1
|
Küççüktürk S, Karaselek MA, Duran T, Reisli İ. Evaluation of transcription factors and cytokine expressions of T-cell subsets in CD19 deficiency and their possible relationship with autoimmune disease. APMIS 2024; 132:122-129. [PMID: 38095318 DOI: 10.1111/apm.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/08/2023] [Indexed: 01/09/2024]
Abstract
CD19 deficiency is a rare, predominantly antibody deficiency, and there are few studies showing that it can be seen in autoimmune diseases. The aim of study was evaluated to transcription factor and cytokine expressions of helper T (Th)-cell subsets in CD19 deficiency and the possible mechanism role of this factor expression in autoimmune disease. Transcription factor and cytokine expressions of Th1, Th2, Th17, and regulatory T (Treg) cells were investigated by real-time polymerase chain reaction (qPCR) method. In the study, in the patient/control comparison, transcription factor and cytokine expressions of Th1 (T-bet, STAT1, and STAT4) were found to be significantly downregulated, but IFN-γ was significantly upregulated in patients. Th2 factor GATA3, STAT6, IL-4, and IL-5 were significantly downregulated. For Th17, RORγt was downregulated while IL-22 was upregulated. In the heterozygous/control comparison, there was no significant change in gene expressions other than IL-5. T-bet, STAT1, GATA3, IL-4, RORγt, FoxP3, and TGF-β were significantly downregulated in the patient/heterozygous comparison. It was revealed for the first time that the expression of the transcription factors and cytokines in CD19 deficiency. These findings might be showing the predominance of Th1 factors and suppressed Treg factors which could be related with autoimmunity in CD19 deficiency.
Collapse
Affiliation(s)
- Serkan Küççüktürk
- Department of Medical Biology, Medicine Faculty, Karamanoğlu Mehmetbey University, Karaman, Turkey
| | - Mehmet Ali Karaselek
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Tuğçe Duran
- Department of Medical Genetic, Medicine Faculty, KTO Karatay University, Konya, Turkey
| | - İsmail Reisli
- Department of Pediatric Immunology and Allergy, Medicine Faculty, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
2
|
Kumar G, Axtell RC. Dual Role of B Cells in Multiple Sclerosis. Int J Mol Sci 2023; 24:2336. [PMID: 36768658 PMCID: PMC9916779 DOI: 10.3390/ijms24032336] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
B cells have emerged as an important immune cell type that can be targeted for therapy in multiple sclerosis (MS). Depleting B cells with anti-CD20 antibodies is effective in treating MS. Yet, atacicept treatment, which blocks B-cell Activating Factor (BAFF) and A Proliferation-Inducing Ligand (APRIL), two cytokines important for B cell development and function, paradoxically increases disease activity in MS patients. The reason behind the failure of atacicept is not well understood. The stark differences in clinical outcomes with these therapies demonstrate that B cells have both inflammatory and anti-inflammatory functions in MS. In this review, we summarize the importance of B cells in MS and discuss the different B cell subsets that perform inflammatory and anti-inflammatory functions and how therapies modulate B cell functions in MS patients. Additionally, we discuss the potential anti-inflammatory functions of BAFF and APRIL on MS disease.
Collapse
Affiliation(s)
| | - Robert C. Axtell
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| |
Collapse
|
3
|
Zhao Y, Zhao S, Qin XY, He TT, Hu MM, Gong Z, Wang HM, Gong FY, Gao XM, Wang J. Altered Phenotype and Enhanced Antibody-Producing Ability of Peripheral B Cells in Mice with Cd19-Driven Cre Expression. Cells 2022; 11:cells11040700. [PMID: 35203346 PMCID: PMC8870415 DOI: 10.3390/cells11040700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Given the importance of B lymphocytes in inflammation and immune defense against pathogens, mice transgenic for Cre under the control of Cd19 promoter (Cd19Cre/+ mice) have been widely used to specifically investigate the role of loxP-flanked genes in B cell development/function. However, impacts of expression/insertion of the Cre transgene on the phenotype and function of B cells have not been carefully studied. Here, we show that the number of marginal zone B and B1a cells was selectively reduced in Cd19Cre/+ mice, while B cell development in the bone marrow and total numbers of peripheral B cells were comparable between Cd19Cre/+ and wild type C57BL/6 mice. Notably, humoral responses to both T cell-dependent and independent antigens were significantly increased in Cd19Cre/+ mice. We speculate that these differences are mainly attributable to reduced surface CD19 levels caused by integration of the Cre-expressing cassette that inactivates one Cd19 allele. Moreover, our literature survey showed that expression of Cd19Cre/+ alone may affect the development/progression of inflammatory and anti-infectious responses. Thus, our results have important implications for the design and interpretation of results on gene functions specifically targeted in B cells in the Cd19Cre/+ mouse strain, for instance, in the context of (auto) inflammatory/infectious diseases.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Pathophysiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China;
| | - Sai Zhao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Xiao-Yuan Qin
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Ting-Ting He
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Miao-Miao Hu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Zheng Gong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Hong-Min Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Fang-Yuan Gong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
| | - Xiao-Ming Gao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
- Correspondence: (X.-M.G.); (J.W.); Tel./Fax: +86-512-65882135 (J.W.)
| | - Jun Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.Z.); (X.-Y.Q.); (T.-T.H.); (M.-M.H.); (Z.G.); (H.-M.W.); (F.-Y.G.)
- Correspondence: (X.-M.G.); (J.W.); Tel./Fax: +86-512-65882135 (J.W.)
| |
Collapse
|
4
|
Jansen K, Cevhertas L, Ma S, Satitsuksanoa P, Akdis M, van de Veen W. Regulatory B cells, A to Z. Allergy 2021; 76:2699-2715. [PMID: 33544905 DOI: 10.1111/all.14763] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
B cells play a central role in the immune system through the production of antibodies. During the past two decades, it has become increasingly clear that B cells also have the capacity to regulate immune responses through mechanisms that extend beyond antibody production. Several types of human and murine regulatory B cells have been reported that suppress inflammatory responses in autoimmune disease, allergy, infection, transplantation, and cancer. Key suppressive molecules associated with regulatory B-cell function include the cytokines IL-10, IL-35, and TGF-β as well as cell membrane-bound molecules such as programmed death-ligand 1, CD39, CD73, and aryl hydrocarbon receptor. Regulatory B cells can be induced by a range of different stimuli, including microbial products such as TLR4 or TLR9 ligands, inflammatory cytokines such as IL-6, IL-1β, and IFN-α, as well as CD40 ligation. This review provides an overview of our current knowledge on regulatory B cells. We discuss different types of regulatory B cells, the mechanisms through which they exert their regulatory functions, factors that lead to induction of regulatory B cells and their role in the alteration of inflammatory responses in different diseases.
Collapse
Affiliation(s)
- Kirstin Jansen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Lacin Cevhertas
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Medical Immunology Institute of Health SciencesBursa Uludag University Bursa Turkey
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Siyuan Ma
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Otolaryngology Head and Neck Surgery+ Beijing TongRen HospitalCapital Medical University Beijing China
| | | | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| |
Collapse
|
5
|
Catalán D, Mansilla MA, Ferrier A, Soto L, Oleinika K, Aguillón JC, Aravena O. Immunosuppressive Mechanisms of Regulatory B Cells. Front Immunol 2021; 12:611795. [PMID: 33995344 PMCID: PMC8118522 DOI: 10.3389/fimmu.2021.611795] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory B cells (Bregs) is a term that encompasses all B cells that act to suppress immune responses. Bregs contribute to the maintenance of tolerance, limiting ongoing immune responses and reestablishing immune homeostasis. The important role of Bregs in restraining the pathology associated with exacerbated inflammatory responses in autoimmunity and graft rejection has been consistently demonstrated, while more recent studies have suggested a role for this population in other immune-related conditions, such as infections, allergy, cancer, and chronic metabolic diseases. Initial studies identified IL-10 as the hallmark of Breg function; nevertheless, the past decade has seen the discovery of other molecules utilized by human and murine B cells to regulate immune responses. This new arsenal includes other anti-inflammatory cytokines such IL-35 and TGF-β, as well as cell surface proteins like CD1d and PD-L1. In this review, we examine the main suppressive mechanisms employed by these novel Breg populations. We also discuss recent evidence that helps to unravel previously unknown aspects of the phenotype, development, activation, and function of IL-10-producing Bregs, incorporating an overview on those questions that remain obscure.
Collapse
Affiliation(s)
- Diego Catalán
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Miguel Andrés Mansilla
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Ashley Ferrier
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Instituto Milenio en Inmunología e Inmunoterapia, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Hospital Clínico, Universidad de Chile (HCUCH), Santiago, Chile
| | | | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| | - Octavio Aravena
- Programa Disciplinario de Inmunología, Facultad de Medicina, Instituto de Ciencias Biomédicas (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Changes in Peripheral Blood Neutrophils, Lymphocytes and IL-10 in Children with Kawasaki Disease from Different Age Groups Undergoing Intravenous Immunoglobulin: A Retrospective Study. Mediators Inflamm 2020; 2020:5213451. [PMID: 33293897 PMCID: PMC7691014 DOI: 10.1155/2020/5213451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/29/2020] [Accepted: 10/31/2020] [Indexed: 01/03/2023] Open
Abstract
Immunoglobulin intravenous (IVIG) is widely used in mucocutaneous lymph node syndrome, known as Kawasaki disease (KD). However, the patients' inflammatory response during usage remains unclear. In the present study, the association between inflammatory response and lymphocyte count in children with KD from different ages was evaluated before and after IVIG. The medical records of 50 children with KD were retrospectively reviewed and divided into five groups according to age. As compared with the data from healthy children, the relative neutrophil count of all children with KD was increased, and that of lymphocytes was decreased. The neutrophil/lymphocyte ratio (NLR) was different among all groups and was higher in children aged ≥4 years, as compared with other groups. Following IVIG, the relative neutrophil and lymphocyte counts of all children with KD returned to normal levels. The altered levels of neutrophils and lymphocytes were found to be linearly correlated. The correlation coefficient in the five groups was 0.99, 0.87, 0.91, 0.97 and 0.99, from young to old, respectively (p < 0.01). The age of children with KD was positively correlated with older age (r = 0.91, p = 0.03). In patients aged ≥4 years, the absolute CD19+ B cell count prior to IVIG increased, and that increase was linearly correlated with the decrease in interleukin-10 (IL-10) following IVIG (r = 0.71, p < 0.05). The older the child's age, the better the regulatory effect of IVIG on the KD child's immune response and the recovery of immune equilibrium it achieved. In KD patients aged ≥4 years, the abnormally proliferating CD19+ B cells may be involved in the secretion of IL-10 to balance the humoral immunity. In such patients, the combination of the absolute CD19+ B cell count prior to IVIG and the decreased levels of IL-10 following IVIG may play a crucial role in evaluating the effect of IVIG in the inflammation.
Collapse
|
7
|
Lemos H, Mohamed E, Ou R, McCardle C, Zheng X, McGuire K, Homer NZM, Mole DJ, Huang L, Mellor AL. Co-treatments to Boost IDO Activity and Inhibit Production of Downstream Catabolites Induce Durable Suppression of Experimental Autoimmune Encephalomyelitis. Front Immunol 2020; 11:1256. [PMID: 32625215 PMCID: PMC7311583 DOI: 10.3389/fimmu.2020.01256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022] Open
Abstract
Reinforcing defective tolerogenic processes slows progression of autoimmune (AI) diseases and has potential to promote drug-free disease remission. Previously, we reported that DNA nanoparticles (DNPs) and cyclic dinucleotides (CDNs) slow progression of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, by activating the Stimulator of Interferon Genes (STING) signaling adaptor to stimulate interferon type 1 (IFN-I) production, which induced dendritic cells to express indoleamine 2,3 dioxygenase (IDO) and acquire immune regulatory phenotypes. Here, we show that therapeutic responses to DNPs depend on DNA sensing via cyclic GAMP synthase (cGAS) and interactions between Programmed Death-1 (PD-1) and PD-1 ligands. To investigate how increased tryptophan (Trp) metabolism by IDO promotes therapeutic responses mice were co-treated at EAE onset with DNPs and drugs that inhibit kynurenine aminotransferase-II (KatII) or 3-hydroxyanthranilic acid dioxygenase (HAAO) activity downstream of IDO in the kynurenine (Kyn) pathway. DNP and KatII or HAAO inhibitor co-treatments suppressed EAE progression more effectively than DNPs, while KatII inhibition had no significant therapeutic benefit and HAAO inhibition attenuated but did not prevent EAE progression. Moreover, therapeutic responses to co-treatments were durable as EAE progression did not resume after co-treatment. Thus, using STING agonists to boost IDO activity and manipulating the Kyn pathway downstream of IDO is an effective strategy to enhance tolerogenic responses that overcome autoimmunity to suppress EAE progression.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/drug effects
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Autoimmunity
- B7-H1 Antigen/metabolism
- Chromatography, Liquid
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Enzyme Activation/drug effects
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Kynurenine/metabolism
- Membrane Proteins/agonists
- Metabolic Networks and Pathways
- Metabolome
- Metabolomics/methods
- Mice
- Mice, Knockout
- Nanoparticles
- Programmed Cell Death 1 Receptor/metabolism
- Signal Transduction/drug effects
- Tandem Mass Spectrometry
Collapse
Affiliation(s)
- Henrique Lemos
- Immune Metabolism Laboratory, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Eslam Mohamed
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Rong Ou
- Immune Metabolism Laboratory, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Caroline McCardle
- Immune Metabolism Laboratory, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Xiaozhong Zheng
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Kris McGuire
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Natalie Z. M. Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Centre for Cardiovascular Sciences, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Damian J. Mole
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Lei Huang
- Immune Metabolism Laboratory, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew L. Mellor
- Immune Metabolism Laboratory, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
8
|
Nishimura T, Saito Y, Washio K, Komori S, Respatika D, Kotani T, Murata Y, Ohnishi H, Mizobuchi S, Matozaki T. SIRPα on CD11c + cells induces Th17 cell differentiation and subsequent inflammation in the CNS in experimental autoimmune encephalomyelitis. Eur J Immunol 2020; 50:1560-1570. [PMID: 32438469 DOI: 10.1002/eji.201948410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/12/2020] [Indexed: 01/06/2023]
Abstract
Signal regulatory protein α (SIRPα) is expressed predominantly on type 2 conventional dendritic cells (cDC2s) and macrophages. We previously showed that mice systemically lacking SIRPα were resistant to experimental autoimmune encephalomyelitis (EAE). Here, we showed that deletion of SIRPα in CD11c+ cells of mice (SirpaΔDC mice) also markedly ameliorated the development of EAE. The frequency of cDCs and migratory DCs (mDCs), as well as that of Th17 cells, were significantly reduced in draining lymph nodes of SirpaΔDC mice at the onset of EAE. In addition, we found the marked reduction in the number of Th17 cells and DCs in the CNS of SirpaΔDC mice at the peak of EAE. Whereas inducible systemic ablation of SIRPα before the induction of EAE prevented disease development, that after EAE onset did not ameliorate the clinical signs of disease. We also found that EAE development was partially attenuated in mice with CD11c+ cell-specific ablation of CD47, a ligand of SIRPα. Collectively, our results suggest that SIRPα expressed on CD11c+ cells, such as cDC2s and mDCs, is indispensable for the development of EAE, being required for the priming of self-reactive Th17 cells in the periphery as well as for the inflammation in the CNS.
Collapse
Affiliation(s)
- Taichi Nishimura
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan.,Division of Anesthesiology, Department of Surgery Related, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Ken Washio
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Satomi Komori
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Datu Respatika
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan.,Division of Reconstruction, Oculoplasty, and Oncology, Department of Ophthalmology, Faculty of Medicine, Public Health, and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - Takenori Kotani
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Yoji Murata
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Hiroshi Ohnishi
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan
| | - Satoshi Mizobuchi
- Division of Anesthesiology, Department of Surgery Related, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| |
Collapse
|
9
|
da Silva APB, Silva RBM, Goi LDS, Molina RD, Machado DC, Sato DK. Experimental Models of Neuroimmunological Disorders: A Review. Front Neurol 2020; 11:389. [PMID: 32477252 PMCID: PMC7235321 DOI: 10.3389/fneur.2020.00389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Immune-mediated inflammatory diseases of the central nervous system (CNS) are a group of neurological disorders in which inflammation and/or demyelination are induced by cellular and humoral immune responses specific to CNS antigens. They include diseases such as multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), acute disseminated encephalomyelitis (ADEM) and anti-NMDA receptor encephalitis (NMDAR encephalitis). Over the years, many in vivo and in vitro models were used to study clinical, pathological, physiological and immunological features of these neuroimmunological disorders. Nevertheless, there are important aspects of human diseases that are not fully reproduced in the experimental models due to their technical limitations. In this review, we describe the preclinical models of neuroimmune disorders, and how they contributed to the understanding of these disorders and explore potential treatments. We also describe the purpose and limitation of each one, as well as the recent advances in this field.
Collapse
Affiliation(s)
- Ana Paula Bornes da Silva
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Rodrigo Braccini Madeira Silva
- Research Center in Toxicology and Pharmacology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Leise Daniele Sckenal Goi
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Rachel Dias Molina
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Denise Cantarelli Machado
- School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Molecular and Cellular Biology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Douglas Kazutoshi Sato
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
10
|
Hansen N, Önder D, Schwing K, Widman G, Leelaarporn P, Prusseit I, Surges R, Becker AJ, Witt JA, Helmstaedter C, Elger CE. CD19+ B-cells in autoantibody-negative limbic encephalitis. Epilepsy Behav 2020; 106:107016. [PMID: 32199348 DOI: 10.1016/j.yebeh.2020.107016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE Flow cytometry helps to elucidate the cellular immune repertoire's mechanisms in patients with temporal lobe epilepsy (TLE) due to limbic encephalitis (LE) subcategories and carries potential significance for subtype-specific treatment. METHODS We enrolled 62 patients with TLE due to LE associated with no autoantibodies (n = 40), neural autoantibodies (n = 22), as well as autoantibodies against intracellular antigens (n = 15/22). All patients underwent neuropsychological testing, brain magnetic resonance imaging (MRI), electroencephalography (EEG) recordings, and peripheral blood (PB) and cerebrospinal fluid (CSF) investigations including flow cytometry. RESULTS CD19+ B-cells were increased in the PB and CSF of patients with antibody-negative LE compared with those associated with antibodies against intracellular antigens (Kruskal-Wallis one way analysis of variance (ANOVA) on ranks with Dunn's test, p < 0.05). There were no differences in CD138+ B-cells, CD4+ T-cells, human leukocyte antigen - DR isotype (HLA-DR+) CD4+ T-cells, CD8+ T-cells, and HLA-DR+ CD8+ T-cells in the CSF between groups with LE. The blood-brain barrier is more often impaired in patients with antibody-negative LE than in LE with antibodies against intracellular antigens (chi-square test, p < 0.05). In addition, we detected no correlations between immune cell subsets and clinical or paraclinical parameters in patients with antibody-negative and intracellular antibody-positive LE. CONCLUSIONS The increase of CD19+ B-cells in the CSF and frequent signs of dysfunctional blood-brain barrier in patients with antibody-negative rather than intracellular antibody-positive LE suggest that CD19+ B-cells play a role in antibody-negative encephalitis although their pathogenic role in the central nervous system (CNS) immunity because of missing correlations between immune cells and clinical and paraclinical parameters remains unknown. Further studies are required to evaluate the usefulness of these B-cells as a biomarker for the stratification of treatment strategies.
Collapse
Affiliation(s)
- Niels Hansen
- Department of Epileptology, University of Bonn Medical Center, Venusberg - Campus 1, 53127 Bonn, Germany; Department of Psychiatry and Psychotherapy, University Medicine Goettingen, Von-Siebold-Str. 5, 37075 Goettingen, Germany.
| | - Demet Önder
- Department of Epileptology, University of Bonn Medical Center, Venusberg - Campus 1, 53127 Bonn, Germany
| | - Kerstin Schwing
- Department of Epileptology, University of Bonn Medical Center, Venusberg - Campus 1, 53127 Bonn, Germany
| | - Guido Widman
- Department of Epileptology, University of Bonn Medical Center, Venusberg - Campus 1, 53127 Bonn, Germany
| | - Pitshaporn Leelaarporn
- Department of Epileptology, University of Bonn Medical Center, Venusberg - Campus 1, 53127 Bonn, Germany
| | - Indra Prusseit
- Department of Neuropathology, University of Bonn Medical Center, Venusberg - Campus 1, 53127 Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University of Bonn Medical Center, Venusberg - Campus 1, 53127 Bonn, Germany; Center for Rare Diseases Bonn (ZSEB), University of Bonn, Germany
| | - Albert J Becker
- Department of Neuropathology, University of Bonn Medical Center, Venusberg - Campus 1, 53127 Bonn, Germany
| | - Juri-Alexander Witt
- Department of Epileptology, University of Bonn Medical Center, Venusberg - Campus 1, 53127 Bonn, Germany
| | - Christoph Helmstaedter
- Department of Epileptology, University of Bonn Medical Center, Venusberg - Campus 1, 53127 Bonn, Germany
| | - Christian E Elger
- Department of Epileptology, University of Bonn Medical Center, Venusberg - Campus 1, 53127 Bonn, Germany
| |
Collapse
|
11
|
Kimura S, Rickert CG, Kojima L, Aburawi M, Tanimine N, Fontan F, Deng K, Tector H, Mi Lee K, Yeh H, Markmann JF. Regulatory B cells require antigen recognition for effective allograft tolerance induction. Am J Transplant 2020; 20:977-987. [PMID: 31823520 PMCID: PMC7372932 DOI: 10.1111/ajt.15739] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/25/2019] [Accepted: 11/11/2019] [Indexed: 01/25/2023]
Abstract
Through multiple mechanisms, regulatory B cells (Breg) have been shown to play an important role in the development of allograft tolerance. However, a careful understanding of the role of antigen-specificity in Breg-mediated allograft tolerance has remained elusive. In experimental models of islet and cardiac transplantation, it has been established that Bregs can be induced in vivo by anti-CD45RB ± anti-TIM1antibody treatment, resulting in prolonged, Breg-dependent allograft tolerance. The importance of Breg antigen recognition has been suggested but not confirmed through adoptive transfer experiments, using tolerant WT C57BL/6 animals challenged with either BALB/c or C3H grafts. However, the importance of receptor-specificity has not been formally tested. Here, we utilize the novel ovalbumin-specific B cell receptor transnuclear (OBI) mice in multiple primary tolerance and adoptive transfer experiments to establish that Breg-dependent allograft tolerance relies on antigen recognition by B cells. Additionally, we identify that this Breg-dependent tolerance relies on the function of transforming growth factor-β. Together, these experiments mark important progress toward understanding how best to improve Breg-mediated allograft tolerance.
Collapse
Affiliation(s)
- Shoko Kimura
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Charles G Rickert
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lisa Kojima
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mohamed Aburawi
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Naoki Tanimine
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Fermin Fontan
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kevin Deng
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Haley Tector
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kang Mi Lee
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Heidi Yeh
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - James F Markmann
- Transplantation Unit, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Ma K, Du W, Wang X, Yuan S, Cai X, Liu D, Li J, Lu L. Multiple Functions of B Cells in the Pathogenesis of Systemic Lupus Erythematosus. Int J Mol Sci 2019; 20:E6021. [PMID: 31795353 PMCID: PMC6929160 DOI: 10.3390/ijms20236021] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by excessive autoantibody production and multi-organ involvement. Although the etiology of SLE still remains unclear, recent studies have characterized several pathogenic B cell subsets and regulatory B cell subsets involved in the pathogenesis of SLE. Among pathogenic B cell subsets, age-associated B cells (ABCs) are a newly identified subset of autoreactive B cells with T-bet-dependent transcriptional programs and unique functional features in SLE. Accumulation of T-bet+ CD11c+ ABCs has been observed in SLE patients and lupus mouse models. In addition, innate-like B cells with the autoreactive B cell receptor (BCR) expression and long-lived plasma cells with persistent autoantibody production contribute to the development of SLE. Moreover, several regulatory B cell subsets with immune suppressive functions have been identified, while the impaired inhibitory effects of regulatory B cells have been indicated in SLE. Thus, further elucidation on the functional features of B cell subsets will provide new insights in understanding lupus pathogenesis and lead to novel therapeutic interventions in the treatment of SLE.
Collapse
Affiliation(s)
- Kongyang Ma
- Department of Rheumatology and Immunology, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen 518000, China; (K.M.); (D.L.)
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong 999077, China; (W.D.); (X.W.)
| | - Wenhan Du
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong 999077, China; (W.D.); (X.W.)
| | - Xiaohui Wang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong 999077, China; (W.D.); (X.W.)
| | - Shiwen Yuan
- Department of Rheumatology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, China; (S.Y.); (X.C.)
| | - Xiaoyan Cai
- Department of Rheumatology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, China; (S.Y.); (X.C.)
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen 518000, China; (K.M.); (D.L.)
| | - Jingyi Li
- Department of Rheumatology and Immunology, Southwest Hospital, The First Hospital Affiliated to The Army Medical University, Chongqing 400038, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong 999077, China; (W.D.); (X.W.)
| |
Collapse
|
13
|
Mohammed AD, Khan MAW, Chatzistamou I, Chamseddine D, Williams-Kang K, Perry M, Enos R, Murphy A, Gomez G, Aladhami A, Oskeritzian CA, Jolly A, Chang Y, He S, Pan Z, Kubinak JL. Gut Antibody Deficiency in a Mouse Model of CVID Results in Spontaneous Development of a Gluten-Sensitive Enteropathy. Front Immunol 2019; 10:2484. [PMID: 31708923 PMCID: PMC6820504 DOI: 10.3389/fimmu.2019.02484] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
Primary immunodeficiencies are heritable disorders of immune function. CD19 is a B cell co-receptor important for B cell development, and CD19 deficiency is a known genetic risk factor for a rare form of primary immunodeficiency known as “common variable immunodeficiency” (CVID); an antibody deficiency resulting in low levels of serum IgG and IgA. Enteropathies are commonly observed in CVID patients but the underlying reason for this is undefined. Here, we utilize CD19−/− mice as a model of CVID to test the hypothesis that antibody deficiency negatively impacts gut physiology under steady-state conditions. As anticipated, immune phenotyping experiments demonstrate that CD19−/− mice develop a severe B cell deficiency in gut-associated lymphoid tissues that result in significant reductions to antibody concentrations in the gut lumen. Antibody deficiency was associated with defective anti-commensal IgA responses and the outgrowth of anaerobic bacteria in the gut. Expansion of anaerobic bacteria coincides with the development of a chronic inflammatory condition in the gut of CD19−/− mice that results in an intestinal malabsorption characterized by defects in lipid metabolism and transport. Administration of the antibiotic metronidazole to target anaerobic members of the microbiota rescues mice from disease indicating that intestinal malabsorption is a microbiota-dependent phenomenon. Finally, intestinal malabsorption in CD19−/− mice is a gluten-sensitive enteropathy as exposure to a gluten-free diet also significantly reduces disease severity in CD19−/− mice. Collectively, these results support an effect of antibody deficiency on steady-state gut physiology that compliment emerging data from human studies linking IgA deficiency with non-infectious complications associated with CVID. They also demonstrate that CD19−/− mice are a useful model for studying the role of B cell deficiency and gut dysbiosis on gluten-sensitive enteropathies; a rapidly emerging group of diseases in humans with an unknown etiology.
Collapse
Affiliation(s)
- Ahmed Dawood Mohammed
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States.,School of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Md A Wadud Khan
- Biology Department, University of Texas at Arlington, Arlington, TX, United States
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Douja Chamseddine
- Biology Department, University of Texas at Arlington, Arlington, TX, United States
| | - Katie Williams-Kang
- Biology Department, University of Texas at Arlington, Arlington, TX, United States
| | - Mason Perry
- Biology Department, University of Texas at Arlington, Arlington, TX, United States
| | - Reilly Enos
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Angela Murphy
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Gregorio Gomez
- Department of Biomedical Sciences, College of Medicine, University of Houston, Houston, TX, United States
| | - Ahmed Aladhami
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Carole A Oskeritzian
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Amy Jolly
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Yan Chang
- College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX, United States
| | - Shuqian He
- College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX, United States
| | - Zui Pan
- College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX, United States
| | - Jason L Kubinak
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
14
|
Vonberg AD, Acevedo-Calado M, Cox AR, Pietropaolo SL, Gianani R, Lundy SK, Pietropaolo M. CD19+IgM+ cells demonstrate enhanced therapeutic efficacy in type 1 diabetes mellitus. JCI Insight 2018; 3:99860. [PMID: 30518692 DOI: 10.1172/jci.insight.99860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022] Open
Abstract
We describe a protective effect on autoimmune diabetes and reduced destructive insulitis in NOD.scid recipients following splenocyte injections from diabetic NOD donors and sorted CD19+ cells compared with NOD.scid recipients receiving splenocytes alone. This protective effect was age specific (only CD19+ cells from young NOD donors exerted this effect; P < 0.001). We found that the CD19+IgM+ cell is the primary subpopulation of B cells that delayed transfer of diabetes mediated by diabetogenic T cells from NOD mice (P = 0.002). Removal of IgM+ cells from the CD19+ pool did not result in protection. Notably, protection conferred by CD19+IgM+ cotransfers were not dependent on the presence of Tregs, as their depletion did not affect their ability to delay onset of diabetes. Blockade of IL-10 with neutralizing antibodies at the time of CD19+ cell cotransfers also abrogated the therapeutic effect, suggesting that IL-10 secretion was an important component of protection. These results were strengthened by ex vivo incubation of CD19+ cells with IL-5, resulting in enhanced proliferation and IL-10 production and equivalently delayed diabetes progression (P = 0.0005). The potential to expand CD19+IgM+ cells, especially in response to IL-5 stimulation or by pharmacologic agents, may be a new therapeutic option for type 1 diabetes.
Collapse
Affiliation(s)
- Andrew D Vonberg
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| | - Maria Acevedo-Calado
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| | - Aaron R Cox
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Susan L Pietropaolo
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| | - Roberto Gianani
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| | - Steven K Lundy
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Massimo Pietropaolo
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism Department of Medicine, and
| |
Collapse
|
15
|
Xiao Y, Lai L, Chen H, Shi J, Zeng F, Li J, Feng H, Mao J, Zhang F, Wu N, Xu Y, Tan Z, Gong F, Zheng F. Interleukin-33 deficiency exacerbated experimental autoimmune encephalomyelitis with an influence on immune cells and glia cells. Mol Immunol 2018; 101:550-563. [PMID: 30173119 DOI: 10.1016/j.molimm.2018.08.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/07/2018] [Accepted: 08/23/2018] [Indexed: 12/15/2022]
Abstract
Interleukin (IL)-33, a member of the IL-1 cytokine family, is highly expressed in central nervous system (CNS), suggesting its potential role in CNS. Although some studies have focused on the role of IL-33 in multiple sclerosis (MS) / experimental autoimmune encephalomyelitis (EAE), an autoimmune disease characterized by demyelination and axonal damage in CNS, the exact role of IL-33 in MS/EAE remains unclear and controversial. Here, we used IL-33 knockout mice to clarify the role of endogenous IL-33 in EAE by simultaneously eliminating its role as a nuclear transcription factor and an extracellular cytokine. We found that the clinical score in IL-33 knockout EAE mice was higher accompanied by more severe demyelination compared with the wild-type (WT) EAE mice. As for the main immune cells participating in EAE in IL-33 knockout mice, pathogenic effector T cells increased both in peripheral immune organs and CNS, while CD4+FOXP3+ regulatory T cells decreased in spleen and lymph nodes, Th2 cells and natural killer (NK) cells decreased in CNS. Additionally, the populations of microglia/macrophages and CD11C+CD11B+ dendritic cells (DCs) increased in CNS of IL-33 knockout mice with EAE, among which iNOS-producing microglia/macrophages increased. Moreover, resident astrocytes/microglia were more activated in IL-33 knockout mice with EAE. In vitro, after blocking the IL-33, the proliferation of primary astrocytes, the production of MCP-1/CCL2 and TNF-α by astrocytes, and the production of TNF-α by primary microglia stimulated by the homogenate of the peak stage of EAE were increased. Our results indicate that IL-33 plays a protective role in EAE and exerts extensive influences on multiple immune cells and neural cells involved in EAE.
Collapse
Affiliation(s)
- Yifan Xiao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Lin Lai
- Department of Clinical laboratory, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, PR China
| | - Huoying Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, PR China
| | - Junyu Shi
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - FanFan Zeng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jun Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Huiting Feng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jie Mao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Feng Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Naming Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yong Xu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Zheng Tan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, PR China
| | - Feili Gong
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, PR China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, PR China.
| |
Collapse
|
16
|
Wang J, Wang X, Chen X, Lu S, Kuang Y, Fei J, Wang Z. Gpr97/Adgrg3 ameliorates experimental autoimmune encephalomyelitis by regulating cytokine expression. Acta Biochim Biophys Sin (Shanghai) 2018; 50:666-675. [PMID: 29860267 DOI: 10.1093/abbs/gmy060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis and its primary animal model, experimental autoimmune encephalomyelitis (EAE), are inflammatory diseases of the central nervous system (CNS) characterized by immune-mediated demyelination and neurodegeneration that may be mediated by inhibition of the nuclear factor-κB (NF-κB) signaling pathway. Gpr97, encoded by Adgrg3, has been reported to regulate the activity of NF-κB. In this study, using a previously established Adgrg3-knockout mouse model, we investigated the roles of Gpr97 in the development of autoimmune CNS disease in mice. We found a marked increase in the expression of Adgrg3 in spinal cords of mice with EAE. Adgrg3-deficient (Adgrg3-/-) mice with EAE exhibited increases in peak severity and the cumulative disease score compared with littermate controls, followed by a notable increase of leukocyte infiltration and more extensive demyelination. The percentages of Th1/Th17 cells in the CNS were significantly increased in Adgrg3-/- mice and accompanied by high levels of interleukin (IL)-6, interferon-γ, tumor necrosis factor-α, and IL-17. An in vitro culture assay verified that Gpr97 regulated proinflammatory cytokine production. Taken together, our results show that Gpr97 plays an important role in the development of EAE and may have a therapeutic potential for the treatment of CNS autoimmunity.
Collapse
Affiliation(s)
- Jinjin Wang
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - Xiyi Wang
- Department of Medical Genetics, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Xuejiao Chen
- Department of Medical Genetics, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Shunyuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine of Rui-Jin Hospital, Shanghai, China
| | - Ying Kuang
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - Jian Fei
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - Zhugang Wang
- Shanghai Research Center for Model Organisms, Shanghai, China
- Department of Medical Genetics, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine of Rui-Jin Hospital, Shanghai, China
| |
Collapse
|
17
|
Whittaker Hawkins RF, Patenaude A, Dumas A, Jain R, Tesfagiorgis Y, Kerfoot S, Matsui T, Gunzer M, Poubelle PE, Larochelle C, Pelletier M, Vallières L. ICAM1+ neutrophils promote chronic inflammation via ASPRV1 in B cell-dependent autoimmune encephalomyelitis. JCI Insight 2017; 2:96882. [PMID: 29212956 DOI: 10.1172/jci.insight.96882] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/23/2017] [Indexed: 12/16/2022] Open
Abstract
Neutrophils contribute to demyelinating autoimmune diseases, yet their phenotype and functions have been elusive to date. Here, we demonstrate that ICAM1 surface expression distinguishes extra- from intravascular neutrophils in the mouse CNS during experimental autoimmune encephalomyelitis (EAE). Transcriptomic analysis of these 2 subpopulations indicated that neutrophils, once extravasated, acquire macrophage-like properties, including the potential for immunostimulation and MHC class II-mediated antigen presentation. In corroboration, super-resolution (3D stimulated emission-depletion [STED]) microscopy revealed neutrophils forming synapses with T and B cells in situ. Further, neutrophils specifically express the aspartic retroviral-like protease ASPRV1, which increases in the CNS during EAE and severe cases of multiple sclerosis. Without ASPRV1, mice immunized with a new B cell-dependent myelin antigen (but not with the traditional myelin oligodendrocyte glycoprotein peptide) develop a chronic phase of EAE that is less severe and even completely fades in many individuals. Therefore, ICAM1+ macrophage-like neutrophils can play both shared and nonredundant roles in autoimmune demyelination, among them perpetuating inflammation via ASPRV1.
Collapse
Affiliation(s)
- Ryder F Whittaker Hawkins
- Neuroscience Unit, University Hospital Center of Quebec - Laval University, Quebec City, Quebec, Canada
| | - Alexandre Patenaude
- Neuroscience Unit, University Hospital Center of Quebec - Laval University, Quebec City, Quebec, Canada
| | - Aline Dumas
- Neuroscience Unit, University Hospital Center of Quebec - Laval University, Quebec City, Quebec, Canada
| | - Rajiv Jain
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Yodit Tesfagiorgis
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Steven Kerfoot
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Takeshi Matsui
- Laboratory for Skin Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Patrice E Poubelle
- Infectious and Immune Disease Unit, University Hospital Center of Quebec - Laval University, Quebec City, Quebec, Canada
| | - Catherine Larochelle
- Neuroimmunology Research Laboratory, University of Montreal Hospital Research Center, Montreal, Quebec, Canada
| | - Martin Pelletier
- Infectious and Immune Disease Unit, University Hospital Center of Quebec - Laval University, Quebec City, Quebec, Canada
| | - Luc Vallières
- Neuroscience Unit, University Hospital Center of Quebec - Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
18
|
Evaluation of interleukin-10 producing CD19 + B cells in human gingival tissue. Arch Oral Biol 2017; 84:112-117. [DOI: 10.1016/j.archoralbio.2017.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 09/08/2017] [Accepted: 09/16/2017] [Indexed: 02/03/2023]
|
19
|
Staun-Ram E, Miller A. Effector and regulatory B cells in Multiple Sclerosis. Clin Immunol 2017; 184:11-25. [PMID: 28461106 DOI: 10.1016/j.clim.2017.04.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
Abstract
The role of B cells in the pathogenesis of Multiple Sclerosis (MS), an autoimmune neurodegenerative disease, is becoming eminent in recent years, but the specific contribution of the distinct B cell subsets remains to be elucidated. Several B cell subsets have shown regulatory, anti-inflammatory capacities in response to stimuli in vitro, as well as in the animal model of MS: Experimental Autoimmune Encephalomyelitis (EAE). However, the functional role of the B regulatory cells (Bregs) in vivo and specifically in the human disease is yet to be clarified. In the present review, we have summarized the updated information on the roles of effector and regulatory B cells in MS and the immune-modulatory effects of MS therapeutic agents on their phenotype and function.
Collapse
Affiliation(s)
- Elsebeth Staun-Ram
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ariel Miller
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Neuroimmunology Unit & Multiple Sclerosis Center, Carmel Medical Center, Haifa, Israel.
| |
Collapse
|
20
|
Li X, Ding Y, Zi M, Sun L, Zhang W, Chen S, Xu Y. CD19, from bench to bedside. Immunol Lett 2017; 183:86-95. [DOI: 10.1016/j.imlet.2017.01.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 12/27/2022]
|
21
|
Abstract
B-1 lymphocytes exhibit unique phenotypic, ontogenic, and functional characteristics that differ from the conventional B-2 cells. B-1 cells spontaneously secrete germline-like, repertoire-skewed polyreactive natural antibody, which acts as a first line of defense by neutralizing a wide range of pathogens before launching of the adaptive immune response. Immunomodulatory molecules such as interleukin-10, adenosine, granulocyte-macrophage colony-stimulating factor, interleukin-3, and interleukin-35 are also produced by B-1 cells in the presence or absence of stimulation, which regulate acute and chronic inflammatory diseases. Considerable progress has been made during the past three decades since the discovery of B-1 cells, which has improved not only our understanding of their phenotypic and ontogenic uniqueness but also their role in various inflammatory diseases including influenza, pneumonia, sepsis, atherosclerosis, inflammatory bowel disease, autoimmunity, obesity and diabetes mellitus. Recent identification of human B-1 cells widens the scope of this field, leading to novel innovations that can be implemented from bench to bedside. Among the vast number of studies on B-1 cells, we have carried out a literature review highlighting current trends in the study of B-1 cell involvement during inflammation, which may result in a paradigm shift toward sustainable therapeutics in various inflammatory diseases.
Collapse
Affiliation(s)
- Monowar Aziz
- Center for Translational Research, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA
| | - Nichol E Holodick
- Center for Oncology and Cell Biology, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA
| | - Thomas L Rothstein
- Center for Oncology and Cell Biology, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA
| | - Ping Wang
- Center for Translational Research, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA. .,Department of Surgery, Hofstra North Shore-LIJ School of Medicine, 350 Community Dr., Manhasset, NY, 11030, USA.
| |
Collapse
|
22
|
B Lymphocytes in Multiple Sclerosis: Bregs and BTLA/CD272 Expressing-CD19+ Lymphocytes Modulate Disease Severity. Sci Rep 2016; 6:29699. [PMID: 27412504 PMCID: PMC4944189 DOI: 10.1038/srep29699] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 06/23/2016] [Indexed: 01/18/2023] Open
Abstract
B lymphocytes contribute to the pathogenesis of Multiple Sclerosis (MS) by secreting antibodies and producing cytokines. This latter function was analyzed in myelin olygodendrocyte protein (MOG)-stimulated CD19+ B lymphocytes of 71 MS patients with different disease phenotypes and 40 age-and sex-matched healthy controls (HC). Results showed that: 1) CD19+/TNFα+, CD19+/IL-12+ and CD19+/IFNγ+ lymphocytes are significantly increased in primary progressive (PP) compared to secondary progressive (SP), relapsing-remitting (RR), benign (BE) MS and HC; 2) CD19+/IL-6+ lymphocytes are significantly increased in PP, SP and RR compared to BEMS and HC; and 3) CD19+/IL-13+, CD19+/IL-10+, and CD19+/IL-10+/TGFβ+ (Bregs) B lymphocytes are reduced overall in MS patients compared to HC. B cells expressing BTLA, a receptor whose binding to HVEM inhibits TcR-initiated cytokine production, as well as CD19+/BTLA+/IL-10+ cells were also significantly overall reduced in MS patients compared to HC. Analyses performed in RRMS showed that fingolimod-induced disease remission is associated with a significant increase in Bregs, CD19+/BTLA+, and CD19+/BTLA+/IL-10+ B lymphocytes. B lymphocytes participate to the pathogenesis of MS via the secretion of functionally-diverse cytokines that might play a role in determining disease phenotypes. The impairment of Bregs and CD19+/BTLA+ cells, in particular, could play an important pathogenic role in MS.
Collapse
|
23
|
MESH Headings
- Antigen Presentation
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- B-Lymphocytes, Regulatory/immunology
- B-Lymphocytes, Regulatory/pathology
- Colitis/genetics
- Colitis/immunology
- Colitis/pathology
- Cytokines/genetics
- Cytokines/immunology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Gene Expression Regulation/immunology
- Humans
- Hypersensitivity, Delayed/genetics
- Hypersensitivity, Delayed/immunology
- Hypersensitivity, Delayed/pathology
- Immune Tolerance
- Immunity, Humoral
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Cytokine/genetics
- Receptors, Cytokine/immunology
- Signal Transduction
Collapse
|
24
|
Kok LF, Marsh-Wakefield F, Marshall JE, Gillis C, Halliday GM, Byrne SN. B cells are required for sunlight protection of mice from a CNS-targeted autoimmune attack. J Autoimmun 2016; 73:10-23. [PMID: 27289166 DOI: 10.1016/j.jaut.2016.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/09/2023]
Abstract
The ultraviolet (UV) radiation contained in sunlight is a powerful immune suppressant. While exposure to UV is associated with protection from the development of autoimmune diseases, particularly multiple sclerosis, the precise mechanism by which UV achieves this protection is not currently well understood. Regulatory B cells play an important role in preventing autoimmunity and activation of B cells is a major way in which UV suppresses adaptive immune responses. Whether UV-protection from autoimmunity is mediated by the activation of regulatory B cells has never been considered before. When C57BL/6 mice were exposed to low, physiologically relevant doses of UV, a unique population of B cells was activated in the skin draining lymph nodes. As determined by flow cytometry, CD1d(low)CD5(-)MHC-II(hi)B220(hi) UV-activated B cells expressed significantly higher levels of CD19, CD21/35, CD25, CD210 and CD268 as well as the co-stimulatory molecules CD80, CD86, CD274 and CD275. Experimental autoimmune encephalomyelitis (EAE) in mice immunized with MOG/CFA was reduced by exposure to UV. UV significantly inhibited demyelination and infiltration of inflammatory cells into the spinal cord. Consequently, UV-exposed groups showed elevated IL-10 levels in secondary lymphoid organs, delayed EAE onset, reduced peak EAE score and significantly suppressed overall disease incidence and burden. Importantly, protection from EAE could be adoptively transferred using B cells isolated from UV-exposed, but not unirradiated hosts. Indeed, UV-protection from EAE was dependent on UV activation of lymph node B cells because UV could not protect mice from EAE who were pharmacologically depleted of B cells using antibodies. Thus, UV maintenance of a pool of unique regulatory B cells in peripheral lymph nodes appears to be essential to prevent an autoimmune attack on the central nervous system.
Collapse
Affiliation(s)
- Lai Fong Kok
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School at the Charles Perkins Centre, University of Sydney, Australia
| | - Felix Marsh-Wakefield
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School at the Charles Perkins Centre, University of Sydney, Australia
| | - Jacqueline E Marshall
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School at the Charles Perkins Centre, University of Sydney, Australia
| | - Caitlin Gillis
- Discipline of Dermatology at the Bosch Institute, Sydney Medical School, University of Sydney and Royal Prince Alfred Hospital, Australia
| | - Gary M Halliday
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School at the Charles Perkins Centre, University of Sydney, Australia; Discipline of Dermatology at the Bosch Institute, Sydney Medical School, University of Sydney and Royal Prince Alfred Hospital, Australia
| | - Scott N Byrne
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School at the Charles Perkins Centre, University of Sydney, Australia; Discipline of Dermatology at the Bosch Institute, Sydney Medical School, University of Sydney and Royal Prince Alfred Hospital, Australia.
| |
Collapse
|
25
|
Huarte E, Jun S, Rynda-Apple A, Golden S, Jackiw L, Hoffman C, Maddaloni M, Pascual DW. Regulatory T Cell Dysfunction Acquiesces to BTLA+ Regulatory B Cells Subsequent to Oral Intervention in Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2016; 196:5036-46. [PMID: 27194787 DOI: 10.4049/jimmunol.1501973] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 04/14/2016] [Indexed: 12/21/2022]
Abstract
Regulatory T cells (Tregs) induced during autoimmunity often become quiescent and unable to resolve disease, suggesting inadequate activation. Resolution of established experimental autoimmune encephalomyelitis (EAE) can be achieved with myelin oligodendrocyte glycoprotein (MOG) fused to reovirus protein σ1 (MOG-pσ1), which activates Tregs, restoring protection, but requiring other regulatory cells to revitalize them. B cells have a dichotomous role in both the pathogenesis and recovery from EAE. Although inflammatory B cells contribute to EAE's pathogenesis, treatment of EAE mice with MOG-pσ1, but not OVA-pσ1, resulted in an influx of IL-10-producing B220(+)CD5(+) B regulatory cells (Bregs) enabling Tregs to recover their inhibitory activity, and in turn, leading to the rapid amelioration of EAE. These findings implicate direct interactions between Bregs and Tregs to facilitate this recovery. Adoptive transfer of B220(+)CD5(-) B cells from MOG-pσ1-treated EAE or Bregs from PBS-treated EAE mice did not resolve disease, whereas the adoptive transfer of MOG-pσ1-induced B220(+)CD5(+) Bregs greatly ameliorated EAE. MOG-pσ1-, but not OVA-pσ1-induced IL-10-producing Bregs, expressed elevated levels of B and T lymphocyte attenuator (BTLA) relative to CD5(-) B cells, as opposed to Tregs or effector T (Teff) cells, whose BTLA expression was not affected. These induced Bregs restored EAE Treg function in a BTLA-dependent manner. BTLA(-/-) mice showed more pronounced EAE with fewer Tregs, but upon adoptive transfer of MOG-pσ1-induced BTLA(+) Bregs, BTLA(-/-) mice were protected against EAE. Hence, this evidence shows the importance of BTLA in activating Tregs to facilitate recovery from EAE.
Collapse
Affiliation(s)
- Eduardo Huarte
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611; and
| | - SangMu Jun
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611; and
| | - Agnieszka Rynda-Apple
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59718
| | - Sara Golden
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59718
| | - Larissa Jackiw
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59718
| | - Carol Hoffman
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611; and
| | - Massimo Maddaloni
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611; and
| | - David W Pascual
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611; and
| |
Collapse
|
26
|
Boron Induces Lymphocyte Proliferation and Modulates the Priming Effects of Lipopolysaccharide on Macrophages. PLoS One 2016; 11:e0150607. [PMID: 26934748 PMCID: PMC4774930 DOI: 10.1371/journal.pone.0150607] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 02/17/2016] [Indexed: 12/26/2022] Open
Abstract
Chemical mediators of inflammation (CMI) are important in host defense against infection. The reduced capacity of host to induce the secretion of these mediators following infection is one of the factors in host susceptibility to infection. Boron, which has been suggested for its role in infection, is reported in this study to increase lymphocyte proliferation and the secretion of CMI by the lipopolysaccharide (LPS)-stimulated peritoneal macrophages in BALB/c mice. Boron was administered to mice orally as borax at different doses for 10 consecutive days, followed by the stimulation of animals with ovalbumin and isolation of splenocytes for proliferation assay. The lymphocyte subsets were determined by flow cytometry in spleen cell suspension. The mediators of inflammation, TNF-α, IL-6, IL-1β and nitric oxide (NO), were measured in culture supernatant of LPS-primed macrophages isolated from borax treated mice. TNF and ILs were measured by ELISA. NO was determined by Griess test. The expression of inducible nitric oxide synthase (iNOS) in macrophages was studied by confocal microscopy. Results showed a significant increase in T and B cell populations, as indicated by an increase in CD4 and CD19, but not CD8, cells. Boron further stimulated the secretion of TNF-α, IL-6, IL-1β, NO and the expression of iNOS by the LPS-primed macrophages. The effect was dose dependent and most significant at a dose level of 4.6 mg/kg b. wt. Taken together, the study concludes that boron at physiological concentration induces lymphocyte proliferation and increases the synthesis and secretion of pro-inflammatory mediators by the LPS-primed macrophages, more specifically the M1 macrophages, possibly acting through Toll-like receptor. The study implicates boron as a regulator of the immune and inflammatory reactions and macrophage polarization, thus playing an important role in augmenting host defense against infection, with possible role in cancer and other diseases.
Collapse
|
27
|
Kim AR, Kim HS, Kim DK, Nam ST, Kim HW, Park YH, Lee D, Lee MB, Lee JH, Kim B, Beaven MA, Kim HS, Kim YM, Choi WS. Mesenteric IL-10-producing CD5+ regulatory B cells suppress cow's milk casein-induced allergic responses in mice. Sci Rep 2016; 6:19685. [PMID: 26785945 PMCID: PMC4726293 DOI: 10.1038/srep19685] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/15/2015] [Indexed: 12/13/2022] Open
Abstract
Food allergy is a hypersensitive immune reaction to food proteins. We have previously demonstrated the presence of IL-10-producing CD5(+) B cells and suggested their potential role in regulating cow's milk casein allergy in humans and IgE-mediated anaphylaxis in mice. In this study, we determined whether IL-10-producing CD5(+) regulatory B cells control casein-induced food allergic responses in mice and, if so, the underlying mechanisms. The induction of oral tolerance (OT) by casein suppressed casein-induced allergic responses including the decrease of body temperature, symptom score, diarrhea, recruitment of mast cells and eosinophils into jejunum, and other biological parameters in mice. Notably, the population of IL-10-producing CD5(+) B cells was increased in mesenteric lymph node (MLN), but not in spleen or peritoneal cavity (PeC) in OT mice. The adoptive transfer of CD5(+) B cells from MLN, but not those from spleen and PeC, suppressed the casein-induced allergic responses in an allergen-specific and IL-10-dependent manner. The inhibitory effect of IL-10-producing CD5(+) B cells on casein-induced allergic response was dependent on Foxp3(+) regulatory T cells. Taken together, mesenteric IL-10-producing regulatory B cells control food allergy via Foxp3(+) regulatory T cells and could potentially act as a therapeutic regulator for food allergy.
Collapse
Affiliation(s)
- A-Ram Kim
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Hyuk Soon Kim
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Do Kyun Kim
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Seung Taek Nam
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Hyun Woo Kim
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Young Hwan Park
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Dajeong Lee
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Min Bum Lee
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Jun Ho Lee
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Bokyung Kim
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Michael A. Beaven
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD20892
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea
| | - Young Mi Kim
- College of Pharmacy, Duksung Women’s University, Seoul 132-714, Korea
| | - Wahn Soo Choi
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| |
Collapse
|
28
|
Lykken JM, Candando KM, Tedder TF. Regulatory B10 cell development and function. Int Immunol 2015; 27:471-7. [PMID: 26254185 DOI: 10.1093/intimm/dxv046] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/31/2015] [Indexed: 01/06/2023] Open
Abstract
B cells are known to instigate and promulgate immune responses by producing antibodies and presenting antigens to T cells. However, a rare but potent B-cell subset in both humans and mice is capable of inhibiting immune responses through the production of the anti-inflammatory cytokine IL-10. Regulatory B cells do not express any unique combination of surface markers but instead represent a small population of B cells that have acquired the unique ability to produce IL-10. This numerically rare B-cell subset is therefore functionally referred to as 'B10 cells' to reflect both their molecular program and the fact that their anti-inflammatory effects in models of autoimmunity, infection and cancer are solely attributable to IL-10 production. As with most B cells, B10 cell development and function appear to be predominantly, if not exclusively, driven by antigen-receptor signals. Once generated, B10 cells respond to both innate and adaptive immune signals, with a requirement for antigen-specific local interactions with T cells to induce IL-10 production and to provide optimal immune suppression in mouse models of autoimmune disease. B10 cells therefore provide an antigen-specific mechanism for delivering IL-10 locally to sites of immune activation and inflammation. The ability of B10 cells to regulate innate and adaptive immune responses makes them an ideal therapeutic target for the treatment of many immune-related disorders.
Collapse
Affiliation(s)
- Jacquelyn M Lykken
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kathleen M Candando
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Thomas F Tedder
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
29
|
Zhang J, Benedek G, Bodhankar S, Lapato A, Vandenbark AA, Offner H. IL-10 producing B cells partially restore E2-mediated protection against EAE in PD-L1 deficient mice. J Neuroimmunol 2015. [PMID: 26198929 DOI: 10.1016/j.jneuroim.2015.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Women with multiple sclerosis (MS) often experience clinical improvement during pregnancy, indicating that sex hormones might have therapeutic effects in MS. Our previous studies have demonstrated that B cells and PD-L1 are crucial for E2 (17β-estradiol)-mediated protection against experimental autoimmune encephalomyelitis (EAE). We here demonstrate that the transfer of IL-10(+) B cells into E2-treated PD-L1(-/-) mice after EAE induction could partially restore E2-mediated protection and decrease the frequency of pro-inflammatory cells in the CNS compared to E2/saline treated PD-L1(-/-) mice. Hence, co-administration of IL-10(+) B cells and E2 might have a powerful therapeutic potential for treatment of EAE.
Collapse
Affiliation(s)
- Jun Zhang
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, USA; Department of Neurology, Oregon Health & Science University, Portland, OR, USA.
| | - Gil Benedek
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, USA; Department of Neurology, Oregon Health & Science University, Portland, OR, USA.
| | - Sheetal Bodhankar
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, USA; Department of Neurology, Oregon Health & Science University, Portland, OR, USA.
| | - Andrew Lapato
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, USA; Department of Neurology, Oregon Health & Science University, Portland, OR, USA.
| | - Arthur A Vandenbark
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, USA; Department of Neurology, Oregon Health & Science University, Portland, OR, USA; Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA.
| | - Halina Offner
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, USA; Department of Neurology, Oregon Health & Science University, Portland, OR, USA; Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
30
|
Tedder TF. B10 cells: a functionally defined regulatory B cell subset. THE JOURNAL OF IMMUNOLOGY 2015; 194:1395-401. [PMID: 25663677 DOI: 10.4049/jimmunol.1401329] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
B cells are commonly thought to enhance inflammatory immune responses. However, specific regulatory B cell subsets recently were identified that downregulate adaptive and innate immunity, inflammation, and autoimmunity through diverse molecular mechanisms. In both mice and humans, a rare, but specific, subset of regulatory B cells is functionally characterized by its capacity to produce IL-10, a potent inhibitory cytokine. For clarity, this regulatory B cell subset has been labeled as B10 cells, because their ability to downregulate immune responses and inflammatory disease is fully attributable to IL-10, and their absence or loss exacerbates disease symptoms in mouse models. This review preferentially focuses on what is known about mouse B10 cell development, phenotype, and effector function, as well as on mechanistic studies that demonstrated their functional importance during inflammation, autoimmune disease, and immune responses.
Collapse
Affiliation(s)
- Thomas F Tedder
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
31
|
Schubert RD, Hu Y, Kumar G, Szeto S, Abraham P, Winderl J, Guthridge JM, Pardo G, Dunn J, Steinman L, Axtell RC. IFN-β treatment requires B cells for efficacy in neuroautoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:2110-6. [PMID: 25646307 PMCID: PMC4340715 DOI: 10.4049/jimmunol.1402029] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IFN-β remains the most widely prescribed treatment for relapsing remitting multiple sclerosis. Despite widespread use of IFN-β, the therapeutic mechanism is still partially understood. Particularly, the clinical relevance of increased B cell activity during IFN-β treatment is unclear. In this article, we show that IFN-β pushes some B cells into a transitional, regulatory population that is a critical mechanism for therapy. IFN-β treatment increases the absolute number of regulatory CD19(+)CD24(++)CD38(++) transitional B cells in peripheral blood relative to treatment-naive and Copaxone-treated patients. In addition, we found that transitional B cells from both healthy controls and IFN-β-treated MS patients are potent producers of IL-10, and that the capability of IFN-β to induce IL-10 is amplified when B cells are stimulated. Similar changes are seen in mice with experimental autoimmune encephalomyelitis. IFN-β treatment increases transitional and regulatory B cell populations, as well as IL-10 secretion in the spleen. Furthermore, we found that IFN-β increases autoantibody production, implicating humoral immune activation in B cell regulatory responses. Finally, we demonstrate that IFN-β therapy requires immune-regulatory B cells by showing that B cell-deficient mice do not benefit clinically or histopathologically from IFN-β treatment. These results have significant implications for the diagnosis and treatment of relapsing remitting multiple sclerosis.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Autoantibodies/biosynthesis
- Autoimmunity/drug effects
- B-Lymphocyte Subsets/drug effects
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/pathology
- Brain/drug effects
- Brain/immunology
- Brain/pathology
- Case-Control Studies
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Female
- Gene Expression Regulation
- Glatiramer Acetate
- Humans
- Immunosuppressive Agents/pharmacology
- Interferon-beta/pharmacology
- Interleukin-10/biosynthesis
- Lymphocyte Depletion
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Multiple Sclerosis, Relapsing-Remitting/drug therapy
- Multiple Sclerosis, Relapsing-Remitting/genetics
- Multiple Sclerosis, Relapsing-Remitting/immunology
- Multiple Sclerosis, Relapsing-Remitting/pathology
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments
- Peptides/pharmacology
- Signal Transduction
- Spleen/drug effects
- Spleen/immunology
- Spleen/pathology
Collapse
Affiliation(s)
- Ryan D Schubert
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305; Department of Neurology, University of California San Francisco, San Francisco, CA 94158; and
| | - Yang Hu
- Department of Arthritis and Clinical Immunology Research, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Gaurav Kumar
- Department of Arthritis and Clinical Immunology Research, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Spencer Szeto
- Department of Arthritis and Clinical Immunology Research, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Peter Abraham
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
| | - Johannes Winderl
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
| | - Joel M Guthridge
- Department of Arthritis and Clinical Immunology Research, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Gabriel Pardo
- Department of Arthritis and Clinical Immunology Research, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Jeffrey Dunn
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305
| | - Robert C Axtell
- Department of Arthritis and Clinical Immunology Research, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| |
Collapse
|
32
|
Lin M, Wang Z, Han X. B Cells with Regulatory Function in Animal Models of Autoimmune and Non-Autoimmune Diseases. ACTA ACUST UNITED AC 2015; 5:9-17. [PMID: 26236565 PMCID: PMC4517676 DOI: 10.4236/oji.2015.51002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although the identification of B cell subsets with negative regulatory functions and the definition of their mechanisms of action are recent events, the important negative regulatory roles of B cells in immune responses are now broadly recognized. There is an emerging appreciation for the pivotal role played by B cells in several areas of human diseases including autoimmune diseases and non-autoimmune diseases such as parasite infections and cancer. The recent research advancement of regulatory B cells in human disease coincides with the vastly accelerated pace of research on the bridging of innate and adaptive immune system. Current study and our continued research may provide better understanding of the mechanisms that promote regulatory B10 cell function to counteract exaggerated immune activation in autoimmune as well as non-autoimmune conditions. This review is focused on the current knowledge of BREG functions studied in animal models of autoimmune and non-autoimmune diseases.
Collapse
Affiliation(s)
- Mei Lin
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, USA ; Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zuomin Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaozhe Han
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, USA
| |
Collapse
|
33
|
Miyazaki Y, Niino M. Molecular targeted therapy against B cells in multiple sclerosis. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/cen3.12160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yusei Miyazaki
- Department of Clinical Research; Hokkaido Medical Center; Sapporo Japan
- Department of Neurology; Hokkaido Medical Center; Sapporo Japan
| | - Masaaki Niino
- Department of Clinical Research; Hokkaido Medical Center; Sapporo Japan
| |
Collapse
|
34
|
Interleukin-10-Producing Plasmablasts Exert Regulatory Function in Autoimmune Inflammation. Immunity 2014; 41:1040-51. [DOI: 10.1016/j.immuni.2014.10.016] [Citation(s) in RCA: 357] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/28/2014] [Indexed: 02/04/2023]
|
35
|
Abstract
While B cells are traditionally regarded as promoters of the immune response via antibody secretion and pro-inflammatory cytokine production, recent studies have also confirmed an important role for B-cell-mediated negative regulation of immunity. Tremendous advances in the characterization of the mechanisms by which regulatory B cells function has led to the identification of a novel subset of regulatory B cells known as B10 cells, which regulate immune responses through the production of the anti-inflammatory cytokine interleukin-10 (IL-10). B10 cells are best defined by their functional ability to produce IL-10, as they are not confined to any particular phenotypic subset. B10 cells function in an antigen-specific manner that requires cognate interactions with T cells in vivo to regulate immune responses and have been demonstrated to be potent regulators of allergic and autoimmune disease, cancer, infection, and transplant rejection. Importantly, the recent discovery of human B10 cells has accelerated this field to the forefront of clinical research where the possibility of harnessing the regulatory potential of B10 cells for treatment of aberrant immune responses and diseases may become feasible.
Collapse
|
36
|
Ben-Nun A, Kaushansky N, Kawakami N, Krishnamoorthy G, Berer K, Liblau R, Hohlfeld R, Wekerle H. From classic to spontaneous and humanized models of multiple sclerosis: impact on understanding pathogenesis and drug development. J Autoimmun 2014; 54:33-50. [PMID: 25175979 DOI: 10.1016/j.jaut.2014.06.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS), a demyelinating disease of the central nervous system (CNS), presents as a complex disease with variable clinical and pathological manifestations, involving different pathogenic pathways. Animal models, particularly experimental autoimmune encephalomyelitis (EAE), have been key to deciphering the pathophysiology of MS, although no single model can recapitulate the complexity and diversity of MS, or can, to date, integrate the diverse pathogenic pathways. Since the first EAE model was introduced decades ago, multiple classic (induced), spontaneous, and humanized EAE models have been developed, each recapitulating particular aspects of MS pathogenesis. The advances in technologies of genetic ablation and transgenesis in mice of C57BL/6J background and the development of myelin-oligodendrocyte glycoprotein (MOG)-induced EAE in C57BL/6J mice yielded several spontaneous and humanized EAE models, and resulted in a plethora of EAE models in which the role of specific genes or cell populations could be precisely interrogated, towards modeling specific pathways of MS pathogenesis/regulation in MS. Collectively, the numerous studies on the different EAE models contributed immensely to our basic understanding of cellular and molecular pathways in MS pathogenesis as well as to the development of therapeutic agents: several drugs available today as disease modifying treatments were developed from direct studies on EAE models, and many others were tested or validated in EAE. In this review, we discuss the contribution of major classic, spontaneous, and humanized EAE models to our understanding of MS pathophysiology and to insights leading to devising current and future therapies for this disease.
Collapse
Affiliation(s)
- Avraham Ben-Nun
- Department of Immunology, The Weizmann Institute of Science, 234 Herzl St. Rehovot, 7610001, Israel.
| | - Nathali Kaushansky
- Department of Immunology, The Weizmann Institute of Science, 234 Herzl St. Rehovot, 7610001, Israel.
| | - Naoto Kawakami
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried 82152, Germany; Institute of Clinical Neuroimmunology, Ludwig-Maximilians-University, 81377 Munich, Germany.
| | | | - Kerstin Berer
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried 82152, Germany.
| | | | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians-University, 81377 Munich, Germany.
| | - Hartmut Wekerle
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried 82152, Germany.
| |
Collapse
|
37
|
Ries S, Hilgenberg E, Lampropoulou V, Shen P, Dang VD, Wilantri S, Sakwa I, Fillatreau S. B-type suppression: a role played by "regulatory B cells" or "regulatory plasma cells"? Eur J Immunol 2014; 44:1251-7. [PMID: 24615065 DOI: 10.1002/eji.201343683] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 01/17/2014] [Accepted: 03/06/2014] [Indexed: 01/10/2023]
Abstract
B-cell depletion can improve disease in some patients with rheumatoid arthritis or multiple sclerosis, indicating the pathogenic contribution of B cells to autoimmunity. However, studies in mice have demonstrated that B cells have immunosuppressive functions as well, with IL-10 being a critical mediator of B-cell-mediated suppression. IL-10-secreting B cells have been shown to promote disease remission in some mouse models of autoimmune disorders. Human B cells also produce IL-10, and evidence is accumulating that human IL-10-producing B cells might inhibit immunity. There is considerable interest in identifying the phenotype of B cells providing IL-10 in a suppressive manner, which would facilitate the analysis of the molecular mechanisms controlling this B-cell property. Here, we review current knowledge on the B-cell subpopulations found to provide suppressive functions in mice, considering both the pathological context in which they were identified and the signals that control their induction. We discuss the phenotype of B cells that have IL-10-dependent regulatory activities in mice, which leads us to propose that antibody-secreting cells are, in some cases at least, the major source of B-cell-derived regulatory IL-10 in vivo. Anti-inflammatory cytokine production by antibody-secreting cells offers a novel mechanism for the coordination of innate and humoral immune responses.
Collapse
Affiliation(s)
- Stefanie Ries
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
B cells are thought to play a pathogenic role in multiple sclerosis (MS), an autoimmune disease affecting the central nervous system (CNS). This idea is supported by the reduction of disease in MS patients undergoing antibody-mediated B cell depletion therapy. In contrast, in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, B cells have been shown to play a regulatory role. This is suggestive of a dual role for B cells in CNS autoimmunity. It is possible that a critical balance between the pathogenic and regulatory populations of B cells might be involved in the manifestation of the disease. Although in mice, different B cell subsets have been shown to exert immunoregulation through varied mechanisms, the phenotype of regulatory B cells in humans and factors affecting their function are not well known. Also, the origin and development of regulatory B cells is not known. It is important to thoroughly identify the different populations of B cells that might be involved in suppressing CNS autoimmunity, their mode of function and factors that regulate their immunosuppressive properties for using regulatory B cells as a therapy for MS. Here we present methods to study the phenotype and mechanisms of immune suppression by B cells in different mouse models of EAE.
Collapse
Affiliation(s)
- Avijit Ray
- BloodCenter of Wisconsin, Blood Research Institute, 2178, Milwaukee, WI, 53201-2178, USA,
| | | |
Collapse
|
39
|
Hilgenberg E, Shen P, Dang VD, Ries S, Sakwa I, Fillatreau S. Interleukin-10-producing B cells and the regulation of immunity. Curr Top Microbiol Immunol 2014; 380:69-92. [PMID: 25004814 DOI: 10.1007/978-3-662-43492-5_4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
B cells are usually considered primarily for their unique capacity to produce antibodies after differentiation into plasma cells. In addition to their roles as antibody-producing cells, it has become apparent during the last 10 years that B cells also perform important functions in immunity through the production of cytokines. In particular, it was shown that B cells could negatively regulate immunity through provision of interleukin (IL)-10 during autoimmune and infectious diseases in mice. Here, we review data on the suppressive functions of B cells in mice with particular emphasis on the signals controlling the acquisition of such suppressive functions by B cells, the phenotype of the B cells involved in the negative regulation of immunity, and the processes targeted by this inhibitory circuit. Finally, we discuss the possibility that human B cells might also perform similar inhibitory functions through the provision of IL-10, and review data suggesting that such B cell-mediated regulatory activities might be impaired in patients with autoimmune diseases.
Collapse
Affiliation(s)
- Ellen Hilgenberg
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Chariteplatz 1, 10117, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Dalloul A. B-cell-mediated strategies to fight chronic allograft rejection. Front Immunol 2013; 4:444. [PMID: 24381571 PMCID: PMC3865384 DOI: 10.3389/fimmu.2013.00444] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/26/2013] [Indexed: 12/29/2022] Open
Abstract
Solid organs have been transplanted for decades. Since the improvement in graft selection and in medical and surgical procedures, the likelihood of graft function after 1 year is now close to 90%. Nonetheless even well-matched recipients continue to need medications for the rest of their lives hence adverse side effects and enhanced morbidity. Understanding Immune rejection mechanisms, is of increasing importance since the greater use of living-unrelated donors and genetically unmatched individuals. Chronic rejection is devoted to T-cells, however the role of B-cells in rejection has been appreciated recently by the observation that B-cell depletion improve graft survival. By contrast however, B-cells can be beneficial to the grafted tissue. This protective effect is secondary to either the secretion of protective antibodies or the induction of B-cells that restrain excessive inflammatory responses, chiefly by local provision of IL-10, or inhibit effector T-cells by direct cellular interactions. As a proof of concept B-cell-mediated infectious transplantation tolerance could be achieved in animal models, and evidence emerged that the presence of such B-cells in transplanted patients correlate with a favorable outcome. Among these populations, regulatory B-cells constitute a recently described population. These cells may develop as a feedback mechanism to prevent uncontrolled reactivity to antigens and inflammatory stimuli. The difficult task for the clinician, is to quantify the respective ratios and functions of “tolerant” vs. effector B-cells within a transplanted organ, at a given time point in order to modulate B-cell-directed therapy. Several receptors at the B-cell membrane as well as signaling molecules, can now be targeted for this purpose. Understanding the temporal expansion of regulatory B-cells in grafted patients and the stimuli that activate them will help in the future to implement specific strategies aimed at fighting chronic allograft rejection.
Collapse
|
41
|
A Review on Biology and Function of Regulatory B Cells with Special Reference to Inflammation and Autoimmune Pathogenesis. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s12595-013-0077-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Archambault AS, Carrero JA, Barnett LG, McGee NG, Sim J, Wright JO, Raabe T, Chen P, Ding H, Allenspach EJ, Dragatsis I, Laufer TM, Wu GF. Cutting edge: Conditional MHC class II expression reveals a limited role for B cell antigen presentation in primary and secondary CD4 T cell responses. THE JOURNAL OF IMMUNOLOGY 2013; 191:545-50. [PMID: 23772037 DOI: 10.4049/jimmunol.1201598] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The activation, differentiation, and subsequent effector functions of CD4 T cells depend on interactions with a multitude of MHC class II (MHCII)-expressing APCs. To evaluate the individual contribution of various APCs to CD4 T cell function, we have designed a new murine tool for selective in vivo expression of MHCII in subsets of APCs. Conditional expression of MHCII in B cells was achieved using a cre-loxP approach. After i.v. or s.c. priming, partial proliferation and activation of CD4 T cells was observed in mice expressing MHCII only by B cells. Restricting MHCII expression to B cells constrained secondary CD4 T cell responses in vivo, as demonstrated in a CD4 T cell-dependent model of autoimmunity, experimental autoimmune encephalomyelitis. These results highlight the limitations of B cell Ag presentation during initiation and propagation of CD4 T cell function in vivo using a novel system to study individual APCs by the conditional expression of MHCII.
Collapse
Affiliation(s)
- Angela S Archambault
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bao LQ, Huy NT, Kikuchi M, Yanagi T, Senba M, Shuaibu MN, Honma K, Yui K, Hirayama K. CD19(+) B cells confer protection against experimental cerebral malaria in semi-immune rodent model. PLoS One 2013; 8:e64836. [PMID: 23724100 PMCID: PMC3665539 DOI: 10.1371/journal.pone.0064836] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 04/19/2013] [Indexed: 12/31/2022] Open
Abstract
In African endemic area, adults are less vulnerable to cerebral malaria than children probably because of acquired partial immunity or semi-immune status. Here, we developed an experimental cerebral malaria (ECM) model for semi-immune mice. C57BL/6 (B6) mice underwent one, two and three cycles of infection and radical treatment (1-cure, 2-cure and 3-cure, respectively) before being finally challenged with 104Plasmodium berghei ANKA without treatment. Our results showed that 100% of naïve (0-cure), 67% of 1-cure, 37% of 2-cure and none of 3-cure mice succumbed to ECM within 10 days post challenge infection. In the protected 3-cure mice, significantly higher levels of plasma IL-10 and lower levels of IFN-γ than the others on day 7 post challenge infection were observed. Major increased lymphocyte subset of IL-10 positive cells in 3-cure mice was CD5(−)CD19(+) B cells. Passive transfer of splenic CD19(+) cells from 3-cure mice protected naïve mice from ECM. Additionally, aged 3-cure mice were also protected from ECM 12 and 20 months after the last challenge infection. In conclusion, mice became completely resistant to ECM after three exposures to malaria. CD19(+) B cells are determinants in protective mechanism of semi-immune mice against ECM possibly via modulatory IL-10 for pathogenic IFN-γ production.
Collapse
Affiliation(s)
- Lam Quoc Bao
- Department of Immunogenetics, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
| | - Nguyen Tien Huy
- Department of Immunogenetics, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- * E-mail: (KH); (NTH)
| | - Mihoko Kikuchi
- Center for International Collaborative Research, Nagasaki University, Nagasaki, Japan
| | - Tetsuo Yanagi
- Animal Research Center for Tropical Infections, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Masachika Senba
- Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Mohammed Nasir Shuaibu
- Department of Immunogenetics, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
| | - Kiri Honma
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Katsuyuki Yui
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Global Center of Excellence (GCOE), Nagasaki University, Nagasaki, Japan
- * E-mail: (KH); (NTH)
| |
Collapse
|
44
|
Yanaba K, Kamata M, Asano Y, Tada Y, Sugaya M, Kadono T, Tedder TF, Sato S. CD19 expression in B cells regulates atopic dermatitis in a mouse model. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:2214-22. [PMID: 23583649 DOI: 10.1016/j.ajpath.2013.02.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 02/12/2013] [Accepted: 02/21/2013] [Indexed: 12/19/2022]
Abstract
Atopic dermatitis is an inflammatory cutaneous disorder characterized by dry skin and relapsing eczematous skin lesions. Besides antibody production, the contribution of B cells to the pathogenesis of atopic dermatitis is unclear. In mice, repeated epicutaneous sensitization with ovalbumin induces inflamed skin lesions resembling human atopic dermatitis and therefore serves as an experimental model for this condition. To investigate the role of B cells in a murine model of atopic dermatitis, ovalbumin-sensitized allergic skin inflammation was assessed in mice lacking CD19. In ovalbumin-sensitized skin from CD19-deficient mice, the number of eosinophils and CD4(+) T cells was reduced, and both epidermal and dermal thickening were decreased. Following in vitro stimulation with ovalbumin, CD19 deficiency significantly reduced the proliferation of CD4(+), but not CD8(+), T cells from spleen and draining lymph nodes. Furthermore, splenocytes and draining lymph node cells from ovalbumin-sensitized CD19-deficient mice secreted significantly less IL-4, IL-13, and IL-17 than ovalbumin-sensitized wild-type mice. These results suggest that CD19 expression in B cells plays a critical role in antigen-specific CD4(+) T-cell proliferation and T helper 2 and 17 responses in a murine model of atopic dermatitis. Furthermore, the present findings may have implications for B-cell-targeted therapies for the treatment of atopic dermatitis.
Collapse
Affiliation(s)
- Koichi Yanaba
- Department of Dermatology, Faculty of Medicine, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Donor-derived regulatory B cells are important for suppression of murine sclerodermatous chronic graft-versus-host disease. Blood 2013; 121:3274-83. [PMID: 23422748 DOI: 10.1182/blood-2012-11-465658] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chronic graft-versus-host disease (cGVHD) is an increasingly frequent cause of morbidity and mortality of allogeneic hematopoietic stem-cell transplantation. Sclerodermatous cGVHD (Scl-cGVHD) is characterized by fibrosis and autoimmune features resembling those of systemic sclerosis (SSc). Transplantation of B10.D2 bone marrow and splenocytes into irradiated BALB/c mice is an established model of human Scl-cGVHD. To examine the role of B cells in Scl-cGVHD, CD19-deficient (CD19(-/-)) mice were used as donors or recipients. CD19(-/-) donors induced more severe Scl-cGVHD than wild-type donors, but use of CD19(-/-) recipients resulted in no significant differences compared with wild-type recipients. Moreover, CD19 deficiency on donor B cells resulted in the expansion of splenic interleukin (IL) -6-producing monocytes/macrophages, cytotoxic CD8(+) T cells, and Th1 cells during the early stage of disease and increased the infiltration of T cells, TGF-β-producing monocytes/macrophages, and Th2 cells into the skin in the later stage of Scl-cGVHD. IL-10-producing regulatory B cells (B10 cells) were not reconstituted by CD19(-/-) donor cells, and early adoptive transfer of B10 cells attenuated the augmented manifestations of CD19(-/-) donor-induced Scl-cGVHD. Therefore, donor-derived B10 cells have a suppressive role in Scl-cGVHD development, warranting future investigation of regulatory B-cell-based therapy for treatment of Scl-cGVHD and SSc.
Collapse
|
46
|
Horikawa M, Weimer ET, DiLillo DJ, Venturi GM, Spolski R, Leonard WJ, Heise MT, Tedder TF. Regulatory B cell (B10 Cell) expansion during Listeria infection governs innate and cellular immune responses in mice. THE JOURNAL OF IMMUNOLOGY 2012; 190:1158-68. [PMID: 23275601 DOI: 10.4049/jimmunol.1201427] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pathogens use numerous methods to subvert host immune responses, including the modulation of host IL-10 production by diverse cell types. However, the B cell sources of IL-10 and their overall influence on innate and cellular immune responses have not been well characterized during infections. Using Listeria as a model pathogen, infection drove the acute expansion of a small subset of regulatory B cells (B10 cells) that potently suppress inflammation and autoimmunity through the production of IL-10. Unexpectedly, spleen bacteria loads were 92-97% lower in B10 cell-deficient CD19(-/-) mice, in mice depleted of mature B cells, and in mice treated with CD22 mAb to preferentially deplete B10 cells before infection. By contrast, the adoptive transfer of wild-type B10 cells reduced bacterial clearance by 38-fold in CD19(-/-) mice through IL-10-dependent pathways. B10 cell depletion using CD22 mAb significantly enhanced macrophage phagocytosis of Listeria and their production of IFN-γ, TNF-α, and NO ex vivo. Accelerated bacteria clearance following B10 cell depletion significantly reduced Ag-specific CD4(+) T cell proliferation and cytokine production, but did not alter CD8(+) T cell responses. B10 cell regulatory function during innate immune responses was nonetheless dependent on cognate interactions with CD4(+) T cells because B10 cells deficient in IL-10, MHC-II, or IL-21R expression did not influence Listeria clearance. Thus, Listeria manipulates immune responses through a strategy of immune evasion that involves the preferential expansion of endogenous B10 cells that regulate the magnitude and duration of both innate and cellular immune responses.
Collapse
Affiliation(s)
- Mayuka Horikawa
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Denney L, Kok WL, Cole SL, Sanderson S, McMichael AJ, Ho LP. Activation of invariant NKT cells in early phase of experimental autoimmune encephalomyelitis results in differentiation of Ly6Chi inflammatory monocyte to M2 macrophages and improved outcome. THE JOURNAL OF IMMUNOLOGY 2012; 189:551-7. [PMID: 22685310 DOI: 10.4049/jimmunol.1103608] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neuropathology in multiple sclerosis is closely linked to presence of macrophages in the CNS. Both M1 (inflammatory) and M2 (alternatively activated, noninflammatory) macrophages are found in the inflamed CNS and thought to differentiate from infiltrating monocytes. It is unclear whether the balance of M1 and M2 macrophages can be altered and whether this affects disease outcome. We show in this article that Ly6C(hi) inflammatory monocytes are the early and dominant infiltrating cells in the CNS during experimental autoimmune encephalomyelitis, a model for the acute phase of multiple sclerosis. Activation of invariant NKT (iNKT) cells reduced the frequency of Ly6C(hi) monocytes and increased the proportion of M2 macrophages in the CNS with associated improvement in neurologic impairment. In contrast, iNKT-deficient mice showed higher numbers of Ly6C(hi) monocytes, reduced M2, and much more severe disease. Adoptive transfer of M2-enriched cells to iNKT-deficient mice markedly improved neurologic impairment. In vitro and in vivo experiments showed that iNKT cells promote differentiation of monocytes to M2 macrophages in an IL-4 and CD1d-dependent process. These findings indicate that infiltrating Ly6C(hi) inflammatory monocytes are early players in acute neuroinflammation and that their frequency and differentiation can be influenced by activation of iNKT cells with resultant improvement in disease outcome.
Collapse
Affiliation(s)
- Laura Denney
- Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | | | | | | | | | | |
Collapse
|
48
|
IL-10–Producing Regulatory B10 Cells Ameliorate Collagen-Induced Arthritis via Suppressing Th17 Cell Generation. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2375-85. [DOI: 10.1016/j.ajpath.2012.03.010] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 02/20/2012] [Accepted: 03/01/2012] [Indexed: 11/17/2022]
|
49
|
Mann MK, Ray A, Basu S, Karp CL, Dittel BN. Pathogenic and regulatory roles for B cells in experimental autoimmune encephalomyelitis. Autoimmunity 2012; 45:388-99. [PMID: 22443691 DOI: 10.3109/08916934.2012.665523] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A dual role of B cells in experimental autoimmune encephalomyelitis (EAE), the animal model of the human autoimmune disease multiple sclerosis (MS), has been established. In the first role, B cells contribute to the pathogenesis of EAE through the production of anti-myelin antibodies that contribute to demyelination. On the contrary, B cells have also been shown to have protective functions in that they play an essential role in the spontaneous recovery from EAE. In this review, we summarize studies conducted in a number of species demonstrating the conditions under which B cells are pathogenic in EAE. We also discuss the phenotype and anti-inflammatory mechanisms of regulatory B cells.
Collapse
Affiliation(s)
- Monica K Mann
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin 53201-2178, USA
| | | | | | | | | |
Collapse
|
50
|
Lee DH, Linker RA. The role of myelin oligodendrocyte glycoprotein in autoimmune demyelination: a target for multiple sclerosis therapy? Expert Opin Ther Targets 2012; 16:451-62. [DOI: 10.1517/14728222.2012.677438] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|