1
|
da Silva Costa SM, Ito MT, da Cruz PRS, De Souza BB, Rios VM, Bertozzo VDHE, Camargo ACL, Viturino MGM, Lanaro C, de Albuquerque DM, do Canto AM, Saad STO, Ospina-Prieto S, Ozelo MC, Costa FF, de Melo MB. The molecular mechanism responsible for HbSC retinopathy may depend on the action of the angiogenesis-related genes ROBO1 and SLC38A5. Exp Biol Med (Maywood) 2024; 249:10070. [PMID: 39114443 PMCID: PMC11303203 DOI: 10.3389/ebm.2024.10070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
HbSC disease, a less severe form of sickle cell disease, affects the retina more frequently and patients have higher rates of proliferative retinopathy that can progress to vision loss. This study aimed to identify differences in the expression of endothelial cell-derived molecules associated with the pathophysiology of proliferative sickle cell retinopathy (PSCR). RNAseq was used to compare the gene expression profile of circulating endothelial colony-forming cells from patients with SC hemoglobinopathy and proliferative retinopathy (n = 5), versus SC patients without retinopathy (n = 3). Real-time polymerase chain reaction (qRT-PCR) was used to validate the RNAseq results. A total of 134 differentially expressed genes (DEGs) were found. DEGs were mainly associated with vasodilatation, type I interferon signaling, innate immunity and angiogenesis. Among the DEGs identified, we highlight the most up-regulated genes ROBO1 (log2FoldChange = 4.32, FDR = 1.35E-11) and SLC38A5 (log2FoldChange = 3.36 FDR = 1.59E-07). ROBO1, an axon-guided receptor, promotes endothelial cell migration and contributes to the development of retinal angiogenesis and pathological ocular neovascularization. Endothelial SLC38A5, an amino acid (AA) transporter, regulates developmental and pathological retinal angiogenesis by controlling the uptake of AA nutrient, which may serve as metabolic fuel for the proliferation of endothelial cells (ECs) and consequent promotion of angiogenesis. Our data provide an important step towards elucidating the molecular pathophysiology of PSCR that may explain the differences in ocular manifestations between individuals with hemoglobinopathies and afford insights for new alternative strategies to inhibit pathological angiogenesis.
Collapse
Affiliation(s)
| | - Mirta Tomie Ito
- Center for Molecular Biology and Genetic Engineering, State University of Campinas—UNICAMP, Campinas, Brazil
| | | | - Bruno Batista De Souza
- Center for Molecular Biology and Genetic Engineering, State University of Campinas—UNICAMP, Campinas, Brazil
| | - Vinicius Mandolesi Rios
- Center for Molecular Biology and Genetic Engineering, State University of Campinas—UNICAMP, Campinas, Brazil
| | - Victor de Haidar e Bertozzo
- Center for Molecular Biology and Genetic Engineering, State University of Campinas—UNICAMP, Campinas, Brazil
| | - Ana Carolina Lima Camargo
- Center for Molecular Biology and Genetic Engineering, State University of Campinas—UNICAMP, Campinas, Brazil
| | | | - Carolina Lanaro
- Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas—UNICAMP, Campinas, Brazil
| | | | - Amanda Morato do Canto
- Departamento de Medicina Translacional, Faculdade de Ciências Médicas, Universidade Estadual de Campinas—UNICAMP, Campinas, Brazil
| | | | - Stephanie Ospina-Prieto
- Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas—UNICAMP, Campinas, Brazil
| | - Margareth Castro Ozelo
- Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas—UNICAMP, Campinas, Brazil
| | - Fernando Ferreira Costa
- Centro de Hematologia e Hemoterapia, Universidade Estadual de Campinas—UNICAMP, Campinas, Brazil
| | - Mônica Barbosa de Melo
- Center for Molecular Biology and Genetic Engineering, State University of Campinas—UNICAMP, Campinas, Brazil
| |
Collapse
|
2
|
Park HS, Choi GH, Jung TW, Lee T. Scaffold-based synergistic enhancement of stem cell effects for therapeutic angiogenesis in critical limb ischemia: an experimental animal study. Ann Surg Treat Res 2024; 107:50-57. [PMID: 38978685 PMCID: PMC11227915 DOI: 10.4174/astr.2024.107.1.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 07/10/2024] Open
Abstract
Purpose Stem cell-based therapies are considered an alternative approach for critical limb ischemia (CLI) patients with limited or exhausted options, yet their clinical use is limited by the lack of sustainability and unclear mechanism of action. In this study, a substance P-conjugated scaffold was injected with mesenchymal stem cells (MSCs) into an animal model of CLI to verify whether angiogenesis could be enhanced. Methods A self-assembling peptide (SAP) was conjugated with substance P, known to have the ability to recruit host stem cells into the site of action. This SAP was injected with MSCs into ischemic hindlimbs of rats, and the presence of MSCs was verified by immunohistochemical (IHC) staining of MSC-specific markers at days 7, 14, and 28. The degree of angiogenesis, cell apoptosis, and fibrosis was also quantified. Results Substance P-conjugated SAP was able to recruit intrinsic MSCs into the ischemic site of action. When injected in combination with MSCs, the presence of both injected and recruited MSCs was found in the ischemic tissues by double IHC staining. This in turn led to a higher degree of angiogenesis, less cell apoptosis, and less tissue fibrosis compared to the other groups at all time points. Conclusion The combination of substance P-conjugated SAP and MSCs was able to enhance angiogenesis and tissue repair, which was achieved by the additive effect from exogenously administered and intrinsically recruited MSCs. This scaffold-based intrinsic recruitment approach could be a viable option to enhance the therapeutic effects in patients with CLI.
Collapse
Affiliation(s)
- Hyung Sub Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Geum Hee Choi
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Tae Woo Jung
- Department of Pharmacology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Taeseung Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
3
|
Pirsadeghi A, Namakkoobi N, Behzadi MS, Pourzinolabedin H, Askari F, Shahabinejad E, Ghorbani S, Asadi F, Hosseini-Chegeni A, Yousefi-Ahmadipour A, Kamrani MH. Therapeutic approaches of cell therapy based on stem cells and terminally differentiated cells: Potential and effectiveness. Cells Dev 2024; 177:203904. [PMID: 38316293 DOI: 10.1016/j.cdev.2024.203904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/24/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Cell-based therapy, as a promising regenerative medicine approach, has been a promising and effective strategy to treat or even cure various kinds of diseases and conditions. Generally, two types of cells are used in cell therapy, the first is the stem cell, and the other is a fully differentiated cell. Initially, all cells in the body are derived from stem cells. Based on the capacity, potency and differentiation potential of stem cells, there are four types: totipotent (produces all somatic cells plus perinatal tissues), pluripotent (produces all somatic cells), multipotent (produces many types of cells), and unipotent (produces a particular type of cells). All non-totipotent stem cells can be used for cell therapy, depending on their potency and/or disease state/conditions. Adult fully differentiated cell is another cell type for cell therapy that is isolated from adult tissues or obtained following the differentiation of stem cells. The cells can then be transplanted back into the patient to replace damaged or malfunctioning cells, promote tissue repair, or enhance the targeted organ's overall function. With increasing science and knowledge in biology and medicine, different types of techniques have been developed to obtain efficient cells to use for therapeutic approaches. In this study, the potential and opportunity of use of all cell types, both stem cells and fully differentiated cells, are reviewed.
Collapse
Affiliation(s)
- Ali Pirsadeghi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Negar Namakkoobi
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahtab Sharifzadeh Behzadi
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hanieh Pourzinolabedin
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Askari
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; USERN Office, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Erfan Shahabinejad
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; USERN Office, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Somayeh Ghorbani
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fatemeh Asadi
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Hosseini-Chegeni
- Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Yousefi-Ahmadipour
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Cancer and Stem Cell Research Laboratory, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mohammad Hossein Kamrani
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
4
|
Onodera Y, Kobayashi J, Mitani S, Hosoda C, Banno K, Horie K, Okano T, Shimizu T, Shima M, Tatsumi K. Terminus-Selective Covalent Immobilization of Heparin on a Thermoresponsive Surface Using Click Chemistry for Efficient Binding of Basic Fibroblast Growth Factor. Macromol Biosci 2024; 24:e2300307. [PMID: 37774391 DOI: 10.1002/mabi.202300307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/02/2023] [Indexed: 10/01/2023]
Abstract
Cell therapy using endothelial cells (ECs) has great potential for the treatment of congenital disorders, such as hemophilia A. Cell sheet technology utilizing a thermoresponsive culture dish is a promising approach to efficiently transplant donor cells. In this study, a new method to prepare terminus-selective heparin-immobilized thermoresponsive culture surfaces is developed to facilitate the preparation of EC sheets. Alkynes are introduced to the reducing terminus of heparin via reductive amination. Cu-catalyzed azide-alkyne cycloaddition (CuAAC) facilitates efficient immobilization of the terminus of heparin on a thermoresponsive surface, resulting in a higher amount of immobilized heparin while preserving its function. Heparin-immobilized thermoresponsive surfaces prepared using CuAAC exhibit good adhesion to human endothelial colony-forming cells (ECFCs). In addition, upon further binding to basic fibroblast growth factor (bFGF) on heparin-immobilized surfaces, increased proliferation of ECFCs on the surface is observed. The confluent ECFC monolayer cultured on bFGF-bound heparin-immobilized thermoresponsive surfaces exhibits relatively high fibronectin accumulation and cell number and detaches at 22 °C while maintaining the sheet-like structure. Because heparin has an affinity for several types of bioactive molecules, the proposed method can be applied to facilitate efficient cultures and sheet formations of various cell types.
Collapse
Affiliation(s)
- Yu Onodera
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8521, Japan
| | - Jun Kobayashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Seiji Mitani
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8521, Japan
| | - Chihiro Hosoda
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8521, Japan
| | - Kimihiko Banno
- Department of Physiology II, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8521, Japan
| | - Kyoji Horie
- Department of Physiology II, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8521, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawadacho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Midori Shima
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8521, Japan
| | - Kohei Tatsumi
- Advanced Medical Science of Thrombosis and Hemostasis, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8521, Japan
| |
Collapse
|
5
|
Kulovic-Sissawo A, Tocantins C, Diniz MS, Weiss E, Steiner A, Tokic S, Madreiter-Sokolowski CT, Pereira SP, Hiden U. Mitochondrial Dysfunction in Endothelial Progenitor Cells: Unraveling Insights from Vascular Endothelial Cells. BIOLOGY 2024; 13:70. [PMID: 38392289 PMCID: PMC10886154 DOI: 10.3390/biology13020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Endothelial dysfunction is associated with several lifestyle-related diseases, including cardiovascular and neurodegenerative diseases, and it contributes significantly to the global health burden. Recent research indicates a link between cardiovascular risk factors (CVRFs), excessive production of reactive oxygen species (ROS), mitochondrial impairment, and endothelial dysfunction. Circulating endothelial progenitor cells (EPCs) are recruited into the vessel wall to maintain appropriate endothelial function, repair, and angiogenesis. After attachment, EPCs differentiate into mature endothelial cells (ECs). Like ECs, EPCs are also susceptible to CVRFs, including metabolic dysfunction and chronic inflammation. Therefore, mitochondrial dysfunction of EPCs may have long-term effects on the function of the mature ECs into which EPCs differentiate, particularly in the presence of endothelial damage. However, a link between CVRFs and impaired mitochondrial function in EPCs has hardly been investigated. In this review, we aim to consolidate existing knowledge on the development of mitochondrial and endothelial dysfunction in the vascular endothelium, place it in the context of recent studies investigating the consequences of CVRFs on EPCs, and discuss the role of mitochondrial dysfunction. Thus, we aim to gain a comprehensive understanding of mechanisms involved in EPC deterioration in relation to CVRFs and address potential therapeutic interventions targeting mitochondrial health to promote endothelial function.
Collapse
Affiliation(s)
- Azra Kulovic-Sissawo
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Carolina Tocantins
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Mariana S Diniz
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Elisa Weiss
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Andreas Steiner
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Silvija Tokic
- Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz, Austria
| | - Corina T Madreiter-Sokolowski
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Susana P Pereira
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - Ursula Hiden
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| |
Collapse
|
6
|
Loeffler DA. Approaches for Increasing Cerebral Efflux of Amyloid-β in Experimental Systems. J Alzheimers Dis 2024; 100:379-411. [PMID: 38875041 PMCID: PMC11307100 DOI: 10.3233/jad-240212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/16/2024]
Abstract
Amyloid protein-β (Aβ) concentrations are increased in the brain in both early onset and late onset Alzheimer's disease (AD). In early onset AD, cerebral Aβ production is increased and its clearance is decreased, while increased Aβ burden in late onset AD is due to impaired clearance. Aβ has been the focus of AD therapeutics since development of the amyloid hypothesis, but efforts to slow AD progression by lowering brain Aβ failed until phase 3 trials with the monoclonal antibodies lecanemab and donanemab. In addition to promoting phagocytic clearance of Aβ, antibodies lower cerebral Aβ by efflux of Aβ-antibody complexes across the capillary endothelia, dissolving Aβ aggregates, and a "peripheral sink" mechanism. Although the blood-brain barrier is the main route by which soluble Aβ leaves the brain (facilitated by low-density lipoprotein receptor-related protein-1 and ATP-binding cassette sub-family B member 1), Aβ can also be removed via the blood-cerebrospinal fluid barrier, glymphatic drainage, and intramural periarterial drainage. This review discusses experimental approaches to increase cerebral Aβ efflux via these mechanisms, clinical applications of these approaches, and findings in clinical trials with these approaches in patients with AD or mild cognitive impairment. Based on negative findings in clinical trials with previous approaches targeting monomeric Aβ, increasing the cerebral efflux of soluble Aβ is unlikely to slow AD progression if used as monotherapy. But if used as an adjunct to treatment with lecanemab or donanemab, this approach might allow greater slowing of AD progression than treatment with either antibody alone.
Collapse
Affiliation(s)
- David A. Loeffler
- Department of Neurology, Beaumont Research Institute, Corewell Health, Royal Oak, MI, USA
| |
Collapse
|
7
|
Chung S, Sung HJ. In situ Reprogramming as a Pro-Angiogenic Inducer to Rescue Ischemic Tissues. Pulse (Basel) 2024; 12:58-65. [PMID: 39022557 PMCID: PMC11249613 DOI: 10.1159/000538075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/25/2024] [Indexed: 07/20/2024] Open
Abstract
Background Enhanced regenerative therapeutic strategies are required to treat intractable ischemic heart disease. Summary Since the discovery of putative endothelial progenitor cells (EPCs) in 1997, many studies have focused on their extraction, ex vivo processing, and autotransplantation under ischemic conditions. Nonetheless, numerous randomized clinical trials involving thousands of patients have yielded only marginal treatment effects, highlighting the need for advances regarding insufficient dosage and complex ex vivo processing. The prevailing paradigm of cellular differentiation highlights the potential of direct cellular reprogramming, which paves the way for in situ reprogramming. In situ reprogramming holds the promise of significantly enhancing current therapeutic strategies, yet its success hinges on the precise targeting of candidate cells for reprogramming. In this context, the spleen emerges as a pivotal "in situ reprogramming hub," owing to its dual function as both a principal site for nanoparticle distribution and a significant reservoir of putative EPCs. The in situ reprogramming of splenic EPCs offers a potential solution to overcome critical challenges, including the aforementioned insufficient dosage and complex ex vivo processing. Key Messages This review explores the latest advancements in EPC therapy and in situ reprogramming, spotlighting a pioneering study that integrates those two strategies with a specific focus on the spleen. Such an innovative approach will potentially herald a new era of regenerative therapy for ischemic heart disease.
Collapse
Affiliation(s)
- Seyong Chung
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hak-Joon Sung
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Bi M, Yang K, Yu T, Wu G, Li Q. Cell-based mechanisms and strategies of co-culture system both in vivo and vitro for bone tissue engineering. Biomed Pharmacother 2023; 169:115907. [PMID: 37984308 DOI: 10.1016/j.biopha.2023.115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
The lack of a functional vascular supply has been identified as a major challenge limiting the clinical introduction of stem cell-based bone tissue engineering (BTE) for the repair of large-volume bone defects (LVBD). Various approaches have been explored to improve the vascular supply in tissue-engineered constructs, and the development of strategies that could effectively induce the establishment of a functional vascular supply has become a major goal of BTE research. One of the state-of-the-art methods is to incorporate both angiogenic and osteogenic cells in co-culture systems. This review clarifies the key concepts involved, summarises the cell types and models used to date, and systematically evaluates their performance. We also discuss the cell-to-cell communication between these two cell types and the strategies explored in BTE constructs with angiogenic and osteogenic cells to optimise their functions. In addition, we outline unresolved issues and remaining obstacles that need to be overcome for further development in this field and eventual successful repair of LVBD.
Collapse
Affiliation(s)
- Mengning Bi
- Department of Prosthetic Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology Shanghai, China
| | - Kaiwen Yang
- Department of Prosthetic Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China; Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology &Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai, China
| | - Tao Yu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands; Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands.
| | - Qiong Li
- Department of Prosthetic Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
9
|
Yan K, He Q, Lin D, Liang J, Chen J, Xie Z, Chen Z. Promotion of NAD + recycling by the hypoxia-induced shift in the lactate dehydrogenase isozyme profile reduces the senescence of human bone marrow-derived endothelial progenitor cells. Free Radic Biol Med 2023; 208:88-102. [PMID: 37536460 DOI: 10.1016/j.freeradbiomed.2023.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Expansion of bone marrow-derived endothelial progenitor cells (EPCs) in vitro to obtain required cell numbers for therapeutic applications faces the challenge of growing cell senescence under the traditional normoxic culture condition. We previously found that 1% O2 hypoxic culture condition is favorable for reducing senescence of EPCs, but the mechanisms underlying the favorability are still unclear. Here, we found that, compared with normoxia, hypoxia induced a shift in lactate dehydrogenase (LDH) isozyme profile, which manifested as decreased LDH2 and LDH1 and increased LDH5, LDH4 and total LDHs. Moreover, under hypoxia, EPCs presented higher LDH activity, which could promote the conversion of pyruvate to lactate, as well as a higher level of NAD+, Bcl2 interacting protein 3 (BNIP3) expression and mitophagy. Additionally, under hypoxia, knock-down of the LDHA subunit increased the LDH2 and LDH1 levels and knock-down of the LDHB subunit increased the LDH5 level, while the simultaneous knock-down of LDHA and LDHB reduced total LDHs and NAD+ level. Inhibition of NAD+ recycling reduced BNIP3 expression and mitophagy and promoted cell senescence. Taken together, these data demonstrated that 1% O2 hypoxia induces a shift in the LDH isozyme profile, promotes NAD+ recycling, increases BNIP3 expression and mitophagy, and reduces EPC senescence. Our findings contribute to a better understanding of the connection between hypoxic culture conditions and the senescence of bone marrow-derived EPCs and provide a novel strategy to improve in vitro expansion of EPCs.
Collapse
Affiliation(s)
- Kaihao Yan
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Qiwei He
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Dongni Lin
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jianli Liang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Junxiong Chen
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zijing Xie
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhenzhou Chen
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
10
|
Ivory A, Greene AS. Distinct roles of estrone and estradiol in endothelial colony-forming cells. Physiol Rep 2023; 11:e15818. [PMID: 37792856 PMCID: PMC10550204 DOI: 10.14814/phy2.15818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 10/06/2023] Open
Abstract
Our current understanding of the relationship between estrogen and human endothelial colony-forming cell (hECFC) function is based almost exclusively on studies investigating estradiol action at nuclear estrogen receptors. In the current study the hypothesis was tested that the less potent estrogen receptor agonist, estrone, affects hECFC proliferation, migration, secretion, and tube formation in a way that is unique from that of estradiol. The relationship between the estrogens, estradiol and estrone, is clinically important, particularly in postmenopausal women where estradiol levels wane and estrone becomes the predominant estrogen. Cultured hECFCs from peripheral blood mononuclear cell fractions were treated with concentrations of estradiol and estrone ranging from 1 nM to 1 μM separately and in combination. Following treatment, proliferation, migration, ability to attract other hECFCs (autocrine secretion), and ability to enhance endothelial cell tube formation (tubulogenesis) were tested. Functional assays revealed unique, concentration-dependent physiological effects of estrone and estradiol. Estradiol exposure resulted in increased hECFC proliferation, migration, secretion of chemoattractant, and enhancement of tube formation as expected. As with estradiol, hECFC secretion of chemoattractant increased significantly with each increase in estrone exposure. Estrone treatment produced a biphasic, concentration-dependent relationship with proliferation and tube formation and relatively no effect on hECFC migration at any concentration. The quantitative relationship between the effects of estrone and estradiol and each hECFC function was analyzed. The extent to which estrone was similar in effect to that of estradiol was dependent on both the concentrations of estradiol and estrone and the hECFC function measured. Interestingly, when the two estrogens were present, differing ratios resulted in unique functional responses. hECFCs that were treated with combinations of estrone and estradiol with high estrone to estradiol ratios showed decreased proliferative capacity. Conversely, hECFCs that were treated with combinations that were relatively high in estradiol, showed increased proliferative capacity. Cells that were treated with estrone and estradiol in equal concentrations showed an attenuated proliferative response that was decreased compared to the proliferation that either estrone or estradiol produced when they were present alone. This co-inhibitory relationship, which has not been previously reported, challenges the prevailing understanding of estrone as solely a weak agonist at estrogen receptors. This study provides evidence that estrone signaling is distinct from that of estradiol and that further investigation of estrone's mechanism of action and the biological effect may provide important insight into understanding the dysfunction and decreased number of hECFCs, and the resulting cardiovascular disease risk observed clinically in menopausal women and women undergoing hormone replacement therapy.
Collapse
Affiliation(s)
- Alicia Ivory
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | | |
Collapse
|
11
|
Tien TY, Wu YJ, Su CH, Hsieh CL, Wang BJ, Lee YN, Su Y, Yeh HI. Pannexin 1 Modulates Angiogenic Activities of Human Endothelial Colony-Forming Cells Through IGF-1 Mechanism and Is a Marker of Senescence. Arterioscler Thromb Vasc Biol 2023; 43:1935-1951. [PMID: 37589139 DOI: 10.1161/atvbaha.123.319529] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND We examined the role of Panxs (pannexins) in human endothelial progenitor cell (EPC) senescence. METHODS Young and replication-induced senescent endothelial colony-forming cells (ECFCs) derived from human circulating EPCs were used to examine cellular activities and senescence-associated indicators after transfection of short interference RNA specific to Panx1 or lentivirus-mediated Panx1 overexpression. Hind limb ischemia mice were used as in vivo angiogenesis model. Protein and phospho-kinase arrays were used to determine underlying mechanisms. RESULTS Panx1 was the predominant Panx isoform in human ECFCs and upregulated in both replication-induced senescent ECFCs and circulating EPCs from aged mice and humans. Cellular activities of the young ECFCs were enhanced by Panx1 downregulation but attenuated by its upregulation. In addition, reduction of Panx1 in the senescent ECFCs could rejuvenate cellular activities with reduced senescence-associated indicators, including senescence-associated β-galactosidase activity, p16INK4a (cyclin-dependent kinase inhibitor 2A), p21 (cyclin-dependent kinase inhibitor 1), acetyl-p53 (tumor protein P53), and phospho-histone H2A.X (histone family member X). In mouse ischemic hind limbs injected senescent ECFCs, blood perfusion ratio, salvaged limb outcome, and capillary density were all improved by Panx1 knockdown. IGF-1 (insulin-like growth factor 1) was significantly increased in the supernatant from senescent ECFCs after Panx1 knockdown. The enhanced activities and paracrine effects of Panx1 knockdown senescent ECFCs were completely inhibited by anti-IGF-1 antibodies. FAK (focal adhesion kinase), ERK (extracellular signal-regulated kinase), and STAT3 (signal transducer and activator of transcription 3) were activated in senescent ECFCs with Panx1 knockdown, in which the intracellular calcium level was reduced, and the activation was inhibited by supplemented calcium. The increased IGF-1 in Panx1-knockdown ECFCs was abrogated, respectively, by inhibitors of FAK (PF562271), ERK (U0126), and STAT3 (NSC74859) and supplemented calcium. CONCLUSIONS Panx1 expression is upregulated in human ECFCs/EPCs with replication-induced senescence and during aging. Angiogenic potential of senescent ECFCs is improved by Panx1 reduction through increased IGF-1 production via activation of the FAK-ERK axis following calcium influx reduction. Our findings provide new strategies to evaluate EPC activities and rejuvenate senescent EPCs for therapeutic angiogenesis.
Collapse
Affiliation(s)
- Ting-Yi Tien
- Institute of Biopharmaceutical Science, National Yang Ming Chiao Tung University, Taipei, Taiwan (T.-Y.T., Y.S.)
- Departments of Medical Research (T.-Y.T., C.-L.H., B.-J.W., Y.-N.L.), MacKay Memorial Hospital, Taipei, Taiwan
| | - Yih-Jer Wu
- Internal Medicine (Y.-J.W., C.-H.S., H.-I.Y.), MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan (Y.-J.W., C.-H.S., H.-I.Y.)
| | - Cheng-Huang Su
- Internal Medicine (Y.-J.W., C.-H.S., H.-I.Y.), MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan (Y.-J.W., C.-H.S., H.-I.Y.)
| | - Chin-Ling Hsieh
- Departments of Medical Research (T.-Y.T., C.-L.H., B.-J.W., Y.-N.L.), MacKay Memorial Hospital, Taipei, Taiwan
| | - Bo-Jeng Wang
- Departments of Medical Research (T.-Y.T., C.-L.H., B.-J.W., Y.-N.L.), MacKay Memorial Hospital, Taipei, Taiwan
| | - Yi-Nan Lee
- Departments of Medical Research (T.-Y.T., C.-L.H., B.-J.W., Y.-N.L.), MacKay Memorial Hospital, Taipei, Taiwan
| | - Yeu Su
- Institute of Biopharmaceutical Science, National Yang Ming Chiao Tung University, Taipei, Taiwan (T.-Y.T., Y.S.)
| | - Hung-I Yeh
- Internal Medicine (Y.-J.W., C.-H.S., H.-I.Y.), MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan (Y.-J.W., C.-H.S., H.-I.Y.)
| |
Collapse
|
12
|
Dragoni S, Turowski P. Vascular Signalling. Cells 2023; 12:2038. [PMID: 37626847 PMCID: PMC10453014 DOI: 10.3390/cells12162038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
In all vertebrates, closed blood and open lymph circulatory systems are essential for the delivery of nutrients and oxygen to tissues, waste clearance, and immune function [...].
Collapse
Affiliation(s)
- Silvia Dragoni
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Patric Turowski
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
13
|
Kim DY, Park G, Hong HS, Kim S, Son Y. Platelet-Derived Growth Factor-BB Priming Enhances Vasculogenic Capacity of Bone Marrow-Derived Endothelial Precursor Like Cells. Tissue Eng Regen Med 2023; 20:695-704. [PMID: 37266845 PMCID: PMC10352207 DOI: 10.1007/s13770-023-00546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/25/2023] [Accepted: 04/12/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Human endothelial progenitor cells (EPCs) were first identified in the peripheral blood and later in the cord blood and bone marrow (BM) with different vascularization capacity and different surface marker profiles. However, their identity and functional roles in neovascularization have not been clearly demonstrated in vivo and in vitro. METHODS Characterization of BM-EPC like cells were performed by fluorescence-activated cell sorting, immunofluorescence staining, enzyme-linked immunosorbent assay, Matrigel tube formation assay, and western blot analysis. RESULTS BM-EPC like cells were identified by selective adhesion to fibronectin and collagen from BM mononuclear cells, which generate fast-growing colonies with spindle morphology, express surface markers of CD105, vWF, UEA-I lectin binding, secrete HGF, VEGF, TGF-beta1 but can be distinguished from circulating EPC and endothelial cells by no expression of surface markers such as CD31, CD309, CD45, and CD34. These BM-EPC like cells shared many cell surface markers of BM-mesenchymal stem cells (MSC) but also can be distinguished by their vasculogenic property and other unique surface markers. Furthermore, the vasculogenic capacity of BM-EPC like cells were enhanced by co-culture of BM-MSC or PDGF-BB priming. PDGF-BB stimulated cell migration, proliferation, and secretion of laminin β-1, which was proposed as one of the mechanisms involved in the better vascularization of BM-EPC like cells. CONCLUSION PDGF-BB priming may be applied to improve the potency and function of BM-EPC like cells as vasculogenic cell therapy for the ischemic vascular repair.
Collapse
Affiliation(s)
- Do Young Kim
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104 South Korea
- Department of Biomedical Science and Technology, Graduated School, Kyung Hee University, Seoul, Korea
| | - Gabee Park
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104 South Korea
- Elphis Cell Therapeutics Inc, Yongin, Korea
| | - Hyun Sook Hong
- Department of Biomedical Science and Technology, Graduated School, Kyung Hee University, Seoul, Korea
- KHU Institute of Regenerative Medicine, KHU Hospital, Seoul, Korea
| | - Suna Kim
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104 South Korea
| | - Youngsook Son
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104 South Korea
- Department of Biomedical Science and Technology, Graduated School, Kyung Hee University, Seoul, Korea
- KHU Institute of Regenerative Medicine, KHU Hospital, Seoul, Korea
- Elphis Cell Therapeutics Inc, Yongin, Korea
| |
Collapse
|
14
|
Kolesnichenko OA, Flood HM, Zhang Y, Ustiyan V, Cuervo Jimenez HK, Kalin TV, Kalinichenko VV. Endothelial progenitor cells derived from embryonic stem cells prevent alveolar simplification in a murine model of bronchopulmonary dysplasia. Front Cell Dev Biol 2023; 11:1209518. [PMID: 37363726 PMCID: PMC10289167 DOI: 10.3389/fcell.2023.1209518] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction: Vascular remodeling and compromised alveolar development are hallmarks of chronic pulmonary diseases such as bronchopulmonary dysplasia (BPD). Despite advances in neonatal healthcare the number of BPD cases worldwide continues to increase. One approach to overcoming the premature arrest in lung development seen in BPD is to stimulate neonatal angiogenesis via delivery and engraftment of endothelial progenitor cells (EPCs). One such population is resident to the pulmonary microvasculature and expresses both FOXF1 and c-KIT. Previous studies have shown that c-KIT+FOXF1+ EPCs are highly sensitive to elevated levels of oxygen (hyperoxia) and are decreased in premature infants with BPD and hyperoxia-induced BPD mouse models. We hypothesize that restoring EPCs through transplantation of c-KIT+FOXF1+ EPCs derived in vitro from pluripotent embryonic stem cells (ESCs), will stimulate neonatal angiogenesis and alveolarization in mice with hyperoxia-induced lung injury. Methods: Utilizing a novel ESC line with a FOXF1:GFP reporter, we generated ESC-derived c-KIT+FOXF1+ EPCs in vitro. Using a second ESC line which contains FOXF1:GFP and tdTomato transgenes, we differentiated ESCs towards c-KIT+FOXF1+ EPCs and tracked them in vivo after injection into the neonatal circulation of hyperoxia-injured mice. After a recovery period in room air conditions, we analyzed c-KIT+FOXF1+ EPC engraftment and quantified the number of resident and circulating endothelial cells, the size of alveolar spaces, and the capillary density after EPC transplantations. Results and conclusion: Herein, we demonstrate that addition of BMP9 to the directed endothelial differentiation protocol results in very efficient generation of c-KIT+FOXF1+ EPCs from pluripotent ESCs. ESC-derived c-KIT+FOXF1+ EPCs effectively engraft into the pulmonary microvasculature of hyperoxia-injured mice, promote vascular remodeling in alveoli, increase the number of resident and circulating endothelial cells, and improve alveolarization. Altogether, these results provide a proof-of-principle that cell therapy with ESC-derived c-KIT+FOXF1+ EPCs can prevent alveolar simplification in a hyperoxia-induced BPD mouse model.
Collapse
Affiliation(s)
- Olena A. Kolesnichenko
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Hannah M. Flood
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Yufang Zhang
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Vladimir Ustiyan
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Hayde K. Cuervo Jimenez
- Center for Lung Regenerative Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Tanya V. Kalin
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Vladimir V. Kalinichenko
- Phoenix Children’s Health Research Institute, Department of Child Health, University of Arizona College of Medicine—Phoenix, Phoenix, AZ, United States
- Division of Neonatology, Phoenix Children’s Hospital, Phoenix, AZ, United States
| |
Collapse
|
15
|
Bansal A, Singh A, Nag TC, Sharma D, Garg B, Bhatla N, Choudhury SD, Ramakrishnan L. Augmenting the Angiogenic Profile and Functionality of Cord Blood Endothelial Colony-Forming Cells by Indirect Priming with Bone-Marrow-Derived Mesenchymal Stromal Cells. Biomedicines 2023; 11:biomedicines11051372. [PMID: 37239042 DOI: 10.3390/biomedicines11051372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Cellular therapy has shown promise as a strategy for the functional restoration of ischemic tissues through promoting vasculogenesis. Therapy with endothelial progenitor cells (EPCs) has shown encouraging results in preclinical studies, but the limited engraftment, inefficient migration, and poor survival of patrolling endothelial progenitor cells at the injured site hinder its clinical utilization. These limitations can, to some extent, be overcome by co-culturing EPCs with mesenchymal stem cells (MSCs). Studies on the improvement in functional capacity of late EPCs, also referred to as endothelial colony-forming cells (ECFCs), when cultured with MSCs have mostly focused on the angiogenic potential, although migration, adhesion, and proliferation potential also determine effective physiological vasculogenesis. Alteration in angiogenic proteins with co-culturing has also not been studied. We co-cultured ECFCs with MSCs via both direct and indirect means, and studied the impact of the resultant contact-mediated and paracrine-mediated impact of MSCs over ECFCs, respectively, on the functional aspects and the angiogenic protein signature of ECFCs. Both directly and indirectly primed ECFCs significantly restored the adhesion and vasculogenic potential of impaired ECFCs, whereas indirectly primed ECFCs showed better proliferation and migratory potential than directly primed ECFCs. Additionally, indirectly primed ECFCs, in their angiogenesis proteomic signature, showed alleviated inflammation, along with the balanced expression of various growth factors and regulators of angiogenesis.
Collapse
Affiliation(s)
- Ashutosh Bansal
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Devyani Sharma
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Bhavuk Garg
- Department of Orthopaedics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Neerja Bhatla
- Department of Obstetrics & Gynaecology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Saumitra Dey Choudhury
- Centralized Core Research Facility, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Lakshmy Ramakrishnan
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
16
|
An integrated single cell and spatial transcriptomic map of human white adipose tissue. Nat Commun 2023; 14:1438. [PMID: 36922516 PMCID: PMC10017705 DOI: 10.1038/s41467-023-36983-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
To date, single-cell studies of human white adipose tissue (WAT) have been based on small cohort sizes and no cellular consensus nomenclature exists. Herein, we performed a comprehensive meta-analysis of publicly available and newly generated single-cell, single-nucleus, and spatial transcriptomic results from human subcutaneous, omental, and perivascular WAT. Our high-resolution map is built on data from ten studies and allowed us to robustly identify >60 subpopulations of adipocytes, fibroblast and adipogenic progenitors, vascular, and immune cells. Using these results, we deconvolved spatial and bulk transcriptomic data from nine additional cohorts to provide spatial and clinical dimensions to the map. This identified cell-cell interactions as well as relationships between specific cell subtypes and insulin resistance, dyslipidemia, adipocyte volume, and lipolysis upon long-term weight changes. Altogether, our meta-map provides a rich resource defining the cellular and microarchitectural landscape of human WAT and describes the associations between specific cell types and metabolic states.
Collapse
|
17
|
Lee YN, Wu YJ, Lee HI, Wang HH, Hung CL, Chang CY, Chou YH, Tien TY, Lee CW, Lin CF, Su CH, Yeh HI. Hsa-miR-409-3p regulates endothelial progenitor senescence via PP2A-P38 and is a potential ageing marker in humans. J Cell Mol Med 2023; 27:687-700. [PMID: 36756741 PMCID: PMC9983318 DOI: 10.1111/jcmm.17691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 01/14/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
We explored the roles of hsa-microRNA (miR)-409-3p in senescence and signalling mechanism of human endothelial progenitor cells (EPCs). Hsa-miR-409-3p was found upregulated in senescent EPCs. Overexpression of miRNA mimics in young EPCs inhibited angiogenesis. In senescent EPCs, compared to young EPCs, protein phosphatase 2A (PP2A) was downregulated, with activation of p38/JNK by phosphorylation. Young EPCs treated with siPP2A caused inhibited angiogenesis with activation of p38/JNK, similar to findings in senescent EPCs. Time series analysis showed, in young EPCs treated with hsa-miR-409-3p mimics, PP2A was steadily downregulated for 72 h, while p38/JNK was activated with a peak at 48 hours. The inhibited angiogenesis of young EPCs after miRNA-409-3p mimics treatment was reversed by the p38 inhibitor. The effect of hsa-miR-409-3p on PP2A signalling was attenuated by exogenous VEGF. Analysis of human peripheral blood mononuclear cells (PBMCs) obtained from healthy people revealed hsa-miR-409-3p expression was higher in those older than 65 years, compared to those younger than 30 years, regardless of gender. In summary, hsa-miR-409-3p was upregulated in senescent EPCs and acted as a negative modulator of angiogenesis via targeting protein phosphatase 2 catalytic subunit alpha (PPP2CA) gene and regulating PP2A/p38 signalling. Data from human PBMCs suggested hsa-miR-409-3p a potential biomarker for human ageing.
Collapse
Affiliation(s)
- Yi-Nan Lee
- Department of Medical Research, MacKay Memorial Hospital, Taipei City, Taiwan
| | - Yih-Jer Wu
- Division of Cardiology/Cardiovascular Center, MacKay Memorial Hospital, Taipei City, Taiwan.,Mackay Medical College, New Taipei City, Taiwan
| | - Hsin-I Lee
- Department of Medical Research, MacKay Memorial Hospital, Taipei City, Taiwan
| | | | - Chung-Lieh Hung
- Division of Cardiology/Cardiovascular Center, MacKay Memorial Hospital, Taipei City, Taiwan.,Mackay Medical College, New Taipei City, Taiwan
| | - Chiung-Yin Chang
- Department of Medical Research, MacKay Memorial Hospital, Taipei City, Taiwan
| | - Yen-Hung Chou
- Department of Medical Research, MacKay Memorial Hospital, Taipei City, Taiwan
| | - Ting-Yi Tien
- Department of Medical Research, MacKay Memorial Hospital, Taipei City, Taiwan.,MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Chun-Wei Lee
- Division of Cardiology/Cardiovascular Center, MacKay Memorial Hospital, Taipei City, Taiwan.,MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Chao-Feng Lin
- Division of Cardiology/Cardiovascular Center, MacKay Memorial Hospital, Taipei City, Taiwan.,Mackay Medical College, New Taipei City, Taiwan
| | - Cheng-Huang Su
- Division of Cardiology/Cardiovascular Center, MacKay Memorial Hospital, Taipei City, Taiwan.,Mackay Medical College, New Taipei City, Taiwan
| | - Hung-I Yeh
- Division of Cardiology/Cardiovascular Center, MacKay Memorial Hospital, Taipei City, Taiwan.,Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
18
|
Bell A, Watt AP, Dudink I, Pham Y, Sutherland AE, Allison BJ, McDonald CA, Castillo-Melendez M, Jenkin G, Malhotra A, Miller SL, Yawno T. Endothelial colony forming cell administration promotes neurovascular unit development in growth restricted and appropriately grown fetal lambs. Stem Cell Res Ther 2023; 14:29. [PMID: 36788590 PMCID: PMC9930266 DOI: 10.1186/s13287-023-03249-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Fetal growth restriction (FGR) is associated with deficits in the developing brain, including neurovascular unit (NVU) dysfunction. Endothelial colony forming cells (ECFC) can mediate improved vascular stability, and have demonstrated potential to enhance vascular development and protection. This investigation examined whether ECFCs from human umbilical cord blood (UCB) enhanced NVU development in FGR and appropriate for gestational age (AGA) fetal sheep. METHODS Twin-bearing ewes had surgery performed at 88-90 days' gestation, inducing FGR in one fetus. At 113 days, ECFCs (1 × 107 cells) cultured from human UCB were administered intravenously to fetal sheep in utero. At 127 days, ewes and their fetuses were euthanised, fetal brains collected, and NVU components analysed by immunohistochemistry. RESULTS Twenty-four fetal lambs, arranged in four groups: AGA (n = 7), FGR (n = 5), AGA + ECFC (n = 6), and FGR + ECFC (n = 6), were included in analyses. FGR resulted in lower body weight than AGA (P = 0.002) with higher brain/body weight ratio (P = 0.003). ECFC treatment was associated with increased vascular density throughout the brain in both AGA + ECFC and FGR + ECFC groups, as well as increased vascular-astrocyte coverage and VEGF expression in the cortex (P = 0.003, P = 0.0006, respectively) and in the subcortical white matter (P = 0.01, P = 0.0002, respectively) when compared with the untreated groups. CONCLUSIONS ECFC administration enhanced development of NVU components in both the AGA and FGR fetal brain. Further investigation is required to assess how to optimise the enhanced angiogenic capabilities of ECFCs to provide a therapeutic strategy to protect the developing NVU against vulnerabilities associated with FGR.
Collapse
Affiliation(s)
- Alexander Bell
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Ashalyn P. Watt
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Ingrid Dudink
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Yen Pham
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Amy E. Sutherland
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Beth J. Allison
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Courtney A. McDonald
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | | | - Graham Jenkin
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Atul Malhotra
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia. .,Department of Paediatrics, Monash University, 246 Clayton Road, Clayton, Melbourne, VIC, 3168, Australia. .,Monash Newborn, Monash Children's Hospital, Melbourne, Australia.
| | - Suzanne L. Miller
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Tamara Yawno
- grid.452824.dThe Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Paediatrics, Monash University, 246 Clayton Road, Clayton, Melbourne, VIC 3168 Australia
| |
Collapse
|
19
|
Robertson JO, Erzurum SC, Asosingh K. Pathological Roles for Endothelial Colony-Forming Cells in Neonatal and Adult Lung Disease. Am J Respir Cell Mol Biol 2023; 68:13-22. [PMID: 36215049 PMCID: PMC9817912 DOI: 10.1165/rcmb.2022-0318ps] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/10/2022] [Indexed: 02/05/2023] Open
Abstract
Endothelial colony-forming cells (ECFCs) are vascular resident and circulating endothelial cell subtypes with potent angiogenic capacity, a hierarchy of single-cell clonogenic potentials, and the ability to participate in de novo blood vessel formation and endothelial repair. Existing literature regarding ECFCs in neonatal and adult pulmonary diseases is confounded by the study of ambiguously defined "endothelial progenitor cells," which are often not true ECFCs. This review contrasts adult and fetal ECFCs, discusses the effect of prematurity on ECFCs, and examines their different pathological roles in neonatal and adult pulmonary diseases, such as bronchopulmonary dysplasia, congenital diaphragmatic hernia, pulmonary artery hypertension, pulmonary fibrosis, and chronic obstructive pulmonary disease. Therapeutic potential is also discussed in light of available preclinical data.
Collapse
Affiliation(s)
| | - Serpil C. Erzurum
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
20
|
Krasilnikova OA, Baranovskii DS, Yakimova AO, Arguchinskaya N, Kisel A, Sosin D, Sulina Y, Ivanov SA, Shegay PV, Kaprin AD, Klabukov ID. Intraoperative Creation of Tissue-Engineered Grafts with Minimally Manipulated Cells: New Concept of Bone Tissue Engineering In Situ. Bioengineering (Basel) 2022; 9:704. [PMID: 36421105 PMCID: PMC9687730 DOI: 10.3390/bioengineering9110704] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 07/22/2023] Open
Abstract
Transfer of regenerative approaches into clinical practice is limited by strict legal regulation of in vitro expanded cells and risks associated with substantial manipulations. Isolation of cells for the enrichment of bone grafts directly in the Operating Room appears to be a promising solution for the translation of biomedical technologies into clinical practice. These intraoperative approaches could be generally characterized as a joint concept of tissue engineering in situ. Our review covers techniques of intraoperative cell isolation and seeding for the creation of tissue-engineered grafts in situ, that is, directly in the Operating Room. Up-to-date, the clinical use of tissue-engineered grafts created in vitro remains a highly inaccessible option. Fortunately, intraoperative tissue engineering in situ is already available for patients who need advanced treatment modalities.
Collapse
Affiliation(s)
- Olga A. Krasilnikova
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
| | - Denis S. Baranovskii
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
- Research and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, 117198 Moscow, Russia
| | - Anna O. Yakimova
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
| | - Nadezhda Arguchinskaya
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
| | - Anastas Kisel
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
| | - Dmitry Sosin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, Pogodinskaya St. 10 Bld. 1, 119121 Moscow, Russia
| | - Yana Sulina
- Department of Obstetrics and Gynecology, Sechenov University, Bolshaya Pirogovskaya St. 2 Bld. 3, 119435 Moscow, Russia
| | - Sergey A. Ivanov
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
| | - Peter V. Shegay
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
| | - Andrey D. Kaprin
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
- Research and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, 117198 Moscow, Russia
| | - Ilya D. Klabukov
- Department of Regenerative Medicine, National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia
- Research and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, 117198 Moscow, Russia
- Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University MEPhI, Studgorodok 1, 249039 Obninsk, Russia
| |
Collapse
|
21
|
Marei I, Ahmetaj-Shala B, Triggle CR. Biofunctionalization of cardiovascular stents to induce endothelialization: Implications for in- stent thrombosis in diabetes. Front Pharmacol 2022; 13:982185. [PMID: 36299902 PMCID: PMC9589287 DOI: 10.3389/fphar.2022.982185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Stent thrombosis remains one of the main causes that lead to vascular stent failure in patients undergoing percutaneous coronary intervention (PCI). Type 2 diabetes mellitus is accompanied by endothelial dysfunction and platelet hyperactivity and is associated with suboptimal outcomes following PCI, and an increase in the incidence of late stent thrombosis. Evidence suggests that late stent thrombosis is caused by the delayed and impaired endothelialization of the lumen of the stent. The endothelium has a key role in modulating inflammation and thrombosis and maintaining homeostasis, thus restoring a functional endothelial cell layer is an important target for the prevention of stent thrombosis. Modifications using specific molecules to induce endothelial cell adhesion, proliferation and function can improve stents endothelialization and prevent thrombosis. Blood endothelial progenitor cells (EPCs) represent a potential cell source for the in situ-endothelialization of vascular conduits and stents. We aim in this review to summarize the main biofunctionalization strategies to induce the in-situ endothelialization of coronary artery stents using circulating endothelial stem cells.
Collapse
Affiliation(s)
- Isra Marei
- Department of Pharmacology, Weill Cornell Medicine- Qatar, Doha, Qatar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- *Correspondence: Isra Marei, ; Chris R. Triggle,
| | | | - Chris R. Triggle
- Department of Pharmacology, Weill Cornell Medicine- Qatar, Doha, Qatar
- *Correspondence: Isra Marei, ; Chris R. Triggle,
| |
Collapse
|
22
|
Salerno N, Salerno L, Marino F, Scalise M, Chiefalo A, Panuccio G, De Angelis A, Cianflone E, Urbanek K, Torella D. Myocardial regeneration protocols towards the routine clinical scenario: An unseemly path from bench to bedside. EClinicalMedicine 2022; 50:101530. [PMID: 35799845 PMCID: PMC9253597 DOI: 10.1016/j.eclinm.2022.101530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Heart failure secondary to cardiomyocyte loss and/or dysfunction is the number one killer worldwide. The field of myocardial regeneration with its far-reaching primary goal of cardiac remuscularization and its hard-to-accomplish translation from bench to bedside, has been filled with ups and downs, steps forward and steps backward, controversies galore and, unfortunately, scientific scandals. Despite the present morass in which cardiac remuscularization is stuck in, the search for clinically effective regenerative approaches remains keenly active. Starting with a concise overview of the still highly debated regenerative capacity of the adult mammalian heart, we focus on the main interventions, that have reached or are close to clinical use, critically discussing key findings, successes, and failures. Finally, some promising and innovative approaches for myocardial repair/regeneration still at the pre-clinical stage are discussed to offer a holistic view on the future of myocardial repair/regeneration for the prevention/management of heart failure in the clinical scenario. FUNDING This research was funded by Grants from the Ministry of University and Research PRIN2015 2015ZTT5KB_004; PRIN2017NKB2N4_005; PON-AIM - 1829805-2.
Collapse
Affiliation(s)
- Nadia Salerno
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Antonio Chiefalo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Giuseppe Panuccio
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Konrad Urbanek
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80125, Naples, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
- Corresponding author.
| |
Collapse
|
23
|
Huang H, Huang W. Regulation of Endothelial Progenitor Cell Functions in Ischemic Heart Disease: New Therapeutic Targets for Cardiac Remodeling and Repair. Front Cardiovasc Med 2022; 9:896782. [PMID: 35677696 PMCID: PMC9167961 DOI: 10.3389/fcvm.2022.896782] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/02/2022] [Indexed: 12/16/2022] Open
Abstract
Ischemic heart disease (IHD) is the leading cause of morbidity and mortality worldwide. Ischemia and hypoxia following myocardial infarction (MI) cause subsequent cardiomyocyte (CM) loss, cardiac remodeling, and heart failure. Endothelial progenitor cells (EPCs) are involved in vasculogenesis, angiogenesis and paracrine effects and thus have important clinical value in alternative processes for repairing damaged hearts. In fact, this study showed that the endogenous repair of EPCs may not be limited to a single cell type. EPC interactions with cardiac cell populations and mesenchymal stem cells (MSCs) in ischemic heart disease can attenuate cardiac inflammation and oxidative stress in a microenvironment, regulate cell survival and apoptosis, nourish CMs, enhance mature neovascularization, alleviate adverse ventricular remodeling after infarction and enhance ventricular function. In this review, we introduce the definition and discuss the origin and biological characteristics of EPCs and summarize the mechanisms of EPC recruitment in ischemic heart disease. We focus on the crosstalk between EPCs and endothelial cells (ECs), smooth muscle cells (SMCs), CMs, cardiac fibroblasts (CFs), cardiac progenitor cells (CPCs), and MSCs during cardiac remodeling and repair. Finally, we discuss the translation of EPC therapy to the clinic and treatment strategies.
Collapse
|
24
|
Heinisch PP, Bello C, Emmert MY, Carrel T, Dreßen M, Hörer J, Winkler B, Luedi MM. Endothelial Progenitor Cells as Biomarkers of Cardiovascular Pathologies: A Narrative Review. Cells 2022; 11:cells11101678. [PMID: 35626716 PMCID: PMC9139418 DOI: 10.3390/cells11101678] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 01/25/2023] Open
Abstract
Endothelial progenitor cells (EPC) may influence the integrity and stability of the vascular endothelium. The association of an altered total EPC number and function with cardiovascular diseases (CVD) and risk factors (CVF) was discussed; however, their role and applicability as biomarkers for clinical purposes have not yet been defined. Endothelial dysfunction is one of the key mechanisms in CVD. The assessment of endothelial dysfunction in vivo remains a major challenge, especially for a clinical evaluation of the need for therapeutic interventions or for primary prevention of CVD. One of the main challenges is the heterogeneity of this particular cell population. Endothelial cells (EC) can become senescent, and the majority of circulating endothelial cells (CEC) show evidence of apoptosis or necrosis. There are a few viable CECs that have properties similar to those of an endothelial progenitor cell. To use EPC levels as a biomarker for vascular function and cumulative cardiovascular risk, a correct definition of their phenotype, as well as an update on the clinical application and practicability of current isolation methods, are an urgent priority.
Collapse
Affiliation(s)
- Paul Philipp Heinisch
- Department of Congenital and Pediatric Heart Surgery, German Heart Center Munich, School of Medicine, Technical University of Munich, 80636 Munich, Germany;
- Division of Congenital and Pediatric Heart Surgery, University Hospital of Munich, Ludwig-Maximilians-Universität, 80636 Munich, Germany
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (C.B.); (M.M.L.)
- Correspondence:
| | - Corina Bello
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (C.B.); (M.M.L.)
| | - Maximilian Y. Emmert
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany;
- Institute of Regenerative Medicine (IREM), University of Zurich, 8952 Schlieren, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Thierry Carrel
- Department of Cardiac Surgery, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Martina Dreßen
- Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, School of Medicine & Health, Technical University of Munich, Lazarettstrasse 36, 80636 Munich, Germany;
| | - Jürgen Hörer
- Department of Congenital and Pediatric Heart Surgery, German Heart Center Munich, School of Medicine, Technical University of Munich, 80636 Munich, Germany;
- Division of Congenital and Pediatric Heart Surgery, University Hospital of Munich, Ludwig-Maximilians-Universität, 80636 Munich, Germany
| | - Bernhard Winkler
- Department of Cardiovascular Surgery, Hospital Hietzing, 1130 Vienna, Austria;
| | - Markus M. Luedi
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (C.B.); (M.M.L.)
| |
Collapse
|
25
|
Endothelial Cell Metabolism in Vascular Functions. Cancers (Basel) 2022; 14:cancers14081929. [PMID: 35454836 PMCID: PMC9031281 DOI: 10.3390/cancers14081929] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Recent findings in the field of vascular biology are nourishing the idea that targeting the endothelial cell metabolism may be an alternative strategy to antiangiogenic therapy, as well as a novel therapeutic approach for cardiovascular disease. Deepening the molecular mechanisms regulating how ECs re-adapt their metabolic status in response to the changeable conditions of the tissue microenvironment may be beneficial to develop novel innovative treatments to counteract the aberrant growth of vasculature. Abstract The endothelium is the innermost layer of all blood and lymphatic vessels composed of a monolayer of specialized endothelial cells (ECs). It is regarded as a dynamic and multifunctional endocrine organ that takes part in essential processes, such as the control of blood fluidity, the modulation of vascular tone, the regulation of immune response and leukocyte trafficking into perivascular tissues, and angiogenesis. The inability of ECs to perform their normal biological functions, known as endothelial dysfunction, is multi-factorial; for instance, it implicates the failure of ECs to support the normal antithrombotic and anti-inflammatory status, resulting in the onset of unfavorable cardiovascular conditions such as atherosclerosis, coronary artery disease, hypertension, heart problems, and other vascular pathologies. Notably, it is emerging that the ability of ECs to adapt their metabolic status to persistent changes of the tissue microenvironment could be vital for the maintenance of vascular functions and to prevent adverse vascular events. The main purpose of the present article is to shed light on the unique metabolic plasticity of ECs as a prospective therapeutic target; this may lead to the development of novel strategies for cardiovascular diseases and cancer.
Collapse
|
26
|
Selvakumar PP, Rafuse MS, Johnson R, Tan W. Applying Principles of Regenerative Medicine to Vascular Stent Development. Front Bioeng Biotechnol 2022; 10:826807. [PMID: 35321023 PMCID: PMC8936177 DOI: 10.3389/fbioe.2022.826807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Stents are a widely-used device to treat a variety of cardiovascular diseases. The purpose of this review is to explore the application of regenerative medicine principles into current and future stent designs. This review will cover regeneration-relevant approaches emerging in the current research landscape of stent technology. Regenerative stent technologies include surface engineering of stents with cell secretomes, cell-capture coatings, mimics of endothelial products, surface topography, endothelial growth factors or cell-adhesive peptides, as well as design of bioresorable materials for temporary stent support. These technologies are comparatively analyzed in terms of their regenerative effects, therapeutic effects and challenges faced; their benefits and risks are weighed up for suggestions about future stent developments. This review highlights two unique regenerative features of stent technologies: selective regeneration, which is to selectively grow endothelial cells on a stent but inhibit the proliferation and migration of smooth muscle cells, and stent-assisted regeneration of ischemic tissue injury.
Collapse
Affiliation(s)
| | | | | | - Wei Tan
- University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
27
|
Marei I, Abu Samaan T, Al-Quradaghi MA, Farah AA, Mahmud SH, Ding H, Triggle CR. 3D Tissue-Engineered Vascular Drug Screening Platforms: Promise and Considerations. Front Cardiovasc Med 2022; 9:847554. [PMID: 35310996 PMCID: PMC8931492 DOI: 10.3389/fcvm.2022.847554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the efforts devoted to drug discovery and development, the number of new drug approvals have been decreasing. Specifically, cardiovascular developments have been showing amongst the lowest levels of approvals. In addition, concerns over the adverse effects of drugs to the cardiovascular system have been increasing and resulting in failure at the preclinical level as well as withdrawal of drugs post-marketing. Besides factors such as the increased cost of clinical trials and increases in the requirements and the complexity of the regulatory processes, there is also a gap between the currently existing pre-clinical screening methods and the clinical studies in humans. This gap is mainly caused by the lack of complexity in the currently used 2D cell culture-based screening systems, which do not accurately reflect human physiological conditions. Cell-based drug screening is widely accepted and extensively used and can provide an initial indication of the drugs' therapeutic efficacy and potential cytotoxicity. However, in vitro cell-based evaluation could in many instances provide contradictory findings to the in vivo testing in animal models and clinical trials. This drawback is related to the failure of these 2D cell culture systems to recapitulate the human physiological microenvironment in which the cells reside. In the body, cells reside within a complex physiological setting, where they interact with and respond to neighboring cells, extracellular matrix, mechanical stress, blood shear stress, and many other factors. These factors in sum affect the cellular response and the specific pathways that regulate variable vital functions such as proliferation, apoptosis, and differentiation. Although pre-clinical in vivo animal models provide this level of complexity, cross species differences can also cause contradictory results from that seen when the drug enters clinical trials. Thus, there is a need to better mimic human physiological conditions in pre-clinical studies to improve the efficiency of drug screening. A novel approach is to develop 3D tissue engineered miniaturized constructs in vitro that are based on human cells. In this review, we discuss the factors that should be considered to produce a successful vascular construct that is derived from human cells and is both reliable and reproducible.
Collapse
Affiliation(s)
- Isra Marei
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- *Correspondence: Isra Marei
| | - Tala Abu Samaan
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Asmaa A. Farah
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Chris R. Triggle
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
- Chris R. Triggle
| |
Collapse
|
28
|
Tao J, Cao X, Yu B, Qu A. Vascular Stem/Progenitor Cells in Vessel Injury and Repair. Front Cardiovasc Med 2022; 9:845070. [PMID: 35224067 PMCID: PMC8866648 DOI: 10.3389/fcvm.2022.845070] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular repair upon vessel injury is essential for the maintenance of arterial homeostasis and function. Stem/progenitor cells were demonstrated to play a crucial role in regeneration and replenishment of damaged vascular cells during vascular repair. Previous studies revealed that myeloid stem/progenitor cells were the main sources of tissue regeneration after vascular injury. However, accumulating evidences from developing lineage tracing studies indicate that various populations of vessel-resident stem/progenitor cells play specific roles in different process of vessel injury and repair. In response to shear stress, inflammation, or other risk factors-induced vascular injury, these vascular stem/progenitor cells can be activated and consequently differentiate into different types of vascular wall cells to participate in vascular repair. In this review, mechanisms that contribute to stem/progenitor cell differentiation and vascular repair are described. Targeting these mechanisms has potential to improve outcome of diseases that are characterized by vascular injury, such as atherosclerosis, hypertension, restenosis, and aortic aneurysm/dissection. Future studies on potential stem cell-based therapy are also highlighted.
Collapse
Affiliation(s)
- Jiaping Tao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- The Key Laboratory of Cardiovascular Remodeling-Related Diseases, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Xuejie Cao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- The Key Laboratory of Cardiovascular Remodeling-Related Diseases, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- The Key Laboratory of Cardiovascular Remodeling-Related Diseases, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
- *Correspondence: Baoqi Yu
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- The Key Laboratory of Cardiovascular Remodeling-Related Diseases, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
- Aijuan Qu
| |
Collapse
|
29
|
Perdomo S, Brugnini A, Trias N, Menyou A, Silveira G, Ranero S, Lens D, Díaz L, Grille S. Mobilized and apheresis-collected endothelial progenitor cells with plerixafor. J Clin Apher 2022; 37:245-252. [PMID: 35114004 DOI: 10.1002/jca.21967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) are immature cells able to proliferate and contribute to endothelial repair, vascular homeostasis, neovascularization, and angiogenesis. It therefore seems likely that circulating EPCs have therapeutic potential in ischemic and vascular diseases. In this study we evaluated the efficiency of EPC mobilization and collection by large volume leukapheresis in subjects with hematological diseases, treated with plerixafor in association with G-CSF. METHODS Twenty-two patients with lymphoid malignancies underwent rHuG-CSF and plerixafor treatment followed by leukapheresis. Blood samples before and after treatment and apheresis liquid sample were taken and analyzed by flow cytometry in order to quantified EPC. RESULTS The percentage of CD34+ cells and EPCs among circulating total nuclear cells (TNCs) increased significantly by approximately 2-fold and 3-fold, respectively, after plerixafor treatment. Consequently, the absolute number of CD34+ cells and EPCs were increased 4-fold after plerixafor treatment. The median PB concentration of EPCs before and after treatment were 0.77/μL (0.31-2.15) and 3.41/μL (1.78-4.54), respectively, P < .0001. The total EPCs collected per patient were 3.3×107 (0.8×107 -6.8×107 ). CONCLUSION We have shown that plerixafor in combination with G-CSF allows the mobilization and collection of large amounts of EPCs along with CD34+ cells in lymphoid neoplasm patients. The possibility to collect and to store these cells could represent a promising therapeutic tool for the treatment of ischemic complications without the need of in vitro expansion.
Collapse
Affiliation(s)
- Susana Perdomo
- Servicio Médico Integral, Centro de Trasplante de Médula Ósea, Montevideo, Uruguay
| | - Andreina Brugnini
- Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Natalia Trias
- Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Alba Menyou
- Servicio Médico Integral, Centro de Trasplante de Médula Ósea, Montevideo, Uruguay
| | - Gonzalo Silveira
- Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Sabrina Ranero
- Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.,Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Daniela Lens
- Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lilián Díaz
- Servicio Médico Integral, Centro de Trasplante de Médula Ósea, Montevideo, Uruguay
| | - Sofía Grille
- Servicio Médico Integral, Centro de Trasplante de Médula Ósea, Montevideo, Uruguay.,Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.,Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
30
|
Pavlova M, McGarvey SS, Bilousova G, Kogut I. A High-Efficiency Method for the Production of Endothelial Cells from Human Induced Pluripotent Stem Cells. Methods Mol Biol 2022; 2549:169-186. [PMID: 33755906 PMCID: PMC8460679 DOI: 10.1007/7651_2021_377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Endothelial cells (ECs) are important components of the circulatory system. These cells can be used for in vitro modeling of cardiovascular diseases and in regenerative medicine to promote vascularization of engineered tissue constructs. However, low proliferative capacity and patient-to-patient variability limit the use of primary ECs in the clinic and disease modeling. ECs differentiated from human induced pluripotent stem cells (iPSCs) can serve as a viable alternative to primary ECs for these applications. This is because human iPSCs can proliferate indefinitely and have the potential to differentiate into a variety of somatic cell lines, providing a renewable source of patient-specific cells. Here, we present an optimized, highly reproducible method for the differentiation of human iPSCs toward vascular ECs. The protocol relies on the activation of the WNT signaling pathway and the use of growth factors and small molecules. The resulting iPSC-derived ECs can be cultured for multiple passages without losing their functionality and are suitable for both in vitro and in vivo studies.
Collapse
Affiliation(s)
- Maryna Pavlova
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA,Charles C. Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Shennea S. McGarvey
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA,Charles C. Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ganna Bilousova
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA,Charles C. Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA,Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Igor Kogut
- Department of Dermatology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA,Charles C. Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA,Correspondence: Igor Kogut, Charles C. Gates Center for Regenerative Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 E. 19 Ave, Research Complex 2, P15-4004, Aurora, CO 80045. Phone: 303-724-6141; Fax: 303-724-3051;
| |
Collapse
|
31
|
Adult Stem Cell Therapy as Regenerative Medicine for End-Stage Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:57-72. [DOI: 10.1007/5584_2022_719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Jiang RC, Zheng XY, Yang SL, Shi HJ, Xi JH, Zou YJ, Dou HQ, Wang YJ, Qin Y, Zhang XL, Xiao Q. CD146 mediates the anti-apoptotic role of Netrin-1 in endothelial progenitor cells under hypoxic conditions. Mol Med Rep 2021; 25:5. [PMID: 34738629 PMCID: PMC8600420 DOI: 10.3892/mmr.2021.12521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/21/2021] [Indexed: 01/18/2023] Open
Abstract
Modulating the biological status of endothelial progenitor cells (EPCs), such as function and survival, is essential for therapeutic angiogenesis in ischemic vascular disease environments. This study aimed to explore the role and molecular mechanisms underlying Netrin-1 in the viability and angiogenic function of EPCs. EPCs were isolated from the bone barrow of adult C57/BL6 mice. The apoptosis and various functions of EPCs were analyzed in vitro by manipulating the expression of Netrin-1. The TUNEL assay was performed to detect apoptotic EPCs. Cell migration and tube formation assays were performed to detect EPC function. Trypan blue staining was performed to detect cell viability. Western blot analysis was performed to detect the protein expression levels of Netrin-1, CD146 and apoptotic factors. Quantitative PCR analysis was performed to detect the expression levels of Netrin-1 receptors. The results demonstrated that treatment with exogenous Netrin-1 promoted EPC migration and tube formation, whereas transfection with small interfering (si)RNA targeting Netrin-1 exhibited the opposite effects. Exogenous Netrin-1 protected EPCs from hypoxia-induced apoptosis, whereas the interruption of endogenous Netrin-1 enhancement under hypoxia by Netrin-1-siRNA exacerbated the apoptosis of EPCs. Furthermore, CD146, one of the immunoglobulin receptors activated by Netrin-1, was screened for in the present study. Results demonstrated that CD146 did not participate in Netrin-1-promoted EPC function, but mediated the anti-apoptotic effects of Netrin-1 in EPCs. In conclusion, Netrin-1 enhanced the angiogenic function of EPCs and alleviated hypoxia-induced apoptosis, which was mediated by CD146. This biological function of Netrin-1 may provide a potential therapeutic option to promote EPCs for the treatment of ischemic vascular diseases.
Collapse
Affiliation(s)
- Ru-Chao Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou, Guangdong 511436, P.R. China
| | - Xue-Ying Zheng
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou, Guangdong 511436, P.R. China
| | - Sheng-Lan Yang
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou, Guangdong 511436, P.R. China
| | - Hai-Jie Shi
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou, Guangdong 511436, P.R. China
| | - Jia-Hui Xi
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou, Guangdong 511436, P.R. China
| | - Yong-Jian Zou
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou, Guangdong 511436, P.R. China
| | - Hua-Qian Dou
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou, Guangdong 511436, P.R. China
| | - Yun-Jing Wang
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou, Guangdong 511436, P.R. China
| | - Yuan Qin
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou, Guangdong 511436, P.R. China
| | - Xiao-Ling Zhang
- Department of Neonatology, Maternal and Children Hospital of Guangdong Province, Guangzhou, Guangdong 510260, P.R. China
| | - Qing Xiao
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou, Guangdong 511436, P.R. China
| |
Collapse
|
33
|
Wang X, Wang R, Jiang L, Xu Q, Guo X. Endothelial repair by stem and progenitor cells. J Mol Cell Cardiol 2021; 163:133-146. [PMID: 34743936 DOI: 10.1016/j.yjmcc.2021.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022]
Abstract
The integrity of the endothelial barrier is required to maintain vascular homeostasis and fluid balance between the circulatory system and surrounding tissues and to prevent the development of vascular disease. However, the origin of the newly developed endothelial cells is still controversial. Stem and progenitor cells have the potential to differentiate into endothelial cell lines and stimulate vascular regeneration in a paracrine/autocrine fashion. The one source of new endothelial cells was believed to come from the bone marrow, which was challenged by the recent findings. By administration of new techniques, including genetic cell lineage tracing and single cell RNA sequencing, more solid data were obtained that support the concept of stem/progenitor cells for regenerating damaged endothelium. Specifically, it was found that tissue resident endothelial progenitors located in the vessel wall were crucial for endothelial repair. In this review, we summarized the latest advances in stem and progenitor cell research in endothelial regeneration through findings from animal models and discussed clinical data to indicate the future direction of stem cell therapy.
Collapse
Affiliation(s)
- Xuyang Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruilin Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liujun Jiang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
34
|
Dight J, Zhao J, Styke C, Khosrotehrani K, Patel J. Resident vascular endothelial progenitor definition and function: the age of reckoning. Angiogenesis 2021; 25:15-33. [PMID: 34499264 PMCID: PMC8813834 DOI: 10.1007/s10456-021-09817-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023]
Abstract
The cardiovascular system is composed around the central function of the endothelium that lines the inner surfaces of its vessels. In recent years, the existence of a progenitor population within the endothelium has been validated through the study of endothelial colony-forming cells (ECFCs) in human peripheral blood and certain vascular beds. However, our knowledge on endothelial populations in vivo that can give rise to ECFCs in culture has been limited. In this review we report and analyse recent attempts at describing progenitor populations in vivo from murine studies that reflect the self-renewal and stemness capacity observed in ECFCs. We pinpoint seminal discoveries within the field, which have phenotypically defined, and functionally scrutinised these endothelial progenitors. Furthermore, we review recent publications utilising single-cell sequencing technologies to better understand the endothelium in homeostasis and pathology.
Collapse
Affiliation(s)
- James Dight
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
| | - Jilai Zhao
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
| | - Cassandra Styke
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia
| | - Kiarash Khosrotehrani
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia.
| | - Jatin Patel
- The University of Queensland Diamantina Institute, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia. .,Cancer and Ageing Research Program, School of Biomedical Sciences, Queensland University of Technology, 37 Kent Street, Woolloongabba, Brisbane, 4102, Australia.
| |
Collapse
|
35
|
Cyclosporine A and Tacrolimus Induce Functional Impairment and Inflammatory Reactions in Endothelial Progenitor Cells. Int J Mol Sci 2021; 22:ijms22189696. [PMID: 34575860 PMCID: PMC8472421 DOI: 10.3390/ijms22189696] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Immunosuppressants are a mandatory therapy for transplant patients to avoid rejection of the transplanted organ by the immune system. However, there are several known side effects, including alterations of the vasculature, which involve a higher occurrence of cardiovascular events. While the effects of the commonly applied immunosuppressive drugs cyclosporine A (CsA) and tacrolimus (Tac) on mature endothelial cells have been addressed in several studies, we focused our research on the unexplored effects of CsA and Tac on endothelial colony-forming cells (ECFCs), a subgroup of endothelial progenitor cells, which play an important role in vascular repair and angiogenesis. We hypothesized that CsA and Tac induce functional defects and activate an inflammatory cascade via NF-κB signaling in ECFCs. ECFCs were incubated with different doses (0.01 µM–10 µM) of CsA or Tac. ECFC function was determined using in vitro models. The expression of inflammatory cytokines and adhesion molecules was explored by quantitative real-time PCR and flow cytometry. NF-κB subunit modification was assessed by immunoblot and immunofluorescence. CsA and Tac significantly impaired ECFC function, including proliferation, migration, and tube formation. TNF-α, IL-6, VCAM, and ICAM mRNA expression, as well as PECAM and VCAM surface expression, were enhanced. Furthermore, CsA and Tac led to NF-κB p65 subunit phosphorylation and nuclear translocation. Pharmacological inhibition of NF-κB by parthenolide diminished CsA- and Tac-mediated proinflammatory effects. The data of functional impairment and activation of inflammatory signals provide new insight into mechanisms associated with CsA and Tac and cardiovascular risk in transplant patients.
Collapse
|
36
|
Razazian M, Khosravi M, Bahiraii S, Uzan G, Shamdani S, Naserian S. Differences and similarities between mesenchymal stem cell and endothelial progenitor cell immunoregulatory properties against T cells. World J Stem Cells 2021; 13:971-984. [PMID: 34567420 PMCID: PMC8422932 DOI: 10.4252/wjsc.v13.i8.971] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Bone-marrow-derived mesenchymal stem cells and endothelial progenitor cells have some interesting biological properties that make them unique for cell therapy of degenerative and cardiovascular disorders. Although both cell populations have been already studied and used for their regenerative potentials, recently their special immunoregulatory features have brought much more attention. Mesenchymal stem cells and endothelial progenitor cells have both proangiogenic functions and have been shown to suppress the immune response, particularly T cell proliferation, activation, and cytokine production. This makes them suitable choices for allogeneic stem cell transplantation. Nevertheless, these two cells do not have equal immunoregulatory activities. Many elements including their extraction sources, age/passage, expression of different markers, secretion of bioactive mediators, and some others could change the efficiency of their immunosuppressive function. However, to our knowledge, no publication has yet compared mesenchymal stem cells and endothelial progenitor cells for their immunological interaction with T cells. This review aims to specifically compare the immunoregulatory effect of these two populations including their T cell suppression, deactivation, cytokine production, and regulatory T cells induction capacities. Moreover, it evaluates the implications of the tumor necrosis factor alpha-tumor necrosis factor receptor 2 axis as an emerging immune checkpoint signaling pathway controlling most of their immunological properties.
Collapse
Affiliation(s)
- Mehdi Razazian
- Institut national de la santé et de la recherche médicale (Inserm) Unité Mixte de Recherche-Inserm-Ministère de la Défense 1197, Hôpital Paul Brousse, Villejuif 94800, France
| | - Maryam Khosravi
- Microenvironment & Immunity Unit, Institut Pasteur, Paris 75724, France
- Institut national de la santé et de la recherche médicale (Inserm) Unit 1224, Paris 75724, France
| | - Sheyda Bahiraii
- Department of Pharmacognosy, University of Vienna, Vienna 1090, Austria
| | - Georges Uzan
- Institut national de la santé et de la recherche médicale (Inserm) Unité Mixte de Recherche-Inserm-Ministère de la Défense 1197, Hôpital Paul Brousse, Villejuif 94800, France
- Paris-Saclay University, Villejuif 94800, France
| | - Sara Shamdani
- Institut national de la santé et de la recherche médicale (Inserm) Unité Mixte de Recherche-Inserm-Ministère de la Défense 1197, Hôpital Paul Brousse, Villejuif 94800, France
- Paris-Saclay University, Villejuif 94800, France
- CellMedEx; Saint Maur Des Fossés 94100, France
| | - Sina Naserian
- Institut national de la santé et de la recherche médicale (Inserm) Unité Mixte de Recherche-Inserm-Ministère de la Défense 1197, Hôpital Paul Brousse, Villejuif 94800, France
- Paris-Saclay University, Villejuif 94800, France
- CellMedEx; Saint Maur Des Fossés 94100, France.
| |
Collapse
|
37
|
Kolesnichenko OA, Whitsett JA, Kalin TV, Kalinichenko VV. Therapeutic Potential of Endothelial Progenitor Cells in Pulmonary Diseases. Am J Respir Cell Mol Biol 2021; 65:473-488. [PMID: 34293272 DOI: 10.1165/rcmb.2021-0152tr] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Compromised alveolar development and pulmonary vascular remodeling are hallmarks of pediatric lung diseases such as bronchopulmonary dysplasia (BPD) and alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). Although advances in surfactant therapy, corticosteroids, and anti-inflammatory drugs have improved clinical management of preterm infants, still those who suffer with severe vascular complications lack viable treatment options. Paucity of the alveolar capillary network in ACDMPV causes respiratory distress and leads to mortality in a vast majority of ACDMPV infants. The discovery of endothelial progenitor cells (EPCs) in 1997 brought forth the paradigm of postnatal vasculogenesis and hope for promoting vascularization in fragile patient populations, such as those with BPD and ACDMPV. The identification of diverse EPC populations, both hematopoietic and nonhematopoietic in origin, provided a need to identify progenitor cell selective markers which are linked to progenitor properties needed to develop cell-based therapies. Focusing to the future potential of EPCs for regenerative medicine, this review will discuss various aspects of EPC biology, beginning with the identification of hematopoietic, nonhematopoietic, and tissue-resident EPC populations. We will review knowledge related to cell surface markers, signature gene expression, key transcriptional regulators, and will explore the translational potential of EPCs for cell-based therapy for BPD and ACDMPV. The ability to produce pulmonary EPCs from patient-derived induced pluripotent stem cells (iPSCs) in vitro, holds promise for restoring vascular growth and function in the lungs of patients with pediatric pulmonary disorders.
Collapse
Affiliation(s)
- Olena A Kolesnichenko
- Cincinnati Children's Hospital Medical Center, 2518, Cincinnati, Ohio, United States
| | - Jeffrey A Whitsett
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Tanya V Kalin
- Cincinnati Children\'s Hospital Medical Center, 2518, Pediatrics, Cincinnati, Ohio, United States
| | - Vladimir V Kalinichenko
- Cincinnati Children's Hospital Medical Center, Pediatrics, Division of Pulmonary Biology, Cincinnati, Ohio, United States;
| |
Collapse
|
38
|
Desjarlais M, Ruknudin P, Wirth M, Lahaie I, Dabouz R, Rivera JC, Habelrih T, Omri S, Hardy P, Rivard A, Chemtob S. Tyrosine-Protein Phosphatase Non-receptor Type 9 (PTPN9) Negatively Regulates the Paracrine Vasoprotective Activity of Bone-Marrow Derived Pro-angiogenic Cells: Impact on Vascular Degeneration in Oxygen-Induced Retinopathy. Front Cell Dev Biol 2021; 9:679906. [PMID: 34124069 PMCID: PMC8194284 DOI: 10.3389/fcell.2021.679906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/05/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Aim Insufficient post-ischemic neovascularization is an initial key step in the pathogenesis of Oxygen-Induced Retinopathy (OIR). During neovascularization, pro-angiogenic cells (PACs) are mobilized from the bone marrow and integrate into ischemic tissues to promote angiogenesis. However, the modulation of PAC paracrine activity during OIR and the specific mechanisms involved remain to be explored. Because Tyrosine-protein phosphatase non-receptor type 9 (PTPN9) is reported to be a negative regulator of stem cell differentiation and angiogenesis signaling, we investigated its effect on PAC activity in the context of OIR. Methods and Results In a rat model of OIR, higher levels of PTPN9 in the retina and in bone marrow derived PACs are associated with retinal avascular areas, lower levels of the mobilization factor SDF-1 and decreased number of CD34+/CD117+/CD133+ PACs. PACs exposed ex vivo to hyperoxia display increased PTPN9 expression, which is associated with impaired ability of PAC secretome to promote angiogenesis ex vivo (choroidal vascular sprouting) and in vitro (endothelial cell tubule formation) compared to the secretome of PACs maintained in normoxia. Suppression of PTPN9 (using siRNA) increases VEGF and SDF-1 expression to normalize PAC secretome during hyperoxia, leading to restored angiogenic ability of PAC secretome. Moreover, endothelial cells exposed to the secretome of siPTPN9-treated PACs expressed increased levels of activated form of VEGF receptor 2 (VEGFR2). In the rat model of OIR, intravitreal injection of secretome from siPTPN9-treated PACs significantly reduced retinal vaso-obliteration; this was associated with higher retinal levels of VEGF/SDF-1, and increased recruitment of PACs (CD34+ cells) to the retinal and choroidal vessels. Conclusion Our results suggest that hyperoxia alters the paracrine proangiogenic activity of BM-PACs by inducing PTPN9, which can contribute to impair post-ischemic revascularization in the context of OIR. Targeting PTPN9 restores PAC angiogenic properties, and provide a new target for vessel integrity in ischemic retinopathies.
Collapse
Affiliation(s)
- Michel Desjarlais
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Pakiza Ruknudin
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Maëlle Wirth
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Isabelle Lahaie
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Rabah Dabouz
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - José Carlos Rivera
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Tiffany Habelrih
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Samy Omri
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Pierre Hardy
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Alain Rivard
- Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM) Research Center, Montréal, QC, Canada
| | - Sylvain Chemtob
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| |
Collapse
|
39
|
Thej C, Balasubramanian S, Rengasamy M, Walvekar A, Swamynathan P, Raj SS, Shahani P, Siddikuzzaman, Kolkundkar U, Seetharam RN, Gupta PK, Majumdar AS. Human bone marrow-derived, pooled, allogeneic mesenchymal stromal cells manufactured from multiple donors at different times show comparable biological functions in vitro, and in vivo to repair limb ischemia. Stem Cell Res Ther 2021; 12:279. [PMID: 33971964 PMCID: PMC8108338 DOI: 10.1186/s13287-021-02330-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND We have previously demonstrated that a pooled population of bone marrow-derived, allogeneic mesenchymal stromal cells (BMMSC), Stempeucel®-1, produced under good manufacturing practices (GMP) conditions, showed clinical efficacy and safety in patients suffering from critical limb ischemia (CLI) due to Buerger's disease. While Stempeucel®-1 is currently used for CLI and other clinical indications, we wanted to ensure that the product's continuity is addressed by developing and characterizing a second generation of pooled product (Stempeucel®-1A), manufactured identically from second BM aspirates of the same three donors after a 2-year interval. METHODS The two versions of Stempeucel® were manufactured and subjected to gene and protein expression analysis. The nature of various growth factors/cytokines secreted and immunomodulatory activity of these two cell populations were compared directly by various in vitro assays. The preclinical efficacy of these two cell types was compared in an experimental model of hind limb ischemia (HLI) in BALB/c nude mice. The reversal of ischemia, blood flow, and muscle regeneration were determined by functional scoring, laser Doppler imaging, and immunohistochemical analyses. RESULTS Qualitative and quantitative analyses of genes and proteins involved in promoting angiogenic activity and immune regulatory functions revealed high levels of correlation between Stempeucel®-1 and Stempeucel®-1A cell populations. Moreover, intramuscular (i.m) administration of these two cell products in the ischemic limbs of BALB/c nude mice showed significant repair (≥ 70%) of toe and foot necrosis, leading to improved ambulatory function and limb salvage. Furthermore, a biodistribution kinetics study showed that Stempeucel®-1 was mostly localized in the ischemic muscles of mice for a significantly longer time compared to normal muscles, thus playing an essential role in modulating and reversing HLI damage. CONCLUSIONS This study shows that with a reproducible manufacturing procedure, it is possible to generate large numbers of pooled mesenchymal stromal cells from human bone marrow samples to establish product equivalence. We conclude from these results that, for the first time, two pooled, allogeneic BMMSC products can be repeatedly manufactured at different time intervals using a two-tier cell banking process with robust and comparable angiogenic properties to treat ischemic diseases.
Collapse
Affiliation(s)
- Charan Thej
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, K R Puram Hobli, Bengaluru, India
| | - Sudha Balasubramanian
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, K R Puram Hobli, Bengaluru, India
| | - Mathiyazhagan Rengasamy
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, K R Puram Hobli, Bengaluru, India
| | - Ankita Walvekar
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, K R Puram Hobli, Bengaluru, India
| | - Priyanka Swamynathan
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, K R Puram Hobli, Bengaluru, India
| | - Swathi Sundar Raj
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, K R Puram Hobli, Bengaluru, India
| | - Pradnya Shahani
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, K R Puram Hobli, Bengaluru, India
| | - Siddikuzzaman
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, K R Puram Hobli, Bengaluru, India
| | - Udaykumar Kolkundkar
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, K R Puram Hobli, Bengaluru, India
| | - Raviraja N Seetharam
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, K R Puram Hobli, Bengaluru, India
| | - Pawan Kumar Gupta
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, K R Puram Hobli, Bengaluru, India
| | - Anish S Majumdar
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, K R Puram Hobli, Bengaluru, India.
| |
Collapse
|
40
|
He Y, Cai Y, Pai PM, Ren X, Xia Z. The Causes and Consequences of miR-503 Dysregulation and Its Impact on Cardiovascular Disease and Cancer. Front Pharmacol 2021; 12:629611. [PMID: 33762949 PMCID: PMC7982518 DOI: 10.3389/fphar.2021.629611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/20/2021] [Indexed: 12/27/2022] Open
Abstract
microRNAs (miRs) are short, non-coding RNAs that regulate gene expression by mRNA degradation or translational repression. Accumulated studies have demonstrated that miRs participate in various biological processes including cell differentiation, proliferation, apoptosis, metabolism and development, and the dysregulation of miRs expression are involved in different human diseases, such as neurological, cardiovascular disease and cancer. microRNA-503 (miR-503), one member of miR-16 family, has been studied widely in cardiovascular disease and cancer. In this review, we summarize and discuss the studies of miR-503 in vitro and in vivo, and how miR-503 regulates gene expression from different aspects of pathological processes of diseases, including carcinogenesis, angiogenesis, tissue fibrosis and oxidative stress; We will also discuss the mechanisms of dysregulation of miR-503, and whether miR-503 could be applied as a diagnostic marker or therapeutic target in cardiovascular disease or cancer.
Collapse
Affiliation(s)
- Yanjing He
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Pearl Mingchu Pai
- Department of Medicine, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
- Department of Medicine, The University of Hong Kong - Queen Mary Hospital, Hong Kong, China
| | - Xinling Ren
- Department of Respiratory Medicine, Shenzhen University General Hospital, Shenzhen, China
| | - Zhengyuan Xia
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
41
|
Armanetti P, Chillà A, Margheri F, Biagioni A, Menichetti L, Margheri G, Ratto F, Centi S, Bianchini F, Severi M, Traversi R, Bani D, Lulli M, Del Rosso T, Mocali A, Rovida E, Del Rosso M, Fibbi G, Laurenzana A. Enhanced Antitumoral Activity and Photoacoustic Imaging Properties of AuNP-Enriched Endothelial Colony Forming Cells on Melanoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001175. [PMID: 33643785 PMCID: PMC7887578 DOI: 10.1002/advs.202001175] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/18/2020] [Indexed: 05/03/2023]
Abstract
Near infrared (NIR)-resonant gold nanoparticles (AuNPs) hold great promise in cancer diagnostics and treatment. However, translating the theranostic potential of AuNPs into clinical applications still remains a challenge due to the difficulty to improve the efficiency and specificity of tumor delivery in vivo as well as the clearance from liver and spleen to avoid off target toxicity. In this study, endothelial colony forming cells (ECFCs) are exploited as vehicles to deliver AuNPs to tumors. It is first demonstrated that ECFCs display a great capability to intake AuNPs without losing viability, and exert antitumor activity per se. Using a human melanoma xenograft mouse model, it is next demonstrated that AuNP-loaded ECFCs retain their capacity to migrate to tumor sites in vivo 1 day after injection and stay in the tumor mass for more than 1 week. In addition, it is demonstrated that ECFC-loaded AuNPs are efficiently cleared by the liver over time and do not elicit any sign of damage to healthy tissue.
Collapse
Affiliation(s)
- Paolo Armanetti
- Institute of Clinical Physiology (IFC)National Research CouncilPisa56124Italy
| | - Anastasia Chillà
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorence50134Italy
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorence50134Italy
| | - Alessio Biagioni
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorence50134Italy
| | - Luca Menichetti
- Institute of Clinical Physiology (IFC)National Research CouncilPisa56124Italy
| | - Giancarlo Margheri
- Institute for Complex SystemsNational Research CouncilSesto Fiorentino50019Italy
| | - Fulvio Ratto
- Institute of Applied Physics “N. Carrara”National Research CouncilSesto Fiorentino50019Italy
| | - Sonia Centi
- Institute of Applied Physics “N. Carrara”National Research CouncilSesto Fiorentino50019Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorence50134Italy
| | - Mirko Severi
- Department of Chemistry “Ugo Schiff”University of FlorenceSesto Fiorentino50019Italy
| | - Rita Traversi
- Department of Chemistry “Ugo Schiff”University of FlorenceSesto Fiorentino50019Italy
| | - Daniele Bani
- Department of Clinical and Experimental MedicineUniversity of FlorenceFlorence50134Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorence50134Italy
| | - Tommaso Del Rosso
- Department of PhysicsPontifícia Universidade Católica do Rio de JaneiroRio de Janeiro22451‐900Brazil
| | - Alessandra Mocali
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorence50134Italy
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorence50134Italy
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorence50134Italy
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorence50134Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorence50134Italy
| |
Collapse
|
42
|
Moccia F, Antognazza MR, Lodola F. Towards Novel Geneless Approaches for Therapeutic Angiogenesis. Front Physiol 2021; 11:616189. [PMID: 33551844 PMCID: PMC7855168 DOI: 10.3389/fphys.2020.616189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/08/2020] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular diseases are the leading cause of mortality worldwide. Such a widespread diffusion makes the conditions affecting the heart and blood vessels a primary medical and economic burden. It, therefore, becomes mandatory to identify effective treatments that can alleviate this global problem. Among the different solutions brought to the attention of the medical-scientific community, therapeutic angiogenesis is one of the most promising. However, this approach, which aims to treat cardiovascular diseases by generating new blood vessels in ischemic tissues, has so far led to inadequate results due to several issues. In this perspective, we will discuss cutting-edge approaches and future perspectives to alleviate the potentially lethal impact of cardiovascular diseases. We will focus on the consolidated role of resident endothelial progenitor cells, particularly endothelial colony forming cells, as suitable candidates for cell-based therapy demonstrating the importance of targeting intracellular Ca2+ signaling to boost their regenerative outcome. Moreover, we will elucidate the advantages of physical stimuli over traditional approaches. In particular, we will critically discuss recent results obtained by using optical stimulation, as a novel strategy to drive endothelial colony forming cells fate and its potential in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Francesco Moccia
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Maria Rosa Antognazza
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Milan, Italy
| | - Francesco Lodola
- Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Milan, Italy.,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
43
|
Meyer N, Brodowski L, Richter K, von Kaisenberg CS, Schröder-Heurich B, von Versen-Höynck F. Pravastatin Promotes Endothelial Colony-Forming Cell Function, Angiogenic Signaling and Protein Expression In Vitro. J Clin Med 2021; 10:E183. [PMID: 33419165 PMCID: PMC7825508 DOI: 10.3390/jcm10020183] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022] Open
Abstract
Endothelial dysfunction is a primary feature of several cardiovascular diseases. Endothelial colony-forming cells (ECFCs) represent a highly proliferative subtype of endothelial progenitor cells (EPCs), which are involved in neovascularization and vascular repair. Statins are known to improve the outcome of cardiovascular diseases via pleiotropic effects. We hypothesized that treatment with the 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitor pravastatin increases ECFCs' functional capacities and regulates the expression of proteins which modulate endothelial health in a favourable manner. Umbilical cord blood derived ECFCs were incubated with different concentrations of pravastatin with or without mevalonate, a key intermediate in cholesterol synthesis. Functional capacities such as migration, proliferation and tube formation were addressed in corresponding in vitro assays. mRNA and protein levels or phosphorylation of protein kinase B (AKT), endothelial nitric oxide synthase (eNOS), heme oxygenase-1 (HO-1), vascular endothelial growth factor A (VEGF-A), placental growth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1) and endoglin (Eng) were analyzed by real time PCR or immunoblot, respectively. Proliferation, migration and tube formation of ECFCs were enhanced after pravastatin treatment, and AKT- and eNOS-phosphorylation were augmented. Further, expression levels of HO-1, VEGF-A and PlGF were increased, whereas expression levels of sFlt-1 and Eng were decreased. Pravastatin induced effects were reversible by the addition of mevalonate. Pravastatin induces beneficial effects on ECFC function, angiogenic signaling and protein expression. These effects may contribute to understand the pleiotropic function of statins as well as to provide a promising option to improve ECFCs' condition in cell therapy in order to ameliorate endothelial dysfunction.
Collapse
Affiliation(s)
- Nadia Meyer
- Gynecology Research Unit, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany; (N.M.); (L.B.); (K.R.); (B.S.-H.)
| | - Lars Brodowski
- Gynecology Research Unit, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany; (N.M.); (L.B.); (K.R.); (B.S.-H.)
- Department of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany;
| | - Katja Richter
- Gynecology Research Unit, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany; (N.M.); (L.B.); (K.R.); (B.S.-H.)
| | - Constantin S. von Kaisenberg
- Department of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany;
| | - Bianca Schröder-Heurich
- Gynecology Research Unit, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany; (N.M.); (L.B.); (K.R.); (B.S.-H.)
| | - Frauke von Versen-Höynck
- Gynecology Research Unit, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany; (N.M.); (L.B.); (K.R.); (B.S.-H.)
- Department of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany;
| |
Collapse
|
44
|
Abstract
Traumatic injuries are a leading cause of death and disability in both military and civilian populations. Given the complexity and diversity of traumatic injuries, novel and individualized treatment strategies are required to optimize outcomes. Cellular therapies have potential benefit for the treatment of acute or chronic injuries, and various cell-based pharmaceuticals are currently being tested in preclinical studies or in clinical trials. Cellular therapeutics may have the ability to complement existing therapies, especially in restoring organ function lost due to tissue disruption, prolonged hypoxia or inflammatory damage. In this article we highlight the current status and discuss future directions of cellular therapies for the treatment of traumatic injury. Both published research and ongoing clinical trials are discussed here.
Collapse
|
45
|
Therapeutic Potential of Endothelial Colony-Forming Cells in Ischemic Disease: Strategies to Improve their Regenerative Efficacy. Int J Mol Sci 2020; 21:ijms21197406. [PMID: 33036489 PMCID: PMC7582994 DOI: 10.3390/ijms21197406] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) comprises a range of major clinical cardiac and circulatory diseases, which produce immense health and economic burdens worldwide. Currently, vascular regenerative surgery represents the most employed therapeutic option to treat ischemic disorders, even though not all the patients are amenable to surgical revascularization. Therefore, more efficient therapeutic approaches are urgently required to promote neovascularization. Therapeutic angiogenesis represents an emerging strategy that aims at reconstructing the damaged vascular network by stimulating local angiogenesis and/or promoting de novo blood vessel formation according to a process known as vasculogenesis. In turn, circulating endothelial colony-forming cells (ECFCs) represent truly endothelial precursors, which display high clonogenic potential and have the documented ability to originate de novo blood vessels in vivo. Therefore, ECFCs are regarded as the most promising cellular candidate to promote therapeutic angiogenesis in patients suffering from CVD. The current briefly summarizes the available information about the origin and characterization of ECFCs and then widely illustrates the preclinical studies that assessed their regenerative efficacy in a variety of ischemic disorders, including acute myocardial infarction, peripheral artery disease, ischemic brain disease, and retinopathy. Then, we describe the most common pharmacological, genetic, and epigenetic strategies employed to enhance the vasoreparative potential of autologous ECFCs by manipulating crucial pro-angiogenic signaling pathways, e.g., extracellular-signal regulated kinase/Akt, phosphoinositide 3-kinase, and Ca2+ signaling. We conclude by discussing the possibility of targeting circulating ECFCs to rescue their dysfunctional phenotype and promote neovascularization in the presence of CVD.
Collapse
|
46
|
Perrotta F, Perna A, Komici K, Nigro E, Mollica M, D’Agnano V, De Luca A, Guerra G. The State of Art of Regenerative Therapy in Cardiovascular Ischemic Disease: Biology, Signaling Pathways, and Epigenetics of Endothelial Progenitor Cells. Cells 2020; 9:E1886. [PMID: 32796767 PMCID: PMC7465688 DOI: 10.3390/cells9081886] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/19/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
Ischemic heart disease is currently a major cause of mortality and morbidity worldwide. Nevertheless, the actual therapeutic scenario does not target myocardial cell regeneration and consequently, the progression toward the late stage of chronic heart failure is common. Endothelial progenitor cells (EPCs) are bone marrow-derived stem cells that contribute to the homeostasis of the endothelial wall in acute and chronic ischemic disease. Calcium modulation and other molecular pathways (NOTCH, VEGFR, and CXCR4) contribute to EPC proliferation and differentiation. The present review provides a summary of EPC biology with a particular focus on the regulatory pathways of EPCs and describes promising applications for cardiovascular cell therapy.
Collapse
Affiliation(s)
- Fabio Perrotta
- Dipartimento di Medicina e Scienze della Salute “V.Tiberio”, Università del Molise, 86100 Campobasso, Italy; (A.P.); (K.K.); (G.G.)
| | - Angelica Perna
- Dipartimento di Medicina e Scienze della Salute “V.Tiberio”, Università del Molise, 86100 Campobasso, Italy; (A.P.); (K.K.); (G.G.)
| | - Klara Komici
- Dipartimento di Medicina e Scienze della Salute “V.Tiberio”, Università del Molise, 86100 Campobasso, Italy; (A.P.); (K.K.); (G.G.)
| | - Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
- CEINGE-Biotecnologie avanzate, 80145 Naples, Italy
| | - Mariano Mollica
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.M.); (V.D.)
| | - Vito D’Agnano
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.M.); (V.D.)
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Germano Guerra
- Dipartimento di Medicina e Scienze della Salute “V.Tiberio”, Università del Molise, 86100 Campobasso, Italy; (A.P.); (K.K.); (G.G.)
| |
Collapse
|
47
|
Groppa E, Colliva A, Vuerich R, Kocijan T, Zacchigna S. Immune Cell Therapies to Improve Regeneration and Revascularization of Non-Healing Wounds. Int J Mol Sci 2020; 21:E5235. [PMID: 32718071 PMCID: PMC7432547 DOI: 10.3390/ijms21155235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
With the increased prevalence of chronic diseases, non-healing wounds place a significant burden on the health system and the quality of life of affected patients. Non-healing wounds are full-thickness skin lesions that persist for months or years. While several factors contribute to their pathogenesis, all non-healing wounds consistently demonstrate inadequate vascularization, resulting in the poor supply of oxygen, nutrients, and growth factors at the level of the lesion. Most existing therapies rely on the use of dermal substitutes, which help the re-epithelialization of the lesion by mimicking a pro-regenerative extracellular matrix. However, in most patients, this approach is not efficient, as non-healing wounds principally affect individuals afflicted with vascular disorders, such as peripheral artery disease and/or diabetes. Over the last 25 years, innovative therapies have been proposed with the aim of fostering the regenerative potential of multiple immune cell types. This can be achieved by promoting cell mobilization into the circulation, their recruitment to the wound site, modulation of their local activity, or their direct injection into the wound. In this review, we summarize preclinical and clinical studies that have explored the potential of various populations of immune cells to promote skin regeneration in non-healing wounds and critically discuss the current limitations that prevent the adoption of these therapies in the clinics.
Collapse
Affiliation(s)
- Elena Groppa
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (E.G.); (A.C.); (R.V.); (T.K.)
| | - Andrea Colliva
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (E.G.); (A.C.); (R.V.); (T.K.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Roman Vuerich
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (E.G.); (A.C.); (R.V.); (T.K.)
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Tea Kocijan
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (E.G.); (A.C.); (R.V.); (T.K.)
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (E.G.); (A.C.); (R.V.); (T.K.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
48
|
Chillà A, Margheri F, Biagioni A, Del Rosso T, Fibbi G, Del Rosso M, Laurenzana A. Cell-Mediated Release of Nanoparticles as a Preferential Option for Future Treatment of Melanoma. Cancers (Basel) 2020; 12:cancers12071771. [PMID: 32630815 PMCID: PMC7408438 DOI: 10.3390/cancers12071771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 01/15/2023] Open
Abstract
Targeted and immune therapies have unquestionably improved the prognosis of melanoma patients. However the treatment of this neoplasm still requires approaches with a higher therapeutic index, in order to reduce shortcomings related to toxic effects and aspecific targeting. This means developing therapeutic tools derived with high affinity molecules for tumor components differentially expressed in melanoma cells with respect to their normal counterpart. Nanomedicine has sought to address this problem owing to the high modulability of nanoparticles. This approach exploits not only the enhanced permeability and retention effect typical of the tumor microenvironment (passive targeting), but also the use of specific "molecular antennas" that recognize some tumor-overexpressed molecules (active targeting). This line of research has given rise to the so-called "smart nanoparticles," some of which have already passed the preclinical phase and are under clinical trials in melanoma patients. To further improve nanoparticles partition within tumors, for some years now a line of thought is exploiting the molecular systems that regulate the innate tumor-homing activity of platelets, granulocytes, monocytes/macrophages, stem cells, endothelial-colony-forming cells, and red blood cells loaded with nanoparticles. This new vision springs from the results obtained with some of these cells in regenerative medicine, an approach called "cell therapy." This review takes into consideration the advantages of cell therapy as the only one capable of overcoming the limits of targeting imposed by the increased interstitial pressure of tumors.
Collapse
Affiliation(s)
- Anastasia Chillà
- Department of Experimental and Clinical Biomedical Sciences School of Health Sciences, University of Florence-Viale G.B. Morgagni, 50–50134 Florence, Italy; (A.C.); (F.M.); (A.B.); (G.F.)
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences School of Health Sciences, University of Florence-Viale G.B. Morgagni, 50–50134 Florence, Italy; (A.C.); (F.M.); (A.B.); (G.F.)
| | - Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences School of Health Sciences, University of Florence-Viale G.B. Morgagni, 50–50134 Florence, Italy; (A.C.); (F.M.); (A.B.); (G.F.)
| | - Tommaso Del Rosso
- Department of Physics, Pontifical Catholic University of Rio de Janeiro, 22451-900 Rio de Janeiro-RJ, Brazil;
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical Sciences School of Health Sciences, University of Florence-Viale G.B. Morgagni, 50–50134 Florence, Italy; (A.C.); (F.M.); (A.B.); (G.F.)
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical Sciences School of Health Sciences, University of Florence-Viale G.B. Morgagni, 50–50134 Florence, Italy; (A.C.); (F.M.); (A.B.); (G.F.)
- Correspondence: (M.D.R.); (A.L.)
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences School of Health Sciences, University of Florence-Viale G.B. Morgagni, 50–50134 Florence, Italy; (A.C.); (F.M.); (A.B.); (G.F.)
- Correspondence: (M.D.R.); (A.L.)
| |
Collapse
|
49
|
Heller L, Thinard R, Chevalier M, Arpag S, Jing Y, Greferath R, Heller R, Nicolau C. Secretion of proteins and antibody fragments from transiently transfected endothelial progenitor cells. J Cell Mol Med 2020; 24:8772-8778. [PMID: 32610368 PMCID: PMC7412409 DOI: 10.1111/jcmm.15511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 01/01/2023] Open
Abstract
In neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis and amyotrophic lateral sclerosis, neuroinflammation can lead to blood‐brain barrier (BBB) breakdown. After intravenous or intra‐arterial injection into mice, endothelial progenitor cells (EPCs) home to the damaged BBB to promote neurovascular repair. Autologous EPCs transfected to express specific therapeutic proteins offer an innovative therapeutic option. Here, we demonstrate that EPC transfection by electroporation with plasmids encoding the reporter protein GFP or an anti‐β‐amyloid antibody fragment (Fab) leads to secretion of each protein. We also demonstrate the secreted anti‐β‐amyloid Fab protein functions in β‐amyloid aggregate solubilization.
Collapse
Affiliation(s)
- Loree Heller
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| | - Reynald Thinard
- ALSaTECH, Tufts Biolabs Launchpad, Boston, Massachusetts, USA
| | | | - Sezgi Arpag
- Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, USA
| | - Yu Jing
- Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, USA
| | - Ruth Greferath
- ALSaTECH, Tufts Biolabs Launchpad, Boston, Massachusetts, USA
| | - Richard Heller
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| | - Claude Nicolau
- ALSaTECH, Tufts Biolabs Launchpad, Boston, Massachusetts, USA.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
50
|
Evidence of Accumulated Endothelial Progenitor Cells in the Lungs of Rats with Pulmonary Arterial Hypertension by 89Zr-oxine PET Imaging. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:1108-1117. [PMID: 32490032 PMCID: PMC7256434 DOI: 10.1016/j.omtm.2020.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022]
Abstract
Endothelial progenitor cells (EPCs) play a major role in regulating pulmonary vascular remodeling during pulmonary arterial hypertension (PAH) development. Several preclinical and clinical trials of EPCs transplantation have been performed for the treatment of PAH. However, there is no reliable method to monitor real-time cell trafficking and quantify transplanted EPCs. Here in this paper we isolated EPCs from human peripheral blood, identified their functional integrity, and efficiently labeled the EPCs with 89Zr-oxine and DiO. Labeled EPCs were injected into the tail vein of normal and PAH rats to be tracked in vivo. From the microPET/CT images, we found EPCs were distributed primarily in the lung at 1 h and then migrated to the liver and spleen. We could observe the 3,3′ dioctadecyloxacarbocyanine perchlorate (DiO)-labeled EPCs binding in the pulmonary vasculature by CellVizio confocal. The result of quantitative analysis revealed significantly higher accumulation of EPCs in the lungs of PAH rats than in those of healthy rats. The distribution and higher accumulation of EPCs in the lungs of PAH rats could help to evaluate the safety and provide evidence of effectiveness of EPC therapy.
Collapse
|