1
|
Askari F, Kaur R. Candida glabrata: A Tale of Stealth and Endurance. ACS Infect Dis 2025; 11:4-20. [PMID: 39668745 DOI: 10.1021/acsinfecdis.4c00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Candida (Nakaseomyces) glabrata, an opportunistic human fungal pathogen, causes mucosal and deep-seated infections in immunocompromised individuals. Recently designated as a high-priority fungal pathogen by the World Health Organization (WHO), C. glabrata exhibits low inherent susceptibility to azole antifungals. In addition, about 10% clinical isolates of C. glabrata display co-resistance to both azole and echinocandin drugs. Molecular mechanisms of antifungal resistance and virulence in C. glabrata are currently being delineated in-depth. This Review provides an overview of the epidemiology, biology, drug resistance, tools and host model systems for C. glabrata. Additionally, we discuss the immune evasion strategies that aid C. glabrata in establishing infections in the host. Overall, this Review aims to contribute to ongoing efforts to raise awareness of human pathogenic fungi, the growing threat of antifungal drug resistance and the unmet need for novel antifungal therapies, with an ultimate goal of improving clinical outcomes of affected individuals.
Collapse
Affiliation(s)
- Fizza Askari
- BRIC-Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad 500039, India
| | - Rupinder Kaur
- BRIC-Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad 500039, India
| |
Collapse
|
2
|
Raposa J, Vazquez JA. New pharmacotherapeutic strategies for drug-resistant Candida infections: a review. Expert Opin Pharmacother 2025:1-11. [PMID: 39587055 DOI: 10.1080/14656566.2024.2433605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
INTRODUCTION Candida species produce a wide array of infections ranging from mucocutaneous to systemic infections. Candida albicans remains the most common species identified; however, the non-albicans Candida species have continued to increase as the diagnosis and therapeutic regimens have progressed. AREAS COVERED This review with discussion of the various Candida species, especially the non-albicans species, some of the important mechanisms of resistance, and newer in vitro and clinical studies describing the recent and novel antifungal options such as rezafungin, ibrexafungerp, and oteseconazole, along with a novel antifungal, fosmanogepix. EXPERT OPINION Initial antifungal therapy is frequently obsolete due to the expansion of antifungal resistance. This is especially true with C. glabrata, C. krusei, and most recently with C. auris. The newer and novel antifungals discussed here will add valuable tools to our antifungal armamentarium to be able to appropriately and adequately treat and manage these difficult infections. Each of the antifungals has unique and novel properties that will expand the arsenal useful to treat these fungal infections in the years to come.
Collapse
Affiliation(s)
- Jesse Raposa
- Division of Infectious Disease, Department of Medicine, Medical College of Georgia/Augusta University, Augusta, GA, USA
| | - Jose A Vazquez
- Division of Infectious Disease, Department of Medicine, Medical College of Georgia/Augusta University, Augusta, GA, USA
| |
Collapse
|
3
|
Huang LZY, Penman R, Kariuki R, Vaillant PHA, Gharehgozlo S, Shaw ZL, Truong VK, Vongsvivut J, Elbourne A, Caruso RA. Graveyard effects of antimicrobial nanostructured titanium over prolonged exposure to drug resistant bacteria and fungi. NANOSCALE 2024. [PMID: 39713977 DOI: 10.1039/d4nr03238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Innovations in nanostructured surfaces have found a practical place in the medical area with use in implant materials for post-operative infection prevention. These textured surfaces should be dual purpose: (1) bactericidal on contact and (2) resistant to biofilm formation over prolonged periods. Here, hydrothermally etched titanium surfaces were tested against two highly antimicrobial resistant microbial species, methicillin-resistant Staphylococcus aureus and Candida albicans. Two surface types - unmodified titanium and nanostructured titanium - were incubated in a suspension of each microbial strain for 1 day and 7 days. Surface topography and cross-sectional information of the microbial cells adhered to the surfaces, along with biomass volume and live/dead rate, showed that while nanostructured titanium was able to kill microbes after 1 day of exposure, after 7 days, the rate of death becomes negligible when compared to the unmodified titanium. This suggests that as biofilms mature on a nanostructured surface, the cells that have lysed conceal the nanostructures and prime the surface for planktonic cells to adhere, decreasing the possibility of structure-induced lysis. Synchrotron macro-attenuated total reflection Fourier transform infrared (macro ATR-FTIR) micro-spectroscopy was used to elucidate the biochemical changes occurring following exposure to differing surface texture and incubation duration, providing further understanding into the effects of surface morphology on the biochemical molecules (lipids, proteins and polysaccharides) in an evolving and growing microbial colony.
Collapse
Affiliation(s)
- Louisa Z Y Huang
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Rowan Penman
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Rashad Kariuki
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Pierre H A Vaillant
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Soroosh Gharehgozlo
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Z L Shaw
- School of Engineering, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Vi Khanh Truong
- Healthcare Engineering Innovation Group, Department of Biomedical Engineering & Biotechnology, College of Medicine and Health Science, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO - Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Aaron Elbourne
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Rachel A Caruso
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
4
|
Buonanno A, Salvatore MM, Feola A, Siciliano A, Bellavita R, Imbò LE, Guida M, Andolfi A, Nicoletti R, Maione A, Falanga A, Galdiero E. Sphaeropsidin A Loaded in Liposomes to Reduce Its Cytotoxicity and Preserve Antifungal Activity Against Candida auris. Molecules 2024; 29:5949. [PMID: 39770037 PMCID: PMC11678014 DOI: 10.3390/molecules29245949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Candida species constitute the most common cause of fungal infections in humans; the emergence of resistance and biofilm formation by Candida species further threaten the limited availability of antifungal agents. Over the past decade, C. auris has caused significant outbreaks worldwide and has emerged as a human pathogenic fungus that causes diseases ranging from superficial to life-threatening disseminated infections. Despite the recent advances in antifungal research, the mechanisms of drug resistance in C. auris remain poorly understood even as its ability to form biofilms poses a significant therapeutic challenge. The purpose of this research was to elucidate the fungal properties of Sphaeropsidin A (SphA), a secondary metabolite derived from Diplodia fungi, with a specific focus on its efficacy against C. auris. This study revealed that SphA and its liposomal encapsulated (SphA-L) form are fungistatic with time-kill kinetics highlighting their efficacy and significantly inhibited the formation of C. auris biofilms. Our investigation into the antifungal mechanism of this drug revealed notable alterations in ROS production and the disruption of the Candida cell cycle. Our findings show that SphA-L impairs key pathogenic traits of C. auris, such as its ability to adhere to human epithelial cell lines, while exhibiting no harmful effects on human cells, highlighting its potential as a future therapeutic agent. In Caenorhabditis elegans infection models, both ShpA and SphA-L displayed effective antifungal activity, significantly reducing the C. auris fungal load and improving nematode survival rates, underscoring their promise as antifungal candidates. Overall, the potent antifungal effects of SphA and SphA-L against C. auris encourage further research.
Collapse
Affiliation(s)
- Annalisa Buonanno
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (A.B.); (M.M.S.); (A.F.); (A.S.); (M.G.); (E.G.)
| | - Maria Michela Salvatore
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (A.B.); (M.M.S.); (A.F.); (A.S.); (M.G.); (E.G.)
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
| | - Antonia Feola
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (A.B.); (M.M.S.); (A.F.); (A.S.); (M.G.); (E.G.)
| | - Antonietta Siciliano
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (A.B.); (M.M.S.); (A.F.); (A.S.); (M.G.); (E.G.)
| | - Rosa Bellavita
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
| | - Lorenzo Emiliano Imbò
- Department of Agricultural Science, University of Naples Federico II, Via Università 100, 80055 Portici, Italy;
- CIRPeB, Research Centre on Bioactive Peptides “Carlo Pedone”, University of Naples Federico II, 80134 Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (A.B.); (M.M.S.); (A.F.); (A.S.); (M.G.); (E.G.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy;
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Center for Olive, Fruit, and Citrus Crops, 81100 Caserta, Italy;
| | - Angela Maione
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (A.B.); (M.M.S.); (A.F.); (A.S.); (M.G.); (E.G.)
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples Federico II, Via Università 100, 80055 Portici, Italy;
- CIRPeB, Research Centre on Bioactive Peptides “Carlo Pedone”, University of Naples Federico II, 80134 Naples, Italy
| | - Emilia Galdiero
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (A.B.); (M.M.S.); (A.F.); (A.S.); (M.G.); (E.G.)
| |
Collapse
|
5
|
Pang LM, Zeng G, Chow EWL, Xu X, Li N, Kok YJ, Chong SC, Bi X, Gao J, Seneviratne CJ, Wang Y. Sdd3 regulates the biofilm formation of Candida albicans via the Rho1-PKC-MAPK pathway. mBio 2024:e0328324. [PMID: 39688394 DOI: 10.1128/mbio.03283-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Candida albicans, the most frequently isolated fungal pathogen in humans, forms biofilms that enhance resistance to antifungal drugs and host immunity, leading to frequent treatment failure. Understanding the molecular mechanisms governing biofilm formation is crucial for developing anti-biofilm therapies. In this study, we conducted a genetic screen to identify novel genes that regulate biofilm formation in C. albicans. One identified gene is ORF19.6693, a homolog of the Saccharomyces cerevisiae SDD3 gene. The sdd3∆/∆ mutant exhibited severe defects in biofilm formation and significantly reduced chitin content in the cell wall. Overexpression of the constitutively active version of the Rho1 GTPase Rho1G18V, an upstream activator of the protein kinase C (PKC)-mitogen-activated protein kinase (MAPK) cell-wall integrity pathway, rescued these defects. Affinity purification, mass spectrometry, and co-immunoprecipitation revealed Sdd3's physical interaction with Bem2, the GTPase-activating protein of Rho1. Deletion of SDD3 significantly reduced the amount of the active GTP-bound form of Rho1, thereby diminishing PKC-MAPK signaling and downregulating chitin synthase genes CHS2 and CHS8. Taken together, our studies identify a new biofilm regulator, Sdd3, in C. albicans that modulates Rho1 activity through its inhibitory interaction with Bem2, thereby regulating the PKC-MAPK pathway to control chitin biosynthesis, which is critical for biofilm formation. As an upstream component of the pathway and lacking a homolog in mammals, Sdd3 has the potential to serve as an antifungal target for biofilm infections.IMPORTANCEThe human fungal pathogen Candida albicans is categorized as a critical priority pathogen on the World Health Organization's Fungal Priority Pathogens List. A key virulence attribute of this pathogen is its ability to form biofilms on the surfaces of indwelling medical devices. Fungal cells in biofilms are highly resistant to antifungal drugs and host immunity, leading to treatment failure. This study conducted a genetic screen to discover novel genes that regulate biofilm formation. We found that deletion of the SDD3 gene caused severe biofilm defects. Sdd3 negatively regulates the Rho1 GTPase, an upstream activator of the protein kinase C-mitogen-activated protein kinase pathway, through direct interaction with Bem2, the GTPase-activating protein of Rho1, resulting in a significant decrease in chitin content in the fungal cell wall. This chitin synthesis defect leads to biofilm formation failure. Given its essential role in biofilm formation, Sdd3 could serve as an antifungal target for biofilm infections.
Collapse
Affiliation(s)
- Li Mei Pang
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore, National Dental Center Singapore, Singapore, Singapore
| | - Guisheng Zeng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Eve Wai Ling Chow
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xiaoli Xu
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ning Li
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yee Jiun Kok
- Bioprocessing Technology Institute, Singapore, Singapore
| | - Shu Chen Chong
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xuezhi Bi
- Bioprocessing Technology Institute, Singapore, Singapore
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Jiaxin Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Beijing, China
| | - Chaminda Jayampath Seneviratne
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore, National Dental Center Singapore, Singapore, Singapore
- Oral Health ACP, Duke NUS Medical School, Singapore, Singapore
- School of Dentistry, The University of Queensland, St Lucia, Australia
| | - Yue Wang
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Dermitzaki N, Balomenou F, Gialamprinou D, Giapros V, Rallis D, Baltogianni M. Perspectives on the Use of Echinocandins in the Neonatal Intensive Care Unit. Antibiotics (Basel) 2024; 13:1209. [PMID: 39766599 PMCID: PMC11672459 DOI: 10.3390/antibiotics13121209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The neonatal intensive care unit (NICU) population, especially low birth weight and critically ill neonates, is at risk of invasive Candida infections, which are associated with high mortality rates and unfavorable long-term outcomes. The timely initiation of an appropriate antifungal treatment has been demonstrated to enhance the prognosis. Factors that should be considered in the choice of an antifungal agent include the causative Candida strain, the presence and location of deep tissue infection, any previous use of antifungal prophylaxis, and the presence of implanted devices. Amphotericin B and fluconazole, the first-line drugs for neonatal candidiasis, are not always suitable due to several limitations in terms of efficacy and adverse effects. Therefore, alternative antifungals have been studied and used in neonates when conventional antifungals are ineffective or contraindicated. This narrative review aims to provide an overview of the current literature regarding the use of echinocandins in the neonatal population. The three echinocandins, micafungin, caspofungin, and anidulafungin, share characteristics that make them useful for the treatment of neonatal candidiasis, including activity against a wide range of Candida strains and Candida biofilms and a favorable safety profile.
Collapse
Affiliation(s)
- Niki Dermitzaki
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 45500 Ioannina, Greece; (N.D.); (F.B.); (D.R.); (M.B.)
| | - Foteini Balomenou
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 45500 Ioannina, Greece; (N.D.); (F.B.); (D.R.); (M.B.)
| | - Dimitra Gialamprinou
- Second Neonatal Department and Neonatal Intensive Care Unit (NICU), “Papageorgiou” University Hospital, Aristotle University of Thessaloniki, 56403 Thessaloniki, Greece;
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 45500 Ioannina, Greece; (N.D.); (F.B.); (D.R.); (M.B.)
| | - Dimitrios Rallis
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 45500 Ioannina, Greece; (N.D.); (F.B.); (D.R.); (M.B.)
| | - Maria Baltogianni
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 45500 Ioannina, Greece; (N.D.); (F.B.); (D.R.); (M.B.)
| |
Collapse
|
7
|
Halioti A, Vrettou CS, Neromyliotis E, Gavrielatou E, Sarri A, Psaroudaki Z, Magira EE. Cerebrospinal Drain Infection by Candida auris: A Case Report and Review of the Literature. J Fungi (Basel) 2024; 10:859. [PMID: 39728355 DOI: 10.3390/jof10120859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Candida auris is notorious for its ability to spread within healthcare environments, particularly in intensive care units (ICUs), posing significant challenges for clinicians as treatment options become limited. This is especially concerning in the context of central nervous system (CNS)-invasive infections. While rare, its involvement in nosocomial brain ventriculitis presents substantial diagnostic and therapeutic challenges, with no established guidelines for managing CNS infections caused by Candida auris. This report presents a case of Candida auris ventriculitis in an ICU patient and offers a comprehensive and targeted literature review, emphasizing diagnostic approaches, treatment strategies, and the clinical complexities of managing this emerging pathogen in CNS infections.
Collapse
Affiliation(s)
- Asimenia Halioti
- First Department of Critical Care Medicine, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens, 106 76 Athens, Greece
| | - Charikleia S Vrettou
- First Department of Critical Care Medicine, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens, 106 76 Athens, Greece
| | - Eleftherios Neromyliotis
- Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, 106 76 Athens, Greece
| | - Evdokia Gavrielatou
- First Department of Critical Care Medicine, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens, 106 76 Athens, Greece
| | - Aikaterini Sarri
- First Department of Critical Care Medicine, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens, 106 76 Athens, Greece
| | - Zoi Psaroudaki
- Department of Clinical Microbiology, "Evangelismos" General Hospital of Athens, 106 76 Athens, Greece
| | - Eleni E Magira
- First Department of Critical Care Medicine, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens, 106 76 Athens, Greece
| |
Collapse
|
8
|
Shevchenko OV, Voropaev AD, Bogdanov IV, Ovchinnikova TV, Finkina EI. Effects of the Tobacco Defensin NaD1 Against Susceptible and Resistant Strains of Candida albicans. Pathogens 2024; 13:1092. [PMID: 39770352 PMCID: PMC11678012 DOI: 10.3390/pathogens13121092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Today, Candida albicans is still the most common cause of both local and life-threatening systemic candidiasis. The spread of resistant fungal strains has resulted in an urgent need to search for new promising antimycotics. Here, we investigated the antifungal action of the tobacco defensin NaD1 against susceptible and resistant to azoles and echinocandins strains of C. albicans. We demonstrated that NaD1 was equally effective and fungicidal against all tested strains. The MIC and MFC values were 6.25 and 12.5 µM, respectively. We showed for the first time that NaD1 could act synergistically not only with caspofungin but also with human host defense antimicrobial peptides cathelicidin LL-37 and β-defensin-2 (HBD2) against susceptible and resistant fungal strains. Using flow cytometry, we demonstrated that NaD1 in combinations with LL-37 or HBD2 can reinforce each other by enhancing membrane disruption. Using the Caco-2 cell monolayer model, we demonstrated that NaD1 impaired the adhesion of C. albicans cells to the human epithelium. Moreover, NaD1 inhibited the formation of fungal biofilms in Sabouraud broth and less markedly in nutrient-rich RPMI-1640 medium, and enhanced the antibiofilm activity of caspofungin. Thus, we hypothesized that NaD1 might affect the development of candidiasis in vivo, including that caused by resistant fungal strains.
Collapse
Affiliation(s)
- Olga V. Shevchenko
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia (T.V.O.)
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Alexander D. Voropaev
- G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | - Ivan V. Bogdanov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia (T.V.O.)
| | - Tatiana V. Ovchinnikova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia (T.V.O.)
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Ekaterina I. Finkina
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia (T.V.O.)
| |
Collapse
|
9
|
Boran M, Eliuz EE, Ayas D. The Anti-candidal and Absorbtion Performance of PVA/PVP-Based Jania rubens Hydrogel on Candida tropicalis and Some Physicochemical Properties of the Hydrogel. Appl Biochem Biotechnol 2024; 196:8848-8865. [PMID: 38963589 PMCID: PMC11695445 DOI: 10.1007/s12010-024-04997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
This study was aimed to create a bioactive hydrogel form with PVA/PVP (polyvinyl alcohol/poly(N-vinylpyrrolidone) polymer using acetone and ethanol extractions of Jania rubens red algae and investigate some pharmaceutical properties. The anti-candidal activity and some inhibition performance of J. rubens/PVA/PVP hydrogel were investigated on Candida tropicalis which is one of the important causes of bloodstream infections. The physicochemical properties of J. rubens/PVA/PVP hydrogel were revealed using FTIR and swelling-absorption tests. The volatile compounds of J. rubens extracts were examined by GCMS. By mixing the extracts in equal proportions, PVA/PVP-based hydrogel was prepared. According to the results, Cumulative Drug Release was stable at 25 °C for the first 5 h. The IZ (inhibition zone) and MIC (minimum inhibitory concentration) of J. rubens/PVA/PVP hydrogel were 9.01 mm and 80.20 mg/mL, respectively. It was found that logarithmic reduction and percent reduction were seen as 1.5 CFU/mL and 97.5%, respectively, on C. tropicalis exposed to J. rubens/PVA/PVP hydrogel in the first 5 min of the incubation. After exposure of C. tropicalis to J. rubens/PVA/PVP, the number of viable cells transferred from the gel to water was between 76.1 and 73.1% in high glucose medium, while it was between 92.2 and 80.8% for the PVA/PVP hydrogel under the same conditions. As a result, PVA/PVP hydrogel was made bioactive with J. rubens extracts for the first time in this study, and its potential for use as a functional anticandidal hydrogel on C. tropicalis has been demonstrated.
Collapse
Affiliation(s)
- Meltem Boran
- Department of Seafood Processing Technology, Faculty of Fisheries, Mersin University, Mersin, Turkey
| | - Elif Erdogan Eliuz
- Department of Seafood Processing Technology, Faculty of Fisheries, Mersin University, Mersin, Turkey.
| | - Deniz Ayas
- Department of Seafood Processing Technology, Faculty of Fisheries, Mersin University, Mersin, Turkey
| |
Collapse
|
10
|
Fonseca Do Carmo PH, Pinheiro Lage AC, Garcia MT, Soares da Silva N, Santos DA, Mylonakis E, Junqueira JC. Resveratrol-coated gold nanorods produced by green synthesis with activity against Candida albicans. Virulence 2024; 15:2416550. [PMID: 39427236 PMCID: PMC11492707 DOI: 10.1080/21505594.2024.2416550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/07/2024] [Accepted: 09/05/2024] [Indexed: 10/21/2024] Open
Abstract
Candida albicans is an opportunistic yeast capable of causing a wide range of mucosal, cutaneous, and systemic infections. However, therapeutic strategies are limited to a few antifungal agents. Inorganic nanoparticles have been investigated as carrier systems for antifungals as potential new treatments. In this study, we focused on the antifungal activity of gold nanorods, a specific rod-shaped gold nanoparticle, produced by green synthesis using resveratrol as a metal-reducing agent. The synthesis method resulted in stable control nanoparticles (AuNp) and resveratrol-coated gold nanoparticles (AuNpRSV) with medium sizes of 32.4 × 15.9 nm for AuNp, and 33.5 × 15.3 nm for AuNpRSV. Both AuNp and AuNpRSV inhibited the C. albicans grown at 2.46 µg/mL, exhibited fungicidal effects at 4.92 µg/mL, and significantly decreased filamentation, biofilm viability, reactive oxygen species production and ergosterol levels of C. albicans. In addition, exposure to AuNpRSV reduced the ability of C. albicans to grow in the presence of cell membrane stressors. Transmission electron microscopy revealed enlargement of the cell wall and retraction of the cell membrane after treatment with AuNp and AuNpRSV. Promisingly, in vivo toxicity analysis demonstrated that both nanoparticles maintained the full viability of Galleria mellonella larvae at 49.20 µg/mL. In conclusion, both gold nanoparticles exhibited antifungal activity; however, these effects were enhanced by AuNpRSV. Altogether, AuNps and AuNpRSVs are potential antifungal agents for the treatment of C. albicans infections.
Collapse
Affiliation(s)
- Paulo Henrique Fonseca Do Carmo
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, SP, Brazil
| | | | - Maíra Terra Garcia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, SP, Brazil
| | - Newton Soares da Silva
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, SP, Brazil
| | - Daniel Assis Santos
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (Unesp), São José dos Campos, SP, Brazil
| |
Collapse
|
11
|
Moreira LEA, de Farias Cabral VP, Rodrigues DS, Barbosa AD, Silveira MJCB, Coutinho TDNP, Barbosa SA, Sá LGDAV, de Andrade Neto JB, da Rocha SNC, Reis CS, Cavalcanti BC, Rios MEF, de Moraes MO, Júnior HVN, da Silva CR. Antifungal activity of tannic acid against Candida spp. and its mechanism of action. Braz J Microbiol 2024; 55:3679-3690. [PMID: 39179891 PMCID: PMC11711865 DOI: 10.1007/s42770-024-01477-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024] Open
Abstract
The increase in fungal resistance is a major public health concern. In this context, Candida spp. is an important genus related to invasive diseases, especially in immunosuppressed patients. The relevance of alternative approaches to increasing fungal resistance stands out, in which products of natural origin demonstrate potential antifungal activity in vitro against Candida spp. In this sense, this work aimed to evaluate the in vitro activity of tannic acid against Candida spp. Minimum inhibitory concentration (MIC) was determined for tannic acid and the antifungals, and the checkerboard assay was performed to analyze the interactions between them. Furthermore, we evaluated the tannic acid antibiofilm activity and its possible mechanism of action. Tannic acid showed MIC ranging to 0.06 to 0.5 µg/ml and showed no loss of effectiveness when combined with antifungals. Also, is safe at the concentrations it exerts its antifungal activity in pre-formed biofilms, as demonstrated by IC50 in murine fibroblasts cells and the hemolytic assay. Additionally, its mechanisms of action can be related with induction of signals that lead to apoptosis in fungal cells.
Collapse
Affiliation(s)
- Lara Elloyse Almeida Moreira
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Vitória Pessoa de Farias Cabral
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Daniel Sampaio Rodrigues
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Amanda Dias Barbosa
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Maria Janielly Castelo Branco Silveira
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Tatiana do Nascimento Paiva Coutinho
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| | - Sarah Alves Barbosa
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, Brazil
| | | | | | | | | | | | | | - Hélio Vitoriano Nobre Júnior
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil.
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil.
| | - Cecília Rocha da Silva
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
12
|
Jørgensen MR. Pathophysiological microenvironments in oral candidiasis. APMIS 2024; 132:956-973. [PMID: 38571459 DOI: 10.1111/apm.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Oral candidiasis (OC), a prevalent opportunistic infection of the oral mucosa, presents a considerable health challenge, particularly in individuals with compromised immune responses, advanced age, and local predisposing conditions. A considerable part of the population carries Candida in the oral cavity, but only few develop OC. Therefore, the pathogenesis of OC may depend on factors other than the attributes of the fungus, such as host factors and other predisposing factors. Mucosal trauma and inflammation compromise epithelial integrity, fostering a conducive environment for fungal invasion. Molecular insights into the immunocompromised state reveal dysregulation in innate and adaptive immunity, creating a permissive environment for Candida proliferation. Detailed examination of Candida species (spp.) and their virulence factors uncovers a nuanced understanding beyond traditional C. albicans focus, which embrace diverse Candida spp. and their strategies, influencing adhesion, invasion, immune evasion, and biofilm formation. Understanding the pathophysiological microenvironments in OC is crucial for the development of targeted therapeutic interventions. This review aims to unravel the diverse pathophysiological microenvironments influencing OC development focusing on microbial, host, and predisposing factors, and considers Candida resistance to antifungal therapy. The comprehensive approach offers a refined perspective on OC, seeking briefly to identify potential therapeutic targets for future effective management.
Collapse
Affiliation(s)
- Mette Rose Jørgensen
- Section of Oral Pathology and Oral Medicine, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Shahina Z, Dahms TES. A Comparative Review of Eugenol and Citral Anticandidal Mechanisms: Partners in Crimes Against Fungi. Molecules 2024; 29:5536. [PMID: 39683696 DOI: 10.3390/molecules29235536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Candida albicans is an emerging multidrug-resistant opportunistic pathogen that causes candidiasis, superficial infections on the mucosa, nails or skin, and life-threatening candidemia in deep tissue when disseminated through the bloodstream. Recently, there has been a sharp rise in resistant strains, posing a considerable clinical challenge for the treatment of candidiasis. There has been a resurged interest in the pharmacological properties of essential oils and their active components, for example, monoterpenes with alcohol (-OH) and aldehyde (-CHO) groups. Eugenol and citral have shown promising in vitro and in vivo activity against Candida species. Although there is substantial research on the efficacy of these essential oil components against C. albicans, a detailed knowledge of their mycological mechanisms is lacking. To explore the broad-spectrum effects of EOs, it is more meaningful and rational to study the whole essential oil, along with some of its major components. This review provides a comprehensive overview of eugenol and citral anticandidal and antivirulence activity, alone and together, along with the associated mechanisms and limitations of our current knowledge.
Collapse
Affiliation(s)
- Zinnat Shahina
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| |
Collapse
|
14
|
Marchlewicz M, Sagan P, Grabowska M, Kiedrowicz M, Kruk J, Gill K, Piasecka M, Duchnik E. The Role of Vitamin D3 Deficiency and Colonization of the Oral Mucosa by Candida Yeast-like Fungi in the Pathomechanism of Psoriasis. J Clin Med 2024; 13:6874. [PMID: 39598018 PMCID: PMC11594318 DOI: 10.3390/jcm13226874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disease with complex pathogenesis and variable severity. Performed studies have indicated the impact of vitamin D3 deficiency on the pathogenesis of psoriasis and its severity. However, there is no clear evidence of the influence of the mucosal microbiome on the onset and progression of psoriasis. This review aims to present the current evidence on the role of vitamin D3 and colonization of the oral mucosa by Candida yeast-like fungi in the pathogenesis of psoriasis. Candida albicans is a common yeast that can colonize the skin and mucosal surfaces, particularly in individuals with weakened immune systems or compromised skin barriers. In psoriasis, the skin's barrier function is disrupted, potentially making patients more susceptible to fungal infections such as Candida. Since patients with psoriasis are at increased risk of metabolic syndrome, they may experience the vicious circle effect in which chronic inflammation leads to obesity. Vitamin D3 deficiency is also associated with microbiological imbalance, which may promote excessive growth of Candida fungi. Under normal conditions, the intestinal and oral microflora support the immune system. Vitamin D3 deficiency, however, leads to disruption of this balance, which allows Candida to overgrow and develop infections.
Collapse
Affiliation(s)
- Mariola Marchlewicz
- Department of Dermatology and Venereology, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, 70-010 Police, Poland; (M.M.); (P.S.); (M.K.)
| | - Paulina Sagan
- Department of Dermatology and Venereology, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, 70-010 Police, Poland; (M.M.); (P.S.); (M.K.)
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, 71-210 Szczecin, Poland; (K.G.); (M.P.)
| | - Magdalena Kiedrowicz
- Department of Dermatology and Venereology, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, 70-010 Police, Poland; (M.M.); (P.S.); (M.K.)
| | - Joanna Kruk
- Faculty of Physical Culture and Health, University of Szczecin, 71-065 Szczecin, Poland;
| | - Kamil Gill
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, 71-210 Szczecin, Poland; (K.G.); (M.P.)
| | - Małgorzata Piasecka
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, 71-210 Szczecin, Poland; (K.G.); (M.P.)
| | - Ewa Duchnik
- Department of Aesthetic Dermatology, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| |
Collapse
|
15
|
Saravanan TS, Raorane CJ, Ravichandran V, Rajasekharan SK. Repurposing Plant-Based Histone Acetyltransferase Inhibitors: A Review of Novel Therapeutic Strategies Against Drug-Resistant Fungal Biofilms. Curr Microbiol 2024; 82:1. [PMID: 39532708 DOI: 10.1007/s00284-024-03971-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
The rapid emergence of drug-resistant fungal strains necessitates the development of novel therapeutic approaches for battling biofilm-related infections. Biofilms, efflux pumps, and suppression of virulence traits in pathogenic yeasts are governed by epigenetic enzymes, namely, histone acetyltransferases (HATs) and histone deacetylases (HDACs). The review article is focused on the use of histone acetyltransferase inhibitors (HATi), a mechanism-based epidrug that inactivates the regular function of HATs. With an emphasis on specific plant-based HATi and their Structure-Activity Relationship (SAR), the review enumerates the extensive list of anticancer HATi that can be screened for antifungal activities. By repurposing these anticancer HATi, this approach may help generate broad-spectrum antifungal medications that highlight common biological pathways between fungus and cancer, possibly revolutionizing both treatment domains.
Collapse
Affiliation(s)
- Tamil Selvam Saravanan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603 203, India
| | | | - Vinothkannan Ravichandran
- Centre for Drug Discovery and Development (CD3), Amity Institute of Biotechnology, Amity University Maharashtra, Bhatan, Panvel, Mumbai, Maharashtra, 410206, India
| | - Satish Kumar Rajasekharan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu, 603 203, India.
| |
Collapse
|
16
|
Sidrim JJC, Martins DV, da Rocha MG, Araújo GDS, Cordeiro RDA, Guedes GMDM, Pereira-Neto WDA, Castelo-Branco DDSCM, Rocha MFG. Geraniol inhibits both planktonic cells and biofilms of the Candida parapsilosis species complex: Highlight for the improved efficacy of amphotericin B, caspofungin and fluconazole plus Geraniol. Med Mycol 2024; 62:myae105. [PMID: 39474890 DOI: 10.1093/mmy/myae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/05/2024] [Accepted: 10/28/2024] [Indexed: 11/13/2024] Open
Abstract
The Candida parapsilosis species complex poses a recognized threat to the nosocomial environment. In the scenario of the global rise of resistant strains to antifungals, geraniol, a terpene isolated from different essential oils, has shown promising antimicrobial activity. We evaluated: (1) the effects of geraniol against the C. parapsilosis species complex, in planktonic and biofilm forms; (2) the strains' susceptibility to clinical antifungals and (3) the geraniol interaction with antifungals. Eighteen isolates were subjected to in vitro susceptibility testing by the broth microdilution protocol, using geraniol, amphotericin B, caspofungin, itraconazole and fluconazole to determine the minimum inhibitory concentration (MIC) and subsequently, we measured the fungicidal activity. Geraniol was tested against biofilms by the measurement of the metabolic activity and biomass. Pharmacological interactions were performed by the checkerboard method. Geraniol's MIC range was between 256 and 512 µg/ml. MIC range for clinical antifungals was ≤ 0.031-4 µg/ml. Geraniol also showed antibiofilm activity with average reductions of metabolic activity (38.33%) and biomass (30.69%), at MIC concentration. Furthermore, geraniol showed synergistic/additive effects with antifungals. Briefly, geraniol inhibits both planktonic cells and biofilms of the C. parapsilosis species complex and besides it improves the efficacy of amphotericin B, caspofungin and fluconazole.
Collapse
Affiliation(s)
- José Júlio Costa Sidrim
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará 60430-160, Brazil
| | - Daniel Vieira Martins
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará 60430-160, Brazil
| | - Maria Gleiciane da Rocha
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará 60430-160, Brazil
| | - Géssica Dos Santos Araújo
- Postgraduate Program in Veterinary Sciences, College of Veterinary, State University of Ceará, Fortaleza, Ceará 60714-903, Brazil
| | - Rossana de Aguiar Cordeiro
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará 60430-160, Brazil
| | - Glaucia Morgana de Melo Guedes
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará 60430-160, Brazil
| | | | | | - Marcos Fábio Gadelha Rocha
- Specialized Medical Mycology Center, Postgraduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará 60430-160, Brazil
- Postgraduate Program in Veterinary Sciences, College of Veterinary, State University of Ceará, Fortaleza, Ceará 60714-903, Brazil
| |
Collapse
|
17
|
Snyder SS, Rock CA, Millenbaugh NJ. Antifungal peptide-loaded alginate microfiber wound dressing evaluated against Candida albicans in vitro and ex vivo. Eur J Pharm Biopharm 2024:114578. [PMID: 39532211 DOI: 10.1016/j.ejpb.2024.114578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Invasive fungal infections have high mortality rates, and many current antimycotics are limited by host toxicity and drug resistance. Recent experiments in our laboratory have demonstrated the antifungal activity of dKn2-7, a synthetic peptide, against Candida albicans. The purpose of the current study was to develop a wound dressing capable of dKn2-7 release for extended periods to help combat fungal infection in wounds. dKn2-7 was incorporated into calcium alginate microfibers, an excipient with known wound healing and hemostatic properties. dKn2-7 release rates from the fibers were dependent on drug loading, but all formulations exhibited a burst release with 41-71 % of total release in the first 15 min and 84-96 % release by 24 h. Calcium release at 15 min was similar to that of a commercial hemostatic dressing, indicating dKn2-7 loading would not adversely affect the hemostatic capability of the alginate fibers. In vitro antifungal studies indicated a dose dependent effect with fibers loaded at ≥20 µg/mg causing significant planktonic killing and ≥30 µg/mg causing significant biofilm killing. Viable fungal counts in biofilms grown on ex vivo porcine skin declined by 99 % following 500 µg/mg fiber treatment. Skin histology indicated no significant differences in tissue damage between treatment groups and controls. Results confirm calcium alginate microfibers are capable of binding and subsequently releasing dKn2-7 over a 24-h period when rehydrated. Furthermore, dKn2-7 released from the fibers was able to significantly reduce biofilms in an ex vivo model with minimal toxicity, indicating these dKn2-7 loaded fiber dressings may be effective at controlling C. albicans biofilm infections in vivo.
Collapse
Affiliation(s)
- Sabrina S Snyder
- Maxillofacial Injury and Disease Department, Naval Medical Research Unit San Antonio, 3650 Chambers Pass, Joint Base San Antonio-Fort Sam Houston, TX 78234-6315, USA
| | - Crystal A Rock
- Maxillofacial Injury and Disease Department, Naval Medical Research Unit San Antonio, 3650 Chambers Pass, Joint Base San Antonio-Fort Sam Houston, TX 78234-6315, USA
| | - Nancy J Millenbaugh
- Maxillofacial Injury and Disease Department, Naval Medical Research Unit San Antonio, 3650 Chambers Pass, Joint Base San Antonio-Fort Sam Houston, TX 78234-6315, USA.
| |
Collapse
|
18
|
Wu CH, Kaneyasu Y, Yano K, Shigeishi H, Kitasaki H, Maehara T, Niitani Y, Takemoto T, Mine Y, Le MNT, Kawada-Matsuo M, Komatsuzawa H, Ohta K. Anti-fungal effects of slightly acidic electrolyzed water on Candida species. J Oral Biosci 2024:S1349-0079(24)00207-X. [PMID: 39515466 DOI: 10.1016/j.job.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Slightly acidic electrolyzed water (SAEW) is produced by electrolyzing 2-6% diluted hydrochloric acid in a membrane-less chamber, resulting in 5.0-6.5 pH, and can be applied to various foods as a disinfectant. Although SAEW has shown to have bactericidal activity, the details of its anti-fungal effects towards Candida species remain unknown. Therefore, we examined the fungicidal effects of SAEW on Candida spp. and biofilms on acrylic resins. METHODS The fungicidal effects of SAEW on Candida spp. at different reaction times and total numbers of colonies in culture plates were examined. Subsequently, SAEW was added to Candida spp. biofilms formed on polystyrene plates, and adenosine triphosphate (ATP) in SAEW was measured to examine its fungicidal effects towards Candida spp. biofilms. The fungicidal effect of SAEW on Candida spp. biofilms was determined by counting the number of colonies on the acrylic resin after adding SAEW. RESULTS SAEW completely killing activity within 1 min with the tested Candida spp.. C. albicans and C. glabrata ATP were increased 5 min after adding SAEW compared with the controls, suggesting the removal of biofilm. Of the C. albicans on acrylic resin, > 99.9%were killed by SAEW compared to their levels in deionized distilled water (DW) (76.2x102/mL and 43.3x102/mL, respectively). Similarly, 93.1% of C. glabrata were killed by SAEW compared to DW (159.3x102/mL). CONCLUSIONS SAEW may be useful in preventing oral candidiasis as part of oral care.
Collapse
Affiliation(s)
- Chia-Hsin Wu
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Yoshino Kaneyasu
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Kanako Yano
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Hideo Shigeishi
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Honami Kitasaki
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Tomoko Maehara
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Yoshie Niitani
- Department of Oral Health Management, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Toshinobu Takemoto
- Department of Oral Health Management, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan
| | - Yuichi Mine
- Department of Medical Systems Engineering, Division of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima 734-8553, Japan
| | - Mi Nguyen-Tra Le
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Miki Kawada-Matsuo
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Kouji Ohta
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8553, Japan.
| |
Collapse
|
19
|
Ofori P, Zemliana N, Zaffran I, Etzion T, Sionov RV, Steinberg D, Mechoulam R, Kogan NM, Levi-Schaffer F. Antifungal properties of abnormal cannabinoid derivatives: Disruption of biofilm formation and gene expression in Candida species. Pharmacol Res 2024; 209:107441. [PMID: 39368567 DOI: 10.1016/j.phrs.2024.107441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
Abnormal cannabinoids (including comp 3) are a class of synthetic lipid compounds with non-psychoactive properties and regioisomer configurations, but distinct from traditional cannabinoids since they do not interact with the established CB1 and CB2 receptors. Previous research showed the cardioprotective and anti-inflammatory potentials of comp 3 and more recently its antimicrobial effect on methicillin-resistant Staphylococcus aureus (MRSA). Given the escalating challenges posed by Candida infections and the rise of antifungal drug resistance, the exploration of novel therapeutic avenues is crucial. This study aimed to assess the anti-Candida properties of newly synthesized AbnCBD derivatives. AbnCBD derivatives were synthesized by acid catalysis-induced coupling and further derivatized. We evaluated the potential of the AbnCBD derivatives to inhibit the growth stages of various Candida species. By in vitro colorimetric assays and in vivo mice experiments, we have shown that AbnCBD derivatives induce differential inhibition of Candida growth. The AbnCBD derivatives, especially comp 3, comp 10, and comp 9 significantly reduced the growth of C. albicans, including FLC-resistant strains, and of C. tropicalis and C. parapsilosis but not of C auris compared to their controls (FLC and 0.5 % DMSO). Comp 3 also disrupted C. albicans biofilm formation and eradicated mature biofilms. Notably, other derivatives of AbnCBD disrupted the biofilm formation and maturation of C. albicans but did not affect yeast growth. In a murine model of VVC, comp 3 demonstrated significant fungal clearance and reduced C. albicans burden compared to vehicle and FLC controls. These findings highlight the potential of AbnCBDs as promising antifungal agents against Candida infections.
Collapse
Affiliation(s)
- Prince Ofori
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Natalia Zemliana
- Institute of Personalized and Translational Medicine, Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Ilan Zaffran
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tatiana Etzion
- Medicinal Chemistry Unit, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronit Vogt Sionov
- Biofilm Research Laboratory, The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Doron Steinberg
- Biofilm Research Laboratory, The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raphael Mechoulam
- Medicinal Chemistry Unit, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Natalya M Kogan
- Institute of Personalized and Translational Medicine, Department of Molecular Biology, Ariel University, Ariel, Israel; Medicinal Chemistry Unit, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
20
|
Nguyen KN, Sao L, Kyllo K, Hernandez D, Salomon S, Shah K, Oh D, Kao KC. Antibiofilm Activity of PDMS/TiO 2 against Candida glabrata through Inhibited Hydrophobic Recovery. ACS OMEGA 2024; 9:42593-42601. [PMID: 39431067 PMCID: PMC11483912 DOI: 10.1021/acsomega.4c07869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024]
Abstract
Coatings with antibiofilm properties are desirable for biomedical applications. Titanium dioxide (TiO2) has been explored as an antimicrobial agent in materials development primarily due to it being an excellent photocatalyst. Candida glabrata (C. glabrata) is an emerging human fungal pathogen with known high resistance to oxidative stress. Here, we fabricated a polydimethylsiloxane/titanium dioxide (PDMS/TiO2) nanocomposite coating and tested its antibiofilm activities against C. glabrata. The resulting nanocomposite exhibited >50% reduction in C. glabrata biofilm formation with 2.5 wt % TiO2 loading, even in the dark. Through ROS detection and surface characterization, the antibiofilm activity was attributed to the synergistic interaction of TiO2 nanoparticles with the PDMS matrix, which resulted in the impediment of hydrophobic recovery. This work provides a design strategy to develop antibiofilm coatings against C. glabrata.
Collapse
Affiliation(s)
- Khoi-Nguyen Nguyen
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| | - Leena Sao
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| | - Kevin Kyllo
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| | - Danitza Hernandez
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| | - Samantha Salomon
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| | - Kalp Shah
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| | - Dahyun Oh
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| | - Katy C. Kao
- Department of Chemical and
Materials Engineering, San Jose State University, San Jose 95112-3613, California, United
States
| |
Collapse
|
21
|
Yong LX, Sefton J, Vallières C, Rance GA, Hill J, Cuzzucoli Crucitti V, Dundas AA, Rose FRA, Alexander MR, Wildman R, He Y, Avery SV, Irvine DJ. Fungal Attachment-Resistant Polymers for the Additive Manufacture of Medical Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54508-54519. [PMID: 39349401 PMCID: PMC11472319 DOI: 10.1021/acsami.4c04833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 10/02/2024]
Abstract
This study reports the development of the first copolymer material that (i) is resistant to fungal attachment and hence biofilm formation, (ii) operates via a nonkilling mechanism, i.e., avoids the use of antifungal actives and the emergence of fungal resistance, (iii) exhibits sufficient elasticity for use in flexible medical devices, and (iv) is suitable for 3D printing (3DP), enabling the production of safer, personalized medical devices. Candida albicans (C. albicans) can form biofilms on in-dwelling medical devices, leading to potentially fatal fungal infections in the human host. Poly(dimethylsiloxane) (PDMS) is a common material used for the manufacture of medical devices, such as voice prostheses, but it is prone to microbial attachment. Therefore, to deliver a fungal-resistant polymer with key physical properties similar to PDMS (e.g., flexibility), eight homopolymers and 30 subsequent copolymers with varying glass transition temperatures (Tg) and fungal antiattachment properties were synthesized and their materials/processing properties studied. Of the copolymers produced, triethylene glycol methyl ether methacrylate (TEGMA) copolymerized with (r)-α-acryloyloxy-β,β-dimethyl-γ-butyrolactone (AODMBA) at a 40:60 copolymer ratio was found to be the most promising candidate by meeting all of the above criteria. This included demonstrating the capability to successfully undergo 3DP by material jetting, via the printing of a voice prosthesis valve-flap using the selected copolymer.
Collapse
Affiliation(s)
- Ling Xin Yong
- Centre
for Additive Manufacturing, Department of Chemical and Environmental
Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Joseph Sefton
- Centre
for Additive Manufacturing, Department of Chemical and Environmental
Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Cindy Vallières
- School
of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Graham A. Rance
- Nanoscale
and Microscale Research Centre, University
of Nottingham, University
Park, Nottingham NG7 2RD, United Kingdom
| | - Jordan Hill
- Centre
for Additive Manufacturing, Department of Chemical and Environmental
Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Valentina Cuzzucoli Crucitti
- Centre
for Additive Manufacturing, Department of Chemical and Environmental
Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Adam A. Dundas
- Advanced
Materials Research Group, Department of Chemical and Environmental
Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | | | - Morgan R. Alexander
- School
of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Ricky Wildman
- Centre
for Additive Manufacturing, Department of Chemical and Environmental
Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Yinfeng He
- Centre
for Additive Manufacturing, Department of Chemical and Environmental
Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Simon V. Avery
- School
of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Derek J. Irvine
- Centre
for Additive Manufacturing, Department of Chemical and Environmental
Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
22
|
Rodrigues LS, Siqueira AC, Vasconcelos TM, Ferreira AMM, Spalanzani RN, Krul D, Medeiros É, Sestren B, Lanzoni LDA, Ricieri MC, Motta FA, Estivalet TI, Dalla-Costa LM. Invasive candidiasis in a pediatric tertiary hospital: Epidemiology, antifungal susceptibility, and mortality rates. Med Mycol 2024; 62:myae097. [PMID: 39354681 PMCID: PMC11498051 DOI: 10.1093/mmy/myae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 10/03/2024] Open
Abstract
Invasive infections caused by non-albicans Candida are increasing worldwide. However, there is still a lack of information on invasive candidiasis (IC) in the pediatric setting, including susceptibility profiles and clonal studies. We investigated the clinical, epidemiologic, and laboratory characteristics of IC, possible changes in antifungal susceptibility profiles over time, and the occurrence of clonality in our tertiary children's hospital. We analyzed 123 non-duplicate Candida isolates from sterile sites of pediatric patients in a tertiary hospital in southern Brazil, between 2016 and 2021. Data on demographics, comorbidities, and clinical outcomes were collected. Candida species distribution, antifungal susceptibility profiles, biofilm production, and molecular epidemiology of isolates were assessed using reference methods. The range of IC incidence was 0.88-1.55 cases/1000 hospitalized patients/year, and the IC-related mortality rate was 20.3%. Of the total IC cases, 42.3% were in patients aged < 13 months. Mechanical ventilation, parenteral nutrition, and intensive care unit (ICU) admission were common in this group. In addition, ICU admission was identified as a risk factor for IC-related mortality. The main site of Candida spp. isolation was blood, and non-albicans Candida species were predominant (70.8%). No significant clonal spread was observed among isolates of the three most commonly isolated species, and 99.1% of all isolates were biofilm producers. Non-albicans Candida species were predominant in this study. Notably, clonal expansion and emergence of antifungal drug resistance were not observed in our pediatric setting.
Collapse
Affiliation(s)
- Luiza Souza Rodrigues
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, CEP 80230-020, Brazil
| | - Adriele Celine Siqueira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, CEP 80230-020, Brazil
- Faculdades Pequeno Príncipe, Curitiba, Paraná, CEP 80230-020, Brazil
| | - Thaís Muniz Vasconcelos
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, CEP 80230-020, Brazil
- Faculdades Pequeno Príncipe, Curitiba, Paraná, CEP 80230-020, Brazil
| | | | - Regiane Nogueira Spalanzani
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, CEP 80230-020, Brazil
- Faculdades Pequeno Príncipe, Curitiba, Paraná, CEP 80230-020, Brazil
| | - Damaris Krul
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, CEP 80230-020, Brazil
- Faculdades Pequeno Príncipe, Curitiba, Paraná, CEP 80230-020, Brazil
| | - Érika Medeiros
- Hospital Pequeno Príncipe, Curitiba, Paraná, CEP 80250-060, Brazil
| | - Bianca Sestren
- Hospital Pequeno Príncipe, Curitiba, Paraná, CEP 80250-060, Brazil
| | | | | | | | - Terezinha Inez Estivalet
- Universidade Estadual de Maringá, Departamento de Análises Clínicas e Biomedicina, Maringá, Paraná, CEP 87020-900, Brazil
- Universidade Federal do Paraná, Departamento de Patologia Básica, Curitiba, Paraná, CEP 81531-980, Brazil
| | | |
Collapse
|
23
|
Portela FVM, Andrade ARCD, Pereira LMG, da Silva BN, Peixoto PHS, Amando BR, Fiallos NDM, Souza PDFSMD, Lima-Neto RGD, Guedes GMDM, Castelo-Branco DSCM, Cordeiro RDA. Antibiotics stimulates the development of persistent cells in biofilms of Candida albicans bloodstream isolates. BIOFOULING 2024; 40:593-601. [PMID: 39219014 DOI: 10.1080/08927014.2024.2396013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/10/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Candida albicans invasive candidiasis is considered a global health problem. In such cases, biofilm formation on implanted devices represents a therapeutic challenge and the presence of metabolically inactive persistent cells (PCs) in these communities increases their tolerance to fungicidal drugs. This study investigated the influence of amoxicillin, AMX; cefepime, CEF; gentamicin, GEN; amikacin, AMK; vancomycin, VAN; and ciprofloxacin, CIP; on the production of PCs in biofilms of C. albicans bloodstream isolates. 48 h-mature biofilms (n = 6) grown in RPMI-1640 supplemented with antibiotics were treated with 100 μg ml-1 amphotericin B and then evaluated for PCs. Biofilms grown in the presence of antibiotics produced more PCs, up to 10×, when exposed to AMX and CIP; 5 × to CEF; and 6 × to GEN and VAN. The results indicate that antibiotics can modulate PC production in C. albicans biofilms. This scenario may have clinical repercussions in immunocompromised patients under broad-spectrum antibiotic therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nicole de Mello Fiallos
- Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, Brazil
- College of Dentistry, University of Florida, Gainesville, Florida, USA
| | | | | | | | | | | |
Collapse
|
24
|
Marena GD, Nascimento ALCSD, Carvalho GC, Sábio RM, Bauab TM, Chorilli M. Amphotericin B and micafungin duo-loaded nanoemulsion as a potential strategy against Candida auris biofilms. BIOFOULING 2024; 40:602-616. [PMID: 39245976 DOI: 10.1080/08927014.2024.2396020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Candida auris is a multidrug-resistant yeast that has seen a worrying increase during the COVID-19 pandemic. Give7/n this, new therapeutic options, such as controlled-release nanomaterials, may be promising in combating the infection. Therefore, this study aimed to develop amphotericin B (AmB) and micafungin (MICA)-loaded nanoemulsions (NEMA) and evaluated against biofilms of C. auris. Nanoemulsions (NEs) were characterized and determined minimum inhibitory concentration MIC90, checkerboard and anti-biofilm. NEMA presented a size of 53.7 and 81.4 nm for DLS and NTA, respectively, with good stability and spherical morphology. MICAmB incorporated efficiency was 88.4 and 99.3%, respectively. The release results show that AmB and MICA obtained a release of 100 and 63.4%, respectively. MICAmB and NEMA showed MIC90 values of 0.015 and 0.031 ug/mL, respectively and synergism. NEMA showed greater metabolic inhibition and morphological changes in mature biofilms. This drugs combination and co-encapsulation proved to be a promising therapy against C. auris biofilms.
Collapse
Affiliation(s)
- Gabriel Davi Marena
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, São Paulo State, Brazil
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, São Paulo State, Brazil
| | | | - Gabriela Corrêa Carvalho
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, São Paulo State, Brazil
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, São Paulo State, Brazil
| | - Rafael Miguel Sábio
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, São Paulo State, Brazil
| | - Tais Maria Bauab
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, São Paulo State, Brazil
| | - Marlus Chorilli
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, São Paulo State, Brazil
| |
Collapse
|
25
|
Passos JCDS, Furtado Rodrigues AB, Alberto-Silva C, Costa MS. The arrangement of dual-species biofilms of Candida albicans and Issatchenkia orientalis can be modified by the medium: effect of Voriconazole. BIOFOULING 2024; 40:527-537. [PMID: 39115404 DOI: 10.1080/08927014.2024.2389848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/26/2024]
Abstract
Both Candida albicans and Issatchenkia orientalis have been isolated from different types of infections over the years. They have the ability to form communities of microorganisms known as biofilms. It has been demonstrated that the medium employed in studies may affect the biofilm development. The aim of this study was to investigate the arrangement of dual-species biofilms of C. albicans and I. orientalis cultivated on either RPMI-1640 or Sabouraud Dextrose Broth (SDB), as well as the inhibitory effect of Voriconazole (VRC). For the experiments performed, ATCC strains were used, and yeast-mixed suspensions were inoculated in 96-well plates with either RPMI-1640 or SDB, in the presence or absence of VRC. The results were observed by counting the number of CFU obtained from scraping off the biofilms produced and plating the content on CHROMagar Candida medium. It was observed that for all conditions tested the medium chosen affected the arrangement of dual-species biofilms: when RPMI-1640 was used, there was a prevalence of C. albicans, while the opposite was noted when SDB was used. It could be suggested that the medium and environment could regulate interactions between both yeast species, including the response to different antifungal drugs.
Collapse
Affiliation(s)
| | - Ana Beatriz Furtado Rodrigues
- Instituto de Pesquisa & Desenvolvimento - IP&D, Universidade do Vale do Paraíba - UNIVAP, São José dos Campos, Brazil
| | - Carlos Alberto-Silva
- Experimental Morphophysiology Laboratory, Natural and Humanities Science Center (CCNH), Federal University of ABC - UFABC, São Bernardo do Campo, Brazil
| | - Maricilia Silva Costa
- Instituto de Pesquisa & Desenvolvimento - IP&D, Universidade do Vale do Paraíba - UNIVAP, São José dos Campos, Brazil
| |
Collapse
|
26
|
Basotra SD, Kumari Y, Vij M, Tyagi A, Sharma D, Bhattacharyya MS. ASLdC3: A Derivative of Acidic Sophorolipid Disrupts Mitochondrial Function, Induces ROS Generation, and Inhibits Biofilm Formation in Candida albicans. ACS Infect Dis 2024; 10:3185-3201. [PMID: 39093050 DOI: 10.1021/acsinfecdis.4c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Fungal infections account for more than 140 million cases of severe and life-threatening conditions each year, causing approximately 1.7 million deaths annually. Candida albicans and related species are the most common human fungal pathogens, causing both superficial (mucosal and cutaneous) and life-threatening invasive infections (candidemia) with a 40-75% mortality rate. Among many virulence factors of Candida albicans, morphological transition from yeast to hyphae, secretion of hydrolytic enzymes, and formation of biofilms are considered to be crucial for pathogenicity. However, the arsenals for the treatment against these pathogens are restricted to only a few classes of approved drugs, the efficacy of which is being compromised by host toxicity, fungistatic activity, and the emergence of drug resistance. In this study, we have described the development of a molecule, exhibiting excellent antifungal activity (MIC 8 μg/mL), by tailoring acidic sophorolipids with aryl alcohols via enzyme catalysis. This novel derivative, ASLdC3, is a surface-active compound that lowers the surface tension of the air-water interface up to 2-fold before reaching the critical micelle concentration of 25 μg/mL. ASLdC3 exhibits excellent antibiofilm properties against Candida albicans and other nonalbicans Candida species. The molecule primarily exhibits its antifungal activity by perturbing mitochondrial function through the alteration of the mitochondrial membrane potential (MMP) and generation of reactive oxygen species (ROS). The ROS damages fungal cell membrane function and cell wall integrity, eventually leading to cell death. ASLdC3 was found to be nontoxic in in vitro assay and nonhemolytic. Besides, it does not cause toxicity in the C. elegans model. Our study provides a valuable foundation for the potential of acidic sophorolipid as a nontoxic, biodegradable precursor for the design and synthesis of novel molecules for use as antimicrobial drugs as well as for other clinical applications.
Collapse
Affiliation(s)
- Sandal Deep Basotra
- Biochemical Engineering Research and Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160036, India
| | - Yachna Kumari
- Biochemical Engineering Research and Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mansi Vij
- Biochemical Engineering Research and Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160036, India
| | - Arpit Tyagi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- GN Ramachandran Protein Centre, CSIR-Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160036, India
| | - Deepak Sharma
- GN Ramachandran Protein Centre, CSIR-Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160036, India
| | - Mani Shankar Bhattacharyya
- Biochemical Engineering Research and Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160036, India
| |
Collapse
|
27
|
Mohamed NA. Synthesis, characterization and evaluation of in vitro potential antimicrobial efficiency of new chitosan hydrogels and their CuO nanocomposites. Int J Biol Macromol 2024; 276:133810. [PMID: 39004245 DOI: 10.1016/j.ijbiomac.2024.133810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The phenomenon of microbial resistance and its resulting biofilms to traditional antibiotics is worsening over time. Therefore, the discovery of alternative substances that inhibit microbial activities through mechanisms different from those of known antibiotics requires attention. So, chitosan was crosslinked using different amounts of oxalyl dihydrazide yielding four novel hydrogels; ODHCs-I, ODHCs-II, ODHCs-III, and ODHCs-IV of crosslinking degree 12.17, 20.67, 31.67, and 43.17, respectively. Different amounts of CuO nanoparticles were impregnated into ODHCs-IV, obtaining ODHCs-IV/CuONPs-1 %, ODHCs-IV/CuONPs-3 % and ODHCs-IV/CuONPs-5 % composites. Their structure was emphasized using FTIR, SEM, XRD, TEM, EDX and elemental analysis. Their in vitro antimicrobial and anti-biofilm activities improved with increasing ODH and CuONPs content. ODHCs-IV exhibited minimal inhibition concentration (2 μg/mL) against S. pyogenes that was much lower than Vancomycin (3.9 μg/mL). ODHCs-IV/CuONPs-5 % displayed better inhibition performance than Vancomycin and Amphotericin B against Gram-positive-bacteria and fungi, respectively, and comparable one to that of Vancomycin against Gram-negative-bacteria. ODHCs-IV/CuONPs-5 % displayed much lower minimal biofilm inhibition concentrations (1.95 to 3.9 μg/mL) as compared with those of ODHCs-IV (7.81 and 15.63 μg/mL), against C. albicans, S. pyogenes, and K. pneumonia. ODHCs-IV/CuONPs-5 % composite is safe on normal human cells. Oxalyl dihydrazide and CuONPs amalgamated into chitosan in one formulation promoted its antimicrobial efficiency.
Collapse
Affiliation(s)
- Nadia A Mohamed
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia; Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt.
| |
Collapse
|
28
|
Zulli A, Chan EMG, Shelden B, Duong D, Xu XRS, White BJ, Wolfe MK, Boehm AB. Prospective study of Candida auris nucleic acids in wastewater solids in 190 wastewater treatment plants in the United States suggests widespread occurrence. mBio 2024; 15:e0090824. [PMID: 39041799 PMCID: PMC11323724 DOI: 10.1128/mbio.00908-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/01/2024] [Indexed: 07/24/2024] Open
Abstract
Candida auris is an emerging, multidrug-resistant fungal pathogen that poses a significant public health threat in healthcare settings. Despite yearly clinical cases rapidly increasing from 77 to 8,131 in the last decade, surveillance data on its distribution and prevalence remain limited. We implemented a novel assay for C. auris detection on a nationwide scale prospectively from September 2023 to March 2024, analyzing a total of 13,842 samples from 190 wastewater treatment plants across 41 U.S. states. Assays were extensively validated through comparison to other known assays and internal controls. Of these 190 wastewater treatment plants, C. auris was detected in the wastewater solids of 65 of them (34.2%) with 1.45% of all samples having detectable levels of C. auris nucleic-acids. Detections varied seasonally, with 2.00% of samples positive in autumn vs 1.01% in winter (P < 0.0001). The frequency of detection in wastewater was significantly associated with states having older populations (P < 0.001), sewersheds containing more hospitals (P < 0.0001), and sewersheds containing more nursing homes (P < 0.001). These associations are in agreement with known C. auris epidemiology. This nationwide study demonstrates the viability of wastewater surveillance for C. auris surveillance and further highlights the value of wastewater surveillance when clinical testing is constrained. IMPORTANCE This study highlights the viability of wastewater surveillance when dealing with emerging pathogens. By leveraging an existing framework of wastewater surveillance, we reveal the widespread presence of C. auris in the United States. We further demonstrate that these wastewater detections are consistent with demographic factors relevant to C. auris epidemiology like age and number of hospitals or nursing homes. As C. auris and other pathogens continue to emerge, the low-cost and rapid nature of wastewater surveillance will provide public health officials with the information necessary to enact targeted prevention and control strategies.
Collapse
Affiliation(s)
- Alessandro Zulli
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| | - Elana M. G. Chan
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| | | | - Dorothea Duong
- Verily Life Sciences LLC, South San Francisco, California, USA
| | - Xiang-Ru S. Xu
- Verily Life Sciences LLC, South San Francisco, California, USA
| | | | - Marlene K. Wolfe
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Alexandria B. Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
29
|
Souza LBFC, de Oliveira Bento A, Lourenço EMG, Ferreira MRA, Oliveira WN, Soares LAL, G. Barbosa E, Rocha HAO, Chaves GM. Mechanism of action and synergistic effect of Eugenia uniflora extract in Candida spp. PLoS One 2024; 19:e0303878. [PMID: 39137202 PMCID: PMC11321568 DOI: 10.1371/journal.pone.0303878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/01/2024] [Indexed: 08/15/2024] Open
Abstract
The limited arsenal of antifungal drugs have prompted the search for novel molecules with biological activity. This study aimed to characterize the antifungal mechanism of action of Eugenia uniflora extract and its synergistic activity with commercially available antifungal drugs on the following Candida species: C. albicans, C. tropicalis, C. glabrata, C. parapsilosis and C. dubliniensis. In silico analysis was performed to predict antifungal activity of the major compounds present in the extract. Minimal inhibitory concentrations (MICs) were determined in the presence of exogenous ergosterol and sorbitol. Yeast cells were grown in the presence of stressors. The loss of membrane integrity was assessed using propidium iodide staining (fluorescence emission). Synergism between the extract and antifungal compounds (in addition to time kill-curves) was determined. Molecular docking revealed possible interactions between myricitrin and acid gallic and enzymes involved in ergosterol and cell wall biosynthesis. Candida cells grown in the presence of the extract with addition of exogenous ergosterol and sorbitol showed 2 to 8-fold increased MICs. Strains treated with the extract revealed greater loss of membrane integrity when compared to their Fluconazole counterparts, but this effect was less pronounced than the membrane damage caused by Amphotericin B. The extract also made the strains more susceptible to Congo red and Calcofluor white. A synergistic action of the extract with Fluconazole and Micafungin was observed. The E. uniflora extract may be a viable option for the treatment of Candida infections.
Collapse
Affiliation(s)
- Luanda B. F. C. Souza
- Medical and Molecular Mycology Laboratory, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Aurélio de Oliveira Bento
- Medical and Molecular Mycology Laboratory, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Estela M. G. Lourenço
- Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
- Laboratory of Synthesis and Transformation of Organic Molecules, LP4, Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Magda R. A. Ferreira
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Wogenes N. Oliveira
- Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Euzébio G. Barbosa
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Hugo A. O. Rocha
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Guilherme Maranhão Chaves
- Medical and Molecular Mycology Laboratory, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
30
|
Al‐Asfour A, Karched M, Qasim SSB, Zafiropoulos G. Adhesion of Candida albicans on PTFE membranes used in guided bone regeneration. Clin Exp Dent Res 2024; 10:e902. [PMID: 39014549 PMCID: PMC11252019 DOI: 10.1002/cre2.902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/28/2024] [Accepted: 03/24/2024] [Indexed: 07/18/2024] Open
Abstract
OBJECTIVES Guided bone regeneration (GBR) is a core procedure used to regenerate bone defects. The aim of the study was to investigate the adherence of Candida albicans on six commercially available polytetrafluoroethylene (PTFE) membranes used in GBR procedures and the subsequent clinical consequences. MATERIALS AND METHODS Six commercially available PTFE membranes were tested. Two of the membranes had a textured surface and the other four a plane, nontextured one. C. albicans (ATCC 24433) was cultured for 24 h, and its cell surface hydrophobicity was assessed using a modified method. C. albicans adhesion to membrane discs was studied by scanning electron microscopy (SEM) and real-time polymerase chain reaction (PCR). RESULTS C. albicans was found to be hydrophobic (77.25%). SEM analysis showed that C. albicans adherence to all membranes examined was characterized by patchy, scattered, and small clustered patterns except for one nontextured membrane with a most rough surface in which a thick biofilm was observed. Real-time PCR quantification revealed significantly greater adhesion of C. albicans cells to PTFE membranes than the control membrane (p ≤ .001) with the membranes having a textured surface exhibiting the highest count of 2680 × 104 cells/ml compared to the count of 707 × 104 cells/mL on those with a nontextured one (p ≤ .001). One membrane with nontextured surface, but with most rough surface was found to exhibit the highest count of 3010 × 104 cells/ml (p ≤ .05). CONCLUSION The results of this study indicate that C. albicans adhesion on membranes' surfaces depends on the degree of surface roughness and/or on the presence of a texture. Textured PTFE membranes and/or membranes high roughness showed significantly more adhered C. albicans cells. These findings can impact the surgeon's choice of GBR membrane and postoperative maintenance.
Collapse
Affiliation(s)
- Adel Al‐Asfour
- Department of Surgical Sciences, College of DentistryKuwait UniversitySafatKuwait
| | - Maribasappa Karched
- Department of Bioclinical Sciences, College of DentistryKuwait UniversitySafatKuwait
| | - Syed Saad Bin Qasim
- Department of Bioclinical Sciences, College of DentistryKuwait UniversitySafatKuwait
| | | |
Collapse
|
31
|
Maziere M, Rompante P, Andrade JC, Rodrigues CF. Are Mouthwashes Really Effective against Candida spp.? J Fungi (Basel) 2024; 10:528. [PMID: 39194854 DOI: 10.3390/jof10080528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Oral candidiasis is an opportunistic infection caused by fungi of the genus Candida. Nystatin, fluconazole, and miconazole are the most widely used antifungal drugs in dentistry, but in recent years, they have been shown to be less effective due to the increase in the resistance to antifungal drugs. The growing challenge of antifungal resistance emphasizes the importance of exploring not only alternative strategies in the fight against Candida spp. infections but also supportive treatment for pharmacological treatment for oral candidiasis. This review aims to evaluate and compare the in vitro reports on antifungal efficacy against Candida spp. exhibited by mouthwashes distributed on the European market. The research question was elaborated through the PEO framework recommended by PRISMA 2020. A bibliographic search strategy was developed for the scientific online databases Pubmed and ScienceDirect. According to the eligibility criteria, 21 papers were included in this study over a 27-year period. Mouthwashes containing chlorhexidine digluconate, cetylpyridinium chloride, hexetidine, and fluorine compounds among others, and natural antimicrobials, such as menthol, thymol, eucalyptol, and Glycyrrhiza glabra extracts, have demonstrated antifungal effectiveness. Nonetheless, the methodological variance introduces ambiguity concerning the comparative efficacy of distinct molecules or mouthwash formulations and complicates the evaluation and the comparison of results between studies. Some mouthwashes commercially available in Europe have the potential to be used in anti-Candida therapy and prevention since they have shown antifungal effect.
Collapse
Affiliation(s)
- Marie Maziere
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Paulo Rompante
- UNIPRO-Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS-CESPU), 4585-116 Gandra, Portugal
| | - José Carlos Andrade
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences-CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Porto, Portugal
| | - Célia F Rodrigues
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences-CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Porto, Portugal
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
32
|
OYARDI Ö, HACIOĞLU M, ÖZDEMİR E, ERBAY MŞ, KÜLTÜR Ş, GÜZEL ÇBOZKURT. Screening of Antimicrobial, Antibiofilm, and Cytotoxic Activities of Some Medicinal Plants from Balıkesir Province, Türkiye: Potential Effects of Allium paniculatum Flower. Turk J Pharm Sci 2024; 21:252-258. [PMID: 38994879 PMCID: PMC11590556 DOI: 10.4274/tjps.galenos.2023.88935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/26/2023] [Indexed: 07/13/2024]
Abstract
Objectives Plant extracts are important natural resources that may have antimicrobial and antibiofilm effects against pathogens. This study was conducted to investigate the in vitro antimicrobial activities of methanol extracts of some medicinal plants (Achillea nobilis subspecies neilreichii (A. Kern.) Velen., Aetheorhiza bulbosa (L.) Cass, Allium paniculatum L, Asphodelus aestivus Brot., Ballota nigra L., Cistus laurifolius L., Cistus salviifolius L., Dioscorea communis (L.) Caddick and Wilkin, Galium verum L., Hypericum triquetrifolium Turra, Paliurus spina-christi Mill., Primula vulgaris Huds. subspecies rubra (Sm.) Arcang., Ranunculus arvensis L. and Teucrium polium L.) from Balıkesir province in Türkiye. Materials and Methods Preliminary antimicrobial activity screening was conducted for all extracts. Antibiofilm activity studies were conducted on mature Candida albicans biofilms. Moreover, the cytotoxicities of A. paniculatum flower extract on A549 and Vero cell lines were determined using a colorimetric tetrazolium-based assay. Results A. paniculatum flower, P. vulgaris root, C. laurifolius, C. salviifolius, and A. nobilis displayed good activity [minimum inhibitory concentrations (MIC): 9.75, 156, 312, 312 and 312 μg/mL, respectively] against C. albicans American Type Culture Collection 10231. Biofilm studies were conducted on these plant extracts. The methanol extract of A. paniculatum flower decreased the number of C. albicans [colony-forming unit (CFU)/mL] in mature biofilm statistically at 32 x MIC and higher concentrations (p < 0.01). A. paniculatum flower extract had a cytotoxic effect (killing more than 50% of cells) at high concentrations, and its effect on Vero cells was similar to that on A549 cells. Conclusion This study demonstrated the importance of the methanol extract of A. paniculatum flower as a natural alternative against C. albicans infections, including biofilms.
Collapse
Affiliation(s)
- Özlem OYARDI
- Gazi University Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Ankara, Türkiye
| | - Mayram HACIOĞLU
- İstanbul University Faculty of Pharmacy, Department of Pharmaceutical Microbiology, İstanbul, Türkiye
| | - Ebru ÖZDEMİR
- Altınbaş University Faculty of Pharmacy, Department of Pharmaceutical Botany, İstanbul, Türkiye
| | - Meryem Şeyda ERBAY
- İstanbul University Faculty of Pharmacy, Department of Pharmaceutical Botany, İstanbul, Türkiye
| | - Şükran KÜLTÜR
- İstanbul University Faculty of Pharmacy, Department of Pharmaceutical Botany, İstanbul, Türkiye
| | - Çağla BOZKURT GÜZEL
- İstanbul University Faculty of Pharmacy, Department of Pharmaceutical Microbiology, İstanbul, Türkiye
| |
Collapse
|
33
|
Ramos LS, Fernandes MF, Santos HLC, Picão RC, Branquinha MH, Santos ALS. Candida spp. isolated from recreational coastal waters of Rio de Janeiro - Brazil: Focus on antifungal resistance and virulence attributes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174662. [PMID: 38997029 DOI: 10.1016/j.scitotenv.2024.174662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024]
Abstract
The use of recreational waters is a widespread activity worldwide, and one of the risks associated with this practice is the exposure of bathers to microorganisms that may arise due to pollution caused by inadequate infrastructure and sanitation. In the present work, we isolated Candida spp. (n = 24) from five recreational beaches in Rio de Janeiro, Brazil, in order to evaluate their susceptibility to antifungals, the production of virulence attributes and the in vivo virulence using Tenebrio molitor larvae as a model. The ITS1-5.8S-ITS2 gene sequencing identified thirteen isolates (54.1 %) as C. tropicalis, seven (29.1 %) as C. krusei (Pichia kudriavzevii), one (4.2 %) as C. rugosa (Diutina rugosa), one (4.2 %) as C. mesorugosa (Diutina mesorugosa), one (4.2 %) as C. utilis (Cyberlindnera jadinii) and one (4.2 %) as C. parapsilosis. C. tropicalis isolates showed resistance to azoles and susceptibility to amphotericin B, flucytosine and caspofungin. C. krusei isolates were resistant to fluconazole, caspofungin and itraconazole, with 42.8 % resistance to flucytosine, besides susceptibility to voriconazole and amphotericin B. The remaining species were susceptible to all tested antifungals. All Candida isolates adhered to abiotic surfaces and formed biofilm on polystyrene, albeit to varying degrees, and produced aspartic protease and hemolytic activity, which are considered fungal virulence attributes. C. tropicalis, C. krusei and C. utilis isolates produced phytase, while the only esterase producer was C. tropicalis. Regarding resistance to osmotic stress, all isolates of C. tropicalis, C. parapsilosis and C. mesorugosa grew up to 7.5 % NaCl; the remaining isolates grew up to 1.87-3.75 % NaCl. The mortality caused by fungal challenges in T. molitor larvae was variable, with C. tropicalis, C. utilis and C. parapsilosis being more virulent than C. krusei and C. rugosa complex. Collectively, the presence of these yeasts, particularly the virulent and resistant isolates, in recreational waters can pose a significant health risk to bathers.
Collapse
Affiliation(s)
- Lívia S Ramos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana F Fernandes
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helena L C Santos
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Renata C Picão
- Laboratório de Investigação em Microbiologia Médica, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marta H Branquinha
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Rede Micologia RJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - André L S Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Rede Micologia RJ - Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-902, RJ, Brazil; Programa de Pós-Graduação em Bioquímica, Instituto de Química, UFRJ, Rio de Janeiro, Brazil.
| |
Collapse
|
34
|
Pitiriga VC, Campos E, Bakalis J, Saroglou G, Tsakris A. Differences in the Dwell Time of Peripherally Inserted Central Catheters between Patients with Catheter Colonization and Those Developing Central Line-Associated Bloodstream Infection: A Single Centre Retrospective Cohort Study. Antibiotics (Basel) 2024; 13:632. [PMID: 39061314 PMCID: PMC11273596 DOI: 10.3390/antibiotics13070632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Substantial knowledge gaps exist concerning the varying durations of peripherally inserted central catheter (PICC) placements that lead to either central line-associated bloodstream infection (CLABSI) or catheter colonization. We aimed to compare PICCs dwell time between patients who developed CLABSIs due to multidrug-resistant microorganisms (MDROs) and patients with catheter colonization by MDROs. Data from 86 patients admitted consecutively to a tertiary-care hospital from 2017 to 2020 were retrospectively analyzed. The mean dwell time was 25.73 ± 16.19 days in the PICC-CLABSI group and 16.36 ± 10.28 days in the PICC-colonization group (p = 0.002). The mean dwell time was 17.38 ± 9.5 days in the PICC-MDRO group and 22.48 ± 15.64 days in the PICC-non-MDRO group (p = 0.005). Within the PICC-CLABSI group, the mean dwell time for CLABSIs caused by MDROs was 21.50 ± 12.31 days, compared to 27.73 ± 16.98 days for CLABSIs caused by non-MDROs (p = 0.417). Within the PICC-colonization group, the mean dwell time was 15.55 ± 7.73 days in PICCs colonized by MDROs and 16.92 ± 11.85 days in PICCs colonized by non-MDROs (p = 0.124). The findings of the present study suggest that CLABSIs caused by MDROs in PICCs are associated with a shorter mean catheter dwell time compared to those caused by non-MDROs, underscoring the importance of considering infections by MDROs when evaluating PICC dwell times.
Collapse
Affiliation(s)
- Vassiliki C. Pitiriga
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Elsa Campos
- Department of Internal Medicine, Metropolitan Hospital, 9 Ethnarchou Makariou Street, 18547 Athens, Greece
| | - John Bakalis
- Department of Internal Medicine, Metropolitan Hospital, 9 Ethnarchou Makariou Street, 18547 Athens, Greece
| | - George Saroglou
- Department of Internal Medicine, Metropolitan Hospital, 9 Ethnarchou Makariou Street, 18547 Athens, Greece
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| |
Collapse
|
35
|
do Socorro Costa M, da Silva ARP, Santos Araújo J, Dos Santos ATL, Fonseca VJA, Gonçalves Alencar G, Moura TF, Gonçalves SA, Filho JMB, Morais-Braga MFB, Andrade-Pinheiro JC, Coutinho HDM. In vitro Evaluation of Fungal Susceptibility and Inhibition of Virulence by Diosgenin. Chem Biodivers 2024; 21:e202400444. [PMID: 38670923 DOI: 10.1002/cbdv.202400444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 04/28/2024]
Abstract
Fungal infections are a public health problem that mainly affects immunosuppressed people, Candida spp. have been responsible for most sources of contamination and invasive fungal infections described around the world. The need arises to find new therapeutic approaches to combat growing infections. Plants and natural products have been considered a valuable source for discovering new molecules with active ingredients. Diosgenin is a sapogenin found in the families of Leguminosae and Dioscoreaceae, it is obtained mainly from the dioscin saponin through the hydrolysis method, it is a phytochemical that has been highlighted in the treatment of various diseases, as well as in combating microbial resistance. The present study aimed to evaluate the susceptibility of fungal strains to diosgenin, as well as verify the association with the reference drug and evaluate the inhibition of the virulence factor through morphological changes in the yeast state to the filamentous form of hyphae and pseudohyphae in strains of Candida albicans, Candida tropicalis and Candida krusei using the broth microdilution method and microculture technique. Antifungal assays revealed that diosgenin was not able to inhibit the growth of the tested strains. However, it was able to inhibit the fungal dimorphism of the strains evaluated, however further studies are recommended to verify its effectiveness against other virulence factors.
Collapse
Affiliation(s)
- Maria do Socorro Costa
- Graduate Program in Biotechnology, State University of Ceará, Fortaleza, Ceará, Brazil
- Laboratory of Microbiology and Molecular Biology- LMBM, Regional University of Cariri, Crato, Ceará, Brazil
| | - Ana Raquel Pereira da Silva
- Graduate Program in Biotechnology, State University of Ceará, Fortaleza, Ceará, Brazil
- Laboratory of Microbiology and Molecular Biology- LMBM, Regional University of Cariri, Crato, Ceará, Brazil
| | - Juliana Santos Araújo
- Laboratory of Applied Microbiology -, LAMAP, Federal University of Cariri, Barbalha, Ceará, Brazil
| | | | | | - Gabriel Gonçalves Alencar
- Laboratory of Microbiology and Molecular Biology- LMBM, Regional University of Cariri, Crato, Ceará, Brazil
| | - Talysson Felismino Moura
- Laboratory of Microbiology and Molecular Biology- LMBM, Regional University of Cariri, Crato, Ceará, Brazil
| | - Sheila Alves Gonçalves
- Laboratory of Microbiology and Molecular Biology- LMBM, Regional University of Cariri, Crato, Ceará, Brazil
| | - José Maria Barbosa Filho
- Laboratory Technology Pharmaceutical, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Jacqueline Cosmo Andrade-Pinheiro
- Laboratory of Microbiology and Molecular Biology- LMBM, Regional University of Cariri, Crato, Ceará, Brazil
- Laboratory of Applied Microbiology -, LAMAP, Federal University of Cariri, Barbalha, Ceará, Brazil
| | | |
Collapse
|
36
|
Katsipoulaki M, Stappers MHT, Malavia-Jones D, Brunke S, Hube B, Gow NAR. Candida albicans and Candida glabrata: global priority pathogens. Microbiol Mol Biol Rev 2024; 88:e0002123. [PMID: 38832801 PMCID: PMC11332356 DOI: 10.1128/mmbr.00021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
SUMMARYA significant increase in the incidence of Candida-mediated infections has been observed in the last decade, mainly due to rising numbers of susceptible individuals. Recently, the World Health Organization published its first fungal pathogen priority list, with Candida species listed in medium, high, and critical priority categories. This review is a synthesis of information and recent advances in our understanding of two of these species-Candida albicans and Candida glabrata. Of these, C. albicans is the most common cause of candidemia around the world and is categorized as a critical priority pathogen. C. glabrata is considered a high-priority pathogen and has become an increasingly important cause of candidemia in recent years. It is now the second most common causative agent of candidemia in many geographical regions. Despite their differences and phylogenetic divergence, they are successful as pathogens and commensals of humans. Both species can cause a broad variety of infections, ranging from superficial to potentially lethal systemic infections. While they share similarities in certain infection strategies, including tissue adhesion and invasion, they differ significantly in key aspects of their biology, interaction with immune cells, host damage strategies, and metabolic adaptations. Here we provide insights on key aspects of their biology, epidemiology, commensal and pathogenic lifestyles, interactions with the immune system, and antifungal resistance.
Collapse
Affiliation(s)
- Myrto Katsipoulaki
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark H. T. Stappers
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Dhara Malavia-Jones
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
37
|
Wang Z, Zhang Q, Zhang H, Lu Y. Roles of alcohol dehydrogenase 1 in the biological activities of Candida albicans. Crit Rev Microbiol 2024:1-15. [PMID: 38916139 DOI: 10.1080/1040841x.2024.2371510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/04/2024] [Indexed: 06/26/2024]
Abstract
Candida albicans stands as the foremost prevalent human commensal pathogen and a significant contributor to nosocomial fungal infections. In the metabolism of C. albicans, alcohol dehydrogenase 1 (Adh1) is one of the important enzymes that converts acetaldehyde produced by pyruvate decarboxylation into ethanol at the end of glycolysis. Leveraging the foundational processes of alcoholic fermentation, Adh1 plays an active role in multiple biological phenomena, including biofilm formation, interactions between different species, the development of drug resistance, and the potential initiation of gastrointestinal cancer. Additionally, Adh1 within C. albicans has demonstrated associations with regulating the cell cycle, stress responses, and various intracellular states. Furthermore, Adh1 is extracellularly localized on the cell wall surface, where it plays roles in processes such as tissue invasion and host immune responses. Drawing from an analysis of ADH1 gene structure, expression patterns, and fundamental functions, this review elucidates the intricate connections between Adh1 and various biological processes within C. albicans, underscoring its potential implications for the prevention, diagnosis, and treatment of candidiasis.
Collapse
Affiliation(s)
- Ziqi Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qi Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Haoying Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yuanyuan Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
38
|
Medina JGS, Camacho JLC, Ruiz Garcia J, Mira A, Martínez Martínez RE, Comas-García M, Rangel AG, Pozos-Guillén A, Romo SA. Streptococcus dentisani inhibits the growth of Candida albicans and Candida glabrata: in vitro assay. Int Microbiol 2024. [DOI: 10.1007/s10123-024-00525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 01/03/2025]
|
39
|
Kane A, Dinh H, Campbell L, Cain AK, Hibbs D, Carter D. Spectrum of activity and mechanisms of azole-bisphosphonate synergy in pathogenic Candida. Microbiol Spectr 2024; 12:e0012124. [PMID: 38695556 PMCID: PMC11237636 DOI: 10.1128/spectrum.00121-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/12/2024] [Indexed: 06/06/2024] Open
Abstract
Candidiasis places a significant burden on human health and can range from common superficial vulvovaginal and oral infections to invasive diseases with high mortality. The most common Candida species implicated in human disease is Candida albicans, but other species like Candida glabrata are emerging. The use of azole antifungals for treatment is limited by increasing rates of resistance. This study explores repositioning bisphosphonates, which are traditionally used for osteoporosis, as antifungal synergists that can improve and revitalize the use of azoles. Risedronate, alendronate, and zoledronate (ZOL) were tested against isolates from six different species of Candida, and ZOL produced moderate antifungal activity and strong synergy with azoles like fluconazole (FLC), particularly in C. glabrata. FLC:ZOL combinations had increased fungicidal and antibiofilm activity compared to either drug alone, and the combination prevented the development of antifungal resistance. Mechanistic investigations demonstrated that the synergy was mediated by the depletion of squalene, resulting in the inhibition of ergosterol biosynthesis and a compromised membrane structure. In C. glabrata, synergy compromised the function of membrane-bound multidrug transporters and caused an accumulation of reactive oxygen species, which may account for its acute sensitivity to FLC:ZOL. The efficacy of FLC:ZOL in vivo was confirmed in a Galleria mellonella infection model, where combinations improved the survival of larvae infected with C. albicans and C. glabrata to a greater extent than monotherapy with FLC or ZOL, and at reduced dosages. These findings demonstrate that bisphosphonates and azoles are a promising new combination therapy for the treatment of topical candidiasis. IMPORTANCE Candida is a common and often very serious opportunistic fungal pathogen. Invasive candidiasis is a prevalent cause of nosocomial infections with a high mortality rate, and mucocutaneous infections significantly impact the quality of life of millions of patients a year. These infections pose substantial clinical challenges, particularly as the currently available antifungal treatment options are limited in efficacy and often toxic. Azoles are a mainstay of antifungal therapy and work by targeting the biosynthesis of ergosterol. However, there are rising rates of acquired azole resistance in various Candida species, and some species are considered intrinsically resistant to most azoles. Our research demonstrates the promising therapeutic potential of synergistically enhancing azoles with non-toxic, FDA-approved bisphosphonates. Repurposing bisphosphonates as antifungal synergists can bypass much of the drug development pipeline and accelerate the translation of azole-bisphosphonate combination therapy.
Collapse
Affiliation(s)
- Aidan Kane
- School of Life and Environmental Sciences and the Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
| | - Hue Dinh
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
| | - Leona Campbell
- School of Life and Environmental Sciences and the Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
| | - Amy K. Cain
- School of Natural Sciences, ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
| | - David Hibbs
- School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia
| | - Dee Carter
- School of Life and Environmental Sciences and the Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
40
|
Singh R, Shukla J, Ali M, Dubey AK. A novel diterpenic derivative produced by Streptomyces chrestomyceticus ADP4 is a potent inhibitor of biofilm and virulence factors in Candida albicans and C. auris. J Appl Microbiol 2024; 135:lxae139. [PMID: 38866718 DOI: 10.1093/jambio/lxae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024]
Abstract
AIM Isolation, identification, structural and functional characterization of potent anti-Candida compound with specific antagonistic activities against significant human pathogens, Candida albicans and C. auris. METHODS AND RESULTS The compound (55B3) was purified from the metabolites produced by Streptomyces chrestomyceticus ADP4 by employing column chromatography. The structure of 55B3 was determined from the analyses of spectral data that included LCMS, nuclear magnetic resonance, FTIR, and UV spectroscopies. It was identified as a novel derivative of diterpenic aromatic acid, 3-(dictyotin-11'-oate-15'α, 19'β-olide)-4-(dictyotin-11'-oate-15″α, 19″β-olide)-protocatechoic acid. The compound displayed potent antifungal and anti-biofilm activities against C. albicans ATCC 10231 (Minimum Inhibitory Concentration, MIC90:14.94 ± 0.17 μgmL-1 and MBIC90: 16.03 ± 1.1 μgmL-1) and against C. auris CBS 12372 (MIC90: 21.75 ± 1.5 μgmL-1 and Minimum Biofilm Inhibitory Concentration, MBIC90: 18.38 ± 1.78 μgmL-1). Further, pronounced inhibition of important virulence attributes of Candida spp., e.g. yeast-to-hyphae transition, secretory aspartyl proteinase and phospholipase B by 55B3 was noted at subinhibitory concentrations. A plausible mechanism of anti-Candida action of the compound appeared to be the inhibition of ergosterol biosynthesis, which was inhibited by 64 ± 3% at the MIC90 value. The non-cytotoxic attribute of the compound was noted in the liver cell line (HepG2 cells). CONCLUSION The present work led to the discovery of a novel diterpenic derivative produced by S. chrestomyceticus ADP4. The compound displayed potent anti-Candida activity, particularly against the two most significant human pathogens, C. albicans and C. auris, which underlined its significance as a potential drug candidate for infections involving these pathogens.
Collapse
Affiliation(s)
- Radha Singh
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi 110078, India
| | - Jyoti Shukla
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi 110078, India
| | - Mohd Ali
- Faculty of Pharmacy, Hamdard University, New Delhi 110062, India
| | - Ashok K Dubey
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi 110078, India
| |
Collapse
|
41
|
Nouraei H, Zare S, Nemati M, Amirzadeh N, Motamedi M, Shabanzadeh S, Zomorodian K, Pakshir K. Comparative analysis of enzymatic profiles and biofilm formation in clinical and environmental Candida kefyr isolates. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13282. [PMID: 38923398 PMCID: PMC11194042 DOI: 10.1111/1758-2229.13282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/30/2024] [Indexed: 06/28/2024]
Abstract
The global landscape of Candida infections has seen a significant shift. Previously, Candida albicans was the predominant species. However, there has been an emergence of non-albicans Candida species, which are often less susceptible to antifungal treatment. Candida kefyr, in particular, has been increasingly associated with infections. This study aimed to investigate the profiles of enzymatic activity and biofilm formation in both clinical and non-clinical isolates of C. kefyr. A total of 66 C. kefyr isolates were analysed. The activities of proteinase and phospholipase were assessed using bovine serum albumin and egg yolk agar, respectively. Haemolysin, caseinolytic and esterase activities were evaluated using specific methods. Biofilm formation was investigated using crystal violet staining. The findings indicated that biofilm and proteinase activity were detected in 81.8% and 93.9% of all the isolates, respectively. Haemolysin activity was observed with the highest occurrence (95.5%) among normal microbiota isolates. Esterase activity was predominantly identified in dairy samples and was absent in hospital samples. Caseinase production was found with the highest occurrence (18.2%) in normal microbiota and hospital samples. Phospholipase activity was limited, found in only 3% of all the isolates. These findings reveal variations in enzyme activity between clinical and non-clinical C. kefyr isolates. This sheds light on their pathogenic potential and has implications for therapeutic strategies.
Collapse
Affiliation(s)
- Hasti Nouraei
- Department of Parasitology and Mycology, School of MedicineShiraz University of Medical SciencesShirazIran
| | - Samira Zare
- Department of Parasitology and Mycology, School of MedicineShiraz University of Medical SciencesShirazIran
| | - Maryam Nemati
- Department of Parasitology and Mycology, School of MedicineShiraz University of Medical SciencesShirazIran
| | - Neda Amirzadeh
- Department of Parasitology and Mycology, School of MedicineShiraz University of Medical SciencesShirazIran
| | - Marjan Motamedi
- Department of Parasitology and Mycology, School of MedicineShiraz University of Medical SciencesShirazIran
| | - Shafigheh Shabanzadeh
- Department of Parasitology and Mycology, School of MedicineShiraz University of Medical SciencesShirazIran
| | - Kamiar Zomorodian
- Department of Parasitology and Mycology, School of MedicineShiraz University of Medical SciencesShirazIran
- Basic Sciences in Infectious Diseases Research Center, School of MedicineShiraz University of Medical SciencesShirazIran
| | - Keyvan Pakshir
- Department of Parasitology and Mycology, School of MedicineShiraz University of Medical SciencesShirazIran
- Basic Sciences in Infectious Diseases Research Center, School of MedicineShiraz University of Medical SciencesShirazIran
| |
Collapse
|
42
|
Elsbaey M, Samaru Y, Elekhnawy E, Oku N, Igarashi Y. A new polycyclic tetramate macrolactam from Allostreptomyces RD068384: stereochemistry and antifungal potential. J Antibiot (Tokyo) 2024; 77:393-396. [PMID: 38594387 DOI: 10.1038/s41429-024-00705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 04/11/2024]
Abstract
A new polycyclic tetramate macrolactam designated allostreptamide (1), together with four known congeners, were isolated from the culture extract of Allostreptomyces RD068384. The planar structure of the new compound was elucidated through interpretation of NMR and MS data. The absolute configuration was determined through ROESY and ECD analyses. The isolated compounds revealed antifungal potential against fourteen Candida albicans isolates with minimum inhibitory concentrations (MICs) ranging from 64 to 2048 µg ml-1. Compound 3 showed antibiofilm action and considerably reduced the viability of five isolates (36%) in the formed biofilm. The qRT-PCR revealed that 3 downregulated the BCR1, PLB2, ALS1, and SAP5 biofilm related gene expression. Therefore, 3 could be a promising antifungal therapy for C. albicans infections.
Collapse
Affiliation(s)
- Marwa Elsbaey
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| | - Yuki Samaru
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Naoya Oku
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
43
|
Noori R, Bano N, Ahmad S, Mirza K, Mazumder JA, Perwez M, Raza K, Manzoor N, Sardar M. Microbial Biofilm Inhibition Using Magnetic Cross-Linked Polyphenol Oxidase Aggregates. ACS APPLIED BIO MATERIALS 2024; 7:3164-3178. [PMID: 38722774 DOI: 10.1021/acsabm.4c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Microbial biofilm accumulation poses a serious threat to the environment, presents significant challenges to different industries, and exhibits a large impact on public health. Since there has not been a conclusive answer found despite various efforts, the potential green and economical methods are being focused on, particularly the innovative approaches that employ biochemical agents. In the present study, we propose a bio-nanotechnological method using magnetic cross-linked polyphenol oxidase aggregates (PPO m-CLEA) for inhibition of microbial biofilm including multidrug resistant bacteria. Free PPO solution showed only 55-60% biofilm inhibition, whereas m-CLEA showed 70-75% inhibition, as confirmed through microscopic techniques. The carbohydrate and protein contents in biofilm extracellular polymeric substances (EPSs) were reduced significantly. The m-CLEA demonstrated reusability up to 5 cycles with consistent efficiency in biofilm inhibition. Computational work was also done where molecular docking of PPO with microbial proteins associated with biofilm formation was conducted, resulting in favorable binding scores and inter-residual interactions. Overall, both in vitro and in silico results suggest that PPO interferes with microbial cell attachment and EPS formation, thereby preventing biofilm colonization.
Collapse
Affiliation(s)
- Rubia Noori
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Nagmi Bano
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Shaban Ahmad
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Kainat Mirza
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | | | - Mohammad Perwez
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Nikhat Manzoor
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Meryam Sardar
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
44
|
Kovacs CJ, Rapp EM, McKenzie SM, Mazur MZ, Mchale RP, Brasko B, Min MY, Burpo FJ, Barnhill JC. Disruption of Biofilm by Bacteriophages in Clinically Relevant Settings. Mil Med 2024; 189:e1294-e1302. [PMID: 37847552 DOI: 10.1093/milmed/usad385] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/29/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023] Open
Abstract
INTRODUCTION Antibiotic-resistant bacteria are a growing threat to civilian and military health today. Although infections were once easily treatable by antibiotics and wound cleaning, the frequent mutation of bacteria has created strains impermeable to antibiotics and physical attack. Bacteria further their pathogenicity because of their ability to form biofilms on wounds, medical devices, and implant surfaces. Methods for treating biofilms in clinical settings are limited, and when formed by antibiotic-resistant bacteria, can generate chronic infections that are recalcitrant to available therapies. Bacteriophages are natural viral predators of bacteria, and their ability to rapidly destroy their host has led to increased attention in potential phage therapy applications. MATERIALS AND METHODS The present article sought to address a knowledge gap in the available literature pertaining to the usage of bacteriophage in clinically relevant settings and the resolution of infections particular to military concerns. PRISMA guidelines were followed for a systematic review of available literature that met the criteria for analysis and inclusion. The research completed for this review article originated from the U.S. Military Academy's library "Scout" search engine, which complies results from 254 available databases (including PubMed, Google Scholar, and SciFinder). The search criteria included original studies that employed bacteriophage use against biofilms, as well as successful phage therapy strategies for combating chronic bacterial infections. We specifically explored the use of bacteriophage against antibiotic- and treatment-resistant bacteria. RESULTS A total of 80 studies were identified that met the inclusion criteria following PRISMA guidelines. The application of bacteriophage has been demonstrated to robustly disrupt biofilm growth in wounds and on implant surfaces. When traditional therapies have failed to disrupt biofilms and chronic infections, a combination of these treatments with phage has proven to be effective, often leading to complete wound healing without reinfection. CONCLUSIONS This review article examines the available literature where bacteriophages have been utilized to treat biofilms in clinically relevant settings. Specific attention is paid to biofilms on implant medical devices, biofilms formed on wounds, and clinical outcomes, where phage treatment has been efficacious. In addition to the clinical benefit of phage therapies, the military relevance and treatment of combat-related infections is also examined. Phages offer the ability to expand available treatment options in austere environments with relatively low cost and effort, allowing the impacted warfighter to return to duty quicker and healthier.
Collapse
Affiliation(s)
- Christopher J Kovacs
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
| | - Erika M Rapp
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Sophia M McKenzie
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Michael Z Mazur
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Riley P Mchale
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Briana Brasko
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Michael Y Min
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - F John Burpo
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Jason C Barnhill
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| |
Collapse
|
45
|
Santra HK, Dutta R, Banerjee D. Antifungal activity of bio-active cell-free culture extracts and volatile organic compounds (VOCs) synthesised by endophytic fungal isolates of Garden Nasturtium. Sci Rep 2024; 14:11228. [PMID: 38755187 PMCID: PMC11099177 DOI: 10.1038/s41598-024-60948-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Antimicrobial resistance in fungal pathogens (both human and plant) is increasing alarmingly, leading to massive economic crises. The existing anti-fungal agents are becoming ineffective, and the situation worsens on a logarithmic scale. Novel antifungals from unique natural sources are highly sought to cope sustainably with the situation. Metabolites from endophytic microbes are the best-fitted alternatives in this case. Endophytes are the untapped sources of 'plants' internal microbial population' and are promising sources of effective bio-therapeutic agents. Fungal endophytes were isolated from Tropaeolum majus and checked for antifungal activity against selected plant and human pathogens. Bioactive metabolites were identified through chromatographic techniques. The mode of action of those metabolites was evaluated through various spectroscopic techniques. The production of antifungal metabolite was optimized also. In particular VOCs (volatile organic compounds) of TML9 were tested in vitro for their anti-phytopathogenic activity. Ethyl acetate (EA) extract of cell-free culture components of Colletotrichum aenigma TML3 exhibited broad-spectrum antifungal activity against four species of Candida and the major constituents reported were 6-pentyl-2H-pyran-2-one, 2-Nonanone, 1 propanol 2-amino. The volatile metabolites, trans-ocimene, geraniol, and 4-terpinyl acetate, produced from Curvularia lunata TML9, inhibited the growth of some selected phyto pathogens. EA extract hampered the biofilm formation, minimised the haemolytic effect, and blocked the transformation of Candida albicans (MTCC 4748) from yeast to hyphal form with a Minimum Fungicidal Concentration (MFC) of 200-600 µg mL-1. Central carbohydrate metabolism, ergosterol synthesis, and membrane permeability were adversely affected and caused the lethal leakage of necessary macromolecules of C. albicans. Volatile metabolites inhibited the growth of phytopathogens i.e., Rhizoctonia solani, Alternaria alternata, Botrytis cinerea, Cercospora beticola, Penicillium digitatum, Aspergillus fumigatus, Ceratocystis ulmi, Pythium ultimum up to 89% with an IC50 value of 21.3-69.6 µL 50 mL-1 and caused leakage of soluble proteins and other intracellular molecules. Citrusy sweet odor volatiles of TML9 cultured in wheat-husk minimised the infections of Penicillium digitatum (green mold), in VOC-exposed sweet oranges (Citrus sinensis). Volatile and non-volatile antifungal metabolites of these two T. majus endophytes hold agricultural and pharmaceutical interests. Metabolites of TML3 have strong anti-Candida activity and require further assessment for therapeutic applications. Also, volatile metabolites of TML9 can be further studied as a source of antifungals. The present investigational outcomes bio-prospects the efficacy of fungal endophytes of Garden Nasturtium.
Collapse
Affiliation(s)
- Hiran Kanti Santra
- Microbiology and Microbial Biotechnology Laboratory, Department of Botany and Forestry, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Riya Dutta
- Center for Life Sciences, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Debdulal Banerjee
- Microbiology and Microbial Biotechnology Laboratory, Department of Botany and Forestry, Vidyasagar University, Midnapore, West Bengal, 721102, India.
- Center for Life Sciences, Vidyasagar University, Midnapore, West Bengal, 721102, India.
| |
Collapse
|
46
|
Aonofriesei F. Surfactants' Interplay with Biofilm Development in Staphylococcus and Candida. Pharmaceutics 2024; 16:657. [PMID: 38794319 PMCID: PMC11125353 DOI: 10.3390/pharmaceutics16050657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The capacity of micro-organisms to form biofilms is a pervasive trait in the microbial realm. For pathogens, biofilm formation serves as a virulence factor facilitating successful host colonization. Simultaneously, infections stemming from biofilm-forming micro-organisms pose significant treatment challenges due to their heightened resistance to antimicrobial agents. Hence, the quest for active compounds capable of impeding microbial biofilm development stands as a pivotal pursuit in biomedical research. This study presents findings concerning the impact of three surfactants, namely, polysorbate 20 (T20), polysorbate 80 (T80), and sodium dodecyl sulfate (SDS), on the initial stage of biofilm development in both Staphylococcus aureus and Candida dubliniensis. In contrast to previous investigations, we conducted a comparative assessment of the biofilm development capacity of these two taxonomically distant groups, predicated on their shared ability to reduce TTC. The common metabolic trait shared by S. aureus and C. dubliniensis in reducing TTC to formazan facilitated a simultaneous evaluation of biofilm development under the influence of surfactants across both groups. Our results revealed that surfactants could impede the development of biofilms in both species by disrupting the initial cell attachment step. The observed effect was contingent upon the concentration and type of compound, with a higher inhibition observed in culture media supplemented with SDS. At maximum concentrations (5%), T20 and T80 significantly curtailed the formation and viability of S. aureus and C. dubliniensis biofilms. Specifically, T20 inhibited biofilm development by 75.36% in S. aureus and 71.18% in C. dubliniensis, while T80 exhibited a slightly lower inhibitory effect, with values ranging between 66.68% (C. dubliniensis) and 65.54% (S. aureus) compared to the controls. Incorporating these two non-toxic surfactants into pharmaceutical formulations could potentially enhance the inhibitory efficacy of selected antimicrobial agents, particularly in external topical applications.
Collapse
Affiliation(s)
- Florin Aonofriesei
- Department of Natural Sciences, Faculty of Natural and Agricultural Sciences, Ovidius University of Constanta, 1, University Street, 900470 Constanța, Romania
| |
Collapse
|
47
|
Patil SB, Basrani ST, Chougule SA, Gavandi TC, Karuppayil SM, Jadhav AK. Butyl isothiocyanate exhibits antifungal and anti-biofilm activity against Candida albicans by targeting cell membrane integrity, cell cycle progression and oxidative stress. Arch Microbiol 2024; 206:251. [PMID: 38727840 DOI: 10.1007/s00203-024-03983-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/18/2024]
Abstract
The prevalence of Candida albicans infection has increased during the past few years, which contributes to the need for new, effective treatments due to the increasing concerns regarding antifungal drug toxicity and multidrug resistance. Butyl isothiocyanate (butylITC) is a glucosinolate derivative, and has shown a significant antifungal effect contrary to Candida albicans. Additionally, how butylITC affects the virulence traits of C. albicans and molecular mode of actions are not well known. Present study shows that at 17.36 mM concentration butylITC inhibit planktonic growth. butylITC initially slowed the hyphal transition at 0.542 mM concentration. butylITC hampered biofilm development, and inhibits biofilm formation at 17.36 mM concentration which was analysed using metabolic assay (XTT assay) and Scanning Electron Microscopy (SEM). In addition, it was noted that butylITC inhibits ergosterol biosynthesis. The permeability of cell membranes was enhanced by butylITC treatment. Moreover, butylITC arrests cells at S-phase and induces intracellular Reactive Oxygen Species (ROS) accumulation in C. albicans. The results suggest that butylITC may have a dual mode of action, inhibit virulence factors and modulate cellular processes like inhibit ergosterol biosynthesis, cell cycle arrest, induces ROS production which leads to cell death in C. albicans.
Collapse
Affiliation(s)
- Shivani Balasaheb Patil
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India
| | - Sargun Tushar Basrani
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India
| | - Sayali Ashok Chougule
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India
| | - Tanjila Chandsaheb Gavandi
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India
| | - Sankunny Mohan Karuppayil
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India.
| | - Ashwini Khanderao Jadhav
- Department of Stem Cell and Regenerative Medicine, Medical Biotechnology Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur, 416003, Maharashtra, India.
| |
Collapse
|
48
|
Guha S, Cristy SA, Buda De Cesare G, Cruz MR, Lorenz MC, Garsin DA. Optimization of the antifungal properties of the bacterial peptide EntV by variant analysis. mBio 2024; 15:e0057024. [PMID: 38587425 PMCID: PMC11077972 DOI: 10.1128/mbio.00570-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024] Open
Abstract
Fungal resistance to commonly used medicines is a growing public health threat, and there is a dire need to develop new classes of antifungals. We previously described a peptide produced by Enterococcus faecalis, EntV, that restricts Candida albicans to a benign form rather than having direct fungicidal activity. Moreover, we showed that one 12-amino acid (aa) alpha helix of this peptide retained full activity, with partial activity down to the 10aa alpha helix. Using these peptides as a starting point, the current investigation sought to identify the critical features necessary for antifungal activity and to screen for new variants with enhanced activity using both biofilm and C. elegans infection assays. First, the short peptides were screened for residues with critical activity by generating alanine substitutions. Based on this information, we used synthetic molecular evolution (SME) to rationally vary the specific residues of the 10aa variant in combination to generate a library that was screened to identify variants with more potent antifungal activity than the parent template. Five gain-of-function peptides were identified. Additionally, chemical modifications to the peptides to increase stability, including substitutions of D-amino acids and hydrocarbon stapling, were investigated. The most promising peptides were additionally tested in mouse models of oropharyngeal and systemic candidiasis where their efficacy in preventing infection was demonstrated. The expectation is that these discoveries will contribute to the development of new therapeutics in the fight against antimicrobial resistant fungi. IMPORTANCE Since the early 1980s, the incidence of disseminated life-threatening fungal infections has been on the rise. Worldwide, Candida and Cryptococcus species are among the most common agents causing these infections. Simultaneously, with this rise of clinical incidence, there has also been an increased prevalence of antifungal resistance, making treatment of these infections very difficult. For example, there are now strains of Candida auris that are resistant to all three classes of currently used antifungal drugs. In this study, we report on a strategy that allows for the development of novel antifungal agents by using synthetic molecular evolution. These discoveries demonstrate that the enhancement of antifungal activity from naturally occurring peptides is possible and can result in clinically relevant agents that have efficacy in multiple in vivo models as well as the potential for broad-spectrum activity.
Collapse
Affiliation(s)
- Shantanu Guha
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shane A. Cristy
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Giuseppe Buda De Cesare
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Melissa R. Cruz
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Danielle A. Garsin
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
49
|
Gao S, Ji Y, Xu S, Jia J, Fan B, Zhang Y, Shen H, Zhou W. Antifungal activity of nisin against clinical isolates of azole-resistant Candida tropicalis. Front Microbiol 2024; 15:1383953. [PMID: 38774506 PMCID: PMC11106359 DOI: 10.3389/fmicb.2024.1383953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
The rapid emergence of invasive infections caused by azole-resistant Candida tropicalis has become a public health concern, and there is an urgent need for alternative treatment strategies. Studies have demonstrated the antibacterial effects of nisin, a well-known peptide naturally produced by Lactococcus lactis subsp. lactis. However, there is scant information about the antifungal effect of nisin against C. tropicalis. The present study aims to investigate the in vitro antifungal activity of nisin against clinical isolates of azole-resistant C. tropicalis strains, as well as its inhibitory effect on biofilm formation. A total of 35 C. tropicalis strains isolated from patients with invasive fungal infections were divided into the azole-resistant group and the azole-sensitive group, containing 21 and 14 strains, respectively. The relative expression levels of the ERG11 and UPC2 genes in the azole-resistant group were higher than those in the azole-sensitive group (p < 0.0001), while no significant differences were observed in the expression levels of the MDR1 and CDR1 genes. The minimum inhibitory concentration of nisin against C. tropicalis ranged from 2 to 8 μg/mL. Nisin treatment inhibited the growth of azole-resistant C. tropicalis, with over a four-fold reduction in OD600 nm values observed at the 8-h time point, while it promoted the transition of C. tropicalis from the spore phase to the hyphal phase, as observed on cryo-scanning electron microscopy. The results of biofilm quantification using crystal violet staining indicated a significant decrease in OD570 nm values in the nisin-treated group compared to the controls (p < 0.0001). Among the 21 azole-resistant C. tropicalis strains, the biofilm formation was inhibited in 17 strains (17/21, 81%), and more than 85% inhibition of biofilm formation was observed in the representative strains. With regard to the molecular mechanisms, the expression of the BCR1 and UPC2 genes in the azole-resistant strains was down-regulated on nisin treatment (p < 0.05). In conclusion, we demonstrated, for the first time, that nisin has antifungal activity and significant anti-biofilm activity against clinical isolates of azole-resistant C. tropicalis strains. Based on the findings, nisin could be a promising alternative antifungal agent for combating azole-resistant C. tropicalis infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wanqing Zhou
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
50
|
Silva PA, Souza AA, de Oliveira GM, Ramada MHS, Hernández NV, Mora-Montes HM, Bueno RV, Martins-de-Sa D, de Freitas SM, Felipe MSS, Barbosa JARG. An improved expression and purification protocol enables the structural characterization of Mnt1, an antifungal target from Candida albicans. Fungal Biol Biotechnol 2024; 11:5. [PMID: 38715132 PMCID: PMC11077754 DOI: 10.1186/s40694-024-00174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Candida albicans is one of the most prevalent fungi causing infections in the world. Mnt1 is a mannosyltransferase that participates in both the cell wall biogenesis and biofilm growth of C. albicans. While the cell wall performs crucial functions in pathogenesis, biofilm growth is correlated with sequestration of drugs by the extracellular matrix. Therefore, antifungals targeting CaMnt1 can compromise fungal development and potentially also render Candida susceptible to drug therapy. Despite its importance, CaMnt1 has not yet been purified to high standards and its biophysical properties are lacking. RESULTS We describe a new protocol to obtain high yield of recombinant CaMnt1 in Komagataella phaffii using methanol induction. The purified protein's identity was confirmed by MALDI-TOF/TOF mass spectroscopy. The Far-UV circular dichroism (CD) spectra demonstrate that the secondary structure of CaMnt1 is compatible with a protein formed by α-helices and β-sheets at pH 7.0. The fluorescence spectroscopy results show that the tertiary structure of CaMnt1 is pH-dependent, with a greater intensity of fluorescence emission at pH 7.0. Using our molecular modeling protocol, we depict for the first time the ternary complex of CaMnt1 bound to its two substrates, which has enabled the identification of residues involved in substrate specificity and catalytic reaction. Our results corroborate the hypothesis that Tyr209 stabilizes the formation of an oxocarbenium ion-like intermediate during nucleophilic attack of the acceptor sugar, opposing the double displacement mechanism proposed by other reports. CONCLUSIONS The methodology presented here can substantially improve the yield of recombinant CaMnt1 expressed in flask-grown yeasts. In addition, the structural characterization of the fungal mannosyltransferase presents novelties that can be exploited for new antifungal drug's development.
Collapse
Affiliation(s)
- Patrícia Alves Silva
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, 70910-900, Brazil
| | - Amanda Araújo Souza
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, 70910-900, Brazil
| | - Gideane Mendes de Oliveira
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, 70910-900, Brazil
| | - Marcelo Henrique Soller Ramada
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, 70790-160, Brazil
| | - Nahúm Valente Hernández
- Departmento de Biologia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, 36050, Mexico
| | - Héctor Manuel Mora-Montes
- Departmento de Biologia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, 36050, Mexico
| | - Renata Vieira Bueno
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, 70910-900, Brazil
| | - Diogo Martins-de-Sa
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, 70910-900, Brazil
- Genesilico Biotech, Brasília, DF, Brazil
| | - Sonia Maria de Freitas
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, 70910-900, Brazil
| | - Maria Sueli Soares Felipe
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, 70790-160, Brazil
| | | |
Collapse
|