1
|
Luo T, Zhang Z, Xu J, Liu H, Cai L, Huang G, Wang C, Chen Y, Xia L, Ding X, Wang J, Li X. Atherosclerosis treatment with nanoagent: potential targets, stimulus signals and drug delivery mechanisms. Front Bioeng Biotechnol 2023; 11:1205751. [PMID: 37404681 PMCID: PMC10315585 DOI: 10.3389/fbioe.2023.1205751] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/31/2023] [Indexed: 07/06/2023] Open
Abstract
Cardiovascular disease (CVDs) is the first killer of human health, and it caused up at least 31% of global deaths. Atherosclerosis is one of the main reasons caused CVDs. Oral drug therapy with statins and other lipid-regulating drugs is the conventional treatment strategies for atherosclerosis. However, conventional therapeutic strategies are constrained by low drug utilization and non-target organ injury problems. Micro-nano materials, including particles, liposomes, micelles and bubbles, have been developed as the revolutionized tools for CVDs detection and drug delivery, specifically atherosclerotic targeting treatment. Furthermore, the micro-nano materials also could be designed to intelligently and responsive targeting drug delivering, and then become a promising tool to achieve atherosclerosis precision treatment. This work reviewed the advances in atherosclerosis nanotherapy, including the materials carriers, target sites, responsive model and treatment results. These nanoagents precisely delivery the therapeutic agents to the target atherosclerosis sites, and intelligent and precise release of drugs, which could minimize the potential adverse effects and be more effective in atherosclerosis lesion.
Collapse
Affiliation(s)
- Ting Luo
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zhen Zhang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Junbo Xu
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hanxiong Liu
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Lin Cai
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Gang Huang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Chunbin Wang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yingzhong Chen
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Long Xia
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xunshi Ding
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jin Wang
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xin Li
- Department of Cardiology, The Third People’s Hospital of Chengdu Affiliated to Southwest Jiaotong University, Key Laboratory of Advanced Technologies of Materials Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan, China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Dynamic MRI of the Mesenchymal Stem Cells Distribution during Intravenous Transplantation in a Rat Model of Ischemic Stroke. Life (Basel) 2023; 13:life13020288. [PMID: 36836645 PMCID: PMC9962901 DOI: 10.3390/life13020288] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/29/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Systemic transplantation of mesenchymal stem cells (MSCs) is a promising approach for the treatment of ischemia-associated disorders, including stroke. However, exact mechanisms underlying its beneficial effects are still debated. In this respect, studies of the transplanted cells distribution and homing are indispensable. We proposed an MRI protocol which allowed us to estimate the dynamic distribution of single superparamagnetic iron oxide labeled MSCs in live ischemic rat brain during intravenous transplantation after the transient middle cerebral artery occlusion. Additionally, we evaluated therapeutic efficacy of cell therapy in this rat stroke model. According to the dynamic MRI data, limited numbers of MSCs accumulated diffusely in the brain vessels starting at the 7th minute from the onset of infusion, reached its maximum by 29 min, and gradually eliminated from cerebral circulation during 24 h. Despite low numbers of cells entering brain blood flow and their short-term engraftment, MSCs transplantation induced long lasting improvement of the neurological deficit, but without acceleration of the stroke volume reduction compared to the control animals during 14 post-transplantation days. Taken together, these findings indicate that MSCs convey their positive action by triggering certain paracrine mechanisms or cell-cell interactions or invoking direct long-lasting effects on brain vessels.
Collapse
|
3
|
Jia G, Van Valkenburgh J, Chen AZ, Chen Q, Li J, Zuo C, Chen K. Recent advances and applications of microspheres and nanoparticles in transarterial chemoembolization for hepatocellular carcinoma. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1749. [PMID: 34405552 PMCID: PMC8850537 DOI: 10.1002/wnan.1749] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022]
Abstract
Transarterial chemoembolization (TACE) is a recommended treatment for patients suffering from intermediate and advanced hepatocellular carcinoma (HCC). As compared to the conventional TACE, drug-eluting bead TACE demonstrates several advantages in terms of survival, treatment response, and adverse effects. The selection of embolic agents is critical to the success of TACE. Many studies have been performed on the modification of the structure, size, homogeneity, biocompatibility, and biodegradability of embolic agents. Continuing efforts are focused on efficient loading of versatile chemotherapeutics, controlled sizes for sufficient occlusion, real-time detection intra- and post-procedure, and multimodality imaging-guided precise treatment. Here, we summarize recent advances and applications of microspheres and nanoparticles in TACE for HCC. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Guorong Jia
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Department of Nuclear Medicine, Changhai Hospital of Shanghai, Shanghai, China
| | - Juno Van Valkenburgh
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Austin Z. Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Quan Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jindian Li
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Changjing Zuo
- Department of Nuclear Medicine, Changhai Hospital of Shanghai, Shanghai, China,Corresponding authors ,(Changjing Zuo); , (Kai Chen)
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,Corresponding authors ,(Changjing Zuo); , (Kai Chen)
| |
Collapse
|
4
|
Nitheesh Y, Pradhan R, Hejmady S, Taliyan R, Singhvi G, Alexander A, Kesharwani P, Dubey SK. Surface engineered nanocarriers for the management of breast cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112441. [PMID: 34702526 DOI: 10.1016/j.msec.2021.112441] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022]
Abstract
Breast cancer is commonly known life-threatening malignancy in women after lung cancer. The standard of care (SOC) treatment for breast cancer primarily includes surgery, radiotherapy, hormonal therapy, and chemotherapy. However, the effectiveness of conventional chemotherapy is restricted by several limitations such as poor targeting, drug resistance, poor drug delivery, and high toxicity. Nanoparticulate drug delivery systems have gained a lot of interest in the scientific community because of its unique features and promising potential in breast cancer diagnosis and treatment. The unique physicochemical and biological properties of the nanoparticulate drug delivery systems promotes the drug accumulation, Pharmacokinetic profile towards the tumor site and thereby, reduces the cytotoxicity towards healthy cells. In addition, to improve tumor-specific drug delivery, researchers have focused on surface engineered nanocarrier system with targeting molecules/ligands that are specific to overexpressed receptors present on cancer cells. In this review, we have summarized the different biological ligands and surface-engineered nanoparticles, enlightening the physicochemical characteristics, toxic effects, and regulatory considerations of nanoparticles involved in treatment of breast cancer.
Collapse
Affiliation(s)
- Yanamandala Nitheesh
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Rajesh Pradhan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Siddhant Hejmady
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Amit Alexander
- National Institute of Pharmaceutical Education and Research (NIPER-G), Ministry of Chemicals & Fertilizers, Govt. of India NH 37, NITS Mirza, Kamrup-781125, Guwahati, Assam, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia 700056, Kolkata, India.
| |
Collapse
|
5
|
Chandrasekharan P, Fung KB, Zhou XY, Cui W, Colson C, Mai D, Jeffris K, Huynh Q, Saayujya C, Kabuli L, Fellows B, Lu Y, Yu E, Tay ZW, Zheng B, Fong L, Conolly SM. Non-radioactive and sensitive tracking of neutrophils towards inflammation using antibody functionalized magnetic particle imaging tracers. Nanotheranostics 2021; 5:240-255. [PMID: 33614400 PMCID: PMC7893534 DOI: 10.7150/ntno.50721] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
White blood cells (WBCs) are a key component of the mammalian immune system and play an essential role in surveillance, defense, and adaptation against foreign pathogens. Apart from their roles in the active combat of infection and the development of adaptive immunity, immune cells are also involved in tumor development and metastasis. Antibody-based therapeutics have been developed to regulate (i.e. selectively activate or inhibit immune function) and harness immune cells to fight malignancy. Alternatively, non-invasive tracking of WBC distribution can diagnose inflammation, infection, fevers of unknown origin (FUOs), and cancer. Magnetic Particle Imaging (MPI) is a non-invasive, non-radioactive, and sensitive medical imaging technique that uses safe superparamagnetic iron oxide nanoparticles (SPIOs) as tracers. MPI has previously been shown to track therapeutic stem cells for over 87 days with a ~200 cell detection limit. In the current work, we utilized antibody-conjugated SPIOs specific to neutrophils for in situ labeling, and non-invasive and radiation-free tracking of these inflammatory cells to sites of infection and inflammation in an in vivo murine model of lipopolysaccharide-induced myositis. MPI showed sensitive detection of inflammation with a contrast-to-noise ratio of ~8-13.
Collapse
Affiliation(s)
- Prashant Chandrasekharan
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - K.L. Barry Fung
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- UC Berkeley-UCSF Graduate Group in Bioengineering, California, United States
| | - Xinyi Y. Zhou
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- UC Berkeley-UCSF Graduate Group in Bioengineering, California, United States
| | - Weiwen Cui
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Caylin Colson
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- UC Berkeley-UCSF Graduate Group in Bioengineering, California, United States
| | - David Mai
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Kenneth Jeffris
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Quincy Huynh
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
| | - Chinmoy Saayujya
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
| | - Leyla Kabuli
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Benjamin Fellows
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Yao Lu
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Elaine Yu
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Zhi Wei Tay
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Bo Zheng
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Lawrence Fong
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94143, United States
| | - Steven M. Conolly
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Pietrobon V, Cesano A, Marincola F, Kather JN. Next Generation Imaging Techniques to Define Immune Topographies in Solid Tumors. Front Immunol 2021; 11:604967. [PMID: 33584676 PMCID: PMC7873485 DOI: 10.3389/fimmu.2020.604967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, cancer immunotherapy experienced remarkable developments and it is nowadays considered a promising therapeutic frontier against many types of cancer, especially hematological malignancies. However, in most types of solid tumors, immunotherapy efficacy is modest, partly because of the limited accessibility of lymphocytes to the tumor core. This immune exclusion is mediated by a variety of physical, functional and dynamic barriers, which play a role in shaping the immune infiltrate in the tumor microenvironment. At present there is no unified and integrated understanding about the role played by different postulated models of immune exclusion in human solid tumors. Systematically mapping immune landscapes or "topographies" in cancers of different histology is of pivotal importance to characterize spatial and temporal distribution of lymphocytes in the tumor microenvironment, providing insights into mechanisms of immune exclusion. Spatially mapping immune cells also provides quantitative information, which could be informative in clinical settings, for example for the discovery of new biomarkers that could guide the design of patient-specific immunotherapies. In this review, we aim to summarize current standard and next generation approaches to define Cancer Immune Topographies based on published studies and propose future perspectives.
Collapse
Affiliation(s)
| | | | | | - Jakob Nikolas Kather
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
7
|
Yan X, Zhou Q, Vincent M, Deng Y, Yu J, Xu J, Xu T, Tang T, Bian L, Wang YXJ, Kostarelos K, Zhang L. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci Robot 2021; 2:2/12/eaaq1155. [PMID: 33157904 DOI: 10.1126/scirobotics.aaq1155] [Citation(s) in RCA: 369] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/04/2017] [Accepted: 11/03/2017] [Indexed: 12/14/2022]
Abstract
Magnetic microrobots and nanorobots can be remotely controlled to propel in complex biological fluids with high precision by using magnetic fields. Their potential for controlled navigation in hard-to-reach cavities of the human body makes them promising miniaturized robotic tools to diagnose and treat diseases in a minimally invasive manner. However, critical issues, such as motion tracking, biocompatibility, biodegradation, and diagnostic/therapeutic effects, need to be resolved to allow preclinical in vivo development and clinical trials. We report biohybrid magnetic robots endowed with multifunctional capabilities by integrating desired structural and functional attributes from a biological matrix and an engineered coating. Helical microswimmers were fabricated from Spirulina microalgae via a facile dip-coating process in magnetite (Fe3O4) suspensions, superparamagnetic, and equipped with robust navigation capability in various biofluids. The innate properties of the microalgae allowed in vivo fluorescence imaging and remote diagnostic sensing without the need for any surface modification. Furthermore, in vivo magnetic resonance imaging tracked a swarm of microswimmers inside rodent stomachs, a deep organ where fluorescence-based imaging ceased to work because of its penetration limitation. Meanwhile, the microswimmers were able to degrade and exhibited selective cytotoxicity to cancer cell lines, subject to the thickness of the Fe3O4 coating, which could be tailored via the dip-coating process. The biohybrid microrobots reported herein represent a microrobotic platform that could be further developed for in vivo imaging-guided therapy and a proof of concept for the engineering of multifunctional microrobotic and nanorobotic devices.
Collapse
Affiliation(s)
- Xiaohui Yan
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Qi Zhou
- School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK
| | - Melissa Vincent
- Nanomedicine Laboratory, Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Manchester M13 9PT, UK
| | - Yan Deng
- Department of Obstetrics and Gynaecology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jiangfan Yu
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jianbin Xu
- Department of Biomedical Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Tiantian Xu
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Tao Tang
- Department of Obstetrics and Gynaecology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Liming Bian
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.,Department of Biomedical Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Yi-Xiang J Wang
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Kostas Kostarelos
- Nanomedicine Laboratory, Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Manchester M13 9PT, UK
| | - Li Zhang
- Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
8
|
Ramalingam S, Janardhanan Sreeram K, Raghava Rao J. Green light-emitting BSA-conjugated dye supported silica nanoparticles for bio-imaging applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj03848f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BSA conjugated with amine functionalised silica nanoparticles (BSA@DSFN) proved to be an ideal material for long life fluorescent probe for cellular imaging application.
Collapse
Affiliation(s)
- Sathya Ramalingam
- Inorganic and Physical Chemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India
- Leather Process Technology Department, Central Leather Research Institute, Adyar, Chennai 600 020, India
| | | | - Jonnalagadda Raghava Rao
- Inorganic and Physical Chemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India
| |
Collapse
|
9
|
Philip S, Kuriakose S. Synthesis, Characterization and Antimicrobial Properties of Superparamagnetic α-Fe2O3 Nanoparticles Stabilized by Biocompatible Starch. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01898-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Sriramvenugopal M, Pacak CA. Noninvasive Tracking of Implanted Cells: Superparamagnetic Iron Oxide Nanoparticles as a Long-Term, Multimodal Imaging Label. Methods Mol Biol 2020; 2126:167-175. [PMID: 32112388 DOI: 10.1007/978-1-0716-0364-2_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Superparamagnetic iron oxide (SPIO) nanoparticles can function as specific, long-term multimodal contrast agents for noninvasive imaging studies. Here we describe how to achieve high-resolution, long-term, serial images of single-label transplanted cells through two complementary imaging techniques: magnetic resonance imaging (MRI) and microcomputed tomography (μCT).
Collapse
Affiliation(s)
| | - Christina A Pacak
- Department of Pediatrics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
11
|
Biegger P, Ladd ME, Komljenovic D. Multifunctional Magnetic Resonance Imaging Probes. Recent Results Cancer Res 2020; 216:189-226. [PMID: 32594388 DOI: 10.1007/978-3-030-42618-7_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Magnetic resonance imaging is characterized by high spatial resolution and unsurpassed soft tissue discrimination. Development and characterization of both intrinsic and extrinsic magnetic resonance (MR) imaging probes in the last decade has further strengthened the pivotal role MR imaging holds in the assessment of cancer in preclinical and translational settings. Sophisticated chemical modifications of a variety of nanoparticulate probes hold the potential to deliver valuable multifunctional tools applicable in diagnostics and/or treatment in human oncology. MR imaging suffers from a lack of sensitivity achievable by, e.g., nuclear medicine imaging methods. Advantages of including additional functionality/functionalities in a probe suitable for MR imaging are thus numerous, comprising the addition of fundamentally different imaging information (diagnostics), drug delivery (therapy), or the combination of both (theranostics). In recent years, we have witnessed a plethora of preclinical multimodal or multifunctional imaging probes being published mainly as proof-of-principle studies, yet only a handful are readily applicable in clinical settings. This chapter summarizes recent innovations in the development of multifunctional MR imaging probes and discusses the suitability of these probes for clinical transfer.
Collapse
Affiliation(s)
- Philipp Biegger
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University of Heidelberg, Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Dorde Komljenovic
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
12
|
Enhancement of the therapeutic efficacy of praziquantel in murine Schistosomiasis mansoni using silica nanocarrier. Parasitol Res 2019; 118:3519-3533. [PMID: 31673833 DOI: 10.1007/s00436-019-06475-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/24/2019] [Indexed: 01/03/2023]
Abstract
The main objective of this work is preparation of mesoporous silica nanoparticles loaded with praziquantel (PZQ-Si) in order to enhance the therapeutic efficacy of praziquantel (PZQ). Mice were experimentally infected with Schistosoma mansoni and treated 6 weeks post-infection with PZQ in different doses via either oral or intraperitoneal (IP) routes. PZQ in the same doses orally administered to S. mansoni-infected mice was used as a drug control, and infected and non-infected non-treated mice served as positive and negative controls, respectively. PZQ-Si exhibited good physicochemical attributes in terms of small uniform size (105 nm), spherical shape, and PZQ entrapment efficiency (83%). A maximum antischistosomal effect was achieved using orally administered PZQ-Si as reflected by total worm burden, tissue egg count, oogram pattern, and hepatic granuloma count and diameter. The biomarkers related to liver oxidative stress status and immunomodulatory effect (serum TNF-α and IL-10) were significantly improved. Data obtained implied that IP route was less efficacious for the delivery of PZQ-Si. Encapsulation of PZQ permits the reduction of the used therapeutic dose of PZQ. Hepatic DNA fragmentation, measured by comet assay, was significantly improved in infected mice treated with maximum dose of PZQ-Si as compared to positive or PZQ control groups. The results indicate that mesoporous silica NP is a promising safe nanocarrier for PZQ potentiating its antischistosomal, antioxidant, immunomodulatory, and anti-inflammatory action in animal model infected with S. mansoni. From a practical standpoint, PZQ-Si using a lower dose of PZQ could be suggested for effective PZQ antischistosomal mass chemotherapy.
Collapse
|
13
|
Elkhenany H, Abd Elkodous M, Ghoneim NI, Ahmed TA, Ahmed SM, Mohamed IK, El-Badri N. Comparison of different uncoated and starch-coated superparamagnetic iron oxide nanoparticles: Implications for stem cell tracking. Int J Biol Macromol 2019; 143:763-774. [PMID: 31626822 DOI: 10.1016/j.ijbiomac.2019.10.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 12/27/2022]
Abstract
However, labelling of stem cells using nanoparticles (NPs) for tracking purpose has been intensively investigated, the biosafety of these materials needs more clarification. Herein, different forms of iron oxide Fe2O3, Fe3O4, and CoxNi1-x Fe2O4 NPs either uncoated or starch-coated (ST-coated) were prepared. We successfully labelled adipose-derived stem cells (ASCs) using these NPs with the aid of lipofectamine as a transfection agent (TA). We then evaluated the effect of these NPs on stem cell proliferation, viability, migration and angiogenesis. Results showed that ASCs labelled with Fe2O3, Fe3O4, ST-Fe2O3 and ST-Fe3O4 did not show any significant difference in proliferation compared to that of TA-treated cells. Moreover, they have shown a protective effect against apoptosis. Conversely, CoxNi1-x Fe2O4 NPs caused a significant decrease in cell proliferation. Compared to that of the TA-treated cells, the migration capacity of cells labelled with Fe2O3, Fe3O4 and CoxNi1-xFe2O4 was significantly compromised. Interestingly, the ST-coated composites reversed this effect. Among the groups treated with different NPs, the angiogenic potential of the ASCs was most robust in the ST-Fe2O3-treated group. In conclusion, labelling ASCs with ST-Fe2O3 NPs enhanced cell migration and angiogenic potential and conferred higher resistance to apoptosis than labelling the cells with the other tested NPs.
Collapse
Affiliation(s)
- Hoda Elkhenany
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Egypt; Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - M Abd Elkodous
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Egypt
| | - Nehal I Ghoneim
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Egypt
| | - Toka A Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Egypt
| | - Sara M Ahmed
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Egypt
| | - Ihab K Mohamed
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, Egypt.
| |
Collapse
|
14
|
A non-invasive monitoring of USPIO labeled silk fibroin/hydroxyapatite scaffold loaded DPSCs for dental pulp regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109736. [DOI: 10.1016/j.msec.2019.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/31/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022]
|
15
|
Andrzejewska A, Jablonska A, Seta M, Dabrowska S, Walczak P, Janowski M, Lukomska B. Labeling of human mesenchymal stem cells with different classes of vital stains: robustness and toxicity. Stem Cell Res Ther 2019; 10:187. [PMID: 31238982 PMCID: PMC6593614 DOI: 10.1186/s13287-019-1296-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
Background Mesenchymal stem cell (MSC) transplantation has been explored as a new clinical approach to repair injured tissues. However, in order to evaluate the therapeutic activity of MSC, cell tracking techniques are required to determine the fate of transplanted cells in both preclinical and clinical studies. In these aspects, different vital stains offer the potential for labeling and monitoring of grafted cells in vivo. It is desirable to have tracking agents which have long-term stability, are not toxic to the cells, and do not affect cell function. Methods Here, we selected three different labels: CellTracker™ Green CMFDA, eGFP-mRNA (genetic pre-tag), and Molday ION Rhodamine B™ (nanoparticle-based fluorescent and magnetic label) and performed extensive analysis of their influence on in vitro expansion of human bone marrow-derived mesenchymal stem cells (hBM-MSCs), as well as potential of affecting therapeutic activity and the impact on the durability of staining. Results Our study showed that basic hBM-MSC characteristics and functions might be affected by labeling. We observed strong alterations of metabolic activity and morphology after eGFP and CellTracker™ Green CMFDA hBM-MSC staining. Molday ION Rhodamine B™ labeling revealed superior properties relatively to other vital stains. The relative expression level of most of the investigated growth factors remained stable after cell labeling, but we have observed some changes in the case of EGF, GDNF, HGF, and IGF gene expression. Conclusions Taken together, we suggest performing similar to ours extensive analysis prior to using any cell label to tag MSC in experiments, as it can thoroughly bias results. Electronic supplementary material The online version of this article (10.1186/s13287-019-1296-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Jablonska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Martyna Seta
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Sylwia Dabrowska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Walczak
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Miroslaw Janowski
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
16
|
Multari C, Miola M, Laviano F, Gerbaldo R, Pezzotti G, Debellis D, Verné E. Magnetoplasmonic nanoparticles for photothermal therapy. NANOTECHNOLOGY 2019; 30:255705. [PMID: 30790778 DOI: 10.1088/1361-6528/ab08f7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In recent decades the applications of nanotechnology in the biomedical field have attracted a lot of attention. Magnetic and gold nanoparticles (MNPs and GNPs) are now of interest as selective tools for tumour treatment, due to their unique properties and biocompatibility. In this paper, superparamagnetic iron oxide nanoparticles (MNPs) decorated with gold nanoparticles (GNPs) have been prepared by means of an innovative synthesis process using tannic acid as the reducing agent. The as-obtained nanoplatforms were characterized in terms of size, morphology, structure, composition, magnetic response and plasmonic properties. The results revealed that hybrid nanoplatforms (magnetoplasmonic nanoparticles, MPNPs) composed of a magnetic core and an external GNP decoration, acting in synergy, have been developed. Biological tests were also performed on both healthy cells and cancer cells exposed to different nanoparticle concentrations, upon laser irradiation. GNPs grafted onto the surface of MNPs revealed the ability to convert the received light into thermal energy, which was selective in its detrimental effect on cancer cells.
Collapse
Affiliation(s)
- C Multari
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Maruf A, Wang Y, Yin T, Huang J, Wang N, Durkan C, Tan Y, Wu W, Wang G. Atherosclerosis Treatment with Stimuli-Responsive Nanoagents: Recent Advances and Future Perspectives. Adv Healthc Mater 2019; 8:e1900036. [PMID: 30945462 DOI: 10.1002/adhm.201900036] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/06/2019] [Indexed: 01/04/2023]
Abstract
Atherosclerosis is the root of approximately one-third of global mortalities. Nanotechnology exhibits splendid prospects to combat atherosclerosis at the molecular level by engineering smart nanoagents with versatile functionalizations. Significant advances in nanoengineering enable nanoagents to autonomously navigate in the bloodstream, escape from biological barriers, and assemble with their nanocohort at the targeted lesion. The assembly of nanoagents with endogenous and exogenous stimuli breaks down their shells, facilitates intracellular delivery, releases their cargo to kill the corrupt cells, and gives imaging reports. All these improvements pave the way toward personalized medicine for atherosclerosis. This review systematically summarizes the recent advances in stimuli-responsive nanoagents for atherosclerosis management and its progress in clinical trials.
Collapse
Affiliation(s)
- Ali Maruf
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Yi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Tieyin Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Junli Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Nan Wang
- The Nanoscience CentreUniversity of Cambridge Cambridge CB3 0FF UK
| | - Colm Durkan
- The Nanoscience CentreUniversity of Cambridge Cambridge CB3 0FF UK
| | - Youhua Tan
- Department of Biomedical EngineeringThe Hong Kong Polytechnic University Hong Kong SAR 999077 China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| |
Collapse
|
18
|
Magnetic Particle Imaging in Neurosurgery. World Neurosurg 2019; 125:261-270. [DOI: 10.1016/j.wneu.2019.01.180] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 01/19/2023]
|
19
|
Liyanage PY, Hettiarachchi SD, Zhou Y, Ouhtit A, Seven ES, Oztan CY, Celik E, Leblanc RM. Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochim Biophys Acta Rev Cancer 2019; 1871:419-433. [PMID: 31034927 PMCID: PMC6549504 DOI: 10.1016/j.bbcan.2019.04.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/29/2019] [Accepted: 04/06/2019] [Indexed: 12/27/2022]
Abstract
Breast cancer (BC) is the most common malignancy in women worldwide, and one of the deadliest after lung cancer. Currently, standard methods for cancer therapy including BC are surgery followed by chemotherapy or radiotherapy. However, both chemotherapy and radiotherapy often fail to treat BC due to the side effects that these therapies incur in normal tissues and organs. In recent years, various nanoparticles (NPs) have been discovered and synthesized to be able to selectively target tumor cells without causing any harm to the healthy cells or organs. Therefore, NPs-mediated targeted drug delivery systems (DDS) have become a promising technique to treat BC. In addition to their selectivity to target tumor cells and reduce side effects, NPs have other unique properties which make them desirable for cancer treatment such as low toxicity, good compatibility, ease of preparation, high photoluminescence (PL) for bioimaging in vivo, and high loadability of drugs due to their tunable surface functionalities. In this study, we summarize with a critical analysis of the most recent therapeutic studies involving various NPs-mediated DDS as alternatives for the traditional treatment approaches for BC. It will shed light on the significance of NPs-mediated DDS and serve as a guide to seeking for the ideal methodology for future targeted drug delivery for an efficient BC treatment.
Collapse
Affiliation(s)
- Piumi Y Liyanage
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | - Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Allal Ouhtit
- Department of Biological & Environmental Sciences, College of Arts & Sciences, Qatar University, Doha, Qatar
| | - Elif S Seven
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Cagri Y Oztan
- Department of Aerospace and Mechanical Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Emrah Celik
- Department of Aerospace and Mechanical Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
20
|
Hoang Thi TT, Nguyen Tran DH, Bach LG, Vu-Quang H, Nguyen DC, Park KD, Nguyen DH. Functional Magnetic Core-Shell System-Based Iron Oxide Nanoparticle Coated with Biocompatible Copolymer for Anticancer Drug Delivery. Pharmaceutics 2019; 11:E120. [PMID: 30875948 PMCID: PMC6470966 DOI: 10.3390/pharmaceutics11030120] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 11/16/2022] Open
Abstract
Polymer coating has drawn increasing attention as a leading strategy to overcome the drawbacks of superparamagnetic iron oxide nanoparticles (SPIONs) in targeted delivery of anticancer drugs. In this study, SPIONs were modified with heparin-Poloxamer (HP) shell to form a SPION@HP core-shell system for anticancer drug delivery. The obtained formulation was characterized by techniques including transmission electron microscopy (TEM), Fourier transform infrared spectra (FT-IR), vibration sample magnetometer (VSM), proton nuclear magnetic resonance (¹H-NMR), and powder X-ray diffraction (XRD). Results showed the successful attachment of HP shell on the surface of SPION core and the inability to cause considerable effects to the crystal structure and unique magnetic nature of SPION. The core-shell system maintains the morphological features of SPIONs and the desired size range. Notably, Doxorubicin (DOX), an anticancer drug, was effectively entrapped into the polymeric shell of SPION@HP, showing a loading efficiency of 66.9 ± 2.7% and controlled release up to 120 h without any initial burst effect. Additionally, MTT assay revealed that DOX-loaded SPION@HP exerted great anticancer effect against HeLa cells and could be safely used. These results pave the way for the application of SPION@HP as an effective targeted delivery system for cancer treatment.
Collapse
Affiliation(s)
- Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| | - Diem-Huong Nguyen Tran
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam.
| | - Long Giang Bach
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam.
- Department of Chemical Engineering and Food Technology, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam.
| | - Hieu Vu-Quang
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam.
| | - Duy Chinh Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam.
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 443749, Korea.
| | - Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam.
- Department of Molecular Science and Technology, Ajou University, Suwon 443749, Korea.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam.
| |
Collapse
|
21
|
A Precautionary Approach to Guide the Use of Transition Metal-Based Nanotechnology to Prevent Orthopedic Infections. MATERIALS 2019; 12:ma12020314. [PMID: 30669523 PMCID: PMC6356474 DOI: 10.3390/ma12020314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 12/11/2022]
Abstract
The increase of multidrug-resistant bacteria remains a global concern. Among the proposed strategies, the use of nanoparticles (NPs) alone or associated with orthopedic implants represents a promising solution. NPs are well-known for their antimicrobial effects, induced by their size, shape, charge, concentration and reactive oxygen species (ROS) generation. However, this non-specific cytotoxic potential is a powerful weapon effective against almost all microorganisms, but also against eukaryotic cells, raising concerns related to their safe use. Among the analyzed transition metals, silver is the most investigated element due to its antimicrobial properties per se or as NPs; however, its toxicity raises questions about its biosafety. Even though it has milder antimicrobial and cytotoxic activity, TiO2 needs to be exposed to UV light to be activated, thus limiting its use conjugated to orthopedic devices. By contrast, gold has a good balance between antimicrobial activity as an NP and cytocompatibility because of its inability to generate ROS. Nevertheless, although the toxicity and persistence of NPs within filter organs are not well verified, nowadays, several basic research on NP development and potential uses as antimicrobial weapons is reported, overemphasizing NPs potentialities, but without any existing potential of translation in clinics. This analysis cautions readers with respect to regulation in advancing the development and use of NPs. Hopefully, future works in vivo and clinical trials will support and regulate the use of nano-coatings to guarantee safer use of this promising approach against antibiotic-resistant microorganisms.
Collapse
|
22
|
|
23
|
Maity D, Kandasamy G, Sudame A. Superparamagnetic Iron Oxide Nanoparticles for Cancer Theranostic Applications. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
24
|
Engelmann UM, Roeth AA, Eberbeck D, Buhl EM, Neumann UP, Schmitz-Rode T, Slabu I. Combining Bulk Temperature and Nanoheating Enables Advanced Magnetic Fluid Hyperthermia Efficacy on Pancreatic Tumor Cells. Sci Rep 2018; 8:13210. [PMID: 30181576 PMCID: PMC6123461 DOI: 10.1038/s41598-018-31553-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023] Open
Abstract
Many efforts are made worldwide to establish magnetic fluid hyperthermia (MFH) as a treatment for organ-confined tumors. However, translation to clinical application hardly succeeds as it still lacks of understanding the mechanisms determining MFH cytotoxic effects. Here, we investigate the intracellular MFH efficacy with respect to different parameters and assess the intracellular cytotoxic effects in detail. For this, MiaPaCa-2 human pancreatic tumor cells and L929 murine fibroblasts were loaded with iron-oxide magnetic nanoparticles (MNP) and exposed to MFH for either 30 min or 90 min. The resulting cytotoxic effects were assessed via clonogenic assay. Our results demonstrate that cell damage depends not only on the obvious parameters bulk temperature and duration of treatment, but most importantly on cell type and thermal energy deposited per cell during MFH treatment. Tumor cell death of 95% was achieved by depositing an intracellular total thermal energy with about 50% margin to damage of healthy cells. This is attributed to combined intracellular nanoheating and extracellular bulk heating. Tumor cell damage of up to 86% was observed for MFH treatment without perceptible bulk temperature rise. Effective heating decreased by up to 65% after MNP were internalized inside cells.
Collapse
Affiliation(s)
- Ulrich M Engelmann
- Institute of Applied Medical Engineering, RWTH Aachen University and University Hospital Aachen, Pauwelsstr. 20, D-52074, Aachen, Germany
| | - Anjali A Roeth
- Department of General, Visceral and Transplant Surgery, RWTH University Hospital Aachen, Pauwelsstr. 30, D-52074, Aachen, Germany
| | - Dietmar Eberbeck
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, D-10587, Berlin, Germany
| | - Eva M Buhl
- Institute of Pathology, Electron Microscopic Facility, RWTH University Hospital Aachen, Pauwelsstr. 30, D-52074, Aachen, Germany
| | - Ulf P Neumann
- Department of General, Visceral and Transplant Surgery, RWTH University Hospital Aachen, Pauwelsstr. 30, D-52074, Aachen, Germany
| | - Thomas Schmitz-Rode
- Institute of Applied Medical Engineering, RWTH Aachen University and University Hospital Aachen, Pauwelsstr. 20, D-52074, Aachen, Germany
| | - Ioana Slabu
- Institute of Applied Medical Engineering, RWTH Aachen University and University Hospital Aachen, Pauwelsstr. 20, D-52074, Aachen, Germany.
| |
Collapse
|
25
|
Ereath Beeran A, Fernandez FB, Varma PRH. Self-Controlled Hyperthermia & MRI Contrast Enhancement via Iron Oxide Embedded Hydroxyapatite Superparamagnetic particles for Theranostic Application. ACS Biomater Sci Eng 2018; 5:106-113. [DOI: 10.1021/acsbiomaterials.8b00244] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ansar Ereath Beeran
- Division of Bioceramics, Department of Biomaterial Science and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, Kerala 695012, India
| | - Francis Boniface Fernandez
- Division of Bioceramics, Department of Biomaterial Science and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, Kerala 695012, India
| | - P. R. Harikrishna Varma
- Division of Bioceramics, Department of Biomaterial Science and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, Kerala 695012, India
| |
Collapse
|
26
|
Kurdtabar M, Nezam H, Rezanejade Bardajee G, Dezfulian M, Salimi H. Biocompatible Magnetic Hydrogel Nanocomposite Based on Carboxymethylcellulose: Synthesis, Cell Culture Property and Drug Delivery. POLYMER SCIENCE SERIES B 2018. [DOI: 10.1134/s1560090418020021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Xu HL, Yang JJ, ZhuGe DL, Lin MT, Zhu QY, Jin BH, Tong MQ, Shen BX, Xiao J, Zhao YZ. Glioma-Targeted Delivery of a Theranostic Liposome Integrated with Quantum Dots, Superparamagnetic Iron Oxide, and Cilengitide for Dual-Imaging Guiding Cancer Surgery. Adv Healthc Mater 2018; 7:e1701130. [PMID: 29350498 DOI: 10.1002/adhm.201701130] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 12/20/2017] [Indexed: 01/14/2023]
Abstract
Herein, a theranostic liposome (QSC-Lip) integrated with superparamagnetic iron oxide nanoparticles (SPIONs) and quantum dots (QDs) and cilengitide (CGT) into one platform is constructed to target glioma under magnetic targeting (MT) for guiding surgical resection of glioma. Transmission electron microscopy and X-ray photoelectron spectroscopy confirm the complete coencapsulation of SPIONs and QDs in liposome. Besides, CGT is also effectively encapsulated into the liposome with an encapsulation efficiency of ∼88.9%. QSC-Lip exhibits a diameter of 100 ± 1.24 nm, zeta potential of -17.10 ± 0.11 mV, and good stability in several mediums. Moreover, each cargo shows a biphasic release pattern from QSC-Lip, a rapid initial release within initial 10 h followed by a sustained release. Cellular uptake of QSC-Lip is significantly enhanced by C6 cells under MT. In vivo dual-imaging studies show that QSC-Lip not only produces an obvious negative-contrast enhancement effect on glioma by magnetic resonance imaging but also makes tumor emitting fluorescence under MT. The dual-imaging of QSC-Lip guides the accurate resection of glioma by surgery. Besides, CGT is also specifically distributed to glioma after administration of QSC-Lip under MT, resulting in an effective inhibition of tumors. The integrated liposome may be a potential carrier for theranostics of tumor.
Collapse
Affiliation(s)
- He-Lin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Jing-Jing Yang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - De-Li ZhuGe
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Meng-Ting Lin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Qun-Yan Zhu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Bing-Hui Jin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Meng-Qi Tong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Bi-Xin Shen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| | - Jian Xiao
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Ying-Zheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China
| |
Collapse
|
28
|
Cellular and Molecular Toxicity of Iron Oxide Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1048:199-213. [DOI: 10.1007/978-3-319-72041-8_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Tsai MF, Hsu C, Yeh CS, Hsiao YJ, Su CH, Wang LF. Tuning the Distance of Rattle-Shaped IONP@Shell-in-Shell Nanoparticles for Magnetically-Targeted Photothermal Therapy in the Second Near-Infrared Window. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1508-1519. [PMID: 29200260 DOI: 10.1021/acsami.7b14593] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Construction of multifunctional nanoparticles (NPs) with near-infrared (NIR) plasmonic responses is considered a versatile and multifaceted platform for several biomedical applications. Herein, a double layer of Au/Ag alloy on the surface of truncated octahedral iron oxide NPs (IONPs) was prepared and the distance between the layers was controlled to exhibit broad and strong NIR absorption. The rattle-shaped IONP@shell-in-shell nanostructure showed light-response to the NIR biological window from 650 to 1300 nm for photothermal therapy (PTT) and magnetic guidance for hyperthermia and magnetic resonance imaging (MRI) diagnosis. Exposing the aqueous solution of IONP@shell-in-shell to a 1064 nm diode laser, its heat conversion efficiency was ∼28.3%. The in vitro cell viability at a gold concentration of 100 ppm was ∼85%, and decreased to ∼16% when the cells were treated with the NIR irradiation and magnetic attraction. T2-weighted MRI images showed a clear accumulation of IONP@shell-in-shell at the tumor site with magnetic attraction. In vivo luminescence tumor images explained that the IONP@shell-in-shell could reduce the U87MG-luc2 cancer cell proliferation in mice with the NIR irradiation and magnetic attraction. These results indicate the IONP@shell-in-shell as a promising nanomedicine for PTT, magnetic targeting, and magnetic resonance imaging (MRI).
Collapse
Affiliation(s)
| | | | - Chen-Sheng Yeh
- Department of Chemistry, Center for Micro/Nano Science and Technology, and Advanced Optoelectronic Technology Center, National Cheng Kung University , Tainan 701, Taiwan
| | - Yu-Jen Hsiao
- National Nano Device Laboratories, National Applied Research Laboratories , Tainan 701, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung 833, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University , Taipei 112, Taiwan
| | - Li-Fang Wang
- Department of Medical Research, Kaohsiung Medical University Hospital , Kaohsiung 807, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University , Kaohsiung 804, Taiwan
| |
Collapse
|
30
|
Stem Cell Tracing Through MR Molecular Imaging. Tissue Eng Regen Med 2018; 15:249-261. [PMID: 30603551 DOI: 10.1007/s13770-017-0112-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/09/2017] [Accepted: 12/27/2017] [Indexed: 01/12/2023] Open
Abstract
Stem cell therapy opens a new window in medicine to overcome several diseases that remain incurable. It appears such diseases as cardiovascular disorders, brain injury, multiple sclerosis, urinary system diseases, cartilage lesions and diabetes are curable with stem cell transplantation. However, some questions related to stem cell therapy have remained unanswered. Stem cell imaging allows approval of appropriated strategies such as selection of the type and dose of stem cell, and also mode of cell delivery before being tested in clinical trials. MRI as a non-invasive imaging modality provides proper conditions for this aim. So far, different contrast agents such as superparamagnetic or paramagnetic nanoparticles, ultrasmall superparamagnetic nanoparticles, fluorine, gadolinium and some types of reporter genes have been used for imaging of stem cells. The core subject of these studies is to investigate the survival and differentiation of stem cells, contrast agent's toxicity and long term following of transplanted cells. The promising results of in vivo and some clinical trial studies may raise hope for clinical stem cells imaging with MRI.
Collapse
|
31
|
Qin Y, Zhuo L, Cai J, He X, Liu B, Feng C, Zhang L. In vivo monitoring of magnetically labeled mesenchymal stem cells homing to rabbit hepatic VX2 tumors using magnetic resonance imaging. Mol Med Rep 2017; 17:452-458. [PMID: 29115453 DOI: 10.3892/mmr.2017.7902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 07/20/2017] [Indexed: 11/05/2022] Open
Abstract
Although mesenchymal stem cells (MSCs) have been demonstrated to possess a tumor‑homing feature, their tropism to liver tumors has not been delineated in a visible manner. The aim of the present study was to evaluate the tumor‑homing capacity of MSCs and to investigate the spatial and temporal distributions of MSCs in liver tumors using magnetic resonance imaging (MRI). MSCs were colabeled with superparamagnetic iron oxide (SPIO) particles and 4',6‑diamidino‑2‑phenylindole (DAPI), and then transplanted into rabbits with VX2 liver tumors through intravenous injections. The rabbits were subjected to MRI before and at 3, 7 and 14 days after cell transplantation using a clinical 1.5‑T MRI system. Immediately after the MRI examination, histological analyses were performed using fluorescence and Prussian blue staining. At 3 days after injection with labeled MSCs, heterogeneous hypointensity was detected on the MRI images of the tumor. At 7 days after transplantation, the tumor exhibited anisointense MRI signal, whereas a hypointense ring was detected at the border of the tumor. At 14 days after transplantation, the MRI signal recovered the hyperintensity. As demonstrated in the histological analyses, the distribution of the iron particles visualized with Prussian blue staining was consistent with the DAPI‑stained bright fluorescent nuclei, and the particles corresponded to the hypointense region on the MR images. Thus, systemically administered MSCs could localize to liver tumors with high specificity and possessed a migration feature with active tumor growth. These results demonstrated that the targeting and distribution of the magnetically labeled stem cells in the tumor could be tracked for 7 days in vivo using a clinical 1.5‑T MRI scanner.
Collapse
Affiliation(s)
- Yong Qin
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Lisha Zhuo
- Outpatient Department, 77100 Troops, Chinese People's Liberation Army, Chongqing 400020, P.R. China
| | - Jinhua Cai
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Xiaoya He
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Bo Liu
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Chuan Feng
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Lin Zhang
- Department of Radiology, Xinan Hospital of Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
32
|
Ding N, Sano K, Kanazaki K, Ohashi M, Deguchi J, Kanada Y, Ono M, Saji H. In Vivo HER2-Targeted Magnetic Resonance Tumor Imaging Using Iron Oxide Nanoparticles Conjugated with Anti-HER2 Fragment Antibody. Mol Imaging Biol 2017; 18:870-876. [PMID: 27351762 DOI: 10.1007/s11307-016-0977-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE The feasibility of iron oxide nanoparticles (IONPs) conjugated with anti-epidermal growth factor receptor 2 (HER2) single-chain antibody (scFv-IONPs) as novel HER2-targeted magnetic resonance (MR) contrast agents was investigated. PROCEDURES The scFv-IONPs were prepared and identified. For in vitro MRI, NCI-N87 (HER2 high expression) and SUIT2 (low expression) cells were incubated with scFv-IONPs. For in vivo MRI, NCI-N87 and SUIT2 tumor-bearing mice were intravenously injected with scFv-IONPs and imaged before and 24 h post-injection. RESULTS The scFv-IONPs demonstrated high transverse relaxivity (296.3 s-1 mM-1) and affinity toward HER2 (KD = 11.7 nM). In the in vitro MRI, NCI-N87 cells treated with scFv-IONPs exhibited significant MR signal reduction (44.6 %) than SUIT2 cells (6.8 %). In the in vivo MRI, decrease of MR signals in NCI-N87 tumors (19.3 %) was more notable than that in SUIT2 tumors (6.2 %). CONCLUSIONS The scFv-IONPs enabled HER2-specific tumor MR imaging, suggesting the potential of scFv-IONPs as a robust HER2-targeted MR contrast agent.
Collapse
Affiliation(s)
- Ning Ding
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kohei Sano
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kengo Kanazaki
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Medical Imaging Project, Corporate R&D Headquarters, Canon Inc., 3-30-2 Shimomaruko, Ohta-ku, Tokyo, 146-8501, Japan
| | - Manami Ohashi
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Jun Deguchi
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yuko Kanada
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hideo Saji
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
33
|
Alipour A, Soran-Erdem Z, Utkur M, Sharma VK, Algin O, Saritas EU, Demir HV. A new class of cubic SPIONs as a dual-mode T1 and T2 contrast agent for MRI. Magn Reson Imaging 2017; 49:16-24. [PMID: 28958878 DOI: 10.1016/j.mri.2017.09.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 08/29/2017] [Accepted: 09/24/2017] [Indexed: 01/08/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are widely used as a robust negative contrast agent on conventional MRI. In this study, we (a) synthesized a new class of cubic SPIONs as a dual-mode contrast agent in MRI and (b) showed the in-vivo feasibility of these nanaoparticles as a simultaneous positive and negative contrast agent. Relaxation properties and contrast enhancement analysis of the synthesized SPIONs with two different shapes (cubic vs. spherical) and three different sizes 7nm, 11nm, and 14nm were investigated to evaluate contrast enhancement in-vitro. In-vivo MRI experiments were performed on a 3T MR scanner, where a healthy anesthetized rat was imaged before, and from 20 to 80min after intravenous injection of 1mg/kg of contrast agent. Representative transmission electron microscopy (TEM) images of the synthesized nanoparticles reveal that the particles are well dispersed in a solvent and do not aggregate. The in-vitro relaxivity and contrast enhancement analysis show that, among all six SPIONs tested, 11-nm cubic SPIONs possess optimal molar relaxivities and contrast enhancement values, which can shorten the spin-lattice and spin-spin relaxation times, simultaneously. No noticeable toxicity is observed during in-vitro cytotoxicity analysis. In-vivo T1-and T2-weighted acquisitions at 60-min post-injection of 11-nm cubic SPIONs result in 64% and 48% contrast enhancement on the T1-and T2-weighted images, respectively. By controlling the shape and size of SPIONs, we have introduced a new class of cubic SPIONs as a synergistic (dual-mode) MRI contrast agent. 11-nm cubic SPIONs with smaller size and high positive and negative contrast enhancements were selected as a promising candidate for dual-mode contrast agent. Our proof-of-concept MRI experiments on rat demonstrate the in-vivo dual-mode contrast enhancement feasibility of these nanoparticles.
Collapse
Affiliation(s)
- Akbar Alipour
- Department of Electrical and Electronics Engineering-National Magnetic Resonance Research Center (UMRAM), National Nanotechnology Research Center (UNAM), Department of Physics, Bilkent University, Bilkent, Ankara 06800, Turkey
| | - Zeliha Soran-Erdem
- Department of Electrical and Electronics Engineering-National Magnetic Resonance Research Center (UMRAM), National Nanotechnology Research Center (UNAM), Department of Physics, Bilkent University, Bilkent, Ankara 06800, Turkey
| | - Mustafa Utkur
- Department of Electrical and Electronics Engineering-National Magnetic Resonance Research Center (UMRAM), National Nanotechnology Research Center (UNAM), Department of Physics, Bilkent University, Bilkent, Ankara 06800, Turkey
| | - Vijay Kumar Sharma
- Department of Electrical and Electronics Engineering-National Magnetic Resonance Research Center (UMRAM), National Nanotechnology Research Center (UNAM), Department of Physics, Bilkent University, Bilkent, Ankara 06800, Turkey; LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Mathematical and Physical Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Oktay Algin
- Department of Electrical and Electronics Engineering-National Magnetic Resonance Research Center (UMRAM), National Nanotechnology Research Center (UNAM), Department of Physics, Bilkent University, Bilkent, Ankara 06800, Turkey; Department of Radiology, Ankara Atatürk Training and Research Hospital, Ankara 06800, Turkey
| | - Emine Ulku Saritas
- Department of Electrical and Electronics Engineering-National Magnetic Resonance Research Center (UMRAM), National Nanotechnology Research Center (UNAM), Department of Physics, Bilkent University, Bilkent, Ankara 06800, Turkey; Neuroscience Program, Sabuncu Brain Research Center, Bilkent University, Ankara 06800, Turkey
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering-National Magnetic Resonance Research Center (UMRAM), National Nanotechnology Research Center (UNAM), Department of Physics, Bilkent University, Bilkent, Ankara 06800, Turkey; LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Mathematical and Physical Sciences, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
34
|
Duong C, Yoshida S, Chen C, Barisone G, Diaz E, Li Y, Beckett L, Chung J, Antony R, Nolta J, Nitin N, Satake N. Novel targeted therapy for neuroblastoma: silencing the MXD3 gene using siRNA. Pediatr Res 2017; 82:527-535. [PMID: 28419087 PMCID: PMC5766270 DOI: 10.1038/pr.2017.74] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 02/03/2017] [Accepted: 02/26/2017] [Indexed: 12/13/2022]
Abstract
BackgroundNeuroblastoma is the second most common extracranial cancer in children. Current therapies for neuroblastoma, which use a combination of chemotherapy drugs, have limitations for high-risk subtypes and can cause significant long-term adverse effects in young patients. Therefore, a new therapy is needed. In this study, we investigated the transcription factor MXD3 as a potential therapeutic target in neuroblastoma.MethodsMXD3 expression was analyzed in five neuroblastoma cell lines by immunocytochemistry and quantitative real-time reverse transcription PCR, and in 18 primary patient tumor samples by immunohistochemistry. We developed nanocomplexes using siRNA and superparamagnetic iron oxide nanoparticles to target MXD3 in neuroblastoma cell lines in vitro as a single-agent therapeutic and in combination with doxorubicin, vincristine, cisplatin, or maphosphamide-common drugs used in current neuroblastoma treatment.ResultsMXD3 was highly expressed in neuroblastoma cell lines and in patient tumors that had high-risk features. Neuroblastoma cells treated in vitro with the MXD3 siRNA nanocomplexes showed MXD3 protein knockdown and resulted in cell apoptosis. Furthermore, on combining MXD3 siRNA nanocomplexes with each of the four drugs, all showed additive efficacy.ConclusionThese results indicate that MXD3 is a potential new target and that the use of MXD3 siRNA nanocomplexes is a novel therapeutic approach for neuroblastoma.
Collapse
Affiliation(s)
- Connie Duong
- Department of Pediatrics, University of California, Davis, California,Stem Cell Program, University of California, Davis, California
| | - Sakiko Yoshida
- Department of Pediatrics, University of California, Davis, California,Stem Cell Program, University of California, Davis, California,Department of Pediatrics, Niigata University, Japan
| | - Cathy Chen
- Department of Pediatrics, University of California, Davis, California,Stem Cell Program, University of California, Davis, California
| | - Gustavo Barisone
- Department of Pharmacology, University of California, Davis, California,Department of Internal Medicine, University of California, Davis, California
| | - Elva Diaz
- Department of Pharmacology, University of California, Davis, California
| | - Yueju Li
- Department of Public Health Sciences, University of California, Davis, California
| | - Laurel Beckett
- Department of Public Health Sciences, University of California, Davis, California
| | - Jong Chung
- Department of Pediatrics, University of California, Davis, California
| | - Reuben Antony
- Department of Pediatrics, University of California, Davis, California
| | - Jan Nolta
- Stem Cell Program, University of California, Davis, California
| | - Nitin Nitin
- Department of Biological & Agricultural Engineering, University of California, Davis, California
| | - Noriko Satake
- Department of Pediatrics, University of California, Davis, California,Stem Cell Program, University of California, Davis, California,Corresponding author: Noriko Satake, Department of Pediatrics, 2516 Stockton Blvd., Sacramento, CA 95817, Phone: 916-734-2781, FAX: 916-451-3014,
| |
Collapse
|
35
|
Abstract
Breast cancer is one of the most common cancers affecting women worldwide. The controlled release of drugs to the precise site of the disease using a nanocarrier vehicle increases the therapeutic efficiency of the drugs. Nanotechnology-based approaches used to endorse clinical improvement from a disease also help to understand the interaction of malignant cells with their microenvironment. Receptor-based targeting is another approach for drug delivery which is undergoing clinical trials. Nanoparticles (NPs) delivery has been proven to promise high loading capacity, less toxicity, and stability of the drugs or biomolecules compared to traditional chemotherapeutic drugs. The goal of this review is to present the current problems of breast cancer therapy and discuss the NP-based targeting to overcome the hurdles of conventional drug therapy approach.
Collapse
Affiliation(s)
- Santosh Kumar Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Shriti Singh
- Department of Kriya Sharir, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - James W Lillard
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
36
|
Magro M, Martinello T, Bonaiuto E, Gomiero C, Baratella D, Zoppellaro G, Cozza G, Patruno M, Zboril R, Vianello F. Covalently bound DNA on naked iron oxide nanoparticles: Intelligent colloidal nano-vector for cell transfection. Biochim Biophys Acta Gen Subj 2017; 1861:2802-2810. [PMID: 28778487 DOI: 10.1016/j.bbagen.2017.07.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/28/2017] [Accepted: 07/30/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Conversely to common coated iron oxide nanoparticles, novel naked surface active maghemite nanoparticles (SAMNs) can covalently bind DNA. Plasmid (pDNA) harboring the coding gene for GFP was directly chemisorbed onto SAMNs, leading to a novel DNA nanovector (SAMN@pDNA). The spontaneous internalization of SAMN@pDNA into cells was compared with an extensively studied fluorescent SAMN derivative (SAMN@RITC). Moreover, the transfection efficiency of SAMN@pDNA was evaluated and explained by computational model. METHODS SAMN@pDNA was prepared and characterized by spectroscopic and computational methods, and molecular dynamic simulation. The size and hydrodynamic properties of SAMN@pDNA and SAMN@RITC were studied by electron transmission microscopy, light scattering and zeta-potential. The two nanomaterials were tested by confocal scanning microscopy on equine peripheral blood-derived mesenchymal stem cells (ePB-MSCs) and GFP expression by SAMN@pDNA was determined. RESULTS Nanomaterials characterized by similar hydrodynamic properties were successfully internalized and stored into mesenchymal stem cells. Transfection by SAMN@pDNA occurred and GFP expression was higher than lipofectamine procedure, even in the absence of an external magnetic field. A computational model clarified that transfection efficiency can be ascribed to DNA availability inside cells. CONCLUSIONS Direct covalent binding of DNA on naked magnetic nanoparticles led to an extremely robust gene delivery tool. Hydrodynamic and chemical-physical properties of SAMN@pDNA were responsible of the successful uptake by cells and of the efficiency of GFP gene transfection. GENERAL SIGNIFICANCE SAMNs are characterized by colloidal stability, excellent cell uptake, persistence in the host cells, low toxicity and are proposed as novel intelligent DNA nanovectors for efficient cell transfection.
Collapse
Affiliation(s)
- Massimiliano Magro
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University in Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Tiziana Martinello
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Emanuela Bonaiuto
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Chiara Gomiero
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Davide Baratella
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University in Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Giorgio Cozza
- Department of Molecular Medicine, University of Padua, via Gabelli 63, 35121 Padova, Italy
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University in Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padua, viale dell'Università 16, 35020 Legnaro, Italy; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University in Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
37
|
Li A, Wu Y, Tang F, Li W, Feng X, Yao Z. In Vivo Magnetic Resonance Imaging of CD8+ T Lymphocytes Recruiting to Glioblastoma in Mice. Cancer Biother Radiopharm 2017; 31:317-323. [PMID: 27831762 DOI: 10.1089/cbr.2016.2061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Noninvasive in vivo tracking of adopted immune cells would help improve immunotherapy on glioblastoma. In this study, the authors tried to track adoptive CD8+ T lymphocytes in an in situ GL261 glioblastoma mouse model with magnetic resonance imaging (MRI). CD8+ T lymphocytes from spleen of preimmunized GL261 glioblastoma mice were labeled with superparamagnetic iron oxide, with polylysine as transfection agent. From Prussian blue staining, the labeling efficiency was 0.77% ± 0.06%, without altering cell viability and function. From anti-CD8, and anti-dextran staining, superparamagnetic iron oxide could be seen in the cytoplasm. In vitro imaging of agar gel mixtures with different concentrations of labeled CD8+ T lymphocytes was done with a 3.0T MR T2*WI sequence. Higher cell concentrations showed lower signal values. Twenty-four hours after tail vein injection of labeled and unlabeled CD8+ T lymphocytes, imaging of GL261 mice brain showed black spots at the periphery of the tumor in the labeled group only. Brain tumor pathology further verified infiltration of labeled CD8+ T lymphocytes in the tumor. Thus, preimmunized CD8+ T lymphocytes could be efficiently labeled with superparamagnetic iron oxide and tracked both in vitro and in vivo with 3.0T MRI.
Collapse
Affiliation(s)
- Anning Li
- 1 Department of Radiology, Qilu Hospital of Shandong University , Jinan, People's Republic of China
| | - Yue Wu
- 2 Department of Radiology, Fudan University , Shanghai, People's Republic of China
| | - Feng Tang
- 3 Department of Radiology, Pathology, Huashan Hospital, Fudan University , Shanghai, People's Republic of China
| | - Wei Li
- 3 Department of Radiology, Pathology, Huashan Hospital, Fudan University , Shanghai, People's Republic of China
| | - Xiaoyuan Feng
- 2 Department of Radiology, Fudan University , Shanghai, People's Republic of China
| | - Zhenwei Yao
- 2 Department of Radiology, Fudan University , Shanghai, People's Republic of China
| |
Collapse
|
38
|
Wáng YXJ, Idée JM. A comprehensive literatures update of clinical researches of superparamagnetic resonance iron oxide nanoparticles for magnetic resonance imaging. Quant Imaging Med Surg 2017; 7:88-122. [PMID: 28275562 DOI: 10.21037/qims.2017.02.09] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This paper aims to update the clinical researches using superparamagnetic iron oxide (SPIO) nanoparticles as magnetic resonance imaging (MRI) contrast agent published during the past five years. PubMed database was used for literature search, and the search terms were (SPIO OR superparamagnetic iron oxide OR Resovist OR Ferumoxytol OR Ferumoxtran-10) AND (MRI OR magnetic resonance imaging). The literature search results show clinical research on SPIO remains robust, particularly fuelled by the approval of ferumoxytol for intravenously administration. SPIOs have been tested on MR angiography, sentinel lymph node detection, lymph node metastasis evaluation; inflammation evaluation; blood volume measurement; as well as liver imaging. Two experimental SPIOs with unique potentials are also discussed in this review. A curcumin-conjugated SPIO can penetrate brain blood barrier (BBB) and bind to amyloid plaques in Alzheime's disease transgenic mice brain, and thereafter detectable by MRI. Another SPIO was fabricated with a core of Fe3O4 nanoparticle and a shell coating of concentrated hydrophilic polymer brushes and are almost not taken by peripheral macrophages as well as by mononuclear phagocytes and reticuloendothelial system (RES) due to the suppression of non-specific protein binding caused by their stealthy ''brush-afforded'' structure. This SPIO may offer potentials for the applications such as drug targeting and tissue or organ imaging other than liver and lymph nodes.
Collapse
Affiliation(s)
- Yì Xiáng J Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Sha Tin, New Territories, Hong Kong SAR, China
| | - Jean-Marc Idée
- Guerbet, Research and Innovation Division, Roissy-Charles de Gaulle, France
| |
Collapse
|
39
|
Chen T, Mori Y, Inui-Yamamoto C, Komai Y, Tago Y, Yoshida S, Takabatake Y, Isaka Y, Ohno K, Yoshioka Y. Polymer-brush-afforded SPIO Nanoparticles Show a Unique Biodistribution and MR Imaging Contrast in Mouse Organs. Magn Reson Med Sci 2017; 16:275-283. [PMID: 28132997 PMCID: PMC5743518 DOI: 10.2463/mrms.mp.2016-0067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Introduction: To investigate the biodistribution and retention properties of the new super paramagnetic iron oxide (new SPIO: mean hydrodynamic diameter, 100 nm) nanoparticles, which have concentrated polymer brushes in the outer shell and are difficult for phagocytes to absorb, and to compare the new SPIO with clinically approved SPIO (Resovist: mean hydrodynamic diameter, 57 nm). Materials and Methods: 16 male C57BL/6N mice were divided in two groups according to the administered SPIO (n = 8 for each group; intravenous injection does, 0.1 ml). In vivo magnetic resonance imaging (MRI) was performed before and one hour, one day, one week and four weeks after SPIO administration by two dimensional-the fast low angle shot (2D-FLASH) sequence at 11.7T. Ex vivo high-resolution images of fixed organs were also obtained by (2D-FLASH). After the ex vivo MRI, organs were sectioned and evaluated histologically to confirm the biodistribution of each particle precisely. Results: The new SPIO was taken up in small amounts by liver Kupffer cells and showed a unique in vivo MRI contrast pattern in the kidneys, where the signal intensity decreased substantially in the boundaries between cortex and outer medulla and between outer and inner medulla. We found many round dark spots in the cortex by ex vivo MRI in both groups. Resovist could be detected almost in the cortex. The shapes of the dark spots were similar to those observed in the new SPIO group. Transmission electron microscopy revealed that Resovist and the new SPIO accumulated in different cells of glomeruli, that is, endothelial and mesangial cells, respectively. Conclusion: The new SPIO was taken up in small amounts by liver tissue and showed a unique MRI contrast pattern in the kidney. The SPIO were found in the mesangial cells of renal corpuscles. Our results indicate that the new SPIO may be potentially be used as a new contrast agent for evaluation of kidney function as well as immunune function.
Collapse
Affiliation(s)
- Ting Chen
- Biofunctional Imaging Laboratory, WPI Immunology Frontier Research Center (WPI IFReC), Osaka University.,Functional Imaging Technology, Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT) and Osaka University
| | - Yuki Mori
- Biofunctional Imaging Laboratory, WPI Immunology Frontier Research Center (WPI IFReC), Osaka University.,Functional Imaging Technology, Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT) and Osaka University
| | - Chizuko Inui-Yamamoto
- Biofunctional Imaging Laboratory, WPI Immunology Frontier Research Center (WPI IFReC), Osaka University.,Functional Imaging Technology, Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT) and Osaka University
| | - Yutaka Komai
- Biofunctional Imaging Laboratory, WPI Immunology Frontier Research Center (WPI IFReC), Osaka University
| | - Yoshiyuki Tago
- Biotechnology Development Laboratories, Kaneka Corporation
| | | | | | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine
| | - Kohji Ohno
- Institute for Chemical Research, Kyoto University
| | - Yoshichika Yoshioka
- Biofunctional Imaging Laboratory, WPI Immunology Frontier Research Center (WPI IFReC), Osaka University.,Functional Imaging Technology, Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT) and Osaka University
| |
Collapse
|
40
|
Balzaretti R, Meder F, Monopoli MP, Boselli L, Armenia I, Pollegioni L, Bernardini G, Gornati R. Synthesis, characterization and programmable toxicity of iron oxide nanoparticles conjugated withd-amino acid oxidase. RSC Adv 2017. [DOI: 10.1039/c6ra25349k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
RgDAAO conjugated to γ-Fe2O3NPs generates a low toxic NP-DAAO system, which kills cancer cells through ROS production.
Collapse
Affiliation(s)
- Riccardo Balzaretti
- Department of Biotechnology and Life Sciences
- University of Insubria
- Varese
- Italy
| | - Fabian Meder
- Centre for Bionano Interactions
- University College Dublin
- Dublin
- Ireland
| | - Marco P. Monopoli
- Centre for Bionano Interactions
- University College Dublin
- Dublin
- Ireland
- Department of Pharmacy and Medical Chemistry
| | - Luca Boselli
- Centre for Bionano Interactions
- University College Dublin
- Dublin
- Ireland
| | - Ilaria Armenia
- Department of Biotechnology and Life Sciences
- University of Insubria
- Varese
- Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences
- University of Insubria
- Varese
- Italy
- The Protein Factory Research Center
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences
- University of Insubria
- Varese
- Italy
- The Protein Factory Research Center
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences
- University of Insubria
- Varese
- Italy
- The Protein Factory Research Center
| |
Collapse
|
41
|
Abstract
Nanostructures have been widely involved in changes in the drug delivery system. Nanoparticles have unique physicochemical properties, e.g., ultrasmall size, large surface area, and the ability to target specific actions. Various nanomaterials, like Ag, ZnO, Cu/CuO, and Al2O3, have antimicrobial activity. Basically, six mechanisms are involved in the production of antimicrobial activity, i.e., (1) destruction of the peptidoglycan layer, (2) release of toxic metal ions, (3) alteration of cellular pH via proton efflux pumps, (4) generation of reactive oxygen species, (5) damage of nuclear materials, and (6) loss of ATP production. Nanomedicine contributes to various pharmaceutical applications, like diagnosis and treatment of various ailments including microbial diseases. Furthermore, nanostructured antimicrobial agents are also involved in the treatment of the neuroinfections associated with neurodegenerative disorders. This chapter focuses on the nanostructure and nanomedicine of antimicrobial agents and their prospects for the possible management of infections associated with neurodegenerative disorders.
Collapse
|
42
|
Némethová V, Buliaková B, Mazancová P, Bábelová A, Šelc M, Moravčíková D, Kleščíková L, Ursínyová M, Gábelová A, Rázga F. Intracellular uptake of magnetite nanoparticles: A focus on physico-chemical characterization and interpretation of in vitro data. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:161-168. [DOI: 10.1016/j.msec.2016.08.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 02/07/2023]
|
43
|
Siddiqi KS, ur Rahman A, Husen A. Biogenic Fabrication of Iron/Iron Oxide Nanoparticles and Their Application. NANOSCALE RESEARCH LETTERS 2016; 11:498. [PMID: 27837567 PMCID: PMC5106417 DOI: 10.1186/s11671-016-1714-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/01/2016] [Indexed: 05/15/2023]
Abstract
Enshrined in this review are the biogenic fabrication and applications of coated and uncoated iron and iron oxide nanoparticles. Depending on their magnetic properties, they have been used in the treatment of cancer, drug delivery system, MRI, and catalysis and removal of pesticides from potable water. The polymer-coated iron and iron oxide nanoparticles are made biocompatible, and their slow release makes them more effective and lasting. Their cytotoxicity against microbes under aerobic/anaerobic conditions has also been discussed. The magnetic moment of superparamagnetic iron oxide nanoparticles changes with their interaction with biomolecules as a consequence of which their size decreases. Their biological efficacy has been found to be dependent on the shape, size, and concentration of these nanoparticles.
Collapse
Affiliation(s)
| | - Aziz ur Rahman
- Department of Saidla (Unani Pharmacy), Aligarh Muslim University, Aligarh, 202002 Uttar Pradesh India
| | - Azamal Husen
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, P.O. Box #196, Gondar, Ethiopia
| |
Collapse
|
44
|
Demin AM, Pershina AG, Ivanov VV, Nevskaya KV, Shevelev OB, Minin AS, Byzov IV, Sazonov AE, Krasnov VP, Ogorodova LM. 3-Aminopropylsilane-modified iron oxide nanoparticles for contrast-enhanced magnetic resonance imaging of liver lesions induced by Opisthorchis felineus. Int J Nanomedicine 2016; 11:4451-4463. [PMID: 27660439 PMCID: PMC5019273 DOI: 10.2147/ijn.s111880] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose Liver fluke causes severe liver damage in an infected human. However, the infection often remains neglected due to the lack of pathognomonic signs. Nanoparticle-enhanced magnetic resonance imaging (MRI) offers a promising technique for detecting liver lesions induced by parasites. Materials and methods Surface modification of iron oxide nanoparticles produced by coprecipitation from a solution of Fe3+ and Fe2+ salts using 3-aminopropylsilane (APS) was carried out. The APS-modified nanoparticles were characterized by transmission electron microscopy, fourier transform infrared spectroscopy, and thermogravimetric analysis. Magnetic resonance properties of MNPs were investigated in vitro and in vivo. Results The amount of APS grafted on the surface of nanoparticles (0.60±0.06 mmol g−1) was calculated based on elemental analysis and infrared spectroscopy data. According to transmission electron microscopy data, there were no essential changes in the structure of nanoparticles during the modification. The APS-modified nanoparticles exhibit high magnetic properties; the calculated relaxivity r2 was 271 mmol−1 s−1. To obtain suspension with optimal hydrodynamic characteristics, amino groups on the surface of nanoparticles were converted into an ionic form with HCl. Cellular uptake of modified nanoparticles by rat hepatoma cells and human monocytes in vitro was 74.1±4.5 and 10.0±3.7 pg [Fe] per cell, respectively. Low cytotoxicity of the nanoparticles was confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Annexin V/7-aminoactinomycin D flow cytometry assays. For the first time, magnetic nanoparticles were applied for contrast-enhanced MRI of liver lesions induced by Opisthorchis felineus. Conclusion The synthesized APS-modified iron oxide nanoparticles showed high efficiency as an MRI contrast agent for the evaluation of opisthorchiasis-related liver damage.
Collapse
Affiliation(s)
- Alexander M Demin
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), Yekaterinburg
| | - Alexandra G Pershina
- Siberian State Medical University; Russian National Research Tomsk Polytechnic University, Tomsk
| | | | | | | | - Artyom S Minin
- Miheev Institute of Metal Physics of RAS (Ural Branch), Yekaterinburg, Russia
| | - Iliya V Byzov
- Miheev Institute of Metal Physics of RAS (Ural Branch), Yekaterinburg, Russia
| | | | - Victor P Krasnov
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), Yekaterinburg
| | | |
Collapse
|
45
|
Xu HL, Mao KL, Huang YP, Yang JJ, Xu J, Chen PP, Fan ZL, Zou S, Gao ZZ, Yin JY, Xiao J, Lu CT, Zhang BL, Zhao YZ. Glioma-targeted superparamagnetic iron oxide nanoparticles as drug-carrying vehicles for theranostic effects. NANOSCALE 2016; 8:14222-14236. [PMID: 27396404 DOI: 10.1039/c6nr02448c] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Multifunctional nanoparticles capable of the specific delivery of therapeutics to diseased cells and the real-time imaging of these sites have the potential to improve cancer treatment through personalized therapy. In this study, we have proposed a multifunctional nanoparticle that integrate magnetic targeting, drug-carrier functionality and real-time MRI imaging capabilities in one platform for the theranostic treatment of tumors. The multifunctional nanoparticle was designed with a superparamagnetic iron oxide core and a multifunctional shell composed of PEG/PEI/polysorbate 80 (Ps 80) and was used to encapsulate DOX. DOX-loaded multifunctional nanoparticles (DOX@Ps 80-SPIONs) with a Dh of 58.0 nm, a zeta potential of 28.0 mV, and a drug loading content of 29.3% presented superior superparamagnetic properties with a saturation magnetization (Ms) of 24.1 emu g(-1). The cellular uptake of DOX@Ps 80-SPIONs by C6 cells under a magnetic field was significantly enhanced over that of free DOX in solution, resulting in stronger in vitro cytotoxicity. The real-time therapeutic outcome of DOX@Ps 80-SPIONs was easily monitored by MRI. Furthermore, the negative contrast enhancement effect of the nanoparticles was confirmed in glioma-bearing rats. Prussian blue staining and ex vivo DOX fluorescence assays showed that the magnetic Ps 80-SPIONs and encapsulated DOX were delivered to gliomas by imposing external magnetic fields, indicating effective magnetic targeting. Due to magnetic targeting and Ps 80-mediated endocytosis, DOX@Ps 80-SPIONs in the presence of a magnetic field led to the complete suppression of glioma growth in vivo at 28 days after treatment. The therapeutic mechanism of DOX@Ps 80-SPIONs acted by inducing apoptosis through the caspase-3 pathway. Finally, DOX@Ps 80-SPIONs' safety at therapeutic dosage was verified using pathological HE assays of the heart, liver, spleen, lung and kidney. Multifunctional SPIONs could be used as potential carriers for the theranostic treatment of CNS diseases.
Collapse
Affiliation(s)
- He-Lin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhao YZ, Jin RR, Yang W, Xiang Q, Yu WZ, Lin Q, Tian FR, Mao KL, Lv CZ, Wáng YXJ, Lu CT. Using Gelatin Nanoparticle Mediated Intranasal Delivery of Neuropeptide Substance P to Enhance Neuro-Recovery in Hemiparkinsonian Rats. PLoS One 2016; 11:e0148848. [PMID: 26894626 PMCID: PMC4760767 DOI: 10.1371/journal.pone.0148848] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 01/25/2016] [Indexed: 12/14/2022] Open
Abstract
Purpose Intranasal administration of phospholipid-based gelatin nanoparticles (GNP) was prepared to investigate the neuro-recovery effects of neuropeptide Substance P (SP) on hemiparkinsonian rats. Methods The SP-loaded gelatin nanoparticles (SP-GNP) were prepared by a water-in-water emulsion method and possessed high stability, encapsulating efficiency and loading capacity. PC-12 cells were used to examine the growth enhancement of SP-GNP in vitro by MTT assays and flow cytometry (FCM). The therapeutic effects of SP-GNP on 6-hydroxydopamine (6-OHDA) induced hemiparkinsonian rats were assessed by quantifying rotational behavior and the levels of tyrosine hydroxylase (TH), phosphorylated c-Jun protein (p-c-Jun) and Caspase-3 (Cas-3) expressed in substantia nigra (SN) region of hemiparkinsonian rats. Results PC-12 cells under SP-GNP treatment showed better cell viability and lower degree of apoptosis than those under SP solution treatment. Hemiparkinsonian rats under intranasal SP-GNP administration demonstrated better behavioral improvement, higher level of TH in SN along with much lower extent of p-c-Jun and Cas-3 than those under intranasal SP solution administration and intravenous SP-GNP administration. Conclusions With the advantages of GNP and nose-to-brain pathway, SP can be effectively delivered into the damaged SN region and exhibit its neuro-recovery function through the inhibition on JNK pathway and dopaminergic neuron apoptosis.
Collapse
Affiliation(s)
- Ying-Zheng Zhao
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Hainan Medical College, Haikou, Hainan 570102, China
| | - Rong-Rong Jin
- Taizhou Traditional Chinese Medical Hospital, Taizhou, Zhejiang 318000, China
| | - Wei Yang
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qi Xiang
- Biopharmaceutical R&D Center of Jinan University, Guangzhou, Guangdong 510000, China
| | - Wen-Ze Yu
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qian Lin
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fu-Rong Tian
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Kai-Li Mao
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuan-Zhu Lv
- Hainan Medical College, Haikou, Hainan 570102, China
| | - Yi-Xiáng J. Wáng
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SA
- * E-mail: (YXW); (CTL)
| | - Cui-Tao Lu
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- * E-mail: (YXW); (CTL)
| |
Collapse
|
47
|
Shen WB, Vaccaro DE, Fishman PS, Groman EV, Yarowsky P. SIRB, sans iron oxide rhodamine B, a novel cross-linked dextran nanoparticle, labels human neuroprogenitor and SH-SY5Y neuroblastoma cells and serves as a USPIO cell labeling control. CONTRAST MEDIA & MOLECULAR IMAGING 2016; 11:222-8. [PMID: 26809657 DOI: 10.1002/cmmi.1684] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 11/11/2015] [Accepted: 12/11/2015] [Indexed: 12/29/2022]
Abstract
This is the first report of the synthesis of a new nanoparticle, sans iron oxide rhodamine B (SIRB), an example of a new class of nanoparticles. SIRB is designed to provide all of the cell labeling properties of the ultrasmall superparamagnetic iron oxide (USPIO) nanoparticle Molday ION Rhodamine B (MIRB) without containing the iron oxide core. MIRB was developed to label cells and allow them to be tracked by MRI or to be manipulated by magnetic gradients. SIRB possesses a similar size, charge and cross-linked dextran coating as MIRB. Of great interest is understanding the biological and physiological changes in cells after they are labeled with a USPIO. Whether these effects are due to the iron oxide buried within the nanoparticle or to the surface coating surrounding the iron oxide core has not been considered previously. MIRB and SIRB represent an ideal pairing of nanoparticles to identify nanoparticle anatomy responsible for post-labeling cytotoxicity. Here we report the effects of SIRB labeling on the SH-SY5Y neuroblastoma cell line and primary human neuroprogenitor cells (hNPCs). These effects are contrasted with the effects of labeling SH-SY5Y cells and hNPCs with MIRB. We find that SIRB labeling, like MIRB labeling, (i) occurs without the use of transfection reagents, (ii) is packaged within lysosomes distributed within cell cytoplasm, (iii) is retained within cells with no loss of label after cell storage, and (iv) does not alter cellular viability or proliferation, and (v) SIRB labeled hNPCs differentiate normally into neurons or astrocytes. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Wei-Bin Shen
- University of Maryland School of Medicine, Department of Pharmacology, Baltimore, MD, 21201, USA
| | | | - Paul S Fishman
- Neurology Service, VA Maryland Healthcare System, Baltimore, MD, 21201, USA.,University of Maryland School of Medicine, Department of Neurology, Baltimore, MD, 21201, USA
| | | | - Paul Yarowsky
- University of Maryland School of Medicine, Department of Pharmacology, Baltimore, MD, 21201, USA.,Research Service, VA Maryland Healthcare System, Baltimore, MD, 21201, USA
| |
Collapse
|
48
|
Qi M, Zhang K, Li S, Wu J, Pham-Huy C, Diao X, Xiao D, He H. Superparamagnetic Fe3O4 nanoparticles: synthesis by a solvothermal process and functionalization for a magnetic targeted curcumin delivery system. NEW J CHEM 2016. [DOI: 10.1039/c5nj02441b] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Different functionalized Fe3O4 nanoparticles were fabricated for constructing magnetic targeted carriers for curcumin to improve its hydrophilicity and bioavailability.
Collapse
Affiliation(s)
- Man Qi
- Department of Analytical Chemistry
- School of Sciences
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Kai Zhang
- Department of Analytical Chemistry
- School of Sciences
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Siqiao Li
- Department of Analytical Chemistry
- School of Sciences
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jianrong Wu
- Department of Analytical Chemistry
- School of Sciences
- China Pharmaceutical University
- Nanjing 210009
- China
| | | | - Xintong Diao
- Department of Analytical Chemistry
- School of Sciences
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Deli Xiao
- Department of Analytical Chemistry
- School of Sciences
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Hua He
- Department of Analytical Chemistry
- School of Sciences
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
49
|
Iron Oxide Nanoparticles Biodistribution in an Experimental Pig Model - A New Approach for Delivery and Imaging. CURRENT HEALTH SCIENCES JOURNAL 2015; 41:333-338. [PMID: 30538839 PMCID: PMC6243524 DOI: 10.12865/chsj.41.04.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/01/2015] [Indexed: 11/18/2022]
Abstract
Iron oxide nanoparticles (IONs) are of great interest in medicine, with great potential for imaging diagnostics, as well as therapeutic. Biomedical applications of IONs have been suggested for magnetic resonance imaging (MRI), with two available contrast agents on the market. However, new developments in biocompatibility and biodistribution are necessary as many new physiochemical features of coatings have been proposed for a good safety profile. Materials and Methods. Our study objective was to assess a different setting in terms of biodistribution of IONs coated with citric acid on an experimental pig model, based on EUS-guided portal vein (PV) injection. Four pigs were subjected to EUS procedures and portal vein injection of an IONs solution. All animals were kept under surveillance for the next 24 hours and euthanized. Necropsy was performed and their organs were harvested, visualized with a 3T MRI scanner and sent to pathological examination. Results. All pigs had no change in their behavior and no signs of complications were encountered. There were no problems in identifying the pig’s PV under EUS-guidance. The IONs solution was clearly visualized on ultrasound live imaging, during EUS-injection. MRI and histopathological data confirmed all the deposits using Prussian Blue staining. Conclusions. This paper comes forward as a first phase of assessing new future therapeutic options and their distribution within the main organs depending on their characteristics. In our opinion this new distribution option has a strong incentive to the research of therapeutic and imaging areas and is worthy of further appraisal.
Collapse
|
50
|
Kandasamy G, Maity D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharm 2015; 496:191-218. [PMID: 26520409 DOI: 10.1016/j.ijpharm.2015.10.058] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 12/15/2022]
Abstract
Recently superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively used in cancer therapy and diagnosis (theranostics) via magnetic targeting, magnetic resonance imaging, etc. due to their remarkable magnetic properties, chemical stability, and biocompatibility. However, the magnetic properties of SPIONs are influenced by various physicochemical and synthesis parameters. So, this review mainly focuses on the influence of spin canting effects, introduced by the variations in size, shape, and organic/inorganic surface coatings, on the magnetic properties of SPIONs. This review also describes the several predominant chemical synthesis procedures and role of the synthesis parameters for monitoring the size, shape, crystallinity and composition of the SPIONs. Moreover, this review discusses about the latest developments of the inorganic materials and organic polymers for encapsulation of the SPIONs. Finally, the most recent advancements of the SPIONs and their nanopackages in combination with other imaging/therapeutic agents have been comprehensively discussed for their effective usage as in vitro and in vivo theranostic agents in cancer treatments.
Collapse
Affiliation(s)
- Ganeshlenin Kandasamy
- Nanomaterials Lab, Department of Mechanical Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
| | - Dipak Maity
- Nanomaterials Lab, Department of Mechanical Engineering, Shiv Nadar University, Uttar Pradesh 201314, India.
| |
Collapse
|