1
|
Xu Y, Yan Z, Liu L. Association between advanced lung cancer inflammation index and osteoporosis in patients with type 2 diabetes mellitus: evidence from NHANES. Front Endocrinol (Lausanne) 2024; 15:1421696. [PMID: 39655346 PMCID: PMC11625538 DOI: 10.3389/fendo.2024.1421696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Background Previous studies have shown a significantly increased prevalence of osteoporosis (OP) in patients with type 2 diabetes mellitus (T2DM), which is closely associated with inflammation and nutrition. This study aimed to investigate the relationship between the advanced lung cancer inflammation index (ALI) and OP in patients with T2DM. Methods This cross-sectional analysis was conducted based on data from middle-aged and older adults aged 50 years and older with T2DM from the National Health and Nutrition Examination Survey (NHANES).Weighted multivariable logistic regression and linear regression were utilized to investigate the correlation between the ALI and OP with femur bone mineral density (BMD) in individuals with T2DM. Restricted cubic splines (RCS) were employed to assess potential nonlinear relationships, and receiver operating characteristic (ROC) curves were used to evaluate diagnostic accuracy. Results A total of 1596 patients with T2DM were included in this study, among whom 736 had OP. After adjusting for covariates, the multivariable logistic regression model showed that compared to participants in the fourth quartile of log2-transformed ALI, those in the first quartile had an increased prevalence of OP in T2DM (OR = 1.95, 95% CI=1.28-2.96, p < 0.01). The multivariable linear regression model indicated that a low log2-transformed ALI is associated with a low femur BMD.RCS demonstrated a linear dose-response relationship between the ALI index and OP in T2DM (p = 0.686), with the area under the ROC curve being 0.57 (95% CI: 0.54-0.60, p < 0.001), and the optimal cutoff value was 6.04. Conclusion Our findings indicate that low levels of ALI are independently associated with an increased prevalence of OP in middle-aged and older adults with T2DM in the United States. ALI may serve as a potential biomarker for assessing the prevalence of OP in middle-aged and older adults with T2DM.
Collapse
Affiliation(s)
- Yifeng Xu
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhaoqi Yan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liangji Liu
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Groves AM, Paris ND, Johnston CJ, Hernady E, Finkelstein J, Lawrence P, Marples B. Mitigating Viral Impact on the Radiation Response of the Lung. Radiat Res 2024; 202:552-564. [PMID: 39048109 DOI: 10.1667/rade-24-00103.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
Inflammation is a key factor in both influenza and radiation-induced lung pathophysiology. This implies a commonality of response to pulmonary damage from these insults and suggests exacerbated pathology may occur after combined exposure. We therefore tested the hypothesis that past inflammation from viral infection alters the lung microenvironment and lowers tolerance for radiation injury. Mice were inoculated with influenza A virus (IAV) and three weeks later, after virus clearance, mice received total-body irradiation (TBI). Survival as well as systemic and local lung inflammation were assessed, and strategies to mitigate pulmonary injury were investigated. After IAV infection alone, body condition recovered within 3 weeks, however inflammatory pathways remained active for 15 weeks. IAV infection exacerbated subsequent TBI responses, evident by increased lethality, enhanced histologically evident lung injury and an altered lung macrophage phenotype. To mitigate this enhanced sensitivity, captopril [an angiotensin converting enzyme inhibitor (ACEi)] was administered to limit tissue inflammation, or inflammatory monocyte-derived macrophage recruitment was blocked with a C-C chemokine receptor type 2 (CCR2) inhibitor. Both treatments abrogated the changes in circulating immune cells observed 4 weeks after TBI, and attenuated pro-inflammatory phenotypes in lung alveolar macrophages, appearing to shift immune cell dynamics towards recovery. Histologically apparent lung injury was not improved by either treatment. We show that latent lung injury from viral infection exacerbates radiation morbidity and mortality. Although strategies that attenuate proinflammatory immune cell phenotypes can normalize macrophage dynamics, this does not fully mitigate lung injury. Recognizing that past viral infections can enhance lung radiosensitivity is of critical importance for patients receiving TBI, as it could increase the incidence of adverse outcomes.
Collapse
Affiliation(s)
- Angela M Groves
- Department of Radiation Oncology, University of Rochester, Rochester, New York
| | - Nicole D Paris
- Department of Radiation Oncology, University of Rochester, Rochester, New York
| | - Carl J Johnston
- Department of Pediatrics, University of Rochester, Rochester, New York
| | - Eric Hernady
- Department of Radiation Oncology, University of Rochester, Rochester, New York
| | - Jacob Finkelstein
- Department of Pediatrics, University of Rochester, Rochester, New York
| | - Paige Lawrence
- Department of Environmental Medicine, University of Rochester, Rochester, New York
| | - Brian Marples
- Department of Radiation Oncology, University of Rochester, Rochester, New York
| |
Collapse
|
3
|
Yu QH, Duan SY, Xing XK, Fan XM, Zhang N, Song GY, Hu YJ, Wang F, Chao TZ, Wang LT, Xu P. Generation of a competing endogenous RNA network and validation of BNIP1 expression in the lung of irradiated mice. Transl Oncol 2024; 47:102007. [PMID: 38906065 PMCID: PMC11245936 DOI: 10.1016/j.tranon.2024.102007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Radiation-induced lung injury (RILI) is a serious complication of radiation therapy, and it is mediated by long non-coding RNAs (lncRNAs). STUDY DESIGN AND METHODS Mouse lung tissues were examined using RNA-Seq and RNA-Seq libraries 72 h after the administration of 6 Gy of X-ray irradiation. The target mRNAs were functionally annotated and the target lncRNA-based miRNAs and target miRNA-based mRNAs were predicted after irradiation to establish the lncRNA-miRNA-mRNA ceRNA axis. RESULTS The analyses showed that relative to unirradiated controls, 323 mRNAs, 114 miRNAs, and 472 lncRNAs were significantly up-regulated following irradiation, whereas 1907 mRNAs, 77 miRNAs, and 1572 lncRNAs were significantly down-regulated following irradiation. Voltage-gated ion channels, trans-membrane receptor protein tyrosine kinases, and vascular endothelial growth factor have all been associated with dysregulated miRNA-mRNA relationships. KEGG pathway analysis of the dysregulated miRNA-mRNA targets revealed involvement in pathways associated with the hedgehog signaling pathway-fly, ErbB signaling, VEGF signaling, axon guidance, and focal adhesion. KEGG analysis of differentially expressed showed enrichment of mRNAs in primary immunodeficiency, the intestinal immune axis for IgA production, hematopoietic cell lineages, systemic lupus erythematosus, and Th1 and Th2 cell differentiation. Finally, the ceRNA network revealed that BNIP1 was a critical mRNA modulated by the most significant upregulation of lncRNA E230013L22Rik. CONCLUSION In summary, the lncRNA-miRNA-mRNA ceRNA axis of RILI was constructed following irradiation in a mouse model. RNA dysregulation in the early stage of RILI may lead to severe complications at a later stage, with BNIP1 contributing to radiation-induced cellular apoptosis in RILI.
Collapse
Affiliation(s)
- Qing-Hua Yu
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261000, China; Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, 277160, China
| | - Shu-Yan Duan
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, 277160, China
| | - Xue-Kun Xing
- School of Public Health, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Xin-Ming Fan
- Department of Radiotherapy, Zaozhuang Municipal Hospital, Zaozhuang, Shandong, 277100, China
| | - Nan Zhang
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, 277160, China
| | - Gui-Yuan Song
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, 277160, China; School of Public Health, Weifang Medical University, Weifang, Shandong, 261000, China
| | - Yong-Jian Hu
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Fei Wang
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, 277160, China
| | - Tian-Zhu Chao
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, 277160, China
| | - Li-Tao Wang
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, 261000, China
| | - Ping Xu
- Laboratory of Radiation-induced Diseases and Molecule-targeted Drugs, School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, 277160, China.
| |
Collapse
|
4
|
Milluzzo G, De Napoli M, Di Martino F, Amato A, Del Sarto D, D'Oca MC, Marrale M, Masturzo L, Medina E, Okpuwe C, Pensavalle JH, Vignati A, Camarda M, Romano F. Comprehensive dosimetric characterization of novel silicon carbide detectors with UHDR electron beams for FLASH radiotherapy. Med Phys 2024; 51:6390-6401. [PMID: 38772134 DOI: 10.1002/mp.17172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND The extremely fast delivery of doses with ultra high dose rate (UHDR) beams necessitates the investigation of novel approaches for real-time dosimetry and beam monitoring. This aspect is fundamental in the perspective of the clinical application of FLASH radiotherapy (FLASH-RT), as conventional dosimeters tend to saturate at such extreme dose rates. PURPOSE This study aims to experimentally characterize newly developed silicon carbide (SiC) detectors of various active volumes at UHDRs and systematically assesses their response to establish their suitability for dosimetry in FLASH-RT. METHODS SiC PiN junction detectors, recently realized and provided by STLab company, with different active areas (ranging from 4.5 to 10 mm2) and thicknesses (10-20 µm), were irradiated using 9 MeV UHDR pulsed electron beams accelerated by the ElectronFLASH linac at the Centro Pisano for FLASH Radiotherapy (CPFR). The linearity of the SiC response as a function of the delivered dose per pulse (DPP), which in turn corresponds to a specific instantaneous dose rate, was studied under various experimental conditions by measuring the produced charge within the SiC active layer with an electrometer. Due to the extremely high peak currents, an external customized electronic RC circuit was built and used in conjunction with the electrometer to avoid saturation. RESULTS The study revealed a linear response for the different SiC detectors employed up to 21 Gy/pulse for SiC detectors with 4.5 mm2/10 µm active area and thickness. These values correspond to a maximum instantaneous dose rate of 5.5 MGy/s and are indicative of the maximum achievable monitored DPP and instantaneous dose rate of the linac used during the measurements. CONCLUSIONS The results clearly demonstrate that the developed devices exhibit a dose-rate independent response even under extreme instantaneous dose rates and dose per pulse values. A systematic study of the SiC response was also performed as a function of the applied voltage bias, demonstrating the reliability of these dosimeters with UHDR also without any applied voltage. This demonstrates the great potential of SiC detectors for accurate dosimetry in the context of FLASH-RT.
Collapse
Affiliation(s)
- Giuliana Milluzzo
- National Institute of Nuclear Physics (INFN), Catania Division, Catania, Italy
| | - Marzio De Napoli
- National Institute of Nuclear Physics (INFN), Catania Division, Catania, Italy
| | - Fabio Di Martino
- Centro Pisano ricerca e implementazione clinica Flash Radiotherapy (CPFR@CISUP), Pisa, Italy
- Fisica Sanitaria, Azienda Ospedaliero Universitaria Pisa AOUP, Pisa, Italy
- National Institute of Nuclear Physics (INFN), Pisa Division, Pisa, Italy
| | - Antonino Amato
- STLab srl, Catania, Italy
- National Institute of Nuclear Physics (INFN), Laboratori Nazionali del Sud, Catania, Italy
| | - Damiano Del Sarto
- Centro Pisano ricerca e implementazione clinica Flash Radiotherapy (CPFR@CISUP), Pisa, Italy
- Fisica Sanitaria, Azienda Ospedaliero Universitaria Pisa AOUP, Pisa, Italy
| | - Maria Cristina D'Oca
- National Institute of Nuclear Physics (INFN), Catania Division, Catania, Italy
- Department of Physics and Chemistry "Emilio Segrè", University of Palermo, Palermo, Italy
| | - Maurizio Marrale
- National Institute of Nuclear Physics (INFN), Catania Division, Catania, Italy
- National Institute of Nuclear Physics (INFN), Laboratori Nazionali del Sud, Catania, Italy
| | - Luigi Masturzo
- Centro Pisano ricerca e implementazione clinica Flash Radiotherapy (CPFR@CISUP), Pisa, Italy
- Fisica Sanitaria, Azienda Ospedaliero Universitaria Pisa AOUP, Pisa, Italy
- SIT-Sordina, Aprilia, Italy
| | - Elisabetta Medina
- Physics Department, University of Torino, Torino, Italy
- National Institute of Nuclear Physics (INFN), Torino Division, Torino, Italy
| | - Chinonso Okpuwe
- National Institute of Nuclear Physics (INFN), Catania Division, Catania, Italy
- Physics Department, University of Catania, Catania, Italy
- Department of Physics, Federal University of Technology Owerri, Owerri, Nigeria
| | - Jake Harold Pensavalle
- Centro Pisano ricerca e implementazione clinica Flash Radiotherapy (CPFR@CISUP), Pisa, Italy
- Fisica Sanitaria, Azienda Ospedaliero Universitaria Pisa AOUP, Pisa, Italy
- SIT-Sordina, Aprilia, Italy
| | - Anna Vignati
- Physics Department, University of Torino, Torino, Italy
- National Institute of Nuclear Physics (INFN), Torino Division, Torino, Italy
| | | | - Francesco Romano
- National Institute of Nuclear Physics (INFN), Catania Division, Catania, Italy
- Particle Therapy Research Center (PARTREC), Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Xu Y, Yan Z, Li K, Liu L, Xu L. Association between nutrition-related indicators with the risk of chronic obstructive pulmonary disease and all-cause mortality in the elderly population: evidence from NHANES. Front Nutr 2024; 11:1380791. [PMID: 39081677 PMCID: PMC11286481 DOI: 10.3389/fnut.2024.1380791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Background This study aims to use six nutrition-related indicators to assess the relationship between nutritional status and the risk of COPD as well as the all-cause mortality rate, and to determine the most reliable predictive indicators. Methods Data from the National Health and Nutrition Examination Survey (NHANES) spanning the years 2013 to 2018 were extracted. Nutritional status was evaluated using Controlling nutritional status (CONUT) score, Geriatric Nutritional Risk Index (GNRI), Advanced Lung Cancer Inflammation Index (ALI), Prognostic Nutritional Index (PNI), Triglycerides (TG) × Total Cholesterol (TC) × Body Weight (BW) Index (TCBI), and Albumin-to-Globulin Ratio (AGR) nutritional-related indicators. Multivariate weighted logistic and Cox regression models were employed to assess the correlation between the six nutritional-related indicators and the risk of COPD and as all-cause mortality. The restricted cubic spline tests were applied to explore potential nonlinear relationships, and ROC curves and C-index analyses were conducted to compare the predictive capabilities of different indicators. Stratified analysis and propensity score matching (PSM) to assess the robustness of the results. Results In this study, Lower ALI, lower GNRI, and higher CONUT scores were positively correlated with an increased risk of COPD (OR: 1.77, 95% CI: 1.10-2.84) (OR: 8.66, 95% CI: 2.95-25.5), and (OR: 5.11, 95% CI: 1.72-15.2), respectively. It was found that ALI and GNRI had a non-linear relationship with the risk of COPD. After propensity score matching (PSM), the associations between ALI, GNRI, CONUT scores, and COPD remained consistent. Lower ALI, PNI, and GNRI scores were positively associated with all-cause mortality in COPD patients (HR: 2.41, 95% CI: 1.10-5.27), (HR: 3.76, 95% CI: 1.89-7.48), and (HR: 4.55, 95% CI: 1.30-15.9), respectively, with GNRI displaying a non-linear relationship with all-cause mortality. ROC curve and C-index analyses indicated that ALI had the best predictive ability for both COPD risk and all-cause mortality. Conclusion ALI, GNRI, and CONUT scores are correlated with the risk of COPD, while ALI, PNI, and GNRI scores are associated with all-cause mortality in COPD patients. Compared to other nutritional scores, ALI may provide more effective predictive value for both risk and all-cause mortality.
Collapse
Affiliation(s)
- Yifeng Xu
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhaoqi Yan
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Keke Li
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Liangji Liu
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Lei Xu
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Tesson M, Morton JP. The preclinical gap in pancreatic cancer and radiotherapy. Dis Model Mech 2024; 17:dmm050703. [PMID: 38979684 PMCID: PMC11261628 DOI: 10.1242/dmm.050703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Pancreatic ductal adenocarcinoma is an aggressive malignancy with limited treatment options. Chemotherapy offers little benefit and, although there is some evidence that radiotherapy may improve response, its use in the clinical management of pancreatic cancer remains controversial due to conflicting reports on its survival benefit. There has also been a lack of clinical trials that directly investigate the efficacy of radiotherapy in pancreatic cancer. The limited progress in the development of radiotherapeutic strategies in pancreatic cancer can be attributed, at least in part, to a dearth of preclinical research and our limited understanding of the effects of radiation on the pancreatic tumour microenvironment. In this Perspective, we discuss how insight into the immunosuppressive tumour microenvironment and the complex signalling between tumour and stromal cells following radiation is needed to develop effective radiosensitising strategies for pancreatic cancer. We also highlight that to have the best chance for successful clinical translation, more preclinical research is required in appropriately complex models.
Collapse
Affiliation(s)
- Mathias Tesson
- Cancer Research UK Scotland Institute, Switchback Rd, Glasgow G61 1BD, UK
| | - Jennifer P. Morton
- Cancer Research UK Scotland Institute, Switchback Rd, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
7
|
Xu Y, Yan Z, Liu L. Sex differences in the combined influence of inflammation and nutrition status on depressive symptoms: insights from NHANES. Front Nutr 2024; 11:1406656. [PMID: 38868555 PMCID: PMC11168495 DOI: 10.3389/fnut.2024.1406656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
Background Both nutrition and inflammation are associated with depression, but previous studies have focused on individual factors. Here, we assessed the association between composite indices of nutrition and inflammation and depression. Methods Adult participants selected from the National Health and Nutrition Examination Survey (NHANES) between 2005 and 2018 were chosen. The exposure variable was the Advanced Lung Cancer Inflammation Index (ALI) integrating nutrition and inflammation, categorized into low, medium, and high groups. The outcome variable was depression assessed using the Patient Health Questionnaire-9 (PHQ-9). A multivariable logistic regression model was employed to evaluate the relationship between ALI and the risk of depression. Results After extensive adjustment for covariates, in the overall population, participants with moderate and high levels of ALI had a decreased prevalence of depression compared to those with low ALI levels, with reductions of 17% (OR, 0.83; 95% CI: 0.72-0.97) and 23% (OR, 0.77; 95% CI: 0.66-0.91), respectively. Among females, participants with moderate and high ALI levels had a decreased prevalence of depression by 27% (OR, 0.73; 95% CI: 0.60-0.88) and 21% (OR, 0.79; 95% CI: 0.64-0.98), respectively, compared to those with low ALI levels, whereas no significant association was observed among males. Subgroup analyses based on females and males yielded consistent results. Conclusion In this study, we observed a negative correlation between moderate to high levels of ALI and the prevalence of depression, along with gender differences. Specifically, in females, greater attention should be given to the nutritional and inflammatory status.
Collapse
Affiliation(s)
- Yifeng Xu
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhaoqi Yan
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Liangji Liu
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Muñoz Forti K, Weisman GA, Jasmer KJ. Cell type-specific transforming growth factor-β (TGF-β) signaling in the regulation of salivary gland fibrosis and regeneration. J Oral Biol Craniofac Res 2024; 14:257-272. [PMID: 38559587 PMCID: PMC10979288 DOI: 10.1016/j.jobcr.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/13/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Salivary gland damage and hypofunction result from various disorders, including autoimmune Sjögren's disease (SjD) and IgG4-related disease (IgG4-RD), as well as a side effect of radiotherapy for treating head and neck cancers. There are no therapeutic strategies to prevent the loss of salivary gland function in these disorders nor facilitate functional salivary gland regeneration. However, ongoing aquaporin-1 gene therapy trials to restore saliva flow show promise. To identify and develop novel therapeutic targets, we must better understand the cell-specific signaling processes involved in salivary gland regeneration. Transforming growth factor-β (TGF-β) signaling is essential to tissue fibrosis, a major endpoint in salivary gland degeneration, which develops in the salivary glands of patients with SjD, IgG4-RD, and radiation-induced damage. Though the deposition and remodeling of extracellular matrix proteins are essential to repair salivary gland damage, pathological fibrosis results in tissue hardening and chronic salivary gland dysfunction orchestrated by multiple cell types, including fibroblasts, myofibroblasts, endothelial cells, stromal cells, and lymphocytes, macrophages, and other immune cell populations. This review is focused on the role of TGF-β signaling in the development of salivary gland fibrosis and the potential for targeting TGF-β as a novel therapeutic approach to regenerate functional salivary glands. The studies presented highlight the divergent roles of TGF-β signaling in salivary gland development and dysfunction and illuminate specific cell populations in damaged or diseased salivary glands that mediate the effects of TGF-β. Overall, these studies strongly support the premise that blocking TGF-β signaling holds promise for the regeneration of functional salivary glands.
Collapse
Affiliation(s)
- Kevin Muñoz Forti
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| | - Gary A. Weisman
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| | - Kimberly J. Jasmer
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| |
Collapse
|
9
|
Brown KH, Ghita-Pettigrew M, Kerr BN, Mohamed-Smith L, Walls GM, McGarry CK, Butterworth KT. Characterisation of quantitative imaging biomarkers for inflammatory and fibrotic radiation-induced lung injuries using preclinical radiomics. Radiother Oncol 2024; 192:110106. [PMID: 38253201 DOI: 10.1016/j.radonc.2024.110106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND AND PURPOSE Radiomics is a rapidly evolving area of research that uses medical images to develop prognostic and predictive imaging biomarkers. In this study, we aimed to identify radiomics features correlated with longitudinal biomarkers in preclinical models of acute inflammatory and late fibrotic phenotypes following irradiation. MATERIALS AND METHODS Female C3H/HeN and C57BL6 mice were irradiated with 20 Gy targeting the upper lobe of the right lung under cone-beam computed tomography (CBCT) image-guidance. Blood samples and lung tissue were collected at baseline, weeks 1, 10 & 30 to assess changes in serum cytokines and histological biomarkers. The right lung was segmented on longitudinal CBCT scans using ITK-SNAP. Unfiltered and filtered (wavelet) radiomics features (n = 842) were extracted using PyRadiomics. Longitudinal changes were assessed by delta analysis and principal component analysis (PCA) was used to remove redundancy and identify clustering. Prediction of acute (week 1) and late responses (weeks 20 & 30) was performed through deep learning using the Random Forest Classifier (RFC) model. RESULTS Radiomics features were identified that correlated with inflammatory and fibrotic phenotypes. Predictive features for fibrosis were detected from PCA at 10 weeks yet overt tissue density was not detectable until 30 weeks. RFC prediction models trained on 5 features were created for inflammation (AUC 0.88), early-detection of fibrosis (AUC 0.79) and established fibrosis (AUC 0.96). CONCLUSIONS This study demonstrates the application of deep learning radiomics to establish predictive models of acute and late lung injury. This approach supports the wider application of radiomics as a non-invasive tool for detection of radiation-induced lung complications.
Collapse
Affiliation(s)
- Kathryn H Brown
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland, UK.
| | - Mihaela Ghita-Pettigrew
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland, UK
| | - Brianna N Kerr
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland, UK
| | - Letitia Mohamed-Smith
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland, UK
| | - Gerard M Walls
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland, UK; Northern Ireland Cancer Centre, Belfast Health & Social Care Trust, Northern Ireland, UK
| | - Conor K McGarry
- Northern Ireland Cancer Centre, Belfast Health & Social Care Trust, Northern Ireland, UK
| | - Karl T Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Northern Ireland, UK
| |
Collapse
|
10
|
Liu J, An W, Zhao Q, Liu Z, Jiang Y, Li H, Wang D. Hyperbaric oxygen enhances X-ray induced ferroptosis in oral squamous cell carcinoma cells. Oral Dis 2024; 30:116-127. [PMID: 36495316 DOI: 10.1111/odi.14461] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The objective of this study was to investigate the combined effect of X-ray radiation (IR) and hyperbaric oxygen (HBO) on oral squamous cell carcinoma (OSCC) cells and to explore the possible molecular mechanism. METHODS The OSCC cells were treated with or without IR, together with or without HBO co-exposure. Cells were transfected with specific plasmids using Lipofectamine 2000. The cell varieties, apoptosis markers, and ferroptosis markers were determined by using appropriate method. OSCC xenograft mice model was categorized into several subgroups according to the specific treatement. GPX4 expressions were determined by immunohistochemistry (IHC) in OSCC tissues and were tested by ELISA in serums from OSCC patients. RESULTS The co-exposure of IR and HBO significantly strengthened the cytotoxicity of IR on SCC15-S cells in ferroptosis-dependent manner. The regulated GPX4/ferroptosis mediated the HBO function on re-sensitizing the radio-resistant OSCC cells to IR. In xenograft mice, co-exposure of IR and HBO can significantly reduce the tumor under IR activation compared with IR alone. Clinical data indicated that high GPX4 levels were associated with poor chemo-radiotherapy outcome. CONCLUSIONS HBO could re-sensitize radio-resistant OSCC cells through GPX4/ferroptosis regulation. These results provide a potential therapeutic strategy for clinical radio-resistance.
Collapse
Affiliation(s)
- Jia Liu
- Stomatology center, Shanxi Provincial People's hospital, Taiyuan, China
| | - Wei An
- Stomatology center, Shanxi Provincial People's hospital, Taiyuan, China
| | - Qian Zhao
- Stomatology center, Shanxi Provincial People's hospital, Taiyuan, China
| | - Zhen Liu
- The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Ying Jiang
- The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Huiqing Li
- Department of Anesthesiology, Shandong Provincial Third Hospital, Jinan, China
| | - Di Wang
- The Eighth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Frijlink E, Bosma DM, Busselaar J, Battaglia TW, Staal MD, Verbrugge I, Borst J. PD-1 or CTLA-4 blockade promotes CD86-driven Treg responses upon radiotherapy of lymphocyte-depleted cancer in mice. J Clin Invest 2024; 134:e171154. [PMID: 38349740 PMCID: PMC10940086 DOI: 10.1172/jci171154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 01/17/2024] [Indexed: 03/16/2024] Open
Abstract
Radiotherapy (RT) is considered immunogenic, but clinical data demonstrating RT-induced T cell priming are scarce. Here, we show in a mouse tumor model representative of human lymphocyte-depleted cancer that RT enhanced spontaneous priming of thymus-derived (FOXP3+Helios+) Tregs by the tumor. These Tregs acquired an effector phenotype, populated the tumor, and impeded tumor control by a simultaneous, RT-induced CD8+ cytotoxic T cell (CTL) response. Combination of RT with CTLA-4 or PD-1 blockade, which enables CD28 costimulation, further increased this Treg response and failed to improve tumor control. We discovered that upon RT, the CD28 ligands CD86 and CD80 differentially affected the Treg response. CD86, but not CD80, blockade prevented the effector Treg response, enriched the tumor-draining lymph node migratory conventional DCs that were positive for PD-L1 and CD80 (PD-L1+CD80+), and promoted CTL priming. Blockade of CD86 alone or in combination with PD-1 enhanced intratumoral CTL accumulation, and the combination significantly increased RT-induced tumor regression and OS. We advise that combining RT with PD-1 and/or CTLA-4 blockade may be counterproductive in lymphocyte-depleted cancers, since these interventions drive Treg responses in this context. However, combining RT with CD86 blockade may promote the control of such tumors by enabling a CTL response.
Collapse
Affiliation(s)
- Elselien Frijlink
- Division of Tumor Biology and Immunology and Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Douwe M.T. Bosma
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Julia Busselaar
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Thomas W. Battaglia
- Division of Molecular Oncology and Immunology and Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Mo D. Staal
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Inge Verbrugge
- Division of Tumor Biology and Immunology and Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Jannie Borst
- Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
12
|
Li H, Yang T, Zhang J, Xue K, Ma X, Yu B, Jin X. Pyroptotic cell death: an emerging therapeutic opportunity for radiotherapy. Cell Death Discov 2024; 10:32. [PMID: 38228635 DOI: 10.1038/s41420-024-01802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
Pyroptotic cell death, an inflammatory form of programmed cell death (PCD), is emerging as a potential therapeutic opportunity for radiotherapy (RT). RT is commonly used for cancer treatment, but its effectiveness can be limited by tumor resistance and adverse effects on healthy tissues. Pyroptosis, characterized by cell swelling, membrane rupture, and release of pro-inflammatory cytokines, has been shown to enhance the immune response against cancer cells. By inducing pyroptotic cell death in tumor cells, RT has the potential to enhance treatment outcomes by stimulating anti-tumor immune responses and improving the overall efficacy of RT. Furthermore, the release of danger signals from pyroptotic cells can promote the recruitment and activation of immune cells, leading to a systemic immune response that may target distant metastases. Although further research is needed to fully understand the mechanisms and optimize the use of pyroptotic cell death in RT, it holds promise as a novel therapeutic strategy for improving cancer treatment outcomes. This review aims to synthesize recent research on the regulatory mechanisms underlying radiation-induced pyroptosis and to elucidate the potential significance of this process in RT. The insights gained from this analysis may inform strategies to enhance the efficacy of RT for tumors.
Collapse
Affiliation(s)
- Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Tiantian Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jialin Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Kai Xue
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiaoli Ma
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Boyi Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China.
| |
Collapse
|
13
|
Zhang M, Lan H, Peng S, Zhou W, Wang X, Jiang M, Hong J, Zhang Q. MiR-223-3p attenuates radiation-induced inflammatory response and inhibits the activation of NLRP3 inflammasome in macrophages. Int Immunopharmacol 2023; 122:110616. [PMID: 37459784 DOI: 10.1016/j.intimp.2023.110616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 08/25/2023]
Abstract
Macrophage pyroptosis plays an important role in the development of radiation-induced cell and tissue damage, leading to acute lung injury. However, the underlying mechanisms of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3)-mediated macrophage pyroptosis and the regulatory factors involved in radiation-induced pyroptosis are unclear. In this study, the expression of the NLRP3 inflammasome and pyroptosis-associated factors in murine macrophage cell lines was investigated after ionizing radiation. High-throughput RNA sequencing was performed to identify and characterize miRNAs and mRNA transcripts associated with NLRP3-mediated cell death. Our results demonstrated that cleaved-caspase-1 (p10) and N-terminal domain of gasdermin-D (GSDMD-N) were upregulated, and the number of NLRP3 inflammasomes and pyroptotic cells increased in murine macrophage cell lines after irradiation (8 Gy). Comparativeprofiling of 300miRNAs revealed that 41 miRNAsexhibited significantly different expression after 8 Gy of irradiation. Granulocyte-specific microRNA-223-3p (miR-223-3p) is a negative regulator of NLRP3. In vitro experiments revealed that the expression of miR-223-3p was significantly altered by irradiation. Moreover, miR-223-3p decreased the expression of NLRP3 and proinflammatory factors, resulting in reduced pyroptosis in irradiated murine macrophages. Subsequently, in vivo experiments revealed the efficacy of miR-223-3p supplementation in ameliorating alveolar macrophage (AM) pyroptosis, attenuating the infiltration of inflammatory monocytes, and significantly alleviating the severity of acute radiation-induced lung injury (ARILI). Our findings suggest that the miR-223-3p/NLRP3/caspase-1 axis is involved in radiation-induced AM pyroptosis and ARILI.
Collapse
Affiliation(s)
- Mingwei Zhang
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hailin Lan
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shaoli Peng
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Weitong Zhou
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xuezhen Wang
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Meina Jiang
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jinsheng Hong
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Qiuyu Zhang
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
14
|
Pan X, Wang C, Zhan Y, Chen J, Wang Z, Lan R, Chen J, Zhang W, Chen C, Zhang M, Huang F, Hong J. A Subset of Breg Cells, B10, Contributes to the Development of Radiation-Induced Pulmonary Fibrosis. Int J Radiat Oncol Biol Phys 2023; 117:237-251. [PMID: 37054996 DOI: 10.1016/j.ijrobp.2023.03.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 03/07/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
PURPOSE Radiation-induced pulmonary fibrosis (RIPF) is a serious side effect of radiation therapy, but the underlying mechanisms are unknown. B10 cells, as negative B regulatory cells, play important roles in regulating inflammation and autoimmunity. However, the role of B10 cells in RIPF progression is unclear. The aim of this study was to determine the role of B10 cells in aggravating RIPF and the underlying mechanism. METHODS AND MATERIALS The role of B10 cells in RIPF was studied by constructing mouse models of RIPF and depleting B10 cells with an anti-CD22 antibody. The mechanism of B10 cells in RIPF was further explored through cocultivation of B10 cells and MLE-12 or NIH3T3 cells and administration of an interleukin (IL)-10 antibody to block IL-10. RESULTS B10 cell numbers increased significantly during the early stage in the RIPF mouse models compared with the controls. In addition, depleting B10 cells with the anti-CD22 antibody attenuated the development of lung fibrosis in mice. Subsequently, we confirmed that B10 cells induced epithelial-mesenchymal transition and the transformation of myofibroblasts via activation of STAT3 signaling in vitro. After blockade of IL-10, it was verified that IL-10 secreted by B10 cells mediates the epithelial-mesenchymal transition of myofibroblasts, thereby promoting RIPF. CONCLUSIONS Our study uncovers a novel role for IL-10-secreting B10 cells that could be a new target of research for relieving RIPF.
Collapse
Affiliation(s)
- Xiaoxian Pan
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical Universisty, Fuzhou 350212, China
| | - Caihong Wang
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical Universisty, Fuzhou 350212, China
| | - Yuping Zhan
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical Universisty, Fuzhou 350212, China
| | - Jinmei Chen
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical Universisty, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Zeng Wang
- Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Central Lab, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Ruilong Lan
- Provincial Key Laboratory of Precision Medicine for Cancer, Fuzhou 350005, China; Central Lab, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Junying Chen
- Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Central Lab, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Weijian Zhang
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical Universisty, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Chun Chen
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Mingwei Zhang
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical Universisty, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Fei Huang
- Provincial Key Laboratory of Precision Medicine for Cancer, Fuzhou 350005, China; Central Lab, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China.
| | - Jinsheng Hong
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical Universisty, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| |
Collapse
|
15
|
Choi Y, Noh JM, Shin SH, Lee K, Um SW, Kim H, Pyo H, Ahn YC, Jeong BH. The Incidence and Risk Factors of Chronic Pulmonary Infection after Radiotherapy in Patients with Lung Cancer. Cancer Res Treat 2023; 55:804-813. [PMID: 36596726 PMCID: PMC10372583 DOI: 10.4143/crt.2022.1305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023] Open
Abstract
PURPOSE This study aimed to investigate cumulative incidence and risk factors associated with chronic pulmonary infection (CPI) development after radiotherapy for lung cancer. Materials and Methods We retrospectively analyzed 1,872 patients with lung cancer who received radiotherapy for lung cancer from 2010-2014, had a follow-up period of ≥ 3 months after radiotherapy, and did not have CPI at the time of radiotherapy. CPI was defined as pulmonary tuberculosis, non-tuberculous mycobacterial pulmonary disease, chronic pulmonary aspergillosis, or pulmonary actinomycosis. The cumulative incidence of CPI and overall survival (OS) were estimated using the Kaplan-Meier method, and a multivariable Cox proportional hazards analysis was performed to identify risk factors associated with CPI development. RESULTS The median follow-up period was 2.3 years with OS rates of 55.6% and 37.6% at 2 and 5 years, respectively. CPI developed in 59 patients at a median of 1.8 years after radiotherapy, with cumulative incidence rates of 1.1%, 3.4%, 5.0%, and 6.8% at 1, 3, 5, and 7 years, respectively. A lower body mass index, interstitial lung disease, prior pulmonary tuberculosis, larger clinical target volume, history of lung cancer surgery or radiation pneumonitis, and use of inhaled corticosteroids were independent risk factors for CPI development. CONCLUSION The long-term survival rate of lung cancer patients receiving radiotherapy was not low, but the cumulative incidence of CPI gradually increased to 6.8% at 7 years after radiotherapy. Therefore, close monitoring of CPI development is required in surviving patients with risk factors.
Collapse
Affiliation(s)
- Yeonseok Choi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul,
Korea
| | - Jae Myoung Noh
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Sun Hye Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Kyungjong Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Sang-Won Um
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Hojoong Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Hongryull Pyo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Yong Chan Ahn
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| | - Byeong-Ho Jeong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul,
Korea
| |
Collapse
|
16
|
Aryankalayil MJ, Bylicky MA, Martello S, Chopra S, Sproull M, May JM, Shankardass A, MacMillan L, Vanpouille-Box C, Eke I, Scott KMK, Dalo J, Coleman CN. Microarray analysis of hub genes, non-coding RNAs and pathways in lung after whole body irradiation in a mouse model. Int J Radiat Biol 2023; 99:1702-1715. [PMID: 37212632 PMCID: PMC10615684 DOI: 10.1080/09553002.2023.2214205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
PURPOSE Previous research has highlighted the impact of radiation damage, with cancer patients developing acute disorders including radiation induced pneumonitis or chronic disorders including pulmonary fibrosis months after radiation therapy ends. We sought to discover biomarkers that predict these injuries and develop treatments that mitigate this damage and improve quality of life. MATERIALS AND METHODS Six- to eight-week-old female C57BL/6 mice received 1, 2, 4, 8, 12 Gy or sham whole body irradiation. Animals were euthanized 48 h post exposure and lungs removed, snap frozen and underwent RNA isolation. Microarray analysis was performed to determine dysregulation of messenger RNA (mRNA), microRNA (miRNA), and long non-coding RNA (lncRNA) after radiation injury. RESULTS We observed sustained dysregulation of specific RNA markers including: mRNAs, lncRNAs, and miRNAs across all doses. We also identified significantly upregulated genes that can indicate high dose exposure, including Cpt1c, Pdk4, Gdf15, and Eda2r, which are markers of senescence and fibrosis. Only three miRNAs were significantly dysregulated across all radiation doses: miRNA-142-3p and miRNA-142-5p were downregulated and miRNA-34a-5p was upregulated. IPA analysis predicted inhibition of several molecular pathways with increasing doses of radiation, including: T cell development, Quantity of leukocytes, Quantity of lymphocytes, and Cell viability. CONCLUSIONS These RNA biomarkers might be highly relevant in the development of treatments and in predicting normal tissue injury in patients undergoing radiation treatment. We are conducting further experiments in our laboratory, which includes a human lung-on-a-chip model, to develop a decision tree model using RNA biomarkers.
Collapse
Affiliation(s)
- Molykutty J Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michelle A Bylicky
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shannon Martello
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sunita Chopra
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mary Sproull
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jared M May
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aman Shankardass
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Iris Eke
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kevin M K Scott
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Juan Dalo
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
17
|
Yan W, Quan C, Waleed M, Yuan J, Shi Z, Yang J, Lu Q, Zhang J. Application of radiomics in lung immuno‐oncology. PRECISION RADIATION ONCOLOGY 2023. [DOI: 10.1002/pro6.1191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Affiliation(s)
- Weisi Yan
- Baptist Health System Lexington Kentucky USA
| | - Chen Quan
- City of Hope Comprehensive Cancer Center Duarte California USA
| | - Mourad Waleed
- Department of Radiation Medicine University of Kentucky Lexington Kentucky USA
| | - Jianda Yuan
- Translational Oncology at Merck & Co Kenilworth New Jersey USA
| | | | - Jun Yang
- Foshan Chancheng Hospital Foshan Guangdong China
| | - Qiuxia Lu
- Foshan Chancheng Hospital Foshan Guangdong China
| | - Jie Zhang
- Department of Radiology University of Kentucky Lexington Kentucky USA
| |
Collapse
|
18
|
Chen X, Wang L, Yu H, Shen Q, Hou Y, Xia YX, Li L, Chang L, Li WH. Irradiated lung cancer cell-derived exosomes modulate macrophage polarization by inhibiting MID1 via miR-4655-5p. Mol Immunol 2023; 155:58-68. [PMID: 36709645 DOI: 10.1016/j.molimm.2023.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/27/2022] [Accepted: 01/23/2023] [Indexed: 01/30/2023]
Abstract
Radiation Pneumonitis (RP) is one of the most common and severe complication in patients receiving thoracic radiotherapy. The release of cytokines contribute to activating the RP process. Macrophages also play an important role in the pathogenesis of RP. The differential activation of macrophages is regulated by microRNA (miRNA). Exosomes containing miRNAs are one of the important ways to mediate cellular communication. However, the exosomes mediate communication between tumor cells and macrophages during the pathogenesis of RP remains understudied. In this study, we isolated and characterized the exosomes secreted by lung cancer cells after irradiation. Co-culture of exosomes with macrophages revealed that exosomes could induce macrophage proliferation activation and M2 polarization. miRNA array was used to analyze the differential expression of miRNAs in exosomes, and it was found that miR-4655-5p was stably and highly expressed in exosomes. The function of miR-4655-5p in macrophages was confirmed by overexpression/inhibition of miR-4655-5p expression in macrophages. The targeting association between miR-4655-5p and MID1 was determined by bioinformatics prediction followed by a confirmatory dual luciferase reporter assay. We showed that miR-4655-5p regulate the macrophage proliferation and inflammatory response by forming a negative regulatory loop that alters MID1 activity and its downstream PP2Ac. Overall, our results indicated that exosomal miR-4655-5p secreted by lung cancer cells after irradiation promoted the proliferation and M2 polarization of macrophages. It can be speculated that exosomes play an immunomodulatory role in the pathogenesis of RP and provided a new target for the prevention and treatment of RP.
Collapse
Affiliation(s)
- Xian Chen
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, PR China; Department of Oncology, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, PR China
| | - Li Wang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, PR China
| | - Hui Yu
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, PR China
| | - Qi Shen
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, PR China
| | - Yu Hou
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, PR China
| | - Yao-Xiong Xia
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, PR China
| | - Lan Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, PR China
| | - Li Chang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, PR China.
| | - Wen-Hui Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, PR China.
| |
Collapse
|
19
|
Kim KH, Pyo H, Lee H, Oh D, Noh JM, Ahn YC, Kim CG, Yoon HI, Lee J, Park S, Jung HA, Sun JM, Lee SH, Ahn JS, Park K, Ku BM, Shin EC, Ahn MJ. Association of T Cell Senescence with Radiation Pneumonitis in Patients with Non-small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2023; 115:464-475. [PMID: 35896144 DOI: 10.1016/j.ijrobp.2022.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/07/2022] [Accepted: 07/13/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Associations between immunosenescence and radiation pneumonitis (RP) are largely unknown. We aimed to identify a peripheral blood T cell senescence biomarker to predict RP in patients with non-small cell lung cancer (NSCLC). METHODS AND MATERIALS Patients with locally advanced NSCLC who received definitive concurrent chemoradiotherapy (dCRT) were prospectively registered (cohort 1, n=23; cohort 2, n=31). Peripheral blood was collected at baseline, during dCRT, and at 1 month post-dCRT. Patients were dichotomized to grade ≥2 (G2+) RP and grade 0-1 (G0-1) RP. Flow cytometry was performed to assess phenotypes and functional properties of T cell subsets. RP incidence was estimated via competing risk analysis. RESULTS Five and six patients exhibited G2+ RP following dCRT in cohorts 1 and 2, respectively. Patients with G2+ RP exhibited a more aged T cell pool and higher frequencies of senescent CD57+CD28-CD8+ T cells than patients with G0-1 RP at baseline, during dCRT, and at 1 month post-dCRT. These senescent cells exhibited increased granzyme B, IFN-γ, and TNF-α production. Higher baseline frequency of CD57+CD28-CD8+ T cells was an independent predictor of G2+ RP (hazard ratio, 8.42; 95% confidence interval, 2.58-27.45; P<0.001). Recursive partitioning analysis revealed three distinct risk groups stratified by baseline CD57+CD28-CD8+ T cell frequency and lung V20 Gy, with 1-year cumulative G2+ RP incidences of 50.0%, 16.7%, and 0% for high-, intermediate-, and low-risk groups, respectively (P=0.002). CONCLUSIONS Higher baseline frequencies of CD57+CD28-CD8+ T cells correlated with increased G2+ RP risks. Our results suggest the need for further investigation of the role of T cell senescence on radiation-induced organ damage.
Collapse
Affiliation(s)
- Kyung Hwan Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hongryull Pyo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hoyoung Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Dongryul Oh
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae Myoung Noh
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yong Chan Ahn
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chang Gon Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jiyun Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sehhoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyun-Ae Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong-Mu Sun
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Keunchil Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Bo Mi Ku
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
20
|
Hasan N, Hasani NAH, Omar E, Sham FR, Fuad SBSA, Karim MKA, Ibahim MJ. A single targeted gamma-ray irradiation induced an acute modulation of immune cells and related cytokines in EMT6 mouse-bearing tumour model. Cancer Biomark 2023; 38:61-75. [PMID: 37522193 DOI: 10.3233/cbm-220268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
BACKGROUND A complicated interplay between radiation doses, tumour microenvironment (TME), and host immune system is linked to the active participation of immune response. OBJECTIVE The effects of single targeted 2 Gy and 8 Gy gamma-ray irradiations on the immune cell population (lymphocytes, B-cells, T-cells, neutrophils, eosinophils, and macrophages) in EMT6 mouse-bearing tumour models was investigated. METHODS The effects of both irradiation doses in early (96 hours) and acute phase (5 to 11 days) post-irradiation on immune parameters were monitored in blood circulation and TME using flow cytometry. Simultaneously, selected cytokines related to immune cells within the TME were measured using multiplex ELISA. RESULTS A temporary reduction in systemic total white blood count (TWBC) resulted from an early phase (96 hours) of gamma-ray irradiation at 2 Gy and 8 Gy compared to sham control group. No difference was obtained in the acute phase. Neutrophils dominated among other immune cells in TME in sham control group. Eosinophils in TME was significantly increased after 8 Gy treatment in acute phase compared to sham control (p< 0.005). Furthermore, the increment of tumour necrosis (TNF)-α, eotaxin and interleukin (IL)-7 (p< 0.05) in both treatment groups and phases were associated with anti-tumour activities within TME by gamma-ray irradiation. CONCLUSION The temporary changes in immune cell populations within systemic circulation and TME induced by different doses of gamma-ray irradiation correlated with suppression of several pro-tumorigenic cytokines in mouse-bearing EMT6 tumour models.
Collapse
Affiliation(s)
- Nurhaslina Hasan
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Faculty of Dentistry, University Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | | | - Effat Omar
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Fatihah Ronny Sham
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | | | | | | |
Collapse
|
21
|
Xu C, Shang Z, Najafi M. Lung Pneumonitis and Fibrosis in Cancer Therapy: A Review on Cellular and Molecular Mechanisms. Curr Drug Targets 2022; 23:1505-1525. [PMID: 36082868 DOI: 10.2174/1389450123666220907144131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/05/2022] [Accepted: 08/02/2022] [Indexed: 01/25/2023]
Abstract
Fibrosis and pneumonitis are the most important side effects of lung tissue following cancer therapy. Radiotherapy and chemotherapy by some drugs, such as bleomycin, can induce pneumonitis and fibrosis. Targeted therapy and immunotherapy also may induce pneumonitis and fibrosis to a lesser extent compared to chemotherapy and radiotherapy. Activation of lymphocytes by immunotherapy or infiltration of inflammatory cells such as macrophages, lymphocytes, neutrophils, and mast cells following chemo/radiation therapy can induce pneumonitis. Furthermore, the polarization of macrophages toward M2 cells and the release of anti-inflammatory cytokines stimulate fibrosis. Lung fibrosis and pneumonitis may also be potentiated by some other changes such as epithelial-mesenchymal transition (EMT), oxidative stress, reduction/oxidation (redox) responses, renin-angiotensin system, and the upregulation of some inflammatory mediators such as a nuclear factor of kappa B (NF-κB), inflammasome, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). Damages to the lung vascular system and the induction of hypoxia also can induce pulmonary injury following chemo/radiation therapy. This review explains various mechanisms of the induction of pneumonitis and lung fibrosis following cancer therapy. Furthermore, the targets and promising agents to mitigate lung fibrosis and pneumonitis will be discussed.
Collapse
Affiliation(s)
- Chaofeng Xu
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China
| | - Zhongtu Shang
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China
| | - Masoud Najafi
- Medical Technology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
22
|
Wang NH, Zhang X, Sui JD, Wang Y, Wu YZ, Lei QQ, Tu HL, Yang LN, Liu YC, Yang MQ, Yang HN, Li D, Lei Z. Radiation-induced eosinophil increase ratio predicts patient outcomes in non-small celllung cancer. Front Oncol 2022; 12:999555. [PMID: 36276060 PMCID: PMC9585330 DOI: 10.3389/fonc.2022.999555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Background and purpose Radiotherapy (RT) is a double-edged sword in regulating immune responses. This study aimed to investigate the impact of thoracic RT on circulating eosinophils and its association with patient outcomes in non-small cell lung cancer (NSCLC). Materials and methods This retrospective study included 240 patients with advanced NSCLC treated with definitive thoracic RT from January 2012 to January 2020. Statistics included Kaplan-Meier analysis of overall survival (OS) and progression-free survival (PFS), multivariate Cox analyses to identify significant variables, and Spearman’s correlation to qualify the relationship between dose-volume histogram (DVH) parameters and EIR. Results Absolute eosinophil counts (AECs) showed an increasing trend during RT and an obvious peak in the 1st month after RT. Thresholds of eosinophil increase ratio (EIR) at the 1st month after RT for both OS and PFS were 1.43. Patients with high EIR above 1.43 experienced particularly favorable clinical outcomes (five-year OS: 21% versus 10%, P<0.0001; five-year PFS: 10% versus 8%, P=0.014), but may not derive PFS benefit from the addition of chemotherapy to RT. The higher a patient’s EIR, the larger the potential benefit in the absence of chemotherapy. DVH parameters including heart mean dose and heart V10 were negatively associated with EIR. None of these DVH parameters was correlated with the clinical outcomes. Conclusion EIR may serve as a potential biomarker to predict OS and PFS in NSCLC patients treated with RT. These findings require prospective studies to evaluate the role of such prognostic marker to identify patients at risk to tailor interventions.
Collapse
Affiliation(s)
- Nuo-Han Wang
- College of Medicine, Chongqing University, Chongqing, China
| | - Xin Zhang
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Jiang-Dong Sui
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
- *Correspondence: Jiang-Dong Sui, ; Ying Wang, ; Yong-Zhong Wu,
| | - Ying Wang
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
- *Correspondence: Jiang-Dong Sui, ; Ying Wang, ; Yong-Zhong Wu,
| | - Yong-Zhong Wu
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
- *Correspondence: Jiang-Dong Sui, ; Ying Wang, ; Yong-Zhong Wu,
| | - Qian-Qian Lei
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Hong-Lei Tu
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Li-Na Yang
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Yun-Chang Liu
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Meng-Qi Yang
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Hao-Nan Yang
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Dan Li
- College of Medicine, Chongqing University, Chongqing, China
| | - Zheng Lei
- College of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
23
|
Lin B, Huang D, Gao F, Yang Y, Wu D, Zhang Y, Feng G, Dai T, Du X. Mechanisms of FLASH effect. Front Oncol 2022; 12:995612. [PMID: 36212435 PMCID: PMC9537695 DOI: 10.3389/fonc.2022.995612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
FLASH radiotherapy (FLASH-RT) is a novel radiotherapy technology defined as ultra-high dose rate (≥ 40 Gy/s) radiotherapy. The biological effects of FLASH-RT include two aspects: first, compared with conventional dose rate radiotherapy, FLASH-RT can reduce radiation-induced damage in healthy tissue, and second, FLASH-RT can retain antitumor effectiveness. Current research shows that mechanisms of the biological effects of FLASH-RT are related to oxygen. However, due to the short time of FLASH-RT, evidences related to the mechanisms are indirect, and the exact mechanisms of the biological effects of FLASH-RT are not completely clear and some are even contradictory. This review focuses on the mechanisms of the biological effects of FLASH-RT and proposes future research directions.
Collapse
Affiliation(s)
- Binwei Lin
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Department of Oncology, Mianyang Central Hospital, Mianyang, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Dan Huang
- Department of Radiology Mianyang Central Hospital, Mianyang, China
| | - Feng Gao
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Department of Oncology, Mianyang Central Hospital, Mianyang, China
| | - Yiwei Yang
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China
| | - Dai Wu
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, China
| | - Yu Zhang
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Department of Oncology, Mianyang Central Hospital, Mianyang, China
| | - Gang Feng
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Department of Oncology, Mianyang Central Hospital, Mianyang, China
| | - Tangzhi Dai
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Department of Oncology, Mianyang Central Hospital, Mianyang, China
| | - Xiaobo Du
- National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Department of Oncology, Mianyang Central Hospital, Mianyang, China
| |
Collapse
|
24
|
Fang L, Liu K, Liu C, Wang X, Ma W, Xu W, Wu J, Sun C. Tumor accomplice: T cell exhaustion induced by chronic inflammation. Front Immunol 2022; 13:979116. [PMID: 36119037 PMCID: PMC9479340 DOI: 10.3389/fimmu.2022.979116] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
The development and response to treatment of tumor are modulated by inflammation, and chronic inflammation promotes tumor progression and therapy resistance. This article summarizes the dynamic evolution of inflammation from acute to chronic in the process of tumor development, and its effect on T cells from activation to the promotion of exhaustion. We review the mechanisms by which inflammatory cells and inflammatory cytokines regulate T cell exhaustion and methods for targeting chronic inflammation to improve the efficacy of immunotherapy. It is great significance to refer to the specific state of inflammation and T cells at different stages of tumor development for accurate clinical decision-making of immunotherapy and improving the efficiency of tumor immunotherapy.
Collapse
Affiliation(s)
- Liguang Fang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kunjing Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Xiaomin Wang
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macao SAR, China
| | - Wenhua Xu
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
- *Correspondence: Changgang Sun,
| |
Collapse
|
25
|
Zhang Z, Liu X, Chen D, Yu J. Radiotherapy combined with immunotherapy: the dawn of cancer treatment. Signal Transduct Target Ther 2022; 7:258. [PMID: 35906199 PMCID: PMC9338328 DOI: 10.1038/s41392-022-01102-y] [Citation(s) in RCA: 219] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/19/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Radiotherapy (RT) is delivered for purposes of local control, but can also exert systemic effect on remote and non-irradiated tumor deposits, which is called abscopal effect. The view of RT as a simple local treatment has dramatically changed in recent years, and it is now widely accepted that RT can provoke a systemic immune response which gives a strong rationale for the combination of RT and immunotherapy (iRT). Nevertheless, several points remain to be addressed such as the interaction of RT and immune system, the identification of the best schedules for combination with immunotherapy (IO), the expansion of abscopal effect and the mechanism to amplify iRT. To answer these crucial questions, we roundly summarize underlying rationale showing the whole immune landscape in RT and clinical trials to attempt to identify the best schedules of iRT. In consideration of the rarity of abscopal effect, we propose that the occurrence of abscopal effect induced by radiation can be promoted to 100% in view of molecular and genetic level. Furthermore, the “radscopal effect” which refers to using low-dose radiation to reprogram the tumor microenvironment may amplify the occurrence of abscopal effect and overcome the resistance of iRT. Taken together, RT could be regarded as a trigger of systemic antitumor immune response, and with the help of IO can be used as a radical and systemic treatment and be added into current standard regimen of patients with metastatic cancer.
Collapse
Affiliation(s)
- Zengfu Zhang
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China
| | - Xu Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road, No. 440, Jinan, Shandong, China
| | - Dawei Chen
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology, Shandong University Cancer Center, Yantai Road, No. 2999, Jinan, Shandong, China.
| |
Collapse
|
26
|
Ma L, Ye Y, Lu H, Xing Y, Zhao Z, Quan C, Jia Z, Lu Y, Li Y, Zhou G. A Study on the Radiosensitivity of Radiation-Induced Lung Injury at the Acute Phase Based on Single-Cell Transcriptomics. Front Immunol 2022; 13:941976. [PMID: 35967301 PMCID: PMC9364823 DOI: 10.3389/fimmu.2022.941976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/22/2022] [Indexed: 11/25/2022] Open
Abstract
Background and Aims Radiation-induced lung injury (RILI) is the most common complication associated with chest tumors, such as lung and breast cancers, after radiotherapy; however, the pathogenic mechanisms are unclear. Single-cell RNA sequencing has laid the foundation for studying RILI at the cellular microenvironmental level. This study focused on changes during the acute pneumonitis stage of RILI at the cellular microenvironmental level and investigated the interactions between different cell types. Methods An acute RILI model in mice and a single-cell transcriptional library were established. Intercellular communication networks were constructed to study the heterogeneity and intercellular interactions among different cell types. Results A single-cell transcriptome map was established in a mouse model of acute lung injury. In total, 18,500 single-cell transcripts were generated, and 10 major cell types were identified. The heterogeneity and radiosensitivity of each cell type or subtype in the lung tissues during the acute stage were revealed. It was found that immune cells had higher radiosensitivity than stromal cells. Immune cells were highly heterogeneous in terms of radiosensitivity, while some immune cells had the characteristics of radiation resistance. Two groups of radiation-induced Cd8+Mki67+ T cells and Cd4+Cxcr6+ helper T cells were identified. The presence of these cells was verified using immunofluorescence. The ligand-receptor interactions were analyzed by constructing intercellular communication networks. These explained the origins of the cells and revealed that they had been recruited from endothelial cells to the inflammatory site. Conclusions This study revealed the heterogeneity of in vivo radiosensitivity of different cell types in the lung at the initial stage post irradiation
Collapse
Affiliation(s)
- Luyu Ma
- Beijing Institute of Radiation Medicine, Beijing, China
- Department of Rehabilitation Medicine, Eighth Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yumeng Ye
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Hao Lu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuan Xing
- The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Zhen Zhao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Cheng Quan
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhaoqian Jia
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yiming Lu
- Beijing Institute of Radiation Medicine, Beijing, China
- *Correspondence: Gangqiao Zhou, ; Yang Li, ; Yiming Lu,
| | - Yang Li
- Beijing Institute of Radiation Medicine, Beijing, China
- Department of Pharmacy, Academy of Life Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Gangqiao Zhou, ; Yang Li, ; Yiming Lu,
| | - Gangqiao Zhou
- Beijing Institute of Radiation Medicine, Beijing, China
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- *Correspondence: Gangqiao Zhou, ; Yang Li, ; Yiming Lu,
| |
Collapse
|
27
|
Berg J, Halvorsen AR, Bengtson MB, Lindberg M, Halvorsen B, Aukrust P, Helland Å, Ueland T. Circulating T Cell Activation and Exhaustion Markers Are Associated With Radiation Pneumonitis and Poor Survival in Non-Small-Cell Lung Cancer. Front Immunol 2022; 13:875152. [PMID: 35911763 PMCID: PMC9329944 DOI: 10.3389/fimmu.2022.875152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Persistent inflammation and immune activation in the lungs are associated with adverse outcomes such as radiation pneumonitis (RP) and poor survival in non-small-cell lung cancer (NSCLC) patients. However, it is unknown how this is reflected by leukocyte activation markers in serum. Objective The aim was to evaluate the serum levels of activation of different leukocyte subsets and to examine those in relation to the pathogenesis of RP and survival in NSCLC. Methods We analyzed the serum levels of MPO, sCD25, sTIM-3, sPD-L1, sCD14, sCD163, CCL19 and CCL21 in 66 inoperable NSCLC patients with stage IA-IIIA disease. The patients were treated with stereotactic body radiation therapy (SBRT) or concurrent chemoradiation therapy (CCRT), followed by regular blood sampling for 12 months after treatment and for 5 years for survival. Results Nineteen (29%) patients developed RP, which occurred more frequently and earlier in patients receiving CCRT than in those receiving SBRT. Increases in sCD25, sTIM-3 and CCL21 levels were observed at the last 6 months of follow-up in patients who had RP after SBRT. Patients who had RP after CCRT had higher sTIM-3 levels during the first 3 months of follow-up. Baseline sCD25 was independently associated with both 2- and 5-year mortality outcomes, while baseline sTIM-3 was independently associated with 2-year mortality. Conclusion We showed that T cell activation and exhaustion markers such as sCD25 and sTIM-3 are enhanced in patients developing RP and are associated with poor survival in NSCLC.
Collapse
Affiliation(s)
- Janna Berg
- Department of Medicine, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Clinical Medicine, University of Oslo, Oslo, Norway
- *Correspondence: Janna Berg,
| | - Ann Rita Halvorsen
- Department of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | | | - Morten Lindberg
- Department of Medical Biochemistry, Vestfold Hospital Trust, Tønsberg, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Åslaug Helland
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| |
Collapse
|
28
|
Wan X, Shi X, Li M, Chen Q, Xue C, Li G, Huang Y, Yang J, Chen C, Wang Z, Ma S, Liu X. The Protective Effects and Mechanism of Doxepin on Radiation–Induced Lung Injury in Rats. Dose Response 2022; 20:15593258221107193. [PMID: 35693872 PMCID: PMC9178985 DOI: 10.1177/15593258221107193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Radiation-induced lung injuries (RILI) is one of the serious complications of radiotherapy posed by the damage of alveolar cells and inflammation over-reaction. We aimed to investigate the potential protective effects of doxepin on RILI (20 Gy total dose at 3 Gy/min of X-ray irradiation), as well as its underlying mechanism. For animal experiments, such parameters as Immunohistochemistry and hematoxylin and eosin (H&E) staining, WBC (white blood cell), CRP (C-reactive protein), Western blot, and q-PCR were detected. The results indicated that both survival status and weight increase of irradiated rats treated by doxepin (3 mg/kg/day, rat) were higher than those of treated with irradiation alone (Dosing started the day before irradiation). Further, histological examinations showed doxepin could tenuate the radiation injury, as indicated as alveolar inflammatory exudation and there was only mild interstitial inflammation infiltration. Western blotting and q-PCR showed that expression of NF-κβ in X group were higher than that in XMD group. For the first time, we reported doxepin functioned as a radioprotectant candidate, which provide a promising application of doxepin for protecting radiotherapy injuries.
Collapse
Affiliation(s)
- Xinlong Wan
- South ZheJiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, China
- School of Public Health and Management, Wenzhou Medical University, China
| | - Xuan Shi
- Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical University, China
| | - Mengke Li
- South ZheJiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, China
- School of Public Health and Management, Wenzhou Medical University, China
| | - Qing Chen
- South ZheJiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, China
- School of Public Health and Management, Wenzhou Medical University, China
| | - Chang Xue
- South ZheJiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, China
- School of Public Health and Management, Wenzhou Medical University, China
| | - Guanghui Li
- South ZheJiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, China
- School of Public Health and Management, Wenzhou Medical University, China
| | - Yeke Huang
- The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, China
| | - Jingwen Yang
- Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical University, China
| | - Chan Chen
- Department of Geriatric Medicine, The First Affiliated Hospital of Wenzhou Medical University, China
| | - Zhiyi Wang
- Department of General Practice, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, China
| | - Shumei Ma
- South ZheJiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, China
- School of Public Health and Management, Wenzhou Medical University, China
| | - Xiaodong Liu
- South ZheJiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, China
- School of Public Health and Management, Wenzhou Medical University, China
| |
Collapse
|
29
|
Cytlak UM, Dyer DP, Honeychurch J, Williams KJ, Travis MA, Illidge TM. Immunomodulation by radiotherapy in tumour control and normal tissue toxicity. Nat Rev Immunol 2022; 22:124-138. [PMID: 34211187 DOI: 10.1038/s41577-021-00568-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
Radiotherapy (RT) is a highly effective anticancer treatment that is delivered to more than half of all patients with cancer. In addition to the well-documented direct cytotoxic effects, RT can have immunomodulatory effects on the tumour and surrounding tissues. These effects are thought to underlie the so-called abscopal responses, whereby RT generates systemic antitumour immunity outside the irradiated tumour. The full scope of these immune changes remains unclear but is likely to involve multiple components, such as immune cells, the extracellular matrix, endothelial and epithelial cells and a myriad of chemokines and cytokines, including transforming growth factor-β (TGFβ). In normal tissues exposed to RT during cancer therapy, acute immune changes may ultimately lead to chronic inflammation and RT-induced toxicity and organ dysfunction, which limits the quality of life of survivors of cancer. Here we discuss the emerging understanding of RT-induced immune effects with particular focus on the lungs and gut and the potential immune crosstalk that occurs between these tissues.
Collapse
Affiliation(s)
- Urszula M Cytlak
- Lydia Becker Institute for Immunology and Inflammation, Wellcome Centre for Cell-Matrix Research, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Douglas P Dyer
- Lydia Becker Institute for Immunology and Inflammation, Wellcome Centre for Cell-Matrix Research, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jamie Honeychurch
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kaye J Williams
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Mark A Travis
- Lydia Becker Institute for Immunology and Inflammation, Wellcome Centre for Cell-Matrix Research, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Timothy M Illidge
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
30
|
Nolan E, Bridgeman VL, Ombrato L, Karoutas A, Rabas N, Sewnath CAN, Vasquez M, Rodrigues FS, Horswell S, Faull P, Carter R, Malanchi I. Radiation exposure elicits a neutrophil-driven response in healthy lung tissue that enhances metastatic colonization. NATURE CANCER 2022; 3:173-187. [PMID: 35221334 PMCID: PMC7612918 DOI: 10.1038/s43018-022-00336-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/12/2022] [Indexed: 11/08/2022]
Abstract
Radiotherapy is one of the most effective approaches to achieve tumor control in cancer patients, although healthy tissue injury due to off-target radiation exposure can occur. In this study, we used a model of acute radiation injury to the lung, in the context of cancer metastasis, to understand the biological link between tissue damage and cancer progression. We exposed healthy mouse lung tissue to radiation before the induction of metastasis and observed a strong enhancement of cancer cell growth. We found that locally activated neutrophils were key drivers of the tumor-supportive preconditioning of the lung microenvironment, governed by enhanced regenerative Notch signaling. Importantly, these tissue perturbations endowed arriving cancer cells with an augmented stemness phenotype. By preventing neutrophil-dependent Notch activation, via blocking degranulation, we were able to significantly offset the radiation-enhanced metastases. This work highlights a pro-tumorigenic activity of neutrophils, which is likely linked to their tissue regenerative functions.
Collapse
Affiliation(s)
- Emma Nolan
- Tumour Host Interaction laboratory, The Francis Crick Institute, London, UK
| | | | - Luigi Ombrato
- Tumour Host Interaction laboratory, The Francis Crick Institute, London, UK
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Adam Karoutas
- Tumour Host Interaction laboratory, The Francis Crick Institute, London, UK
| | - Nicolas Rabas
- Tumour Host Interaction laboratory, The Francis Crick Institute, London, UK
| | | | - Marcos Vasquez
- Cancer Immunology Unit, UCL Cancer Institute, University College London, London, UK
| | | | - Stuart Horswell
- Bioinformatics & Biostatistics Unit, The Francis Crick Institute, London, UK
| | - Peter Faull
- Proteomics Unit, The Francis Crick Institute, London, UK
- Center for Biomedical Research Support Biological Mass Spectrometry Facility, The University of Texas at Austin, Austin, TX, USA
| | - Rebecca Carter
- Preclinical Radiotherapy TTP, CRUK-City of London Centre, UCL Cancer Institute, University College London, London, UK
| | - Ilaria Malanchi
- Tumour Host Interaction laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
31
|
Zinovkin DA, Lyzikova YA, Nadyrov EA, Petrenyov DR, Yuzugulen J, Pranjol MZI. Gamma-ray irradiation modulates PGRMC1 expression and the number of CD56+ and FoxP3+ cells in the tumor microenvironment of endometrial endometrioid adenocarcinoma. Radiat Oncol J 2022; 39:324-333. [PMID: 34986554 PMCID: PMC8743460 DOI: 10.3857/roj.2021.00472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/17/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose Although the conventional gamma ray brachytherapy has been successful in treating endometrioid endometrial adenocarcinoma (EC), the molecular and cellular mechanisms of this anti-tumorigenic response remain unclear. Therefore, we investigated whether gamma ray irradiation induces changes in the number of FoxP3+ T-regulatory lymphocytes (Tregs), CD56+ natural killer cells (NK), and the expression of progesterone receptor membrane component 1 (PGRMC1) in the tumor microenvironment (TME). Materials and Methods According to the inclusion criteria, 127 cases were selected and grouped into irradiation-treated (Rad+) and control (underwent surgery) groups and analyzed using immunohistochemistry. Predictive prognostic values were analyzed using Mann-Whitney U test, ROC analysis, relative risk, log-rank, Spearman rank tests and multivariate Cox’s regression. Results We observed significant differences (p < 0.001) between the radiation-treated patients and the control groups in FoxP3+ Tregs numbers, CD56+ NK cells and PGRMC1 expression. Gamma ray induced a 3.71- and 3.39-fold increase in the infiltration of FoxP3+ cells, CD56+ NK cells, respectively and 0.0034-fold change in PGRMC1 expression. Univariate and multivariate analyses revealed predictive role of the parameters. In the irradiated patients’ group, inverted correlations between clinical unfavorable outcome, FoxP3+ Tregs and CD56+ NK cells were observed. Conclusion Our results suggest an immune-modulating role, specifically by increasing immune cell infiltration, of gamma radiation in the TME which may potentially be utilized as biomarkers in prognostic values.
Collapse
Affiliation(s)
| | | | | | | | - Jale Yuzugulen
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus
| | | |
Collapse
|
32
|
Dark Side of Cancer Therapy: Cancer Treatment-Induced Cardiopulmonary Inflammation, Fibrosis, and Immune Modulation. Int J Mol Sci 2021; 22:ijms221810126. [PMID: 34576287 PMCID: PMC8465322 DOI: 10.3390/ijms221810126] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
Advancements in cancer therapy increased the cancer free survival rates and reduced the malignant related deaths. Therapeutic options for patients with thoracic cancers include surgical intervention and the application of chemotherapy with ionizing radiation. Despite these advances, cancer therapy-related cardiopulmonary dysfunction (CTRCPD) is one of the most undesirable side effects of cancer therapy and leads to limitations to cancer treatment. Chemoradiation therapy or immunotherapy promote acute and chronic cardiopulmonary damage by inducing reactive oxygen species, DNA damage, inflammation, fibrosis, deregulation of cellular immunity, cardiopulmonary failure, and non-malignant related deaths among cancer-free patients who received cancer therapy. CTRCPD is a complex entity with multiple factors involved in this pathogenesis. Although the mechanisms of cancer therapy-induced toxicities are multifactorial, damage to the cardiac and pulmonary tissue as well as subsequent fibrosis and organ failure seem to be the underlying events. The available biomarkers and treatment options are not sufficient and efficient to detect cancer therapy-induced early asymptomatic cell fate cardiopulmonary toxicity. Therefore, application of cutting-edge multi-omics technology, such us whole-exome sequencing, DNA methylation, whole-genome sequencing, metabolomics, protein mass spectrometry and single cell transcriptomics, and 10 X spatial genomics, are warranted to identify early and late toxicity, inflammation-induced carcinogenesis response biomarkers, and cancer relapse response biomarkers. In this review, we summarize the current state of knowledge on cancer therapy-induced cardiopulmonary complications and our current understanding of the pathological and molecular consequences of cancer therapy-induced cardiopulmonary fibrosis, inflammation, immune suppression, and tumor recurrence, and possible treatment options for cancer therapy-induced cardiopulmonary toxicity.
Collapse
|
33
|
Zhang X, Yang D, Jiang Y, Huang L, Wang C, Tao D, Liu X, Lei Y, Wu Y, Zhou W. Comparison of Radiation Pneumonitis in Lung Cancer Patients Treated with HT versus IMRT and Circulating Lymphocyte Subsets as Predicting Risk Factors. J Inflamm Res 2021; 14:4205-4215. [PMID: 34483676 PMCID: PMC8409515 DOI: 10.2147/jir.s328955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/10/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose We sought to compare the symptomatic radiation pneumonitis (RP) in lung cancer patients treated with helical tomotherapy (HT) versus intensity-modulated radiotherapy (IMRT), and examine the predictive value of circulating lymphocyte subsets affecting the occurrence of RP. Patients and Methods Circulating lymphocyte subsets, clinical characteristics, dosimetric parameters and pulmonary function were collected from 130 lung cancer patients treated with HT (n = 53) or IMRT (n = 77) from 2016 through 2020. Symptomatic RP was compared between groups. Binary logistic regression was used to identify predictors of RP. Results The IMRT group had larger planning target volume (319.9 vs 240.8 cc, P = 0.041); more ECOG performance status 0–1 (96.1% vs 79.2%, P = 0.002); more stage III–IV disease (94.8% vs 37.6%, P = 0.028); and more combined systemic therapy (85.7% vs 69.8%, P = 0.022). Grade ≥2 RP were comparable between IMRT and HT groups (16.9% vs 15.1%, P = 0.785). For stage III–IV disease, IMRT was associated with lower lung V10 (31.9% vs 35.8%, P = 0.047) and lower incidence of grade 5 RP (0% vs 9.1%, P = 0.018). All lymphocyte subsets reduced after radiotherapy. The decrease degree of total T cell count and CD4+ T cell count were larger after IMRT than HT (P = 0.043, P = 0.021). In univariate analysis, the smoking status, lower baseline FEV1, and higher total T cell count, higher CD8+ T cell count, lower total B cell count, lower CD4+/CD8+ ratio after radiotherapy were associated with the development of grade ≥2 RP. The higher CD8+T cell count after radiotherapy was the only risk factor associated with grade ≥2 RP in multivariable analysis (OR 1.003; 95% CI: 1.000–1.005; P = 0.044). Conclusion IMRT was associated with lower lung V10 and less grade 5 RP than HT for stage III–IV lung cancer. Higher CD8+ T cell count after radiotherapy was associated with an increased risk of RP. HT may better preserve total T cell and CD4+ T cell than IMRT.
Collapse
Affiliation(s)
- Xin Zhang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Dingyi Yang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Yong Jiang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Luo Huang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Can Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Dan Tao
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Xianfeng Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Yongyang Lei
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Yongzhong Wu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| | - Wei Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, People's Republic of China
| |
Collapse
|
34
|
Yuan T, Han X, Liu H, Zhang J, Fan S. Mouse parabiosis model promotes recovery of lymphocytes in irradiated mice. Int J Radiat Biol 2021; 97:1589-1596. [PMID: 34399659 DOI: 10.1080/09553002.2021.1969464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/13/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Total body irradiation (TBI) -induced hematopoietic system injury is mainly due to the failure of self-renewal and to the differentiation ability of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) after radiation exposure. The mouse parabiosis model is mainly used in the field of aging research to explore whether circulating factors in peripheral blood can improve the functions of aged tissues and organs. In this study, we generated a mouse model to verify whether non-irradiated peripheral circulation can improve the circulatory environment in irradiated mice and ameliorate TBI-induced hematopoietic system injury. MATERIALS AND METHODS Six- to eight-week-old male C57BL/6 mice were adjoined by a surgical operation. Four weeks later, one mouse in the pair was exposed to 8 Gy or 6 Gy X-ray, and B and T cells in the peripheral blood, bone marrow, spleen, mesenteric lymph nodes and thymus were then detected by flow cytometry. Hematopoietic stem/progenitor cells in bone marrow cells and their levels of ROS and apoptosis were also detected in this study. RESULTS The results showed decreased percentages of B and T lymphocytes in the peripheral blood, bone marrow (BM), spleen and mesenteric lymph nodes (MLNs) in the isotype irradiated mice. The proportions of CD4-positive, CD8-positive, and CD4 and CD8 double-negative cells were also increased, while the proportion of CD4 and CD8 double-positive cells in the irradiated thymus was decreased. Thus, all of the above lymphocyte injuries in the parabiosis model were improved to nearly the levels of the control. We further detected radiation-induced HSC and HPC injury; however, the reduced HSC and HPC numbers, ROS levels and apoptosis percentages were not ameliorated in the parabiotic irradiated mice. CONCLUSIONS Above all, our results showed that non-irradiated peripheral circulation can promote the recovery of TBI-induced lymphocyte injury, further indicating that the recovery of immune cells may play a very important role in the repair of TBI-induced damage.
Collapse
Affiliation(s)
- Tong Yuan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Xiaodan Han
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
- Department of Radiation Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huijun Liu
- Department of Hand and Foot Surgery, Beijing Chaoyang Emergency Medical Center, Beijing, China
| | - Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| |
Collapse
|
35
|
Cassatt DR, Gorovets A, Karimi-Shah B, Roberts R, Price PW, Satyamitra MM, Todd N, Wang SJ, Marzella L. A Trans-Agency Workshop on the Pathophysiology of Radiation-Induced Lung Injury. Radiat Res 2021; 197:415-433. [PMID: 34342637 DOI: 10.1667/rade-21-00127.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022]
Abstract
Research and development of medical countermeasures (MCMs) for radiation-induced lung injury relies on the availability of animal models with well-characterized pathophysiology, allowing effective bridging to humans. To develop useful animal models, it is important to understand the clinical condition, advantages and limitations of individual models, and how to properly apply these models to demonstrate MCM efficacy. On March 20, 2019, a meeting sponsored by the Radiation and Nuclear Countermeasures Program (RNCP) within the National Institute of Allergy and Infectious Diseases (NIAID) brought together medical, scientific and regulatory communities, including academic and industry subject matter experts, and government stakeholders from the Food and Drug Administration (FDA) and the Biomedical Advanced Research and Development Authority (BARDA), to identify critical research gaps, discuss current clinical practices for various forms of pulmonary damage, and consider available animal models for radiation-induced lung injury.
Collapse
Affiliation(s)
- David R Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), National Institutes of Health (NIH), Rockville, Maryland
| | - Alex Gorovets
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Banu Karimi-Shah
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Rosemary Roberts
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Paul W Price
- Office of Regulatory Affairs, Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), National Institutes of Health (NIH), Rockville, Maryland
| | - Nushin Todd
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Sue-Jane Wang
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Libero Marzella
- Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA), Silver Spring, Maryland
| |
Collapse
|
36
|
NMR-Based Metabolomics in Investigation of the Radiation Induced Changes in Blood Serum of Head and Neck Cancer Patients and Its Correlation with the Tissue Volumes Exposed to the Particulate Doses. Int J Mol Sci 2021; 22:ijms22126310. [PMID: 34208417 PMCID: PMC8231285 DOI: 10.3390/ijms22126310] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
In the present study, we analyze the nuclear magnetic resonance (NMR) blood serum metabolic profiles of 106 head and neck squamous cell carcinoma (HNSCC) patients during radio (RT) and concurrent radio-chemotherapy (CHRT). Four different fractionation schemes were compared. The blood samples were collected weekly, from the day before the treatment until the last week of CHRT/RT. The NMR spectra were acquired on A Bruker 400 MHz spectrometer at 310 K and analyzed using multivariate methods. Seven metabolites were found significantly to be altered solely by radiotherapy: N-acetyl-glycoprotein (NAG), N-acetylcysteine, glycerol, glycolate and the lipids at 0.9, 1.3 and 3.2 ppm. The NMR results were correlated with the tissue volumes receiving a particular dose of radiation. The influence of the irradiated volume on the metabolic profile is weak and mainly limited to sparse correlations with the inflammatory markers, creatinine and the lymphocyte count in RT and the branched-chain amino-acids in CHRT. This is probably due to the optimal planning and delivery of radiotherapy improving sparing of the surrounding normal tissues and minimizing the differences between the patients (caused by the tumor location and size).
Collapse
|
37
|
Corso CR, Mulinari Turin de Oliveira N, Maria-Ferreira D. Susceptibility to SARS-CoV-2 infection in patients undergoing chemotherapy and radiation therapy. J Infect Public Health 2021; 14:766-771. [PMID: 34022735 PMCID: PMC7980522 DOI: 10.1016/j.jiph.2021.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/22/2021] [Accepted: 03/14/2021] [Indexed: 01/08/2023] Open
Abstract
The outbreak of the new coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly become a public health emergency of international concern, especially affecting the elderly people and patients with chronic disease, such as hypertension and respiratory syndromes. Patients undergoing chemotherapy treatment (e.g., bleomycin, cyclophosphamide, methotrexate, monoclonal antibodies, and paclitaxel therapy) are vulnerable to the development of respiratory syndromes induced by chemotherapeutic agents and are also more susceptible to viral infections as they are immunosuppressed. Neutropenia is an important risk factor for increased vulnerability to infections, as a respiratory syndrome involves an array of immune cells maintaining the balance between pathogen clearance and immunopathology. However, the differential diagnosis of pulmonary symptoms in cancer patients is broad, with complications being related to the malignancy itself, treatment toxicity, and infections. The risk factors depend on the specific type of cancer, chemotherapy, patient characteristics, and comorbidities. Thus, this review discusses the main events implicated in immunosuppression caused by chemotherapy and radiation therapy and the association of immunosuppression and other factors with SARS-CoV-2 infection susceptibility in cancer patients; and, importantly, how to deal with this situation in face of the current pandemic scenario.
Collapse
Affiliation(s)
- Claudia Rita Corso
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Natalia Mulinari Turin de Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Daniele Maria-Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil.
| |
Collapse
|
38
|
Huang Y, Oldham JM, Ma SF, Unterman A, Liao SY, Barros AJ, Bonham CA, Kim JS, Vij R, Adegunsoye A, Strek ME, Molyneaux PL, Maher TM, Herazo-Maya JD, Kaminski N, Moore BB, Martinez FJ, Noth I. Blood Transcriptomics Predicts Progression of Pulmonary Fibrosis and Associated Natural Killer Cells. Am J Respir Crit Care Med 2021; 204:197-208. [PMID: 33689671 DOI: 10.1164/rccm.202008-3093oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Disease activity in idiopathic pulmonary fibrosis (IPF) remains highly variable, poorly understood, and difficult to predict. Objectives: To identify a predictor using short-term longitudinal changes in gene expression that forecasts future FVC decline and to characterize involved pathways and cell types. Methods: Seventy-four patients from COMET (Correlating Outcomes with Biochemical Markers to Estimate Time-Progression in IPF) cohort were dichotomized as progressors (≥10% FVC decline) or stable. Blood gene-expression changes within individuals were calculated between baseline and 4 months and regressed with future FVC status, allowing determination of expression variations, sample size, and statistical power. Pathway analyses were conducted to predict downstream effects and identify new targets. An FVC predictor for progression was constructed in COMET and validated using independent cohorts. Peripheral blood mononuclear single-cell RNA-sequencing data from healthy control subjects were used as references to characterize cell type compositions from bulk peripheral blood mononuclear RNA-sequencing data that were associated with FVC decline. Measurements and Main Results: The longitudinal model reduced gene-expression variations within stable and progressor groups, resulting in increased statistical power when compared with a cross-sectional model. The FVC predictor for progression anticipated patients with future FVC decline with 78% sensitivity and 86% specificity across independent IPF cohorts. Pattern recognition receptor pathways and mTOR pathways were downregulated and upregulated, respectively. Cellular deconvolution using single-cell RNA-sequencing data identified natural killer cells as significantly correlated with progression. Conclusions: Serial transcriptomic change predicts future FVC decline. An analysis of cell types involved in the progressor signature supports the novel involvement of natural killer cells in IPF progression.
Collapse
Affiliation(s)
- Yong Huang
- Division of Pulmonary and Critical Care Medicine, The University of Virginia, Charlottesville, Virginia
| | - Justin M Oldham
- Division of Pulmonary, Critical Care, and Sleep Medicine, The University of California at Davis, Sacramento, California
| | - Shwu-Fan Ma
- Division of Pulmonary and Critical Care Medicine, The University of Virginia, Charlottesville, Virginia
| | - Avraham Unterman
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Shu-Yi Liao
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Andrew J Barros
- Division of Pulmonary and Critical Care Medicine, The University of Virginia, Charlottesville, Virginia
| | - Catherine A Bonham
- Division of Pulmonary and Critical Care Medicine, The University of Virginia, Charlottesville, Virginia
| | - John S Kim
- Division of Pulmonary and Critical Care Medicine, The University of Virginia, Charlottesville, Virginia
| | - Rekha Vij
- Section of Pulmonary and Critical Care Medicine and
| | - Ayodeji Adegunsoye
- Section of Pulmonary and Critical Care Medicine and.,Department of Human Genetics, Genetics, Genomic and Systems Biology, University of Chicago, Chicago, Illinois
| | - Mary E Strek
- Section of Pulmonary and Critical Care Medicine and
| | - Philip L Molyneaux
- National Heart and Lung Institute, Imperial College, London, United Kingdom.,Royal Brompton Hospital, London, United Kingdom
| | - Toby M Maher
- National Heart and Lung Institute, Imperial College, London, United Kingdom.,Royal Brompton Hospital, London, United Kingdom.,Division of Pulmonary, Critical Care and Sleep Medicine, Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jose D Herazo-Maya
- Division of Pulmonary, Critical Care, and Sleep Medicine, Tampa General Hospital, University of South Florida, Tampa, Florida
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan; and
| | - Fernando J Martinez
- Internal Medicine, Weill Cornell Medical College, Cornell University, New York, New York
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, The University of Virginia, Charlottesville, Virginia
| |
Collapse
|
39
|
Tubin S, Khan MK, Gupta S, Jeremic B. Biology of NSCLC: Interplay between Cancer Cells, Radiation and Tumor Immune Microenvironment. Cancers (Basel) 2021; 13:775. [PMID: 33673332 PMCID: PMC7918834 DOI: 10.3390/cancers13040775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
The overall prognosis and survival of non-small cell lung cancer (NSCLC) patients remain poor. The immune system plays an integral role in driving tumor control, tumor progression, and overall survival of NSCLC patients. While the tumor cells possess many ways to escape the immune system, conventional radiotherapy (RT) approaches, which are directly cytotoxic to tumors, can further add additional immune suppression to the tumor microenvironment by destroying many of the lymphocytes that circulate within the irradiated tumor environment. Thus, the current immunogenic balance, determined by the tumor- and radiation-inhibitory effects is significantly shifted towards immunosuppression, leading to poor clinical outcomes. However, newer emerging evidence suggests that tumor immunosuppression is an "elastic process" that can be manipulated and converted back into an immunostimulant environment that can actually improve patient outcome. In this review we will discuss the natural immunosuppressive effects of NSCLC cells and conventional RT approaches, and then shift the focus on immunomodulation through novel, emerging immuno- and RT approaches that promise to generate immunostimulatory effects to enhance tumor control and patient outcome. We further describe some of the mechanisms by which these newer approaches are thought to be working and set the stage for future trials and additional preclinical work.
Collapse
Affiliation(s)
- Slavisa Tubin
- MedAustron Ion Therapy Center, Marie Curie-Straße 5, 2700 Wiener Neustadt, Austria
| | - Mohammad K. Khan
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA 30322, USA;
| | - Seema Gupta
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - Branislav Jeremic
- Research Institute of Clinical Medicine, 13 Tevdore Mgdveli, Tbilisi 0112, Georgia;
| |
Collapse
|
40
|
Mechanisms of radiation-induced endothelium damage: Emerging models and technologies. Radiother Oncol 2021; 158:21-32. [PMID: 33581220 DOI: 10.1016/j.radonc.2021.02.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/24/2022]
Abstract
Radiation-induced endothelial/vascular injury is a major complicating factor in radiotherapy and a leading cause of morbidity and mortality in nuclear or radiological catastrophes. Exposure of tissue to ionizing radiation (IR) leads to the release of oxygen radicals and proteases that result in loss of endothelial barrier function and leukocyte dysfunction leading to tissue injury and organ damage. Microvascular endothelial cells are particularly sensitive to IR and radiation-induced alterations in endothelial cell function are thought to be a critical factor in organ damage through endothelial cell activation, enhanced leukocyte-endothelial cell interactions, increased barrier permeability and initiation of apoptotic pathways. These radiation-induced inflammatory responses are important in early and late radiation pathologies in various organs. A better understanding of mechanisms of radiation-induced endothelium dysfunction is therefore vital, as radiobiological response of endothelium is of major importance for medical management and therapeutic development for radiation injuries. In this review, we summarize the current knowledge of cellular and molecular mechanisms of radiation-induced endothelium damage and their impact on early and late radiation injury. Furthermore, we review established and emerging in vivo and in vitro models that have been developed to study the mechanisms of radiation-induced endothelium damage and to design, develop and rapidly screen therapeutics for treatment of radiation-induced vascular damage. Currently there are no specific therapeutics available to protect against radiation-induced loss of endothelial barrier function, leukocyte dysfunction and resulting organ damage. Developing therapeutics to prevent endothelium dysfunction and normal tissue damage during radiotherapy can serve as the urgently needed medical countermeasures.
Collapse
|
41
|
Croasdell Lucchini A, Gachanja NN, Rossi AG, Dorward DA, Lucas CD. Epithelial Cells and Inflammation in Pulmonary Wound Repair. Cells 2021; 10:339. [PMID: 33562816 PMCID: PMC7914803 DOI: 10.3390/cells10020339] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/15/2021] [Accepted: 01/30/2021] [Indexed: 12/15/2022] Open
Abstract
Respiratory diseases are frequently characterised by epithelial injury, airway inflammation, defective tissue repair, and airway remodelling. This may occur in a subacute or chronic context, such as asthma and chronic obstructive pulmonary disease, or occur acutely as in pathogen challenge and acute respiratory distress syndrome (ARDS). Despite the frequent challenge of lung homeostasis, not all pulmonary insults lead to disease. Traditionally thought of as a quiescent organ, emerging evidence highlights that the lung has significant capacity to respond to injury by repairing and replacing damaged cells. This occurs with the appropriate and timely resolution of inflammation and concurrent initiation of tissue repair programmes. Airway epithelial cells are key effectors in lung homeostasis and host defence; continual exposure to pathogens, toxins, and particulate matter challenge homeostasis, requiring robust defence and repair mechanisms. As such, the epithelium is critically involved in the return to homeostasis, orchestrating the resolution of inflammation and initiating tissue repair. This review examines the pivotal role of pulmonary airway epithelial cells in initiating and moderating tissue repair and restitution. We discuss emerging evidence of the interactions between airway epithelial cells and candidate stem or progenitor cells to initiate tissue repair as well as with cells of the innate and adaptive immune systems in driving successful tissue regeneration. Understanding the mechanisms of intercellular communication is rapidly increasing, and a major focus of this review includes the various mediators involved, including growth factors, extracellular vesicles, soluble lipid mediators, cytokines, and chemokines. Understanding these areas will ultimately identify potential cells, mediators, and interactions for therapeutic targeting.
Collapse
Affiliation(s)
| | | | | | | | - Christopher D. Lucas
- University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, Edinburgh Bioquarter, Edinburgh EH16 4TJ, UK; (A.C.L.); (N.N.G.); (A.G.R.); (D.A.D.)
| |
Collapse
|
42
|
Jarzebska N, Karetnikova ES, Markov AG, Kasper M, Rodionov RN, Spieth PM. Scarred Lung. An Update on Radiation-Induced Pulmonary Fibrosis. Front Med (Lausanne) 2021; 7:585756. [PMID: 33521012 PMCID: PMC7843914 DOI: 10.3389/fmed.2020.585756] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Radiation-induced pulmonary fibrosis is a common severe long-time complication of radiation therapy for tumors of the thorax. Current therapeutic options used in the clinic include only supportive managements strategies, such as anti-inflammatory treatment using steroids, their efficacy, however, is far from being satisfactory. Recent studies have demonstrated that the development of lung fibrosis is a dynamic and complex process, involving the release of reactive oxygen species, activation of Toll-like receptors, recruitment of inflammatory cells, excessive production of nitric oxide and production of collagen by activated myofibroblasts. In this review we summarized the current state of knowledge on the pathophysiological processes leading to the development of lung fibrosis and we also discussed the possible treatment options.
Collapse
Affiliation(s)
- Natalia Jarzebska
- Department of Anesthesiology and Critical Care Medicine, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | | | - Alexander G. Markov
- Department of General Physiology, Saint-Petersburg State University, Saint Petersburg, Russia
| | - Michael Kasper
- Institute of Anatomy, Technische Universität Dresden, Dresden, Germany
| | - Roman N. Rodionov
- Division of Angiology, Department of Internal Medicine III, University Center for Vascular Medicine, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | - Peter M. Spieth
- Department of Anesthesiology and Critical Care Medicine, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
43
|
Tubin S, Gupta S, Grusch M, Popper HH, Brcic L, Ashdown ML, Khleif SN, Peter-Vörösmarty B, Hyden M, Negrini S, Fossati P, Hug E. Shifting the Immune-Suppressive to Predominant Immune-Stimulatory Radiation Effects by SBRT-PArtial Tumor Irradiation Targeting HYpoxic Segment (SBRT-PATHY). Cancers (Basel) 2020; 13:cancers13010050. [PMID: 33375357 PMCID: PMC7795882 DOI: 10.3390/cancers13010050] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary This review presents and summarizes the key components and outcomes of a novel, unconventional radiation approach aimed to exploit immune-stimulatory radiation effects which, being added to direct radiation tumor cell killing, may improve the therapeutic ratio of radiotherapy. This technique, as a product of translational oncology research, was intentionally developed for the induction of immune-mediated bystander and abscopal effects in the treatment of unresectable bulky tumors which have much fewer therapeutic options and show poor prognoses after conventional treatments. This review offers insights into a unique unconventional radiotherapy technique which, due to its higher immunogenic potential, may improve the prognosis of patients affected by highly complex malignancies, providing additional opportunities for future research in terms of combining novel immuno-modulating agents with more modern radiotherapy approaches. Abstract Radiation-induced immune-mediated abscopal effects (AE) of conventional radiotherapy are very rare. Whole-tumor irradiation leads to lymphopenia due to killing of immune cells in the tumor microenvironment, resulting in immunosuppression and weak abscopal potential. This limitation may be overcome by partial tumor irradiation sparing the peritumoral immune-environment, and consequent shifting of immune-suppressive to immune-stimulatory effect. This would improve the radiation-directed tumor cell killing, adding to it a component of immune-mediated killing. Our preclinical findings showed that the high-single-dose irradiation of hypoxic tumor cells generates a stronger bystander effect (BE) and AE than the normoxic cells, suggesting their higher “immunogenic potential”. This led to the development of a novel Stereotactic Body RadioTherapy (SBRT)-based PArtial Tumor irradiation targeting HYpoxic segment (SBRT-PATHY) for induction of the immune-mediated BE and AE. Encouraging SBRT-PATHY-clinical outcomes, together with immunohistochemical and gene-expression analyses of surgically removed abscopal-tumor sites, suggested that delivery of the high-dose radiation to the partial (hypoxic) tumor volume, with optimal timing based on the homeostatic fluctuation of the immune response and sparing the peritumoral immune-environment, would significantly enhance the immune-mediated anti-tumor effects. This review discusses the current evidence on the safety and efficacy of SBRT-PATHY in the treatment of unresectable hypoxic bulky tumors and its bystander and abscopal immunomodulatory potential.
Collapse
Affiliation(s)
- Slavisa Tubin
- MedAustron Ion Therapy Center, Marie Curie-Straße 5, 2700 Wiener Neustadt, Austria; (P.F.); (E.H.)
- Correspondence: ; Tel.: +43-676-9021-687
| | - Seema Gupta
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (S.G.); (S.N.K.)
| | - Michael Grusch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (M.G.); (B.P.-V.)
| | - Helmuth H. Popper
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (H.H.P.); (L.B.)
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (H.H.P.); (L.B.)
| | - Martin L. Ashdown
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne 3010, Australia;
| | - Samir N. Khleif
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA; (S.G.); (S.N.K.)
| | - Barbara Peter-Vörösmarty
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (M.G.); (B.P.-V.)
| | - Martin Hyden
- Institute for Pathology, Kabeg Klinikum Klagenfurt, 9020 Klagenfurt am Wörthersee, Austria;
| | - Simone Negrini
- Internal Medicine, Clinical Immunology and Translational Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Piero Fossati
- MedAustron Ion Therapy Center, Marie Curie-Straße 5, 2700 Wiener Neustadt, Austria; (P.F.); (E.H.)
| | - Eugen Hug
- MedAustron Ion Therapy Center, Marie Curie-Straße 5, 2700 Wiener Neustadt, Austria; (P.F.); (E.H.)
| |
Collapse
|
44
|
Radiation-Induced Salivary Gland Dysfunction: Mechanisms, Therapeutics and Future Directions. J Clin Med 2020; 9:jcm9124095. [PMID: 33353023 PMCID: PMC7767137 DOI: 10.3390/jcm9124095] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
Salivary glands sustain collateral damage following radiotherapy (RT) to treat cancers of the head and neck, leading to complications, including mucositis, xerostomia and hyposalivation. Despite salivary gland-sparing techniques and modified dosing strategies, long-term hypofunction remains a significant problem. Current therapeutic interventions provide temporary symptom relief, but do not address irreversible glandular damage. In this review, we summarize the current understanding of mechanisms involved in RT-induced hyposalivation and provide a framework for future mechanistic studies. One glaring gap in published studies investigating RT-induced mechanisms of salivary gland dysfunction concerns the effect of irradiation on adjacent non-irradiated tissue via paracrine, autocrine and direct cell-cell interactions, coined the bystander effect in other models of RT-induced damage. We hypothesize that purinergic receptor signaling involving P2 nucleotide receptors may play a key role in mediating the bystander effect. We also discuss promising new therapeutic approaches to prevent salivary gland damage due to RT.
Collapse
|
45
|
Guo T, Zou L, Ni J, Chu X, Zhu Z. Radiotherapy for unresectable locally advanced non-small cell lung cancer: a narrative review of the current landscape and future prospects in the era of immunotherapy. Transl Lung Cancer Res 2020; 9:2097-2112. [PMID: 33209629 PMCID: PMC7653144 DOI: 10.21037/tlcr-20-511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significant recent advances have occurred in the use of radiation therapy for locally advanced non-small cell lung cancer (LA-NSCLC). In fact, the past few decades have seen both therapeutic gains and setbacks in the evolution of radiotherapy for LA-NSCLC. The PACIFIC trial has heralded a new era of immunotherapy and has raised important questions for future study, such as the future directions of radiation therapy for LA-NSCLC in the era of immunotherapy. Modern radiotherapy techniques such as three-dimensional (3D) conformal radiotherapy and intensity-modulated radiotherapy (IMRT) provide opportunities for improved target conformity and reduced normal-tissue exposure. However, the low-dose radiation volume brought by IMRT and its effects on the immune system deserve particular attention when combing radiotherapy and immunotherapy. Particle radiotherapy offers dosimetric advantages and exhibits great immunoregulatory potential. With the ongoing improvement in particle radiotherapy techniques and knowledge, the combination of immunotherapy and particle radiotherapy has tremendous potential to improve treatment outcomes. Of particular importance are questions on the optimal radiation schedule in the settings of radio-immunotherapy. Strategies for the reduction of the irradiated field such as involved-field irradiation (IFI) and omission of clinical target volume (CTV) hold promise for better preservation of immune function while not compromising locoregional and distant control. In addition, different dose-fractionation regimens can have diverse effects on the immune system. Thus, prospective trials are urgently needed to establish the optimal dose fractionation regimen. Moreover, personalized radiotherapy which allows the tailoring of radiation dose to each individual's genetic background and immune state is of critical importance in maximizing the benefit of radiation to patients with LA-NSCLC.
Collapse
Affiliation(s)
- Tiantian Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College
| | - Liqing Zou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College
| | - Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College
| | - Xiao Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College.,Institute of Thoracic Oncology, Fudan University, Shanghai, China
| |
Collapse
|
46
|
The Association between Neutrophil-to-Lymphocyte Ratio and Diabetic Depression in U.S. Adults with Diabetes: Findings from the 2009-2016 National Health and Nutrition Examination Survey (NHANES). BIOMED RESEARCH INTERNATIONAL 2020; 2020:8297628. [PMID: 33102595 PMCID: PMC7576362 DOI: 10.1155/2020/8297628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/18/2020] [Indexed: 12/15/2022]
Abstract
Objective To determine the association between neutrophil-to-lymphocyte ratio (NLR) and clinically relevant depressive symptoms in people with diabetes. Methods This cross-sectional study was conducted among adults (age >18) with diabetes in the National Health and Nutrition Examination Survey (NHANES) between 2009 and 2016. NLR was calculated from complete blood count. Nine-item Patient Health Questionnaire (PHQ-9) was used to measure depression, with scores ≥10 indicating the presence of clinically relevant symptoms. Multivariable logistic regression was used to calculate the odds ratio (OR) with 95% confidence interval (CI) of clinically relevant depressive symptoms in relation to the NLR. We performed the smooth curve fitting and established a weighted generalized additive model to identify the nonlinearity of NLR and depression in diabetes patients. To account for the nonlinear relationship between NLR and depression in diabetes patients, weighted two-piecewise linear model was applied. Results We included 2,820 eligible participants, of which 371 (12.4%) had clinically relevant depressive symptoms. In the unadjusted model, the OR (95% CI) of clinically relevant depressive symptoms for the second (NLR 1.75-2.57) and third (NLR >2.57) were 1.24 (0.90, 1.70) and 1.68 (1.23, 2.30), respectively, compared to the reference group (NLR < 1.75). After controlling for potential confounding factors, NLR was significantly associated with clinically relevant symptoms (odds ratio = 1.57, 95% confidence interval: 1.13–1.87; P for trend = .0078). Nonlinear relationships were observed, and a two-piecewise linear regression model was established. The inflection point of NLR was 2.87. To the left of the inflection point (NLR ≤ 2.87), the OR (95% CIs) was 1.33 (1.07–1.66) (P < .031). Conclusions Elevated levels of NLR are independently associated with increased odds of clinically relevant depressive symptoms in people with diabetes. Prospective study is needed to further analyze the role of NLR in depression in diabetic patients.
Collapse
|
47
|
Käsmann L, Dietrich A, Staab-Weijnitz CA, Manapov F, Behr J, Rimner A, Jeremic B, Senan S, De Ruysscher D, Lauber K, Belka C. Radiation-induced lung toxicity - cellular and molecular mechanisms of pathogenesis, management, and literature review. Radiat Oncol 2020; 15:214. [PMID: 32912295 PMCID: PMC7488099 DOI: 10.1186/s13014-020-01654-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
Lung, breast, and esophageal cancer represent three common malignancies with high incidence and mortality worldwide. The management of these tumors critically relies on radiotherapy as a major part of multi-modality care, and treatment-related toxicities, such as radiation-induced pneumonitis and/or lung fibrosis, are important dose limiting factors with direct impact on patient outcomes and quality of life. In this review, we summarize the current understanding of radiation-induced pneumonitis and pulmonary fibrosis, present predictive factors as well as recent diagnostic and therapeutic advances. Novel candidates for molecularly targeted approaches to prevent and/or treat radiation-induced pneumonitis and pulmonary fibrosis are discussed.
Collapse
Affiliation(s)
- Lukas Käsmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany.
- German Center for Lung Research (DZL), partner site Munich, Munich, Germany.
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany.
| | - Alexander Dietrich
- Walther Straub Institute of Pharmacology and Toxicology, Member of the German Center for Lung Research (DZL), Medical Faculty, LMU-Munich, Munich, Germany
| | - Claudia A Staab-Weijnitz
- German Center for Lung Research (DZL), partner site Munich, Munich, Germany
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany
| | - Farkhad Manapov
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- German Center for Lung Research (DZL), partner site Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Jürgen Behr
- German Center for Lung Research (DZL), partner site Munich, Munich, Germany
- Department of Internal Medicine V, LMU Munich, Munich, Germany
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, USA
| | | | - Suresh Senan
- Department of Radiation Oncology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- German Center for Lung Research (DZL), partner site Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| |
Collapse
|
48
|
Hanson KM, Hernady EB, Reed CK, Johnston CJ, Groves AM, Finkelstein JN. Apoptosis Resistance in Fibroblasts Precedes Progressive Scarring in Pulmonary Fibrosis and Is Partially Mediated by Toll-Like Receptor 4 Activation. Toxicol Sci 2020; 170:489-498. [PMID: 31020321 DOI: 10.1093/toxsci/kfz103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inhalation of environmental toxicants such as cigarette smoke, metal or wood dust, silica, or asbestos is associated with increased risk for idiopathic pulmonary fibrosis (IPF). IPF involves progressive scarring of lung tissue, which interferes with normal respiration and is ultimately fatal; however, the complex cellular mechanisms of IPF pathogenesis remain unclear. Fibroblast apoptosis is essential in normal wound healing but is dysregulated in IPF. Recent studies suggest that Toll-like receptor 4 (TLR4) is key in the onset of IPF. Here, radiation-induced PF was used as a model for IPF because it very closely mimics the progressive and intractable nature of IPF. Female C57BL/6J (C57) and C57BL/6J TLR4-/- mice were exposed to a single dose of 13 Gy whole-thorax ionizing radiation. Although both strains showed similar levels of immediate radiation-induced damage, C57 mice exhibited more extensive fibrosis at 22-week postirradiation (PI) than TLR4-/- mice. Isolated C57 primary 1° MLFs showed decreased apoptosis susceptibility as early as 8-week postirradiation, a phenotype that persisted for the remainder of the radiation response. TLR4-/- 1° mouse lung fibroblasts did not exhibit significant apoptosis resistance at any point. Systemic release of high mobility group box 1, a TLR4 agonist, during the pneumonitis phase of the radiation response may act through TLR4 to contribute to fibroblast apoptosis resistance and thus interfere with wound resolution. These findings demonstrate that apoptosis resistance occurs earlier in pulmonary fibrosis pathogenesis than previously assumed, and that TLR4 signaling is a key mediator in this process.
Collapse
Affiliation(s)
| | | | - Christina K Reed
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, Rochester, New York 14642
| | - Carl J Johnston
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, Rochester, New York 14642
| | - Angela M Groves
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, Rochester, New York 14642
| | - Jacob N Finkelstein
- Department of Environmental Medicine.,Department of Radiation Oncology.,Department of Pediatrics and Neonatology, University of Rochester Medical Center, Rochester, New York 14642
| |
Collapse
|
49
|
Lierova A, Kasparova J, Pejchal J, Kubelkova K, Jelicova M, Palarcik J, Korecka L, Bilkova Z, Sinkorova Z. Attenuation of Radiation-Induced Lung Injury by Hyaluronic Acid Nanoparticles. Front Pharmacol 2020; 11:1199. [PMID: 32903478 PMCID: PMC7435052 DOI: 10.3389/fphar.2020.01199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Therapeutic thorax irradiation as an intervention in lung cancer has its limitations due to toxic effects leading to pneumonitis and/or pulmonary fibrosis. It has already been confirmed that hyaluronic acid (HA), an extracellular matrix glycosaminoglycan, is involved in inflammation disorders and wound healing in lung tissue. We examined the effects after gamma irradiation of hyaluronic acid nanoparticles (HANPs) applied into lung prior to that irradiation in a dose causing radiation-induced pulmonary injuries (RIPI). Materials and Methods Biocompatible HANPs were first used for viability assay conducted on the J774.2 cell line. For in vivo experiments, HANPs were administered intratracheally to C57Bl/6 mice 30 min before thoracic irradiation by 17 Gy. Molecular, cellular, and histopathological parameters were measured in lung and peripheral blood at days 113, 155, and 190, corresponding to periods of significant morphological and/or biochemical alterations of RIPI. Results Modification of linear hyaluronic acid molecule into nanoparticles structure significantly affected the physiological properties and caused long-term stability against ionizing radiation. The HANPs treatments had significant effects on the expression of the cytokines and particularly on the pro-fibrotic signaling pathway in the lung tissue. The radiation fibrosis phase was altered significantly in comparison with a solely irradiated group. Conclusions The present study provides evidence that application of HANPs caused significant changes in molecular and cellular patterns associated with RIPI. These findings suggest that HANPs could diminish detrimental radiation-induced processes in lung tissue, thereby potentially decreasing the extracellular matrix degradation leading to lung fibrosis.
Collapse
Affiliation(s)
- Anna Lierova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Jitka Kasparova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technologies, University of Pardubice, Pardubice, Czechia
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Klara Kubelkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Marcela Jelicova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| | - Jiri Palarcik
- Institute of Environmental and Chemical Engineering, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czechia
| | - Lucie Korecka
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technologies, University of Pardubice, Pardubice, Czechia
| | - Zuzana Bilkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technologies, University of Pardubice, Pardubice, Czechia
| | - Zuzana Sinkorova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
50
|
Guo T, Zou L, Ni J, Zhou Y, Ye L, Yang X, Zhu Z. Regulatory T Cells: An Emerging Player in Radiation-Induced Lung Injury. Front Immunol 2020; 11:1769. [PMID: 32849634 PMCID: PMC7417370 DOI: 10.3389/fimmu.2020.01769] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/01/2020] [Indexed: 12/25/2022] Open
Abstract
Regulatory T cells (Tregs), which have long been recognized as essential regulators of both inflammation and autoimmunity, also impede effective antitumor immune response due to their immunosuppressive properties. Combined radiotherapy and immunotherapeutic interventions focusing on the removal of Tregs have recently garnered interest as a promising strategy to reverse immunosuppression. Meanwhile, Tregs are emerging as a key player in the pathogenesis of radiation-induced lung injury (RILI), a frequent and potentially life-threatening complication of thoracic radiotherapy. Recognition of the critical role of Tregs in RILI raises the important question of whether radiotherapy combined with Treg-targeting immunotherapy offers any beneficial effects in the protection of normal lung tissue. This present review focuses on the contributions of Tregs to RILI, with particular emphasis on the suspected differential role of Tregs in the pneumonitic phase and fibrotic phase of RILI. We also introduce recent progress on the potential mechanisms by which Tregs modulate RILI and the crosstalk among Tregs, other infiltrating T cells, fibrocytes, and resident epithelial cells driving disease pathogenesis. Finally, we discuss whether Tregs also hold promise as a potential target for immunotherapeutic interventions for RILI.
Collapse
Affiliation(s)
- Tiantian Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liqing Zou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yue Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Luxi Ye
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|