1
|
Bose A, Zakani B, Grecov D. Influence of buffer on colloidal stability, microstructure, and rheology of cellulose nanocrystals in hyaluronic acid suspensions. J Colloid Interface Sci 2025; 678:1194-1211. [PMID: 39298892 DOI: 10.1016/j.jcis.2024.08.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024]
Abstract
Hyaluronic acid (HA) is a natural biopolymer found in various human tissues, while cellulose nanocrystals (CNCs) extracted from pulp fibers have unique rheological properties and biocompatibility. Due to the superior biomechanical properties of CNC and HA, a CNC-based HA suspension may be useful in biomedical applications. While buffers are an essential constituent of any suspension used for biomedical applications to maintain the desired pH level, they can significantly affect the properties of the suspension, including colloidal stability, microstructure, and rheological characteristics. To our knowledge, this is the first study analyzing the influence of buffer solutions on the suspension characteristics of HA/CNC systems, integrating both theoretical and experimental approaches. The results revealed an alignment between predictions of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and results from experiments characterizing a buffer-specific trend in colloidal stability. Suspensions with a higher energy barrier showed higher colloidal stability, with a lower tendency for phase separation and agglomerate formations. The microstructural analysis of CNC tactoids in the suspension revealed the existence of the hedgehog defect when dispersed in different buffer solutions. The defect is predicted to be caused by the pH-dependent protonation and deprotonation of HA. Furthermore, steady shear viscometry showed a microstructural-dependent shear viscosity trend, which, in turn, depends on the buffer solution. The study provides novel insights into the microstructural and bulk properties of HA and CNC suspensions in various buffer solutions. The results highlight the importance of solvent choice in tailoring the properties of the suspension for specific biomedical applications. These findings may be helpful in formulating HA and CNC suspensions for different biomedical applications, including drug delivery systems and viscosupplement injections.
Collapse
Affiliation(s)
- Akshai Bose
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Behzad Zakani
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dana Grecov
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
2
|
Mathew S, Ashraf S, Shorter S, Tozzi G, Koutsikou S, Ovsepian SV. Neurobiological Correlates of Rheumatoid Arthritis and Osteoarthritis: Remodelling and Plasticity of Nociceptive and Autonomic Innervations in Synovial Joints. Neuroscientist 2024:10738584241293049. [PMID: 39668598 DOI: 10.1177/10738584241293049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Swelling, stiffness, and pain in synovial joints are primary hallmarks of osteoarthritis and rheumatoid arthritis. Hyperactivity of nociceptors and excessive release of inflammatory factors and pain mediators play a crucial role, with emerging data suggesting extensive remodelling and plasticity of joint innervations. Herein, we review structural, functional, and molecular alterations in sensory and autonomic axons wiring arthritic joints and revisit mechanisms implicated in the sensitization of nociceptors, leading to chronic pain. Sprouting and reorganization of sensory and autonomic fibers with the invasion of ectopic branches into surrounding inflamed tissues are associated with the upregulation of pain markers. These changes are frequently complemented by a phenotypic switch of sensory and autonomic profiles and activation of silent axons, inferring homeostatic adjustments and reprogramming of innervations. Identifying critical molecular players and neurobiological mechanisms underpinning the rewiring and sensitization of joints is likely to elucidate causatives of neuroinflammation and chronic pain, assisting in finding new therapeutic targets and opportunities for interventions.
Collapse
Affiliation(s)
- Sharon Mathew
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
| | - Sadaf Ashraf
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent, UK
| | - Susan Shorter
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
| | - Gianluca Tozzi
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
| | - Stella Koutsikou
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, Kent, UK
| | - Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, UK
- Faculty of Medicine, Tbilisi State University, Tbilisi, Republic of Georgia
| |
Collapse
|
3
|
Palma C, Piazza S, Visone R, Ringom R, Björklund U, Bermejo Gómez A, Rasponi M, Occhetta P. An Advanced Mechanically Active Osteoarthritis-on-Chip Model to Test Injectable Therapeutic Formulations: The SYN321 Case Study. Adv Healthc Mater 2024; 13:e2401187. [PMID: 39318108 DOI: 10.1002/adhm.202401187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/10/2024] [Indexed: 09/26/2024]
Abstract
Current treatments for osteoarthritis (OA) often fail to address the underlying pathophysiology and may have systemic side effects, particularly associated with long-term use of non-steroidal anti-inflammatory drugs (NSAIDs). Thus, researchers are currently directing their efforts toward innovative polymer-drug combinations, such as mixtures of hyaluronic acid viscoelastic hydrogels and NSAIDs like diclofenac, to ensure sustained release of the NSAID within the joint following intra-articular injection. However, the progress of novel injectable therapies for OA is hindered by the absence of preclinical models that accurately represent the pathology of the disease. The uBeat® MultiCompress platform is here presented as a novel approach for studying anti-OA injectable therapeutics on human mechanically-damaged OA cartilage microtissues, in a physiologically relevant environment. This platform can accommodate injectable therapeutic formulations and is successfully tested with SYN321, a novel diclofenac-sodium hyaluronate conjugate under development as a treatment for knee OA. Results indicate the platform's effectiveness in evaluating therapeutic potential, showing downregulation of inflammatory markers and reduction in matrix degradation in OA cartilage micro-tissues treated with SYN321. The uBeat® MultiCompress platform thus represents a valuable tool for OA research, offering a bridge between traditional in vitro studies and potential clinical applications, with implications for future drug discovery.
Collapse
Affiliation(s)
- Cecilia Palma
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, Milan, 20133, Italy
| | - Stefano Piazza
- BiomimX Srl, Viale Decumano 41, MIND - Milano Innovation District, Milan, 20157, Italy
| | - Roberta Visone
- BiomimX Srl, Viale Decumano 41, MIND - Milano Innovation District, Milan, 20157, Italy
| | - Rune Ringom
- Recipharm OT Chemistry AB, Virdings allé 18, Uppsala, 754 50, Sweden
| | - Ulf Björklund
- UB-consulting AB, Trädgårdsgatan 7A, Uppsala, 753 09, Sweden
| | | | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, Milan, 20133, Italy
| | - Paola Occhetta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, Milan, 20133, Italy
- BiomimX Srl, Viale Decumano 41, MIND - Milano Innovation District, Milan, 20157, Italy
| |
Collapse
|
4
|
Vishwanath K, McClure SR, Bonassar LJ. Heterogeneous distribution of viscosupplements in vivo is correlated to ex vivo frictional properties of equine cartilage. J Biomed Mater Res A 2024; 112:2149-2159. [PMID: 38923105 DOI: 10.1002/jbm.a.37766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Intra-articular injections of hyaluronic acid (HA) are the cornerstone of osteoarthritis (OA) treatments. However, the mechanism of action and efficacy of HA viscosupplementation are debated. As such, there has been recent interest in developing synthetic viscosupplements. Recently, a synthetic 4 wt% polyacrylamide (pAAm) hydrogel was shown to effectively lubricate and bind to the surface of cartilage in vitro. However, its ability to localize to cartilage and alter the tribological properties of the tissue in a live articulating large animal joint is not known. The goal of this study was to quantify the distribution and extent of localization of pAAm in the equine metacarpophalangeal or metatarsophalangeal joint (fetlock joint), and determine whether preferential localization of pAAm influences the tribological properties of the tissue. An established planar fluorescence imaging technique was used to visualize and quantify the distribution of fluorescently labeled pAAm within the joint. While the pAAm hydrogel was present on all surfaces, it was not uniformly distributed, with more material present near the site of the injection. The lubricating ability of the cartilage in the joint was then assessed using a custom tribometer across two orders of magnitude of sliding speed in healthy synovial fluid. Cartilage regions with a greater coverage of pAAm, that is, higher fluorescent intensities, exhibited friction coefficients nearly 2-fold lower than regions with lesser pAAm (Rrm = -0.59, p < 0.001). Collectively, the findings from this study indicate that intra-articular viscosupplement injections are not evenly distributed inside a joint, and the tribological outcomes of these materials is strongly determined by the ability of the material to localize to the articulating surfaces in the joint.
Collapse
Affiliation(s)
- Karan Vishwanath
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York, USA
| | | | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
5
|
Henriques J, Berenbaum F, Mobasheri A. Obesity-induced fibrosis in osteoarthritis: Pathogenesis, consequences and novel therapeutic opportunities. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100511. [PMID: 39483440 PMCID: PMC11525450 DOI: 10.1016/j.ocarto.2024.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 11/03/2024] Open
Abstract
Osteoarthritis (OA) is a significant global burden, affecting more than half a billion people across the world. It is characterized by degeneration and loss of articular cartilage, synovial inflammation, and subchondral bone sclerosis, leading to pain and functional impairment. After age, obesity is a major modifiable risk factor for OA, and it has recently been identified as a chronic disease by the World Health Organization (WHO). Obesity is associated with high morbidity and mortality, imposing a significant cost on individuals and society. Obesity increases the risk of knee OA through increased joint loading, altered body composition, and elevated pro-inflammatory adipokines in the systemic circulation. Moreover, obesity triggers fibrotic processes in different organs and tissues, including those involved in OA. Fibrosis in OA refers to the abnormal accumulation of fibrous tissue within and around the joints. It can be driven by increased adiposity, low-grade inflammation, oxidative stress, and metabolic alterations. However, the clinical outcomes of fibrosis in OA are unclear. This review focuses on the link between obesity and OA, explores the mechanism of obesity-driven fibrosis, and examines potential therapeutic opportunities for targeting fibrotic processes in OA.
Collapse
Affiliation(s)
- João Henriques
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Francis Berenbaum
- Sorbonne University, Paris, France
- Department of Rheumatology, Saint-Antoine Hospital, Assistance Publique-Hopitaux de Paris, Paris, France
- INSERM CRSA, Paris, France
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
| |
Collapse
|
6
|
Mantry S, Behera A, Pradhan S, Mohanty L, Kumari R, Singh A, Yadav MK. Polysaccharide-based chondroitin sulfate macromolecule loaded hydrogel/scaffolds in wound healing- A comprehensive review on possibilities, research gaps, and safety assessment. Int J Biol Macromol 2024; 279:135410. [PMID: 39245102 DOI: 10.1016/j.ijbiomac.2024.135410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Wound healing is an intricate multifactorial process that may alter the extent of scarring left by the wound. A substantial portion of the global population is impacted by non-healing wounds, imposing significant financial burdens on the healthcare system. The conventional dosage forms fail to improve the condition, especially in the presence of other morbidities. Thus, there is a pressing requirement for a type of wound dressing that can safeguard the wound site and facilitate skin regeneration, ultimately expediting the healing process. In this context, Chondroitin sulfate (CS), a sulfated glycosaminoglycan material, is capable of hydrating tissues and further promoting the healing. Thus, this comprehensive review article delves into the recent advancement of CS-based hydrogel/scaffolds for wound healing management. The article initially summarizes the various physicochemical characteristics and sources of CS, followed by a brief understanding of the importance of hydrogel and CS in tissue regeneration processes. This is the first instance of such a comprehensive summarization of CS-based hydrogel/scaffolds in wound healing, focusing more on the mechanistic wound healing process, furnishing the recent innovations and toxicity profile. This contemporary review provides a profound acquaintance of strategies for contemporary challenges and future direction in CS-based hydrogel/scaffolds for wound healing.
Collapse
Affiliation(s)
- Shubhrajit Mantry
- Department of Pharmaceutics, Department of Pharmacy, Sarala Birla University, Birla Knowledge City, Ranchi 835103, Jharkhand, India.
| | - Ashutosh Behera
- Department of Pharmaceutical Quality Assurance, Department of Pharmacy, Sarala Birla University, Birla Knowledge City, Ranchi 835103, Jharkhand, India; Department of Pharmaceutical Quality Assurance, Florence College of Pharmacy, IRBA, Ranchi, 835103, Jharkhand, India
| | - Shaktiprasad Pradhan
- Department of Pharmaceutical Chemistry, Koustuv Research Institute of Medical Science (KRIMS), Koustuv Technical Campus, Patia, Bhubaneswar, Odisha 751024, India
| | - Lalatendu Mohanty
- Department of Pharmacology, Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Tehri Garhwal, Uttarakhand 24916, India
| | - Ragni Kumari
- School of Pharmacy, LNCT University, Bhopal 462022, Madhya Pradesh, India
| | - Ankita Singh
- Department of Pharmacy, Faculty of Medical Science & Research (FMSR), Sai Nath University, Ranchi, Jharkhand 835219, India
| | - Mahesh Kumar Yadav
- Department of Pharmacy, Faculty of Medical Science & Research (FMSR), Sai Nath University, Ranchi, Jharkhand 835219, India
| |
Collapse
|
7
|
Mao S, Xiao K, Xu H, Wang Y, Guo X. Clinical Outcomes of Exercise Rehabilitation for Degenerative Tibial Meniscal Tears: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Pain Res 2024; 17:3431-3448. [PMID: 39469336 PMCID: PMC11514702 DOI: 10.2147/jpr.s467423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024] Open
Abstract
Objective This study aims to comprehensively evaluate the effectiveness of exercise rehabilitation therapy for patients with Degenerative Meniscal Lesions of the Tibia (DMLT), providing more effective and safer treatment options for DMLT patients and offering more reliable evidence-based medical recommendations. Methods Adhering to the PRISMA guidelines, this research conducted a literature search through databases such as PubMed, Web of Science, EMBASE, EBSCOhost, and Cochrane, with the search cut-off date being January 2024. Following the PICOS principles, a comprehensive search was conducted. Two researchers independently screened the literature and extracted data. Using R software, effect size analyses were conducted on indicators such as pain, knee joint function, lower limb muscle strength, and physical function in DMLT patients, with the significance level set at P<0.05, aiming to comprehensively assess the impact of exercise therapy on the rehabilitation outcomes for DMLT patients. Results The study included 12 randomized controlled trials, encompassing 1336 DMLT patients. Based on the quality assessment using the modified Jadad scale, the overall quality of the included studies was determined to be moderate.The meta-analysis showed that exercise therapy significantly reduced pain (WMD=-5.50, P<0.05), improved lower limb muscle strength (SMD=0.05, P<0.05), and enhanced physical function (SMD=0.65, P<0.05). Subgroup analyses revealed that, compared to surgery alone, exercise therapy combined with surgery had a significant effect on improving muscle strength and physical function. Functional training and home-based exercises showed more pronounced effects on specific indicators. The study results indicate that exercise therapy alone has limited effectiveness in improving knee joint function, and combining exercise with surgery does not show a significant advantage (P > 0.05). Additionally, subgroup analysis revealed no significant impact of intervention duration, exercise type, or patient age on functional improvement. Conclusion Exercise therapy has shown potential in alleviating pain, enhancing lower limb muscle strength, and improving mobility in patients with degenerative meniscal lesions of the tibia (DMLT). Functional training and varied rehabilitation exercises may provide effective pathways for long-term recovery in these patients. Registration This study has been registered in a prospective registry platform with the registration number: CRD42024518643.
Collapse
Affiliation(s)
- Sujie Mao
- Graduate Department, Harbin Sport University, Harbin, Heilongjiang, People’s Republic of China
| | - Kaiwen Xiao
- School of Sports Industry and Leisure, Nanjing Sport Institute, Nanjing, Jiangsu, People’s Republic of China
| | - Hong Xu
- College of Sports and Health, Sangmyung University, Seoul, South Korea
| | - YanAn Wang
- Academic Affairs Office, Jiangsu Police College, Nanjing, Jiangsu, People’s Republic of China
| | - Xiujin Guo
- School of Sports Industry and Leisure, Nanjing Sport Institute, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
8
|
Cen X, Deng J, Pan X, Wei R, Huang Z, Tang R, Lu S, Wang R, Zhao Z, Huang X. An "All-in-One" Strategy to Reconstruct Temporomandibular Joint Osteoarthritic Microenvironment Using γ-Fe 2O 3@TA@ALN Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403561. [PMID: 39344168 DOI: 10.1002/smll.202403561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/18/2024] [Indexed: 10/01/2024]
Abstract
Current clinical strategies for the treatment of temporomandibular joint osteoarthritis (TMJOA) primarily target cartilage biology, overlooking the synergetic effect of various cells and inorganic components in shaping the arthritic microenvironment, thereby impeding the effectiveness of existing therapeutic options for TMJOA. Here, γ-Fe2O3@TA@ALN magnetic nanoparticles (γ-Fe2O3@TA@ALN MNPs) composed of γ-Fe2O3, tannic acid (TA), and alendronate sodium (ALN) are engineered to reconstruct the osteoarthritic microenvironment and mitigate TMJOA progression. γ-Fe2O3@TA@ALN MNPs can promote chondrocytes' proliferation, facilitate chondrogenesis and anisotropic organization, enhance lubrication and reduce cartilage wear, and encourage cell movement. Magnetic-responsive γ-Fe2O3@TA@ALN MNPs also exhibit pH sensitivity, which undergoes decomposition within acidic environment to release ALN on demand. Under a 0.2 T static magnetic field, γ-Fe2O3@TA@ALN MNPs accelerate the synthesis of cartilage-specific proteins, and suppress catabolic-related genes expression and reactive oxygen species generation, affording additional protection to TMJ cartilage. In TMJOA mouse models, articular injection of γ-Fe2O3@TA@ALN MNPs effectively alleviates cartilage degeneration and subchondral bone loss in short and long terms, offering promising avenues for the development of therapeutic interventions for TMJOA.
Collapse
Affiliation(s)
- Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Junjie Deng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, 315300, P. R. China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, 325035, P. R. China
| | - Xuefeng Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rufang Wei
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, 315300, P. R. China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, Zhejiang, 325035, P. R. China
| | - Zhimao Huang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, 315300, P. R. China
| | - Rong Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shengkai Lu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rong Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, Zhejiang, 315300, P. R. China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
9
|
Fragassi A, Greco A, Palomba R. Lubricant Strategies in Osteoarthritis Treatment: Transitioning from Natural Lubricants to Drug Delivery Particles with Lubricant Properties. J Xenobiot 2024; 14:1268-1292. [PMID: 39311151 PMCID: PMC11417909 DOI: 10.3390/jox14030072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Osteoarthritis (OA) is a debilitating joint disease characterized by cartilage degradation, leading to pain and functional impairment. A key contributor to OA progression is the decline in cartilage lubrication. In physiological conditions, synovial fluid (SF) macromolecules like hyaluronic acid (HA), phospholipids, and lubricin play a crucial role in the boundary lubrication of articular cartilage. In early OA, cartilage damage triggers inflammation, altering SF composition and compromising the lubrication layer. This increases friction between mating interfaces, worsening cartilage degradation and local inflammation. Therefore, early-stage restoration of lubrication (by injecting in the joint different classes of compounds and formulations) could alleviate, and potentially reverse, OA progression. In the light of this, a broad variety of lubricants have been investigated for their ability to reduce friction in OA joints and promote cartilage repair in clinical and preclinical studies. This review examines recent advancements in lubricant-based therapy for OA, focusing on natural, bioinspired, and alternative products. Starting from the currently applied therapy, mainly based on natural lubricants as HA, we will present their modified versions, either in hydrogel form or with specific biomimetic moieties with the aim of reducing their clearance from the joint and of enhancing their lubricating properties. Finally, the most advanced and recent formulation, represented by alternative strategies, will be proposed. Particular emphasis will be placed on those ones involving new types of hydrogels, microparticles, nanoparticles, and liposomes, which are currently under investigation in preclinical studies. The potential application of particles and liposomes could foster the transition from natural lubricants to Drug Delivery Systems (DDSs) with lubricant features; transition which could provide more complete OA treatments, by simultaneously providing lubrication replacement and sustained release of different payloads and active agents directly at the joint level. Within each category, we will examine relevant preclinical studies, highlighting challenges and future prospects.
Collapse
Affiliation(s)
- Agnese Fragassi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Antonietta Greco
- Department of Medicine and Surgery, NanoMedicine Center (NANOMIB), University of Milano-Bicocca, Via Follereau 3, 20854 Vedano al Lambro, Italy
| | - Roberto Palomba
- Laboratory of Nanotechnology for Precision Medicine, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
10
|
Roseti L, Borciani G, Amore E, Grigolo B. Cannabinoids in the Inflamed Synovium Can Be a Target for the Treatment of Rheumatic Diseases. Int J Mol Sci 2024; 25:9356. [PMID: 39273304 PMCID: PMC11394920 DOI: 10.3390/ijms25179356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The management of rheumatic diseases has noticeably changed in recent years with the development of targeted therapeutic agents, namely, biological disease-modifying antirheumatic drugs. Identifying essential signaling pathways and factors crucial for the development and progression of these diseases remains a significant challenge. Therapy could be used to delay the onset or reduce harm. The endocannabinoid system's presence within the synovium can be identified as a suggested target for therapeutic interventions due to its role in modulating pain, inflammation, and joint metabolism. This review brings together the most pertinent information concerning the actions of the endocannabinoid system present in inflamed synovial tissue and its interaction with phytocannabinoids and synthetic cannabinoids, which can be used from a therapeutic perspective to minimize the inflammatory and pain processes typical of osteoarthritis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Livia Roseti
- RAMSES Laboratory, Rizzoli RIT-Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | - Giorgia Borciani
- RAMSES Laboratory, Rizzoli RIT-Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | - Emanuela Amore
- RAMSES Laboratory, Rizzoli RIT-Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | - Brunella Grigolo
- RAMSES Laboratory, Rizzoli RIT-Research, Innovation & Technology Department, Istituto di Ricerca Codivilla Putti, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| |
Collapse
|
11
|
Ayala S, Matan SO, Delco ML, Fortier LA, Cohen I, Bonassar LJ. Degradation of lubricating molecules in synovial fluid alters chondrocyte sensitivity to shear strain. J Orthop Res 2024. [PMID: 39182184 DOI: 10.1002/jor.25960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/01/2024] [Accepted: 08/03/2024] [Indexed: 08/27/2024]
Abstract
Articular joints facilitate motion and transfer loads to underlying bone through a combination of cartilage tissue and synovial fluid, which together generate a low-friction contact surface. Traumatic injury delivered to cartilage and the surrounding joint capsule causes secretion of proinflammatory cytokines by chondrocytes and the synovium, triggering cartilage matrix breakdown and impairing the ability of synovial fluid to lubricate the joint. Once these inflammatory processes become chronic, posttraumatic osteoarthritis (PTOA) development begins. However, the exact mechanism by which negative alterations to synovial fluid leads to PTOA pathogenesis is not fully understood. We hypothesize that removing the lubricating macromolecules from synovial fluid alters the relationship between mechanical loads and subsequent chondrocyte behavior in injured cartilage. To test this hypothesis, we utilized an ex vivo model of PTOA that involves subjecting cartilage explants to a single rapid impact followed by continuous articulation within a lubricating bath of either healthy synovial fluid, phosphate-buffered saline (PBS), synovial fluid treated with hyaluronidase, or synovial fluid treated with trypsin. These treatments degrade the main macromolecules attributed with providing synovial fluid with its lubricating properties; hyaluronic acid and lubricin. Explants were then bisected and fluorescently stained to assess global and depth-dependent cell death, caspase activity, and mitochondrial depolarization. Explants were tested via confocal elastography to determine the local shear strain profile generated in each lubricant. These results show that degrading hyaluronic acid or lubricin in synovial fluid significantly increases middle zone chondrocyte damage and shear strain loading magnitudes, while also altering chondrocyte sensitivity to loading.
Collapse
Affiliation(s)
- Steven Ayala
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Salman O Matan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Michelle L Delco
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Lisa A Fortier
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, New York, USA
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
12
|
Della Morte E, Giannasi C, Valenza A, Cadelano F, Aldegheri A, Zagra L, Niada S, Brini AT. Connexin 43 Modulation in Human Chondrocytes, Osteoblasts and Cartilage Explants: Implications for Inflammatory Joint Disorders. Int J Mol Sci 2024; 25:8547. [PMID: 39126115 PMCID: PMC11313680 DOI: 10.3390/ijms25158547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Connexin 43 (Cx43) is crucial for the development and homeostasis of the musculoskeletal system, where it plays multifaceted roles, including intercellular communication, transcriptional regulation and influencing osteogenesis and chondrogenesis. Here, we investigated Cx43 modulation mediated by inflammatory stimuli involved in osteoarthritis, i.e., 10 ng/mL Tumor Necrosis Factor alpha (TNFα) and/or 1 ng/mL Interleukin-1 beta (IL-1β), in primary chondrocytes (CH) and osteoblasts (OB). Additionally, we explored the impact of synovial fluids from osteoarthritis patients in CH and cartilage explants, providing a more physio-pathological context. The effect of TNFα on Cx43 expression in cartilage explants was also assessed. TNFα downregulated Cx43 levels both in CH and OB (-73% and -32%, respectively), while IL-1β showed inconclusive effects. The reduction in Cx43 levels was associated with a significant downregulation of the coding gene GJA1 expression in OB only (-65%). The engagement of proteasome in TNFα-induced effects, already known in CH, was also observed in OB. TNFα treatment significantly decreased Cx43 expression also in cartilage explants. Of note, Cx43 expression was halved by synovial fluid in both CH and cartilage explants. This study unveils the regulation of Cx43 in diverse musculoskeletal cell types under various stimuli and in different contexts, providing insights into its modulation in inflammatory joint disorders.
Collapse
Affiliation(s)
- Elena Della Morte
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
| | - Chiara Giannasi
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20129 Milan, Italy
| | - Alice Valenza
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
| | - Francesca Cadelano
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20129 Milan, Italy
| | - Alessandro Aldegheri
- Hip Department, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (A.A.); (L.Z.)
| | - Luigi Zagra
- Hip Department, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (A.A.); (L.Z.)
| | - Stefania Niada
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
| | - Anna Teresa Brini
- Laboratory of Biotechnological Applications, IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy; (E.D.M.); (C.G.); (A.V.); (F.C.); (A.T.B.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20129 Milan, Italy
| |
Collapse
|
13
|
Zhang H, Zhou Z, Zhang F, Wan C. Hydrogel-Based 3D Bioprinting Technology for Articular Cartilage Regenerative Engineering. Gels 2024; 10:430. [PMID: 39057453 PMCID: PMC11276275 DOI: 10.3390/gels10070430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/09/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Articular cartilage is an avascular tissue with very limited capacity of self-regeneration. Trauma or injury-related defects, inflammation, or aging in articular cartilage can induce progressive degenerative joint diseases such as osteoarthritis. There are significant clinical demands for the development of effective therapeutic approaches to promote articular cartilage repair or regeneration. The current treatment modalities used for the repair of cartilage lesions mainly include cell-based therapy, small molecules, surgical approaches, and tissue engineering. However, these approaches remain unsatisfactory. With the advent of three-dimensional (3D) bioprinting technology, tissue engineering provides an opportunity to repair articular cartilage defects or degeneration through the construction of organized, living structures composed of biomaterials, chondrogenic cells, and bioactive factors. The bioprinted cartilage-like structures can mimic native articular cartilage, as opposed to traditional approaches, by allowing excellent control of chondrogenic cell distribution and the modulation of biomechanical and biochemical properties with high precision. This review focuses on various hydrogels, including natural and synthetic hydrogels, and their current developments as bioinks in 3D bioprinting for cartilage tissue engineering. In addition, the challenges and prospects of these hydrogels in cartilage tissue engineering applications are also discussed.
Collapse
Affiliation(s)
- Hongji Zhang
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.Z.); (Z.Z.); (F.Z.)
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine (Shenzhen Base), Ministry of Education, School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Zheyuan Zhou
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.Z.); (Z.Z.); (F.Z.)
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine (Shenzhen Base), Ministry of Education, School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Fengjie Zhang
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.Z.); (Z.Z.); (F.Z.)
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine (Shenzhen Base), Ministry of Education, School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Chao Wan
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.Z.); (Z.Z.); (F.Z.)
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine (Shenzhen Base), Ministry of Education, School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
14
|
Wójcik-Pastuszka D, Frąk A, Musiał W. Influence of the Acceptor Fluid on the Bupivacaine Release from the Prospective Intra-Articular Methylcellulose Hydrogel. Pharmaceutics 2024; 16:867. [PMID: 39065564 PMCID: PMC11279645 DOI: 10.3390/pharmaceutics16070867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Injections are one way of delivering drugs directly to the joint capsule. Employing this possibility, local anesthetic, such as bupivacaine (Bu), in the form of the suspension can be administered. The aim of this work was to propose a methylcellulose-based hydrogel-incorporated bupivacaine for intra-articular injections and to study the release kinetics of the drug from the hydrogel to different acceptor media, reflecting the synovial fluid of a healthy joint and the synovial fluid of an inflamed joint. The drug release studies were performed employing the flow apparatus. The drug was released to four different acceptor fluids: phosphate buffer pH = 7.4 (PBS7.4), phosphate buffer pH = 6.8 (PBS6.8), phosphate buffer pH = 7.4 with the high-molecular-weight sodium hyaluronate (PBS7.4H), and phosphate buffer pH = 6.8 with the low-molecular-weight sodium hyaluronate (PBS6.8L). The investigation was carried out at the temperature of 37 °C. The absorbance of the Bu released was measured at the wavelength of 262 nm every 2 min for 24 h. The release profiles of Bu to the acceptor media PBS7.4, PBS6.8, PBS7.4H, and PBS6.8L were described best by the first-order kinetics and the second-order equation. According to these models, the release rate constants were the highest when Bu was released to the fluid PBS7.4 and were k1 = (7.20 ± 0.01) × 10-5 min-1 and k2 = (3.00 ± 0.04) × 10-6 mg-1 × min-1, respectively. The relative viscosity of the acceptor medium, its pH, and the addition of high-molecular-weight or low-molecular-weight sodium hyaluronate (HAH or HAL) to the acceptor fluid influenced the drug dissolution. The release of Bu into the medium reflecting healthy synovial fluid takes a different pattern from its release into the fluid of an inflamed joint.
Collapse
Affiliation(s)
| | | | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy, Wroclaw Medical University, ul. Borowska 211A, 55-556 Wrocław, Poland; (D.W.-P.); (A.F.)
| |
Collapse
|
15
|
Segarra-Queralt M, Galofré M, Tio L, Monfort J, Monllau JC, Piella G, Noailly J. Characterization of clinical data for patient stratification in moderate osteoarthritis with support vector machines, regulatory network models, and verification against osteoarthritis Initiative data. Sci Rep 2024; 14:11797. [PMID: 38782951 PMCID: PMC11116450 DOI: 10.1038/s41598-024-62212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Knee osteoarthritis (OA) diagnosis is based on symptoms, assessed through questionnaires such as the WOMAC. However, the inconsistency of pain recording and the discrepancy between joint phenotype and symptoms highlight the need for objective biomarkers in knee OA diagnosis. To this end, we study relationships among clinical and molecular data in a cohort of women (n = 51) with Kellgren-Lawrence grade 2-3 knee OA through a Support Vector Machine (SVM) and a regulation network model. Clinical descriptors (i.e., pain catastrophism, depression, functionality, joint pain, rigidity, sensitization and synovitis) are used to classify patients. A Youden's test is performed for each classifier to determine optimal binarization thresholds for the descriptors. Thresholds are tested against patient stratification according to baseline WOMAC data from the Osteoarthritis Initiative, and the mean accuracy is 0.97. For our cohort, the data used as SVM inputs are knee OA descriptors, synovial fluid proteomic measurements (n = 25), and transcription factor activation obtained from regulatory network model stimulated with the synovial fluid measurements. The relative weights after classification reflect input importance. The performance of each classifier is evaluated through ROC-AUC analysis. The best classifier with clinical data is pain catastrophism (AUC = 0.9), highly influenced by funcionality and pain sensetization, suggesting that kinesophobia is involved in pain perception. With synovial fluid proteins used as input, leptin strongly influences every classifier, suggesting the importance of low-grade inflammation. When transcription factors are used, the mean AUC is limited to 0.608, which can be related to the pleomorphic behaviour of osteoarthritic chondrocytes. Nevertheless, funcionality has an AUC of 0.7 with a decisive importance of FOXO downregulation. Though larger and longitudinal cohorts are needed, this unique combination of SVM and regulatory network model shall help to stratify knee OA patients more objectively.
Collapse
Affiliation(s)
- Maria Segarra-Queralt
- BCN MedTech, Department of Engineering, Universitat Pompeu Fabra, 08018, Barcelona, Spain
| | - Mar Galofré
- BCN MedTech, Department of Engineering, Universitat Pompeu Fabra, 08018, Barcelona, Spain
| | - Laura Tio
- IMIM (Hospital del Mar Medical Research Institute), Hospital del Mar, 08003, Barcelona, Spain
| | - Jordi Monfort
- IMIM (Hospital del Mar Medical Research Institute), Hospital del Mar, 08003, Barcelona, Spain
- Rheumatology Department, Hospital del Mar, 08003, Barcelona, Spain
| | - Joan Carlos Monllau
- Rheumatology Department, Hospital del Mar, 08003, Barcelona, Spain
- Orthopedic Surgery and Traumatology Department, Hospital del Mar, 08003, Barcelona, Spain
| | - Gemma Piella
- BCN MedTech, Department of Engineering, Universitat Pompeu Fabra, 08018, Barcelona, Spain
| | - Jérôme Noailly
- BCN MedTech, Department of Engineering, Universitat Pompeu Fabra, 08018, Barcelona, Spain.
| |
Collapse
|
16
|
Vijayan S, Margesan T. Arthritis alleviation: unveiling the potential in Abrus precatorius macerated oil. Future Sci OA 2024; 10:FSO981. [PMID: 38817355 PMCID: PMC11137774 DOI: 10.2144/fsoa-2023-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/23/2024] [Indexed: 06/01/2024] Open
Abstract
Aim: This study endeavors to explore the anti-arthritic effects of macerated oil derived from the plant's aerial parts. Methods: The macerated oil was prepared using maceration in coconut oil, and its phytochemical composition was elucidated using GC-MS. To assess its anti-arthritic activity, in-vitro studies were conducted using various assays. Results & conclusion: The macerated oil showed better antioxidant and anti-arthritic potential by in-vitro investigations. Molecular docking studies elucidated potential binding interactions between specific constituents of the oil and critical molecular targets implicated in the pathogenesis of arthritis, further substantiating its therapeutic potential. The results demonstrated that Abrus precatorius macerated oil could ameliorate arthritis severity in a dose-dependent manner.
Collapse
Affiliation(s)
- Sukanya Vijayan
- Department of Pharmacognosy, SRM College of Pharmacy, SRM Institute of Science & Technology, Kattankulathur, 603203, Chengalpattu, Tamil Nadu, India
| | - Thirumal Margesan
- Department of Pharmacognosy, SRM College of Pharmacy, SRM Institute of Science & Technology, Kattankulathur, 603203, Chengalpattu, Tamil Nadu, India
| |
Collapse
|
17
|
Roda A, Paiva A, Rita C Duarte A. A Low Transition Temperature Mixture-based viscosupplementation complemented with celecoxib for osteoarthritis treatment. Int J Pharm 2024; 656:124088. [PMID: 38582102 DOI: 10.1016/j.ijpharm.2024.124088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Viscosupplementation consists of hyaluronic acid (HA) intra-articular injections, commonly applied for osteoarthritis treatment while non-steroidal anti-inflammatory drugs (NSAIDs) are widely administered for pain relief. Here, HA and a NSAID (celecoxib) were combined in a formulation based on a low transition temperature mixture (LTTM) of glycerol:sorbitol, reported to increase celecoxib's solubility, thus rendering a potential alternative viscosupplement envisioning enhanced therapeutic efficiency. The inclusion of glucosamine, a cartilage precursor, was also studied. The developed formulations were assessed in terms of rheological properties, crucial for viscosupplementation: the parameters of crossover frequency, storage (G') and loss (G'') moduli, zero-shear-rate viscosity, stable viscosity across temperatures, and shear thinning behaviour, support viscoelastic properties suitable for viscosupplementation. Additionally, the gels biocompatibility was confirmed in chondrogenic cells (ATDC5). Regarding drug release studies, high and low clearance scenarios demonstrated an increased celecoxib (CEX) release from the gel (6 to 73-fold), compared to dissolution in PBS. The low clearance setup presented the highest and most sustained CEX release, highlighting the importance of the gel structure in CEX delivery. NMR stability studies over time demonstrated the LTTM+HA+CEX (GHA+CEX) gel as viable candidate for further in vivo evaluation. In sum, the features of GHA+CEX support its potential use as alternative viscosupplement.
Collapse
Affiliation(s)
- Ana Roda
- LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, Caparica, 2829-516, Portugal.
| | - Alexandre Paiva
- LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, Caparica, 2829-516, Portugal
| | - Ana Rita C Duarte
- LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, Caparica, 2829-516, Portugal.
| |
Collapse
|
18
|
Carton F, Malatesta M. Nanotechnological Research for Regenerative Medicine: The Role of Hyaluronic Acid. Int J Mol Sci 2024; 25:3975. [PMID: 38612784 PMCID: PMC11012323 DOI: 10.3390/ijms25073975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/30/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Hyaluronic acid (HA) is a linear, anionic, non-sulfated glycosaminoglycan occurring in almost all body tissues and fluids of vertebrates including humans. It is a main component of the extracellular matrix and, thanks to its high water-holding capacity, plays a major role in tissue hydration and osmotic pressure maintenance, but it is also involved in cell proliferation, differentiation and migration, inflammation, immunomodulation, and angiogenesis. Based on multiple physiological effects on tissue repair and reconstruction processes, HA has found extensive application in regenerative medicine. In recent years, nanotechnological research has been applied to HA in order to improve its regenerative potential, developing nanomedical formulations containing HA as the main component of multifunctional hydrogels systems, or as core component or coating/functionalizing element of nanoconstructs. This review offers an overview of the various uses of HA in regenerative medicine aimed at designing innovative nanostructured devices to be applied in various fields such as orthopedics, dermatology, and neurology.
Collapse
Affiliation(s)
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy;
| |
Collapse
|
19
|
Minoretti P, Santiago Sáez A, Liaño Riera M, Gómez Serrano M, García Martín Á. Efficacy and Safety of Two Chondroprotective Supplements in Patients With Knee Osteoarthritis: A Randomized, Single-Blind, Pilot Study. Cureus 2024; 16:e57579. [PMID: 38707049 PMCID: PMC11069075 DOI: 10.7759/cureus.57579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 05/07/2024] Open
Abstract
Background: Hyaluronic acid (HA), glucosamine (Glc), and chondroitin sulfate (CS) are key ingredients commonly incorporated into dietary chondroprotective supplements for the management of osteoarthritis (OA). Despite their widespread use, there is a paucity of published data regarding their efficacy and safety, necessitating rigorous investigation in clinical settings. To address this knowledge gap, we conducted a randomized, single-blind pilot study to evaluate the effects of two commercially available multi-ingredient supplements on patients with mild-to-moderate knee OA. Methods: A total of 51 patients diagnosed with mild-to-moderate knee OA were enrolled in a four-week randomized study and allocated equally (1:1:1 ratio) into three groups: a control group (n = 17) that received no treatment, an HA group (n = 17) given Syalox® 300 Plus (1 tablet/day) containing HA (300 mg) and Boswellia serrata extract (100 mg), and a Glc + CS group (n = 17) given Cartijoint® Forte (1 tablet/day) containing Glc (415 mg), CS (400 mg), and curcuminoids from rhizomes of Curcuma longa L (50 mg).Physicians conducting evaluations were blinded to group assignments, whereas patients were not. All participants underwent assessments of pain relief, functional capacity improvement, and serum adropin levels, an emerging biomarker of knee OA, at baseline and after the four-week intervention period. Results: Both the HA and the Glc + CS groups exhibited improvements at the end of the study relative to baseline, with statistically significant differences (p < 0.05) observed in pain at rest, pain during movement, range of motion, and the overall Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores, including its pain, stiffness, and physical function subscales. Notably, the HA group outperformed the Glc + CS group in the alleviation of pain at rest, pain during movement, and on the WOMAC pain subscale, with all differences being statistically significant (p < 0.05). Additionally, both groups showed a significant elevation in serum adropin levels from baseline (p < 0.05), with the HA group experiencing a more substantial increase when compared to the Glc + CS group (p < 0.05). Both supplements showed a limited number of treatment-emergent adverse events. Conclusion: Oral supplementation with either HA or Glc + CS demonstrated potential benefits for managing symptoms of mild-to-moderate knee OA. Notably, HA supplementation was associated with greater improvements in pain relief and higher elevations in serum adropin levels compared to Glc + CS supplementation. However, larger-scale and longer-term studies are necessary to further evaluate the safety and efficacy of these dietary supplements within the clinical management arsenal for knee OA.
Collapse
Affiliation(s)
| | - Andrés Santiago Sáez
- Legal Medicine, Hospital Clinico San Carlos, Madrid, ESP
- Legal Medicine, Psychiatry, and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Miryam Liaño Riera
- Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Manuel Gómez Serrano
- Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Ángel García Martín
- Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, ESP
| |
Collapse
|
20
|
Zhang F, Zhang J, Wang T. Meta-analysis of minimally invasive arthroscopy with sodium hyaluronate for wound healing of knee osteoarthritis treatment in the elderly. Int Wound J 2024; 21:e14512. [PMID: 38069524 PMCID: PMC10958090 DOI: 10.1111/iwj.14512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 03/23/2024] Open
Abstract
Knee osteoarthritis (KOA) is not merely a medical condition-it is a prevalent and incapacitating ailment that significantly affects the quality of life for millions worldwide, especially as they age. The incidence of KOA increases year by year with increasing age. This study evaluated the therapeutic efficacy of combining arthroscopy with sodium hyaluronate (SH) in the treatment of wound healing of knee osteoarthritis (KOA) in elderly patients, with a focus on wound healing and overall joint function restoration. Randomized controlled trials (RCTs) evaluating the combination of arthroscopy and SH in geriatric KOA patients were identified through a systematic search of the scientific literature utilizing multiple databases and predefined search criteria. Ultimately, twelve investigations were included in the meta-analysis. Using Stata 15.1 software, data extraction and analysis were conducted using both fixed- and random-effects models, and a sensitivity analysis was conducted to assure the validity of the findings. Compared with arthroscopy alone, the combination of arthroscopy and SH significantly improved the efficiency rate, pain management (as measured by the Visual Analogue Scale), knee function (as measured by the Lysholm Knee Scoring Scale) and decreased levels of the pro-inflammatory cytokines IL-1 and IL-6. The meta-analysis revealed minimal heterogeneity between studies, and the sensitivity analysis validated the results' reliability. The incorporation of SH into arthroscopic procedures for elderly patients with KOA provides significant therapeutic benefits, including improved wound healing, reduced inflammation and enhanced joint function overall. These results support the use of this combined approach in the management of KOA in the elderly population and emphasize the need for additional research to optimize treatment protocols and comprehend long-term outcomes.
Collapse
Affiliation(s)
- Fujie Zhang
- Department of Joint SurgeryWeifang People's HospitalWeifangChina
| | - Jinlei Zhang
- Department of Joint SurgeryWeifang People's HospitalWeifangChina
| | - Tengyun Wang
- Department of Joint SurgeryWeifang People's HospitalWeifangChina
| |
Collapse
|
21
|
Fernández-Torres J, Ilizaliturri-Sánchez V, Martínez-Flores K, Lozada-Pérez CA, Espinosa-Morales R, Zamudio-Cuevas Y. An update on the study of synovial fluid in the geriatric patient. REUMATOLOGIA CLINICA 2024; 20:193-198. [PMID: 38644030 DOI: 10.1016/j.reumae.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 04/23/2024]
Abstract
BACKGROUND The characteristics of synovial fluid (SF) in geriatric patients differ from those in younger patients. In Mexico, epidemiologic data on the incidence of different rheumatic diseases in geriatric patients are scarce. OBJECTIVE To describe the physical characteristics of geriatric SF and the prevalence of crystals in knee and other joint aspirates from patients with previously diagnosed joint disease. MATERIALS AND METHODS A retrospective study was performed with a baseline of 517 SF samples between 2011 and 2023. White blood cell count was performed by Neubauer chamber and crystals were identified by polarized light microscopy. Descriptive statistical analysis was performed and prevalence was reported as a percentage. RESULTS The mean age of the adults was 73.5±5.0 years, 54.4% were women and 45.6% were men. The mean SF volume was 6.3±9.5mL in older adults and 15.3±24.9mL in those younger than 65 years. The mean viscosity in older adults was 9.5±4.5mm and the mean leukocyte count was 7352±16,402leukocytes/mm3. Seventy percent of the older adults' SFs were referred to the laboratory for osteoarthritis (OA), with lower proportions for rheumatoid arthritis (RA) (14.6%) and gout (5.1%). Of the crystals observed in the geriatric population, 14.6% corresponded to monosodium urate crystals (CUM) and 18.9% to calcium pyrophosphate crystals (CPP). CONCLUSIONS The characteristics of LS in older adults were smaller volume, increased viscosity, and non-inflammatory. The main diagnoses were OA, RA, and gout. The crystal content of the SF of the geriatric population corresponded mainly to CPP.
Collapse
Affiliation(s)
- Javier Fernández-Torres
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra-Ibarra, Mexico City 14389, Mexico
| | - Víctor Ilizaliturri-Sánchez
- Servicio de Reemplazo Articular Cadera-Rodilla, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra-Ibarra, Mexico City 14389, Mexico
| | - Karina Martínez-Flores
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra-Ibarra, Mexico City 14389, Mexico
| | - Carlos Alberto Lozada-Pérez
- División de Reumatología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra-Ibarra, Mexico City 14389, Mexico
| | - Rolando Espinosa-Morales
- División de Reumatología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra-Ibarra, Mexico City 14389, Mexico
| | - Yessica Zamudio-Cuevas
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra-Ibarra, Mexico City 14389, Mexico.
| |
Collapse
|
22
|
Ruiz-González N, Esporrín-Ubieto D, Hortelao AC, Fraire JC, Bakenecker AC, Guri-Canals M, Cugat R, Carrillo JM, Garcia-Batlletbó M, Laiz P, Patiño T, Sánchez S. Swarms of Enzyme-Powered Nanomotors Enhance the Diffusion of Macromolecules in Viscous Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309387. [PMID: 38200672 DOI: 10.1002/smll.202309387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Indexed: 01/12/2024]
Abstract
Over the past decades, the development of nanoparticles (NPs) to increase the efficiency of clinical treatments has been subject of intense research. Yet, most NPs have been reported to possess low efficacy as their actuation is hindered by biological barriers. For instance, synovial fluid (SF) present in the joints is mainly composed of hyaluronic acid (HA). These viscous media pose a challenge for many applications in nanomedicine, as passive NPs tend to become trapped in complex networks, which reduces their ability to reach the target location. This problem can be addressed by using active NPs (nanomotors, NMs) that are self-propelled by enzymatic reactions, although the development of enzyme-powered NMs, capable of navigating these viscous environments, remains a considerable challenge. Here, the synergistic effects of two NMs troops, namely hyaluronidase NMs (HyaNMs, Troop 1) and urease NMs (UrNMs, Troop 2) are demonstrated. Troop 1 interacts with the SF by reducing its viscosity, thus allowing Troop 2 to swim more easily through the SF. Through their collective motion, Troop 2 increases the diffusion of macromolecules. These results pave the way for more widespread use of enzyme-powered NMs, e.g., for treating joint injuries and improving therapeutic effectiveness compared with traditional methods.
Collapse
Affiliation(s)
- Noelia Ruiz-González
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona, 08028, Spain
| | - David Esporrín-Ubieto
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona, 08028, Spain
| | - Ana C Hortelao
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona, 08028, Spain
| | - Juan C Fraire
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona, 08028, Spain
| | - Anna C Bakenecker
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona, 08028, Spain
| | - Marta Guri-Canals
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona, 08028, Spain
| | - Ramón Cugat
- Mutualidad de Futbolistas - Delegación Catalana, Federación Española de Fútbol, Barcelona, 08010, Spain
- Instituto Cugat, Hospital Quironsalud Barcelona, Spain, Fundación García Cugat, Barcelona, 08023, Spain
| | - José María Carrillo
- Bioregenerative Medicine and Applied Surgery Research Group, Department of Animal Medicine and Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, Spain. García Cugat Foundation CEU-UCH Chair of Medicine and Regenerative Surgery, CEU Cardenal Herrera University, CEU Universities, Valencia, 46115, Spain
| | | | - Patricia Laiz
- Instituto Cugat, Hospital Quironsalud Barcelona, Spain, Fundación García Cugat, Barcelona, 08023, Spain
| | - Tania Patiño
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudies Avancats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
23
|
Segarra-Queralt M, Crump K, Pascuet-Fontanet A, Gantenbein B, Noailly J. The interplay between biochemical mediators and mechanotransduction in chondrocytes: Unravelling the differential responses in primary knee osteoarthritis. Phys Life Rev 2024; 48:205-221. [PMID: 38377727 DOI: 10.1016/j.plrev.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
In primary or idiopathic osteoarthritis (OA), it is unclear which factors trigger the shift of articular chondrocyte activity from pro-anabolic to pro-catabolic. In fact, there is a controversy about the aetiology of primary OA, either mechanical or inflammatory. Chondrocytes are mechanosensitive cells, that integrate mechanical stimuli into cellular responses in a process known as mechanotransduction. Mechanotransduction occurs thanks to the activation of mechanosensors, a set of specialized proteins that convert physical cues into intracellular signalling cascades. Moderate levels of mechanical loads maintain normal tissue function and have anti-inflammatory effects. In contrast, mechanical over- or under-loading might lead to cartilage destruction and increased expression of pro-inflammatory cytokines. Simultaneously, mechanotransduction processes can regulate and be regulated by pro- and anti-inflammatory soluble mediators, both local (cells of the same joint, i.e., the chondrocytes themselves, infiltrating macrophages, fibroblasts or osteoclasts) and systemic (from other tissues, e.g., adipokines). Thus, the complex process of mechanotransduction might be altered in OA, so that cartilage-preserving chondrocytes adopt a different sensitivity to mechanical signals, and mechanic stimuli positively transduced in the healthy cartilage may become deleterious under OA conditions. This review aims to provide an overview of how the biochemical exposome of chondrocytes can alter important mechanotransduction processes in these cells. Four principal mechanosensors, i.e., integrins, Ca2+ channels, primary cilium and Wnt signalling (canonical and non-canonical) were targeted. For each of these mechanosensors, a brief summary of the response to mechanical loads under healthy or OA conditions is followed by a concise overview of published works that focus on the further regulation of the mechanotransduction pathways by biochemical factors. In conclusion, this paper discusses and explores how biological mediators influence the differential behaviour of chondrocytes under mechanical loads in healthy and primary OA.
Collapse
Affiliation(s)
- Maria Segarra-Queralt
- BCN MedTech, Universitat Pompeu Fabra, C/ de la Mercè, 12, Barcelona, 08002, Catalonia, Spain
| | - Katherine Crump
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Murtenstrasse 35, Bern, 3008, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Mittelstrasse 43, Bern, 3012, Bern, Switzerland
| | - Andreu Pascuet-Fontanet
- BCN MedTech, Universitat Pompeu Fabra, C/ de la Mercè, 12, Barcelona, 08002, Catalonia, Spain
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical Faculty, University of Bern, Murtenstrasse 35, Bern, 3008, Bern, Switzerland; Department of Orthopedic Surgery & Traumatology, Inselspital, University of Bern, Freiburgstrasse 18, Bern, 3010, Bern, Switzerland
| | - Jérôme Noailly
- BCN MedTech, Universitat Pompeu Fabra, C/ de la Mercè, 12, Barcelona, 08002, Catalonia, Spain.
| |
Collapse
|
24
|
Onu I, Gherghel R, Nacu I, Cojocaru FD, Verestiuc L, Matei DV, Cascaval D, Serban IL, Iordan DA, Tucaliuc A, Galaction AI. Can Combining Hyaluronic Acid and Physiotherapy in Knee Osteoarthritis Improve the Physicochemical Properties of Synovial Fluid? Biomedicines 2024; 12:449. [PMID: 38398051 PMCID: PMC10886650 DOI: 10.3390/biomedicines12020449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Known as the degenerative disease of the knee with the highest prevalence, knee osteoarthritis (KOA) is characterized by a gradual destructive mechanism that, in severe cases, can provoke the need for total knee substitution. As the disease progresses, various enzymatic, immunological, and inflammatory processes abnormally degrade hyaluronic acid (HA), SF's main component, and affect the concentrations of specific proteins, with the final results seriously endangering synovial fluid (SF)'s rheological and tribological features and characteristics. No effective treatments have been found to stop the progression of KOA, but the injection of HA-based viscoelastic gels has been considered (alone or combined with physiotherapy (PT)) as an alternative to symptomatic therapies. In order to evaluate the effect of viscosupplementation and PT on the characteristics of SF, SF aspirated from groups treated for KOA (HA Kombihylan® and groups that received Kombihylan® and complex PT) was analyzed and compared from analytical, spectrophotometrical, and rheological perspectives. In the patients treated with PT, the SF extracted 6 weeks after viscosupplementation had a superior elastic modulus (G') and viscous moduli (G″), as well as a homogeneous distribution of proteins and polysaccharides. The viscosupplementation fluid improved the bioadhesive properties of the SF, and the use of the viscosupplementation fluid in conjunction with PT was found to be favorable for the distribution of macromolecules and phospholipids, contributing to the lubrication process and the treatment of OA-affected joints.
Collapse
Affiliation(s)
- Ilie Onu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (I.O.); (I.N.); (F.-D.C.); (L.V.); (D.-V.M.); (A.-I.G.)
- Department of Physiotherapy, Micromedica Clinic, 610119 Piatra Neamt, Romania
| | - Robert Gherghel
- Department of Physiotherapy, Micromedica Clinic, 610119 Piatra Neamt, Romania
- Department of Morpho-Functional Sciences II, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| | - Isabella Nacu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (I.O.); (I.N.); (F.-D.C.); (L.V.); (D.-V.M.); (A.-I.G.)
- Petru Poni Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Florina-Daniela Cojocaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (I.O.); (I.N.); (F.-D.C.); (L.V.); (D.-V.M.); (A.-I.G.)
| | - Liliana Verestiuc
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (I.O.); (I.N.); (F.-D.C.); (L.V.); (D.-V.M.); (A.-I.G.)
| | - Daniela-Viorelia Matei
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (I.O.); (I.N.); (F.-D.C.); (L.V.); (D.-V.M.); (A.-I.G.)
| | - Dan Cascaval
- Department of Organic, Biochemical and Food Engineering, Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, Technical University “Gheorghe Asachi”, 700050 Iasi, Romania; (D.C.); (A.T.)
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| | - Daniel Andrei Iordan
- Department of Individual Sports and Kinetotherapy, Faculty of Physical Education and Sport, “Dunarea de Jos” University of Galati, 800008 Galati, Romania
- Center of Physical Therapy and Rehabilitation, “Dunărea de Jos” University of Galati, 800008 Galati, Romania
| | - Alexandra Tucaliuc
- Department of Organic, Biochemical and Food Engineering, Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, Technical University “Gheorghe Asachi”, 700050 Iasi, Romania; (D.C.); (A.T.)
| | - Anca-Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (I.O.); (I.N.); (F.-D.C.); (L.V.); (D.-V.M.); (A.-I.G.)
| |
Collapse
|
25
|
Tomaszewska E, Hułas-Stasiak M, Dobrowolski P, Świątkiewicz M, Muszyński S, Tomczyk-Warunek A, Blicharski T, Donaldson J, Arciszewski MB, Świetlicki M, Puzio I, Bonior J. Does Chronic Pancreatitis in Growing Pigs Lead to Articular Cartilage Degradation and Alterations in Subchondral Bone? Int J Mol Sci 2024; 25:1989. [PMID: 38396667 PMCID: PMC10888541 DOI: 10.3390/ijms25041989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic pancreatitis (CP), a progressive inflammatory disease, poses diagnostic challenges due to its initially asymptomatic nature. While CP's impact on exocrine and endocrine functions is well-recognized, its potential influence on other body systems, particularly in young individuals, remains underexplored. This study investigates the hypothesis that CP in growing pigs leads to alterations in articular cartilage and subchondral bone, potentially contributing to osteoarthritis (OA) development. Utilizing a pig model of cerulein-induced CP, we examined the structural and compositional changes in subchondral bone, articular cartilage, and synovial fluid. Histological analyses, including Picrosirius Red and Safranin-O staining, were employed alongside immuno-histochemistry and Western blotting techniques. Our findings reveal significant changes in the subchondral bone, including reduced bone volume and alterations in collagen fiber composition. Articular cartilage in CP pigs exhibited decreased proteoglycan content and alterations in key proteins such as MMP-13 and TGF-β1, indicative of early cartilage degradation. These changes suggest a link between CP and musculoskeletal alterations, underscoring the need for further research into CP's systemic effects. Our study provides foundational insights into the relationship between CP and skeletal health, potentially guiding future pediatric healthcare strategies for early CP diagnosis and management.
Collapse
Affiliation(s)
- Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Monika Hułas-Stasiak
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland; (M.H.-S.); (P.D.)
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland; (M.H.-S.); (P.D.)
| | - Małgorzata Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 32-083 Balice, Poland;
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Agnieszka Tomczyk-Warunek
- Laboratory of Locomotor System Research, Department of Rehabilitation and Physiotherapy, Medical University in Lublin, 20-090 Lublin, Poland;
| | - Tomasz Blicharski
- Department of Orthopaedics and Rehabilitation, Medical University in Lublin, 20-090 Lublin, Poland;
| | - Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg 2193, South Africa;
| | - Marcin B. Arciszewski
- Department of Animal Anatomy and Histology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Michał Świetlicki
- Department of Applied Physics, Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Iwona Puzio
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Joanna Bonior
- Department of Medical Physiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-501 Cracow, Poland;
| |
Collapse
|
26
|
Mannino F, Irrera N, Pallio G, Bitto A. Steady state plasma and tissue distribution of low molecular weight hyaluronic acid after oral administration in mice. Nat Prod Res 2024; 38:773-780. [PMID: 37081790 DOI: 10.1080/14786419.2023.2197598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/27/2023] [Indexed: 04/22/2023]
Abstract
The oral administration is probably the most used and largely applicable method, even if absorption across the intestinal epithelium is a limiting factor that can invalidate the achievement of a therapy. The aim of this study was to assess the steady state bioavailability of very low molecular weight hyaluronic acid (vLMW-HA) and its distribution in different districts of mice. Adult female C57BL6/J mice (n = 26) were divided in three groups and orally treated for 7 days with: saline solution (SHAM-HA), high dose of vLMW-HA (5 kDa; 500 mg/kg/day; HD-vLMW-HA), and low dose of vLMW-HA (5 kDa; 100 mg/kg/day; LD-vLMW-HA). HA content was quantified in plasma, skin, bladder, gut, rectum, vagina, and eyes with ELISA assay at the end of treatment. HA level significantly increased after treatment with HD-vLMW-HA in all analyzed tissues and plasma. Therefore, vLMW-HA easy absorption and distribution after the oral intake opens new possibilities for future biomedical applications.
Collapse
Affiliation(s)
- Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- SunNutraPharm s.r.l., Spin-Off Company of University of Messina, Messina, Italy
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- SunNutraPharm s.r.l., Spin-Off Company of University of Messina, Messina, Italy
| |
Collapse
|
27
|
Ago Y, Rintz E, Musini KS, Ma Z, Tomatsu S. Molecular Mechanisms in Pathophysiology of Mucopolysaccharidosis and Prospects for Innovative Therapy. Int J Mol Sci 2024; 25:1113. [PMID: 38256186 PMCID: PMC10816168 DOI: 10.3390/ijms25021113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Mucopolysaccharidoses (MPSs) are a group of inborn errors of the metabolism caused by a deficiency in the lysosomal enzymes required to break down molecules called glycosaminoglycans (GAGs). These GAGs accumulate over time in various tissues and disrupt multiple biological systems, including catabolism of other substances, autophagy, and mitochondrial function. These pathological changes ultimately increase oxidative stress and activate innate immunity and inflammation. We have described the pathophysiology of MPS and activated inflammation in this paper, starting with accumulating the primary storage materials, GAGs. At the initial stage of GAG accumulation, affected tissues/cells are reversibly affected but progress irreversibly to: (1) disruption of substrate degradation with pathogenic changes in lysosomal function, (2) cellular dysfunction, secondary/tertiary accumulation (toxins such as GM2 or GM3 ganglioside, etc.), and inflammatory process, and (3) progressive tissue/organ damage and cell death (e.g., skeletal dysplasia, CNS impairment, etc.). For current and future treatment, several potential treatments for MPS that can penetrate the blood-brain barrier and bone have been proposed and/or are in clinical trials, including targeting peptides and molecular Trojan horses such as monoclonal antibodies attached to enzymes via receptor-mediated transport. Gene therapy trials with AAV, ex vivo LV, and Sleeping Beauty transposon system for MPS are proposed and/or underway as innovative therapeutic options. In addition, possible immunomodulatory reagents that can suppress MPS symptoms have been summarized in this review.
Collapse
Affiliation(s)
- Yasuhiko Ago
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland;
| | - Krishna Sai Musini
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Zhengyu Ma
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
| | - Shunji Tomatsu
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1112, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
28
|
Yao L, Cai J, Li J, Xiong Y, Li J. Intra-articular injection of hyaluronic acid after arthroscopic surgery fails to provide additional benefit for symptomatic degenerative arthropathy patients: a systematic review and meta-analysis of randomized controlled trials. EFORT Open Rev 2024; 9:51-59. [PMID: 38193581 PMCID: PMC10823572 DOI: 10.1530/eor-23-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Objective This study aimed to provide the evidence of the role of addition hyaluronic acid immediate after arthroscopy in pain relief and functional recovery. Methods A multiple databases search of the PubMed, the Cochrane Library, and Embase was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria to identify randomized controlled trials that evaluate the effect the hyaluronic acid compared with placebo addition immediately after arthroscopy for degenerative arthropathy. Data related to postoperative pain using the visual analog scale, and functional scores, were extracted and analyzed using the RevMan software. Results A total of five randomized controlled trials were included in this study. All patients showed significant pain relief after surgery at 2 weeks and 2 months, but no statistically significant differences between the hyaluronic group and control group were observed at 2 weeks and 2 months, respectively. This meta-analysis did not find a difference of WOMAC score between the two groups at 2 weeks (MD: 3.07; 95% CI: -0.66 to 6.81; I2 =39%; P = 0.11) and 2 months (MD: 5.47; 95% CI: -0.69 to 11.62; I2 =57%; P = 0.08), respectively. Conclusion For patients with symptomatic degenerative arthropathy, adding hyaluronic acid immediately after arthroscopic surgery did not appear to provide patients with more pain relief and better functional recovery.
Collapse
Affiliation(s)
- Lei Yao
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Orthopedics and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jie Cai
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Junqiao Li
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Orthopedics and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Xiong
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Orthopedics and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Li
- Sports Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Orthopedics and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
29
|
Suneja P, Diwaker P, Ranjan K. Cytomorphologic panorama of giant cell tumour of tendon sheath. Diagn Cytopathol 2023; 51:772-778. [PMID: 37649447 DOI: 10.1002/dc.25220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Giant Cell Tumour of Tendon Sheath (GCTTS) is a slow growing benign soft tissue tumour arising from synovium of tendon sheath or joint. These tumours occur more frequently in upper limbs, especially hands. In the present study, we aimed to evaluate the cytomorphological spectrum of GCTTS. METHODS This retrospective study includes a total of 56 cases of GCTTS diagnosed over a period of 8 years. The clinical and radiological details of these cases were retrieved from the cytopathology records and detailed cytomorphological features were studied and analysed. Histopathological correlation was done in 16/56 cases, where follow-up was available. RESULTS The mean age of patients at the time of presentation was 32 years and were predominantly females (68%). The most common site of GCTTS was fingers (76%), followed by foot, wrist and toes. The most consistent finding on cytology was stromal cells (100%) of polygonal, spindle and plasmacytoid morphology with interspersed multinucleated osteoclastic giant cells (100%), followed by binucleated stromal cells (75%), xanthoma cells (61%) and hemosiderin laden macrophages (52%). Presence of proteinaceous fluid background was also observed in 50% of the cases. CONCLUSION GCTTS can be diagnosed with certainty on FNAC based on characteristic cytomorphological features in an appropriate clinical and radiological setting. FNAC plays a pivotal role in diagnosing GCTTS and differentiating it from other giant cell rich lesions, thus obviating the need of tissue biopsy for diagnosis, which in turn helps the clinician in timely and adequate management of the patient.
Collapse
Affiliation(s)
- Priya Suneja
- Department of Pathology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi University, New Delhi, Delhi, India
| | - Preeti Diwaker
- Department of Pathology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi University, New Delhi, Delhi, India
| | - Karishma Ranjan
- Department of Pathology, University College of Medical Sciences and Guru Teg Bahadur Hospital, Delhi University, New Delhi, Delhi, India
| |
Collapse
|
30
|
Promila L, Joshi A, Khan S, Aggarwal A, Lahiri A. Role of mitochondrial dysfunction in the pathogenesis of rheumatoid arthritis: Looking closely at fibroblast- like synoviocytes. Mitochondrion 2023; 73:62-71. [PMID: 38506094 DOI: 10.1016/j.mito.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/28/2023] [Accepted: 10/28/2023] [Indexed: 03/21/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune, and inflammatory disease that primarily targets the joints, leading to cartilage and bone destruction.Fibroblast-like synoviocytes (FLS) are specialized cells of the synovial lining in the joint that plays a fundamental role in the development of RA. Particularly, FLS of RA patients (RA-FLS) in the joint exhibit specific characteristics like higher invading and immunogenic properties, hyperproliferation, and reduced apoptotic capacity, suggesting a dysfunctional mitochondrial pool in these cells. Mitochondria are emerging as a potential organelle that can decide cellular immunometabolism, invasion properties, and cell death. Accordingly, multiplestudies established that mitochondria are crucial in establishing RA. However, the underlying mechanism of impaired mitochondrial function in RA remains poorly understood. This review will provide an overview of the mitochondrial role in the progression of RA, specifically in the context of FLS biology. We will also outline how mitochondria-centric therapeutics can be achieved that would yield novel avenues of research in pathological mediation and prevention.
Collapse
Affiliation(s)
- Lakra Promila
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anubha Joshi
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shazia Khan
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amita Aggarwal
- Department of Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medicine, Lucknow, India
| | - Amit Lahiri
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
31
|
Tomé I, Alves-Pimenta S, Sargo R, Pereira J, Colaço B, Brancal H, Costa L, Ginja M. Mechanical osteoarthritis of the hip in a one medicine concept: a narrative review. BMC Vet Res 2023; 19:222. [PMID: 37875898 PMCID: PMC10599070 DOI: 10.1186/s12917-023-03777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
Human and veterinary medicine have historically presented many medical areas of potential synergy and convergence. Mechanical osteoarthritis (MOA) is characterized by a gradual complex imbalance between cartilage production, loss, and derangement. Any joint instability that results in an abnormal overload of the joint surface can trigger MOA. As MOA has a prevailing mechanical aetiology, treatment effectiveness can only be accomplished if altered joint mechanics and mechanosensitive pathways are normalized and restored. Otherwise, the inflammatory cascade of osteoarthritis will be initiated, and the changes may become irreversible. The management of the disease using non-steroidal anti-inflammatory drugs, analgesics, physical therapy, diet changes, or nutraceuticals is conservative and less effective. MOA is a determinant factor for the development of hip dysplasia in both humans and dogs. Hip dysplasia is a hereditary disease with a high incidence and, therefore, of great clinical importance due to the associated discomfort and significant functional limitations. Furthermore, on account of analogous human and canine hip dysplasia disease and under the One Medicine concept, unifying veterinary and human research could improve the well-being and health of both species, increasing the acknowledgement of shared diseases. Great success has been accomplished in humans regarding preventive conservative management of hip dysplasia and following One Medicine concept, similar measures would benefit dogs. Moreover, animal models have long been used to better understand the different diseases' mechanisms. Current research in animal models was addressed and the role of rabbit models in pathophysiologic studies and of the dog as a spontaneous animal model were highlighted, denoting the inexistence of rabbit functional models to investigate therapeutic approaches in hip MOA.
Collapse
Affiliation(s)
- I Tomé
- Department of Veterinary Sciences, University of Trás-Os-Montes E Alto Douro, Vila Real, 5000-801, Portugal.
- CECAV, Centre for Animal Sciences and Veterinary Studies, Associate Laboratory for Animal and Veterinary Science - AL4AnimalS, University of Trás-Os-Montes E Alto Douro, Vila Real, Portugal.
| | - S Alves-Pimenta
- CECAV, Centre for Animal Sciences and Veterinary Studies, Associate Laboratory for Animal and Veterinary Science - AL4AnimalS, University of Trás-Os-Montes E Alto Douro, Vila Real, Portugal
- Department of Animal Science, University of Trás-Os-Montes E Alto Douro, Vila Real, Portugal
| | - R Sargo
- Department of Veterinary Sciences, University of Trás-Os-Montes E Alto Douro, Vila Real, 5000-801, Portugal
- CECAV, Centre for Animal Sciences and Veterinary Studies, Associate Laboratory for Animal and Veterinary Science - AL4AnimalS, University of Trás-Os-Montes E Alto Douro, Vila Real, Portugal
| | - J Pereira
- Department of Veterinary Sciences, University of Trás-Os-Montes E Alto Douro, Vila Real, 5000-801, Portugal
- CECAV, Centre for Animal Sciences and Veterinary Studies, Associate Laboratory for Animal and Veterinary Science - AL4AnimalS, University of Trás-Os-Montes E Alto Douro, Vila Real, Portugal
| | - B Colaço
- CECAV, Centre for Animal Sciences and Veterinary Studies, Associate Laboratory for Animal and Veterinary Science - AL4AnimalS, University of Trás-Os-Montes E Alto Douro, Vila Real, Portugal
- Department of Animal Science, University of Trás-Os-Montes E Alto Douro, Vila Real, Portugal
| | - H Brancal
- Clínica Veterinária da Covilhã, Covilhã, 6200-289, Portugal
| | - L Costa
- Department of Veterinary Sciences, University of Trás-Os-Montes E Alto Douro, Vila Real, 5000-801, Portugal
- CECAV, Centre for Animal Sciences and Veterinary Studies, Associate Laboratory for Animal and Veterinary Science - AL4AnimalS, University of Trás-Os-Montes E Alto Douro, Vila Real, Portugal
| | - M Ginja
- Department of Veterinary Sciences, University of Trás-Os-Montes E Alto Douro, Vila Real, 5000-801, Portugal
- CECAV, Centre for Animal Sciences and Veterinary Studies, Associate Laboratory for Animal and Veterinary Science - AL4AnimalS, University of Trás-Os-Montes E Alto Douro, Vila Real, Portugal
| |
Collapse
|
32
|
Thompson CL, Hopkins T, Bevan C, Screen HRC, Wright KT, Knight MM. Human vascularised synovium-on-a-chip: a mechanically stimulated, microfluidic model to investigate synovial inflammation and monocyte recruitment. Biomed Mater 2023; 18:065013. [PMID: 37703884 DOI: 10.1088/1748-605x/acf976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Healthy synovium is critical for joint homeostasis. Synovial inflammation (synovitis) is implicated in the onset, progression and symptomatic presentation of arthritic joint diseases such as rheumatoid arthritis and osteoarthritis. Thus, the synovium is a promising target for the development of novel, disease-modifying therapeutics. However, target exploration is hampered by a lack of good pre-clinical models that accurately replicate human physiology and that are developed in a way that allows for widespread uptake. The current study presents a multi-channel, microfluidic, organ-on-a-chip (OOAC) model, comprising a 3D configuration of the human synovium and its associated vasculature, with biomechanical and inflammatory stimulation, built upon a commercially available OOAC platform. Healthy human fibroblast-like synoviocytes (hFLS) were co-cultured with human umbilical vein endothelial cells (HUVECs) with appropriate matrix proteins, separated by a flexible, porous membrane. The model was developed within the Emulate organ-chip platform enabling the application of physiological biomechanical stimulation in the form of fluid shear and cyclic tensile strain. The hFLS exhibited characteristic morphology, cytoskeletal architecture and matrix protein deposition. Synovial inflammation was initiated through the addition of interleukin-1β(IL-1β) into the synovium channel resulting in the increased secretion of inflammatory and catabolic mediators, interleukin-6 (IL-6), prostaglandin E2 (PGE2), matrix metalloproteinase 1 (MMP-1), as well as the synovial fluid constituent protein, hyaluronan. Enhanced expression of the inflammatory marker, intercellular adhesion molecule-1 (ICAM-1), was observed in HUVECs in the vascular channel, accompanied by increased attachment of circulating monocytes. This vascularised human synovium-on-a-chip model recapitulates a number of the functional characteristics of both healthy and inflamed human synovium. Thus, this model offers the first human synovium organ-chip suitable for widespread adoption to understand synovial joint disease mechanisms, permit the identification of novel therapeutic targets and support pre-clinical testing of therapies.
Collapse
Affiliation(s)
- Clare L Thompson
- Centre for Predictive In Vitro Models, Queen Mary University of London, London, United Kingdom
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Timothy Hopkins
- Centre for Predictive In Vitro Models, Queen Mary University of London, London, United Kingdom
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Shropshire, United Kingdom
| | - Catrin Bevan
- Centre for Predictive In Vitro Models, Queen Mary University of London, London, United Kingdom
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Hazel R C Screen
- Centre for Predictive In Vitro Models, Queen Mary University of London, London, United Kingdom
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Karina T Wright
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Shropshire, United Kingdom
| | - Martin M Knight
- Centre for Predictive In Vitro Models, Queen Mary University of London, London, United Kingdom
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
33
|
Porcello A, Hadjab F, Ajouaou M, Philippe V, Martin R, Abdel-Sayed P, Hirt-Burri N, Scaletta C, Raffoul W, Applegate LA, Allémann E, Jordan O, Laurent A. Ex Vivo Functional Benchmarking of Hyaluronan-Based Osteoarthritis Viscosupplement Products: Comprehensive Assessment of Rheological, Lubricative, Adhesive, and Stability Attributes. Gels 2023; 9:808. [PMID: 37888381 PMCID: PMC10606320 DOI: 10.3390/gels9100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
While many injectable viscosupplementation products are available for osteoarthritis (OA) management, multiple hydrogel functional attributes may be further optimized for efficacy enhancement. The objective of this study was to functionally benchmark four commercially available hyaluronan-based viscosupplements (Ostenil, Ostenil Plus, Synvisc, and Innoryos), focusing on critical (rheological, lubricative, adhesive, and stability) attributes. Therefore, in vitro and ex vivo quantitative characterization panels (oscillatory rheology, rotational tribology, and texture analysis with bovine cartilage) were used for hydrogel product functional benchmarking, using equine synovial fluid as a biological control. Specifically, the retained experimental methodology enabled the authors to robustly assess and discuss various functional enhancement options for hyaluronan-based hydrogels (chemical cross-linking and addition of antioxidant stabilizing agents). The results showed that the Innoryos product, a niacinamide-augmented linear hyaluronan-based hydrogel, presented the best overall functional behavior in the retained experimental settings (high adhesivity and lubricity and substantial resistance to oxidative degradation). The Ostenil product was conversely shown to present less desirable functional properties for viscosupplementation compared to the other investigated products. Generally, this study confirmed the high importance of formulation development and control methodology optimization, aiming for the enhancement of novel OA-targeting product critical functional attributes and the probability of their clinical success. Overall, this work confirmed the tangible need for a comprehensive approach to hyaluronan-based viscosupplementation product functional benchmarking (product development and product selection by orthopedists) to maximize the chances of effective clinical OA management.
Collapse
Affiliation(s)
- Alexandre Porcello
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland; (M.A.); (E.A.); (O.J.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Farid Hadjab
- Development Department, Albomed GmbH, D-90592 Schwarzenbruck, Germany;
| | - Maryam Ajouaou
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland; (M.A.); (E.A.); (O.J.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Virginie Philippe
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (V.P.); (P.A.-S.); (N.H.-B.); (C.S.); (W.R.); (L.A.A.)
- Orthopedics and Traumatology Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
| | - Robin Martin
- Orthopedics and Traumatology Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (V.P.); (P.A.-S.); (N.H.-B.); (C.S.); (W.R.); (L.A.A.)
- STI School of Engineering, Federal Polytechnic School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (V.P.); (P.A.-S.); (N.H.-B.); (C.S.); (W.R.); (L.A.A.)
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (V.P.); (P.A.-S.); (N.H.-B.); (C.S.); (W.R.); (L.A.A.)
| | - Wassim Raffoul
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (V.P.); (P.A.-S.); (N.H.-B.); (C.S.); (W.R.); (L.A.A.)
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (V.P.); (P.A.-S.); (N.H.-B.); (C.S.); (W.R.); (L.A.A.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland; (M.A.); (E.A.); (O.J.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Olivier Jordan
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland; (M.A.); (E.A.); (O.J.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Alexis Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (V.P.); (P.A.-S.); (N.H.-B.); (C.S.); (W.R.); (L.A.A.)
- Manufacturing Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
| |
Collapse
|
34
|
Vassallo V, Di Meo C, Toro G, Alfano A, Iolascon G, Schiraldi C. Hyaluronic Acid-Based Injective Medical Devices: In Vitro Characterization of Novel Formulations Containing Biofermentative Unsulfated Chondroitin or Extractive Sulfated One with Cyclodextrins. Pharmaceuticals (Basel) 2023; 16:1429. [PMID: 37895900 PMCID: PMC10610477 DOI: 10.3390/ph16101429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Currently, chondroitin sulfate (CS) and hyaluronic acid (HA) pharma-grade forms are used for osteoarthritis (OA) management, CS as an oral formulations component, and HA as intra-articular injective medical devices. Recently, unsulfated chondroitin, obtained through biofermentative (BC) manufacturing, has been proposed for thermally stabilized injective preparation with HA. This study aimed to highlight the specific properties of two commercial injective medical devices, one based on HA/BC complexes and the other containing HA, extractive CS, and cyclodextrins, in order to provide valuable information for joint disease treatments. Their biophysical and biomechanical features were assayed; in addition, biological tests were performed on human pathological chondrocytes. Rheological measurements displayed similar behavior, with a slightly higher G' for HA/BC, which also proved superior stability to the hyaluronidase attack. Both samples reduced the expression of specific OA-related biomarkers such as NF-kB, interleukin 6 (IL-6), and metalloprotease-13 (MMP-13). Moreover, HA/BC better ensured chondrocyte phenotype maintenance by up-regulating collagen type 2A1 (COLII) and aggrecan (AGN). Notwithstanding, the similarity of biomolecule components, the manufacturing process, raw materials characteristics, and specific concentration resulted in affecting the biomechanical and, more interestingly, the biochemical properties, suggesting potential better performances of HA/BC in joint disease treatment.
Collapse
Affiliation(s)
- Valentina Vassallo
- Department of Experimental Medicine, Section of Biotechnology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.V.); (C.D.M.); (A.A.)
| | - Celeste Di Meo
- Department of Experimental Medicine, Section of Biotechnology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.V.); (C.D.M.); (A.A.)
| | - Giuseppe Toro
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (G.I.)
| | - Alberto Alfano
- Department of Experimental Medicine, Section of Biotechnology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.V.); (C.D.M.); (A.A.)
| | - Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.T.); (G.I.)
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (V.V.); (C.D.M.); (A.A.)
| |
Collapse
|
35
|
Howlader MAA, Almigdad A, Urmi JF, Ibrahim H. Efficacy and Safety of Hyaluronic Acid and Platelet-Rich Plasma Combination Therapy Versus Platelet-Rich Plasma Alone in Treating Knee Osteoarthritis: A Systematic Review. Cureus 2023; 15:e47256. [PMID: 38022237 PMCID: PMC10655493 DOI: 10.7759/cureus.47256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Knee osteoarthritis (KOA) is a chronic degenerative disease of the joint characterized by biochemical and biomechanical alterations of articular cartilage, degradation of the joint edge, and subchondral bone hyperplasia. Nowadays, intra-articular hyaluronic acid (HA) or platelet-rich plasma (PRP) has become a popular treatment modality for treating KOA. Each treatment can be used independently or in combination. However, the efficacy and safety of combination treatment are still inconclusive, and there is a lack of high-quality level 1 studies that support using combination therapy over PRP alone. Consequently, we conducted a systematic review to examine the effectiveness and safety of combining HA and PRP therapy versus using PRP therapy alone in KOA patients. Based on the most up-to-date evidence, the dual approach of PRP and HA therapy yields outcomes similar to PRP therapy alone in the short term, up to 12 months. Nonetheless, when considering longer-term results, particularly in the 24-month follow-up, dual therapy holds the potential to produce superior outcomes compared to PRP alone therapy. Additionally, in terms of safety, dual therapy has been associated with slightly fewer adverse events.
Collapse
Affiliation(s)
- Md Al Amin Howlader
- Department of Trauma and Orthopaedics, Royal Berkshire NHS Foundation Trust, Reading, GBR
| | - Ahmad Almigdad
- Department of Orthopaedics, Royal Medical Services, Amman, JOR
| | | | - Hassan Ibrahim
- Department of Internal Medicine, Darent Valley Hospital, Dartford, GBR
| |
Collapse
|
36
|
Chen CH, Kao HH, Lee YC, Chen JP. Injectable Thermosensitive Hyaluronic Acid Hydrogels for Chondrocyte Delivery in Cartilage Tissue Engineering. Pharmaceuticals (Basel) 2023; 16:1293. [PMID: 37765101 PMCID: PMC10535600 DOI: 10.3390/ph16091293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, we synthesize a hyaluronic acid-g-poly(N-isopropylacrylamide) (HPN) copolymer by grafting the amine-terminated poly(N-isopropylacrylamide) (PNIPAM-NH2) to hyaluronic acid (HA). The 5% PNIPAM-NH2 and HPN polymer solution is responsive to temperature changes with sol-to-gel phase transition temperatures around 32 °C. Compared with the PNIPAM-NH2 hydrogel, the HPN hydrogel shows higher water content and mechanical strength, as well as lower volume contraction, making it a better choice as a scaffold for chondrocyte delivery. From an in vitro cell culture, we see that cells can proliferate in an HPN hydrogel with full retention of cell viability and show the phenotypic morphology of chondrocytes. In the HPN hydrogel, chondrocytes demonstrate a differentiated phenotype with the upregulated expression of cartilage-specific genes and the enhanced secretion of extracellular matrix components, when compared with the monolayer culture on tissue culture polystyrene. In vivo studies confirm the ectopic cartilage formation when HPN was used as a cell delivery vehicle after implanting chondrocyte/HPN in nude mice subcutaneously, which is shown from a histological and gene expression analysis. Taken together, the HPN thermosensitive hydrogel will be a promising injectable scaffold with which to deliver chondrocytes in cartilage-tissue-engineering applications.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Chang Gung University College of Medicine, Keelung 20401, Taiwan
| | - Hao-Hsi Kao
- Division of Nephrology, Chang Gung Memorial Hospital at Keelung, Chang Gung University College of Medicine, Keelung 20401, Taiwan
| | - Yen-Chen Lee
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Taoyuan 33302, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
37
|
Parlawar AN, Mundada BP. Enhancing Pain Relief in Temporomandibular Joint Arthrocentesis: Platelet-Rich Plasma and Hyaluronic Acid Synergy. Cureus 2023; 15:e45646. [PMID: 37868393 PMCID: PMC10589392 DOI: 10.7759/cureus.45646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Temporomandibular joint (TMJ) disorders present complex challenges in pain management and functional restoration. This review delves into the innovative approach of using platelet-rich plasma (PRP) and hyaluronic acid (HA) combination therapy in TMJ arthrocentesis to address these issues. The potential benefits of this approach are highlighted through an exploration of mechanisms, clinical studies, safety considerations, and future directions. PRP's regenerative properties and HA's lubrication and anti-inflammatory effects offer a comprehensive solution to multifactorial TMJ pain and dysfunction. Clinical studies reveal significant pain reduction, improved mobility, and enhanced satisfaction in patients treated with PRP and HA. Although mild and transient adverse effects have been reported, the safety profile remains favorable. While the evidence is promising, more extensive randomized controlled trials are needed to establish sustained efficacy and safety. As research evolves, collaborative efforts among clinicians and researchers are crucial in realizing the potential of PRP and HA combination therapy, ultimately providing a novel pathway to alleviate TMJ-related pain and enhance patient well-being.
Collapse
Affiliation(s)
- Akshita N Parlawar
- Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Bhushan P Mundada
- Oral and Maxillofacial Surgery, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
38
|
Jothipandiyan S, Suresh D, Sekaran S, Paramasivam N. Palladium(II) Metal Complex Fabricated Titanium Implant Mitigates Dual-Species Biofilms in Artificial Synovial Fluid. Antibiotics (Basel) 2023; 12:1296. [PMID: 37627716 PMCID: PMC10451766 DOI: 10.3390/antibiotics12081296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Metallodrugs have a potent application in various medical fields. In the current study, we used a novel Palladium(II) thiazolinyl picolinamide complex that was directly fabricated over the titanium implant to examine its potency in inhibiting dual-species biofilms and exopolysaccharides. Additionally, inhibition of mono- and dual-species biofilms by coated titanium plates in an in vitro joint microcosm was performed. The study was carried out for 7 days by cultivating mono- and dual-species biofilms on titanium plates placed in both growth media and artificial synovial fluid (ASF). By qPCR analysis, the interaction of co-cultured biofilms in ASF and the alteration in gene expression of co-cultured biofilms were studied. Remarkable alleviation of biofilm accumulation and EPS secretion was observed on the coated titanium plates. The effective impairment of biofilms and EPS matrix of biofilms on Pd(II)-E-coated titanium plates were visualized by Scanning Electron Microscopy. Moreover, coated titanium plates improved the adhesion of osteoblast cells, which is crucial for a bone biomaterial. The potential bioactivity of coated plates was also confirmed at the molecular level using qPCR analysis. The stability of coated plates in ASF for 7 days was examined with FESEM-EDAX analysis. Collectively, the present study provided an excellent anti-infective effect on Pd(II)-E-coated titanium plates without affecting their biocompatibility with bone cells.
Collapse
Affiliation(s)
- Sowndarya Jothipandiyan
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India;
| | - Devarajan Suresh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India;
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute for Medical and Technical Sciences, Chennai 600 077, Tamil Nadu, India
| | - Nithyanand Paramasivam
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India;
| |
Collapse
|
39
|
Paz-González R, Lourido L, Calamia V, Fernández-Puente P, Quaranta P, Picchi F, Blanco FJ, Ruiz-Romero C. An Atlas of the Knee Joint Proteins and Their Role in Osteoarthritis Defined by Literature Mining. Mol Cell Proteomics 2023; 22:100606. [PMID: 37356495 PMCID: PMC10393810 DOI: 10.1016/j.mcpro.2023.100606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent rheumatic pathology. However, OA is not simply a process of wear and tear affecting articular cartilage but rather a disease of the entire joint. One of the most common locations of OA is the knee. Knee tissues have been studied using molecular strategies, generating a large amount of complex data. As one of the goals of the Rheumatic and Autoimmune Diseases initiative of the Human Proteome Project, we applied a text-mining strategy to publicly available literature to collect relevant information and generate a systematically organized overview of the proteins most closely related to the different knee components. To this end, the PubPular literature-mining software was employed to identify protein-topic relationships and extract the most frequently cited proteins associated with the different knee joint components and OA. The text-mining approach searched over eight million articles in PubMed up to November 2022. Proteins associated with the six most representative knee components (articular cartilage, subchondral bone, synovial membrane, synovial fluid, meniscus, and cruciate ligament) were retrieved and ranked by their relevance to the tissue and OA. Gene ontology analyses showed the biological functions of these proteins. This study provided a systematic and prioritized description of knee-component proteins most frequently cited as associated with OA. The study also explored the relationship of these proteins to OA and identified the processes most relevant to proper knee function and OA pathophysiology.
Collapse
Affiliation(s)
- Rocío Paz-González
- Grupo de Investigación de Reumatología (GIR) - Unidad de Proteómica, Instituto de Investigación Biomédica de A Coruña (INIBIC), Sergas, Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain
| | - Lucía Lourido
- Grupo de Investigación de Reumatología (GIR) - Unidad de Proteómica, Instituto de Investigación Biomédica de A Coruña (INIBIC), Sergas, Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain
| | - Valentina Calamia
- Grupo de Investigación de Reumatología (GIR) - Unidad de Proteómica, Instituto de Investigación Biomédica de A Coruña (INIBIC), Sergas, Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain
| | - Patricia Fernández-Puente
- Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Grupo de Investigación de Reumatología y Salud (GIR-S), Centro Interdisciplinar de Química e Bioloxía (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Patricia Quaranta
- Grupo de Investigación de Reumatología (GIR) - Unidad de Proteómica, Instituto de Investigación Biomédica de A Coruña (INIBIC), Sergas, Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain
| | - Florencia Picchi
- Grupo de Investigación de Reumatología (GIR) - Unidad de Proteómica, Instituto de Investigación Biomédica de A Coruña (INIBIC), Sergas, Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain
| | - Francisco J Blanco
- Grupo de Investigación de Reumatología (GIR) - Unidad de Proteómica, Instituto de Investigación Biomédica de A Coruña (INIBIC), Sergas, Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain; Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Grupo de Investigación de Reumatología y Salud (GIR-S), Centro Interdisciplinar de Química e Bioloxía (CICA), Universidade da Coruña (UDC), A Coruña, Spain.
| | - Cristina Ruiz-Romero
- Grupo de Investigación de Reumatología (GIR) - Unidad de Proteómica, Instituto de Investigación Biomédica de A Coruña (INIBIC), Sergas, Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
40
|
Budai L, Budai M, Fülöpné Pápay ZE, Vilimi Z, Antal I. Rheological Considerations of Pharmaceutical Formulations: Focus on Viscoelasticity. Gels 2023; 9:469. [PMID: 37367140 DOI: 10.3390/gels9060469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Controlling rheological properties offers the opportunity to gain insight into the physical characteristics, structure, stability and drug release rate of formulations. To better understand the physical properties of hydrogels, not only rotational but also oscillatory experiments should be performed. Viscoelastic properties, including elastic and viscous properties, are measured using oscillatory rheology. The gel strength and elasticity of hydrogels are of great importance for pharmaceutical development as the application of viscoelastic preparations has considerably expanded in recent decades. Viscosupplementation, ophthalmic surgery and tissue engineering are just a few examples from the wide range of possible applications of viscoelastic hydrogels. Hyaluronic acid, alginate, gellan gum, pectin and chitosan are remarkable representatives of gelling agents that attract great attention applied in biomedical fields. This review provides a brief summary of rheological properties, highlighting the viscoelasticity of hydrogels with great potential in biomedicine.
Collapse
Affiliation(s)
- Lívia Budai
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| | - Marianna Budai
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| | | | - Zsófia Vilimi
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| |
Collapse
|
41
|
Vignon C, Hilpert M, Toupet K, Goubaud A, Noël D, de Kalbermatten M, Hénon P, Jorgensen C, Barbero A, Garitaonandia I. Evaluation of expanded peripheral blood derived CD34+ cells for the treatment of moderate knee osteoarthritis. Front Bioeng Biotechnol 2023; 11:1150522. [PMID: 37288358 PMCID: PMC10242004 DOI: 10.3389/fbioe.2023.1150522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/04/2023] [Indexed: 06/09/2023] Open
Abstract
Knee osteoarthritis (OA) is a degenerative joint disease of the knee that results from the progressive loss of articular cartilage. It is most common in the elderly and affects millions of people worldwide, leading to a continuous increase in the number of total knee replacement surgeries. These surgeries improve the patient's physical mobility, but can lead to late infection, loosening of the prosthesis, and persistent pain. We would like to investigate if cell-based therapies can avoid or delay such surgeries in patients with moderate OA by injecting expanded autologous peripheral blood derived CD34+ cells (ProtheraCytes®) into the articular joint. In this study we evaluated the survival of ProtheraCytes® when exposed to synovial fluid and their performance in vitro with a model consisting of their co-culture with human OA chondrocytes in separate layers of Transwells and in vivo with a murine model of OA. Here we show that ProtheraCytes® maintain high viability (>95%) when exposed for up to 96 hours to synovial fluid from OA patients. Additionally, when co-cultured with OA chondrocytes, ProtheraCytes® can modulate the expression of some chondrogenic (collagen II and Sox9) and inflammatory/degrading (IL1β, TNF, and MMP-13) markers at gene or protein levels. Finally, ProtheraCytes® survive after injection into the knee of a collagenase-induced osteoarthritis mouse model, engrafting mainly in the synovial membrane, probably due to the fact that ProtheraCytes® express CD44, a receptor of hyaluronic acid, which is abundantly present in the synovial membrane. This report provides preliminary evidence of the therapeutic potential of CD34+ cells on OA chondrocytes in vitro and their survival after in vivo implantation in the knee of mice and merits further investigation in future preclinical studies in OA models.
Collapse
Affiliation(s)
| | - Morgane Hilpert
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Karine Toupet
- Institute of Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, Montpellier, France
| | | | - Danièle Noël
- Institute of Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, Montpellier, France
| | | | | | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapy, University of Montpellier, INSERM, Montpellier, France
| | - Andrea Barbero
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | | |
Collapse
|
42
|
Porcello A, Gonzalez-Fernandez P, Jeannerat A, Peneveyre C, Abdel-Sayed P, Scaletta C, Raffoul W, Hirt-Burri N, Applegate LA, Allémann E, Laurent A, Jordan O. Thermo-Responsive Hyaluronan-Based Hydrogels Combined with Allogeneic Cytotherapeutics for the Treatment of Osteoarthritis. Pharmaceutics 2023; 15:pharmaceutics15051528. [PMID: 37242774 DOI: 10.3390/pharmaceutics15051528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Thermo-responsive hyaluronan-based hydrogels and FE002 human primary chondroprogenitor cell sources have both been previously proposed as modern therapeutic options for the management of osteoarthritis (OA). For the translational development of a potential orthopedic combination product based on both technologies, respective technical aspects required further optimization phases (e.g., hydrogel synthesis upscaling and sterilization, FE002 cytotherapeutic material stabilization). The first aim of the present study was to perform multi-step in vitro characterization of several combination product formulas throughout the established and the optimized manufacturing workflows, with a strong focus set on critical functional parameters. The second aim of the present study was to assess the applicability and the efficacy of the considered combination product prototypes in a rodent model of knee OA. Specific characterization results (i.e., spectral analysis, rheology, tribology, injectability, degradation assays, in vitro biocompatibility) of hyaluronan-based hydrogels modified with sulfo-dibenzocyclooctyne-PEG4-amine linkers and poly(N-isopropylacrylamide) (HA-L-PNIPAM) containing lyophilized FE002 human chondroprogenitors confirmed the suitability of the considered combination product components. Specifically, significantly enhanced resistance toward oxidative and enzymatic degradation was shown in vitro for the studied injectable combination product prototypes. Furthermore, extensive multi-parametric (i.e., tomography, histology, scoring) in vivo investigation of the effects of FE002 cell-laden HA-L-PNIPAM hydrogels in a rodent model revealed no general or local iatrogenic adverse effects, whereas it did reveal some beneficial trends against the development of knee OA. Overall, the present study addressed key aspects of the preclinical development process for novel biologically-based orthopedic combination products and shall serve as a robust methodological basis for further translational investigation and clinical work.
Collapse
Affiliation(s)
- Alexandre Porcello
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Paula Gonzalez-Fernandez
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Annick Jeannerat
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
| | - Cédric Peneveyre
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
- STI School of Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Wassim Raffoul
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Plastic, Reconstructive, and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Alexis Laurent
- Preclinical Research Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Olivier Jordan
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| |
Collapse
|
43
|
Wen J, Li H, Dai H, Hua S, Long X, Li H, Ivanovski S, Xu C. Intra-articular nanoparticles based therapies for osteoarthritis and rheumatoid arthritis management. Mater Today Bio 2023; 19:100597. [PMID: 36910270 PMCID: PMC9999238 DOI: 10.1016/j.mtbio.2023.100597] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023] Open
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are chronic and progressive inflammatory joint diseases that affect a large population worldwide. Intra-articular administration of various therapeutics is applied to alleviate pain, prevent further progression, and promote cartilage regeneration and bone remodeling in both OA and RA. However, the effectiveness of intra-articular injection with traditional drugs is uncertain and controversial due to issues such as rapid drug clearance and the barrier afforded by the dense structure of cartilage. Nanoparticles can improve the efficacy of intra-articular injection by facilitating controlled drug release, prolonged retention time, and enhanced penetration into joint tissue. This review systematically summarizes nanoparticle-based therapies for OA and RA management. Firstly, we explore the interaction between nanoparticles and joints, including articular fluids and cells. This is followed by a comprehensive analysis of current nanoparticles designed for OA/RA, divided into two categories based on therapeutic mechanisms: direct therapeutic nanoparticles and nanoparticles-based drug delivery systems. We highlight nanoparticle design for tissue/cell targeting and controlled drug release before discussing challenges of nanoparticle-based therapies for efficient OA and RA treatment and their future clinical translation. We anticipate that rationally designed local injection of nanoparticles will be more effective, convenient, and safer than the current therapeutic approach.
Collapse
Affiliation(s)
- Juan Wen
- School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
| | - Huimin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Huan Dai
- School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
| | - Shu Hua
- School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
| | - Xing Long
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Huang Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210009, China
| | - Sašo Ivanovski
- School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
- Corresponding author. School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia.
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia
- Corresponding author. School of Dentistry, The University of Queensland, Brisbane, Queensland, 4006, Australia.
| |
Collapse
|
44
|
Dillemans L, De Somer L, Neerinckx B, Proost P. A review of the pleiotropic actions of the IFN-inducible CXC chemokine receptor 3 ligands in the synovial microenvironment. Cell Mol Life Sci 2023; 80:78. [PMID: 36862204 PMCID: PMC11071919 DOI: 10.1007/s00018-023-04715-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023]
Abstract
Chemokines are pivotal players in instigation and perpetuation of synovitis through leukocytes egress from the blood circulation into the inflamed articulation. Multitudinous literature addressing the involvement of the dual-function interferon (IFN)-inducible chemokines CXCL9, CXCL10 and CXCL11 in diseases characterized by chronic inflammatory arthritis emphasizes the need for detangling their etiopathological relevance. Through interaction with their mutual receptor CXC chemokine receptor 3 (CXCR3), the chemokines CXCL9, CXCL10 and CXCL11 exert their hallmark function of coordinating directional trafficking of CD4+ TH1 cells, CD8+ T cells, NK cells and NKT cells towards inflammatory niches. Among other (patho)physiological processes including infection, cancer, and angiostasis, IFN-inducible CXCR3 ligands have been implicated in autoinflammatory and autoimmune diseases. This review presents a comprehensive overview of the abundant presence of IFN-induced CXCR3 ligands in bodily fluids of patients with inflammatory arthritis, the outcomes of their selective depletion in rodent models, and the attempts at developing candidate drugs targeting the CXCR3 chemokine system. We further propose that the involvement of the CXCR3 binding chemokines in synovitis and joint remodeling encompasses more than solely the directional ingress of CXCR3-expressing leukocytes. The pleotropic actions of the IFN-inducible CXCR3 ligands in the synovial niche reiteratively illustrate the extensive complexity of the CXCR3 chemokine network, which is based on the intercommunion of IFN-inducible CXCR3 ligands with distinct CXCR3 isoforms, enzymes, cytokines, and infiltrated and resident cells present in the inflamed joints.
Collapse
Affiliation(s)
- Luna Dillemans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lien De Somer
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Barbara Neerinckx
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
45
|
Fine N, Lively S, Séguin CA, Perruccio AV, Kapoor M, Rampersaud R. Intervertebral disc degeneration and osteoarthritis: a common molecular disease spectrum. Nat Rev Rheumatol 2023; 19:136-152. [PMID: 36702892 DOI: 10.1038/s41584-022-00888-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/27/2023]
Abstract
Intervertebral disc degeneration (IDD) and osteoarthritis (OA) affecting the facet joint of the spine are biomechanically interdependent, typically occur in tandem, and have considerable epidemiological and pathophysiological overlap. Historically, the distinctions between these degenerative diseases have been emphasized. Therefore, research in the two fields often occurs independently without adequate consideration of the co-dependence of the two sites, which reside within the same functional spinal unit. Emerging evidence from animal models of spine degeneration highlight the interdependence of IDD and facet joint OA, warranting a review of the parallels between these two degenerative phenomena for the benefit of both clinicians and research scientists. This Review discusses the pathophysiological aspects of IDD and OA, with an emphasis on tissue, cellular and molecular pathways of degeneration. Although the intervertebral disc and synovial facet joint are biologically distinct structures that are amenable to reductive scientific consideration, substantial overlap exists between the molecular pathways and processes of degeneration (including cartilage destruction, extracellular matrix degeneration and osteophyte formation) that occur at these sites. Thus, researchers, clinicians, advocates and policy-makers should consider viewing the burden and management of spinal degeneration holistically as part of the OA disease continuum.
Collapse
Affiliation(s)
- Noah Fine
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Starlee Lively
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Cheryle Ann Séguin
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Bone and Joint Institute, University of Western Ontario London, London, Ontario, Canada
| | - Anthony V Perruccio
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Raja Rampersaud
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada. .,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
46
|
Štěpánková K, Mareková D, Kubášová K, Sedláček R, Turnovcová K, Vacková I, Kubinová Š, Makovický P, Petrovičová M, Kwok JCF, Jendelová P, Machová Urdzíková L. 4-Methylumbeliferone Treatment at a Dose of 1.2 g/kg/Day Is Safe for Long-Term Usage in Rats. Int J Mol Sci 2023; 24:3799. [PMID: 36835210 PMCID: PMC9959083 DOI: 10.3390/ijms24043799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
4-methylumbelliferone (4MU) has been suggested as a potential therapeutic agent for a wide range of neurological diseases. The current study aimed to evaluate the physiological changes and potential side effects after 10 weeks of 4MU treatment at a dose of 1.2 g/kg/day in healthy rats, and after 2 months of a wash-out period. Our findings revealed downregulation of hyaluronan (HA) and chondroitin sulphate proteoglycans throughout the body, significantly increased bile acids in blood samples in weeks 4 and 7 of the 4MU treatment, as well as increased blood sugars and proteins a few weeks after 4MU administration, and significantly increased interleukins IL10, IL12p70 and IFN gamma after 10 weeks of 4MU treatment. These effects, however, were reversed and no significant difference was observed between control treated and 4MU-treated animals after a 9-week wash-out period.
Collapse
Affiliation(s)
- Kateřina Štěpánková
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Dana Mareková
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Kristýna Kubášová
- Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, 16000 Prague, Czech Republic
| | - Radek Sedláček
- Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, 16000 Prague, Czech Republic
| | - Karolína Turnovcová
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Irena Vacková
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Šárka Kubinová
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
- Institute of Physics, Czech Academy of Sciences, 18221 Prague, Czech Republic
| | - Pavol Makovický
- Department of Biology, Faculty of Education, J. Seyle University, SK-94501 Komarno, Slovakia
| | - Michaela Petrovičová
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Jessica C. F. Kwok
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Pavla Jendelová
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Lucia Machová Urdzíková
- Institute of Experimental Medicine, Czech Academy of Sciences, 14220 Prague, Czech Republic
- Department of Neuroscience, Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| |
Collapse
|
47
|
Mol S, Taanman-Kueter EWM, van der Steen BA, Groot Kormelink T, van de Sande MGH, Tas SW, Wauben MHM, de Jong EC. Hyaluronic Acid in Synovial Fluid Prevents Neutrophil Activation in Spondyloarthritis. Int J Mol Sci 2023; 24:ijms24043066. [PMID: 36834478 PMCID: PMC9964069 DOI: 10.3390/ijms24043066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Spondyloarthritis (SpA) patients suffer from joint inflammation resulting in tissue damage, characterized by the presence of numerous neutrophils in the synovium and synovial fluid (SF). As it is yet unclear to what extent neutrophils contribute to the pathogenesis of SpA, we set out to study SF neutrophils in more detail. We analyzed the functionality of SF neutrophils of 20 SpA patients and 7 disease controls, determining ROS production and degranulation in response to various stimuli. In addition, the effect of SF on neutrophil function was determined. Surprisingly, our data show that SF neutrophils in SpA patients have an inactive phenotype, despite the presence of many neutrophil-activating stimuli such as GM-CSF and TNF in SF. This was not due to exhaustion as SF neutrophils readily responded to stimulation. Therefore, this finding suggests that one or more inhibitors of neutrophil activation may be present in SF. Indeed, when blood neutrophils from healthy donors were activated in the presence of increasing concentrations of SF from SpA patients, degranulation and ROS production were dose-dependently inhibited. This effect was independent of diagnosis, gender, age, and medication in the patients from which the SF was isolated. Treatment of SF with the enzyme hyaluronidase strongly reduced the inhibitory effect of SF on neutrophil activation, indicating that hyaluronic acid that is present in SF may be an important factor in preventing SF neutrophil activation. This finding provides novel insights into the role of soluble factors in SF regulating neutrophil function and may lead to the development of novel therapeutics targeting neutrophil activation via hyaluronic acid or associated pathways.
Collapse
Affiliation(s)
- Sanne Mol
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Esther W. M. Taanman-Kueter
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Baltus A. van der Steen
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Tom Groot Kormelink
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Marleen G. H. van de Sande
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Sander W. Tas
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Marca H. M. Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Esther C. de Jong
- Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-20-5664963
| |
Collapse
|
48
|
A numerical model for fibril remodeling in articular cartilage. Knee 2023; 41:83-96. [PMID: 36642036 DOI: 10.1016/j.knee.2022.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/05/2022] [Accepted: 12/14/2022] [Indexed: 01/14/2023]
Abstract
BACKGROUND Collagen fibrils of articular cartilage have a distinct organization in mature human knee joints. It seems that a mechanobiological process drives the remodeling of newborn collagen fibrils with maturation. Therefore, the goal of the present study was to develop a collagen fibril remodeling algorithm that describes the unique collagen fibril organization in a 3D knee model. METHOD A fibril-reinforced, biphasic cartilage model was used with a cuboid and a 3D human knee joint geometries. An isotropic collagen fibril distribution was assigned to the cartilage at the start of the analysis. Each fibril was rotated towards the direction that resulted in a maximum stretch at each time increment of the loading cycle. RESULTS The resulting pattern for the collagen fibrils was compared with split line patterns of porcine knee joint cartilage and also data published in the literature. Fibrils on the articular surface had a radial pattern towards the geometrical centroid of the tibial and femoral cartilage. In the tibiofemoral contact regions of superficial zone, fibrils were oriented circumferentially and randomly. In the porcine samples, the split-line patterns were similar to those obtained theoretically. Depth-wise organization of fibril network was characterized by fibrils perpendicular to the subchondral bone in the deeper layers, and fibrils parallel to the surface of cartilage in the superficial zone. CONCLUSIONS The maximum stretch criterion, coupled with a biphasic constitutive model, successfully predicted the collagen fibril organization observed in the articular cartilage throughout the depth and on the articular surface.
Collapse
|
49
|
Direct comparison of non-osteoarthritic and osteoarthritic synovial fluid-induced intracellular chondrocyte signaling and phenotype changes. Osteoarthritis Cartilage 2023; 31:60-71. [PMID: 36150677 DOI: 10.1016/j.joca.2022.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Since the joint microenvironment and tissue homeostasis are highly dependent on synovial fluid, we aimed to compare the essential chondrocyte signaling signatures of non-osteoarthritic vs end-stage osteoarthritic knee synovial fluid. Moreover, we determined the phenotypic consequence of the distinct signaling patterns on articular chondrocytes. METHODS Protein profiling of synovial fluid was performed using antibody arrays. Chondrocyte signaling and phenotypic changes induced by non-osteoarthritic and osteoarthritic synovial fluid were analyzed using a phospho-kinase array, luciferase-based transcription factor activity assays, and RT-qPCR. The origin of osteoarthritic synovial fluid signaling was evaluated by comparing the signaling responses of conditioned media from cartilage, synovium, infrapatellar fat pad and meniscus. Osteoarthritic synovial fluid induced pathway-phenotype relationships were evaluated using pharmacological inhibitors. RESULTS Compared to non-osteoarthritic synovial fluid, osteoarthritic synovial fluid was enriched in cytokines, chemokines and growth factors that provoked differential MAPK, AKT, NFκB and cell cycle signaling in chondrocytes. Functional pathway analysis confirmed increased activity of these signaling events upon osteoarthritic synovial fluid stimulation. Tissue secretomes of osteoarthritic cartilage, synovium, infrapatellar fat pad and meniscus activated several inflammatory signaling routes. Furthermore, the distinct pathway signatures of osteoarthritic synovial fluid led to accelerated chondrocyte dedifferentiation via MAPK/ERK signaling, increased chondrocyte fibrosis through MAPK/JNK and PI3K/AKT activation, an elevated inflammatory response mediated by cPKC/NFκB, production of extracellular matrix-degrading enzymes by MAPK/p38 and PI3K/AKT routes, and enabling of chondrocyte proliferation. CONCLUSION This study provides the first mechanistic comparison between non-osteoarthritic and osteoarthritic synovial fluid, highlighting MAPKs, cPKC/NFκB and PI3K/AKT as crucial OA-associated intracellular signaling routes.
Collapse
|
50
|
Humaira, Raza Bukhari SA, Shakir HA, Khan M, Saeed S, Ahmad I, Muzammil K, Franco M, Irfan M, Li K. Hyaluronic acid-based nanofibers: Electrospun synthesis and their medical applications; recent developments and future perspective. Front Chem 2022; 10:1092123. [PMID: 36618861 PMCID: PMC9816904 DOI: 10.3389/fchem.2022.1092123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Hyaluronan is a biodegradable, biopolymer that represents a major part of the extracellular matrix and has the potential to be fabricated in a fibrous form conjugated with other polymers via electrospinning. Unique physicochemical features such as viscoelasticity, conductivity, and biological activity mainly affected by molecular weight attracted the attention of biomedical researchers to utilize hyaluronan for designing novel HA-based nano-devices. Particularly HA-based nanofibers get focused on a diverse range of applications in medical like tissue implants for regeneration of damaged tissue or organ repair, wound dressings, and drug delivery carriers to treat various disorders. Currently, electrospinning represents an effective available method for designing highly porous, 3D, HA-based nanofibers with features similar to that of the extra-cellular matrix making them a promising candidate for designing advanced regenerative medicines. This review highlights the structural and physicochemical features of HA, recently cited protocols in literature for HA production via microbial fermentation with particular focus on electrospun fabrication of HA-based nanofibers and parameters affecting its synthesis, current progress in medical applications of these electrospun HA-based nanofibers, their limitations and future perspective about the potential of these HA-based nanofibers in medical field.
Collapse
Affiliation(s)
- Humaira
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | | | | | - Muhammad Khan
- Institute of Zoology, University of the Punjab New Campus, Lahore, Pakistan
| | - Shagufta Saeed
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences Lahore, Lahore, Pakistan
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi Arabia
| | - Marcelo Franco
- Department of Exact Science and Technology, State University of Santa Cruz, Ilhéus, Brazil
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Kun Li
- School of Medicine, Dalian University, Dalian, China
| |
Collapse
|