1
|
Mahendran M, Upton JEM, Ramasubramanian R, Memmott HL, Germain G, Büsch K, Laliberté F, Harrington A. Overall survival among patients with activated phosphoinositide 3-kinase delta syndrome (APDS). Orphanet J Rare Dis 2025; 20:212. [PMID: 40319290 PMCID: PMC12049806 DOI: 10.1186/s13023-025-03734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/15/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND This study aimed to describe overall survival (OS) of patients with APDS relative to the global population as well as among subsets of patients with concurrent lymphoma or hematopoietic stem cell transplant (HSCT) relative to the overall APDS population. METHODS Patient-level data were extracted from a recent systematic literature review of 351 unique patients with APDS. OS was evaluated using the Kaplan-Meier method up to age 65 years. OS rate and corresponding 95% CI were reported at each decade of age. Global mortality estimates were obtained from World Health Organization life tables for 2019. RESULTS Of the 351 patients with APDS (APDS1, 267 [76.1%]; APDS2, 83 [23.6%]; unspecified, 1 [0.3%]), 41 (11.7%) died. The OS rate was 25.0% (95% CI, 1.6-62.7%) by the last death event at 64 years of age. Starting at 12 years of age, the OS rate was numerically lower in patients with APDS relative to the global population (median OS, 64 vs. 75 years, respectively). Relative to the overall APDS population, OS rates were numerically similar in those who underwent HSCT (median OS, 64 years for both; p = 0.569), whereas OS rates were numerically lower in patients with concurrent lymphoma (median OS, 41 vs. 64 years, respectively; p = 0.109). Publication bias in source data was a possible limitation. CONCLUSION Reduced survival in patients with APDS suggests a high disease burden, particularly in those with concurrent lymphoma. These results highlight the unmet need for disease-modifying treatments for APDS.
Collapse
Affiliation(s)
| | - Julia E M Upton
- Clinical Immunology and Allergy, Department of Pediatrics, The Hospital For Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
2
|
Barbati F, Lodi L, Boscia S, Cortimiglia M, Calistri E, Quaranta F, Maggi L, Mazzoni A, Palterer B, Annunziato F, Azzari C, Ricci S. Monogenic Common Variable Immunodeficiency (Mo-CVID) Score for Optimizing the Genetic Diagnosis in Pediatric CVID Cohort. Eur J Immunol 2025; 55:e202451433. [PMID: 40079712 PMCID: PMC11905875 DOI: 10.1002/eji.202451433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 03/15/2025]
Abstract
Common variable immunodeficiency (CVID) represents an "umbrella" diagnosis due to its clinical and immunological heterogeneity. The primary objective of this study was to describe a cohort of CVID pediatric subjects from clinical, immunological, and genetic viewpoints. Secondary, we propose a model for prioritizing genetic investigations in these patients. Thirty-four patients with CVID followed at Meyer Children's Hospital, IRCSS, were enrolled. Whole exome sequencing was performed according to the latest International Union of Immunological Societies 2022 update. Genetic variants were identified in 16 patients (47%), including known variants in SLC39A7, PRKCD, STAT3, NFKB1, PIK3R1, PLCG2, RFXANK, PRKDC, TNFRSF13B, and novel variants in SPI1, NFKB1, NFKB2. Comparing the Gene+ and Gene- cohorts, we demonstrated that a monogenic cause is more likely to be found in cases of early disease onset, positive family history, autoimmunity, lymphoproliferation, and specific immunological alterations. Using these criteria, we developed a pediatric monogenic CVID (Mo-CVID) score to hypothesize when a CVID pediatric patient is more likely to carry a genetic mutation. A scoring system such as the Mo-CVID score could help physicians prioritize genetic testing. Genetic analysis in CVID patients can help stratify patients into different disease entities to predict complications and prognosis, ensure appropriate genetic counseling, and personalize treatment.
Collapse
Affiliation(s)
- Federica Barbati
- Pediatrics and Neonatology UnitSanto Stefano HospitalUSL Toscana CentroPratoItaly
| | - Lorenzo Lodi
- Department of NeurofarbaUniversity of FlorenceFlorenceItaly
- Immunology UnitMeyer Children's Hospital IRCCSFlorenceItaly
| | - Silvia Boscia
- Immunology UnitMeyer Children's Hospital IRCCSFlorenceItaly
| | | | - Elisa Calistri
- Department of Health SciencesUniversity of FlorenceFlorenceItaly
| | | | - Laura Maggi
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Alessio Mazzoni
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
- Center of Flow Cytometry and Immunotherapy (CDCI)Careggi University HospitalFlorenceItaly
| | - Boaz Palterer
- Laboratory of Clinical Immunology and MicrobiologyNational Institute of Allergy and Infectious DiseasesNational Institutes of HealthBethesdaMarylandUSA
| | - Francesco Annunziato
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
- Center of Flow Cytometry and Immunotherapy (CDCI)Careggi University HospitalFlorenceItaly
| | - Chiara Azzari
- Department of Health SciencesUniversity of FlorenceFlorenceItaly
- Immunology UnitMeyer Children's Hospital IRCCSFlorenceItaly
| | - Silvia Ricci
- Department of Health SciencesUniversity of FlorenceFlorenceItaly
- Immunology UnitMeyer Children's Hospital IRCCSFlorenceItaly
| |
Collapse
|
3
|
Büsch K, Memmott HL, McLaughlin HM, Upton JEM, Harrington A. Genetic Etiologies and Outcomes in Malignancy and Mortality in Activated Phosphoinositide 3-Kinase Delta Syndrome: A Systematic Review. Adv Ther 2025; 42:752-771. [PMID: 39636570 PMCID: PMC11787279 DOI: 10.1007/s12325-024-03066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION This analysis evaluated literature on patients with activated phosphoinositide 3-kinase delta syndrome (APDS) to better understand the genetic etiologies and occurrence of mortality in this population. METHODS A systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses approach, including all articles published in English prior to March 13, 2023, in PubMed and Embase. Patients included in the study had reported either (1) APDS diagnosis or (2) ≥ 1 clinical sign consistent with APDS and a first-degree relative with genetically confirmed APDS. Reported age at last observation was also a required outcome. Publications not meeting these criteria were excluded. Data were summarized using descriptive statistics. RESULTS The search identified 108 publications describing 351 unique patients with 39 distinct disease-causing variants. Among these, 41 (12%) deaths were reported, with a mean age at last follow-up of 19.6 (range, 1-64) years. A cause of death was reported for 80% (33/41) of deaths; lymphoma (24%, 10/41) and infections (22%, 9/41) were the most common causes. Types of infections causing death were severe uncontrollable infections (n = 3), sepsis (n = 2), viral infection (varicella zoster pneumonitis [n = 1], cytomegalovirus and adenovirus [n = 1], and Epstein-Barr virus [n = 1]), and infection (n = 1). Mean age at death for lymphoma was 24.9 (range, 1-41) years, and all nine patients who died from infections died before the age of 15 years. The mean age at first APDS symptom was 2.0 (range, < 1-22) years, and mean age at APDS diagnosis was 13.4 (range, 0-56) years; the mean time between symptoms and diagnosis was 10.6 (range, 0-44) years. Limitations of the study were primarily related to the data source. CONCLUSION Patients with APDS suffer early mortality, largely from lymphoma and infection, with large time gaps between symptoms and diagnosis. These findings highlight the need for improved diagnostics, earlier genetic testing for APDS, increased awareness of familial testing, and targeted therapies.
Collapse
Affiliation(s)
- Katharina Büsch
- KJM Büsch Consulting GmbH, Industriestrasse 24, 6300, Zug, Switzerland
| | - Heidi L Memmott
- Pharming Healthcare, Inc., 10 Independence Blvd, Warren, NJ, 07059, USA
| | | | - Julia E M Upton
- Division of Immunology and Allergy, Department of Paediatrics, The Hospital For Sick Children, 175 Elizabeth St, Room 13-14-027, Toronto, ON, M5G 2G3, Canada
- Department of Paediatrics, Temerty School of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Amanda Harrington
- Pharming Healthcare, Inc., 10 Independence Blvd, Warren, NJ, 07059, USA.
| |
Collapse
|
4
|
Moundir A, Aissaoui O, Akhrichi N, Allaoui A, Benhsaien I, Jouanguy E, Casanova JL, El Bakkouri J, Ailal F, Bousfiha AA. Application of whole-exome sequencing to predict inborn errors of immunity in pediatric severe infections and sepsis. Clin Exp Immunol 2025; 219:uxaf007. [PMID: 39918293 PMCID: PMC11966105 DOI: 10.1093/cei/uxaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/26/2024] [Accepted: 02/04/2025] [Indexed: 04/04/2025] Open
Abstract
Increasing evidence supports the involvement of inborn errors of immunity in severe infections, but little is known about the prevalence of these genetic defects in children with sepsis. Due to the limited understanding of the molecular and immunological mechanisms driving sepsis, genetic testing is rarely used in routine diagnostics to identify genetic susceptibility to the condition. We performed a prospective observational study on previously healthy children hospitalized for severe infections, including sepsis. Patients underwent immunophenotyping and whole-exome sequencing, followed by in silico analysis to identify potentially causal variants. We assembled a cohort of 194 previously healthy children, including 149 (77%) patients with severe infection and 45 (23%) with sepsis. Our cohort was marked by a high frequency of respiratory tract infections (35%), bloodstream infections (20%), and central nervous system infections (16%). The genetic investigation identified 28 potentially causal variants, 18 (64%) are classified as variants with uncertain significance, and 10 (36%) are likely pathogenic variants. Of 45 patients with sepsis, 6 (13%) had potentially causal genetic variants. Similarly, 22/149 (15%) patients with severe infection presented potentially causal genetic variants. Whole-exome sequencing predicted the impairment of various immune mechanistic pathways such as immune dysregulation defects, antibody deficiencies, and combined immunodeficiencies (18% each). We found no clear association between genetic variants and the studied parameters: organ failure, microbe identification, immunoglobulin levels, and lymphocyte subset numbers. Although whole-exome sequencing is a valuable tool for detecting inborn errors of immunity underlying sepsis and unexplained severe infections, it could be selectively recommended for patients with a strong clinical suspicion of genetic abnormalities, balancing its diagnostic value with its cost and complexity.
Collapse
Affiliation(s)
- Abderrahmane Moundir
- Clinical Immunology, Inflammation and Allergy Laboratory (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Ouissal Aissaoui
- Clinical Immunology, Inflammation and Allergy Laboratory (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Nassima Akhrichi
- Clinical Immunology, Inflammation and Allergy Laboratory (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abire Allaoui
- Clinical Immunology, Inflammation and Allergy Laboratory (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Department of Internal Medicine, Cheikh Khalifa International University Hospital, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Ibtihal Benhsaien
- Clinical Immunology, Inflammation and Allergy Laboratory (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Department of Pediatric Infectious Diseases and Clinical Immunology, Children’s Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Jalila El Bakkouri
- Clinical Immunology, Inflammation and Allergy Laboratory (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Immunology Laboratory, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Fatima Ailal
- Clinical Immunology, Inflammation and Allergy Laboratory (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Department of Pediatric Infectious Diseases and Clinical Immunology, Children’s Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| | - Ahmed Aziz Bousfiha
- Clinical Immunology, Inflammation and Allergy Laboratory (LICIA), Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Department of Pediatric Infectious Diseases and Clinical Immunology, Children’s Hospital, Ibn Rochd University Hospital, Casablanca, Morocco
| |
Collapse
|
5
|
Ranjbarnejad T, Gholaminejad A, Abolhassani H, Sherkat R, Salehi M, Sharifi M. Decreased expression of hsa-miR-142-3p and hsa-miR-155-5p in common variable immunodeficiency and involvement of their target genes and biological pathways. Allergol Immunopathol (Madr) 2025; 53:153-169. [PMID: 39786889 DOI: 10.15586/aei.v53i1.1234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
Common variable immunodeficiency (CVID) is the most common symptomatic and heterogeneous type of inborn errors of immunity (IEI). However, the pathogenesis process of this disease is often unknown. Epigenetic modifications may be involved in unresolved patients. MiR-142 and miR-155 were identified as immune system modulators and dysregulated in autoimmune and inflammatory diseases. We assessed hsa-miR-142-3p and hsa-miR-155-5p expression in a selected cohort of unresolved CVID cases and identified experimentally validated targets of these miRNAs. We constructed a protein-protein interaction (PPI) network from the common targets of two miRNAs and determined the hub genes. The hub genes' expression was investigated in GEO datasets. Gene ontology (GO) and pathway enrichment analysis were done for target genes. Hsa-miR-142-3p and hsa-miR-155-5p expression were significantly reduced in CVID patients. Evaluation of the PPI network demonstrated some hub genes in which pathogenic mutations have been reported in IEI, and other hub genes directly contribute to immune responses and the pathophysiology of IEI. Expression analysis of hub genes showed that they were significantly dysregulated in validating the CVID cohort. The pathway enrichment analysis indicated the involvement of the FOXO-mediated signaling pathway, TGFβ receptor complex, and VEGFR2-mediated vascular permeability. Considering the dysregulation of hsa-miR-142-3p and hsa-miR-155-5p in CVID and the known role of their target genes in the immune system, their involvement in the pathogenesis of CVID can be suggested.
Collapse
Affiliation(s)
- Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alieh Gholaminejad
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Abolhassani
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansoor Salehi
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran;
| |
Collapse
|
6
|
Cunningham-Rundles C, Casanova JL, Boisson B. Common variable immunodeficiency: autoimmune cytopenias and advances in molecular diagnosis. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:137-142. [PMID: 39643993 DOI: 10.1182/hematology.2024000538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Common variable immunodeficiency (CVID) is one of the most common groups of human inborn errors of immunity. In addition to infections resulting from insufficient levels of immunoglobulins and antibodies, a significant proportion of patients develop autoimmune cytopenias, especially immune thrombocytopenia, hemolytic anemia, or neutropenia. They may be the initial manifestation of CVID in a patient who has not had significant infections, and similar episodes may recur at intervals over time. Treatment of these hematologic complications includes the use of corticosteroids or other medications, often including rituximab; splenectomy is discouraged. Here we outline the overall occurrence of these blood cytopenias in a cohort of 408 patients, as well as the clinical and genetic associations noted in these individuals.
Collapse
MESH Headings
- Humans
- Common Variable Immunodeficiency/diagnosis
- Common Variable Immunodeficiency/genetics
- Neutropenia/diagnosis
- Neutropenia/etiology
- Neutropenia/immunology
- Neutropenia/genetics
- Purpura, Thrombocytopenic, Idiopathic/diagnosis
- Purpura, Thrombocytopenic, Idiopathic/genetics
- Purpura, Thrombocytopenic, Idiopathic/immunology
- Anemia, Hemolytic, Autoimmune/diagnosis
- Anemia, Hemolytic, Autoimmune/immunology
- Female
- Male
- Cytopenia
Collapse
Affiliation(s)
- Charlotte Cunningham-Rundles
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
- Division of Clinical Immunology, Departments of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
7
|
Baran A, Atılgan Lülecioğlu A, Gao L, Yazıcı YY, Demirel F, Metin A, Casanova JL, Puel A, Voyer TL, Beyaz Ş, Belkaya S. A Novel Heterozygous NFKB2 Variant in a Multiplex Family with Common Variable Immune Deficiency and Autoantibodies Against Type I IFNs. J Clin Immunol 2024; 45:48. [PMID: 39579251 PMCID: PMC11821294 DOI: 10.1007/s10875-024-01843-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
We studied a family with three male individuals across two generations affected by common variable immune deficiency (CVID). We identified a novel missense heterozygous variant (c.2602T>A:p.Y868N) of NFKB2 in all patients and not in healthy relatives. Functional studies of the mutant allele in an overexpression system and of the patients' cells confirmed the deleteriousness of the NFKB2 variant and genotype, respectively, on the activation of the non-canonical NF-κB signaling pathway. Impaired processing of p100 into p52 underlies p100 accumulation, which results in gain-of-function (GOF) of IκBδ inhibitory activity and loss-of-function (LOF) of p52 transcriptional activity. The three patients' plasma contained autoantibodies that neutralized IFN-α2 and/or IFN-ω, accounting for the severe or recurrent viral diseases of the patients, including influenza pneumonia in one sibling, and severe COVID-19 and recurrent herpes labialis in another. Our results confirm that NFKB2 alleles that are IκBδ GOF and p52 LOF can underlie CVID and drive the production of autoantibodies neutralizing type I IFNs, thereby predisposing to severe viral diseases.
Collapse
Affiliation(s)
- Alperen Baran
- Department of Molecular Biology and Genetics, Faculty of Science, İhsan Doğramacı Bilkent University, Ankara, Turkey
| | - Aysima Atılgan Lülecioğlu
- Department of Molecular Biology and Genetics, Faculty of Science, İhsan Doğramacı Bilkent University, Ankara, Turkey
| | - Liwei Gao
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
| | - Yılmaz Yücehan Yazıcı
- Department of Molecular Biology and Genetics, Faculty of Science, İhsan Doğramacı Bilkent University, Ankara, Turkey
| | - Fevzi Demirel
- Department of Immunology and Allergy, Gülhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Ayşe Metin
- Division of Pediatric Immunology and Allergy Diseases, Ankara Bilkent City Hospital, University of Health Sciences, Ankara, Turkey
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- Clinical Immunology Department, Assistance Publique Hôpitaux de Paris (AP-HP), Saint-Louis Hospital, Paris, France
| | - Şengül Beyaz
- Division of Immunology and Allergy Diseases, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Serkan Belkaya
- Department of Molecular Biology and Genetics, Faculty of Science, İhsan Doğramacı Bilkent University, Ankara, Turkey.
- The National Nanotechnology Research Center (UNAM), İhsan Doğramacı Bilkent University, Ankara, Turkey.
| |
Collapse
|
8
|
Brakta C, Tabet AC, Puel M, Pacault M, Stolzenberg MC, Goudet C, Merger M, Reumaux H, Lambert N, Alioua N, Malan V, Hanein S, Dupin-Deguine D, Treiner E, Lefèvre G, Farhat MM, Luca LE, Hureaux M, Li H, Chelloug N, Dehak R, Boussion S, Ouachée-Chardin M, Schleinitz N, Abou Chahla W, Barlogis V, Vély F, Oksenhendler E, Quartier P, Pasquet M, Suarez F, Bustamante J, Neven B, Picard C, Rieux-Laucat F, Lévy J, Rosain J. 2q33 Deletions Underlying Syndromic and Non-syndromic CTLA4 Deficiency. J Clin Immunol 2024; 45:46. [PMID: 39578275 DOI: 10.1007/s10875-024-01831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
PURPOSE CTLA4 deficiency is an inborn error of immunity (IEI) due to heterozygosity for germline loss-of-function variants of the CTLA4 gene located on chromosome 2q33.2. CTLA4 deficiency underlies pleiotropic immune and lymphoproliferation-mediated features with incomplete penetrance. It has been identified in hundreds of patients but copy number variants (CNVs) have been reported in only 12 kindreds, including nine which displayed large 2q33.1-2q33.2 deletions encompassing CTLA4. METHODS We conducted a nationwide study in France to identify patients with 2q33 deletions encompassing CTLA4. We investigated the clinical and immunological phenotypes and genotypes of these patients. RESULTS We identified 12 patients across six unrelated kindreds with clinical immunodeficiency. Neurological features were recorded in three patients, including one with syndromic neurodevelopmental disorder. Single-nucleotide polymorphism (SNP) or comparative genomic hybridization (CGH) array analysis, and targeted high-throughput sequencing revealed five different heterozygous 2q33 deletions of 26 kilobases to 7.12 megabases in size and encompassing one to 41 genes. We identified a contiguous gene syndrome (CGS) due to associated KLF7 deficiency in a kindred with a neurodevelopmental phenotype. CONCLUSION Deletions within the 2q33 region encompassing CTLA4 are rare and not extensively explored, and are probably underdiagnosed in cytogenetic practice. A literature review identified 14 different CGS loci including at least one gene responsible for an IEI. The deletions involved in IEIs should be systematically delimited, to facilitate screening for CGS.
Collapse
Affiliation(s)
- Charlyne Brakta
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Anne-Claude Tabet
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, EU, France
| | - Mathilde Puel
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Mathilde Pacault
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, EU, France
| | - Marie-Claude Stolzenberg
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, UMR 1163, Imagine Institute, INSERM, Paris, EU, France
- Inserm U1163, Imagine Institute, University of Paris Cité, Paris, Paris, EU, France
| | - Claire Goudet
- Pediatric Hematology Department, Timone Enfant, Assistance Publique Hôpitaux de Marseille (AP-HM), Marseille, EU, France
| | - Marguerite Merger
- Department of Internal Medicine and Clinical Immunology, University of Lille, Lille, EU, France
| | - Héloïse Reumaux
- Pediatric Rheumatology Unit, Jeanne de Flandre Hospital, University of Lille, Lille, EU, France
| | - Nathalie Lambert
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Najiba Alioua
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Valérie Malan
- Inserm U1163, Imagine Institute, University of Paris Cité, Paris, Paris, EU, France
- Laboratory of Genomic Medicine for Rare Diseases, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Sylvain Hanein
- Bioinformatic Platform, Institute of Genetic Diseases, Université Paris-Cité and Structure Fédérative de Recherche Necker, INSERM UMR1163, Imagine, Paris, EU, France
| | - Delphine Dupin-Deguine
- Medical Genetics Department, University of Toulouse, CHU Purpan, Toulouse, EU, France
- Otoneurosurgery and Pediatric ENT Department, University of Toulouse, CHU Purpan, Toulouse, EU, France
| | - Emmanuel Treiner
- Faculty of Medicine, University Toulouse III Paul Sabatier, Toulouse, France
- Laboratory of Immunology, University Hospital of Toulouse, Toulouse, France
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291, Toulouse, EU, France
| | - Guillaume Lefèvre
- Institute for Translational Research in Inflammation (INFINITE), Inserm U1286, University of Lille, Lille, EU, France
- Laboratory of Immunology, University of Lille, Lille, EU, France
| | - Méryem-Maud Farhat
- Department of Internal Medicine and Clinical Immunology, University of Lille, Lille, EU, France
| | - Luminita Elena Luca
- Department of Internal Medicine, Infectious and Tropical Diseases, University Hospital Center of Poitiers, Poitiers, EU, France
| | - Marguerite Hureaux
- Department of Genetics, Georges-Pompidou European Hospital, AP-HP, Paris, EU, France
- Reference Center for Hereditary Kidney Diseases in Children and Adults (MARHEA), University of Paris Cité, Paris, EU, France
| | - Hailun Li
- Inserm U1163, Imagine Institute, University of Paris Cité, Paris, Paris, EU, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Necker Branch, Inserm U1163, Paris, EU, France
| | - Nora Chelloug
- Medical Genetics Department, University of Toulouse, CHU Purpan, Toulouse, EU, France
| | - Rabha Dehak
- Department of Pediatrics, Calais Hospital, Calais, EU, France
| | - Simon Boussion
- Clinical Genetics Department, University of Lille, Lille, EU, France
| | - Marie Ouachée-Chardin
- Department of Pediatric Hematology, IHOPe, Hospices Civils de Lyon, Lyon, EU, France
| | - Nicolas Schleinitz
- Department of Internal Medicine La Timone, Aix-Marseille University, Assistance Publique - AP-HM, Marseille, EU, France
| | - Wadih Abou Chahla
- Department of Pediatric Hematology, Jeanne de Flandre Hospital, University of Lille, Lille, EU, France
| | - Vincent Barlogis
- Pediatric Hematology Department, Timone Enfant, Assistance Publique Hôpitaux de Marseille (AP-HM), Marseille, EU, France
| | - Frédéric Vély
- Aix Marseille Université, CNRS, Inserm, Centre d'Immunologie de Marseille-Luminy, Marseille, EU, France
- Departement of Immunology, Assistance Publique Des Hôpitaux de Marseille, Hôpital de La Timone, Marseille Immunopole, Marseille, EU, France
| | - Eric Oksenhendler
- Clinical Immunology Department, Saint-Louis Hospital, Paris-Diderot University, Paris, EU, France
| | - Pierre Quartier
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades University Hospital, AP-HP, Paris, EU, France
- Université Paris-Cité, Paris, EU, France
| | - Marlène Pasquet
- Department of Pediatric Hematology and Immunology, Children's Hospital, University Hospital, Toulouse, EU, France
| | - Felipe Suarez
- Université Paris-Cité, Paris, EU, France
- Department of Clinical Hematology, Necker Hospital for Sick Children, AP-HP, Paris, EU, France
- Centre de Référence Des Déficits Immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Jacinta Bustamante
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Necker Branch, Inserm U1163, Paris, EU, France
- Université Paris-Cité, Paris, EU, France
- St.Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, Rockefeller Branch, New York, NY, USA
| | - Bénédicte Neven
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, UMR 1163, Imagine Institute, INSERM, Paris, EU, France
- Inserm U1163, Imagine Institute, University of Paris Cité, Paris, Paris, EU, France
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades University Hospital, AP-HP, Paris, EU, France
- Université Paris-Cité, Paris, EU, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
- Université Paris-Cité, Paris, EU, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm U1163, Imagine Institute, Paris, EU, France
- Centre de Référence Des Déficits Immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, UMR 1163, Imagine Institute, INSERM, Paris, EU, France
- Inserm U1163, Imagine Institute, University of Paris Cité, Paris, Paris, EU, France
| | - Jonathan Lévy
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, EU, France
| | - Jérémie Rosain
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France.
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Necker Branch, Inserm U1163, Paris, EU, France.
- Université Paris-Cité, Paris, EU, France.
- St.Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, Rockefeller Branch, New York, NY, USA.
| |
Collapse
|
9
|
Kahn A, Luque G, Cuestas E, Basquiera A, Ricchi B, Schmitz-Abe K, Charbonnier LM, Benamar M, Motrich RD, Chatila TA, Rivero VE. Immunological biomarkers associated with survival in a cohort of Argentinian patients with common variable immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100311. [PMID: 39282620 PMCID: PMC11393598 DOI: 10.1016/j.jacig.2024.100311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 09/19/2024]
Abstract
Background Common variable immunodeficiency (CVID) is the most common symptomatic syndrome among inborn errors of immunity. Although several aspects of CVID immunopathology have been elucidated, predictive factors for mortality are incompletely defined. A genetic cause can be identified only in approximately 30% of patients. Objective We sought to develop a mortality predictive score on the basis of the immunophenotypes and genotypes of patients with CVID. Methods Twenty-one patients diagnosed with CVID in Córdoba, Argentina, were analyzed for clinical and laboratory data. Immunophenotyping was done by flow cytometry. CVID-associated mutations were identified by whole-exome sequencing. Results Alive (15) and deceased (6) patients were compared. Univariate analysis showed significant differences in CD4+ T cells (P = .002), natural killer (NK) cells (P = .001), and memory switched B cells (P = .001) between groups. Logistic regression analysis showed a negative correlation between CD4+, NK, and memory switched B-cell counts and probability of survival over a 10-year period (CD4+ T cells: odds ratio [OR], 1.01; 95% CI, 1.001-1.020; NK cells: OR, 1.07; 95% CI, 1.02-1.17; and memory switched B cells: OR, 26.23; 95% CI, 2.06-2651.96). Receiver-operating characteristic curve analysis identified a survival cutoff point for each parameter (CD4+ T cells: 546 cells/mL; AUC, 0.87; sensitivity, 60%; specificity, 100%; memory switched B cells: 0.84 cells/mL; AUC, 0.92; sensitivity, 100%; specificity, 85%; and NK cells: 45 cells/mL; AUC, 0.92; sensitivity, 83%; specificity, 100%). Genetic analysis on 14 (9 female and 5 male) patients from the cohort revealed mutations associated with inborn errors of immunity in 6 patients. Conclusions A score to predict mortality is proposed on the basis of CD4+ T, NK, and memory switched B-cell counts in patients with CVID.
Collapse
Affiliation(s)
- Adrian Kahn
- Servicio de Alergia e Inmunología Clínica, Hospital Privado Universitario de Córdoba, Córdoba, Argentina
- Instituto Universitario de Ciencias Biomédicas de Córdoba, Córdoba, Argentina
- FOCIS Center of Excellence Centro de Inmunologia Clinica de Cordoba (CICC), Córdoba, Argentina
| | - Gabriela Luque
- Servicio de Oncohematologia, Hospital Privado Universitario de Córdoba, Córdoba, Argentina
| | - Eduardo Cuestas
- Instituto Universitario de Ciencias Biomédicas de Córdoba, Córdoba, Argentina
- Servicio de Pediatria, Hospital Privado Universitario de Córdoba, Córdoba, Argentina
| | - Ana Basquiera
- Instituto Universitario de Ciencias Biomédicas de Córdoba, Córdoba, Argentina
- Servicio de Oncohematologia, Hospital Privado Universitario de Córdoba, Córdoba, Argentina
| | - Brenda Ricchi
- Servicio de Oncohematologia, Hospital Privado Universitario de Córdoba, Córdoba, Argentina
| | - Klaus Schmitz-Abe
- Division of Immunology, Boston Children’s Hospital, Boston, Mass
- Department of Pediatrics, Harvard Medical School, Boston, Mass
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, Mass
- Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Holtz Children’s Hospital, Jackson Health System, Miami, Fla
| | - Louis-Marie Charbonnier
- Division of Immunology, Boston Children’s Hospital, Boston, Mass
- Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Mehdi Benamar
- Division of Immunology, Boston Children’s Hospital, Boston, Mass
- Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Ruben Dario Motrich
- FOCIS Center of Excellence Centro de Inmunologia Clinica de Cordoba (CICC), Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Talal A. Chatila
- Division of Immunology, Boston Children’s Hospital, Boston, Mass
- Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Virginia E. Rivero
- FOCIS Center of Excellence Centro de Inmunologia Clinica de Cordoba (CICC), Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
10
|
Palacios-Ortega M, Guerra-Galán T, Jiménez-Huete A, García-Aznar JM, Pérez-Guzmán M, Mansilla-Ruiz MD, Mendiola ÁV, López CP, Hornero EM, Rodriguez AP, Cortijo AP, Polo Zarzuela M, Morales MM, Mandly EA, Cárdenas MC, Carrero A, García CJ, Bolaños E, Íñigo B, Medina F, de la Fuente E, Ochoa-Grullón J, García-Solís B, García-Carmona Y, Fernández-Arquero M, Benavente-Cuesta C, de Diego RP, Rider N, Sánchez-Ramón S. Dissecting Secondary Immunodeficiency: Identification of Primary Immunodeficiency within B-Cell Lymphoproliferative Disorders. J Clin Immunol 2024; 45:32. [PMID: 39441407 PMCID: PMC11499357 DOI: 10.1007/s10875-024-01818-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
Distinguishing between primary (PID) and secondary (SID) immunodeficiencies, particularly in relation to hematological B-cell lymphoproliferative disorders (B-CLPD), poses a major clinical challenge. We aimed to analyze and define the clinical and laboratory variables in SID patients associated with B-CLPD, identifying overlaps with late-onset PIDs, which could potentially improve diagnostic precision and prognostic assessment. We studied 37 clinical/laboratory variables in 151 SID patients with B-CLPD. Patients were classified as "Suspected PID Group" when having recurrent-severe infections prior to the B-CLPD and/or hypogammaglobulinemia according to key ESID criteria for PID. Bivariate association analyses showed significant statistical differences between "Suspected PID"- and "SID"-groups in 10 out of 37 variables analyzed, with "Suspected PID" showing higher frequencies of childhood recurrent-severe infections, family history of B-CLPD, significantly lower serum Free Light Chain (sFLC), immunoglobulin concentrations, lower total leukocyte, and switch-memory B-cell counts at baseline. Rpart machine learning algorithm was performed to potentially create a model to differentiate both groups. The model developed a decision tree with two major variables in order of relevance: sum κ + λ and history of severe-recurrent infections in childhood, with high sensitivity 89.5%, specificity 100%, and accuracy 91.8% for PID prediction. Identifying significant clinical and immunological variables can aid in the difficult task of recognizing late-onset PIDs among SID patients, emphasizing the value of a comprehensive immunological evaluation. The differences between "Suspected PID" and SID groups, highlight the need of early, tailored diagnostic and treatment strategies for personalized patient management and follow up.
Collapse
Affiliation(s)
- María Palacios-Ortega
- Department of Clinical Immunology, Institute of Laboratory Medicine and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
- Interdepartmental Unit of Immunodeficiencies, Madrid, Spain
| | - Teresa Guerra-Galán
- Department of Clinical Immunology, Institute of Laboratory Medicine and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
- Interdepartmental Unit of Immunodeficiencies, Madrid, Spain
| | | | | | - Marc Pérez-Guzmán
- Department of Clinical Immunology, Institute of Laboratory Medicine and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Maria Dolores Mansilla-Ruiz
- Department of Clinical Immunology, Institute of Laboratory Medicine and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
- Interdepartmental Unit of Immunodeficiencies, Madrid, Spain
| | - Ángela Villegas Mendiola
- Department of Clinical Immunology, Institute of Laboratory Medicine and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
- Interdepartmental Unit of Immunodeficiencies, Madrid, Spain
| | | | - Elsa Mayol Hornero
- Department of Clinical Immunology, Institute of Laboratory Medicine and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
- Interdepartmental Unit of Immunodeficiencies, Madrid, Spain
| | - Alejandro Peixoto Rodriguez
- Department of Clinical Immunology, Institute of Laboratory Medicine and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
- Interdepartmental Unit of Immunodeficiencies, Madrid, Spain
| | - Ascensión Peña Cortijo
- Department of Hematology, Institute of Laboratory Medicine and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Marta Polo Zarzuela
- Department of Hematology, Institute of Laboratory Medicine and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Marta Mateo Morales
- Department of Hematology, Institute of Laboratory Medicine and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Eduardo Anguita Mandly
- Department of Hematology, Institute of Laboratory Medicine and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Maria Cruz Cárdenas
- Department of Biochemistry, Institute of Laboratory Medicine and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Alejandra Carrero
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Carlos Jiménez García
- Department of Clinical Immunology, Institute of Laboratory Medicine and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Estefanía Bolaños
- Department of Hematology, Institute of Laboratory Medicine and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Belén Íñigo
- Department of Hematology, Institute of Laboratory Medicine and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Fiorella Medina
- Department of Hematology, Institute of Laboratory Medicine and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Eduardo de la Fuente
- Department of Clinical Immunology, Institute of Laboratory Medicine and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
- Interdepartmental Unit of Immunodeficiencies, Madrid, Spain
| | - Juliana Ochoa-Grullón
- Department of Clinical Immunology, Institute of Laboratory Medicine and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
- Interdepartmental Unit of Immunodeficiencies, Madrid, Spain
| | - Blanca García-Solís
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
- Interdepartmental Unit of Immunodeficiencies, Madrid, Spain
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, 28046, Spain
| | | | - Miguel Fernández-Arquero
- Department of Clinical Immunology, Institute of Laboratory Medicine and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
- Interdepartmental Unit of Immunodeficiencies, Madrid, Spain
| | - Celina Benavente-Cuesta
- Department of Hematology, Institute of Laboratory Medicine and IdISSC, Hospital Clínico San Carlos, Madrid, Spain
| | - Rebeca Pérez de Diego
- Interdepartmental Unit of Immunodeficiencies, Madrid, Spain
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz University Hospital, Madrid, 28046, Spain
| | - Nicholas Rider
- Division of Clinical Informatics, Pediatrics, Allergy and Immunology, Liberty University College of Osteopathic Medicine and Collaborative Health Partners, Lynchburg, Va, USA
| | - Silvia Sánchez-Ramón
- Department of Clinical Immunology, Institute of Laboratory Medicine and IdISSC, Hospital Clínico San Carlos, Madrid, Spain.
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain.
- Interdepartmental Unit of Immunodeficiencies, Madrid, Spain.
- Department of Clinical Immunology, Laboratory Medicine Institute Hospital Clínico San Carlos and IdISSC, Calle Profesor Martín Lagos SN, Madrid, 28040, Spain.
| |
Collapse
|
11
|
Garcia-Carmona Y, Chavez J, Gernez Y, Geyer JT, Bussel JB, Cunningham-Rundles C. Unexpected diagnosis of WHIM syndrome in refractory autoimmune cytopenia. Blood Adv 2024; 8:5126-5136. [PMID: 39028950 PMCID: PMC11460441 DOI: 10.1182/bloodadvances.2024013301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/25/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
ABSTRACT WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome is a rare primary immunodeficiency predominantly caused by heterozygous gain-of-function mutations in the C-terminus of the gene CXCR4. These CXCR4 variants display impaired receptor trafficking with persistence of the CXCR4 receptor on the surface, resulting in hyperactive downstream signaling after CXCL12 stimulation. In turn, this results in defective lymphoid differentiation, and reduced blood neutrophil and lymphocyte numbers. Here, we report a CXCR4 mutation that in 2 members of a kindred, led to life-long autoimmunity and lymphoid hypertrophy as the primary clinical manifestations of WHIM syndrome. We examine the functional effects of this mutation, and how these have affected phosphorylation, activation, and receptor internalization.
Collapse
Affiliation(s)
- Yolanda Garcia-Carmona
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jose Chavez
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yael Gernez
- Department of Medicine, Stanford School of Medicine, Stanford, CA
| | - Julia T. Geyer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - James B. Bussel
- Departments of Pediatrics, Medicine and Obstetrics, Weill Cornell School of Medicine, New York, NY
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
12
|
Guadalupe VOM, Abigail J SS, Patricia OR, Andrea HSD, Selma SM, Marco A YN, Carmen ZHM, Sara E EP, Berrón-Ruiz L. Analysis of B cell proliferation in response to in vitro stimulation in patients with CVID. Allergol Immunopathol (Madr) 2024; 52:94-102. [PMID: 39278858 DOI: 10.15586/aei.v52i5.1106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/29/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is a heterogeneous disorder characterized by defective antibody production and impaired differentiation of B cells. B cell proliferation is an essential step for antibody synthesis. Depending on the nature of the stimulus, their response may be either T-cell-dependent or T-cell-independent. METHODS We studied 23 CVID patients and 14 healthy donors (HD). The patients were categorized based on their percentage of memory B cells. In addition to standard immunophenotyping of circulating human B and T cell subsets, an in vitro CFSE dilution assay was used to assess the proliferative capacity of B cells and to compare the activation of the T cell-dependent and T cell-independent response among the patients. RESULTS Patients with a reduction in memory B cells exhibited an increase in follicular T cells (Tfh) and showed low proliferation in response to PKW, CpG, and SAC stimuli (Condition II) (p= 0.0073). In contrast, patients with a normal percentage of memory B cells showed a high expression of IL-21R and low proliferation in response to CPG (Condition III); IL-21, CD40L, and anti-IgM (Condition IV) stimuli (p= 0.0163 and p = 0.0475, respectively). CONCLUSION Defective proliferation in patients depends on the type of stimulus used and the phenotypic characteristics of the patients. Further studies are necessary to understand the disease mechanisms, which may guide us toward identifying genetic defects associated with CVID.
Collapse
Affiliation(s)
| | - Saldaña-Solano Abigail J
- Departamento de Atención de la Salud, Universidad Autónoma Metropolitana, Unidad Xochimilco, Ciudad de México, México
| | | | | | - Scheffer-Mendoza Selma
- Servicio de Inmunología y Alergia, Instituto Nacional de Pediatría SSA, Ciudad de México, México
| | | | | | - Espinosa-Padilla Sara E
- Laboratorio en Inmunodeficiencias, Instituto Nacional de Pediatría SSA, Ciudad de México, México
| | - Laura Berrón-Ruiz
- Laboratorio en Inmunodeficiencias, Instituto Nacional de Pediatría SSA, Ciudad de México, México;
| |
Collapse
|
13
|
Kuzmenko N, Alexenko M, Mukhina A, Rodina Y, Fadeeva M, Pershin D, Kieva A, Raykina E, Maschan M, Novichkova G, Shcherbina A. Genetic Characteristics of a Large Pediatric Cohort of Patients with Inborn Errors of Immunity: Single-Center Experience. J Clin Immunol 2024; 44:165. [PMID: 39052144 DOI: 10.1007/s10875-024-01767-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
More than 450 genetic defects result in inborn errors of immunity (IEI). Their individual prevalence in specific cohorts is influenced by national characteristics and other factors. We present results of genetic testing conducted in 1809 Russian children with IEI. Genetic defects confirming IEI were found in 1112 out of 1809 (61.5%) probands. These defects included variants in 118 single genes (87.9% of patients) and aberrations in 6 chromosomes (11.8%). Notably, three patients harbored pathogenic variants in more than one IEI gene. Large deletions constituted 5% of all defects. Out of the 799 original variants, 350 (44%) have not been described previously. Rare genetic defects (10 or fewer patients per gene) were identified in 20% of the patients. Among 967 probands with germline variants, defects were inherited in an autosomal dominant manner in 29%, X-linked in 34%, and autosomal recessive in 37%. Four females with non-random X-inactivation exhibited symptoms of X-linked diseases (BTK, WAS, CYBB, IKBKG gene defects). Despite a relatively low rate of consanguinity in Russia, 47.9% of autosomal recessive gene defects were found in a homozygous state. Notably, 28% of these cases carried "Slavic" mutation of the NBN gene or known hot-spot mutations in other genes. The diversity of IEI genetic forms and the high frequency of newly described variants underscore the genetic heterogeneity within the Russian IEI group. The new variants identified in this extensive cohort will enrich genetic databases.
Collapse
Affiliation(s)
- Natalia Kuzmenko
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation.
| | - Maxim Alexenko
- Laboratory of Molecular Biology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Anna Mukhina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Yulia Rodina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Mariia Fadeeva
- Laboratory of Hematopoietic Stem Cell Transplantation and Immunotherapy, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Dmitrii Pershin
- Laboratory of Hematopoietic Stem Cell Transplantation and Immunotherapy, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Amina Kieva
- Laboratory of Molecular Biology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Elena Raykina
- Laboratory of Molecular Biology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Miсhael Maschan
- Laboratory of Hematopoietic Stem Cell Transplantation and Immunotherapy, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
- High School of Molecular and Experimental Medicine, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Galina Novichkova
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
- High School of Molecular and Experimental Medicine, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Anna Shcherbina
- Department of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| |
Collapse
|
14
|
Pérez-Pérez D, Fuentes-Pananá EM, Flores-Hermenegildo JM, Romero-Ramirez H, Santos-Argumedo L, Kilimann MW, Rodríguez-Alba JC, Lopez-Herrera G. Lipopolysaccharide-responsive beige-like anchor is involved in regulating NF-κB activation in B cells. Front Immunol 2024; 15:1409434. [PMID: 39076990 PMCID: PMC11284061 DOI: 10.3389/fimmu.2024.1409434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/21/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction Lipopolysaccharide-responsive and beige-like anchor (LRBA) is a scaffolding protein that interacts with proteins such as CTLA-4 and PKA, the importance of which has been determined in various cell types, including T regulatory cells, B cells, and renal cells. LRBA deficiency is associated with an inborn error in immunity characterized by immunodeficiency and autoimmunity. In addition to defects in T regulatory cells, patients with LRBA deficiency also exhibit B cell defects, such as reduced cell number, low memory B cells, hypogammaglobulinemia, impaired B cell proliferation, and increased autophagy. Although Lrba-/- mice do not exhibit the immunodeficiency observed in humans, responses to B cell receptors (BCR) in B cells have not been explored. Therefore, a murine model is for elucidating the mechanism of Lrba mechanism in B cells. Aim To compare and evaluate spleen-derived B cell responses to BCR crosslinking in C57BL6 Lrba-/- and Lrba+/+ mice. Materials and methods Spleen-derived B cells were obtained from 8 to 12-week-old mice. Subpopulations were determined by immunostaining and flow cytometry. BCR crosslinking was assessed by the F(ab')2 anti-μ chain. Activation, proliferation and viability assays were performed using flow cytometry and protein phosphorylation was evaluated by immunoblotting. The nuclear localization of p65 was determined using confocal microscopy. Nur77 expression was evaluated by Western blot. Results Lrba-/- B cells showed an activated phenotype and a decreased proportion of transitional 1 B cells, and both proliferation and survival were affected after BCR crosslinking in the Lrba-/- mice. The NF-κB pathway exhibited a basal activation status of several components, resulting in increased activation of p50, p65, and IκBα, basal p50 activation was reduced by the Plcγ2 inhibitor U73122. BCR crosslinking in Lrba-/ - B cells resulted in poor p50 phosphorylation and p65 nuclear localization. Increased levels of Nur77 were detected. Discussion These results indicate the importance of Lrba in controlling NF-κB activation driven by BCR. Basal activation of NF-κB could impact cellular processes, such as, activation, differentiation, proliferation, and maintenance of B cells after antigen encounter.
Collapse
Affiliation(s)
- Daniela Pérez-Pérez
- Doctorate Program in Biological Sciences, Autonomous National University of Mexico, Mexico City, Mexico
- Immunodeficiency Laboratory, National Institute of Pediatrics, Mexico City, Mexico
| | | | - José Mizael Flores-Hermenegildo
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV IPN, Mexico City, Mexico
| | - Hector Romero-Ramirez
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV IPN, Mexico City, Mexico
| | - Leopoldo Santos-Argumedo
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV IPN, Mexico City, Mexico
| | - Manfred W. Kilimann
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Juan Carlos Rodríguez-Alba
- Medicine and Surgery Faculty, Autonomous University Benito Juarez from Oaxaca, Oaxaca, Mexico
- Neuroimmunology and Neurooncology Unit, The National Institute of Neurology and Neurosurgery (NINN), Mexico City, Mexico
| | | |
Collapse
|
15
|
Fathi N, Nirouei M, Salimian Rizi Z, Fekrvand S, Abolhassani H, Salami F, Ketabforoush AHME, Azizi G, Saghazadeh A, Esmaeili M, Almasi-Hashiani A, Rezaei N. Clinical, Immunological, and Genetic Features in Patients with NFKB1 and NFKB2 Mutations: a Systematic Review. J Clin Immunol 2024; 44:160. [PMID: 38990428 DOI: 10.1007/s10875-024-01763-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Inborn errors of immunity (IEIs) encompass various diseases with diverse clinical and immunological symptoms. Determining the genotype-phenotype of different variants in IEI entity precisely is challenging, as manifestations can be heterogeneous even in patients with the same mutated gene. OBJECTIVE In the present study, we conducted a systematic review of patients recorded with NFKB1 and NFKB2 mutations, two of the most frequent monogenic IEIs. METHODS The search for relevant literature was conducted in databases including Web of Science, PubMed, and Scopus. Information encompassing demographic, clinical, immunological, and genetic data was extracted from cases reported with mutations in NFKB1 and NFKB2. The comprehensive features of manifestations in patients were described, and a comparative analysis of primary characteristics was conducted between individuals with NFKB1 loss of function (LOF) and NFKB2 (p52-LOF/IκBδ-gain of function (GOF)) variants. RESULTS A total of 397 patients were included in this study, 257 had NFKB1 mutations and 140 had NFKB2 mutations. There were 175 LOF cases in NFKB1 and 122 p52LOF/IκBδGOF cases in NFKB2 pivotal groups with confirmed functional implications. NFKB1LOF and p52LOF/IκBδGOF predominant cases (81.8% and 62.5% respectively) initially presented with a CVID-like phenotype. Patients with NFKB1LOF variants often experienced hematologic autoimmune disorders, whereas p52LOF/IκBδGOF patients were more susceptible to other autoimmune diseases. Viral infections were markedly higher in p52LOF/IκBδGOF cases compared to NFKB1LOF (P-value < 0.001). NFKB2 (p52LOF/IκBδGOF) patients exhibited a greater prevalence of ectodermal dysplasia and pituitary gland involvement than NFKB1LOF patients. Most NFKB1LOF and p52LOF/IκBδGOF cases showed low CD19 + B cells, with p52LOF/IκBδGOF having more cases of this type. Low memory B cells were more common in p52LOF/IκBδGOF patients. CONCLUSIONS Patients with NFKB2 mutations, particularly p52LOF/IκBδGOF, are at higher risk of viral infections, pituitary gland involvement, and ectodermal dysplasia compared to patients with NFKB1LOF mutations. Genetic testing is essential to resolve the initial complexity and confusion surrounding clinical and immunological features. Emphasizing the significance of functional assays in determining the probability of correlations between mutations and immunological and clinical characteristics of patients is crucial.
Collapse
Affiliation(s)
- Nazanin Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Zahra Salimian Rizi
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Fereshte Salami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Amene Saghazadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marzie Esmaeili
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
16
|
Chen Y, Li D, Yin J, Xiong J, Xu M, Qi Q, Yang W. Diagnostic yield of next-generation sequencing in suspect primary immunodeficiencies diseases: a systematic review and meta-analysis. Clin Exp Med 2024; 24:131. [PMID: 38890201 PMCID: PMC11189333 DOI: 10.1007/s10238-024-01392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
To determine the diagnostic yield of Next-generation sequencing (NGS) in suspect Primary Immunodeficiencies Diseases (PIDs). This systematic review was conducted following PRISMA criteria. Searching Pubmed and Web of Science databases, the following keywords were used in the search: ("Next-generation sequencing") OR "whole exome sequencing" OR "whole genome sequencing") AND ("primary immunodeficiency disease" OR "PIDs"). We used STARD items to assess the risk of bias in the included studies. The meta-analysis included 29 studies with 5847 patients, revealing a pooled positive detection rate of 42% (95% CI 0.29-0.54, P < 0.001) for NGS in suspected PID cases. Subgroup analyses based on family history demonstrated a higher detection rate of 58% (95% CI 0.43-0.71) in patients with a family history compared to 33% (95% CI 0.21-0.46) in those without (P < 0.001). Stratification by disease types showed varied detection rates, with Severe Combined Immunodeficiency leading at 58% (P < 0.001). Among 253 PID-related genes, RAG1, ATM, BTK, and others constituted major contributors, with 34 genes not included in the 2022 IUIS gene list. The application of NGS in suspected PID patients can provide significant diagnostic results, especially in patients with a family history. Meanwhile, NGS performs excellently in accurately diagnosing disease types, and early identification of disease types can benefit patients in treatment.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Dongrui Li
- The First Clinical College of Guangzhou Medical University, Guangzhou, 510180, China
| | - Jiawen Yin
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Jinglin Xiong
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Min Xu
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Qing Qi
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Wenlin Yang
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
17
|
Perez-Perez D, Santos-Argumedo L, Rodriguez-Alba JC, Lopez-Herrera G. Analysis of LRBA pathogenic variants and the association with functional protein domains and clinical presentation. Pediatr Allergy Immunol 2024; 35:e14179. [PMID: 38923448 DOI: 10.1111/pai.14179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
LRBA is a cytoplasmic protein that is ubiquitously distributed. Almost all LRBA domains have a scaffolding function. In 2012, it was reported that homozygous variants in LRBA are associated with early-onset hypogammaglobulinemia. Since its discovery, more than 100 pathogenic variants have been reported. This review focuses on the variants reported in LRBA and their possible associations with clinical phenotypes. In this work LRBA deficiency cases reported more than 11 years ago have been revised. A database was constructed to analyze the type of variants, age at onset, clinical diagnosis, infections, autoimmune diseases, and cellular and immunoglobulin levels. The review of cases from 2012 to 2023 showed that LRBA deficiency was commonly diagnosed in patients with a clinical diagnosis of Common Variable Immunodeficiency, followed by enteropathy, neonatal diabetes mellitus, ALPS, and X-linked-like syndrome. Most cases show early onset of presentation at <6 years of age. Most cases lack protein expression, whereas hypogammaglobulinemia is observed in half of the cases, and IgG and IgA levels are isotypes reported at low levels. Patients with elevated IgG levels exhibited more than one autoimmune manifestation. Patients carrying pathogenic variants leading to a premature stop codon show a severe phenotype as they have an earlier onset of disease presentation, severe autoimmune manifestations, premature death, and low B cells and regulatory T cell levels. Missense variants were more common in patients with low IgG levels and cytopenia. This work lead to the conclusion that the type of variant in LRBA has association with disease severity, which leads to a premature stop codon being the ones that correlates with severe disease.
Collapse
Affiliation(s)
- D Perez-Perez
- Doctorate Program in Biological Sciences, Autonomous National University of Mexico, Mexico City, Mexico
- Immunodeficiencies Laboratory, National Institute of Pediatrics (INP), Mexico City, Mexico
| | - L Santos-Argumedo
- Biomedicine Department, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | - J C Rodriguez-Alba
- Neuroimmunology and Neurooncology Unit, The National Institute of Neurology and Neurosurgery (NINN), Mexico City, Mexico
- Medicine and Surgery Faculty, Autonomous University Benito Juarez from Oaxaca, Oaxaca, Mexico
| | - G Lopez-Herrera
- Immunodeficiencies Laboratory, National Institute of Pediatrics (INP), Mexico City, Mexico
| |
Collapse
|
18
|
Fusaro M, Coustal C, Barnabei L, Riller Q, Heller M, Ho Nhat D, Fourrage C, Rivière S, Rieux-Laucat F, Maria ATJ, Picard C. A large deletion in a non-coding regulatory region leads to NFKB1 haploinsufficiency in two adult siblings. Clin Immunol 2024; 261:110165. [PMID: 38423196 DOI: 10.1016/j.clim.2024.110165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/19/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Mutations in NFkB pathway genes can cause inborn errors of immunity (IEI), with NFKB1 haploinsufficiency being a significant etiology for common variable immunodeficiency (CVID). Indeed, mutations in NFKB1 are found in 4 to 5% of in European and United States CVID cohorts, respectively; CVID representing almost ¼ of IEI patients in European countries registries. This case study presents a 49-year-old patient with respiratory infections, chronic diarrhea, immune thrombocytopenia, hypogammaglobulinemia, and secondary lymphoma. Comprehensive genetic analysis, including high-throughput sequencing of 300 IEI-related genes and copy number variation analysis, identified a critical 2.6-kb deletion spanning the first untranslated exon and its upstream region. The region's importance was confirmed through genetic markers indicative of enhancers and promoters. The deletion was also found in the patient's brother, who displayed similar but milder symptoms. Functional analysis supported haploinsufficiency with reduced mRNA and protein expression in both patients. This case underscores the significance of copy number variation (CNV) analysis and targeting noncoding exons within custom gene panels, emphasizing the broader genomic approaches needed in medical genetics.
Collapse
Affiliation(s)
- Mathieu Fusaro
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM U1291, CNRS U5051, University Toulouse III, Toulouse, France; Université Paris Cité, INSERM UMR1163, Imagine Institute, Paris, France; Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital - Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| | - Cyrille Coustal
- Internal Medicine and Multi-Organic Diseases Department, Hôpital Saint Éloi, CHU Montpellier, Montpellier, France
| | - Laura Barnabei
- Université Paris Cité, INSERM UMR1163, Imagine Institute, Paris, France; Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Institut Imagine, INSERM UMR 1163, F-75015 Paris, France
| | - Quentin Riller
- Université Paris Cité, INSERM UMR1163, Imagine Institute, Paris, France; Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Institut Imagine, INSERM UMR 1163, F-75015 Paris, France
| | - Marion Heller
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital - Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Duong Ho Nhat
- Université Paris Cité, INSERM UMR1163, Imagine Institute, Paris, France; Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Institut Imagine, INSERM UMR 1163, F-75015 Paris, France
| | - Cécile Fourrage
- INSERM-UMR 1163, Imagine Institute, Paris, France; Bioinformatics Core Facility, INSERM-UMR 1163, Imagine Institute, Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Service 3633, INSERM, University Paris Cité, Paris, France
| | - Sophie Rivière
- Internal Medicine and Multi-Organic Diseases Department, Hôpital Saint Éloi, CHU Montpellier, Montpellier, France
| | - Frédéric Rieux-Laucat
- Université Paris Cité, INSERM UMR1163, Imagine Institute, Paris, France; Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Institut Imagine, INSERM UMR 1163, F-75015 Paris, France
| | - Alexandre Thibault Jacques Maria
- Internal Medicine & Onco-Immunology (MedI2O), Institute for Regenerative Medicine and Biotherapy (IRMB), Montpellier University Hospital, Montpellier, France; IRMB, University of Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Capucine Picard
- Université Paris Cité, INSERM UMR1163, Imagine Institute, Paris, France; Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital - Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Pediatric Immuno-Hematology and Rheumatology Unit, Necker Hospital for Sick Children - AP-HP, Paris, France; French National Reference Center for Primary Immune Deficiencies CEREDIH, Necker University, Hospital for Sick Children - AP-HP, Paris, France
| |
Collapse
|
19
|
Aygun A, Topyıldız E, Geyik M, Karaca NE, Durmaz A, Aksu G, Aykut A, Kutukculer N. Current genetic defects in common variable immunodeficiency patients on the geography between Europe and Asia: a single-center experience. Immunol Res 2024; 72:225-233. [PMID: 37840117 DOI: 10.1007/s12026-023-09426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
Identification of the causes of monogenetic common variable immunodeficiency (CVID) patients has rapidly increased in the last years by means of worldwide availability of appropriate genetic diagnostic methods. However, up to date, very limited numbers of reports demonstrating the role of geography, ethnicity, and consanguinity have been published. Here, we reported the first study of Turkish CVID patients and compared them with the results of three countries from America, Europe, and Asia. A total of 100 children diagnosed as CVID according to the criteria of European Society for Immunodeficiencies were enrolled, and they were genetically analyzed by using targeted next-generation sequencing and whole-exome sequencing. The median age of our patients was 5.8 years (range, 3.0-16.0 years) at clinical diagnosis and 9.0 years (range, 4.8-21.0 years) at the time of genetic diagnosis. The consanguinity rate was 24%. Disease-causing pathogenic variants were defined in 40% of patients in a total of 17 different genes. Sixteen of 40 identified pathogenic variants were novel (40%). We determined 18 surface molecular defects, 10 cytosolic defects, 9 nuclear defects, and 3 others. In our cohort, the most common gene was TACI (15/40 in pathogenic variant identified cases and 15/100 in all cases) followed by the others such as PLCү2, LRBA, TCF3, and STAT1. In contrast to our expectations, our results were more similar to American and European population rather than Asians, although we also have high consanguinity rates and live on the geography between Europe and Asia. Genetic investigation is a great challenge, because of the complexity and heterogeneity of the disease, and each country has to know their own current genetic landscape in CVID for a better and successful management of the patients.
Collapse
Affiliation(s)
- Ayse Aygun
- Faculty of Medicine, Department of Pediatric Immunology, Ege University, 35100, Bornova, Izmir, Turkey
| | - Ezgi Topyıldız
- Faculty of Medicine, Department of Pediatric Immunology, Ege University, 35100, Bornova, Izmir, Turkey
| | - Mehmet Geyik
- Faculty of Medicine, Department of Pediatric Immunology, Ege University, 35100, Bornova, Izmir, Turkey
| | - Neslihan Edeer Karaca
- Faculty of Medicine, Department of Pediatric Immunology, Ege University, 35100, Bornova, Izmir, Turkey
| | - Asude Durmaz
- Faculty of Medicine, Department of Medical Genetics, Ege University, Izmir, Turkey
| | - Guzide Aksu
- Faculty of Medicine, Department of Pediatric Immunology, Ege University, 35100, Bornova, Izmir, Turkey
| | - Ayca Aykut
- Faculty of Medicine, Department of Medical Genetics, Ege University, Izmir, Turkey
| | - Necil Kutukculer
- Faculty of Medicine, Department of Pediatric Immunology, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
20
|
Berman-Riu M, Cunill V, Clemente A, López-Gómez A, Pons J, Ferrer JM. Dysfunctional mitochondria, disrupted levels of reactive oxygen species, and autophagy in B cells from common variable immunodeficiency patients. Front Immunol 2024; 15:1362995. [PMID: 38596676 PMCID: PMC11002182 DOI: 10.3389/fimmu.2024.1362995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/04/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Common Variable Immunodeficiency (CVID) patients are characterized by hypogammaglobulinemia and poor response to vaccination due to deficient generation of memory and antibody-secreting B cells. B lymphocytes are essential for the development of humoral immune responses, and mitochondrial function, hreactive oxygen species (ROS) production and autophagy are crucial for determining B-cell fate. However, the role of those basic cell functions in the differentiation of human B cells remains poorly investigated. Methods We used flow cytometry to evaluate mitochondrial function, ROS production and autophagy processes in human naïve and memory B-cell subpopulations in unstimulated and stimulated PBMCs cultures. We aimed to determine whether any alterations in these processes could impact B-cell fate and contribute to the lack of B-cell differentiation observed in CVID patients. Results We described that naïve CD19+CD27- and memory CD19+CD27+ B cells subpopulations from healthy controls differ in terms of their dependence on these processes for their homeostasis, and demonstrated that different stimuli exert a preferential cell type dependent effect. The evaluation of mitochondrial function, ROS production and autophagy in naïve and memory B cells from CVID patients disclosed subpopulation specific alterations. Dysfunctional mitochondria and autophagy were more prominent in unstimulated CVID CD19+CD27- and CD19+CD27+ B cells than in their healthy counterparts. Although naïve CD19+CD27- B cells from CVID patients had higher basal ROS levels than controls, their ROS increase after stimulation was lower, suggesting a disruption in ROS homeostasis. On the other hand, memory CD19+CD27+ B cells from CVID patients had both lower ROS basal levels and a diminished ROS production after stimulation with anti-B cell receptor (BCR) and IL-21. Conclusion The failure in ROS cell signalling could impair CVID naïve B cell activation and differentiation to memory B cells. Decreased levels of ROS in CVID memory CD19+CD27+ B cells, which negatively correlate with their in vitro cell death and autophagy, could be detrimental and lead to their previously demonstrated premature death. The final consequence would be the failure to generate a functional B cell compartment in CVID patients.
Collapse
Affiliation(s)
- Maria Berman-Riu
- Department of Immunology, Son Espases University Hospital, Palma, Spain
- Human Immunopathology Research Laboratory, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Vanesa Cunill
- Department of Immunology, Son Espases University Hospital, Palma, Spain
- Human Immunopathology Research Laboratory, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Antonio Clemente
- Multidisciplinary Sepsis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio López-Gómez
- Department of Immunology, Son Espases University Hospital, Palma, Spain
- Human Immunopathology Research Laboratory, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Jaime Pons
- Department of Immunology, Son Espases University Hospital, Palma, Spain
- Human Immunopathology Research Laboratory, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Joana M. Ferrer
- Department of Immunology, Son Espases University Hospital, Palma, Spain
- Human Immunopathology Research Laboratory, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
21
|
Nakatani N, Tamura A, Hanafusa H, Nino N, Yamamoto N, Awano H, Tanaka Y, Morisada N, Uemura S, Saito A, Hasegawa D, Nozu K, Kosaka Y. A novel NFKB1 variant in a Japanese pedigree with common variable immunodeficiency. Hum Genome Var 2024; 11:15. [PMID: 38514645 PMCID: PMC10957891 DOI: 10.1038/s41439-024-00271-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 03/23/2024] Open
Abstract
Recently, heterozygous loss-of-function NFKB1 variants were identified as the primary cause of common variable immunodeficiency (CVID) in the European population. However, pathogenic NFKB1 variants have never been reported in the Japanese population. We present a 29-year-old Japanese woman with CVID. A novel variant, c.136 C > T, p.(Gln46*), was identified in NFKB1. Her mother and daughter carried the same variant, demonstrating the first Japanese pedigree with an NFKB1 pathogenic variant.
Collapse
Affiliation(s)
- Naoko Nakatani
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akihiro Tamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Hiroaki Hanafusa
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nanako Nino
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Pediatrics, Hyogo Prefectural Harima-Himeji General Medical Center, Himeji, Japan
| | - Nobuyuki Yamamoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroyuki Awano
- Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, Tottori, Japan
| | | | - Naoya Morisada
- Department of Clinical Genetics, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Suguru Uemura
- Department of Hematology and Oncology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Atsuro Saito
- Department of Hematology and Oncology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Daiichiro Hasegawa
- Department of Hematology and Oncology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiyuki Kosaka
- Department of Hematology and Oncology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| |
Collapse
|
22
|
Akbar NU, Ahmad S, Khan TA, Tayyeb M, Akhter N, Shafiq L, Khan SN, Alam MM, Abdullah AM, Rehman MFU, Bajaber MA, Akram MS. Consanguineous marriages increase the incidence of recurrent tuberculosis: Evidence from whole exome sequencing. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105559. [PMID: 38266757 DOI: 10.1016/j.meegid.2024.105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND In this study, we have identified multiple mutations in the IL-12R1 gene among Pakistani patients who have inherited them through consanguineous marriages. These patients have experienced severe Bacille-Calmette-Guérin (BCG) infection as well as recurrent tuberculosis. We will demonstrate the pivotal role of interleukin (IL)-12/interferon (IFN)-γ axis in the regulation of mycobacterial diseases. METHODOLOGY First, we checked the patients' medical records, and then afterward, we assessed interferon-gamma (IFN-γ) production through ELISA. Following that, DNA was extracted to investigate IL-12/IFN- abnormalities. Whole exome sequencing was conducted through Sanger sequencing. Secretory cytokine levels were compared from healthy control of the same age groups and they were found to be considerably less in the disease cohort. To evaluate the probable functional impact of these alterations, an in silico study was performed. RESULTS The study found that the patients' PBMCs produced considerably less IFN-γ than expected. Analysis using flow cytometry showed that activated T cells lacked surface expression of IL-12Rβ1. Exon 7 of the IL-12Rβ1 gene, which encodes a portion of the cytokine binding region (CBR), and exon 10, which encodes the fibronectin-type III (FNIII) domain, were found to have the mutations c.641 A > G; p.Q214R and c.1094 T > C; p.M365T, respectively. In silico analysis showed that these mutations likely to have a deleterious effect on protein function. CONCLUSION Our findings indicate the significant contribution of the IL-12/IFN-γ is in combating infections due to mycobacterium. Among Pakistani patients born to consanguineous marriages, the identified mutations in the IL-12Rβ-1 gene provide insights into the genetic basis of severe BCG infections and recurrent tuberculosis. The study highlights the potential utility of newborn screening in regions with mandatory BCG vaccination, enabling early detection and intervention for primary immunodeficiencies associated with mycobacterial infections. Moreover, the study suggests at the potential role of other related genes such as IL-23Rβ1, TYK2, or JAK2 in IFN-γ production, warranting further investigation.
Collapse
Affiliation(s)
- Noor Ul Akbar
- Department of Zoology, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Sajjad Ahmad
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar 25160, Pakistan
| | - Taj Ali Khan
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar 25160, Pakistan; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Muhammad Tayyeb
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar 25160, Pakistan
| | - Naheed Akhter
- Department of Biochemistry, Faculty of life Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Laraib Shafiq
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar 25160, Pakistan
| | - Shahid Niaz Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan.
| | - Mohammad Mahtab Alam
- Department of Basic Medical Sciences, College of Applied Medical Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Alduwish Manal Abdullah
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | | | - Majed A Bajaber
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Muhammad Safwan Akram
- School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK; National Horizons Centre, Teesside University, Darlington DL1 1HG, UK.
| |
Collapse
|
23
|
Hanson J, Bonnen PE. Systematic review of mortality and survival rates for APDS. Clin Exp Med 2024; 24:17. [PMID: 38280023 PMCID: PMC10821986 DOI: 10.1007/s10238-023-01259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/14/2023] [Indexed: 01/29/2024]
Abstract
Activated phosphoinositide 3-kinase delta syndrome (APDS) is a rare genetic disorder that presents clinically as a primary immunodeficiency. Clinical presentation of APDS includes severe, recurrent infections, lymphoproliferation, lymphoma, and other cancers, autoimmunity and enteropathy. Autosomal dominant variants in two independent genes have been demonstrated to cause APDS. Pathogenic variants in PIK3CD and PIK3R1, both of which encode components of the PI3-kinase, have been identified in subjects with APDS. APDS1 is caused by gain of function variants in the PIK3CD gene, while loss of function variants in PIK3R1 have been reported to cause APDS2. We conducted a review of the medical literature and identified 256 individuals who had a molecular diagnosis for APDS as well as age at last report; 193 individuals with APDS1 and 63 with APDS2. Despite available treatments, survival for individuals with APDS appears to be shortened from the average lifespan. A Kaplan-Meier survival analysis for APDS showed the conditional survival rate at the age of 20 years was 87%, age of 30 years was 74%, and ages of 40 and 50 years were 68%. Review of causes of death showed that the most common cause of death was lymphoma, followed by complications from HSCT. The overall mortality rate for HSCT in APDS1 and APDS2 cases was 15.6%, while the mortality rate for lymphoma was 47.6%. This survival and mortality data illustrate that new treatments are needed to mitigate the risk of death from lymphoma and other cancers as well as infection. These analyses based on real-world evidence gathered from the medical literature comprise the largest study of survival and mortality for APDS to date.
Collapse
Affiliation(s)
- Jennifer Hanson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Penelope E Bonnen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
24
|
Cunningham-Rundles C, Casanova JL, Boisson B. Genetics and clinical phenotypes in common variable immunodeficiency. Front Genet 2024; 14:1272912. [PMID: 38274105 PMCID: PMC10808799 DOI: 10.3389/fgene.2023.1272912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/09/2023] [Indexed: 01/27/2024] Open
Abstract
Common variable immunodeficiency (CVID) is one of the most common symptomatic groups of inborn errors of immunity. In addition to infections resulting from insufficient levels of immune globulins and antibodies, many patients develop inflammatory or autoimmune conditions, which are associated with increased mortality. This aspect of CVID has been the focus of many studies, and dissecting the clinical phenotypes of CVID, has had the goal of providing biomarkers to identify these subjects, potentially at the time of diagnosis. With the application of whole exome (WES) and whole genome analyses, an increasing number of monogenic causes of CVID have been elucidated. From the standpoint of the practicing physician, an important question is whether the clinical phenotype, particularly the occurrence of autoinflammation of autoimmunity, might suggest the likelihood of identifying a causative mutation, and if possible the gene most likely to underlie CVID. We addressed this question in a patient group of 405 subjects diagnosed with CVID from one medical center.
Collapse
Affiliation(s)
- Charlotte Cunningham-Rundles
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Division of Clinical Immunology, Departments of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris Cité Université, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, United States
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, United States
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris Cité Université, Imagine Institute, Paris, France
| |
Collapse
|
25
|
Chen Y, You Y, Li J, Yang A, Zhou W, Li X. Endoscopic and histopathological hints on infections in patients of common variable immunodeficiency disorder with gastrointestinal symptoms. BMC Gastroenterol 2023; 23:413. [PMID: 38017379 PMCID: PMC10683160 DOI: 10.1186/s12876-023-03052-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND AND AIMS Common variable immunodeficiency disorder (CVID) patients may have gastrointestinal (GI) involvement and suffer from infections, which are poorly understood. This study aimed to evaluate the clinical, endoscopic, and histopathological features of CVID patients with GI symptoms and determine their correlation with infections. METHODS We performed a retrospective study on 21 CVID patients with GI symptoms who underwent endoscopic examination in Peking Union Medical College Hospital from 2000 to 2020. The clinical, infectious, endoscopic, and histopathological features were reassessed. RESULTS Chronic diarrhea was the most prevalent GI symptom, observed in 95.2% of our CVID cohort. Over 85% of patients had low body weight and malabsorption. Small bowel villous atrophy was found in 90.5% of patients under endoscopy and mostly confirmed by histopathology. GI infections were identified in 9 (42.9%) patients. Of these, 7 patients with diffuse and obvious nodular lymphoid hyperplasia (NLH) of small bowel under endoscopy had significantly higher infection rate (85.7% vs 21.4%, p < 0.05), predominantly with Giardia and bacteria. Small bowel biopsies showed 95% of patients lacked plasma cells and 60% had increased intraepithelial lymphocytes (IELs), but not significantly different between GI infection and non-infection group. Most patients improved after intravenous immunoglobulin and anti-infection therapy. CONCLUSIONS CVID could involve GI tract, particularly small bowel. Obvious NLH under endoscopy could be a hint for GI infection in CVID patients. Comprehensive endoscopic and histopathological evaluation may be helpful in CVID diagnosis and identification of potential co-infection, leading to proper treatment.
Collapse
Affiliation(s)
- Yang Chen
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yan You
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ji Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Weixun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Xiaoqing Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
26
|
Toskov V, Ehl S. Autoimmune lymphoproliferative immunodeficiencies (ALPID) in childhood: breakdown of immune homeostasis and immune dysregulation. Mol Cell Pediatr 2023; 10:11. [PMID: 37702894 PMCID: PMC10499775 DOI: 10.1186/s40348-023-00167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Many inborn errors of immunity (IEI) manifest with hallmarks of both immunodeficiency and immune dysregulation due to uncontrolled immune responses and impaired immune homeostasis. A subgroup of these disorders frequently presents with autoimmunity and lymphoproliferation (ALPID phenotype). After the initial description of the genetic basis of autoimmune lymphoproliferative syndrome (ALPS) more than 20 years ago, progress in genetics has helped to identify many more genetic conditions underlying this ALPID phenotype. Among these, the majority is caused by a group of autosomal-dominant conditions including CTLA-4 haploinsufficiency, STAT3 gain-of-function disease, activated PI3 kinase syndrome, and NF-κB1 haploinsufficiency. Even within a defined genetic condition, ALPID patients may present with staggering clinical heterogeneity, which makes diagnosis and management a challenge. In this review, we discuss the pathophysiology, clinical presentation, approaches to diagnosis, and conventional as well as targeted therapy of the most common ALPID conditions.
Collapse
Affiliation(s)
- Vasil Toskov
- Centre for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Centre for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
27
|
Chakraborty S, Kumari R, Gupta D, Makharia GK, Ahuja V, Kumar P, Mitra DK. Interleukin-9 rescues class switching of Memory B cells derived from Common variable immunodeficiency patients. Clin Immunol 2023; 254:109697. [PMID: 37481011 PMCID: PMC7615988 DOI: 10.1016/j.clim.2023.109697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Impaired class switch memory (CSM) B cell formation is the hallmark of common variable immunodeficiency (CVID). Various T cell abnormalities have been observed in CVID patients indicating inadequate T-cell help to B cells. A major setback in understanding its pathogenesis is due to diverse clinical presentation. Therefore, we performed extensive immunological investigation in a cohort of CVID patients with similar clinical findings in order to unravel the T cell dysfunction and its influence on the defective humoral immune response. All recruited CVID patients exhibited B cells in the normal range, but reduced CSM B cells. However, patients showed reduced T cell proliferation, reduced level of serum Interleukin-9 (IL-9) and frequency of IL-9 expressing CD4 (Th-9) cells. IL-9 supplementation along with CD40 engagement was effective in inducing in vitro CSM B cells formation in CVID patients. Thus, IL-9 supplementation has the potential to restore impaired CSM B cell formation in CVID.
Collapse
Affiliation(s)
- Sushmita Chakraborty
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rinkee Kumari
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Devika Gupta
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Govind K Makharia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vineet Ahuja
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Pankaj Kumar
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Dipendra Kumar Mitra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
28
|
Gray PE, David C. Inborn Errors of Immunity and Autoimmune Disease. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1602-1622. [PMID: 37119983 DOI: 10.1016/j.jaip.2023.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/01/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
Autoimmunity may be a manifestation of inborn errors of immunity, specifically as part of the subgroup of primary immunodeficiency known as primary immune regulatory disorders. However, although making a single gene diagnosis can have important implications for prognosis and management, picking patients to screen can be difficult, against a background of a high prevalence of autoimmune disease in the population. This review compares the genetics of common polygenic and rare monogenic autoimmunity, and explores the molecular mechanisms, phenotypes, and inheritance of autoimmunity associated with primary immune regulatory disorders, highlighting the emerging importance of gain-of-function and non-germline somatic mutations. A novel framework for identifying rare monogenic cases of common diseases in children is presented, highlighting important clinical and immunologic features that favor single gene disease and guides clinicians in selecting appropriate patients for genomic screening. In addition, there will be a review of autoimmunity in non-genetically defined primary immunodeficiency such as common variable immunodeficiency, and of instances where primary autoimmunity can result in clinical phenocopies of inborn errors of immunity.
Collapse
Affiliation(s)
- Paul Edgar Gray
- Sydney Children's Hospital, Randwick, NSW, Australia; Western Sydney University, Penrith, NSW, Australia.
| | - Clementine David
- Sydney Children's Hospital, Randwick, NSW, Australia; The School of Women's & Children's Health, University of New South Wales, Randwick, NSW, Australia
| |
Collapse
|
29
|
Ameratunga R, Edwards ESJ, Lehnert K, Leung E, Woon ST, Lea E, Allan C, Chan L, Steele R, Longhurst H, Bryant VL. The Rapidly Expanding Genetic Spectrum of Common Variable Immunodeficiency-Like Disorders. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1646-1664. [PMID: 36796510 DOI: 10.1016/j.jaip.2023.01.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
The understanding of common variable immunodeficiency disorders (CVID) is in evolution. CVID was previously a diagnosis of exclusion. New diagnostic criteria have allowed the disorder to be identified with greater precision. With the advent of next-generation sequencing (NGS), it has become apparent that an increasing number of patients with a CVID phenotype have a causative genetic variant. If a pathogenic variant is identified, these patients are removed from the overarching diagnosis of CVID and are deemed to have a CVID-like disorder. In populations where consanguinity is more prevalent, the majority of patients with severe primary hypogammaglobulinemia will have an underlying inborn error of immunity, usually an early-onset autosomal recessive disorder. In nonconsanguineous societies, pathogenic variants are identified in approximately 20% to 30% of patients. These are often autosomal dominant mutations with variable penetrance and expressivity. To add to the complexity of CVID and CVID-like disorders, some genetic variants such as those in TNFSF13B (transmembrane activator calcium modulator cyclophilin ligand interactor) predispose to, or enhance, disease severity. These variants are not causative but can have epistatic (synergistic) interactions with more deleterious mutations to worsen disease severity. This review is a description of the current understanding of genes associated with CVID and CVID-like disorders. This information will assist clinicians in interpreting NGS reports when investigating the genetic basis of disease in patients with a CVID phenotype.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Emily S J Edwards
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, and Allergy and Clinical Immunology Laboratory, Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Klaus Lehnert
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Edward Lea
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Caroline Allan
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Hilary Longhurst
- Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Vanessa L Bryant
- Department of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
30
|
He M, Wong A, Sutton K, Gondim MJB, Samson C. Very-Early Onset Chronic Active Colitis with Heterozygous Variants in LRBA1 and CARD11, a Case of "Immune TOR-Opathies". Fetal Pediatr Pathol 2023; 42:297-306. [PMID: 35748740 DOI: 10.1080/15513815.2022.2088912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND A small subset of cases of inflammatory bowel disease (IBD) occurs as a result of single gene defects, and typically occurs in young or very young pediatric patients, referred to as "monogenic very-early onset IBD (VEO-IBD)". The gene variants leading to monogenic VEO-IBD are often associated with primary immunodeficiency syndromes. CASE REPORT A six year-old girl presented to our gastroenterology clinic with LRBA deficiency with a heterozygous mutation at c.1399 A > G, p Met467Val, histopathologic chronic active colitis without granulomas and clinical chronic colitis. Her gastrointestinal symptoms began at age 5 with bloody diarrhea, abdominal pain and weight loss. Whole exome sequencing revealed a CARD11 heterozygous de novo mutation (c.220 + 1G > A). She was in clinical remission on only abatacept. DISCUSSION We present a case of monogenic VEO-IBD associated with two heterozygous variants in LRBA1 and CARD11, both considered as key players in the newly proposed "immune TOR-opathies".
Collapse
Affiliation(s)
- Mai He
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Amanda Wong
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kimberly Sutton
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Mercia Jeanne Bezerra Gondim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Charles Samson
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
31
|
Leiding JW, Vogel TP, Santarlas VGJ, Mhaskar R, Smith MR, Carisey A, Vargas-Hernández A, Silva-Carmona M, Heeg M, Rensing-Ehl A, Neven B, Hadjadj J, Hambleton S, Ronan Leahy T, Meesilpavikai K, Cunningham-Rundles C, Dutmer CM, Sharapova SO, Taskinen M, Chua I, Hague R, Klemann C, Kostyuchenko L, Morio T, Thatayatikom A, Ozen A, Scherbina A, Bauer CS, Flanagan SE, Gambineri E, Giovannini-Chami L, Heimall J, Sullivan KE, Allenspach E, Romberg N, Deane SG, Prince BT, Rose MJ, Bohnsack J, Mousallem T, Jesudas R, Santos Vilela MMD, O'Sullivan M, Pachlopnik Schmid J, Průhová Š, Klocperk A, Rees M, Su H, Bahna S, Baris S, Bartnikas LM, Chang Berger A, Briggs TA, Brothers S, Bundy V, Chan AY, Chandrakasan S, Christiansen M, Cole T, Cook MC, Desai MM, Fischer U, Fulcher DA, Gallo S, Gauthier A, Gennery AR, Gonçalo Marques J, Gottrand F, Grimbacher B, Grunebaum E, Haapaniemi E, Hämäläinen S, Heiskanen K, Heiskanen-Kosma T, Hoffman HM, Gonzalez-Granado LI, Guerrerio AL, Kainulainen L, Kumar A, Lawrence MG, Levin C, Martelius T, Neth O, Olbrich P, Palma A, Patel NC, Pozos T, Preece K, Lugo Reyes SO, Russell MA, Schejter Y, Seroogy C, Sinclair J, Skevofilax E, Suan D, Suez D, Szabolcs P, Velasco H, Warnatz K, Walkovich K, et alLeiding JW, Vogel TP, Santarlas VGJ, Mhaskar R, Smith MR, Carisey A, Vargas-Hernández A, Silva-Carmona M, Heeg M, Rensing-Ehl A, Neven B, Hadjadj J, Hambleton S, Ronan Leahy T, Meesilpavikai K, Cunningham-Rundles C, Dutmer CM, Sharapova SO, Taskinen M, Chua I, Hague R, Klemann C, Kostyuchenko L, Morio T, Thatayatikom A, Ozen A, Scherbina A, Bauer CS, Flanagan SE, Gambineri E, Giovannini-Chami L, Heimall J, Sullivan KE, Allenspach E, Romberg N, Deane SG, Prince BT, Rose MJ, Bohnsack J, Mousallem T, Jesudas R, Santos Vilela MMD, O'Sullivan M, Pachlopnik Schmid J, Průhová Š, Klocperk A, Rees M, Su H, Bahna S, Baris S, Bartnikas LM, Chang Berger A, Briggs TA, Brothers S, Bundy V, Chan AY, Chandrakasan S, Christiansen M, Cole T, Cook MC, Desai MM, Fischer U, Fulcher DA, Gallo S, Gauthier A, Gennery AR, Gonçalo Marques J, Gottrand F, Grimbacher B, Grunebaum E, Haapaniemi E, Hämäläinen S, Heiskanen K, Heiskanen-Kosma T, Hoffman HM, Gonzalez-Granado LI, Guerrerio AL, Kainulainen L, Kumar A, Lawrence MG, Levin C, Martelius T, Neth O, Olbrich P, Palma A, Patel NC, Pozos T, Preece K, Lugo Reyes SO, Russell MA, Schejter Y, Seroogy C, Sinclair J, Skevofilax E, Suan D, Suez D, Szabolcs P, Velasco H, Warnatz K, Walkovich K, Worth A, Seppänen MRJ, Torgerson TR, Sogkas G, Ehl S, Tangye SG, Cooper MA, Milner JD, Forbes Satter LR. Monogenic early-onset lymphoproliferation and autoimmunity: Natural history of STAT3 gain-of-function syndrome. J Allergy Clin Immunol 2023; 151:1081-1095. [PMID: 36228738 PMCID: PMC10081938 DOI: 10.1016/j.jaci.2022.09.002] [Show More Authors] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND In 2014, germline signal transducer and activator of transcription (STAT) 3 gain-of-function (GOF) mutations were first described to cause a novel multisystem disease of early-onset lymphoproliferation and autoimmunity. OBJECTIVE This pivotal cohort study defines the scope, natural history, treatment, and overall survival of a large global cohort of patients with pathogenic STAT3 GOF variants. METHODS We identified 191 patients from 33 countries with 72 unique mutations. Inclusion criteria included symptoms of immune dysregulation and a biochemically confirmed germline heterozygous GOF variant in STAT3. RESULTS Overall survival was 88%, median age at onset of symptoms was 2.3 years, and median age at diagnosis was 12 years. Immune dysregulatory features were present in all patients: lymphoproliferation was the most common manifestation (73%); increased frequencies of double-negative (CD4-CD8-) T cells were found in 83% of patients tested. Autoimmune cytopenias were the second most common clinical manifestation (67%), followed by growth delay, enteropathy, skin disease, pulmonary disease, endocrinopathy, arthritis, autoimmune hepatitis, neurologic disease, vasculopathy, renal disease, and malignancy. Infections were reported in 72% of the cohort. A cellular and humoral immunodeficiency was observed in 37% and 51% of patients, respectively. Clinical symptoms dramatically improved in patients treated with JAK inhibitors, while a variety of other immunomodulatory treatment modalities were less efficacious. Thus far, 23 patients have undergone bone marrow transplantation, with a 62% survival rate. CONCLUSION STAT3 GOF patients present with a wide array of immune-mediated disease including lymphoproliferation, autoimmune cytopenias, and multisystem autoimmunity. Patient care tends to be siloed, without a clear treatment strategy. Thus, early identification and prompt treatment implementation are lifesaving for STAT3 GOF syndrome.
Collapse
Affiliation(s)
- Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore; Johns Hopkins All Children's Institute for Clinical and Translational Research, Johns Hopkins All Children's Hospital, St Petersburg.
| | - Tiphanie P Vogel
- Department of Pediatrics, Baylor College of Medicine and William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston
| | | | - Rahul Mhaskar
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa
| | - Madison R Smith
- Department of Pediatrics, Baylor College of Medicine and William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston
| | - Alexandre Carisey
- Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis
| | - Alexander Vargas-Hernández
- Department of Pediatrics, Baylor College of Medicine and William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston
| | - Manuel Silva-Carmona
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
| | - Anne Rensing-Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
| | - Bénédicte Neven
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163-Institut Imagine, Paris
| | - Jérôme Hadjadj
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163-Institut Imagine, Paris
| | - Sophie Hambleton
- Newcastle University Translational and Clinical Research Institute, Newcastle (United Kingdom)
| | | | - Kornvalee Meesilpavikai
- Department of Internal Medicine, Division of Clinical Immunology and Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands; Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Cullen M Dutmer
- Children's Hospital Colorado, University of Colorado School of Medicine, Aurora
| | - Svetlana O Sharapova
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk
| | - Mervi Taskinen
- New Children's Hospital, Pediatric Research Center, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Turku and Kuopio, Finland
| | - Ignatius Chua
- Department of Rheumatology, Immunology and Allergy, Christchurch Hospital, Christchurch; Clinical Immunogenomics Research Consortium of Australasia (CIRCA)
| | | | - Christian Klemann
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover
| | - Larysa Kostyuchenko
- Center of Pediatric Immunology, Western Ukrainian Specialized Children's Medical Centre, Lviv
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo
| | - Akaluck Thatayatikom
- Division of Pediatric Allergy/Immunology/Rheumatology, Shands Children's Hospital, University of Florida, Gainesville
| | - Ahmet Ozen
- School of Medicine, Pediatric Allergy and Immunology, Marmara University, Istanbul
| | - Anna Scherbina
- Dmitry Rogachev National Medical and Research Center for Pediatric Hematology, Oncology and Immunology, Moscow
| | - Cindy S Bauer
- Division of Allergy and Immunology, Phoenix Children's Hospital, Phoenix
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter
| | - Eleonora Gambineri
- Department of NEUROFARBA, Section of Children's Health, University of Florence, Anna Meyer Children's Hospital, Florence
| | | | - Jennifer Heimall
- Perelman School of Medicine at University of Pennsylvania, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia
| | - Kathleen E Sullivan
- Perelman School of Medicine at University of Pennsylvania, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia
| | - Eric Allenspach
- Pediatric Immunology/Rheumatology, University of Washington, Seattle; Seattle Children's Hospital, Seattle
| | - Neil Romberg
- Perelman School of Medicine at University of Pennsylvania, Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia
| | - Sean G Deane
- Department of Allergy, The Permanente Medical Group, Sacramento, and the Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, School of Medicine, Sacramento
| | - Benjamin T Prince
- Nationwide Children's Hospital Department of Allergy and Immunology, Columbus; College of Medicine, The Ohio State University, Columbus
| | - Melissa J Rose
- College of Medicine, The Ohio State University, Columbus; Division of Pediatric Hematology-Oncology, Nationwide Children's Hospital, Columbus
| | - John Bohnsack
- Department of Pediatrics, University of Utah, Salt Lake City
| | | | - Rohith Jesudas
- Department of Hematology, St Jude Children's Research Hospital, Memphis
| | - Maria Marluce Dos Santos Vilela
- Pediatric Allergy and Immunology/Center of Investigation in Pediatrics, Faculty of Medical Sciences, State University of Campinas-Unicamp, São Paulo
| | - Michael O'Sullivan
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA); Immunology Department, Perth Children's Hospital, Nedlands
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children's Hospital Zurich, Children's Research Center (CRC), Zurich
| | - Štěpánka Průhová
- Department of Pediatrics, Charles University in Prague, Second Faculty of Medicine and University Hospital Motol, Prague
| | - Adam Klocperk
- Department of Immunology, Second Faculty of Medicine and University Hospital Motol, Charles University in Prague, Prague
| | - Matthew Rees
- Department of Hematology, St Jude Children's Research Hospital, Memphis
| | - Helen Su
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda
| | - Sami Bahna
- Allergy and Immunology Section, Louisiana State University Health Sciences Center, Shreveport
| | - Safa Baris
- School of Medicine, Pediatric Allergy and Immunology, Marmara University, Istanbul
| | - Lisa M Bartnikas
- Division of Immunology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston
| | - Amy Chang Berger
- Division of Hospital Medicine, Department of Medicine, University of California, San Francisco
| | - Tracy A Briggs
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester; NW Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester
| | - Shannon Brothers
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA); Starship Children's Hospital, Auckland
| | - Vanessa Bundy
- Allergy and Immunology, University of California, Los Angeles
| | - Alice Y Chan
- Department of Medicine, University of California, San Francisco
| | - Shanmuganathan Chandrakasan
- Division of Bone Marrow Transplant, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta
| | | | - Theresa Cole
- Department of Allergy and Immunology, The Royal Children's Hospital, Melbourne
| | - Matthew C Cook
- Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra
| | | | - Ute Fischer
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf
| | - David A Fulcher
- Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, Canberra
| | - Silvanna Gallo
- Department of Pediatrics, Immunology and Rheumatology Section, Puerto Montt Hospital, Puerto Montt
| | - Amelie Gauthier
- Department of Allergy and Immunology, CHU de Québec-CHUL, Laval University Hospital Center, Laval University, Quebec City
| | - Andrew R Gennery
- Newcastle University Translational and Clinical Research Institute, Newcastle (United Kingdom)
| | - José Gonçalo Marques
- Infectious Diseases and Immunodeficiencies Unit, Department of Pediatrics, Hospital de Santa Maria-CHULN and Faculdade de Medicina, Universidade de Lisboa, Lisbon
| | - Frédéric Gottrand
- University Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, Lille
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
| | - Eyal Grunebaum
- Division of Immunology and Allergy, and the Department of Pediatrics, Developmental and Stem Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto
| | - Emma Haapaniemi
- Centre for Molecular Medicine Norway, Oslo; Department of Pediatric Research, Oslo
| | | | - Kaarina Heiskanen
- New Children's Hospital, Pediatric Research Center, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Turku and Kuopio, Finland
| | | | - Hal M Hoffman
- Department of Pediatrics, University of California San Diego, La Jolla; Rady Children's Hospital San Diego, Division of Pediatric Allergy, Immunology, and Rheumatology, San Diego
| | - Luis Ignacio Gonzalez-Granado
- Pediatrics Department, University Hospital 12 de Octubre, Research Institute Hospital, School of Medicine Complutense University, Madrid
| | - Anthony L Guerrerio
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore
| | - Leena Kainulainen
- Department of Pediatrics and Medicine, Turku University Hospital, University of Turku, Turku, Finland
| | - Ashish Kumar
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati
| | | | - Carina Levin
- Pediatric Hematology Unit, Emek Medical Centre, Afula, and the Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa
| | - Timi Martelius
- Adult Immunodeficiency Unit, Inflammation Center, Helsinki University Hospital and University of Helsinki, Helsinki
| | - Olaf Neth
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocio, Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Peter Olbrich
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocio, Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Alejandro Palma
- Servicio de Immunología y Reumatología, Hospital Nacional de Pediatría Prof Dr Juan P. Garrahan, Buenos Aires
| | - Niraj C Patel
- Division of Allergy and Immunology, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta
| | - Tamara Pozos
- Department of Clinical Immunology, Children's Minnesota, Minneapolis
| | - Kahn Preece
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA); Department of Paediatric Immunology, John Hunter Children's Hospital, Newcastle (Australia)
| | | | | | - Yael Schejter
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Ein-Kerem Medical Center and Faculty of Medicine, Hebrew University, Jerusalem
| | - Christine Seroogy
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison
| | - Jan Sinclair
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA); Starship Children's Hospital, Auckland
| | - Effie Skevofilax
- Department of Pediatric Hematology-Oncology (TAO) and First Department of Pediatrics, Aghia Sophia Children's Hospital, Athens
| | - Daniel Suan
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA); Garvan Institute of Medical Research, Darlinghurst; Westmead Clinical School, University of Sydney, Westmead
| | - Daniel Suez
- Allergy, Asthma & Immunology Clinic, PA, Irving
| | - Paul Szabolcs
- University of Pittsburgh Medical Center, Children's Hospital of Pittsburgh, Pittsburgh
| | - Helena Velasco
- Division of Allergy and Clinical Immunology, Moinhos de Vento Hospital, Porto Alegre
| | - Klaus Warnatz
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
| | - Kelly Walkovich
- Department of Pediatrics, C. S. Mott Children's Hospital, Michigan Medicine, Ann Arbor
| | - Austen Worth
- Great Ormond Street Hospital for Children, London
| | - Mikko R J Seppänen
- Rare Disease Center, Children's Hospital, and Adult Primary Immunodeficiency Outpatient Clinic, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki
| | | | - Georgios Sogkas
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hanover
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg
| | - Stuart G Tangye
- Clinical Immunogenomics Research Consortium of Australasia (CIRCA); Garvan Institute of Medical Research, Darlinghurst; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology and Immunology, Washington University School of Medicine, St Louis
| | - Joshua D Milner
- Department of Pediatrics, Division of Allergy and Immunology, Columbia University, New York Presbyterian Hospital, New York
| | - Lisa R Forbes Satter
- Department of Pediatrics, Baylor College of Medicine and William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston.
| |
Collapse
|
32
|
Of Mycelium and Men: Inherent Human Susceptibility to Fungal Diseases. Pathogens 2023; 12:pathogens12030456. [PMID: 36986378 PMCID: PMC10058615 DOI: 10.3390/pathogens12030456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
In medical mycology, the main context of disease is iatrogenic-based disease. However, historically, and occasionally, even today, fungal diseases affect humans with no obvious risk factors, sometimes in a spectacular fashion. The field of “inborn errors of immunity” (IEI) has deduced at least some of these previously enigmatic cases; accordingly, the discovery of single-gene disorders with penetrant clinical effects and their immunologic dissection have provided a framework with which to understand some of the key pathways mediating human susceptibility to mycoses. By extension, they have also enabled the identification of naturally occurring auto-antibodies to cytokines that phenocopy such susceptibility. This review provides a comprehensive update of IEI and autoantibodies that inherently predispose humans to various fungal diseases.
Collapse
|
33
|
Granulomatous inflammation and hypogammaglobulinemia: Clinical conundrum of familial hemophagocytic lymphohistiocytosis type 5. Immunobiology 2023; 228:152318. [PMID: 36623408 DOI: 10.1016/j.imbio.2022.152318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/23/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022]
Abstract
Familial hemophagocytic lymphohistiocytosis (HLH) is an inherited disorder characterized by systemic hyperinflammation caused by an uncontrolled immune response mediated by T-lymphocytes, natural killer (NK) cells, and macrophages. Most children with familial HLH present within first 2 years of life and can have fatal disease unless hematopoietic stem cell transplant (HSCT) is performed (1). However, few patients may have late presentation and prolonged survival. With increasing awareness and facilities to identify HLH these disorders are being identified beyond infancy (2-4). Clinical and laboratory features are often similar to other primary immune deficiency diseases and pose diagnostic challenges (4-6). We report two patients who presented beyond the first decade of life with HLH, granulomatous inflammation, hypogammaglobulinemia, reduced B cells and were diagnosed to have familial HLH type 5 due to defect in STXBP2 gene.
Collapse
|
34
|
Whole Exome Sequence Analysis for Inborn Errors of IL-12/IFN- γ Axis in Patient with Recurrent Typhoid Fever. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1761283. [PMID: 36845636 PMCID: PMC9957627 DOI: 10.1155/2023/1761283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/25/2022] [Accepted: 09/30/2022] [Indexed: 02/19/2023]
Abstract
Background The IL-12/IFN-γ axis pathways play a vital role in the control of intracellular pathogens such as Salmonella typhi. Objective The study is aimed at using whole exome sequencing (WES) to screen out genetic defects in IL-12/IFN-γ axis in patients with recurrent typhoid fever. Methods WES using next-generation sequencing was performed on a single patient diagnosed with recurrent typhoid fever. Following alignment and variant calling, exomes were screened for mutations in 25 genes that are involved in the IL-12/IFN-γ axis pathway. Each variant was assessed by using various bioinformatics mutational analysis tools such as SIFT, Polyphen2, LRT, MutationTaster, and MutationAssessor. Results Out of 25 possible variations in the IL-12/IFN-γ axis genes, only 2 probable disease-causing mutations were identified. These variations were rare and include mutations in IL23R and ZNFX I. Other pathogenic mutations were found, but they were not considered likely to cause disease based on various mutation predictors. Conclusion Applying WES to the patient with recurrent typhoid fever detects variants that are not much important as other genes in the IL-12/IFN-γ axis. Results of the current study suggest that a large population sizes would be needed to examine the functional relevance of IL-12/IFN-γ axis genes with recurrent typhoid fever.
Collapse
|
35
|
Al-Tamemi S, Al-Zadjali S, Bruwer Z, Naseem SUR, Al-Siyabi N, ALRawahi M, Alkharusi K, Al-Thihli K, Al-Murshedi F, AlSayegh A, Al-Maawali A, Dennison D. Genetic Causes, Clinical Features, and Survival of Underlying Inborn Errors of Immunity in Omani Patients: a Single-Center Study. J Clin Immunol 2023; 43:452-465. [PMID: 36324046 DOI: 10.1007/s10875-022-01394-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Early identification of inborn errors of immunity (IEIs) is crucial due to the significant risk of morbidity and mortality. This study aimed to describe the genetic causes, clinical features, and survival rate of IEIs in Omani patients. METHODS A prospective study of all Omani patients evaluated for immunodeficiency was conducted over a 17-year period. Clinical features and diagnostic immunological findings were recorded. Targeted gene testing was performed in cases of obvious immunodeficiency. For cases with less conclusive phenotypes, a gene panel was performed, followed by whole-exome sequencing if necessary. RESULTS A total of 185 patients were diagnosed with IEIs during the study period; of these, 60.5% were male. Mean ages at symptom onset and diagnosis were 30.0 and 50.5 months, respectively. Consanguinity and a family history of IEIs were present in 86.9% and 50.8%, respectively. Most patients presented with lower respiratory infections (65.9%), followed by growth and development manifestations (43.2%). Phagocytic defects were the most common cause of IEIs (31.9%), followed by combined immunodeficiency (21.1%). Overall, 109 of 132 patients (82.6%) who underwent genetic testing received a genetic diagnosis, while testing was inconclusive for the remaining 23 patients (17.4%). Among patients with established diagnoses, 37 genes and 44 variants were identified. Autosomal recessive inheritance was present in 81.7% of patients with gene defects. Several variants were novel. Intravenous immunoglobulin therapy was administered to 39.4% of patients and 21.6% received hematopoietic stem cell transplantation. The overall survival rate was 75.1%. CONCLUSION This study highlights the genetic causes of IEIs in Omani patients. This information may help in the early identification and management of the disease, thereby improving survival and quality of life.
Collapse
Affiliation(s)
- Salem Al-Tamemi
- Clinical Immunology & Allergy Unit, Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman.
| | - Shoaib Al-Zadjali
- Molecular Hematology Unit, Department of Hematology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Zandre Bruwer
- Department of Clinical Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - Shafiq-Ur-Rehman Naseem
- Clinical Immunology & Allergy Unit, Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | - Nabila Al-Siyabi
- Clinical Immunology & Allergy Unit, Directorate of Nursing, Sultan Qaboos University Hospital, Muscat, Oman
| | - Mohammed ALRawahi
- Molecular Hematology Unit, Department of Hematology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Khalsa Alkharusi
- Department of Clinical Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - Khalid Al-Thihli
- Department of Clinical Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - Fathiya Al-Murshedi
- Department of Clinical Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - Abeer AlSayegh
- Department of Clinical Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - Almundher Al-Maawali
- Department of Clinical Genetics, Sultan Qaboos University Hospital, Muscat, Oman
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - David Dennison
- Molecular Hematology Unit, Department of Hematology, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
36
|
Walter JE, Ziegler JB, Ballow M, Cunningham-Rundles C. Advances and Challenges of the Decade: The Ever-Changing Clinical and Genetic Landscape of Immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:107-115. [PMID: 36610755 DOI: 10.1016/j.jaip.2022.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 01/06/2023]
Abstract
In the past 10 years, we have witnessed major advances in clinical immunology. Newborn screening for severe combined immunodeficiency has become universal in the United States and screening programs are being extended to severe combined immunodeficiency and other inborn errors of immunity globally. Early genetic testing is becoming the norm for many of our patients and allows for informed selection of targeted therapies including biologics repurposed from other specialties. During the COVID-19 pandemic, our understanding of essential immune responses expanded and the discovery of immune gene defects continued. Immunoglobulin products, the backbone of protection for antibody deficiency syndromes, came into use to minimize side effects. New polyclonal and monoclonal antibody products emerged with increasing options to manage respiratory viral agents such as SARS-CoV-2 and respiratory syncytial virus. Against these advances, we still face major challenges. Atypical is becoming typical as phenotypes of distinct genetic disease overlap whereas the clinical spectrum of the same genetic defect widens. Therefore, clinical judgment needs to be paired with repeated deep immune phenotyping and upfront genetic testing, as technologies rapidly evolve, and clinical disease often progresses with age. Managing patients with organ damage resulting from immune dysregulation poses a special major clinical challenge and management often lacks standardization, from autoimmune cytopenias, granulomatous interstitial lung disease, enteropathy, and liver disease to endocrine, rheumatologic, and neurologic complications. Clinical, translational, and basic science networks will continue to advance the field; however, cross-talk and education with practicing allergists/immunologists are essential to keep up with the ever-changing clinical and genetic landscape of inborn errors of immunity.
Collapse
Affiliation(s)
- Jolan E Walter
- Division of Pediatric Allergy and Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St Petersburg, Fla; Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, Mass.
| | - John B Ziegler
- School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia; Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Mark Ballow
- Department of Pediatrics, Division of Allergy and Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St Petersburg, Fla
| | | |
Collapse
|
37
|
Allain V, Grandin V, Meignin V, Bertinchamp R, Boutboul D, Fieschi C, Galicier L, Gérard L, Malphettes M, Bustamante J, Fusaro M, Lambert N, Rosain J, Lenoir C, Kracker S, Rieux-Laucat F, Latour S, de Villartay JP, Picard C, Oksenhendler E. Lymphoma as an Exclusion Criteria for CVID Diagnosis Revisited. J Clin Immunol 2023; 43:181-191. [PMID: 36155879 DOI: 10.1007/s10875-022-01368-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/14/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE Hypogammaglobulinemia in a context of lymphoma is usually considered as secondary and prior lymphoma remains an exclusion criterion for a common variable immunodeficiency (CVID) diagnosis. We hypothesized that lymphoma could be the revealing symptom of an underlying primary immunodeficiency (PID), challenging the distinction between primary and secondary hypogammaglobulinemia. METHODS Within a French cohort of adult patients with hypogammaglobulinemia, patients who developed a lymphoma either during follow-up or before the diagnosis of hypogammaglobulinemia were identified. These two chronology groups were then compared. For patients without previous genetic diagnosis, a targeted next-generation sequencing of 300 PID-associated genes was performed. RESULTS A total of forty-seven patients had developed 54 distinct lymphomas: non-Hodgkin B cell lymphoma (67%), Hodgkin lymphoma (26%), and T cell lymphoma (7%). In 25 patients, lymphoma developed prior to the diagnosis of hypogammaglobulinemia. In this group of patients, Hodgkin lymphoma was overrepresented compared to the group of patients in whom lymphoma occurred during follow-up (48% versus 9%), whereas MALT lymphoma was absent (0 versus 32%). Despite the histopathological differences, both groups presented with similar characteristics in terms of age at hypogammaglobulinemia diagnosis, consanguinity rate, or severe T cell defect. Overall, genetic analyses identified a molecular diagnosis in 10/47 patients (21%), distributed in both groups and without peculiar gene recurrence. Most of these patients presented with a late onset combined immunodeficiency (LOCID) phenotype. CONCLUSION Prior or concomitant lymphoma should not be used as an exclusion criteria for CVID diagnosis, and these patients should be investigated accordingly.
Collapse
Affiliation(s)
- Vincent Allain
- University of Paris, Paris, France.,Department of Clinical Immunology, Saint-Louis Hospital, AP-HP, 1 avenue Claude Vellefaux, 75010, Paris, France
| | - Virginie Grandin
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | | | - Rémi Bertinchamp
- Department of Clinical Immunology, Saint-Louis Hospital, AP-HP, 1 avenue Claude Vellefaux, 75010, Paris, France
| | - David Boutboul
- University of Paris, Paris, France.,Department of Clinical Immunology, Saint-Louis Hospital, AP-HP, 1 avenue Claude Vellefaux, 75010, Paris, France.,Centre de Référence Des Déficits Immunitaires Héréditaires (CEREDIH), Paris, France
| | - Claire Fieschi
- University of Paris, Paris, France.,Department of Clinical Immunology, Saint-Louis Hospital, AP-HP, 1 avenue Claude Vellefaux, 75010, Paris, France.,Centre de Référence Des Déficits Immunitaires Héréditaires (CEREDIH), Paris, France
| | - Lionel Galicier
- Department of Clinical Immunology, Saint-Louis Hospital, AP-HP, 1 avenue Claude Vellefaux, 75010, Paris, France.,Centre de Référence Des Déficits Immunitaires Héréditaires (CEREDIH), Paris, France
| | - Laurence Gérard
- Department of Clinical Immunology, Saint-Louis Hospital, AP-HP, 1 avenue Claude Vellefaux, 75010, Paris, France.,Centre de Référence Des Déficits Immunitaires Héréditaires (CEREDIH), Paris, France
| | - Marion Malphettes
- Department of Clinical Immunology, Saint-Louis Hospital, AP-HP, 1 avenue Claude Vellefaux, 75010, Paris, France.,Centre de Référence Des Déficits Immunitaires Héréditaires (CEREDIH), Paris, France
| | - Jacinta Bustamante
- University of Paris, Paris, France.,Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France.,Centre de Référence Des Déficits Immunitaires Héréditaires (CEREDIH), Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France.,St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Mathieu Fusaro
- University of Paris, Paris, France.,Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Nathalie Lambert
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jérémie Rosain
- University of Paris, Paris, France.,Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Christelle Lenoir
- University of Paris, Paris, France.,Laboratory of Lymphocyte Activation and Susceptibility to EBV, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Sven Kracker
- University of Paris, Paris, France.,Laboratory of Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Frédéric Rieux-Laucat
- University of Paris, Paris, France.,Imagine Institute, INSERM UMR 1163, Paris, France
| | - Sylvain Latour
- University of Paris, Paris, France.,Laboratory of Lymphocyte Activation and Susceptibility to EBV, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Jean-Pierre de Villartay
- University of Paris, Paris, France.,Laboratory "Genome Dynamics in the Immune System," INSERM UMR 1163, Imagine Institute, Paris, France
| | - Capucine Picard
- University of Paris, Paris, France.,Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France.,Centre de Référence Des Déficits Immunitaires Héréditaires (CEREDIH), Paris, France.,Laboratory of Lymphocyte Activation and Susceptibility to EBV, INSERM UMR 1163, Imagine Institute, Paris, France.,Immuno-Hematology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Eric Oksenhendler
- University of Paris, Paris, France. .,Department of Clinical Immunology, Saint-Louis Hospital, AP-HP, 1 avenue Claude Vellefaux, 75010, Paris, France. .,Centre de Référence Des Déficits Immunitaires Héréditaires (CEREDIH), Paris, France.
| |
Collapse
|
38
|
Fujikawa H, Shimizu H, Nambu R, Takeuchi I, Matsui T, Sakamoto K, Gocho Y, Miyamoto T, Yasumi T, Yoshioka T, Arai K. Monogenic inflammatory bowel disease with STXBP2 mutations is not resolved by hematopoietic stem cell transplantation but can be alleviated via immunosuppressive drug therapy. Clin Immunol 2023; 246:109203. [PMID: 36503158 DOI: 10.1016/j.clim.2022.109203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
STXBP2, encoding syntaxin-binding protein 2, is involved in intracellular organelle trafficking and is associated with familial hemophagocytic lymphohistiocytosis type 5. Although STXBP2 mutations reportedly cause monogenic inflammatory bowel disease, the clinical course and underlying pathogenic mechanisms remain unclear. We identified a novel mutation in STXBP2 [c.1197delC, p.Ala400fs] in a boy with congenital intractable diarrhea and hemophagocytic lymphohistiocytosis (HLH). HLH was treated with intravenous prednisolone, cyclosporine, and dexamethasone palmitate. Hematopoietic stem cell transplantation (HSCT) along with prophylaxis for graft-versus-host-disease was performed at 5 months of age. Additionally, colonoscopies done before and after HSCT showed mild colitis with cryptitis. The patient showed elevated fecal calprotectin levels and persistent diarrhea even after HSCT and required partial parenteral nutrition. While anti-inflammatory treatment reduced diarrhea, it was not completely normalized even after HSCT, suggesting that the pathogenesis of inflammatory bowel disease associated with STXBP2 mutations involves both hyperinflammation and functional epithelial barrier defects.
Collapse
Affiliation(s)
- Hiroki Fujikawa
- Center for Pediatric Inflammatory Bowel Disease, Division of Gastroenterology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Hirotaka Shimizu
- Center for Pediatric Inflammatory Bowel Disease, Division of Gastroenterology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Ryusuke Nambu
- Division of Gastroenterology and Hepatology, Saitama Children's Medical Center, 1-2 Shintoshin, Chuou-ku, Saitama-city, Saitama 330-0877, Japan.
| | - Ichiro Takeuchi
- Center for Pediatric Inflammatory Bowel Disease, Division of Gastroenterology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Toshihiro Matsui
- Children's Cancer Center, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Kenichi Sakamoto
- Children's Cancer Center, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Yoshihiro Gocho
- Children's Cancer Center, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Takayuki Miyamoto
- Department of Pediatrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Takako Yoshioka
- Department of Pathology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Katsuhiro Arai
- Center for Pediatric Inflammatory Bowel Disease, Division of Gastroenterology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| |
Collapse
|
39
|
Lin FJ, Doss AMA, Davis-Adams HG, Adams LJ, Hanson CH, VanBlargan LA, Liang CY, Chen RE, Monroy JM, Wedner HJ, Kulczycki A, Mantia TL, O’Shaughnessy CC, Raju S, Zhao FR, Rizzi E, Rigell CJ, Dy TB, Kau AL, Ren Z, Turner JS, O’Halloran JA, Presti RM, Fremont DH, Kendall PL, Ellebedy AH, Mudd PA, Diamond MS, Zimmerman O, Laidlaw BJ. SARS-CoV-2 booster vaccination rescues attenuated IgG1 memory B cell response in primary antibody deficiency patients. Front Immunol 2022; 13:1033770. [PMID: 36618402 PMCID: PMC9817149 DOI: 10.3389/fimmu.2022.1033770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Although SARS-CoV-2 vaccines have proven effective in eliciting a protective immune response in healthy individuals, their ability to induce a durable immune response in immunocompromised individuals remains poorly understood. Primary antibody deficiency (PAD) syndromes are among the most common primary immunodeficiency disorders in adults and are characterized by hypogammaglobulinemia and impaired ability to mount robust antibody responses following infection or vaccination. Methods Here, we present an analysis of both the B and T cell response in a prospective cohort of 30 individuals with PAD up to 150 days following initial COVID-19 vaccination and 150 days post mRNA booster vaccination. Results After the primary vaccination series, many of the individuals with PAD syndromes mounted SARS-CoV-2 specific memory B and CD4+ T cell responses that overall were comparable to healthy individuals. Nonetheless, individuals with PAD syndromes had reduced IgG1+ and CD11c+ memory B cell responses following the primary vaccination series, with the defect in IgG1 class-switching rescued following mRNA booster doses. Boosting also elicited an increase in the SARS-CoV-2-specific B and T cell response and the development of Omicron-specific memory B cells in COVID-19-naïve PAD patients. Individuals that lacked detectable B cell responses following primary vaccination did not benefit from booster vaccination. Conclusion Together, these data indicate that SARS-CoV-2 vaccines elicit memory B and T cells in most PAD patients and highlights the importance of booster vaccination in immunodeficient individuals.
Collapse
Affiliation(s)
- Frank J. Lin
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Hannah G. Davis-Adams
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Lucas J. Adams
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Christopher H. Hanson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Laura A. VanBlargan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Chieh-Yu Liang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Rita E. Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jennifer Marie Monroy
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - H. James Wedner
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Anthony Kulczycki
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Tarisa L. Mantia
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Saravanan Raju
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Fang R. Zhao
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Elise Rizzi
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Christopher J. Rigell
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Tiffany Biason Dy
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Andrew L. Kau
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, United States
| | - Zhen Ren
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Jackson S. Turner
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jane A. O’Halloran
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Rachel M. Presti
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO, United States
| | - Daved H. Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Peggy L. Kendall
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO, United States
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States
| | - Philip A. Mudd
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO, United States
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Ofer Zimmerman
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Brian J. Laidlaw
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
40
|
Hatchwell E, Smith EB, Jalilzadeh S, Bruno CD, Taoufik Y, Hendel-Chavez H, Liblau R, Brassat D, Martin-Blondel G, Wiendl H, Schwab N, Cortese I, Monaco MC, Imberti L, Capra R, Oksenberg JR, Gasnault J, Stankoff B, Richmond TA, Rancour DM, Koralnik IJ, Hanson BA, Major EO, Chow CR, Eis PS. Progressive multifocal leukoencephalopathy genetic risk variants for pharmacovigilance of immunosuppressant therapies. Front Neurol 2022; 13:1016377. [PMID: 36588876 PMCID: PMC9795231 DOI: 10.3389/fneur.2022.1016377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
Background Progressive multifocal leukoencephalopathy (PML) is a rare and often lethal brain disorder caused by the common, typically benign polyomavirus 2, also known as JC virus (JCV). In a small percentage of immunosuppressed individuals, JCV is reactivated and infects the brain, causing devastating neurological defects. A wide range of immunosuppressed groups can develop PML, such as patients with: HIV/AIDS, hematological malignancies (e.g., leukemias, lymphomas, and multiple myeloma), autoimmune disorders (e.g., psoriasis, rheumatoid arthritis, and systemic lupus erythematosus), and organ transplants. In some patients, iatrogenic (i.e., drug-induced) PML occurs as a serious adverse event from exposure to immunosuppressant therapies used to treat their disease (e.g., hematological malignancies and multiple sclerosis). While JCV infection and immunosuppression are necessary, they are not sufficient to cause PML. Methods We hypothesized that patients may also have a genetic susceptibility from the presence of rare deleterious genetic variants in immune-relevant genes (e.g., those that cause inborn errors of immunity). In our prior genetic study of 184 PML cases, we discovered 19 candidate PML risk variants. In the current study of another 152 cases, we validated 4 of 19 variants in both population controls (gnomAD 3.1) and matched controls (JCV+ multiple sclerosis patients on a PML-linked drug ≥ 2 years). Results The four variants, found in immune system genes with strong biological links, are: C8B, 1-57409459-C-A, rs139498867; LY9 (alias SLAMF3), 1-160769595-AG-A, rs763811636; FCN2, 9-137779251-G-A, rs76267164; STXBP2, 19-7712287-G-C, rs35490401. Carriers of any one of these variants are shown to be at high risk of PML when drug-exposed PML cases are compared to drug-exposed matched controls: P value = 3.50E-06, OR = 8.7 [3.7-20.6]. Measures of clinical validity and utility compare favorably to other genetic risk tests, such as BRCA1 and BRCA2 screening for breast cancer risk and HLA-B*15:02 pharmacogenetic screening for pharmacovigilance of carbamazepine to prevent Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Conclusion For the first time, a PML genetic risk test can be implemented for screening patients taking or considering treatment with a PML-linked drug in order to decrease the incidence of PML and enable safer use of highly effective therapies used to treat their underlying disease.
Collapse
Affiliation(s)
- Eli Hatchwell
- Population Bio UK, Inc., Oxfordshire, United Kingdom,*Correspondence: Eli Hatchwell
| | | | | | | | - Yassine Taoufik
- Department of Hematology and Immunology, Hôpitaux Universitaires Paris-Saclay and INSERM 1186, Institut Gustave Roussy, Villejuif, France
| | - Houria Hendel-Chavez
- Department of Hematology and Immunology, Hôpitaux Universitaires Paris-Saclay and INSERM 1186, Institut Gustave Roussy, Villejuif, France
| | - Roland Liblau
- Infinity, Université Toulouse, CNRS, INSERM, UPS, Toulouse, France,Department of Immunology, CHU Toulouse, Hôpital Purpan, Toulouse, France
| | - David Brassat
- Infinity, Université Toulouse, CNRS, INSERM, UPS, Toulouse, France,Department of Immunology, CHU Toulouse, Hôpital Purpan, Toulouse, France
| | - Guillaume Martin-Blondel
- Infinity, Université Toulouse, CNRS, INSERM, UPS, Toulouse, France,Department of Infectious and Tropical Diseases, Toulouse University Hospital Center, Toulouse, France
| | - Heinz Wiendl
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Nicholas Schwab
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Irene Cortese
- Experimental Immunotherapeutics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Maria Chiara Monaco
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Luisa Imberti
- Centro di Ricerca Emato-Oncologica AIL (CREA) and Diagnostic Department, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Ruggero Capra
- Lombardia Multiple Sclerosis Network, Brescia, Italy
| | - Jorge R. Oksenberg
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Jacques Gasnault
- Department of Internal Medicine, Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, France
| | - Bruno Stankoff
- Department of Neurology, Hôpital Saint-Antoine, Paris, France
| | | | | | - Igor J. Koralnik
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Barbara A. Hanson
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eugene O. Major
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | | | - Peggy S. Eis
- Population Bio, Inc., New York, NY, United States,Peggy S. Eis
| |
Collapse
|
41
|
Yazdanpanah N, Rezaei N. Autoimmune disorders associated with common variable immunodeficiency: prediction, diagnosis, and treatment. Expert Rev Clin Immunol 2022; 18:1265-1283. [PMID: 36197300 DOI: 10.1080/1744666x.2022.2132938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Common variable immunodeficiency (CVID) is the most common symptomatic primary immunodeficiency. Due to the wide spectrum of the CVID manifestations, the differential diagnosis becomes complicated, ends in a diagnostic delay and increased morbidity and mortality rates. Autoimmunity is one of the important complications associated with CVID. While immunoglobulin replacement therapy has considerably decreased the mortality rate in CVID patients, mainly infection-related mortality, other complications such as autoimmunity appeared prevalent and, in some cases, life threatening. AREAS COVERED In this article, genetics, responsible immune defects, autoimmune manifestations in different organs, and the diagnosis and treatment processes in CVID patients are reviewed, after searching the literature about these topics. EXPERT OPINION Considering the many phenotypes of CVID and the fact that it remained undiagnosed until older ages, it is important to include various manifestations of CVID in the differential diagnosis. Due to the different manifestations of CVID, including autoimmune diseases, interdisciplinary collaboration of physicians from different fields is highly recommended, as discussed in the manuscript. Meanwhile, it is important to determine which patients could benefit from genetic diagnostic studies since such studies are not necessary for establishing the diagnosis of CVID.
Collapse
Affiliation(s)
- Niloufar Yazdanpanah
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Ahmed A, Lippner E, Khanolkar A. Clinical Aspects of B Cell Immunodeficiencies: The Past, the Present and the Future. Cells 2022; 11:3353. [PMID: 36359748 PMCID: PMC9654110 DOI: 10.3390/cells11213353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/01/2022] [Accepted: 10/16/2022] [Indexed: 11/22/2022] Open
Abstract
B cells and antibodies are indispensable for host immunity. Our understanding of the mechanistic processes that underpin how B cells operate has left an indelible mark on the field of clinical pathology, and recently has also dramatically reshaped the therapeutic landscape of diseases that were once considered incurable. Evaluating patients with primary immunodeficiency diseases (PID)/inborn errors of immunity (IEI) that primarily affect B cells, offers us an opportunity to further our understanding of how B cells develop, mature, function and, in certain instances, cause further disease. In this review we provide a brief compendium of IEI that principally affect B cells at defined stages of their developmental pathway, and also attempt to offer some educated viewpoints on how the management of these disorders could evolve over the years.
Collapse
Affiliation(s)
- Aisha Ahmed
- Division of Allergy and Immunology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth Lippner
- Division of Allergy and Immunology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Aaruni Khanolkar
- Department of Pathology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
43
|
Tuğcu GD, Eryılmaz Polat S, Metin A, Orhan D, Cinel G. Interstitial Lung Disease in an Adolescent Girl with Lipopolysaccharide-Responsive Beige-Like Anchor Deficiency. PEDIATRIC ALLERGY, IMMUNOLOGY, AND PULMONOLOGY 2022; 35:133-138. [PMID: 36121783 DOI: 10.1089/ped.2022.0088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Background: Previously, lipopolysaccharide-responsive beige-like anchor (LRBA) deficiency was categorized as a subtype of common variable immune deficiency. Research shows that LRBA deficiency is caused by dysregulation of T cell activation and expansion; it is placed under the category of immune dysregulation with cytotoxic T lymphocyte-associated protein 4 (CTLA-4) haploinsufficiency. Cohort studies have revealed a broad spectrum of clinical manifestations and variable phenotype expression, including immune dysregulation [enteropathy, autoimmune cytopenia, interstitial lung disease (ILD), etc.] on 1 hand and immune deficiency (hypogammaglobulinemia, recurrent infections, bronchiectasis, etc.) on the other hand. Chronic lung disease is frequently seen in LRBA deficiency and is associated with poor outcomes. Case Presentation: This case report evaluates a female who presented with recurrent pneumonia and bronchiectasis but did not respond to treatment; she was lastly diagnosed with ILD with detailed clinical, radiological, and pathological workup. Conclusions: The respiratory characteristics of patients with LRBA deficiency should be investigated, monitored, and treated from the time of its diagnosis. The awareness and involvement of pulmonologists to pulmonary morbidity of patients with LRBA deficiency in workup and clinical decision making are crucial.
Collapse
Affiliation(s)
- Gökçen Dilşa Tuğcu
- Department of Pediatric Pulmonology, University of Health Science, Ankara City Hospital, Çankaya, Turkey
| | - Sanem Eryılmaz Polat
- Department of Pediatric Pulmonology, University of Health Science, Ankara City Hospital, Çankaya, Turkey
| | - Ayşe Metin
- Department of Pediatric İmmunology, University of Health Science, Ankara City Hospital, Çankaya, Turkey
| | - Diclehan Orhan
- Department of Pediatric Pathology, Ihsan Dogramacı Children's Hospital, Hacettepe University, Ankara, Turkey
| | - Güzin Cinel
- Department of Pediatric Pulmonology, Ankara City Hospital, Yıldırım Beyazıt University, Çankaya, Turkey
| |
Collapse
|
44
|
Krausz M, Uhlmann A, Rump IC, Ihorst G, Goldacker S, Sogkas G, Posadas-Cantera S, Schmidt R, Feißt M, Alsina L, Dybedal I, Recher M, Warnatz K, Grimbacher B. The ABACHAI clinical trial protocol: Safety and efficacy of abatacept (s.c.) in patients with CTLA-4 insufficiency or LRBA deficiency: A non controlled phase 2 clinical trial. Contemp Clin Trials Commun 2022; 30:101008. [PMID: 36262801 PMCID: PMC9573884 DOI: 10.1016/j.conctc.2022.101008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/26/2022] [Accepted: 09/17/2022] [Indexed: 11/30/2022] Open
Abstract
Background Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) insufficiency and lipopolysaccharide-responsive and beige-like anchor protein (LRBA) deficiency are both complex immune dysregulation syndromes with an underlying regulatory T cell dysfunction due to the lack of CTLA-4 protein. As anticipated, the clinical phenotypes of CTLA-4 insufficiency and LRBA deficiency are similar. Main manifestations include hypogammaglobulinemia, lymphoproliferation, autoimmune cytopenia, immune-mediated respiratory, gastrointestinal, neurological, and skin involvement, which can be severe and disabling. The rationale of this clinical trial is to improve clinical outcomes of affected patients by substituting the deficient CTLA-4 by administration of CTLA4-Ig (abatacept) as a causative personalized treatment. Objectives Our objective is to assess the safety and efficacy of abatacept for patients with CTLA-4 insufficiency or LRBA deficiency. The study will also investigate how treatment with abatacept affects the patients’ quality of life. Methods /Design: ABACHAI is a phase IIa prospective, non-randomized, open-label, single arm multi-center trial. Altogether 20 adult patients will be treated with abatacept 125 mg s.c. on a weekly basis for 12 months, including (1) patients already pretreated with abatacept, and (2) patients not pretreated, starting with abatacept therapy at the baseline study visit. For the evaluation of drug safety infection control during the trial, for efficacy, the CHAI-Morbidity Score will be used. Trial registration The trial is registered in the German Clinical Trials Register (Deutsches Register Klinischer Studien, DRKS) with the identity number DRKS00017736, registered: 6 July 2020, https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00017736. Clinical trial for safety and efficacy of abatacept in CTLA-4 or LRBA deficiency. Substitution of CTLA4-deficiency by abatacept, a causative treatment approach. Primary endpoint: no. of episodes of failed infection control under trial treatment. Development of disease severity score.
Collapse
|
45
|
Fliegauf M, Kinnunen M, Posadas-Cantera S, Camacho-Ordonez N, Abolhassani H, Alsina L, Atschekzei F, Bogaert DJ, Burns SO, Church JA, Dückers G, Freeman AF, Hammarström L, Hanitsch LG, Kerre T, Kobbe R, Sharapova SO, Siepermann K, Speckmann C, Steiner S, Verma N, Walter JE, Westermann-Clark E, Goldacker S, Warnatz K, Varjosalo M, Grimbacher B. Detrimental NFKB1 missense variants affecting the Rel-homology domain of p105/p50. Front Immunol 2022; 13:965326. [PMID: 36105815 PMCID: PMC9465457 DOI: 10.3389/fimmu.2022.965326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Most of the currently known heterozygous pathogenic NFKB1 (Nuclear factor kappa B subunit 1) variants comprise deleterious defects such as severe truncations, internal deletions, and frameshift variants. Collectively, these represent the most frequent monogenic cause of common variable immunodeficiency (CVID) identified so far. NFKB1 encodes the transcription factor precursor p105 which undergoes limited proteasomal processing of its C-terminal half to generate the mature NF-κB subunit p50. Whereas p105/p50 haploinsufficiency due to devastating genetic damages and protein loss is a well-known disease mechanism, the pathogenic significance of numerous NFKB1 missense variants still remains uncertain and/or unexplored, due to the unavailability of accurate test procedures to confirm causality. In this study we functionally characterized 47 distinct missense variants residing within the N-terminal domains, thus affecting both proteins, the p105 precursor and the processed p50. Following transient overexpression of EGFP-fused mutant p105 and p50 in HEK293T cells, we used fluorescence microscopy, Western blotting, electrophoretic mobility shift assays (EMSA), and reporter assays to analyze their effects on subcellular localization, protein stability and precursor processing, DNA binding, and on the RelA-dependent target promoter activation, respectively. We found nine missense variants to cause harmful damage with intensified protein decay, while two variants left protein stability unaffected but caused a loss of the DNA-binding activity. Seven of the analyzed single amino acid changes caused ambiguous protein defects and four variants were associated with only minor adverse effects. For 25 variants, test results were indistinguishable from those of the wildtype controls, hence, their pathogenic impact remained elusive. In summary, we show that pathogenic missense variants affecting the Rel-homology domain may cause protein-decaying defects, thus resembling the disease-mechanisms of p105/p50 haploinsufficiency or may cause DNA-binding deficiency. However, rare variants (with a population frequency of less than 0.01%) with minor abnormalities or with neutral tests should still be considered as potentially pathogenic, until suitable tests have approved them being benign.
Collapse
Affiliation(s)
- Manfred Fliegauf
- Institute for Immunodeficiency (IFI), Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS – Centre for Integrative Biological Signalling Studies, Freiburg, Germany
| | - Matias Kinnunen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Sara Posadas-Cantera
- Institute for Immunodeficiency (IFI), Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nadezhda Camacho-Ordonez
- Institute for Immunodeficiency (IFI), Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Hassan Abolhassani
- Department of Biosciences and Nutrition, NEO, Karolinska Institutet, Huddinge, Sweden
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Barcelona, Spain
| | - Faranaz Atschekzei
- RESIST – Cluster of Excellence 2155 to Hanover Medical School , Satellite Center Freiburg, Freiburg, Germany
- Department for Clinical Immunology and Rheumatology, Hannover Medical School, Hanover, Germany
| | - Delfien J. Bogaert
- Department of Pediatrics, Division of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Siobhan O. Burns
- Department of Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
- Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Joseph A. Church
- Department of Pediatrics, Keck School of Medicine, University of Southern California and Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | | | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Lennart Hammarström
- Department of Biosciences and Nutrition, NEO, Karolinska Institutet, Huddinge, Sweden
| | - Leif Gunnar Hanitsch
- Department of Medical Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Tessa Kerre
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Robin Kobbe
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Svetlana O. Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | | | - Carsten Speckmann
- Institute for Immunodeficiency (IFI), Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sophie Steiner
- Department of Medical Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Nisha Verma
- Department of Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Jolan E. Walter
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Division of Allergy/Immunology, Department of Pediatrics Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
- Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Emma Westermann-Clark
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Division of Allergy and Immunology, Department of Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sigune Goldacker
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Proteomics Unit, University of Helsinki, Helsinki, Finland
| | - Bodo Grimbacher
- Institute for Immunodeficiency (IFI), Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS – Centre for Integrative Biological Signalling Studies, Freiburg, Germany
- RESIST – Cluster of Excellence 2155 to Hanover Medical School , Satellite Center Freiburg, Freiburg, Germany
- DZIF – German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- *Correspondence: Bodo Grimbacher,
| |
Collapse
|
46
|
"Common variable immunodeficiency: Challenges for diagnosis". J Immunol Methods 2022; 509:113342. [PMID: 36027932 DOI: 10.1016/j.jim.2022.113342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/21/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Common variable immunodeficiency is a heterogeneous condition characterized by B cell dysfunction with reduced serum immunoglobulin levels and a highly variable spectrum of clinical manifestations ranging from recurrent infections to autoimmune disease. The diagnosis of CVID is often challenging due to the diverse clinical presentation of patients and the existence of multiple diagnostic criteria without a universally adopted consensus. Laboratory evaluation to assist with diagnosis currently includes serum immunoglobulin testing, immunophenotyping, assessment of vaccine response, and genetic testing. Additional emerging techniques include investigation of the B cell repertoire and the use of machine learning algorithms. Advances in our understanding of common variable immunodeficiency will ultimately contribute to earlier diagnosis and novel interventions with the goal of improving prognosis for these patients.
Collapse
|
47
|
Guevara-Hoyer K, Fuentes-Antrás J, de la Fuente-Muñoz E, Fernández-Arquero M, Solano F, Pérez-Segura P, Neves E, Ocaña A, Pérez de Diego R, Sánchez-Ramón S. Genomic crossroads between non-Hodgkin's lymphoma and common variable immunodeficiency. Front Immunol 2022; 13:937872. [PMID: 35990641 PMCID: PMC9390007 DOI: 10.3389/fimmu.2022.937872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022] Open
Abstract
Common variable immunodeficiency (CVID) represents the largest group of primary immunodeficiencies that may manifest with infections, inflammation, autoimmunity, and cancer, mainly B-cell non-Hodgkin's lymphoma (NHL). Indeed, NHL may result from chronic or recurrent infections and has, therefore, been recognized as a clinical phenotype of CVID, although rare. The more one delves into the mechanisms involved in CVID and cancer, the stronger the idea that both pathologies can be a reflection of the same primer events observed from different angles. The potential effects of germline variants on specific somatic modifications in malignancies suggest that it might be possible to anticipate critical events during tumor development. In the same way, a somatic alteration in NHL could be conditioning a similar response at the transcriptional level in the shared signaling pathways with genetic germline alterations in CVID. We aimed to explore the genomic substrate shared between these entities to better characterize the CVID phenotype immunodeficiency in NHL. By means of an in-silico approach, we interrogated the large, publicly available datasets contained in cBioPortal for the presence of genes associated with genetic pathogenic variants in a panel of 50 genes recurrently altered in CVID and previously described as causative or disease-modifying. We found that 323 (25%) of the 1,309 NHL samples available for analysis harbored variants of the CVID spectrum, with the most recurrent alteration presented in NHL occurring in PIK3CD (6%) and STAT3 (4%). Pathway analysis of common gene alterations showed enrichment in inflammatory, immune surveillance, and defective DNA repair mechanisms similar to those affected in CVID, with PIK3R1 appearing as a central node in the protein interaction network. The co-occurrence of gene alterations was a frequent phenomenon. This study represents an attempt to identify common genomic grounds between CVID and NHL. Further prospective studies are required to better know the role of genetic variants associated with CVID and their reflection on the somatic pathogenic variants responsible for cancer, as well as to characterize the CVID-like phenotype in NHL, with the potential to influence early CVID detection and therapeutic management.
Collapse
Affiliation(s)
- Kissy Guevara-Hoyer
- Cancer Immunomonitoring and Immuno-Mediated Pathologies Support Unit, IdSSC, Department of Clinical Immunology, San Carlos Clinical Hospital, Madrid, Spain
- Department of Clinical Immunology, IML and IdSSC, San Carlos Clinical Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Jesús Fuentes-Antrás
- Oncology Department, San Carlos Clinical Hospital, Madrid, Spain
- Experimental Therapeutics and Translational Oncology Unit, Medical Oncology Department, San Carlos University Hospital, Madrid, Spain
| | - Eduardo de la Fuente-Muñoz
- Cancer Immunomonitoring and Immuno-Mediated Pathologies Support Unit, IdSSC, Department of Clinical Immunology, San Carlos Clinical Hospital, Madrid, Spain
- Department of Clinical Immunology, IML and IdSSC, San Carlos Clinical Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Miguel Fernández-Arquero
- Cancer Immunomonitoring and Immuno-Mediated Pathologies Support Unit, IdSSC, Department of Clinical Immunology, San Carlos Clinical Hospital, Madrid, Spain
- Department of Clinical Immunology, IML and IdSSC, San Carlos Clinical Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Fernando Solano
- Department of Hematology, General University Hospital Nuestra Señora del Prado, Talavera de la Reina, Spain
| | | | - Esmeralda Neves
- Department of Immunology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Hospital and University Center of Porto, Porto, Portugal
| | - Alberto Ocaña
- Oncology Department, San Carlos Clinical Hospital, Madrid, Spain
- Experimental Therapeutics and Translational Oncology Unit, Medical Oncology Department, San Carlos University Hospital, Madrid, Spain
| | - Rebeca Pérez de Diego
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
- Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, Madrid, Spain
| | - Silvia Sánchez-Ramón
- Cancer Immunomonitoring and Immuno-Mediated Pathologies Support Unit, IdSSC, Department of Clinical Immunology, San Carlos Clinical Hospital, Madrid, Spain
- Department of Clinical Immunology, IML and IdSSC, San Carlos Clinical Hospital, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
48
|
Ballow M, Sánchez-Ramón S, Walter JE. Secondary Immune Deficiency and Primary Immune Deficiency Crossovers: Hematological Malignancies and Autoimmune Diseases. Front Immunol 2022; 13:928062. [PMID: 35924244 PMCID: PMC9340211 DOI: 10.3389/fimmu.2022.928062] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/09/2022] [Indexed: 12/24/2022] Open
Abstract
Primary immunodeficiencies (PIDs), a heterogenous group of inborn errors of immunity, are predetermined at birth but may evolve with age, leading to a variable clinical and laboratory presentation. In contrast, secondary immunodeficiencies (SIDs) are acquired declines of immune cell counts and or/function. The most common type of SID is a decreased antibody level occurring as a consequence of extrinsic influences, such as an underlying condition or a side effect of some medications used to treat hematological malignancies and autoimmune disorders. Paradoxically, immune deficiencies initially attributed to secondary causes may partly be due to an underlying PID. Therefore, in the era of immune-modulating biologicals, distinguishing between primary and secondary antibody deficiencies is of great importance. It can be difficult to unravel the relationship between PID, SID and hematological malignancy or autoimmunity in the clinical setting. This review explores SID and PID crossovers and discusses challenges to diagnosis and treatment strategies. The case of an immunodeficient patient with follicular lymphoma treated with rituximab illustrates how SID in the setting of hematological cancer can mask an underlying PID, and highlights the importance of screening such patients. The risk of hematological cancer is increased in PID: for example, lymphomas in PID may be driven by infections such as Epstein-Barr virus, and germline mutations associated with PID are enriched among patients with diffuse large B-cell lymphoma. Clues suggesting an increased risk of hematological malignancy in patients with common variable immune deficiency (CVID) are provided, as well as pointers for distinguishing PID versus SID in lymphoma patients. Two cases of patients with autoimmune disorders illustrate how an apparent rituximab-induced antibody deficiency can be connected to an underlying PID. We highlight that PID is increasingly recognized among patients with autoimmune cytopenias, and provide guidance on how to identify PID and distinguish it from SID in such patients. Overall, healthcare professionals encountering patients with malignancy and/or autoimmunity who have post-treatment complications of antibody deficiencies or other immune abnormalities need to be aware of the possibility of PID or SID and how to differentiate them.
Collapse
Affiliation(s)
- Mark Ballow
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida at Johns Hopkins All Children’s Hospital, St Petersburg, FL, United States
| | - Silvia Sánchez-Ramón
- Department of Immunology, Hospital Clínico San Carlos, Instituto de Medicina del Laboratorio (IML), Complutense University of Madrid, Madrid, Spain
| | - Jolan E. Walter
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida at Johns Hopkins All Children’s Hospital, St Petersburg, FL, United States
- Division of Pediatric Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
49
|
Mauracher AA, Henrickson SE. Leveraging Systems Immunology to Optimize Diagnosis and Treatment of Inborn Errors of Immunity. FRONTIERS IN SYSTEMS BIOLOGY 2022; 2:910243. [PMID: 37670772 PMCID: PMC10477056 DOI: 10.3389/fsysb.2022.910243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Inborn errors of immunity (IEI) are monogenic disorders that can cause diverse symptoms, including recurrent infections, autoimmunity and malignancy. While many factors have contributed, the increased availability of next-generation sequencing has been central in the remarkable increase in identification of novel monogenic IEI over the past years. Throughout this phase of disease discovery, it has also become evident that a given gene variant does not always yield a consistent phenotype, while variants in seemingly disparate genes can lead to similar clinical presentations. Thus, it is increasingly clear that the clinical phenotype of an IEI patient is not defined by genetics alone, but is also impacted by a myriad of factors. Accordingly, we need methods to amplify our current diagnostic algorithms to better understand mechanisms underlying the variability in our patients and to optimize treatment. In this review, we will explore how systems immunology can contribute to optimizing both diagnosis and treatment of IEI patients by focusing on identifying and quantifying key dysregulated pathways. To improve mechanistic understanding in IEI we must deeply evaluate our rare IEI patients using multimodal strategies, allowing both the quantification of altered immune cell subsets and their functional evaluation. By studying representative controls and patients, we can identify causative pathways underlying immune cell dysfunction and move towards functional diagnosis. Attaining this deeper understanding of IEI will require a stepwise strategy. First, we need to broadly apply these methods to IEI patients to identify patterns of dysfunction. Next, using multimodal data analysis, we can identify key dysregulated pathways. Then, we must develop a core group of simple, effective functional tests that target those pathways to increase efficiency of initial diagnostic investigations, provide evidence for therapeutic selection and contribute to the mechanistic evaluation of genetic results. This core group of simple, effective functional tests, targeting key pathways, can then be equitably provided to our rare patients. Systems biology is thus poised to reframe IEI diagnosis and therapy, fostering research today that will provide streamlined diagnosis and treatment choices for our rare and complex patients in the future, as well as providing a better understanding of basic immunology.
Collapse
Affiliation(s)
- Andrea A. Mauracher
- Division of Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sarah E. Henrickson
- Division of Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
50
|
Wobma H, Perkins R, Bartnikas L, Dedeoğlu F, Chou J, Vleugels RA, Lo MS, Janssen E, Henderson LA, Whangbo J, Vargas SO, Fishman M, Krone KA, Casey A. Genetic diagnosis of immune dysregulation can lead to targeted therapy for interstitial lung disease: A case series and single center approach. Pediatr Pulmonol 2022; 57:1577-1587. [PMID: 35426264 PMCID: PMC9627679 DOI: 10.1002/ppul.25924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/08/2022]
Abstract
In recent years, a growing number of monogenic disorders have been described that are characterized by immune dysregulation. A subset of these "primary immune regulatory disorders" can cause severe interstitial lung disease, often recognized in late childhood or adolescence. Patients presenting to pulmonary clinic may have long and complex medical histories, but lack a unifying genetic diagnosis. It is crucial for pulmonologists to recognize features suggestive of multisystem immune dysregulation and to initiate genetic workup, since targeted therapies based on underlying genetics may halt or even reverse pulmonary disease progression. Through such an approach, our center has been able to diagnose and treat a cohort of patients with interstitial lung disease from gene defects that affect immune regulation. Here we present representative cases related to pathogenic variants in three distinct pathways and summarize disease manifestations and treatment approaches. We conclude with a discussion of our perspective on the outstanding challenges for diagnosing and managing these complex life-threatening and chronic disorders.
Collapse
Affiliation(s)
- Holly Wobma
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Ryan Perkins
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Lisa Bartnikas
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Fatma Dedeoğlu
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Ruth Ann Vleugels
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Mindy S Lo
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Erin Janssen
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Lauren A Henderson
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jennifer Whangbo
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Martha Fishman
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Katie A Krone
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alicia Casey
- Division of Pulmonary Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|