murine infection. Methionine was the only amino acid whose biosynthesis was absolutely dependent on stringent response in B. suis. Conclusions The study illustrated the complexity of the processes involved in adaptation to nutrient starvation, and contributed to a better understanding of the correlation between stringent response and Brucella virulence. Most interestingly, it clearly indicated (p)ppGpp-dependent cross-talk between at least three stress responses playing a central role in Brucella adaptation to the host: nutrient, oxidative, and low-oxygen stress.
Collapse
|
43
|
Gender-specific transcriptional profiling of marine medaka (Oryzias melastigma) liver upon BDE-47 exposure. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2013; 8:255-62. [PMID: 23962555 DOI: 10.1016/j.cbd.2013.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 06/20/2013] [Accepted: 06/26/2013] [Indexed: 11/24/2022]
Abstract
Marine medaka (Oryzias melastigma) were exposed to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) to investigate the gender-specific transcriptional profiles of liver tissue in response to this flame retardant. A cDNA library of O. melastigma was constructed, and 2304 clones were amplified from the library to fabricate a cDNA microarray. Sequences of these genes were assembled into 1800 sequences using Geneious, a bioinformatics software. Corresponding expressed sequence tags were blasted against the National Centre for Biotechnology Information non-redundant database and further classified into various biological categories according to the Gene Ontology project. Male and female three-month-old were fed a diet of BDE-47 contaminated Artemia at low dosage (290.3±172.3ng BDE-47/day) and high dosage (580.5±344.6ng BDE-47/day) for 5 and 21 days, respectively. The transcriptional profiles of O. melastigma liver were then generated by the species-specific cDNA microrarray. The results from microarray analysis suggested very different gene expression patterns between males and females for both BDE-47 exposure-dose and exposure-time, with male livers having stronger gene regulatory responses than female livers. Importantly, our results revealed that in male O. melastigma only, BDE-47 exposure may activate phosphoinositide-3-kinase and mitogen-activated protein kinase, proteins that play importance roles in cell growth, proliferation and survival.
Collapse
|
44
|
Whole-genome transcriptional analysis of Escherichia coli during heat inactivation processes related to industrial cooking. Appl Environ Microbiol 2013; 79:4940-50. [PMID: 23770902 DOI: 10.1128/aem.00958-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli K-12 was grown to the stationary phase, for maximum physiological resistance, in brain heart infusion (BHI) broth at 37°C. Cells were then heated at 58°C or 60°C to reach a process lethality value \[\mathbf{\left(}{{\mathit{F}}^{\mathit{o}}}_{\mathbf{70}}^{\mathbf{10}}\mathbf{\right)} \] of 2 or 3 or to a core temperature of 71°C (control industrial cooking temperature). Growth recovery and cell membrane integrity were evaluated immediately after heating, and a global transcription analysis was performed using gene expression microarrays. Only cells heated at 58°C with F(o) = 2 were still able to grow on liquid or solid BHI broth after heat treatment. However, their transcriptome did not differ from that of bacteria heated at 58°C with F(o) = 3 (P value for the false discovery rate [P-FDR] > 0.01), where no growth recovery was observed posttreatment. Genome-wide transcriptomic data obtained at 71°C were distinct from those of the other treatments without growth recovery. Quantification of heat shock gene expression by real-time PCR revealed that dnaK and groEL mRNA levels decreased significantly above 60°C to reach levels similar to those of control cells at 37°C (P < 0.0001). Furthermore, despite similar levels of cell inactivation measured by growth on BHI media after heating, 132 and 8 genes were differentially expressed at 71°C compared to 58°C and 60°C at F(o) = 3, respectively (P-FDR < 0.01). Among them, genes such as aroA, citE, glyS, oppB, and asd, whose expression was upregulated at 71°C, may be worth investigating as good biomarkers for accurately determining the efficiency of heat treatments, especially when cells are too injured to be enumerated using growth media.
Collapse
|
45
|
Sobek J, Aquino C, Weigel W, Schlapbach R. Drop drying on surfaces determines chemical reactivity - the specific case of immobilization of oligonucleotides on microarrays. BMC BIOPHYSICS 2013; 6:8. [PMID: 23758982 PMCID: PMC3694035 DOI: 10.1186/2046-1682-6-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 02/13/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Drop drying is a key factor in a wide range of technical applications, including spotted microarrays. The applied nL liquid volume provides specific reaction conditions for the immobilization of probe molecules to a chemically modified surface. RESULTS We investigated the influence of nL and μL liquid drop volumes on the process of probe immobilization and compare the results obtained to the situation in liquid solution. In our data, we observe a strong relationship between drop drying effects on immobilization and surface chemistry. In this work, we present results on the immobilization of dye labeled 20mer oligonucleotides with and without an activating 5'-aminoheptyl linker onto a 2D epoxysilane and a 3D NHS activated hydrogel surface. CONCLUSIONS Our experiments identified two basic processes determining immobilization. First, the rate of drop drying that depends on the drop volume and the ambient relative humidity. Oligonucleotides in a dried spot react unspecifically with the surface and long reaction times are needed. 3D hydrogel surfaces allow for immobilization in a liquid environment under diffusive conditions. Here, oligonucleotide immobilization is much faster and a specific reaction with the reactive linker group is observed. Second, the effect of increasing probe concentration as a result of drop drying. On a 3D hydrogel, the increasing concentration of probe molecules in nL spotting volumes accelerates immobilization dramatically. In case of μL volumes, immobilization depends on whether the drop is allowed to dry completely. At non-drying conditions, very limited immobilization is observed due to the low oligonucleotide concentration used in microarray spotting solutions. The results of our study provide a general guideline for microarray assay development. They allow for the initial definition and further optimization of reaction conditions for the immobilization of oligonucleotides and other probe molecule classes to different surfaces in dependence of the applied spotting and reaction volume.
Collapse
Affiliation(s)
- Jens Sobek
- Functional Genomics Center Zurich, ETH Zurich/ University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland.
| | | | | | | |
Collapse
|
46
|
Lim DH, Lee L, Oh CT, Kim NH, Hwang S, Han SJ, Lee YS. Microarray analysis of Drosophila dicer-2 mutants reveals potential regulation of mitochondrial metabolism by endogenous siRNAs. J Cell Biochem 2013; 114:418-27. [PMID: 22961661 DOI: 10.1002/jcb.24379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 08/27/2012] [Indexed: 11/10/2022]
Abstract
RNA interference is a eukaryotic regulatory mechanism by which small non-coding RNAs typically mediate specific silencing of their cognate genes. In Drosophila, the RNase III enzyme Dicer-2 (Dcr-2) is essential for biogenesis of endogenous small interfering RNAs (endo-siRNAs), which have been implicated in regulation of endogenous protein-coding genes. Although much is known about microRNA-based regulatory networks, the biological functions of endo-siRNAs in animals remain poorly understood. We performed gene expression profiling on Drosophila dcr-2 null mutant pupae to investigate transcriptional effects caused by a severe defect in endo-siRNA production, and found 306 up-regulated and 357 down-regulated genes with at least a twofold change in expression compared with the wild type. Most of these up-regulated and down-regulated genes were associated with energy metabolism and development, respectively. Importantly, mRNA sequences of 39% of the up-regulated genes were perfectly complementary to the sequences of previously reported endo-siRNAs, suggesting they may be direct targets of endo-siRNAs. We confirmed up-regulation of five selected genes matching endo-siRNAs and concomitant down-regulation of the corresponding endo-siRNAs in dcr-2 mutant pupae. Most of the potential endo-siRNA target genes were associated with energy metabolism, including the citric acid cycle and oxidative phosphorylation in mitochondria, implying that these are major metabolic processes directly affected by endo-siRNAs in Drosophila. Consistent with this finding, dcr-2 null mutant pupae had lower ATP content compared with controls, indicating that mitochondrial energy production is impaired in these mutants. Our data support a potential role for the endo-siRNA pathway in energy homeostasis through regulation of mitochondrial metabolism.
Collapse
Affiliation(s)
- Do-Hwan Lim
- College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, South Korea
| | | | | | | | | | | | | |
Collapse
|
47
|
Ptc6 is required for proper rapamycin-induced down-regulation of the genes coding for ribosomal and rRNA processing proteins in S. cerevisiae. PLoS One 2013; 8:e64470. [PMID: 23704987 PMCID: PMC3660562 DOI: 10.1371/journal.pone.0064470] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 04/16/2013] [Indexed: 11/23/2022] Open
Abstract
Ptc6 is one of the seven components (Ptc1-Ptc7) of the protein phosphatase 2C family in the yeast Saccharomyces cerevisiae. In contrast to other type 2C phosphatases, the cellular role of this isoform is poorly understood. We present here a comprehensive characterization of this gene product. Cells lacking Ptc6 are sensitive to zinc ions, and somewhat tolerant to cell-wall damaging agents and to Li+. Ptc6 mutants are sensitive to rapamycin, albeit to lesser extent than ptc1 cells. This phenotype is not rescued by overexpression of PTC1 and mutation of ptc6 does not reproduce the characteristic genetic interactions of the ptc1 mutation with components of the TOR pathway, thus suggesting different cellular roles for both isoforms. We show here that the rapamycin-sensitive phenotype of ptc6 cells is unrelated to the reported role of Pt6 in controlling pyruvate dehydrogenase activity. Lack of Ptc6 results in substantial attenuation of the transcriptional response to rapamycin, particularly in the subset of repressed genes encoding ribosomal proteins or involved in rRNA processing. In contrast, repressed genes involved in translation are Ptc6-independent. These effects cannot be attributed to the regulation of the Sch9 kinase, but they could involve modulation of the binding of the Ifh1 co-activator to specific gene promoters.
Collapse
|
48
|
Comparative transcription profiling and in-depth characterization of plasmid-based and plasmid-free Escherichia coli expression systems under production conditions. Appl Environ Microbiol 2013; 79:3802-12. [PMID: 23584782 DOI: 10.1128/aem.00365-13] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmid-based Escherichia coli BL21(DE3) expression systems are extensively used for the production of recombinant proteins. However, the combination of a high gene dosage with strong promoters exerts extremely stressful conditions on producing cells, resulting in a multitude of protective reactions and malfunctions in the host cell with a strong impact on yield and quality of the product. Here, we provide in-depth characterization of plasmid-based perturbations in recombinant protein production. A plasmid-free T7 system with a single copy of the gene of interest (GOI) integrated into the genome was used as a reference. Transcriptomics in combination with a variety of process analytics were used to characterize and compare a plasmid-free T7-based expression system to a conventional pET-plasmid-based expression system, with both expressing human superoxide dismutase in fed-batch cultivations. The plasmid-free system showed a moderate stress response on the transcriptional level, with only minor effects on cell growth. In contrast to this finding, comprehensive changes on the transcriptome level were observed in the plasmid-based expression system and cell growth was heavily impaired by recombinant gene expression. Additionally, we found that the T7 terminator is not a sufficient termination signal. Overall, this work reveals that the major metabolic burden in plasmid-based systems is caused at the level of transcription as a result of overtranscription of the multicopy product gene and transcriptional read-through of T7 RNA polymerase. We therefore conclude that the presence of high levels of extrinsic mRNAs, competing for the limited number of ribosomes, leads to the significantly reduced translation of intrinsic mRNAs.
Collapse
|
49
|
Troubleshooting methods for microarray gene expression analysis in the onset of diabetic kidney disease. J Pharmacol Toxicol Methods 2013; 67:61-8. [DOI: 10.1016/j.vascn.2013.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 11/19/2022]
|
50
|
Ankala A, Kelley RY, Rowe DE, Williams WP, Luthe DS. Foliar herbivory triggers local and long distance defense responses in maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 199-200:103-12. [PMID: 23265323 DOI: 10.1016/j.plantsci.2012.09.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/04/2012] [Accepted: 09/23/2012] [Indexed: 05/09/2023]
Abstract
Many studies have documented the induction of belowground defenses in plants in response to aboveground herbivory and vice versa, but the genes and signaling molecules mediating systemic induction are not well understood. We performed comparative microarray analysis on maize whorl and root tissues from the insect resistant inbred Mp708 in response to foliar feeding by fall armyworm (Spodoptera frugiperda) caterpillars. Although Mp708 has elevated jasmonic acid (JA) levels prior to herbivory, genes involved in JA biosynthesis were up-regulated in whorls in response to fall armyworm feeding. Alternatively, genes possibly involved in regulating ethylene (ET) perception and signaling were up-regulated in roots following foliar herbivory. Transcript levels of genes encoding proteins involved in direct defenses against herbivores were enhanced both in roots and leaves, but transcriptional factors and genes involved in various biosynthetic pathways were selectively down-regulated in the whorl. The results indicate that foliar herbivory by fall armyworm changes root gene expression pathways suggesting profound long distance signaling. Tissue specific induction and suppression of JA and ET signaling pathway genes provides a clue to their possible roles in signaling between the two distant tissue types that eventually triggers defense responses in the roots in response to foliar herbivory.
Collapse
Affiliation(s)
- Arunkanth Ankala
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology Mississippi State University, MS, United States.
| | | | | | | | | |
Collapse
|