1
|
Bhardwaj JK, Siwach A, Sachdeva D, Sachdeva SN. Revisiting cadmium-induced toxicity in the male reproductive system: an update. Arch Toxicol 2024; 98:3619-3639. [PMID: 39317800 DOI: 10.1007/s00204-024-03871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Heavy metals like cadmium (Cd) are one of the main environmental pollutants, with no biological role in the human body. Cd has been well-documented to have disastrous effects on both plants and animals. It is known to accumulate in kidneys, lungs, liver, and testes and is thought to affect these organs' function over time, which is linked to a very long biological half-life and a very poor rate of elimination. According to recent researches, the testes are extremely vulnerable to cadmium. The disruption of the blood-testis barrier, seminiferous tubules, Sertoli cells, and Leydig cells caused by cadmium leads to the loss of sperm through various mechanisms, such as oxidative stress, spermatogenic cell death, testicular swelling, dysfunction in androgen-producing cells, interference with gene regulation, disruption of ionic homeostasis, and damage to the vascular endothelium. Additionally, through epigenetic control, cadmium disrupts the function of germ cells and somatic cells, resulting in infertile or subfertile males. A full grasp of the mechanisms underlying testicular toxicity caused by Cd is very important to develop suitable strategies to ameliorate male fertility. Therefore, this review article outlines cadmium's impact on growth and functions of the testicles, reviews therapeutic approaches and protective mechanisms, considers recent research findings, and identifies future research directions.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| | - Anshu Siwach
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Drishty Sachdeva
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Som Nath Sachdeva
- Department of Civil Engineering, National Institute of Technology, Kurukshetra and Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
2
|
Xiao Z, Chen J, Fan X, Zhao W, Chu C, Zhang JV. The Impact of Chemokine-Like Receptor 1 Gene Knockout on Lipopolysaccharide-Induced Epididymo-Orchitis in Mice. J Interferon Cytokine Res 2024. [PMID: 39470435 DOI: 10.1089/jir.2024.0152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
This comprehensive study delved into the pivotal function of chemokine-like receptor 1 (CMKLR1) in lipopolysaccharide (LPS)-triggered epididymo-orchitis in mice. Upon LPS exposure, wild-type (WT) mice exhibited marked elevations in serum pro-inflammatory markers, including G-CSF, IL-6, and RANTES, along with heightened levels of TNF-α and IL-6 in testicular and epididymal tissues, which accompanied by pronounced structural damage within the testicular tissue and a concurrent decline in serum testosterone, estradiol (E2) levels, and testicular steroid synthetase expression. Remarkably, Cmklr1 gene ablation intensified the pro-inflammatory response in the serum (especially IFN-γ), testes, and epididymis of epididymo-orchitis models. Furthermore, Cmklr1 deficiency uniquely induced structural alterations within the epididymis, which is absent in the WT model. This genetic manipulation also exacerbated the decline in serum testosterone and E2 levels and testicular steroid synthase activity. While chemerin levels were significantly diminished in WT epididymo-orchitis models, Cmklr1 knockout had no discernible effect on chemerin expression in the model. In addition, a noteworthy observation was the elevation of the serum low density lipoprotein/high density lipoprotein (LDL/HDL) ratio in Cmklr1-deficient mice. Collectively, these findings underscore that the lack of chemerin/CMKLR1 signaling axis could potentially worsen the symptoms during LPS-induced epididymo-orchitis, highlighting its potential as a therapeutic target in related pathologies.
Collapse
Affiliation(s)
- Zhonglin Xiao
- Faculty of Data Science, City University of Macau, Macau, China
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jie Chen
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiujun Fan
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Chiawei Chu
- Faculty of Data Science, City University of Macau, Macau, China
| | - Jian V Zhang
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Sino-European Center of Biomedicine and Health, Shenzhen, China
| |
Collapse
|
3
|
Rotimi DE, Iyobhebhe M, Oluwayemi ET, Olajide OP, Akinsanola BA, Evbuomwan IO, Asaleye RM, Ojo OA. Energy metabolism and spermatogenesis. Heliyon 2024; 10:e38591. [PMID: 39397940 PMCID: PMC11470522 DOI: 10.1016/j.heliyon.2024.e38591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Infertility has become a significant health burden around the globe as it is believed that 15 % of married couples struggle with infertility, with half of the problem accrued to the male. The issue of male infertility could be traced to insufficient or absence of spermatozoa. Glucose metabolism is essential for continued spermatogenesis and for the reproductive potential of sperm cells. Appropriate nutrition is critical in maintaining reproductive function as caloric restriction along with weight reduction, excessive food consumption and obesity are harmful to reproductive function. The link between metabolism and reproduction is tied to metabolic hormones like insulin, leptin and thyroid, extracellular environment, mitochondria function, nutrient substrate, availability, and environmental stressors. Although matured spermatozoa utilize glucose directly, it is not the preferred energy substrate for germ cells as they rely on Sertoli cells to supply lactate. The reproductive potential of sperm cells depends on certain modifications like hyperactivated motility, which is mainly dependent on glucose metabolism. Without other energy sources, spermatozoa utilize their internal lipid stores. The uptake and metabolism of glucose by sperm are essential endpoints for determining the potential fertility of male individuals. The biological energy in sperm cells fuels all the physiological processes they engage in, from their deposition in the female reproductive tract to the point where they fertilize an egg. This article thus reviews facts pertinent to the energy metabolism of male germ cells and Sertoli cells.
Collapse
Affiliation(s)
- Damilare Emmanuel Rotimi
- Department of Biochemistry, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- SDG 3, Good Health & Well-being, Landmark University, Nigeria
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthew Iyobhebhe
- Department of Biochemistry, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- SDG 3, Good Health & Well-being, Landmark University, Nigeria
| | - Elizabeth Temidayo Oluwayemi
- Department of Biochemistry, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- SDG 3, Good Health & Well-being, Landmark University, Nigeria
| | | | | | | | - Rotdelmwa Maimako Asaleye
- Department of Life and Consumer Sciences University of South Africa Private Bag X06, Florida, 1710, South Africa
| | - Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Group, Biochemistry Programme, Bowen University, Iwo, 232101, Nigeria
- Good Health and Wellbeing Research Clusters (SDG 03), Bowen University, Iwo 232102, Nigeria
| |
Collapse
|
4
|
Rotimi DE, Acho MA, Falana BM, Olaolu TD, Mgbojikwe I, Ojo OA, Adeyemi OS. Oxidative Stress-induced Hormonal Disruption in Male Reproduction. Reprod Sci 2024; 31:2943-2956. [PMID: 39090335 DOI: 10.1007/s43032-024-01662-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
Research into the impacts of oxidative stress (OS), and hormonal balance on reproductive potential has increased over the last 40 years possibly due to rising male infertility. Decreased antioxidant levels and increased OS in tissues result from hormonal imbalance, which in turn leads to male infertility. Increased reactive oxygen species (ROS) generation in seminal plasma has been linked to many lifestyle factors such as alcohol and tobacco use, toxicant exposure, obesity, varicocele, stress, and aging. This article provides an overview of the crosslink between OS and gonadal hormone disruption, as well as a potential mode of action in male infertility. Disrupting the equilibrium between ROS generation and the antioxidant defense mechanism in the male reproductive system may affect key hormonal regulators of male reproductive activities. Unchecked ROS production may cause direct injury on reproductive tissues or could disrupt normal regulatory mechanisms of the hypothalamic-pituitary-gonadal (HPG) axis and its interaction with other endocrine axes, both of which have negative effects on male reproductive health and can lead to male infertility.
Collapse
Affiliation(s)
- Damilare Emmanuel Rotimi
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria.
- Department of Biochemistry, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria.
| | - Marvellous A Acho
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- Department of Biochemistry, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria
| | - Babatunde Michael Falana
- Department of Animal Science, College of Agricultural Sciences, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria
| | - Tomilola Debby Olaolu
- SDG 03 Group-Good Health & Well-Being, Landmark University, Omu-Aran, 251101, Kwara State, Nigeria
- Department of Biochemistry, Landmark University, PMB 1001, Omu-Aran-251101, Nigeria
| | - Ifunaya Mgbojikwe
- Department of Biochemistry, Covenant University, Ota, Ogun State, Nigeria
| | - Oluwafemi Adeleke Ojo
- SDG 03 Group-Good Health & Well-Being, Bowen University, Iwo, 223101, Osun State, Nigeria.
- Biochemistry Programme, Bowen University, Iwo, 223101, Osun State, Nigeria.
| | - Oluyomi Stephen Adeyemi
- SDG 03 Group-Good Health & Well-Being, Bowen University, Iwo, 223101, Osun State, Nigeria
- Biochemistry Programme, Bowen University, Iwo, 223101, Osun State, Nigeria
| |
Collapse
|
5
|
Xu L, Shi M, Qin G, Lin X, Huang B. Environmental pollutant Di-(2-ethylhexyl) phthalate induces asthenozoospermia: new insights from network toxicology. Mol Divers 2024:10.1007/s11030-024-10976-9. [PMID: 39259422 DOI: 10.1007/s11030-024-10976-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
The global decline in sperm quality in men is closely associated with environmental exposure to the plasticizer Di-(2-ethylhexyl) phthalate (DEHP), but the molecular mechanisms underlying its induction of asthenozoospermia (AZS) remain incompletely understood. By integrating the toxicological targets of DEHP and differential genes in AZS patients, and combining machine learning, molecular docking, and dynamics simulations, this study successfully identified hub genes and signaling pathways induced by DEHP in AZS, aiming to provide new strategies for the prevention and treatment of this disease. A total of 26 toxicological targets were identified, with FGFR1, MMP7, and ST14 clearly defined as playing crucial regulatory roles in DEHP-induced AZS. This study also reveals that DEHP may induce reproductive system inflammation, affecting the proliferation and survival of reproductive cells, and subsequently impacting sperm vitality, possibly through regulating the mTORC1 pathway, TNF-α signaling via the NF-κB pathway, and MYC targets v1 pathway. Furthermore, changes in the immune microenvironment revealed the significant impact of immune status on testicular function. In conclusion, this study provides important scientific evidence for understanding the molecular mechanisms of AZS and developing prevention and treatment strategies based on toxicological targets.
Collapse
Affiliation(s)
- Lei Xu
- The First School of Clinical Medicine, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Menghua Shi
- The First School of Clinical Medicine, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Guozheng Qin
- The First School of Clinical Medicine, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
- Yunnan Provincial Hospital of Chinese Medicine, Kunming, 650021, Yunnan, China
| | - Xuyao Lin
- The First School of Clinical Medicine, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China.
| | - Bin Huang
- The First School of Clinical Medicine, College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China.
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
| |
Collapse
|
6
|
Cham TC, Ibtisham F, Al-Dissi A, Honaramooz A. An in vitro testicular organoid model for the study of testis morphogenesis, somatic cell maturation, endocrine function, and toxicological assessment of endocrine disruptors. Reprod Toxicol 2024; 128:108645. [PMID: 38897308 DOI: 10.1016/j.reprotox.2024.108645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Male reproductive capacity has fallen considerably in recent decades; in addition, the incidence of testicular cancer has increased in many developed countries. The cause of this phenomenon is unknown, but environmental toxicants are considered a major contributing factor. To study potential reproductive toxicants, robust in vitro testis models are needed. We have recently established a porcine testis organoid system with a high resemblance to the architectures of innate testis tissue. Here, we further investigated the testis morphogenesis, cell maturation, and endocrine function of the testis organoids. We also challenged this system with abiraterone, a steroidogenic inhibitor, to validate its suitability as an in vitro platform for endocrine toxicology tests. Our results showed that the testis cells in the organoids reorganize into testis cordal structures, and the cordal relative areas increase in the organoids over time of culture. Moreover, the diameters and cell numbers per cross-section of the cordal structures increased over time. Interestingly, Sertoli cells in the organoids gradually underwent maturational changes by showing increased expression of androgen receptors, decreased expression of the anti-müllerian hormone, and formation of the blood-testis barrier. Next, we confirmed that the organoids respond to hormonal stimulation and release multiple sex hormones, including testosterone, estradiol, and progesterone. Finally, we showed that the production of testosterone and estradiol in this system can be inhibited in response to the steroidogenic inhibitor. Taken together, our organoid system provides a promising in vitro platform for male reproductive toxicology studies on testis morphogenesis, somatic cell maturation, and endocrine production.
Collapse
Affiliation(s)
- Tat-Chuan Cham
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Fahar Ibtisham
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Ahmad Al-Dissi
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.
| |
Collapse
|
7
|
Chen X, Zhang J, Cao X, Jiang H, Wu Z, Zeng ZD, Jiang C, Chen H. SIKVAV promotion proliferation of vascular endothelial cells and related mechanisms. Biomed Mater Eng 2024:BME240018. [PMID: 39240620 DOI: 10.3233/bme-240018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
BACKGROUND Vascular endothelial injury, a key factor in diabetic foot ulcers (DFUs) pathogenesis, is linked to the impaired proliferation and migration of vascular endothelial cells, modulated by hypoxia-inducible factor, growth factors, and inflammatory elements. OBJECTIVE The present study assesses the role of SIKVAV (Ser-Ile-Lys-Val-Ala-Val), a peptide shown to enhance cell proliferation and migration, on mouse aortic endothelial cell (MAEC) and the corresponding molecular mechanisms. METHODS MAEC were treated with SIKVAV at 0, 100, 200, 400, and 600 μg/mL for 0, 24, 48, and 72 h. Cell viability was tested using the CCK-8 assay. Proliferating cell nuclear antigen (PCNA), extracellular signal-regulated kinase 1/2 (ERK1/2), and protein kinase B (Akt) levels were measured by qRT-PCR and western blot. RESULTS SIKVAV augmented PCNA mRNA expression and stimulated vascular endothelial cell proliferation in a concentration and time-dependent fashion. Furthermore, it amplified the expression of p-ERK1/2 and p-Akt, pivotal components of the mitogen-activated protein kinase (MAPK)/ERK1/2 and phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathways. The inhibition of these pathways suppressed PCNA mRNA expression, cell proliferation rate, and decreased p-ERK1/2 and p-Akt levels, highlighting SIKVAV's role in promoting vascular endothelial cell proliferation via these pathways. CONCLUSION The results of this study confirmed that SIKVAV grafted onto scaffolds can accelerate the proliferation of vascular endothelial cells for the therapy of skin wounds, and provide a theoretical basis for its application in ischemic disease as synthesized biomaterials scaffolds of tissue engineering.
Collapse
Affiliation(s)
- Xionglin Chen
- Department of Histology, Embryology and Medical Genetics, Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, China
| | - Jie Zhang
- Department of Histology, Embryology and Medical Genetics, Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, China
| | - Xiaoming Cao
- Department of Anatomy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, China
| | - He Jiang
- Department of Histology, Embryology and Medical Genetics, Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, China
| | - Zhiren Wu
- Department of Preventive Medicine, School of Basic Medical Sciences, Jiujiang University, Jiujiang, China
| | - Zi du Zeng
- Department of Preventive Medicine, School of Basic Medical Sciences, Jiujiang University, Jiujiang, China
| | - Chen Jiang
- Department of Oral medicine, School School of Basic Medical Sciences, Jiujiang University, Jiujiang, China
| | - Hui Chen
- Department of Anatomy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, China
| |
Collapse
|
8
|
Ma R, Cui Y, Yu SJ, Pan YY, He JF, Wang YY, Zhao L, Bai XF, Yang SS. Whole transcriptome sequencing revealed the gene regulatory network of hypoxic response in yak Sertoli cells. Sci Rep 2024; 14:19903. [PMID: 39191828 DOI: 10.1038/s41598-024-69458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Yaks live in the Qinghai-Tibet Plateau for a long time where oxygen is scarce, but can ensure the smooth development of testis and spermatogenesis. The key lies in the functional regulation of the Sertoli cells under hypoxia. In this study, we sequenced yak Sertoli cells cultured in normal oxygen concentration (Normoxia) and treated with low oxygen concentration (Hypoxia) by whole transcriptomics, and screened out 194 differentially expressed mRNAs (DEmRNAs), 934 differentially expressed LncRNAs (DELncRNAs) and 129 differentially expressed miRNAs (DEmiRNAs). GO and KEGG analysis showed that these differential genes were mainly concentrated in PI3K-AKT, MAPK, RAS, and other signaling pathways, and were associated with glucose metabolism, tight junction, steroid hormone synthesis, cell fusion, and immunity of yak Sertoli cells. We constructed the gene interaction network of yak Sertoli cells in hypoxia and screened out the relationship pairs related to glucose metabolism and tight junction. The results suggested that the changes in energy metabolism, tight junction, and immune regulation of yak Sertoli cells under hypoxia might provide favorable conditions for spermatogenesis. This study provides data for further study on the role of non-coding RNA in testis development and spermatogenesis of yak.
Collapse
Affiliation(s)
- Rui Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, 730070, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, 730070, China.
| | - Si-Jiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, 730070, China.
| | - Yang-Yang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, 730070, China
| | - Jun-Feng He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, 730070, China
| | - Ya-Ying Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, 730070, China
| | - Ling Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, 730070, China
| | - Xue-Feng Bai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, 730070, China
| | - Shan-Shan Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Province Livestock Embryo Engineering Research Center, Lanzhou, 730070, China
| |
Collapse
|
9
|
Zhang BY, Yang R, Zhu WQ, Zhu CL, Chen LX, Zhao YS, Zhang Y, Wang YQ, Jiang DZ, Tang B, Zhang XM. Schisandrin B alleviates testicular inflammation and Sertoli cell apoptosis via AR-JNK pathway. Sci Rep 2024; 14:18418. [PMID: 39117695 PMCID: PMC11310458 DOI: 10.1038/s41598-024-69389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Bacterial testicular inflammation is one of the important causes of male infertility. Using plant-derived compounds to overcome the side effects of antibiotics is an alternative treatment strategy for many diseases. Schizandrin B (SchB) is a bioactive compound of herbal medicine Schisandra chinensis which has multiple pharmacological effects. However its effect and the mechanism against testicular inflammation are unknown. Here we tackled these questions using models of lipopolysaccharide (LPS)-induced mice and -Sertoli cells (SCs). Histologically, SchB ameliorated the LPS-induced damages of the seminiferous epithelium and blood-testicular barrier, and reduced the production of pro-inflammatory mediators in mouse testes. Furthermore, SchB decreased the levels of pro-inflammatory mediators and inhibited the nuclear factor kB (NF-κB) and MAPK (especially JNK) signaling pathway phosphorylation in LPS-induced mSCs. The bioinformatics analysis based on receptor prediction and the molecular docking was further conducted. We targeted androgen receptor (AR) and illustrated that AR might bind with SchB in its function. Further experiments indicate that the AR expression was upregulated by LPS stimulation, while SchB treatment reversed this phenomenon; similarly, the expression of the JNK-related proteins and apoptotic-related protein were also reversed after AR activator treatment. Together, SchB mitigates LPS-induced inflammation and apoptosis by inhibiting the AR-JNK pathway.
Collapse
Affiliation(s)
- Bo-Yang Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Rui Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wen-Qian Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chun-Ling Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Lan-Xin Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yan-Sen Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yan Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yue-Qi Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Dao-Zhen Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bo Tang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xue-Ming Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
10
|
Mohammadi A, Shabani R, Bashiri Z, Rafiei S, Asgari H, Koruji M. Therapeutic potential of exosomes in spermatogenesis regulation and male infertility. Biol Cell 2024; 116:e2300127. [PMID: 38593304 DOI: 10.1111/boc.202300127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Spermatogenesis is a fundamental process crucial for male reproductive health and fertility. Exosomes, small membranous vesicles released by various cell types, have recently garnered attention for their role in intercellular communication. OBJECTIVE This review aims to comprehensively explore the role of exosomes in regulating spermatogenesis, focusing on their involvement in testicular development and cell-to-cell communication. METHODS A systematic examination of literature was conducted to gather relevant studies elucidating the biogenesis, composition, and functions of exosomes in the context of spermatogenesis. RESULTS Exosomes play a pivotal role in orchestrating the complex signaling networks required for proper spermatogenesis. They facilitate the transfer of key regulatory molecules between different cell populations within the testes, including Sertoli cells, Leydig cells, and germ cells. CONCLUSION The emerging understanding of exosome-mediated communication sheds light on novel mechanisms underlying spermatogenesis regulation. Further research in this area holds promise for insights into male reproductive health and potential therapeutic interventions.
Collapse
Affiliation(s)
- Amirhossein Mohammadi
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Bashiri
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Omid Fertility & Infertility Clinic, Hamedan, Iran
| | - Sara Rafiei
- Department of Botany and Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Hamidreza Asgari
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Li Y, Song P, Zhao J, Zhang W, Liu X, Lv X, Zhao J. Neonatal vitamin A supplementation improves sheep fertility potential. Front Vet Sci 2024; 11:1370576. [PMID: 38756517 PMCID: PMC11097686 DOI: 10.3389/fvets.2024.1370576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
This study aimed to explore the effects of neonatal vitamin A (VA) supplementation on testis development and spermatogenesis. A total of 32 newborn lambs were intramuscularly injected with corn oil (control group) or corn oil + 2500 IU/kg BW VA (VA group). They were slaughtered and sampled at 3 weeks and 8 months of age to analyze spermatogenesis, cell proliferation, hormone secretion, antioxidant status of the testis, and adult sheep sperm parameters. Compared with the control group, the expression of spermatogonial differentiation-related genes in VA group was up-regulated (P < 0.05). Testis weight, seminiferous tubule diameter, number of spermatogonium and spermatocyte, and sperm density increased significantly in VA group at 8 months of age (P < 0.05). Neonatal VA injection upregulated the expression of the cell proliferation marker PCNA and cell cycle-related genes in the testis (P < 0.05). VA increased the concentrations of testosterone (T), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) in the serum and upregulated steroidogenesis-related genes in the testis (P < 0.05). The antioxidant levels in the VA group were maintained at high levels. The total antioxidant capacity (T-AOC), antioxidant enzyme content and antioxidant-related genes were increased in the testis (P < 0.05). Furthermore, neonatal VA injection activated retinoic acid (RA) signaling to maintain the blood-testosterone barrier (BTB) in the testis of 3-week-old sheep. AMP-activated protein kinase (AMPK) and protein kinase B (AKT) signaling were also modulated in the sheep testis (P < 0.05). Taken together, VA supplementation in newborn rams promotes testis development and spermatogenesis to improve fertility.
Collapse
Affiliation(s)
- Yating Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Pengkang Song
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jiamin Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Weipeng Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Xiangdong Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Xiaoyang Lv
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou, Jiangsu, China
| | - Junxing Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| |
Collapse
|
12
|
Baysal M, Karaduman AB, Korkut Çelikateş B, Atlı-Eklioğlu Ö, Ilgın S. Assessment of the toxicity of different antiretroviral drugs and their combinations on Sertoli and Leydig cells. Drug Chem Toxicol 2024:1-9. [PMID: 38647040 DOI: 10.1080/01480545.2024.2336506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
The human immunodeficiency virus continues to pose a significant global public health challenge, affecting millions of individuals. The current treatment strategy has incorporated the utilization of combinations of antiretroviral drugs. The administration of these drugs is associated with many deleterious consequences on several physiological systems, notably the reproductive system. This study aimed to assess the toxic effects of abacavir sulfate, ritonavir, nevirapine, and zidovudine, as well as their combinations, on TM3 Leydig and TM4 Sertoli cells. The cell viability was gauged using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) and neutral red uptake (NRU) assays. Reactive oxygen species (ROS) production was assessed via the 2',7'-dichlorofluorescein diacetate (DCFDA) test, and DNA damage was determined using the comet assay. Results indicated cytotoxic effects at low drug concentrations, both individually and combined. The administration of drugs, individually and in combination, resulted in the production of ROS and caused damage to the DNA at the tested concentrations. In conclusion, the results of this study suggest that the administration of antiretroviral drugs can lead to testicular toxicity by promoting the generation of ROS and DNA damage. Furthermore, it should be noted that the toxicity of antiretroviral drug combinations was shown to be higher compared to that of individual drugs.
Collapse
Affiliation(s)
- Merve Baysal
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Abdullah Burak Karaduman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Büşra Korkut Çelikateş
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Özlem Atlı-Eklioğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Sinem Ilgın
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
13
|
Gao X, Xu K, Du W, Wang S, Jiang M, Wang Y, Han Q, Chen M. Comparing the effects and mechanisms of exposure to polystyrene nanoplastics with different functional groups on the male reproductive system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171299. [PMID: 38423318 DOI: 10.1016/j.scitotenv.2024.171299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/14/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
After aging in the environment, some nanoplastics will carry different charges and functional groups, thereby altering their toxicological effects. To evaluate the potential impact of aging of nanoplastics on the mammalian reproductive system, we exposed C57BL/6 male mice to a dose of 5 mg/kg/d polystyrene nanoparticles (PS-NPs) with different functional groups (unmodified, carboxyl functionalized and amino functionalized) for 45 days for this study. The results suggest that PS-NPs with different functional groups triggered oxidative stress, a decreased in the testis index, disruption of the outer wall of the seminiferous tubules, reduction in the number of spermatogonia cells and sperm counts, and an increased in sperm malformations. We performed GO and KEGG enrichment analysis on the differentially expressed proteins, and found they were mainly enriched in protein transport, RNA splicing and mTOR signaling. We confirmed that the PI3K-AKT-mTOR pathway is over activated, which may lead to reduction of spermatogonia stem cells by over differentiation. Strikingly, PS-NPs with functional group modifications are more toxic than those of unmodified polystyrene, and that PS-NPs with positively charged amino modifications are the most toxic. This study provides a new understanding for correctly evaluating the toxicological effects of plastic aging, and of the mechanism responsible for the reproductive toxicity caused by nanoplastics.
Collapse
Affiliation(s)
- Xiao Gao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Ke Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Wanting Du
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Shuxin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Mengling Jiang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Yunyi Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Qi Han
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China.
| |
Collapse
|
14
|
Amarilla MS, Glienke L, Munduruca Pires T, Sobarzo CM, Oxilia HG, Fulco MF, Rodríguez Peña M, Maio MB, Ferrer Viñals D, Lustig L, Jacobo PV, Theas MS. Impaired Spermatogenesis in Infertile Patients with Orchitis and Experimental Autoimmune Orchitis in Rats. BIOLOGY 2024; 13:278. [PMID: 38666890 PMCID: PMC11048156 DOI: 10.3390/biology13040278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Experimental autoimmune orchitis (EAO) is a well-established rodent model of organ-specific autoimmunity associated with infertility in which the testis immunohistopathology has been extensively studied. In contrast, analysis of testis biopsies from infertile patients associated with inflammation has been more limited. In this work, testicular biopsies from patients with idiopathic non-obstructive azoospermia diagnosed with hypospermatogenesis (HypoSp) [mild: n = 9, and severe: n = 11], with obstructive azoospermia and complete Sp (spermatogenesis) (control group, C, n = 9), and from Sertoli cell-only syndrome (SCOS, n = 9) were analyzed for the presence of immune cells, spermatogonia and Sertoli cell (SCs) alterations, and reproductive hormones levels. These parameters were compared with those obtained in rats with EAO. The presence of increased CD45+ cells in the seminiferous tubules (STs) wall and lumen in severe HypoSp is associated with increased numbers of apoptotic meiotic germ cells and decreased populations of undifferentiated and differentiated spermatogonia. The SCs showed an immature profile with the highest expression of AMH in patients with SCOS and severe HypoSp. In SCOS patients, the amount of SCs/ST and Ki67+ SCs/ST increased and correlated with high serum FSH levels and CD45+ cells. In the severe phase of EAO, immune cell infiltration and apoptosis of meiotic germ cells increased and the number of undifferentiated and differentiated spermatogonia was lowest, as previously reported. Here, we found that orchitis leads to reduced sperm number, viability, and motility. SCs were mature (AMH-) but increased in number, with Ki67+ observed in severely damaged STs and associated with the highest levels of FSH and inflammatory cells. Our findings demonstrate that in a scenario where a chronic inflammatory process is underway, FSH levels, immune cell infiltration, and immature phenotypes of SCs are associated with severe changes in spermatogenesis, leading to azoospermia. Furthermore, AMH and Ki67 expression in SCs is a distinctive marker of severe alterations of STs in human orchitis.
Collapse
Affiliation(s)
- María Sofía Amarilla
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
| | - Leilane Glienke
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| | - Thaisy Munduruca Pires
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| | - Cristian Marcelo Sobarzo
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| | - Hernán Gustavo Oxilia
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
- Anatomía Patológica, Hospital General de Agudos Parmenio Piñero, Varela 1301, Ciudad Autónoma de Buenos Aires C1406ELA, Argentina
| | - María Florencia Fulco
- Hospital de Clínicas General San Martín, Av. Córdoba 2351 (C1120AAR), Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (M.F.F.); (M.R.P.)
| | - Marcelo Rodríguez Peña
- Hospital de Clínicas General San Martín, Av. Córdoba 2351 (C1120AAR), Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (M.F.F.); (M.R.P.)
| | - María Belén Maio
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
| | - Denisse Ferrer Viñals
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
| | - Livia Lustig
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| | - Patricia Verónica Jacobo
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| | - María Susana Theas
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| |
Collapse
|
15
|
Mohammadi A, Bashiri Z, Rafiei S, Asgari H, Shabani R, Hosseini S, Koruji M. Testicular niche repair after gonadotoxic treatments: Current knowledge and future directions. Biol Cell 2024; 116:e2300123. [PMID: 38470182 DOI: 10.1111/boc.202300123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024]
Abstract
The testicular niche, which includes the germ cells, somatic cells, and extracellular matrix, plays a crucial role in maintaining the proper functions of the testis. Gonadotoxic treatments, such as chemotherapy and radiation therapy, have significantly improved the survival rates of cancer patients but have also been shown to have adverse effects on the testicular microenvironment. Therefore, repairing the testicular niche after gonadotoxic treatments is essential to restore its function. In recent years, several approaches, such as stem cell transplantation, gene therapy, growth factor therapy, and pharmacological interventions have been proposed as potential therapeutic strategies to repair the testicular niche. This comprehensive review aims to provide an overview of the current understanding of testis damage and repair mechanisms. We will cover a range of topics, including the mechanism of gonadotoxic action, repair mechanisms, and treatment approaches. Overall, this review highlights the importance of repairing the testicular niche after gonadotoxic treatments and identifies potential avenues for future research to improve the outcomes for cancer survivors.
Collapse
Affiliation(s)
- Amirhossein Mohammadi
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Bashiri
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Omid Fertility & Infertility Clinic, Hamedan, Iran
| | - Sara Rafiei
- Department of Botany and Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Hamidreza Asgari
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - SeyedJamal Hosseini
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Pawlicki P, Yurdakok-Dikmen B, Tworzydlo W, Kotula-Balak M. Toward understanding the role of the interstitial tissue architects: Possible functions of telocytes in the male gonad. Theriogenology 2024; 217:25-36. [PMID: 38241912 DOI: 10.1016/j.theriogenology.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Telocytes represent a relatively recently discovered population of interstitial cells with a unique morphological structure that distinguishes them from other neighboring cells. Through their long protrusions extending from the cell body, telocytes create microenvironments via tissue compartmentalization and create homo- and hetero-cellular junctions. These establish a three-dimensional network enabling the maintenance of interstitial compartment homeostasis through regulation of extracellular matrix organization and activity, structural support, paracrine and juxtracrine communication, immunomodulation, immune surveillance, cell survival, and apoptosis. The presence of telocytes has also been confirmed in testicular interstitial tissue of many species of animals. The objective of this review is to summarize recent findings on telocytes in the male gonad, on which conclusions have been deduced that indicate the involvement of telocytes in maintaining the cytoarchitecture of the testicular interstitial tissue, in the processes of spermatogenesis and steroidogenesis, and photoperiod-mediated changes in the testes in seasonally reproductive animals.
Collapse
Affiliation(s)
- Piotr Pawlicki
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, 30-248, Krakow, Poland.
| | - Begum Yurdakok-Dikmen
- Department of Pharmacology and Toxicology, Ankara University Faculty of Veterinary Medicine, Ankara, 06110, Dışkapı, Turkey.
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-385, Krakow, Poland.
| | - Malgorzata Kotula-Balak
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland.
| |
Collapse
|
17
|
Pei S, Wang Z, Liu Y, Xu Y, Bai J, Li W, Li F, Yue X. Transcriptomic analysis of the HPG axis-related tissues reveals potential candidate genes and regulatory pathways associated with testicular size in Hu sheep. Theriogenology 2024; 216:168-176. [PMID: 38185016 DOI: 10.1016/j.theriogenology.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Testicular size is an excellent proxy for selecting high-fertility rams. The hypothalamus-pituitary-gonadal (HPG) axis plays an important role in regulating reproductive capacity in vertebrates, while key genes and regulatory pathways within the HPG axis associated with testicular size remain largely unknown in sheep. This study comprehensively compared the transcriptomic profiles in the hypothalamus, pituitary and testis of rams after sexual maturity between the large-testis group (LTG, testicular weight = 454.29 ± 54.24 g) and the small-testis group (STG, testicular weight = 77.29 ± 10.76 g). In total, 914, 795 and 10518 differentially expressed genes (DEGs) were identified in the hypothalamus, pituitary and testis between LTG and STG, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that these DEGs were mainly involved in the biological processes of reproduction, biological regulation, and development process. Notably, the neuroactive ligand-receptor interaction and cAMP signaling pathways, commonly enriched by the DEGs in the hypothalamus and pituitary between two groups, were considered as two key signal pathways regulating testicular development through the HPGs axis. Weighted gene co-expression network analysis (WGCNA) identified two modules that were significantly associated with testicular size, and 97 key genes were selected with high module membership (MM) and gene significance (GS) in these two modules. Finally, a protein-protein interaction (PPI) network was constructed, and ten genes with the highest degree were represented as hub genes, including FOS, NPY, SST, F2, AGT, NTS, OXT, EDN1, VIP and TAC1. Taken together, these results provide new insights into the molecular mechanism underlying the HPG axis regulating testicular size of Hu sheep.
Collapse
Affiliation(s)
- Shengwei Pei
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhongyu Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yangkai Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yanli Xu
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Science, Urumqi, 830057, China
| | - Jingjing Bai
- Animal Husbandry and Veterinary Extension Station of Wuwei City, Wuwei, 733000, China
| | - Wanhong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Fadi Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xiangpeng Yue
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
18
|
Zheng X, Guo C, Lv Z, Li J, Jiang H, Li S, Yu L, Zhang Z. Novel findings from arsenic‑lead combined exposure in mouse testicular TM4 Sertoli cells based on transcriptomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169611. [PMID: 38157908 DOI: 10.1016/j.scitotenv.2023.169611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Arsenic (As) and lead (Pb) exist widespread in daily life, and they are common harmful substances in the environment. As and Pb pollute the environment more often in combination than in isolation. The TM4 Sertoli cell line is one of the most common normal mouse testicular Sertoli cell lines. In vitro, we found that the type of combined action of As and Pb on TM4 Sertoli cells was additive action by using the isobologram analysis. To further investigate the combined toxicity of As and Pb, we performed mRNA and miRNA sequencing on TM4 Sertoli cells exposed to As alone (4 μM NaAsO2) and AsPb combined (4 μM NaAsO2 and 150 μM PbAc), respectively. Compared with the control group, 1391 differentially expressed genes (DEGs) and 6 differentially expressed miRNAs (DEMs) were identified in the As group. Compared with the control group, 2384 DEGs and 44 DEMs were identified in the AsPb group. Compared with the As group, 387 DEGs and 4 DEMs were identified in the AsPb group. Through data analysis, we discovered for the first time that As caused the dysfunction of cholesterol synthesis and energy metabolism, and disrupted cyclic adenosine monophosphate signaling pathway and wingless/integrated (Wnt) signaling pathway in TM4 Sertoli cells. In addition to affecting cholesterol synthesis and energy metabolism, AsPb combined exposure also up-regulated the antioxidant reaction level of TM4 Sertoli cells. Meanwhile, the Wnt signaling pathway of TM4 Sertoli cells was relatively normal when exposed to AsPb. In conclusion, at the transcription level, the combined action of AsPb is not merely additive effect, but involves synergistic and antagonistic effects. The new discovery of the joint toxic mechanism of As and Pb breaks the stereotype of the combined action and provides a good theoretical basis and research clue for future study of the combined-exposure of harmful materials.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Changming Guo
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lu Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
19
|
Hariti M, Kamel A, Ghozlani A, Djennane N, Djenouhat K, Aksas K, Hamouli-Saïd Z. Disruption of spermatogenesis in testicular adult Wistar rats after short-term exposure to high dose of glyphosate based-herbicide: Histopathological and biochemical changes. Reprod Biol 2024; 24:100865. [PMID: 38402720 DOI: 10.1016/j.repbio.2024.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024]
Abstract
Glyphosate is an endocrine disruptor and can act on the activity of certain enzymes of metabolism subsequently altering some functions such as reproduction. The goal of the present study is to evaluate the involvement of glyphosate based-herbicide (GBH) in spermatogenesis disruption and to investigate which cells of the adult Wistar rat testis are most affected by short-term exposure to GBH. Treated groups received a diluted solution of GBH orally for 21 days (D1: 102.5 mg/Kg; D2: 200 mg/Kg; D3: 400 mg/Kg). The control group (C) received water in the same manner. Hormone levels, oxidative stress markers were evaluated, histological and morphometric analysis were performed, AR and p53 expression was conducted. Seminiferious epithelium sloughing associated to erosion of Sertoli and spermatogonia from the basement of the seminiferous tubules, with intraluminal exfoliated cells among with immature spermatids were observed. A significant change in morphometric measurement and significant decrease in AR expression in Sertoli cells were noted for all treated groups. A significant increase in NO level and p53 expression in Leydig cells were showed for animals treated with 200 and 400 mg/kg BW/day. These data demonstrate that short-term exposure to high doses of GBH has led to a disruption of certain parameters that could disturb spermatogenesis. The treatment showed that both Leydig and Sertoli cells are affected in the same manner by GBH, the activation of p53 expression in both Leydig cells and peritubular myloid cells nuclei, and the reduction in AR expression in Sertoli cells, which resulted in important testicular damage.
Collapse
Affiliation(s)
- Meriem Hariti
- L.B.P.O/Section Endocrinology, Faculty of Biological Sciences, USTHB, BP 32 El-Alia, Bab Ezzouar, 16 111 Algiers, Algeria.
| | - Assia Kamel
- L.B.P.O/Section Endocrinology, Faculty of Biological Sciences, USTHB, BP 32 El-Alia, Bab Ezzouar, 16 111 Algiers, Algeria
| | - Amel Ghozlani
- L.B.P.O/Section Endocrinology, Faculty of Biological Sciences, USTHB, BP 32 El-Alia, Bab Ezzouar, 16 111 Algiers, Algeria
| | - Nacima Djennane
- Faculty of Medicine - University of Algiers1 / Pathological Anatomy and Cytology Department, Mohammed Lamine Debaghine Hospital, Bab El Oued, Algeria
| | - Kamel Djenouhat
- Faculty of Medicine - University of Algiers1 / Central Laboratory, Public Hospital Etablishment of Rouiba, Algeria
| | - Kahina Aksas
- Faculty of Medicine - University of Algiers1 / Central Laboratory, Mohammed Lamine Debaghine Hospital, Bab El Oued, Algeria
| | - Zohra Hamouli-Saïd
- L.B.P.O/Section Endocrinology, Faculty of Biological Sciences, USTHB, BP 32 El-Alia, Bab Ezzouar, 16 111 Algiers, Algeria
| |
Collapse
|
20
|
Stopel A, Lev C, Dahari S, Adibi O, Armon L, Gonen N. Towards a "Testis in a Dish": Generation of Mouse Testicular Organoids that Recapitulate Testis Structure and Expression Profiles. Int J Biol Sci 2024; 20:1024-1041. [PMID: 38250158 PMCID: PMC10797687 DOI: 10.7150/ijbs.89480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
The testis is responsible for sperm production and androgen synthesis. Abnormalities in testis development and function lead to disorders of sex development and male infertility. Currently, no in vitro system exists for modelling the testis. Here, we generated testis organoids from neonatal mouse primary testicular cells using transwell inserts and show that these organoids generate tubule-like structures and cellular organization resembling that of the in vivo testis. Gene expression analysis of organoids demonstrates a profile that recapitulates that observed in in vivo testis. Embryonic testicular cells, but not adult testicular cells are also capable of forming organoids. These organoids can be maintained in culture for 8-9 weeks and shows signs of entry into meiosis. We further developed defined media compositions that promote the immature versus mature Sertoli cell and Leydig cell states, enabling organoid maturation in vitro. These testis organoids are a promising model system for basic research of testes development and function, with translational applications for elucidation and treatment of developmental sex disorders and infertility.
Collapse
Affiliation(s)
| | | | | | | | | | - Nitzan Gonen
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, 5290002, Israel
| |
Collapse
|
21
|
Panghal A, Jena G. Gut-Gonad Perturbations in Type-1 Diabetes Mellitus: Role of Dysbiosis, Oxidative Stress, Inflammation and Energy-Dysbalance. Curr Diabetes Rev 2024; 20:e220823220204. [PMID: 37608613 DOI: 10.2174/1573399820666230822151740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 08/24/2023]
Abstract
Type 1 diabetes mellitus is a major metabolic disorder that affects people of all age groups throughout the world. It is responsible for the alterations in male gonadal physiology in experimental models as well as in clinical cases. On the other side, diabetes mellitus has also been associated with perturbations in the gut physiology and microbiota dysbiosis. The accumulating evidence suggests a link between the gut and gonad as evident from the i) experimental data providing insights into type 1 diabetes mellitus induced gut perturbations, ii) link of gut physiology with alterations of testicular health, iii) role of gut microbiota in androgen metabolism in the intestine, and iv) epidemiological evidence linking type 1 diabetes mellitus with inflammatory bowel disease and male infertility. Considering all the pieces of evidence, it is summarized that gut dysbiosis, oxidative stress, inflammation and energy dys-balance are the prime factors involved in the gonadal damage under type 1 diabetes mellitus, in which the gut contributes significantly. Identification of novel biomarkers and intervention of suitable agents targeting these prime factors may be a step forward to restore the gonadal damage in diabetic conditions.
Collapse
Affiliation(s)
- Archna Panghal
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab 160062, India
| |
Collapse
|
22
|
Yang G, Li M, Yang Q, Zhai X, Halima J, Hu Q, Lei C, Dang R. Bta-miR-127 inhibits secretion, proliferation and promotes apoptosis by targeting ITGA6 in bovine Sertoli cell. Int J Biol Macromol 2023; 253:126838. [PMID: 37714242 DOI: 10.1016/j.ijbiomac.2023.126838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Sertoli cell (SC) play a critical role in the spermatogenesis process involved in male fecundity and reproductive potential. SC development is regulated by microRNAs (miRNAs). However, the effect and molecular mechanism of miRNAs and target genes on bovine immature SC remains poorly understood. In this study, bta-miR-127 overexpression in SC inhibited cell secretion, proliferation, cell viability, and S-phase cells number. However, inhibition of bta-miR-127 had the opposite effect. An over-expression of bta-miR-127 significantly promotes SC apoptosis, and bta-miR-127 inhibition can significantly inhibit this process. These results reveal that bta-miR-127 is an inhibitor of SC proliferation and secretion. A combination of transcriptome sequencing, bioinformatics analysis, and dual-luciferase reporter assay showed that ITGA6 was targeted by bta-miR-127. The small interfering RNA of ITGA6 (si-ITGA6) inhibits SC proliferation and secretion, as well as promotes apoptosis. The SC proliferation and secretion marker genes, cell viability, and S phase cell number in co-transfected si-ITGA6 + miR-127 inhibitor was significantly lower than those of the bta-miR-127 inhibitor group. These results further confirmed that bta-miR-127 targeting ITGA6 inhibits the SC proliferation and secretion, and promotes SC apoptosis. These findings proposed a novel miRNA (bta-miR-127) that impeded bovine SC proliferation and promoted SC apoptosis through downregulation of ITGA6.
Collapse
Affiliation(s)
- Ge Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Mei Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Qiwen Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiangqin Zhai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jafari Halima
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Qiaoyan Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
23
|
Yildirim OG, Guney C, Alcigir ME, Akar F. High-fructose consumption suppresses insulin signaling pathway accompanied by activation of macrophage and apoptotic markers in rat testis. Reprod Biol 2023; 23:100815. [PMID: 37839228 DOI: 10.1016/j.repbio.2023.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/12/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
Dietary high-fructose may cause metabolic disturbances; however, its effect on the reproductive system is little understood. The insulin signaling pathway is critical in testicular development, maintenance of microcirculation and spermatogenesis. Therefore, in this study, we aimed to investigate the impact of dietary high-fructose on insulin signaling pathway as well as macrophage and apoptotic markers in testicular tissue of rats. Fructose was administered to male Wistar rats as a 20% solution in drinking water for fifteen-week. Gene expression of ir-β, irs-1, irs-2, pi3k, akt, mtor, and enos in the testicular samples was determined by real-time PCR. Protein expression of IR, IRS-1, IRS-2, PI3K, Akt, phospho-Akt (p-Akt), mTOR, eNOS, phospho-eNOS (p-eNOS), and GLUT5 was established by analysis of Western Blot. Testicular expression of occludin, CD163, CD68, caspase-8, and caspase-3 was analyzed by using immunohistochemical assay. Testicular level of fructose was measured by colorimetric method. Dietary high-fructose decreased mRNA expressions of irs-1, irs-2, pi3k, and mtor in the testicular tissue of rats. Also, this dietary intervention impaired protein expressions of IR, IRS-1, IRS-2, PI3K, p-Akt, mTOR, eNOS, and p-eNOS as well as p-Akt/Akt and p-eNOS/eNOS ratios in the testis of rats. However, a high-fructose diet increased the expression of CD163, CD68, caspase-8 and caspase-3, but decreased that of occludin, in the testicular tissue of rats. The high-fructose consumption in rats suppresses testicular insulin signaling but activates macrophages-related factors and apoptotic markers. These changes induced by dietary fructose could be related to male reproductive dysfunction.
Collapse
Affiliation(s)
- Onur Gökhan Yildirim
- Department of Pharmacy Services, Vocational School of Health Services, Artvin Coruh University, Artvin, Turkey
| | - Ceren Guney
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Mehmet Eray Alcigir
- Department of Pathology, Faculty of Veterinary Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| |
Collapse
|
24
|
Salehi N, Totonchi M. The construction of a testis transcriptional cell atlas from embryo to adult reveals various somatic cells and their molecular roles. J Transl Med 2023; 21:859. [PMID: 38012716 PMCID: PMC10680190 DOI: 10.1186/s12967-023-04722-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The testis is a complex organ that undergoes extensive developmental changes from the embryonic stage to adulthood. The development of germ cells, which give rise to spermatozoa, is tightly regulated by the surrounding somatic cells. METHODS To better understand the dynamics of these changes, we constructed a transcriptional cell atlas of the testis, integrating single-cell RNA sequencing data from over 26,000 cells across five developmental stages: fetal germ cells, infants, childhood, peri-puberty, and adults. We employed various analytical techniques, including clustering, cell type assignments, identification of differentially expressed genes, pseudotime analysis, weighted gene co-expression network analysis, and evaluation of paracrine cell-cell communication, to comprehensively analyze this transcriptional cell atlas of the testis. RESULTS Our analysis revealed remarkable heterogeneity in both somatic and germ cell populations, with the highest diversity observed in Sertoli and Myoid somatic cells, as well as in spermatogonia, spermatocyte, and spermatid germ cells. We also identified key somatic cell genes, including RPL39, RPL10, RPL13A, FTH1, RPS2, and RPL18A, which were highly influential in the weighted gene co-expression network of the testis transcriptional cell atlas and have been previously implicated in male infertility. Additionally, our analysis of paracrine cell-cell communication supported specific ligand-receptor interactions involved in neuroactive, cAMP, and estrogen signaling pathways, which support the crucial role of somatic cells in regulating germ cell development. CONCLUSIONS Overall, our transcriptional atlas provides a comprehensive view of the cell-to-cell heterogeneity in the testis and identifies key somatic cell genes and pathways that play a central role in male fertility across developmental stages.
Collapse
Affiliation(s)
- Najmeh Salehi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
25
|
Zhao MJ, Zhang YN, Zhao YP, Chen XB, Han BS, Ding N, Gu YQ, Wang SS, Ma J, Liu ML. Altered microRNA expression profiles of human spermatozoa in normal fertile men of different ages. Asian J Androl 2023; 25:737-744. [PMID: 37147937 DOI: 10.4103/aja20238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/13/2023] [Indexed: 05/07/2023] Open
Abstract
MicroRNAs (miRNAs) are mediators of the aging process. The purpose of this work was to analyze the miRNA expression profiles of spermatozoa from men of different ages with normal fertility. Twenty-seven donors were divided into three groups by age (Group A, n = 8, age: 20-30 years; Group B, n = 10, age: 31-40 years; and Group C, n = 9, age: 41-55 years) for high-throughput sequencing analysis. Samples from 65 individuals (22, 22, and 21 in Groups A, B, and C, respectively) were used for validation by quantitative real-time polymerase chain reaction (qRT-PCR). A total of 2160 miRNAs were detected: 1223 were known, 937 were newly discovered and unnamed, of which 191 were expressed in all donors. A total of 7, 5, and 17 differentially expressed microRNAs (DEMs) were found in Group A vs B, Group B vs C, and Group A vs C comparisons, respectively. Twenty-two miRNAs were statistically correlated with age. Twelve miRNAs were identified as age-associated miRNAs, including hsa-miR-127-3p, mmu-miR-5100_L+2R-1, efu-miR-9226_L-2_1ss22GA, cgr-miR-1260_L+1, hsa-miR-652-3p_R+1, pal-miR-9993a-3p_L+2R-1, hsa-miR-7977_1ss6AG, hsa-miR-106b-3p_R-1, hsa-miR-186-5p, PC-3p-59611_111, hsa-miR-93-3p_R+1, and aeca-mir-8986a-p5_1ss1GA. There were 9165 target genes of age-associated miRNAs. Gene Ontology (GO) analysis of the target genes identified revealed enrichment of protein binding, membrane, cell cycle, and so on. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of age-related miRNAs for target genes revealed 139 enriched pathways, such as signaling pathways regulating stem cell pluripotency, metabolic pathways, and the Hippo signaling pathway. This suggests that miRNAs play a key role in male fertility changes with increasing age and provides new evidence for the study of the mechanism of age-related male fertility decline.
Collapse
Affiliation(s)
- Ming-Jia Zhao
- Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- National Health Commission Key Laboratory of Male Reproductive Health, National Research Institute for Family Planning, Beijing 100081, China
- Department of Reproduction and Genetics, Maternity and Child Health Care Hospital, Tangshan 063000, China
| | - Yao-Nan Zhang
- National Health Commission Key Laboratory of Male Reproductive Health, National Research Institute for Family Planning, Beijing 100081, China
| | - Yong-Ping Zhao
- Department of Family Planning and Reproductive Medicine, Peking University People's Hospital, Beijing 100081, China
| | - Xian-Bing Chen
- Department of Family Planning and Reproductive Medicine, Peking University People's Hospital, Beijing 100081, China
| | - Bao-Sheng Han
- Department of Reproduction and Genetics, Maternity and Child Health Care Hospital, Tangshan 063000, China
| | - Ning Ding
- National Health Commission Key Laboratory of Male Reproductive Health, National Research Institute for Family Planning, Beijing 100081, China
| | - Yi-Qun Gu
- Graduate School of Peking Union Medical College, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- National Health Commission Key Laboratory of Male Reproductive Health, National Research Institute for Family Planning, Beijing 100081, China
| | - Shu-Song Wang
- Hebei Key Laboratory of Reproductive Medicine, Hebei Institute of Reproductive Health Science and Technology, Shijiazhuang 050071, China
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Institute of Reproductive Health Science and Technology, Shijiazhuang 050071, China
| | - Mei-Ling Liu
- National Health Commission Key Laboratory of Male Reproductive Health, National Research Institute for Family Planning, Beijing 100081, China
| |
Collapse
|
26
|
Centola CL, Dasso ME, Soria JD, Riera MF, Meroni SB, Galardo MN. Glycolysis as key regulatory step in FSH-induced rat Sertoli cell proliferation: Role of the mTORC1 pathway. Biochimie 2023; 214:145-156. [PMID: 37442535 DOI: 10.1016/j.biochi.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/09/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
The definitive number of Sertoli cells (SCs), achieved during the proliferative periods, defines the spermatogenic capacity in adulthood. It is recognized that FSH is the main mitogen targeting SC and that it exerts its action, at least partly, through the activation of the PI3K/Akt/mTORC1 pathway. mTORC1 controls a large number of cellular functions, including glycolysis and cell proliferation. Interestingly, recent evidence revealed that the glycolytic flux might modulate mTORC1 activity and, consequently, cell cycle progression. Although mature SC metabolism has been thoroughly studied, several aspects of metabolism regulation in proliferating SC are still to be elucidated. The objective of this study was to explore whether aerobic glycolysis is regulated by FSH through mTORC1 pathway in proliferating SC, and to assess the involvement of glycolysis in the regulation of SC proliferation. The present study was carried out utilizing 8-day-old rat SC cultures. The results obtained show that FSH enhances glycolytic flux through the induction of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) and lactate dehydrogenase A (LDHA) in an mTORC1 dependent manner. In addition, PFKFB3 and LDH inhibitors prevent FSH from activating mTORC1 and stimulating SC proliferation and glycolysis, presumably through mTORC1 pathway inhibition. In summary, FSH simultaneously regulates SC proliferation and glycolysis in an mTORC1 dependent manner, and glycolysis seems to cooperate with FSH in the stimulation of both cellular functions through the modulation of the same signalling pathway. Therefore, a positive feedback between the mTORC1 pathway and glycolysis triggered by FSH is hypothesized.
Collapse
Affiliation(s)
- Cecilia Lucia Centola
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Marina Ercilia Dasso
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julio Daniel Soria
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Fernanda Riera
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvina Beatriz Meroni
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Noel Galardo
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
27
|
Hüneke H, Langeheine M, Rode K, Jung K, Pilatz A, Fietz D, Kliesch S, Brehm R. Effects of a Sertoli cell-specific knockout of Connexin43 on maturation and proliferation of postnatal Sertoli cells. Differentiation 2023; 134:31-51. [PMID: 37839230 DOI: 10.1016/j.diff.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023]
Abstract
Adult male Sertoli cell-specific Connexin43 knockout mice (SCCx43KO) exhibit higher Sertoli cell (SC) numbers per seminiferous tubule compared to their wild type (WT) littermates. Thus, deletion of this testicular gap junction protein seems to affect the proliferative potential and differentiation of "younger" SC. Although SC have so far mostly been characterised as postmitotic cells that cease to divide and become an adult, terminally differentiated cell population at around puberty, there is rising evidence that there exist exceptions from this for a very long time accepted paradigm. Aim of this study was to investigate postnatal SC development and to figure out underlying causes for observed higher SC numbers in adult KO mice. Therefore, the amount of SC mitotic figures was compared, resulting in slightly more and prolonged detection of SC mitotic figures in KO mice compared to WT. SC counting per tubular cross section revealed significantly different time curves, and comparing proliferation rates using Bromodesoxyuridine and Sox9 showed higher proliferation rates in 8-day old KO mice. SC proliferation was further investigated by Ki67 immunohistochemistry. SC in KO mice displayed a delayed initiation of cell-cycle-inhibitor p27Kip1 synthesis and prolonged synthesis of the phosphorylated tumour suppressor pRb and proliferation marker Ki67. Thus, the higher SC numbers in adult male SCCx43KO mice may arise due to two different reasons: Firstly, in prepubertal KO mice, the proliferation rate of SC was higher. Secondly, there were differences in their ability to cease proliferation as shown by the delayed initiation of p27Kip1 synthesis and the prolonged production of phosphorylated pRb and Ki67. Immunohistochemical results indicating a prolonged period of SC proliferation in SCCx43KO were confirmed by detection of proliferating SC in 17-days-old KO mice. In conclusion, deletion of the testicular gap junction protein Cx43 might prevent normal SC maturation and might even alter also the proliferation potential of adult SC.
Collapse
Affiliation(s)
- Hanna Hüneke
- Institute of Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Marion Langeheine
- Institute of Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Kristina Rode
- Institute of Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Klaus Jung
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Adrian Pilatz
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Giessen, Germany
| | - Daniela Fietz
- Department of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Germany
| | - Sabine Kliesch
- Centre of Andrology and Reproductive Medicine, University of Muenster, Muenster, Germany
| | - Ralph Brehm
- Institute of Anatomy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| |
Collapse
|
28
|
Nguyen HT, Martin LJ. Classical cadherins in the testis: how are they regulated? Reprod Fertil Dev 2023; 35:641-660. [PMID: 37717581 DOI: 10.1071/rd23084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023] Open
Abstract
Cadherins (CDH) are crucial intercellular adhesion molecules, contributing to morphogenesis and creating tissue barriers by regulating cells' movement, clustering and differentiation. In the testis, classical cadherins such as CDH1, CDH2 and CDH3 are critical to gonadogenesis by promoting the migration and the subsequent clustering of primordial germ cells with somatic cells. While CDH2 is present in both Sertoli and germ cells in rodents, CDH1 is primarily detected in undifferentiated spermatogonia. As for CDH3, its expression is mainly found in germ and pre-Sertoli cells in developing gonads until the establishment of the blood-testis barrier (BTB). This barrier is made of Sertoli cells forming intercellular junctional complexes. The restructuring of the BTB allows the movement of early spermatocytes toward the apical compartment as they differentiate during a process called spermatogenesis. CDH2 is among many junctional proteins participating in this process and is regulated by several pathways. While cytokines promote the disassembly of the BTB by enhancing junctional protein endocytosis for degradation, testosterone facilitates the assembly of the BTB by increasing the recycling of endocytosed junctional proteins. Mitogen-activated protein kinases (MAPKs) are also mediators of the BTB kinetics in many chemically induced damages in the testis. In addition to regulating Sertoli cell functions, follicle stimulating hormone can also regulate the expression of CDH2. In this review, we discuss the current knowledge on regulatory mechanisms of cadherin localisation and expression in the testis.
Collapse
Affiliation(s)
- Ha Tuyen Nguyen
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Luc J Martin
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
29
|
Li X, Lu Z, Du X, Ye Y, Zhu J, Li Y, Liu J, Zhang W. Prenatal cadmium exposure has inter-generational adverse effects on Sertoli cells through the follicle-stimulating hormone receptor pathway. Reproduction 2023; 166:271-284. [PMID: 37590121 PMCID: PMC10502957 DOI: 10.1530/rep-23-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/17/2023] [Indexed: 08/19/2023]
Abstract
In brief Exposure to cadmium (Cd) during pregnancy can potentially harm the reproductive system of male offspring. This article shows that pregnant woman should be protected from cadmium exposure. Abstract Exposure to cadmium (Cd) during pregnancy can potentially harm the reproductive system of male offspring, although the full extent of its heritable effects remains partially unresolved. In this study, we examined the inter-generational impacts of Cd using a distinct male-lineage generational model. Pregnant Sprague-Dawley female rats (F0) were administered control or cadmium chloride (0.5, 1 and 2 mg/day) via intra-gastric administration from gestation day 1 to 20. Subsequently, the first filial generation (F1) male rats were mated with untreated females (not exposed to Cd) to produce the second filial generation (F2). Histopathological analysis of the F1 and F2 generations revealed abnormal testicular development, while ultrastructural examination indicated damage to Sertoli cells. Cd exposure also led to alterations in serum hormone levels (gonadotropin-releasing hormone, follicle-stimulating hormone) and reduced follicle-stimulating hormone receptor (FSHR) protein expression in Sertoli cells in the F1 generation. Furthermore, Cd affected the mRNA and protein expression of FSHR pathway factors and DNA methyltransferase, albeit with distinct patterns and inconsistencies observed between the F1 and F2 generations. Overall, our findings indicate that prenatal Cd exposure, using a male-lineage transmission model, can induce inter-generational effects on male reproduction, particularly by causing toxicity in Sertoli cells. This effect appears to be primarily mediated through disruptions in the FSHR pathway and changes in DNA methyltransferase activity in the male testes.
Collapse
Affiliation(s)
- Xiaoqin Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Zhilan Lu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xiushuai Du
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Youbin Ye
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jianlin Zhu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| |
Collapse
|
30
|
Uyar A, Cellat M, Kanat Ö, Etyemez M, Kutlu T, Deveci MYZ, Yavaş İ, Kuzu M. Carvacrol showed a curative effect on reproductive toxicity caused by Bisphenol AF via antioxidant, anti-inflammatory and anti-apoptotic properties. Reprod Toxicol 2023; 121:108456. [PMID: 37586593 DOI: 10.1016/j.reprotox.2023.108456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Bisphenol AF (BPAF) is an endocrine disruptor, and human exposure to these chemicals is growing in industrialized nations. BPAF has been demonstrated in studies to have toxic effects on reproductive health. This study examined the effects of oral exposure to BPAF on the reproductive system and the protective effects of carvacrol in rats. From 32 Wistar albino rats, four separate groups were set up for this purpose. Carvacrol 75 mg/kg and BPAF 200 mg/kg were administered by oral gavage method. Rat sperm parameters and serum testosterone levels were measured after 28 days of administration. The study looked at the MDA in the testis tissues, as well as CAT, GPx, and GSH as antioxidants parameters, NF-κB and TNF-α as inflammatory markers, caspase-3 and Bcl-2 as apoptosis parameters, and PCNA as cell proliferation markers. In addition, testis tissues underwent histological evaluation. As a result, in rats exposed to only BPAF, sperm counts declined, testosterone levels reduced, oxidative stress, inflammation, and apoptosis increased, and cell proliferation decreased. Furthermore, severe disruptions in tissue architecture and decreased spermatogenesis were reported. In contrast, sperm parameters improved, testosterone levels increased, oxidative stress and inflammation decreased, and apoptosis was prevented in the carvacrol-treated group compared to the BPAF-only group. It was also found that spermatogenesis was maintained, and structural abnormalities in testicular tissue were mostly avoided with an increase in PCNA expression. According to the findings, despite BPAF-induced testicular and reproductive toxicity, carvacrol had therapeutic potential due to its anti-inflammatory, antioxidant, cell proliferation-increasing, and anti-apoptotic activities.
Collapse
Affiliation(s)
- Ahmet Uyar
- Department of Pathology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkiye.
| | - Mustafa Cellat
- Department of Physiology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkiye
| | - Özgür Kanat
- Department of Pathology, Faculty of Veterinary Medicine, Necmettin Erbakan University, Konya, Turkiye
| | - Muhammed Etyemez
- Department of Physiology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkiye
| | - Tuncer Kutlu
- Department of Pathology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkiye
| | - Mehmet Yılmaz Zeki Deveci
- Department of Surgery, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkiye
| | - İlker Yavaş
- Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Mustafa Kemal University, Hatay, Turkiye
| | - Müslüm Kuzu
- Karabuk University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Karabuk, Turkiye
| |
Collapse
|
31
|
Pacheco RI, Cristo MI, Anjo SI, Silva AF, Sousa MI, Tavares RS, Sousa AP, Almeida Santos T, Moura-Ramos M, Caramelo F, Manadas B, Ramalho-Santos J, Amaral SG. New Insights on Sperm Function in Male Infertility of Unknown Origin: A Multimodal Approach. Biomolecules 2023; 13:1462. [PMID: 37892144 PMCID: PMC10605211 DOI: 10.3390/biom13101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
The global trend of rising (male) infertility is concerning, and the unidentifiable causes in half of the cases, the so-called unknown origin male infertility (UOMI), demands a better understanding and assessment of both external/internal factors and mechanisms potentially involved. In this work, it was our aim to obtain new insight on UOMI, specifically on idiopathic (ID) and Unexplained male infertility (UMI), relying on a detailed evaluation of the male gamete, including functional, metabolic and proteomic aspects. For this purpose, 1114 semen samples, from males in couples seeking infertility treatment, were collected at the Reproductive Medicine Unit from the Centro Hospitalar e Universitário de Coimbra (CHUC), from July 2018-July 2022. Based on the couples' clinical data, seminal/hormonal analysis, and strict eligibility criteria, samples were categorized in 3 groups, control (CTRL), ID and UMI. Lifestyle factors and anxiety/depression symptoms were assessed via survey. Sperm samples were evaluated functionally, mitochondrially and using proteomics. The results of Assisted Reproduction Techniques were assessed whenever available. According to our results, ID patients presented the worst sperm functional profile, while UMI patients were similar to controls. The proteomic analysis revealed 145 differentially expressed proteins, 8 of which were specifically altered in ID and UMI samples. Acrosin (ACRO) and sperm acrosome membrane-associated protein 4 (SACA4) were downregulated in ID patients while laminin subunit beta-2 (LAMB2), mannose 6-phosphate isomerase (MPI), ATP-dependent 6-phosphofructokinase liver type (PFKAL), STAR domain-containing protein 10 (STA10), serotransferrin (TRFE) and exportin-2 (XPO2) were downregulated in UMI patients. Using random forest analysis, SACA4 and LAMB2 were identified as the sperm proteins with a higher chance of distinguishing ID and UMI patients, and their function and expression variation were in accordance with the functional results. No alterations were observed in terms of lifestyle and psychological factors among the 3 groups. These findings obtained in an experimental setting based on 3 well-defined groups of subjects, might help to validate new biomarkers for unknown origin male infertility (ID and UMI) that, in the future, can be used to improve diagnostics and treatments.
Collapse
Affiliation(s)
- Rita I. Pacheco
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Maria I. Cristo
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Sandra I. Anjo
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Andreia F. Silva
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Maria Inês Sousa
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Renata S. Tavares
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Ana Paula Sousa
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Eugin Coimbra, Rua Filipe Hodart 12, 3000-185 Coimbra, Portugal
| | - Teresa Almeida Santos
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Eugin Coimbra, Rua Filipe Hodart 12, 3000-185 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Mariana Moura-Ramos
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Eugin Coimbra, Rua Filipe Hodart 12, 3000-185 Coimbra, Portugal
- Center for Research in Neuropsychology and Cognitive and Behavioral Intervention, Faculty of Psychology and Educational Sciences, University of Coimbra, 3000-115 Coimbra, Portugal
- Clinical Psychology Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | | | - Bruno Manadas
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - João Ramalho-Santos
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Sandra Gomes Amaral
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
32
|
Chen C, Tang X, Yan S, Yang A, Xiang J, Deng Y, Yin Y, Chen B, Gu J. Comprehensive Analysis of the Transcriptome-Wide m 6A Methylome in Shaziling Pig Testicular Development. Int J Mol Sci 2023; 24:14475. [PMID: 37833923 PMCID: PMC10572705 DOI: 10.3390/ijms241914475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
RNA N6-methyladenosine (m6A) modification is one of the principal post-transcriptional modifications and plays a dynamic role in testicular development and spermatogenesis. However, the role of m6A in porcine testis is understudied. Here, we performed a comprehensive analysis of the m6A transcriptome-wide profile in Shaziling pig testes at birth, puberty, and maturity. We analyzed the total transcriptome m6A profile and found that the m6A patterns were highly distinct in terms of the modification of the transcriptomes during porcine testis development. We found that key m6A methylated genes (AURKC, OVOL, SOX8, ACVR2A, and SPATA46) were highly enriched during spermatogenesis and identified in spermatogenesis-related KEGG pathways, including Wnt, cAMP, mTOR, AMPK, PI3K-Akt, and spliceosome. Our findings indicated that m6A methylations are involved in the complex yet well-organized post-transcriptional regulation of porcine testicular development and spermatogenesis. We found that the m6A eraser ALKBH5 negatively regulated the proliferation of immature porcine Sertoli cells. Furthermore, we proposed a novel mechanism of m6A modification during testicular development: ALKBH5 regulated the RNA methylation level and gene expression of SOX9 mRNA. In addition to serving as a potential target for improving boar reproduction, our findings contributed to the further understanding of the regulation of m6A modifications in male reproduction.
Collapse
Affiliation(s)
- Chujie Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Xiangwei Tang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Saina Yan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Anqi Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Jiaojiao Xiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Yanhong Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Bin Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Jingjing Gu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (C.C.); (X.T.); (S.Y.); (A.Y.); (J.X.); (Y.D.); (Y.Y.)
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
33
|
Voigt AL, de Lima e Martins Lara N, Dobrinski I. Comparing the adult and pre-pubertal testis: Metabolic transitions and the change in the spermatogonial stem cell metabolic microenvironment. Andrology 2023; 11:1132-1146. [PMID: 36690000 PMCID: PMC10363251 DOI: 10.1111/andr.13397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
BACKGROUND Survivors of childhood cancer often suffer from infertility. While sperm cryopreservation is not feasible before puberty, the patient's own spermatogonial stem cells could serve as a germ cell reservoir, enabling these patients to father their own children in adulthood through the isolation, in vitro expansion, and subsequent transplantation of spermatogonial stem cells. However, this approach requires large numbers of stem cells, and methods for successfully propagating spermatogonial stem cells in the laboratory are yet to be established for higher mammals and humans. The improvement of spermatogonial stem cell culture requires deeper understanding of their metabolic requirements and the mechanisms that regulate metabolic homeostasis. AIM This review gives a summary on our knowledge of spermatogonial stem cell metabolism during maintenance and differentiation and highlights the potential influence of Sertoli cell and stem cell niche maturation on spermatogonial stem cell metabolic requirements during development. RESULTS AND CONCLUSIONS Fetal human spermatogonial stem cell precursors, or gonocytes, migrate into the seminiferous cords and supposedly mature to adult stem cells within the first year of human development. However, the spermatogonial stem cell niche does not fully differentiate until puberty, when Sertoli cells dramatically rearrange the architecture and microenvironment within the seminiferous epithelium. Consequently, pre-pubertal and adult spermatogonial stem cells experience two distinct niche environments potentially affecting spermatogonial stem cell metabolism and maturation. Indeed, the metabolic requirements of mouse primordial germ cells and pig gonocytes are distinct from their adult counterparts, and novel single-cell RNA sequencing analysis of human and porcine spermatogonial stem cells during development confirms this metabolic transition. Knowledge of the metabolic requirements and their changes and regulation during spermatogonial stem cell maturation is necessary to implement laboratory-based techniques and enable clinical use of spermatogonial stem cells. Based on the advancement in our understanding of germline metabolism circuits and maturation events of niche cells within the testis, we propose a new definition of spermatogonial stem cell maturation and its amendment in the light of metabolic change.
Collapse
Affiliation(s)
- Anna Laura Voigt
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; and Faculty of Veterinary Medicine, University of Calgary, AB, Canada
| | - Nathalia de Lima e Martins Lara
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; and Faculty of Veterinary Medicine, University of Calgary, AB, Canada
| | - Ina Dobrinski
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine; and Faculty of Veterinary Medicine, University of Calgary, AB, Canada
| |
Collapse
|
34
|
Whiley PAF, Nathaniel B, Stanton PG, Hobbs RM, Loveland KL. Spermatogonial fate in mice with increased activin A bioactivity and testicular somatic cell tumours. Front Cell Dev Biol 2023; 11:1237273. [PMID: 37564373 PMCID: PMC10409995 DOI: 10.3389/fcell.2023.1237273] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Adult male fertility depends on spermatogonial stem cells (SSCs) which undergo either self-renewal or differentiation in response to microenvironmental signals. Activin A acts on Sertoli and Leydig cells to regulate key aspects of testis development and function throughout life, including steroid production. Recognising that activin A levels are elevated in many pathophysiological conditions, this study investigates effects of this growth factor on the niche that determines spermatogonial fate. Although activin A can promote differentiation of isolated spermatogonia in vitro, its impacts on SSC and spermatogonial function in vivo are unknown. To assess this, we examined testes of Inha KO mice, which feature elevated activin A levels and bioactivity, and develop gonadal stromal cell tumours as adults. The GFRA1+ SSC-enriched population was more abundant and proliferative in Inha KO compared to wildtype controls, suggesting that chronic elevation of activin A promotes a niche which supports SSC self-renewal. Intriguingly, clusters of GFRA1+/EOMES+/LIN28A- cells, resembling a primitive SSC subset, were frequently observed in tubules adjacent to tumour regions. Transcriptional analyses of Inha KO tumours, tubules adjacent to tumours, and tubules distant from tumour regions revealed disrupted gene expression in each KO group increased in parallel with tumour proximity. Modest transcriptional changes were documented in Inha KO tubules with complete spermatogenesis. Importantly, tumours displaying upregulation of activin responsive genes were also enriched for factors that promote SSC self-renewal, including Gdnf, Igf1, and Fgf2, indicating the tumours generate a supportive microenvironment for SSCs. Tumour cells featured some characteristics of adult Sertoli cells but lacked consistent SOX9 expression and exhibited an enhanced steroidogenic phenotype, which could arise from maintenance or acquisition of a fetal cell identity or acquisition of another somatic phenotype. Tumour regions were also heavily infiltrated with endothelial, peritubular myoid and immune cells, which may contribute to adjacent SSC support. Our data show for the first time that chronically elevated activin A affects SSC fate in vivo. The discovery that testis stromal tumours in the Inha KO mouse create a microenvironment that supports SSC self-renewal but not differentiation offers a strategy for identifying pathways that improve spermatogonial propagation in vitro.
Collapse
Affiliation(s)
- Penny A. F. Whiley
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Benedict Nathaniel
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Peter G. Stanton
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Robin M. Hobbs
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Kate L. Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
35
|
Navanukraw P, Chotimanukul S, Kemthong T, Choowongkomon K, Chatdarong K. Impaired Testicular Function without Altering Testosterone Concentration Using an Anti-Follicular-Stimulating Hormone Receptor (Anti-FSHr) Single-Chain Variable Fragment (scFv) in Long-Tailed Macaques ( Macaca fascicularis). Animals (Basel) 2023; 13:2282. [PMID: 37508065 PMCID: PMC10376863 DOI: 10.3390/ani13142282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
FSHr antibodies have been shown to inhibit the differentiation of spermatogonia to primary spermatocytes, resulting in infertility without a pathological effect on reproductive organs. The aim of this study was to develop single-chain variable fragments (scFvs) against the follicular-stimulating hormone receptor (anti-FSHr) using phage-display technology and to evaluate the effects of intratesticular administration of the anti-FSHr scFv on testicular function and testosterone production. A phage clone against the extracellular domain of FSHr selected from a scFv phagemid library was analyzed for binding kinetics by surface plasmon resonance. Using ultrasound guidance, three adult macaques (M. fascicularis) were administered with 1 mL of 0.4 mg/mL anti-FSHr scFv (treatment) and 1 mL sterile phosphate buffer solution (control) into the left and right rete testis, respectively. Testicular appearance and volume, ejaculate quality, and serum testosterone levels were recorded on day 0 (before injection) and on days 7, 28, and 56 (after injection). Testicular tissue biopsies were performed on day 7 and day 56 to quantify the mRNA expressions of androgen binding protein (ABP), inhibin subunit beta B (IHBB), and vascular endothelial growth factor A (VEGFA). The results demonstrated that the anti-FSHr scFv molecule was calculated as 27 kDa with a dissociation constant (KD) of 1.03 µM. The volume of the anti-FSHr scFv-injected testicle was reduced on days 28 and 56 compared with day 0 (p < 0.05). Total sperm number was reduced from day 0 (36.4 × 106 cells) to day 56 (1.6 × 106 cells) (p < 0.05). The percentage of sperm motility decreased from day 0 (81.7 ± 1.0%) to day 7 (23.3 ± 1.9%), day 28 (41.7 ± 53.4%), and day 56 (8.3 ± 1.9%) (p < 0.05). Sperm viability on day 0 was 86.8 ± 0.5%, which reduced to 64.2 ± 1.5%, 67.1 ± 2.2%, and 9.3 ± 1.1% on days 7, 28, and 56, respectively (p < 0.05). The expression of ABP and VEGFA on days 7 (14.2- and 3.2-fold) and 56 (5.6- and 5.5-fold) was less in the scFv-treated testicle compared with the controls (p < 0.05). On day 56, the expression of IHBB was less (p < 0.05) in the treated testis (1.3-fold) compared with the controls. Serum testosterone levels were unchanged throughout the study period (p > 0.05). This study characterized the anti-FSHr scFv and demonstrated that treatment with anti-FSHr ameliorates testicular function without altering testosterone levels, offering a potential alternative contraceptive for the long-tailed macaques.
Collapse
Affiliation(s)
- Pakpoom Navanukraw
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sroisuda Chotimanukul
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Taratorn Kemthong
- National Primate Research Center of Thailand, Chulalongkorn University, Saraburi 18110, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Kaywalee Chatdarong
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
36
|
Corpuz-Hilsabeck M, Mohajer N, Culty M. Dysregulation of Immature Sertoli Cell Functions by Exposure to Acetaminophen and Genistein in Rodent Cell Models. Cells 2023; 12:1804. [PMID: 37443838 PMCID: PMC10340629 DOI: 10.3390/cells12131804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Sertoli cells are essential for germ cell development and function. Their disruption by endocrine disrupting chemicals (EDCs) or drugs could jeopardize spermatogenesis, contributing to male infertility. Perinatal exposure to EDCs and acetaminophen (APAP) disrupts male reproductive functions in animals and humans. Infants can be exposed simultaneously to the dietary soy phytoestrogen genistein (GEN) and APAP used for fever or pain relief. Our goal was to determine the effects of 10-100 µM APAP and GEN, alone or mixed, on immature Sertoli cells using mouse TM4 Sertoli cell line and postnatal-day 8 rat Sertoli cells, by measuring cell viability, proliferation, prostaglandins, genes and protein expression, and functional pathways. A value of 50 µM APAP decreased the viability, while 100 µM APAP and GEN decreased the proliferation. Sertoli cell and eicosanoid pathway genes were affected by GEN and mixtures, with downregulation of Sox9, Cox1, Cox2, and genes relevant for Sertoli cell function, while genes involved in inflammation were increased. RNA-seq analysis identified p53 and TNF signaling pathways as common targets of GEN and GEN mixture in both cell types. These results suggest that APAP and GEN dysregulate immature Sertoli cell function and may aid in elucidating novel EDC and drug targets contributing to the etiology of male infertility.
Collapse
Affiliation(s)
| | | | - Martine Culty
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
37
|
Virgous C, Lyons L, Sakwe A, Nayyar T, Goodwin S, Hildreth J, Osteen K, Bruner-Tran K, Alawode O, Bourne P, Hills ER, Archibong AE. Resumption of Spermatogenesis and Fertility Post Withdrawal of Hydroxyurea Treatment. Int J Mol Sci 2023; 24:ijms24119374. [PMID: 37298325 DOI: 10.3390/ijms24119374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Hydroxyurea (HU), a drug for treating cancers of the blood and the management of sickle cell anemia, induces hypogonadism in males. However, the impact of HU on testicular architecture and function, as well as its effects on the resumption of male fertility following treatment withdrawal, remain poorly understood. We used adult male mice to determine whether HU-induced hypogonadism is reversible. Fertility indices of mice treated with HU daily for ~1 sperm cycle (2 months) were compared with those of their control counterparts. All indices of fertility were significantly reduced among mice treated with HU compared to controls. Interestingly, significant improvements in fertility indices were apparent after a 4-month withdrawal from HU treatment (testis weight: month 1 post-HU withdrawal (M1): HU, 0.09 ± 0.01 vs. control, 0.33 ± 0.03; M4: HU, 0.26 ± 0.03 vs. control, 0.37 ± 0.04 g); sperm motility (M1: HU,12 vs. 59; M4: HU, 45 vs. control, 61%; sperm density (M1: HU, 1.3 ± 0.3 vs. control, 15.7 ± 0.9; M4: HU, 8.1 ± 2.5 vs. control, 16.8 ± 1.9 million). Further, circulating testosterone increased in the 4th month following HU withdrawal and was comparable to that of controls. When a mating experiment was conducted, recovering males sired viable offspring with untreated females albeit at a lower rate than control males (p < 0.05); therefore, qualifying HU as a potential candidate for male contraception.
Collapse
Affiliation(s)
- Carlos Virgous
- Animal Care Facility, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37209, USA
| | - Letitia Lyons
- Department of Obstetrics and Gynecology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
| | - Amos Sakwe
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
| | - Tultul Nayyar
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
| | - Shawn Goodwin
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
| | - James Hildreth
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
| | - Kevin Osteen
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kaylon Bruner-Tran
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Oluwatobi Alawode
- Department of Obstetrics and Gynecology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
| | - Phillip Bourne
- Department of Obstetrics and Gynecology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
| | - Edward Richard Hills
- Department of Obstetrics and Gynecology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
| | - Anthony E Archibong
- Department of Obstetrics and Gynecology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
| |
Collapse
|
38
|
Byrne CJ, Keogh K, Kenny DA. Review: Role of early life nutrition in regulating sexual development in bulls. Animal 2023; 17 Suppl 1:100802. [PMID: 37567659 DOI: 10.1016/j.animal.2023.100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 08/13/2023] Open
Abstract
The availability of high-quality semen from genetically elite bulls is essential to support continued genetic gain and the sustainability of cattle production worldwide. While reducing the age at which usable semen is available also reduces the generation interval, it is dependent on timely onset of puberty in young bulls. There is now good evidence that hastened sexual development in bulls is achieved through enhancing nutrition in early life. This review will cover the physiological and molecular-based response to prevailing diet in key organs that orchestrate the ontogeny of sexual development in the bull calf. Given the central importance of the interaction between metabolic status and neuronal function to the progression of sexual development, we will discuss how communication between metabolic organs, reproductive organs and the brain are mediated via molecular and physiological processes. The availability of high-throughput nucleic acid and protein sequencing technologies and innovative data analytics have allowed us to improve our understanding of molecular regulation of puberty and sexual development. Analysing data from a number of organs, simultaneously, allows for a better understanding of the underlying biology and biochemical interactions that are influencing sexual development. Specifically, we can determine how early life nutritional interventions augment changes in potential key molecules regulating sexual development. Ultimately, a greater understanding of the inherent regulation of postnatal sexual development in the bull calf and how strategically targeted nutritional management can advance the ontogeny of this process, will facilitate the timely availability of high-quality semen from genetically elite animals, thus supporting more economically and environmentally sustainable beef and dairy production systems.
Collapse
Affiliation(s)
- C J Byrne
- Animal and Bioscience Department, Teagasc, Dunsany, Co. Meath C15 PW93, Ireland
| | - K Keogh
- Animal and Bioscience Department, Teagasc, Dunsany, Co. Meath C15 PW93, Ireland
| | - D A Kenny
- Animal and Bioscience Department, Teagasc, Dunsany, Co. Meath C15 PW93, Ireland; School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 F6X4, Ireland.
| |
Collapse
|
39
|
Kasimanickam VR, Kasimanickam RK. In Silico Analysis of miRNA-Mediated Genes in the Regulation of Dog Testes Development from Immature to Adult Form. Animals (Basel) 2023; 13:ani13091520. [PMID: 37174557 PMCID: PMC10177090 DOI: 10.3390/ani13091520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
High-throughput in-silico techniques help us understand the role of individual proteins, protein-protein interaction, and their biological functions by corroborating experimental data as epitomized biological networks. The objective of this investigation was to elucidate the association of miRNA-mediated genes in the regulation of dog testes development from immature to adult form by in-silico analysis. Differentially expressed (DE) canine testis miRNAs between healthy immature (2.2 ± 0.13 months; n = 4) and mature (11 ± 1.0 months; n = 4) dogs were utilized in this investigation. In silico analysis was performed using miRNet, STRING, and ClueGo programs. The determination of mRNA and protein expressions of predicted pivotal genes and their association with miRNA were studied. The results showed protein-protein interaction for the upregulated miRNAs, which revealed 978 enriched biological processes GO terms and 127 KEGG enrichment pathways, and for the down-regulated miRNAs revealed 405 significantly enriched biological processes GO terms and 72 significant KEGG enrichment pathways (False Recovery Rate, p < 0.05). The in-silico analysis of DE-miRNA's associated genes revealed their involvement in the governing of several key biological functions (cell cycle, cell proliferation, growth, maturation, survival, and apoptosis) in the testis as they evolve from immature to adult forms, mediated by several key signaling pathways (ErbB, p53, PI3K-Akt, VEGF and JAK-STAT), cytokines and hormones (estrogen, GnRH, relaxin, thyroid hormone, and prolactin). Elucidation of DE-miRNA predicted genes' specific roles, signal transduction pathways, and mechanisms, by mimics and inhibitors, which could perhaps offer diagnostic and therapeutic targets for infertility, cancer, and birth control.
Collapse
Affiliation(s)
- Vanmathy R Kasimanickam
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Ramanathan K Kasimanickam
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
40
|
Dong F, Ping P, Ma Y, Chen XF. Application of single-cell RNA sequencing on human testicular samples: a comprehensive review. Int J Biol Sci 2023; 19:2167-2197. [PMID: 37151874 PMCID: PMC10158017 DOI: 10.7150/ijbs.82191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/25/2023] [Indexed: 05/09/2023] Open
Abstract
So far there has been no comprehensive review using systematic literature search strategies to show the application of single-cell RNA sequencing (scRNA-seq) in the human testis of the whole life cycle (from embryos to aging males). Here, we summarized the application of scRNA-seq analyses on various human testicular biological samples. A systematic search was conducted in PubMed and Gene Expression Omnibus (GEO), focusing on English researches published after 2009. Articles related to GEO data-series were also retrieved in PubMed or BioRxiv. 81 full-length studies were finally included in the review. ScRNA-seq has been widely used on different human testicular samples with various library strategies, and new cell subtypes such as State 0 spermatogonial stem cells (SSC) and stage_a/b/c Sertoli cells (SC) were identified. For the development of normal testes, scRNA-seq-based evidence showed dynamic transcriptional changes of both germ cells and somatic cells from embryos to adults. And dysregulated metabolic signaling or hedgehog signaling were revealed by scRNA-seq in aged SC or Leydig cells (LC), respectively. For infertile males, scRNA-seq studies revealed profound changes of testes, such as the increased proportion of immature SC/LC of Klinefelter syndrome, the somatic immaturity and altered germline autophagy of patients with non-obstructive azoospermia, and the repressed differentiation of SSC in trans-females receiving testosterone inhibition therapy. Besides, the re-analyzing of public scRNA-seq data made further discoveries such as the potential vulnerability of testicular SARS-CoV-2 infection, and both evolutionary conservatism and divergence among species. ScRNA-seq analyses would unveil mechanisms of testes' development and changes so as to help developing novel treatments for male infertility.
Collapse
Affiliation(s)
- Fan Dong
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Ping Ping
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Yi Ma
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Xiang-Feng Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Shanghai Human Sperm Bank, Shanghai, China
| |
Collapse
|
41
|
Rey RA. Steroid receptors in the testis: implications in the physiology of prenatal and postnatal development and translation to clinical application. Histol Histopathol 2023; 38:373-389. [PMID: 36218320 DOI: 10.14670/hh-18-533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The testes are the main source of sex steroids in the male, especially androgens and to a lesser extent estrogens. In target cells, steroid hormones typically signal after binding to intracellular receptors, which act as transcription factors. Androgens and estrogens have ubiquitous functions in peripheral organs, but also have paracrine actions within the gonads where they are far more concentrated. The levels of steroid production by the testes vary throughout fetal and postnatal development: they are high in intrauterine life and in the first months after birth, then they decline and are almost undetectable in childhood and increase again during puberty to attain adult levels. The expression of the androgen and estrogen receptors also depict specific ontogenies in the various testicular cell types. The combination of intratesticular steroid concentration with the pattern of expression of the steroid hormone receptors defines androgen and estrogen action on Sertoli, germ and Leydig cells. Here, we review the ontogeny of expression of the androgen and estrogen receptors in the testis, its impact on testicular physiology during prenatal and postnatal development, as well as its implication on the pathophysiology of different disorders affecting gonadal function throughout life.
Collapse
Affiliation(s)
- Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina.
- Unidad de Medicina Traslacional, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Departamento de Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
42
|
Mondal S, Bandyopadhyay A. From oxidative imbalance to compromised standard sperm parameters: Toxicological aspect of phthalate esters on spermatozoa. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104085. [PMID: 36841271 DOI: 10.1016/j.etap.2023.104085] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The exponential rise in global male infertility and subfertility-related issues raises severe concern. One of the major contributors is phthalate esters, typical endocrine disruptors affecting millions of lives. The inevitable exposure to phthalates due to their universal application as plasticizers leaves the human population vulnerable to this silent threat. This review explicitly deals with the spermiotoxic effects of different phthalate esters on in vivo and in vitro models and on surveyed human populations to find the most plausible link between global usage of phthalates and poor sperm health. As the free radicals in spermatozoa are prerequisites for their standard structure and functioning, the precise regulation and phthalate-mediated impairment of pro-oxidant:anti-oxidant balance with subsequent loss of structural and functional integrity have also been critically discussed. Furthermore, we also provided future directives, which, if addressed, will fill the still-existing lacunae in phthalate-mediated male reproductive toxicity research.
Collapse
Affiliation(s)
- Shirsha Mondal
- Department of Zoology, Govt College Dhimarkheda (Rani Durgavati Vishwavidyalaya), Katni, Madhya Pradesh 483332, India.
| | - Arindam Bandyopadhyay
- Department of Zoology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India.
| |
Collapse
|
43
|
Voigt AL, Dardari R, Lara NLM, He T, Steele H, Dufour A, Orwig KE, Dobrinski I. Multiomics approach to profiling Sertoli cell maturation during development of the spermatogonial stem cell niche. Mol Hum Reprod 2023; 29:gaad004. [PMID: 36688722 PMCID: PMC9976880 DOI: 10.1093/molehr/gaad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/10/2022] [Indexed: 01/24/2023] Open
Abstract
Spermatogonial stem cells (SSCs) are the basis of spermatogenesis, a complex process supported by a specialized microenvironment, called the SSC niche. Postnatal development of SSCs is characterized by distinct metabolic transitions from prepubertal to adult stages. An understanding of the niche factors that regulate these maturational events is critical for the clinical application of SSCs in fertility preservation. To investigate the niche maturation events that take place during SSC maturation, we combined different '-omics' technologies. Serial single cell RNA sequencing analysis revealed changes in the transcriptomes indicative of niche maturation that was initiated at 11 years of age in humans and at 8 weeks of age in pigs, as evident by Monocle analysis of Sertoli cells and peritubular myoid cell (PMC) development in humans and Sertoli cell analysis in pigs. Morphological niche maturation was associated with lipid droplet accumulation, a characteristic that was conserved between species. Lipidomic profiling revealed an increase in triglycerides and a decrease in sphingolipids with Sertoli cell maturation in the pig model. Quantitative (phospho-) proteomics analysis detected the activation of distinct pathways with porcine Sertoli cell maturation. We show here that the main aspects of niche maturation coincide with the morphological maturation of SSCs, which is followed by their metabolic maturation. The main aspects are also conserved between the species and can be predicted by changes in the niche lipidome. Overall, this knowledge is pivotal to establishing cell/tissue-based biomarkers that could gauge stem cell maturation to facilitate laboratory techniques that allow for SSC transplantation for restoration of fertility.
Collapse
Affiliation(s)
- A L Voigt
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - R Dardari
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - N L M Lara
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - T He
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - H Steele
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - A Dufour
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - K E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Women’s Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - I Dobrinski
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
44
|
Caroppo E, Niederberger CS. Follicle-stimulating hormone treatment for male factor infertility. Fertil Steril 2023; 119:173-179. [PMID: 36470702 DOI: 10.1016/j.fertnstert.2022.09.362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 12/11/2022]
Abstract
Follicle-stimulating hormone (FSH) treatment has been proven effective in stimulating spermatogenesis and improving the reproductive ability of men with hypogonadotropic hypogonadism, while the usefulness of such a treatment in infertile patients with normal pituitary function is restricted to a subgroup of responders that, however, cannot be identified by the current diagnostic tools before treatment. In this review we summarize the role played by FSH in the modulation of spermatogenesis, the effect of FSH treatment at a standard replacement dose and at higher dose on sperm parameters, spontaneous and in vitro fertilization pregnancy rates, and the efforts made to identify possible responders to FSH treatment.
Collapse
Affiliation(s)
- Ettore Caroppo
- Asl Bari, Reproductive Unit, Andrology Outpatients Clinics, Conversano, Italy.
| | - Craig S Niederberger
- Department of Urology, University of Illinois at Chicago, Chicago, Illinois; Department of Bioengineering, University of Illinois at Chicago College of Engineering, Chicago, Illinois
| |
Collapse
|
45
|
Effects and Mechanisms Activated by Treatment with Cationic, Anionic and Zwitterionic Liposomes on an In Vitro Model of Porcine Pre-Pubertal Sertoli Cells. Int J Mol Sci 2023; 24:ijms24021201. [PMID: 36674712 PMCID: PMC9865246 DOI: 10.3390/ijms24021201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Liposomes have been successfully used as drug-delivery vehicles, but there are no clinical studies on improved fertility and the few reported experimental studies have been performed in animal models far from humans. The aim of this paper was to study the effects of treatment with cationic, anionic and zwitterionic liposomes on our superior mammalian model of porcine prepubertal Sertoli cells (SCs) to find a carrier of in vitro test drugs for SCs. Porcine pre-pubertal SCs cultures were incubated with different liposomes. Viability, apoptosis/necrosis status (Annexin-V/Propidium iodide assay), immunolocalisation of β-actin, vimentin, the phosphorylated form of AMP-activated protein Kinase (AMPK)α and cell ultrastructure (Transmission Electron Microscopy, TEM) were analysed. Zwitterionic liposomes did not determine changes in the cell cytoplasm. The incubation with anionic and cationic liposomes modified the distribution of actin and vimentin filaments and increased the levels of the phosphorylated form of AMPKα. The Annexin/Propidium Iodide assay suggested an increase in apoptosis. TEM analysis highlighted a cytoplasmic vacuolisation. In conclusion, these preliminary data indicated that zwitterionic liposomes were the best carrier to use in an in vitro study of SCs to understand the effects of molecules or drugs that could have a clinical application in the treatment of certain forms of male infertility.
Collapse
|
46
|
Corpuz-Hilsabeck M, Culty M. Impact of endocrine disrupting chemicals and pharmaceuticals on Sertoli cell development and functions. Front Endocrinol (Lausanne) 2023; 14:1095894. [PMID: 36793282 PMCID: PMC9922725 DOI: 10.3389/fendo.2023.1095894] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/04/2023] [Indexed: 02/01/2023] Open
Abstract
Sertoli cells play essential roles in male reproduction, from supporting fetal testis development to nurturing male germ cells from fetal life to adulthood. Dysregulating Sertoli cell functions can have lifelong adverse effects by jeopardizing early processes such as testis organogenesis, and long-lasting processes such as spermatogenesis. Exposure to endocrine disrupting chemicals (EDCs) is recognized as contributing to the rising incidence of male reproductive disorders and decreasing sperm counts and quality in humans. Some drugs also act as endocrine disruptors by exerting off-target effects on endocrine tissues. However, the mechanisms of toxicity of these compounds on male reproduction at doses compatible with human exposure are still not fully resolved, especially in the case of mixtures, which remain understudied. This review presents first an overview of the mechanisms regulating Sertoli cell development, maintenance, and functions, and then surveys what is known on the impact of EDCs and drugs on immature Sertoli cells, including individual compounds and mixtures, and pinpointing at knowledge gaps. Performing more studies on the impact of mixtures of EDCs and drugs at all ages is crucial to fully understand the adverse outcomes these chemicals may induce on the reproductive system.
Collapse
|
47
|
Tang W, Xu QH, Chen X, Guo W, Ao Z, Fu K, Ji T, Zou Y, Chen JJ, Zhang Y. Transcriptome sequencing reveals the effects of circRNA on testicular development and spermatogenesis in Qianbei Ma goats. Front Vet Sci 2023; 10:1167758. [PMID: 37180060 PMCID: PMC10172654 DOI: 10.3389/fvets.2023.1167758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
Circular RNAs (circRNAs) play an important role in regulating the mammalian reproductive system, especially testicular development and spermatogenesis. However, their functions in testicular development and spermatogenesis in the Qianbei Ma goat, the Guizhou endemic breed are still unclear. In this study, tissue sectioning and circRNAs transcriptome analysis were conducted to compare the changes of morphology and circular RNAs gene expression profile at four different developmental stages (0Y, 0-month-old; 6Y, 6-month-old; 12Y, 12-month-old; 18Y, 18-month-old). The results showed that the circumferences and area of the seminiferous tubule gradually increased with age, and the lumen of the seminiferous tubule in the testis differentiated significantly. 12,784 circRNAs were detected from testicular tissues at four different developmental stages by RNA sequencing, and 8,140 DEcircRNAs (differentially expressed circRNAs) were found in 0Y vs. 6Y, 6Y vs. 12Y, 12Y vs. 18Y and 0Y vs. 18Y, 0Y vs. 12Y, 6Y vs. 18Y Functional enrichment analysis of the source genes showed that they were mainly enriched in testicular development and spermatogenesis. In addition, the miRNAs and mRNAs associated with DECircRNAs in 6 control groups were predicted by bioinformatics, and 81 highly expressed DECircRNAs and their associated miRNAs and mRNAs were selected to construct the ceRNA network. Through functional enrichment analysis of the target genes of circRNAs in the network, some candidate circRNAs related to testicular development and spermatogenesis were obtained. Such as circRNA_07172, circRNA_04859, circRNA_07832, circRNA_00032 and circRNA_07510. These results will help to reveal the mechanism of circRNAs in testicular development and spermatogenesis, and also provide some guidance for goat reproduction.
Collapse
Affiliation(s)
- Wen Tang
- College of Life Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Qiang Hou Xu
- College of Life Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
- *Correspondence: Qiang Hou Xu,
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
- Xiang Chen,
| | - Wei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Zheng Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Kaibin Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Taotao Ji
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Yue Zou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Jing Jia Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Yuan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
48
|
Amiri N, Mohammadi P, Allahgholi A, Salek F, Amini E. The potential of sertoli cells (SCs) derived exosomes and its therapeutic efficacy in male reproductive disorders. Life Sci 2022; 312:121251. [PMID: 36463941 DOI: 10.1016/j.lfs.2022.121251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
In the male reproductive system, seminiferous tubules in testis are lined by a complex stratified epithelium containing two distinct populations of cells, spermatogenic cells that develop into spermatozoa, and sertoli cells (SCs) that mainly support and nourish spermatogenic cell lineage as well as exerting powerful effect on men reproductive capacity. Different varieties of proteins, hormones, exosomes and growth factors are secreted by SCs. There are different kinds of junctions found between SCs called BTB. It was elucidated that complete absence of BTB or its dysfunction leads to infertility. To promote spermatogenesis, crosstalk of SCs with spermatogenic cells plays an important role. The ability of SCs to support germ cell productivity and development is related to its various products carrying out several functions. Exosomes (EXOs) are one of the main EVs with 30-100 nm size generating from endocytic pathway. They are produced in different parts of male reproductive system including epididymis, prostate and SCs. The most prominent characteristics of SC-based exosomes is considered mutual interaction of sertoli cells with spermatogonial stem cells and Leydig cells mainly through establishment of intercellular communication. Exosomes have gotten a lot of interest because of their role in pathobiological processes and as a cell free therapy which led to developing multiple exosome isolation methods based on different principles. Transmission of nucleic acids, proteins, and growth factors via SC-based exosomes and exosomal miRNAs are proved to have potential to be valuable biomarkers in male reproductive disease. Among testicular abnormalities, non-obstructive azoospermia and testicular cancer have been more contributed with SCs performance. The identification of key proteins and miRNAs involved in the signaling pathways related with spermatogenesis, can serve as diagnostic and regenerative targets in male infertility.
Collapse
Affiliation(s)
- Narjes Amiri
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran
| | - Paria Mohammadi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran
| | - Atefeh Allahgholi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran
| | - Farzaneh Salek
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Elaheh Amini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| |
Collapse
|
49
|
Whole Exome Sequencing and In Silico Analysis of Human Sertoli in Patients with Non-Obstructive Azoospermia. Int J Mol Sci 2022; 23:ijms232012570. [PMID: 36293429 PMCID: PMC9604420 DOI: 10.3390/ijms232012570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
Non-obstructive azoospermia (NOA) is a serious cause of male infertility. The Sertoli cell responds to androgens and takes on roles supporting spermatogenesis, which may cause infertility. This work aims to enhance the genetic diagnosis of NOA via the discovery of new and hub genes implicated in human NOA and to better assess the odds of successful sperm extraction according to the individual’s genotype. Whole exome sequencing (WES) was done on three NOA patients to find key genes involved in NOA. We evaluated genome-wide transcripts (about 50,000 transcripts) by microarray between the Sertoli of non-obstructive azoospermia and normal cells. The microarray analysis of three human cases with different non-obstructive azoospermia revealed that 32 genes were upregulated, and the expressions of 113 genes were downregulated versus the normal case. For this purpose, Enrich Shiny GO, STRING, and Cytoscape online evaluations were applied to predict the functional and molecular interactions of proteins and then recognize the master pathways. The functional enrichment analysis demonstrated that the biological process (BP) terms “inositol lipid-mediated signaling”, “positive regulation of transcription by RNA polymerase II”, and “positive regulation of DNA-templated transcription” significantly changed in upregulated differentially expressed genes (DEGs). The BP investigation of downregulated DEGs highlighted “mitotic cytokinesis”, “regulation of protein-containing complex assembly”, “cytoskeleton-dependent cytokinesis”, and the “peptide metabolic process”. Overrepresented molecular function (MF) terms in upregulated DEGs included “ubiquitin-specific protease binding”, “protease binding”, “phosphatidylinositol trisphosphate phosphatase activity”, and “clathrin light chain binding”. Interestingly, the MF analysis of the downregulated DEGs revealed overexpression in “ATPase inhibitor activity”, “glutathione transferase activity”, and “ATPase regulator activity”. Our findings suggest that these genes and their interacting hub proteins could help determine the pathophysiologies of germ cell abnormalities and infertility.
Collapse
|
50
|
Tveiten H, Karlsen K, Thesslund T, Johansson GS, Thiyagarajan DB, Andersen Ø. Impact of germ cell ablation on the activation of the brain-pituitary-gonadal axis in precocious Atlantic salmon (Salmo salar L.) males. Mol Reprod Dev 2022; 89:471-484. [PMID: 35830347 PMCID: PMC9796531 DOI: 10.1002/mrd.23635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 01/01/2023]
Abstract
The germ cells are essential for sexual reproduction by giving rise to the gametes, but the importance of germ cells for gonadal somatic functions varies among vertebrates. The RNA-binding dead end (Dnd) protein is necessary for the specification and migration of primordial germ cells to the future reproductive organs. Here, we ablated the gametes in Atlantic salmon males and females by microinjecting dnd antisense gapmer oligonucleotides at the zygotic stage. Precocious maturation was induced in above 50% of both germ cell-depleted and intact fertile males, but not in females, by exposure to an off-season photoperiod regime. Sterile and fertile males showed similar body growth, but maturing fish tended to be heavier than their immature counterparts. Pituitary fshβ messenger RNA levels strongly increased in maturing sterile and fertile males concomitant with the upregulated expression of Sertoli and Leydig cell markers. Plasma concentrations of 11-ketotestosterone and testosterone in maturing sterile males were significantly higher than the basal levels in immature fish, but lower than those in maturing fertile males. The study demonstrates that germ cells are not a prerequisite for the activation of the brain-pituitary-gonad axis and sex steroidogenesis in Atlantic salmon males, but may be important for the maintenance of gonadal somatic functions.
Collapse
Affiliation(s)
- Helge Tveiten
- Norwegian College of Fishery ScienceThe Arctic University of NorwayTromsøNorway
| | - Kristian Karlsen
- Norwegian College of Fishery ScienceThe Arctic University of NorwayTromsøNorway,Present address:
Lerøy Aurora AS, Stortorget 1N‐9267 TromsøNorway
| | | | | | | | - Øivind Andersen
- NofimaTromsøNorway,Department of Animal and Aquacultural SciencesNorwegian University of Life Sciences (NMBU)ÅsNorway
| |
Collapse
|