1
|
Ali S, Mirza R, Shah KU, Javed A, Dilawar N. "Harnessing green synthesized zinc oxide nanoparticles for dual action in wound management: Antibiotic delivery and healing Promotion". Microb Pathog 2025; 200:107314. [PMID: 39848301 DOI: 10.1016/j.micpath.2025.107314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/02/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Wound infections are characterized by the invasion of microorganisms into bodily tissues, leading to inflammation and potentially affecting any type of wound, including surgical incisions and chronic ulcers. If left untreated, they can delay recovery and cause tissue damage. Healthcare providers face challenges in treating these infections, which necessitate efficient treatment plans involving microbiological testing and clinical evaluation. The effectiveness of conventional treatments like antibiotics is limited by resistance. Various forms of nanotechnology have been developed, each exhibiting unique properties that address particular issues with conventional therapies. Among all the Nanocarriers, zinc oxide nanoparticles (ZnO NPs), offer promising treatments for persistent wound infections. ZnO NPs possess strong antibacterial, antioxidant, anti-inflammatory, and anti-diabetic properties, making them suitable for wound care applications. These nanoparticles can be produced economically and environmentally using green synthesis techniques that minimize toxicity and are biocompatible. While chemical and physical techniques offer precise control over nanoparticle characteristics, they often involve hazardous substances and energy-intensive procedures. The antibacterial qualities, low toxicity, and biological compatibility of green-synthesized ZnO NPs make them a promising treatment for wound infections. Their use in scaffolds, drug delivery systems, and wound dressings provides a viable approach to combat antibiotic resistance and enhance wound treatment outcomes. Furthermore research is necessary to fully realize the benefits of ZnO NPs in clinical practice.
Collapse
Affiliation(s)
- Sajid Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Rashna Mirza
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Kifayat Ullah Shah
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Aqeedat Javed
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Naz Dilawar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
2
|
Bhatnagar K, Raju S, Patki N, Motiani RK, Chaudhary S. Targeting mineral metabolism in cancer: Insights into signaling pathways and therapeutic strategies. Semin Cancer Biol 2025:S1044-579X(25)00039-2. [PMID: 40024314 DOI: 10.1016/j.semcancer.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/29/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
Cancer remains the second leading cause of death worldwide, emphasizing the critical need for effective treatment and control strategies. Essential minerals such as copper, iron, zinc, selenium, phosphorous, calcium, and magnesium are integral to various biological processes and significantly influence cancer progression through altered metabolic pathways. For example, dysregulated copper levels promote tumor growth, while cancer cells exhibit an increased dependency on iron for signaling and redox reactions. Zinc influences tumor development through pathways such as Akt-p21. Selenium, primarily through its role in selenoproteins, exhibits anticancer potential but may also contribute to tumor progression. Similarly, dietary phosphate exacerbates tumorigenesis, metastasis, and angiogenesis through signaling pathway activation. Calcium, the most abundant mineral in the body, is tightly regulated within cells, and its dysregulation is a hallmark of various cancers. Magnesium deficiency, on the other hand, promotes cancer progression by fostering inflammation and free radical-induced DNA mutations. Interestingly, magnesium also plays a dual role, with low levels enhancing epithelial-mesenchymal transition (EMT), a critical process in cancer metastasis. This complex interplay of essential minerals underscores their potential as therapeutic targets. Dysregulation of these minerals and their pathways could be exploited to selectively target cancer cells, offering novel therapeutic strategies. This review summarizes current research on the abnormal accumulation or depletion of these microelements in tumor biology, drawing evidence from animal models, cell lines, and clinical samples. We also highlight the potential of these minerals as biomarkers for cancer diagnosis and prognosis, as well as therapeutic approaches involving metal chelators, pharmacological agents, and nanotechnology. By highlighting the intricate roles of these minerals in cancer biology, we aim to inspire further research in this critical yet underexplored area of oncology.
Collapse
Affiliation(s)
- Kartik Bhatnagar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh, 201310, India.
| | - Sharon Raju
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-Gurugram Expressway, Faridabad, Haryana, 121001, India.
| | - Ninad Patki
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh, 201310, India.
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-Gurugram Expressway, Faridabad, Haryana, 121001, India.
| | - Sarika Chaudhary
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Plot Nos. 8-11, Tech Zone 2, Greater Noida, Uttar Pradesh, 201310, India.
| |
Collapse
|
3
|
Sheikh KA, Amjad M, Irfan MT, Anjum S, Majeed T, Riaz MU, Jassim AY, Sharif EAM, Ibrahim WN. Exploring TGF-β Signaling in Cancer Progression: Prospects and Therapeutic Strategies. Onco Targets Ther 2025; 18:233-262. [PMID: 39989503 PMCID: PMC11846535 DOI: 10.2147/ott.s493643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/19/2024] [Indexed: 02/25/2025] Open
Abstract
Cancer persists as a ubiquitous global challenge despite the remarkable advances. It is caused by uncontrolled cell growth and metastasis. The Transforming Growth Factor-beta (TGF-β) signaling pathway is considered a primary regulator of various normal physiological processes in the human body. Recently, factors determining the nature of TGF-β response have received attention, specifically its signaling pathway which can be an attractive therapeutic target for various cancer treatments. The TGF-β receptor is activated by its ligands and undergoes transduction of signals via canonical (SMAD dependent) or non-canonical (SMAD independent) signaling pathways regulating several cellular functions. Furthermore, the cross talk of the TGF-β signaling pathway cross with other signaling pathways has shown the controlled regulation of cellular functions. This review highlights the cross talk between various major signaling pathways and TGF-β. These signaling pathways include Wnt, NF-κB, PI3K/Akt, and Hedgehog (Hh). TGF-β signaling pathway has a dual role at different stages. It can suppress tumor formation at early stages and promote progression at advanced stages. This complex behaviour of TGF-β has made it a promising target for therapeutic interventions. Moreover, many strategies have been designed to control TGF-β signaling pathways at different levels, inhibiting tumor-promoting while enhancing tumor-suppressive effects, each with unique molecular mechanisms and clinical implications. This review also discusses various therapeutic inhibitors including ligand traps, small molecule inhibitors (SMIs), monoclonal antibodies (mAbs), and antisense oligonucleotides which target specific components of TGF-β signaling pathway to inhibit TGF-β signaling and are studied in both preclinical and clinical trials for different types of cancer. The review also highlights the prospect of TGF-β signaling in normal physiology and in the case of dysregulation, TGF-β inhibitors, and different therapeutic effects in cancer therapy along with the perspective of combinational therapies to treat cancer.
Collapse
Affiliation(s)
- Khansa Ali Sheikh
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Momna Amjad
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | | | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Tanveer Majeed
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Muhammad Usman Riaz
- School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Elham Abdullatif M Sharif
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Tran VA, Hung NH, Thi Vo TT, An SSA, Lee SW, Jeong H, Tan MA. Revolutionary NIR-activated silicon nanoparticles: precision-controlled release and targeted 3D cancer cell destruction. RSC Adv 2025; 15:4958-4969. [PMID: 39957827 PMCID: PMC11826154 DOI: 10.1039/d4ra08889a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/10/2025] [Indexed: 02/18/2025] Open
Abstract
In cancer therapy, controlled and targeted drug release systems are essential to maximize therapeutic outcomes while minimizing adverse effects. This study introduces an innovative mesoporous silicon nanoparticle (MSN) platform, functionalized with the natural anticancer agent dieckol (Di) and designed for precise drug delivery activated by near-infrared (NIR) irradiation. By embedding Di and grafting fluorescent organic conjugates onto the MSN surface, this innovative nanocarrier demonstrates exceptional sensitivity to NIR stimuli and potent chemo-photothermal effects. Notably, drug release remains stable across different pH conditions (7.4, 6.5, and 5.5), ensuring consistent therapeutic delivery. However, upon NIR exposure, the release can be selectively accelerated, enabling precise, real-time, and on-demand drug release control for enhanced treatment efficacy. Cytotoxicity tests revealed that IPSi-Dox-Di-DQA nanoparticles exhibited potent dose-dependent inhibition of cancer cell growth (SH-SY5Y and B16-F10), while sparing healthy cells (HEK-293), highlighting their specificity. Furthermore, advanced 3D cell viability assays mimic the complexities of in vivo cancer environments, with spheroid disintegration under nanoparticle treatment underscoring the platform's powerful anticancer potential. These findings position IPSi-Dox-Di-DQA nanoparticles as a promising frontier in the development of selective, effective cancer therapeutics through synergistic NIR-controlled drug release and mitochondrial targeting.
Collapse
Affiliation(s)
- Vy Anh Tran
- Deparment of Material Science, Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University Ho Chi Minh City 700000 Vietnam
| | - Nguyen Huy Hung
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University 03 Quang Trung Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University 03 Quang Trung Da Nang 550000 Vietnam
| | - Thu Thao Thi Vo
- Department of Food Science and Biotechnology, Gachon University 1342 Seongnamdaero, Sujeong-gu Seongnam-si 13120 Republic of Korea
| | - Seong Soo A An
- Department of Bionano Technology, Bionano Research Institute, Gachon University Seongnam-si 1342 Gyeonggi-do 461-701 Republic of Korea
| | - Sang-Wha Lee
- Department of Chemical and Biological Engineering, Gachon University Seongnam-si 1342 Gyeonggi-do 461-701 Republic of Korea
| | - Hun Jeong
- Department of Natural Products & Biotechnology, Jeonbuk Science College Jeongeup 56204 Republic of Korea
| | - Mario A Tan
- College of Science and Research Center for the Natural and Applied Sciences, University of Santo Tomas Manila 1015 Philippines
| |
Collapse
|
5
|
Du H, Wang Z, Long S, Li Y, Yang D. The advancement of nanosystems for drug delivery in the prevention and treatment of dental caries. Front Cell Infect Microbiol 2025; 15:1546816. [PMID: 40007606 PMCID: PMC11850577 DOI: 10.3389/fcimb.2025.1546816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
The dental caries remains a globally prevalent disease. Although its incidence has decrease due to enhancements in sanitation policies and public health measures, the treatment and prevention of dental caries still pose significant challenges. Within the oral cavity, traditional drug delivery systems suffer from limitation such as inadequate tissue penetration, short duration of action at target site, and low specificity, which minimally affect the prevention and treatment of dental caries. Consequently, nanosystem for drug delivery, offering enhanced drug stability, solubility, and bio-availability while reducing side effects, garnering attention increasing attention in the fight against dental caries. Therefore, this review examines the role of nanosystems for drug delivery in combating dental caries by inhibiting bacteria survival, biofilm formation, demineralization, and promoting remineralization, and exploring their potential to become the mainstream means of prevention and treatment of dental caries in future.
Collapse
Affiliation(s)
- Han Du
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Zheng Wang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Shenglan Long
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Yiding Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Deqin Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing, China
- Department of Conservative Dentistry and Endodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Maharjan A, Gautam R, Lee G, Kim D, Lee D, Acharya M, Kim H, Heo Y, Kim C. Assessment of skin sensitization potential of zinc oxide, aluminum oxide, manganese oxide, and copper oxide nanoparticles through the local lymph node assay: 5-bromo-deoxyuridine flow cytometry method. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:95-105. [PMID: 38796781 DOI: 10.1080/15287394.2024.2357466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The advent of nanotechnology has significantly spurred the utilization of nanoparticles (NPs) across diverse sectors encompassing industry, agriculture, engineering, cosmetics, and medicine. Metallic oxides including zinc oxide (ZnO), copper oxide (CuO), manganese oxide (Mn2O3), and aluminum oxide (Al2O3), in their NP forms, have become prevalent in cosmetics and various dermal products. Despite the expanding consideration of these compounds for dermal applications, their potential for initiating skin sensitization (SS) has not been comprehensively examined. An in vivo assay, local lymph node assay: 5-bromo-2-deoxyuridine-flow cytometry method (LLNA: BrdU-FCM) recognized as an alternative testing method for screening SS potential was used to address these issues. Following the OECD TG 442B guidelines, NPs suspensions smaller than 50 nm size were prepared for ZnO and Al2O3 at concentrations of 10, 25, and 50%, and Mn2O3 and CuO at concentrations of 5, 10, and 25%, and applied to the dorsum of each ear of female BALB/c mice on a daily basis for 3 consecutive days. Regarding the prediction of test substance to skin sensitizer if sensitization index (SI)≥2.7, all 4 NPs were classified as non-sensitizing. The SI values were below 2.06, 1.33, 1.42, and 0.99 for ZnO, Al2O3, Mn2O3, and CuO, respectively, at all test concentrations. Although data presented were negative with respect to adverse SS potential for these 4 NPs, further confirmatory tests addressing other key events associated with SS adverse outcome pathway need to be carried out to arrive at an acceptable conclusion on the skin safety for both cosmetic and dermal applications.
Collapse
Affiliation(s)
- Anju Maharjan
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - Ravi Gautam
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - GiYong Lee
- Department of Toxicity Assessment, Daegu Catholic University Graduate School of Medical Health and Science, Gyeongsan, Republic of Korea
| | - DongYoon Kim
- Department of Toxicity Assessment, Daegu Catholic University Graduate School of Medical Health and Science, Gyeongsan, Republic of Korea
| | - DaEun Lee
- Department of Occupational Health, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - Manju Acharya
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - HyoungAh Kim
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong Heo
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
- Department of Toxicity Assessment, Daegu Catholic University Graduate School of Medical Health and Science, Gyeongsan, Republic of Korea
- Department of Occupational Health, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - ChangYul Kim
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
- Department of Toxicity Assessment, Daegu Catholic University Graduate School of Medical Health and Science, Gyeongsan, Republic of Korea
| |
Collapse
|
7
|
Esnaashari F, Zamani H, Zahmatkesh H, Soleimani M, Dashtaki GA, Rasti B. Berberine decorated zinc oxide loaded chitosan nanoparticles a potent anti cancer agent against breast cancer. Sci Rep 2025; 15:3185. [PMID: 39863648 PMCID: PMC11762321 DOI: 10.1038/s41598-025-87445-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
Breast cancer ranks as the second leading reason of cancer mortality among females globally, emphasizing the critical need for novel anticancer treatments. In current work, berberine-zinc oxide conjugated chitosan nanoparticles were synthesized and characterized using various characterization techniques. The cytotoxic effects of CS-ZnO-Ber NPs on MCF-7 cells were assessed using the MTT assay. Also, annexin V-FITC/PI double staining, Hoechst 33,342 staining, caspases-8 and 9 activity assays, and cell cycle analysis were performed. Furthermore, the mRNA levels of Bax and Bcl-2 genes were quantified using qPCR. Additionally, cell migration was evaluated using a scratch assay. The IC50 value of NPs against MCF-7 cells measured 7.41 µg/mL. Apoptosis induction in NP-treated cells was confirmed by Annexin V/PI staining, accompanied by the observation of condensed chromatin and fragmented DNA. Moreover, the pro-apoptotic potential of NPs was evidenced by significant increases in caspases-8 and 9 activity and a decreased Bcl-2/Bax ratio. Furthermore, cell cycle arrest at the sub-G1 was noticed in the treated cells. Additionally, the NPs markedly inhibited the migration rate of MCF-7 cells. These findings suggest that CS-ZnO-Ber NPs induce cell-cycle arrest and activate the apoptotic pathways in MCF-7 cells, highlighting their potential as a hopeful therapeutic agent for breast cancer.
Collapse
Affiliation(s)
- Fatemeh Esnaashari
- Department of Biology, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | | | | | - Mojtaba Soleimani
- Department of Chemistry, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | | | - Behnam Rasti
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| |
Collapse
|
8
|
Khandelwal D, Bhattacharya A, Kumari V, Gupta SS, Ranjan KR, Mishra V. Leveraging nanomaterials for ultrasensitive biosensors in early cancer detection: a review. J Mater Chem B 2025; 13:802-820. [PMID: 39635753 DOI: 10.1039/d4tb02107j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Cancer remains a major global health challenge with a high mortality rate, as evidenced by the rise in new cases every year. Conventional diagnostic methods like PET scans, MRIs, and biopsies, despite being widely used, suffer from significant drawbacks such as high radiation exposure, difficulty in distinguishing malignant from benign tumors, and invasiveness. Early detection, which is crucial for improving treatment outcomes and survival rates, is hindered by the asymptomatic nature of early-stage cancer and the limitations of current diagnostic tools. Cancer biomarkers, detectable in body fluids, offer valuable diagnostic information, and recent advances in nanotechnology have led to the development of highly sensitive nano-biosensors. This review explores recent advancements (2022-2024) in the field of ultrasensitive nano-biosensors, emphasizing the strategic integration of nanomaterials to enhance sensitivity and accuracy in cancer biomarker detection. It highlights how precise nanomaterial positioning in sensor components like electrodes and bioreceptors enables early cancer diagnosis at low biomarker concentrations. These innovations underscore the transformative potential of nanomaterials in revolutionizing early cancer diagnostics, improving patient care, and enhancing survival outcomes.
Collapse
Affiliation(s)
- Drishti Khandelwal
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, UP-201313, India.
| | - Aheli Bhattacharya
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, UP-201313, India.
| | - Vanshika Kumari
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, UP-201313, India.
| | | | - Kumar Rakesh Ranjan
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida, UP-201313, India.
| | - Vivek Mishra
- Amity Institute of Click Chemistry Research and Studies, Amity University Uttar Pradesh, Noida, UP-201313, India.
| |
Collapse
|
9
|
Thangamuniyandi P, Umapathy D, Nagarajan L, Velanganni Arockiam AJ. Blue-LED assisted Photodegradation kinetics of rhodamine-6G dye, enhanced anticancer activity and cleavage of plasmids using Au-ZnO nanocomposite. Heliyon 2025; 11:e41061. [PMID: 39801960 PMCID: PMC11721231 DOI: 10.1016/j.heliyon.2024.e41061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/28/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
The plasmonic metal doping on the UV-active metal oxide nanoparticle turns the resultant plasmonic metal-metal oxide (PMMO) into visible light active and upon exogenous illumination the photogenerated energetic charge carriers and the in situ generated reactive oxygen species (ROS, e.g. ·OH and O2 -·) authoritatively enhances its biological and catalytic activity. Herein, a hexagonal rod-shaped ZnO nanoparticles (NP) precursor was prepared using the sol-gel method, which in the presence of varying concentrations of gold (0.005M, 0.01M, and 0.015M) via a greener citrate reduction method afforded a nanocrystalline Au-ZnO nanocomposite. Using which, the visible-light driven photo-degradation kinetics investigation of rhodamine-6G (R6G) dye under blue LED irradiation were carried out. The use of 20 mg 0.015-Au-ZnO completes the degradation of R6G (97.0 %, k = 6.5 X 10-3s-1 at pH 7) within 55 min while 50 mg of 0.015-Au-ZnO catalyst improves the rate of R6G degradation (15 min 97.8 %, k = 14.8 × 10-3 s-1) and it is reusable up to three cycles. The LC-MS spectra of the remains of R6G (after 15 min) identified various low molecular ions (up m/z = 65). Further, the blue-LED assisted anti-cancer studies (MTT assay) using 0.015-Au-ZnO towards human lung cancer cells (A549), breast cancer cells (SKBr3) show high anti-proliferation rate and low cytotoxicity against healthy human embryonic kidney cells (HEK-293) with an IC50 value of 65, 53 and 124 μg/mL respectively. Also, the AO-EB dual staining and DCFH-DA analysis of SKBr3 and A549 cells revealed ROS-mediated cell death via apoptosis. Moreover, plasmid cleavage studies against supercoiled pBR322 DNA result in single-stranded linear DNA without traversing the nicked circular form, suggesting the possible DNA targeting activity of Au-ZnO nanozyme. Thus, the synthesized Au-ZnO nanocomposite shows excellent photocatalytic and biological activity.
Collapse
Affiliation(s)
- Pilavadi Thangamuniyandi
- School of Chemistry, Structural and Photochemistry Laboratory, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Devan Umapathy
- School of Life Sciences, Department of Biochemistry, Molecular Oncology Laboratory, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Loganathan Nagarajan
- School of Chemistry, Structural and Photochemistry Laboratory, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
- UGC Faculty Recharge Programme, UGC, New Delhi, India
| | - Antony Joseph Velanganni Arockiam
- School of Life Sciences, Department of Biochemistry, Molecular Oncology Laboratory, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| |
Collapse
|
10
|
Homaeigohar S, Kordbacheh D, Banerjee S, Gu J, Zhang Y, Huang Z. Zinc Oxide Nanoparticle Loaded L-Carnosine Biofunctionalized Polyacrylonitrile Nanofibrous Wound Dressing for Post-Surgical Treatment of Melanoma. Polymers (Basel) 2025; 17:173. [PMID: 39861246 PMCID: PMC11768544 DOI: 10.3390/polym17020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Nanofibrous dressing materials with an antitumor function can potentially inhibit recurrence of melanoma following the surgical excision of skin tumors. In this study, hydrolyzed polyacrylonitrile (hPAN) nanofibers biofunctionalized with L-carnosine (CAR) and loaded with bio (CAR)-synthesized zinc oxide (ZnO) nanoparticles, ZnO/CAR-hPAN (hereafter called ZCPAN), were employed to develop an antimelanoma wound dressing. Inspired by the formulation of the commercial wound healing Zn-CAR complex, i.e., polaprezinc (PLZ), for the first time, we benefitted from the synergy of zinc and CAR to create an antimelanoma nanofibrous wound dressing. According to scanning electron microscopy (SEM) images, ultrafine ZnO nanoparticles were homogenously distributed throughout the nanofibrous dressing. The ZCPAN nanofiber mat showed a significantly higher toughness (18.7 MJ.m-3 vs. 1.4 MJ.m-3) and an enhanced elongation at break (stretchability) compared to the neat PAN nanofiber mat (12% vs. 9.5%). Additionally, optical coherence elastography (OCE) measurements indicated that the ZCPAN nanofibrous dressing was as stiff as 50.57 ± 8.17 kPa which is notably larger than that of the PAN nanofibrous dressing, i.e., 24.49 ± 6.83 kPa. The optimum mechanical performance of the ZCPAN nanofibers originates from physicochemical interaction of CAR ligands, hPAN nanofibers, and ZnO nanoparticles through hydrogen bonding, electrostatic bonding, and esterification, as verified using ATR-FTIR. An in vitro cell viability assay using human skin melanoma cells implied that the cells are notably killed in the presence of the ZCPAN nanofibers compared to the PAN nanofibers. Thanks to ROS generating ZnO nanoparticles, this behavior originates from the high reactive oxygen species (ROS)-induced oxidative damage of melanoma cells, as verified through a CellROX assay. In this regard, an apoptotic cell response to the ZCPAN nanofibers was recorded through an apoptosis assay. Taken together, the ZCPAN nanofibers induce an antimelanoma effect through oxidative stress and thus are a high potential wound dressing material to suppress melanoma regrowth after surgical excision of skin tumors.
Collapse
Affiliation(s)
- Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Danial Kordbacheh
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Sourav Banerjee
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Jiacheng Gu
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Yilong Zhang
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Zhihong Huang
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
11
|
Ahmed J, Farhana, Manzoor GA, Kaleri AR, Zulfiqar B, Waheed A, Iqbal R, Rahimi M. In-vitro antifungal potential of myco versus bacteria synthesized ZnO NPs against chickpea and apricot pathogen. Sci Rep 2025; 15:148. [PMID: 39747348 PMCID: PMC11696308 DOI: 10.1038/s41598-024-84438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Chickpea (Cicer arietinum) and Apricot (Prunus armeniaca) both are economically and nutritionally important, these both faces severe losses due to fungal Infections. For several fungal infections, traditional methods of management rely on chemical fungicideswhich have environmental and health risks. The in-vitro antifungal efficacy of myco-synthesized and bacteria-synthesized zinc oxide (ZnO) nanoparticles against pathogens impacting chickpea and apricot is aimed to be compared in this review article. Evaluated for their antifungal effectiveness against Fusarium oxysporum f. sp. ciceris in chickpea and Alternaria solani, myco-synthesized ZnO NPs generated from Trichoderma harzianum and bacteria-synthesized ZnO NPs were using a poisoned food approach, the study evaluated minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC), and inhibition zone diameter. At lower concentrations, myco-synthesized ZnO NPs shown better antifungal activity than their bacteria-synthesized counterparts, according to results. Surface changes, size, and concentration of nanoparticles were main determinants of antifungal activity. Emphasizing the need of more study to maximize the synthesis and application in agricultural environments, this review underlines the possibilities of ZnO NPs as sustainable substitutes for chemical fungicides.
Collapse
Affiliation(s)
- Junaid Ahmed
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Farhana
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ghulam Ali Manzoor
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Abdul Rasheed Kaleri
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China
| | - Bilal Zulfiqar
- Institute of Environmental and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Abdul Waheed
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan.
| | - Mehdi Rahimi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
- Department of Medical Microbiology, College of Science, Knowledge University, Kirkuk Road, 44001, Erbil, Iraq.
| |
Collapse
|
12
|
Sajeevan D, Are RP, Hota P, Babu AR. Nanoparticles as Drug Delivery Carrier-synthesis, Functionalization and Application. Curr Pharm Des 2025; 31:244-260. [PMID: 38685791 DOI: 10.2174/0113816128304018240415095912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 05/02/2024]
Abstract
In recent years, advancements in chemistry have allowed the tailoring of materials at the nanoscopic level as needed. There are mainly four main types of nanomaterials used as drug carriers:metal-based nanomaterials, organic nanomaterials, inorganic nanomaterials, and polymer nanomaterials. The nanomaterials as a drug carrier showed advantages for decreased side effects with a higher therapeutic index. The stability of the drug compounds are increased by encapsulation of the drug within the nano-drug carriers, leading to decreased systemic toxicity. Nano-drug carriers are also used for controlled drug release by tailoring system-made solubility characteristics of nanoparticles by surface coating with surfactants. The review focuses on the different types of nanoparticles used as drug carriers, the nanoparticle synthesis process, techniques of nanoparticle surface coating for drug carrier purposes, applications of nano-drug carriers, and prospects of nanomaterials as drug carriers for biomedical applications.
Collapse
Affiliation(s)
- Drishya Sajeevan
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Ramakrishna Prasad Are
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Prabhudutta Hota
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Anju R Babu
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
13
|
Cetinkaya A, Yusufbeyoglu S, Kaya SI, Baldemir Kilic A, Atici EB, Ozkan SA. Design of a molecularly imprinted polymer sensor modified with saffron-based copper nanoflowers for highly selective and sensitive determination of bortezomib. Talanta 2025; 282:127005. [PMID: 39406091 DOI: 10.1016/j.talanta.2024.127005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/27/2024] [Accepted: 10/05/2024] [Indexed: 11/20/2024]
Abstract
This work represents the first successful application of a molecularly imprinted polymer (MIP)-based electrochemical sensor for the sensitive and selective determination of the first developed proteasome inhibitor, bortezomib (BOR). BOR is used for the treatment of multiple myeloma, gastrointestinal stromal tumors, and mantle cell lymphoma. It shows its desired effect through the boronate group and can be administered intravenously or subcutaneously. The MIP-based electrochemical sensor design includes the integration of green-synthesized saffron-based copper nanoflowers (CuNFs) from Crocus sativus L. to increase the active surface area and porosity of the glassy carbon electrode (GCE) surface. 2-Acrylamido-2-methyl-1-propanesulfonic acid (AMPS) was selected as the functional monomer along with other MIP components. Detailed characterizations of the developed CuNFs/AMPS/MIP-GCE sensor and CuNFs were performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray analysis (EDX), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The indirect measurement approach using 5.0 mM [Fe(CN)6]3-/4- solution was used to determine BOR in the linear range of 2.5 × 10-13 M - 2.5 × 10-12 M (0.25-2.5 pM). The LOD and LOQ values of the sensor obtained at the fM level (29 fM and 96.7 fM), which has a linear response in the commercial human serum sample in the same concentration range, emphasize its sensitivity (1.89 × 1013 and 2.14 × 1013 μA/M for standard solution and serum). The repeatability and reproducibility of the sensor were between 0.87 % and 2.17 %, showing its reliability. The successful performance of the sensor in the presence of metabolites belonging to BOR demonstrates its unique selectivity. The selectivity was demonstrated via relative imprinting factor (IF') values (higher than 3.5) against BOR's metabolites. The stability of the CuNFs/AMPS/MIP-GCE sensor was found to be 5 days.
Collapse
Affiliation(s)
- Ahmet Cetinkaya
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, 06560, Turkey
| | - Sadi Yusufbeyoglu
- University of Health Sciences, Gulhane Faculty of Pharmacy, Department of Pharmaceutical Botany, Ankara, Turkey
| | - S Irem Kaya
- University of Health Sciences, Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Ayse Baldemir Kilic
- University of Health Sciences, Gulhane Faculty of Pharmacy, Department of Pharmaceutical Botany, Ankara, Turkey
| | - Esen Bellur Atici
- DEVA Holding A.S., Research&Development Center, Tekirdağ, 59510, Turkey
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, 06560, Turkey.
| |
Collapse
|
14
|
Vedarethinam V, Jeevanandam J. Role of nanotechnology in microbiome drug development. HUMAN MICROBIOME DRUG TARGETS 2025:245-263. [DOI: 10.1016/b978-0-443-15435-5.00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Alhaddad R, Abualsoud BM, Al-Deeb I, Nsairat H. Green synthesized Zingiber officinale-ZnO nanoparticles: anticancer efficacy against 3D breast cancer model. Future Sci OA 2024; 10:2419806. [PMID: 39539163 PMCID: PMC11572278 DOI: 10.1080/20565623.2024.2419806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Aim: ZnO NPs were prepared via green synthesis utilizing Zingiber Officinale.Methodology: Physical characterization and biological activity were performed against 2D, and 3D spheroids MCF-7 cell lines.Results: The NPs exhibited 188.9, 175.7 and 171.2 nm size with charge of -8.2, -11.7 and -9.7 mV for the 2%, 3% and 4% formulations. XRD confirmed a wurtzite hexagonal phase. FTIR spectra showed Zn-O stretching vibrations. The 2%, 3% and 4% formulations presented IC50 values of 14.7, 26.2 and 47 μg/ml, respectively, with complete destruction of MCF-7 spheroids. Elevated TNF-α levels suggested an inflammatory-mediated mechanism of action.Conclusion: 2% Zingiber officinale-derived ZnO NPs showed antitumor potential against deserving further mechanistic and in vivo explorations.
Collapse
Affiliation(s)
- Ruqaya Alhaddad
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Bassam M Abualsoud
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Ibrahim Al-Deeb
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
- Department of Clinical Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa, 13110, Jordan
| | - Hamdi Nsairat
- Pharmacological & Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| |
Collapse
|
16
|
Rehner (Costache) AMG, Bratu AG, Bîrcă AC, Niculescu AG, Holban AM, Hudiță A, Bîclesanu FC, Balaure PC, Pangică AM, Grumezescu AM, Croitoru GA. Zn 2SnO 4@SiO 2@5-FU Nanoparticles as an Additive for Maxillary Bone Defects. Int J Mol Sci 2024; 26:194. [PMID: 39796051 PMCID: PMC11720676 DOI: 10.3390/ijms26010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
This study investigates the synthesis of Zn2SnO4@SiO2@5-FU nanoparticles as an additive for bone fillers in dental maxillofacial reconstruction. Zn2SnO4 nanoparticles were synthesized and coated with a SiO2 shell, followed by the incorporation of 5-Fluorouracil (5-FU), aimed at enhancing the therapeutic properties of classical fillers. Structural analysis using X-ray diffraction confirmed that Zn2SnO4 was the single crystalline phase present, with its crystallinity preserved after both SiO2 coating and 5-FU incorporation. SEM characterization revealed the micro-spherical particles of Zn2SnO4 assembled by an agglomeration of nanorods, exhibiting dimensions and morphological characteristics that were consistent after the addition of both the SiO2 shell and 5-FU. Fourier-transformed infrared spectroscopy provided solid proof of the successful synthesis of Zn2SnO4, Zn2SnO4@SiO2, and Zn2SnO4@SiO2@5-FU, confirming the presence of expected functional groups. The SiO2 layer improved nanoparticle stability in the solution, as indicated by zeta potential measurements, while adding 5-FU significantly increased biocompatibility and targeting efficiency. The existence of the SiO2 shell and 5-FU is also confirmed by the hydrodynamic diameter, indicating an increase in particle size after incorporating both compounds. Antibacterial assays demonstrated a selective efficacy against Gram-positive bacteria, with Zn2SnO4@SiO2@5-FU showing the strongest inhibitory effects. Biofilm inhibition studies further confirmed the nanoparticles' effectiveness in preventing bacterial colonization. Cytotoxicity tests on the A-431 human epidermoid carcinoma cell line revealed a dose-dependent reduction in cell viability, highlighting the potential of 5-FU for targeted cancer treatment. These findings highlight the potential of Zn2SnO4@SiO2@5-FU nanoparticles as a multifunctional additive for bone fillers, offering enhanced antimicrobial and antitumor capabilities.
Collapse
Affiliation(s)
| | - Andreea Gabriela Bratu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.G.B.); (A.C.B.); (A.-G.N.); (P.C.B.)
| | - Alexandra Cătălina Bîrcă
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.G.B.); (A.C.B.); (A.-G.N.); (P.C.B.)
| | - Adelina-Gabriela Niculescu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.G.B.); (A.C.B.); (A.-G.N.); (P.C.B.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
| | - Alina Maria Holban
- Faculty of Biology, University of Bucharest, Aleea Portocalelor 1-3, Sector 5, 77206 Bucharest, Romania;
| | - Ariana Hudiță
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Faculty of Biology, University of Bucharest, Aleea Portocalelor 1-3, Sector 5, 77206 Bucharest, Romania;
| | | | - Paul Cătălin Balaure
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.G.B.); (A.C.B.); (A.-G.N.); (P.C.B.)
| | - Anna Maria Pangică
- Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania; (A.M.G.R.); (F.C.B.); (A.M.P.)
| | - Alexandru Mihai Grumezescu
- Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania; (A.G.B.); (A.C.B.); (A.-G.N.); (P.C.B.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
| | - George-Alexandru Croitoru
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania;
| |
Collapse
|
17
|
Zarrinnahad H, Dehdast SA, Fard GC, Nourbakhsh M, Koohi MK, Panahi G, Karimpour A, Rezayat SM, Shabani M. The effect of biosynthesized zinc oxide nanoparticles on gene expression and apoptosis in triple-negative breast cancer cells. Daru 2024; 33:10. [PMID: 39731629 DOI: 10.1007/s40199-024-00553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/25/2024] [Indexed: 12/30/2024] Open
Abstract
OBJECTIVE(S) Some forms of breast cancer such as triple-negative phenotype, are serious challenge because of high metastatic cases, high mortality and resistance to conventional therapy motivated the search for alternative treatment approaches. Nanomaterials are promising candidates and suitable alternatives for improving tumor and cancer cell treatments. MATERIALS AND METHODS Biosynthesis of ZnO NPs by help of Berberis integerrima fruit extract, has been done. Analysis of Zinc Oxide NPs using DLS, FTIR, SEM, and EDS techniques have been performed. Moreover, biological activities of ZnO NPs evaluated through MTT method, Flow cytometry, and real time PCR methods. Biocatalytic and apoptotic activity of ZnO NPs on healthy HFF (human fibroblast cell line), MDA-MB 231, and MDA-MB 468 (triple negative breast cancer cell lines, (TNBC)) evaluated. Furthermore, Bax, Bcl-2 and caspase-3 apoptotic genes expression changes in cancer cells assessed in compare to GAPDH as a house keeping gene. RESULTS Physico-chemical investigation demonstrated ZnO NPs were confirmed by Berberis integerrima fruit extract for the first time. The MTT assay and Flow cytometry results indicated biocompatibility of the ZnO NPs in normal cell line and high anticancer potential against TNBC MDA-MB-231 and MDA-MB-468 cell lines. The IC50 of ZnO NPs were 104.4 and 44.86, 20.96 after 24 hours for HFF, MDA-MB-231 and MDA-MB-468 cells, respectively. CONCLUSION The current research showed a fast, cost effective and ecofriendly method for ZnO NPs nanoparticle synthesis. Furthermore, In vitro data analysis demonstrated biocompatibility and highly anticancer effects of biosynthesized ZnO NPs against TNBC cancerous cells.
Collapse
Affiliation(s)
- Hannaneh Zarrinnahad
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - S Ahmad Dehdast
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Chizari Fard
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Clothing and Fabric Design Department, Art Faculty, Imam Javad University College, Yazd, Iran
| | - Mitra Nourbakhsh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Kazem Koohi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Karimpour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - S Mehdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Shabani
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Badry R, Sabry NM, Ibrahim MA. Enhancing the structural and optoelectronic properties of carboxymethyl cellulose sodium filled with ZnO/GO and CuO/GO nanocomposites for antimicrobial packaging applications. Sci Rep 2024; 14:30591. [PMID: 39715835 DOI: 10.1038/s41598-024-81365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024] Open
Abstract
One of the biggest challenges in food packaging is the creation of sustainable and eco-friendly packaging materials to shield foods from ultraviolet (UV) photochemical damage and to preserve the distinctive physical, chemical, and biological characteristics of foods throughout the supply chain. Accordingly, this study focuses on enhancing the UV shielding properties and biological activity of carboxylmethyl cellulose sodium (CMC) through modifications using zinc oxide (ZnO), copper oxide (CuO), and graphene oxide (GO) using the solution casting technique. The hybrid nanocomposites were characterized by fourier-transform infrared (FTIR) spectrophotometer, ultraviolet-visible (UV-Vis) spectrophotometer, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and x-ray diffraction (XRD). Significant interactions between CMC and the metal oxide/GO nanocomposites were revealed by FTIR analysis, which reflects the formation of hydrogen bonding between CMC and the nanocomposites. XRD confirmed the functionalization of CMC with ZnO/GO and CuO/GO nanocomposites. Additionally, the CMC film showed a decrease in the optical bandgap from 5.53 to 3.43 eV with improved UV shielding capacity. Moreover, the composite films had excellent refractive index and optical conductivity values of 1.97 and 1.56 × 1010 Ω cm- 1, respectively. SEM and EDX analysis confirmed the formation of ZnO/GO and CuO/GO within the CMC matrix. Thus, dedicates that the CMC nanocomposites have promising applications in packaging materials. These results were confirmed by the quantum mechanical calculations utilizing density functional theory (DFT). Total dipole moment (TDM), frontier molecular orbitals (FMOs), chemical reactivity descriptors, and molecular electrostatic potential (MESP) maps were all studied using the B3LYP/LanL2DZ model. The TDM and FMO investigations revealed that the CMC/CuO/GO model has the highest TDM (84.031 Debye) and the smallest band gap energy (0.118 eV). Moreover, CMC's reactivity increased after CuO/GO nanocomposites integration, as demonstrated by MESP mapping. Finally, the antibacterial activity of pure CMC, CMC/ZnO/GO, and CMC/CuO/GO nanocomposite films was evaluated against Staphylococcus aureus and Escherichia coli. The zones of inhibition data showed that both CMC/ZnO/GO and CMC/CuO/GO exhibited higher antibacterial activity than CMC alone, particularly against S. aureus. The inhibition zones for CMC/ZnO/GO and CMC/CuO/GO against S. aureus were 16 mm and 14 mm, respectively, suggesting enhanced susceptibility of S. aureus compared to E. coli. These results highlight the significant potential of ZnO and CuO NPs in improving the antimicrobial efficacy of CMC nanocomposites.
Collapse
Affiliation(s)
- Rania Badry
- Physics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, 11757, Egypt
| | - Noha M Sabry
- Water Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
- Center of Excellence for Research and Applied Studies on Climate Change and Sustainable Development, National Research Centre (NRC), 33 El Bohouth St., Dokki, Giza, 12622, Egypt
| | - Medhat A Ibrahim
- Spectroscopy Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt.
- Molecular Modeling and Spectroscopy Laboratory, Centre of Excellence for Advanced Science, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|
19
|
Yassin MT, Al-Otibi FO, Al-Sahli SA, El-Wetidy MS, Mohamed S. Metal Oxide Nanoparticles as Efficient Nanocarriers for Targeted Cancer Therapy: Addressing Chemotherapy-Induced Disabilities. Cancers (Basel) 2024; 16:4234. [PMID: 39766133 PMCID: PMC11674168 DOI: 10.3390/cancers16244234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer remains a predominant global health concern, necessitating effective treatment options. Conventional cancer therapies, particularly chemotherapy, often face constraints such as low selectivity, insufficient solubility, and multidrug resistance (MDR), which diminish effectiveness and exacerbate negative effects. Metal oxide nanoparticles (MONPs), such as iron oxide, zinc oxide, and copper oxide, offer a promising solution by enhancing targeted drug delivery, reducing systemic toxicity, and mitigating chemotherapy-induced disabilities like neurotoxicity and cardiotoxicity. Nanocarriers conjugated with drugs can improve drug delivery within the body and enhance their circulation in the bloodstream. Recent advancements in MONP synthesis and functionalization have further improved their stability and drug-loading capacity, making them a valuable tool in cancer treatment. MONPs have distinctive physicochemical characteristics, enabling better imaging, drug encapsulation, and targeted medication delivery to cancerous cells. These nanocarriers enhance treatment effectiveness through focused and controlled drug release, reducing off-target effects and addressing drug resistance. This review aims to explore the potential of MONPs as efficient nanocarriers for anticancer drugs, addressing limitations of traditional chemotherapy such as poor specificity, systemic toxicity, and drug resistance. Additionally, the review discusses recent advancements in MONP synthesis and functionalization, which enhance their stability, drug-loading capacity, and compatibility.
Collapse
Affiliation(s)
- Mohamed Taha Yassin
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (F.O.A.-O.); (S.A.A.-S.)
- King Salman Center for Disability Research, Riyadh 11614, Saudi Arabia
| | - Fatimah O. Al-Otibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (F.O.A.-O.); (S.A.A.-S.)
| | - Sarah A. Al-Sahli
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (F.O.A.-O.); (S.A.A.-S.)
| | - Mohammad S. El-Wetidy
- College of Medicine Research Center, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Sara Mohamed
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13511, Egypt;
| |
Collapse
|
20
|
Karnwal A, Jassim AY, Mohammed AA, Sharma V, Al-Tawaha ARMS, Sivanesan I. Nanotechnology for Healthcare: Plant-Derived Nanoparticles in Disease Treatment and Regenerative Medicine. Pharmaceuticals (Basel) 2024; 17:1711. [PMID: 39770553 PMCID: PMC11678348 DOI: 10.3390/ph17121711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Nanotechnology has revolutionised biomedical research, offering innovative healthcare solutions. Plant-based nanotechnology is emerging as a sustainable alternative, minimising environmental impacts and enhancing therapeutic effectiveness. This paper explores the potential of plant-derived nanoparticles (PNPs) in medicine, highlighting their biocompatibility, multifunctionality, and eco-friendliness. PNPs, synthesised through green methods, have demonstrated promising applications in drug delivery, cancer therapy, antimicrobial treatments, and tissue regeneration. Their unique properties, such as a high surface area and bioactive components, enable improved drug delivery, targeting, and controlled release, reducing side effects and enhancing treatment efficacy. Additionally, plant-derived compounds' inherent antimicrobial and antioxidant properties, retained within platinum nanoparticles (PNPs), present innovative opportunities for combating antimicrobial resistance and promoting wound healing. Despite their potential, challenges remain in standardising PNP synthesis, ensuring consistency, and scaling up production for industrial applications. This review emphasises the need for further research on PNP toxicity, biocompatibility, and regulatory frameworks to fully harness their capabilities in clinical and commercial applications. Plant-based nanotechnology represents a promising, greener alternative for advancing healthcare solutions, aligning with global sustainability goals.
Collapse
Affiliation(s)
- Arun Karnwal
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun 248009, India;
- Department of Microbiology, School of Bioengineering and BioSciences, Lovely Professional University, Phagwara 144411, India
| | - Amar Yasser Jassim
- Department of Marine Vertebrate, Marine Science Center, University of Basrah, Basrah 61001, Iraq; (A.Y.J.); (A.A.M.)
| | - Ameer Abbas Mohammed
- Department of Marine Vertebrate, Marine Science Center, University of Basrah, Basrah 61001, Iraq; (A.Y.J.); (A.A.M.)
| | - Vikas Sharma
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and BioSciences, Lovely Professional University, Phagwara 144411, India;
| | | | - Iyyakkannu Sivanesan
- Department of Environmental Health Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
21
|
Munusamy MA, Bharathi M, Alarfaj AA, Hussein-Al-Ali SH, Sarathbabu S. Pluronic F-127 coated zinc oxide nanoparticles from Gynura pseudochina: a comprehensive assessment of antibacterial, and anticancer activities. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-20. [PMID: 39673551 DOI: 10.1080/09205063.2024.2434307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/30/2024] [Indexed: 12/16/2024]
Abstract
The study synthesized Pluronic F-127 coated zinc oxide nanoparticles (PF-127ZnO NPs) using Gynura pseudochina leaf extract and evaluated their antibacterial, antioxidant, and anticancer properties using various characterization methods such as UV-Vis, Fourier Transform Infra-Red, Photoluminescence spectroscopy, FESEM, EDAX, TEM, SAED, XRD, and DLS. The disc diffusion technique was used to evaluate the antibacterial properties of synthesized Pluronic F-127 coated zinc oxide nanoparticles against various pathogens and significant anticancer activity was noticed. The study examined the cytotoxicity of PF127ZnO nanoparticles to Hep3B cells in vitro. The cytotoxicity was IC50 at 10 µM concentration. The study examined the biocompatibility of PF-127ZnO NPs, revealing membrane blebbing, chromatin condensation, and stimulation of the proapoptotic protein caspase cascade family. The study reveals that PF-127ZnO NPs, synthesized from G. pseudochina leaf extract, exhibit antibacterial and antihepatic properties, offering potential biomedical applications due to their high stability and biocompatibility.
Collapse
Affiliation(s)
- Murugan Alwarkurichi Munusamy
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Muruganantham Bharathi
- Centre for Bioinformatics, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Subbarayan Sarathbabu
- Muthayammal Centre for Advanced Research, Muthayammal College of Arts and Science, Namakkal, Tamil Nadu, India
| |
Collapse
|
22
|
El-Saadony MT, Fang G, Yan S, Alkafaas SS, El Nasharty MA, Khedr SA, Hussien AM, Ghosh S, Dladla M, Elkafas SS, Ibrahim EH, Salem HM, Mosa WFA, Ahmed AE, Mohammed DM, Korma SA, El-Tarabily MK, Saad AM, El-Tarabily KA, AbuQamar SF. Green Synthesis of Zinc Oxide Nanoparticles: Preparation, Characterization, and Biomedical Applications - A Review. Int J Nanomedicine 2024; 19:12889-12937. [PMID: 39651353 PMCID: PMC11624689 DOI: 10.2147/ijn.s487188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 12/11/2024] Open
Abstract
Over the last decade, biomedical nanomaterials have garnered significant attention due to their remarkable biological properties and diverse applications in biomedicine. Metal oxide nanoparticles (NPs) are particularly notable for their wide range of medicinal uses, including antibacterial, anticancer, biosensing, cell imaging, and drug/gene delivery. Among these, zinc oxide (ZnO) NPs stand out for their versatility and effectiveness. Recently, ZnO NPs have become a primary material in various sectors, such as pharmaceutical, cosmetic, antimicrobials, construction, textile, and automotive industries. ZnO NPs can generate reactive oxygen species and induce cellular apoptosis, thus underpinning their potent anticancer and antibacterial properties. To meet the growing demand, numerous synthetic approaches have been developed to produce ZnO NPs. However, traditional manufacturing processes often involve significant economic and environmental costs, prompting a search for more sustainable alternatives. Intriguingly, biological synthesis methods utilizing plants, plant extracts, or microorganisms have emerged as ideal for producing ZnO NPs. These green production techniques offer numerous medicinal, economic, environmental, and health benefits. This review highlights the latest advancements in the green synthesis of ZnO NPs and their biomedical applications, showcasing their potential to revolutionize the field with eco-friendly and cost-effective solutions.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Guihong Fang
- School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, 571199, People’s Republic of China
- Qionghai People’s Hospital, Qionghai, Hainan, 571400, People’s Republic of China
| | - Si Yan
- Qionghai People’s Hospital, Qionghai, Hainan, 571400, People’s Republic of China
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mahmoud A El Nasharty
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Sohila A Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta, 31733, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21531, Egypt
| | - Soumya Ghosh
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Mthokozisi Dladla
- Human Molecular Biology Unit (School of Biomedical Sciences), Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Shebin El Kom, Menofia, 32511, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Essam H Ibrahim
- Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
- Blood Products Quality Control and Research Department, National Organization for Research and Control of Biologicals, Cairo, 12611, Egypt
| | - Heba Mohammed Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | | | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| |
Collapse
|
23
|
Zewail M. Leflunomide nanocarriers: a new prospect of therapeutic applications. J Microencapsul 2024; 41:715-738. [PMID: 39320955 DOI: 10.1080/02652048.2024.2407373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Leflunomide (LEF) is a well-known disease-modifying anti-rheumatic agent (DMARDs) that was approved in 1998 for rheumatoid arthritis (RA) management. It is enzymatically converted into active metabolite teriflunomide (TER) inside the body. LEF and TER possess several pharmacological effects in a variety of diseases including multiple sclerosis, cancer, viral infections and neurobehavioral brain disorders. Despite the aforementioned pharmacological effects exploring these effects in nanomedicine applications has been focused mainly on RA and cancer treatment. This review summarises the main pharmacological, and pharmacokinetic effects of LEF along with highlighting the applications of nanoencapsulation of LEF and its metabolite in different diseases.
Collapse
Affiliation(s)
- Mariam Zewail
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
24
|
Goel T, Deshwal N, Gusain S, Chandra R, Tiwari M, Singh S. Synthesis, characterisation of ZnO@PDA@Ag nanocomposite: Mechanistic interaction with BSA, photodegradation activity & in vitro cytotoxicity assay on H1299 lung cancer cell line. Int J Biol Macromol 2024; 283:137532. [PMID: 39537058 DOI: 10.1016/j.ijbiomac.2024.137532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/30/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Despite advancements in diagnosis and therapeutic, cancer retains to be a greatest cause of fatality and economic damage to the world. Metallic nanoparticles have grabbed attention particularly in the field of medicine attributed to their noteworthy biological and catalytic properties, offering significant progress. The work aimed to create a novel biocompatible 'Silver doped Polydopamine coated Zinc-Oxide nanocomposite' and investigate its efficacy in treating H1299 lung cancer cells as well as water remediation. In this study, a 'ZnO@PDA@Ag' Nanocomposite was synthesised using co-precipitation method and was further characterised using DLS, FESEM-EDX, P-XRD, XPS, TEM and FT-IR techniques. The mechanistic interaction with blood protein, suggested strong binding interactions and notable structural changes in BSA upon exposure to the nanocomposite. The photocatalytic properties evaluated against the Rhodamine B Dye under UV-Visible light irradiation demonstrated a photodegradation of ~49.7% within 120 min for 60 μg/mL of the used nanocomposite. Herein, we present an evaluation of anticancer bioactivity of ZnO@PDA@Ag nanoparticles using MTT assay against the H1299 lung cancer cell line and its IC50 was estimated to be (42.42 ± 4) μg/mL. The cytotoxicity was enhanced through immobilization of Silver (Ag) metal on ZnO@PDA. Moreover, the hemolysis experiment was also conducted to demonstrate the biocompatibility of nanoparticle to human red blood cells. As a result, the successfully created biocompatible nanomaterial may be useful as an efficient drug-delivery system against cancer cells.
Collapse
Affiliation(s)
- Tanya Goel
- Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, Delhi 110007, India; Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Nidhi Deshwal
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Siddharth Gusain
- Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, Delhi 110007, India
| | - Ramesh Chandra
- Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, Delhi 110007, India; Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India; Institute for Nanomedical Sciences (INMS), University of Delhi, Delhi 110007, India.
| | - Manisha Tiwari
- Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, Delhi 110007, India.
| | - Snigdha Singh
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India; Institute for Nanomedical Sciences (INMS), University of Delhi, Delhi 110007, India.
| |
Collapse
|
25
|
Mohamed ATAE, Ragheb MA, Shehata MR, Mohamed AS. In vivo cardioprotective effect of zinc oxide nanoparticles against doxorubicin-induced myocardial infarction by enhancing the antioxidant system and nitric oxide production. J Trace Elem Med Biol 2024; 86:127516. [PMID: 39226872 DOI: 10.1016/j.jtemb.2024.127516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/26/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Myocardial infarction (MI) is the result of reduced or stopped blood supply to a section of the myocardium. Regardless of its potential effectiveness in the treatment of several types of cancers, doxorubicin (DOX) capabilities are restricted because of its widespread cardiotoxic impact. AIM In this study, the protective effect of zinc oxide nanoparticles against doxorubicin-induced myocardial infarction in rats is examined. METHODS Zinc oxide nanoparticles (ZnO NPs) were synthesized and characterized using X-ray diffraction, transmission electron microscope, and UV-Vis spectral analysis. A total cumulative dose of DOX (18 mg/kg body weight, i.p.) was injected once daily on days 2, 4, 6, 8, 10, and 12 (i.p.) to induce MI in rats. 24 rats were divided into 4 groups; control, MI, and MI treated with two doses of ZnO NPs (45 and 22.5 mg/kg). RESULTS The treatment with ZnO NPs restored ST-segment near normal, ameliorated the changes in cardiac troponin T, creatine kinase, lactate dehydrogenase, aspartate aminotransferase, alanine amino transferase, alkaline phosphatase, total proteins, malondialdehyde, nitric oxide, reduced glutathione, and catalase.The histological investigation revealed that ZnO NPs treated group showed marked improvement in the examined cardiac muscle and liver in numerous sections.The lower dose of ZnO NPs (22.5 mg/kg) was significantly more effective than the higher dose (45 mg/kg). CONCLUSION The effect of ZnO NPs against doxorubicin-induced myocardial infarction in rats was assessed and the results revealed a successful cardioprotective potency through enhancing the antioxidant system and stimulating nitric oxide production in myocardial infarcted rats. This work implies that ZnO NPs could serve as promising agents for treating doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
| | - Mohamed A Ragheb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Egypt.
| | | | | |
Collapse
|
26
|
Gu W, Yang C. Zinc oxide nanoparticles mitigate the malignant progression of ovarian cancer by mediating autophagy-dependent ferroptosis. J Cancer Res Clin Oncol 2024; 150:513. [PMID: 39592500 PMCID: PMC11599363 DOI: 10.1007/s00432-024-06029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Previous studies have shown that ZnO-NPs induce autophagy and inhibit the malignant progression of ovarian cancer (OC) cells. This study aims to further explore the mechanism of action of ZnO-NPs on OC. METHODS SKOV3 cells were treat with different concentrations of ZnO-NPs and cell proliferation was assessed through EDU staining. A Xenograft tumor model was established and mice were treated with varying doses of ZnO-NPs for 21 days. Tumor volume and the weight of each group of mice were measured, and the expression of KI67 in tumor tissues was analyzed to evaluate tumor proliferation in vivo. The expression of autophagy and ferroptosis-related proteins in cells and tumor tissues was examined through immunofluorescence, ELISA, and western blotting assays. The relationship between ZnO-NPs induced autophagy and ferroptosis was further investigated using the ferroptosis inhibitors Fer-1, autophagy inhibitor 3-MA and siRNA for ATG5 (si-ATG5). RESULTS ZnO-NPs dose-dependently reduced the proliferation of SKOV3 cells in vitro. In vivo, both high and low doses of ZnO-NPs effectively inhibited the growth of tumor, reduced pathological damage and the expression of KI67 in tumor tissues. Additionally, ZnO-NPs increased the levels of iron, MDA, 4-HNE, oxidized lipid ROS, ATG5, TFR1, ACSL4, LC3, and Beclin1 in cells and tumor tissues, decreased the expression of SOD, GSH-Px, non-oxidized lipid ROS, GPX4, and p62. Transfection with si-ATG5 or treatment with 3-MA significantly weakened these effects of ZnO-NPs in vitro, with si-ATG5 having a stronger weakening effect on the action of ZnO-NPs than 3-MA. However, ferroptosis inhibitor has a lesser impact on the autophagy of ZnO-NPs-treated SKOV3 cells than the effect of autophagy inhibitors and si-ATG5 on the ferroptosis of ZnO-NPs-treated SKOV3 cells. CONCLUSION ZnO-NPs inhibited the malignant progression of SKOV3 cells by inducing autophagy-dependent ferroptosis.
Collapse
Affiliation(s)
- Wenli Gu
- Department of Gynecology, The General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, Ningxia, 750001, China.
| | - Caihong Yang
- Department of Gynecology, The General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, Ningxia, 750001, China
| |
Collapse
|
27
|
van Staden D, Gerber M, Lemmer HJR. The Application of Nano Drug Delivery Systems in Female Upper Genital Tract Disorders. Pharmaceutics 2024; 16:1475. [PMID: 39598598 PMCID: PMC11597179 DOI: 10.3390/pharmaceutics16111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The prevalence of female reproductive system disorders is increasing, especially among women of reproductive age, significantly impacting their quality of life and overall health. Managing these diseases effectively is challenging due to the complex nature of the female reproductive system, characterized by dynamic physiological environments and intricate anatomical structures. Innovative drug delivery approaches are necessary to facilitate the precise regulation and manipulation of biological tissues. Nanotechnology is increasingly considered to manage reproductive system disorders, for example, nanomaterial imaging allows for early detection and enhances diagnostic precision to determine disease severity and progression. Additionally, nano drug delivery systems are gaining attention for their ability to target the reproductive system successfully, thereby increasing therapeutic efficacy and decreasing side effects. This comprehensive review outlines the anatomy of the female upper genital tract by highlighting the complex mucosal barriers and their impact on systemic and local drug delivery. Advances in nano drug delivery are described for their sustainable therapeutic action and increased biocompatibility to highlight the potential of nano drug delivery strategies in managing female upper genital tract disorders.
Collapse
Affiliation(s)
| | | | - Hendrik J. R. Lemmer
- Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), North-West University, Potchefstroom 2531, South Africa; (D.v.S.); (M.G.)
| |
Collapse
|
28
|
Hassan HAFM, Sedky NK, Nafie MS, Mahdy NK, Fawzy IM, Fayed TW, Preis E, Bakowsky U, Fahmy SA. Sustainable Nanomedicine: Enhancement of Asplatin's Cytotoxicity In Vitro and In Vivo Using Green-Synthesized Zinc Oxide Nanoparticles Formed via Microwave-Assisted and Gambogic Acid-Mediated Processes. Molecules 2024; 29:5327. [PMID: 39598716 PMCID: PMC11596978 DOI: 10.3390/molecules29225327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Chemoresistance encountered using conventional chemotherapy demands novel treatment approaches. Asplatin (Asp), a novel platinum (IV) prodrug designed to release cisplatin and aspirin in a reductive environment, has demonstrated high cytotoxicity at reduced drug resistance. Herein, we investigated the ability of green-synthesized nanocarriers to enhance Asp's efficacy. Zinc oxide nanoparticles (ZnO-NPs) were synthesized using a green microwave-assisted method with the reducing and capping agent gambogic acid (GA). These nanoparticles were then loaded with Asp, yielding Asp@ZnO-NPs. Transmission electron microscopy was utilized to study the morphological features of ZnO-NPs. Cell viability studies conducted on MDA-MB-231 breast cancer cells demonstrated the ability of the Asp@ZnO-NPs treatment to significantly decrease Asp's half-maximal inhibitory concentration (IC50) (5 ± 1 µg/mL). This was further demonstrated using flow cytometric analysis that revealed the capacity of Asp@ZnO-NPs treatment to significantly increase late apoptotic fractions. Furthermore, in vivo studies carried out using solid Ehrlich carcinoma-bearing mice showed significant tumor volume reduction with the Asp@ZnO-NPs treatment (156.3 ± 7.6 mm3), compared to Asp alone (202.3 ± 8.4 mm3) and untreated controls (342.6 ± 10.3 mm3). The histopathological analysis further demonstrated the increased necrosis in Asp@ZnO-NPs-treated group. This study revealed that Asp@ZnO-NPs, synthesized using an eco-friendly approach, significantly enhanced Asp's anticancer activity, offering a sustainable solution for potent anticancer formulations.
Collapse
Affiliation(s)
- Hatem A. F. M. Hassan
- Medway School of Pharmacy, University of Kent, Chatham Maritime, Kent ME4 4TB, UK;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
| | - Nada K. Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Administrative Capital, Cairo 11835, Egypt;
| | - Mohamed S. Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Noha Khalil Mahdy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Administrative Capital, Cairo 11835, Egypt
| | - Iten M. Fawzy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| | - Toka Waleed Fayed
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Administrative Capital, Cairo 11835, Egypt
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Sherif Ashraf Fahmy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| |
Collapse
|
29
|
Virych P, Virych P, Prokopiuk V, Onishchenko A, Ischenko M, Doroschuk V, Kurovska V, Tkachenko A, Kutsevol N. Dextran-Graft-Polyacrylamide/Zinc Oxide Nanoparticles Inhibit of Cancer Cells in vitro and in vivo. Int J Nanomedicine 2024; 19:11719-11743. [PMID: 39553459 PMCID: PMC11566607 DOI: 10.2147/ijn.s485106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/03/2024] [Indexed: 11/19/2024] Open
Abstract
Introduction Tumor drug resistance and systemic toxicity are major challenges of modern anticancer therapy. Nanotechnology makes it possible to create new materials with the required properties for anticancer therapy. Methods In this research, Dextran-graft-Polyacrylamide/ZnO nanoparticles were used. The study was carried out using prostate (DU-145, LNCaP, PC-3), breast (MDA-MB-231, MCF-7, MCF-7 Dox) cancer cells and non-malignant (MAEC, BALB/3T3 clone A31) cells. Zinc was visualized with fluorescence in vitro and in vivo. ROS and apoptotic markers were identified by cytometry. Zinc accumulation and histopathological changes in the tumor, liver, kidney, and spleen were evaluated in a rat model. Results ZnO nanoparticles dissociation and release of Zn2+ into the cytosol occurs in 2-3 hours for cancerous and non-cancerous cells. ROS upregulation was detected in all cells. For non-malignant cells, the difference between the initial ROS level was insignificant. The rate of carbohydrate metabolism in cancer cells was reduced by nanosystems. Zinc level in the tumor was upregulated by 25% and 39% after treatment with nanosystems and doxorubicin combined, respectively. The tumor Walker-256 carcinosarcoma volume was reduced twice following mono-treatment with the nanocomplex and 65-fold lower when the nanocomplex was combined with doxorubicin compared with controls. In the liver, kidney and spleen, the zinc level increased by 10-15% but no significant pathological alterations in the tissues were detected. Conclusion D-PAA/ZnO NPs nanosystems were internalized by prostate, breast cancer cells and non-malignant cells via endocytosis after short time, but cytotoxicity against non-cancer cells were significantly lower in vitro and in vivo. D-PAA/ZnO NPs nanocomplex efficiently promoted cell death of tumor cells without showing cytotoxicity against non-malignant cells making it a promising anti-cancer agent.
Collapse
Affiliation(s)
- Petro Virych
- Laboratory of Mechanisms of Drug Resistance, R.E. Kavetsky Institute for Experimental Pathology, Oncology and Radiobiology, Kyiv, Ukraine
| | - Pavlo Virych
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Volodymyr Prokopiuk
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, Kharkiv, Ukraine
| | - Mykola Ischenko
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Volodymyr Doroschuk
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Valentyna Kurovska
- Educational and Scientific Center “Institute of Biology and Medicine”, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Anton Tkachenko
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Nataliya Kutsevol
- Faculty of Chemistry, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
30
|
Said ZAS, Mohammed HS, Ibrahim S, Amer HH. Electrospun zinc oxide nanoscaffolds: a targeted and selective anticancer approach. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-22. [PMID: 39508689 DOI: 10.1080/09205063.2024.2422698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024]
Abstract
This study aims to prepare, characterize, and evaluate zinc oxide nanoscaffolds (ZnO NSs) as a potential anticancer drug that selectively targets malignant cells while remaining non-toxic to normal cells. Electrospun NSs were fabricated and loaded with varying concentrations of ZnO nanoparticles (NPs). The uniform morphology of the fabricated samples was confirmed through Field Emission Scanning Electron Microscope (FESEM) imaging. Elemental composition was investigated using Energy Dispersive X-ray spectroscopy (EDX), Fourier Transform Infrared (FTIR), and X-ray diffraction (XRD) analyses. Biocompatibility and cytotoxicity were assessed using the (3-(4.5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay) (MTT) assay and flow cytometry. The water uptake and degradation properties of the electrospun NSs were also examined. Furthermore, a cumulative release profile was generated to assess the release behavior of ZnO NSs. The prepared ZnO NSs demonstrated negligible toxicity toward normal human dermal cells. Conversely, the four used concentrations of ZnO NSs displayed substantial cytotoxicity and induced apoptosis in various cancer cell lines. The observed effects were concentration-dependent. Notably, ZnO NSs 8% exhibited the most significant reduction in cell viability against the MCF7 cell line. The findings from this study indicate the potential of ZnO NSs as an effective anticancer agent, with the ZnO NSs 8% demonstrating the most pronounced impact. This research introduces a novel application of electrospun zinc oxide nanoscaffolds, demonstrating their capacity for selective anticancer activity, particularly against breast carcinoma, while preserving normal cell viability. The study presents a significant advancement in the use of nanomaterial for targeted cancer therapy.
Collapse
Affiliation(s)
- Zeinab A S Said
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Sara Ibrahim
- Basic Medical Science Department, Faculty of Dentistry, Al Ryada University for Science and Technology, Menoufia, Egypt
| | - Hanan H Amer
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
31
|
Gökmen GG, Mirsafi FS, Leißner T, Akan T, Mishra YK, Kışla D. Zinc oxide nanomaterials: Safeguarding food quality and sustainability. Compr Rev Food Sci Food Saf 2024; 23:e70051. [PMID: 39530622 DOI: 10.1111/1541-4337.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
In this era, where food safety and sustainability are paramount concerns, the utilization of zinc oxide (ZnO) nanoparticles (NPs) is a promising solution to enhance the safety, quality, and sustainability of food products. ZnO NPs in the food industry have evolved significantly over time, reflecting advancements in synthesizing methods, antimicrobial activities, and risk assessment considerations for human health and the environment. This comprehensive review delves into the historical trajectory, current applications, and prospects of ZnO NPs in food-related contexts. Synthesizing methods, ranging from solvothermal and solgel techniques to laser ablation and microfluidic reactors, have facilitated the production of ZnO NPs with tailored properties suited for diverse food applications. The remarkable antimicrobial activity of ZnO NPs against a wide spectrum of pathogens has garnered attention for their potential to enhance food safety and extend shelf-life. Furthermore, comprehensive risk assessment methodologies have been employed to evaluate the potential impacts of ZnO NPs on human health and the environment, regarding toxicity, migration, and ecological implications. By navigating the intricate interplay between synthesis methods, antimicrobial efficacy, inhibitory mechanisms, and risk assessment protocols, by elucidating the multifaceted role of ZnO NPs in shaping the past, present, and future of the food industry, this review offers valuable insights and promising avenues for researchers, policymakers, and industry stakeholders to enhance food safety, quality, and sustainability.
Collapse
Affiliation(s)
- Gökhan Gurur Gökmen
- Department of Food Engineering, Faculty of Engineering, Ege University, Izmir, Bornova, Turkey
| | - Fatemeh Sadat Mirsafi
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark
| | - Till Leißner
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark
| | - Tamer Akan
- Department of Physics, Faculty of Science, Eskisehir Osmangazi University, Eskisehir, Odunpazarı, Turkey
| | - Yogendra Kumar Mishra
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark
| | - Duygu Kışla
- Department of Food Engineering, Faculty of Engineering, Ege University, Izmir, Bornova, Turkey
| |
Collapse
|
32
|
Aschner M, Skalny AV, Lu R, Martins AC, Tsatsakis A, Miroshnikov SA, Santamaria A, Tinkov AA. Molecular mechanisms of zinc oxide nanoparticles neurotoxicity. Chem Biol Interact 2024; 403:111245. [PMID: 39278458 DOI: 10.1016/j.cbi.2024.111245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Zinc oxide nanoparticles (ZnONPs) are widely used in industry and biomedicine. A growing body of evidence demonstrates that ZnONPs exposure may possess toxic effects to a variety of tissues, including brain. Therefore, the objective of the present review was to summarize existing evidence on neurotoxic effects of ZnONPs and discuss the underlying molecular mechanisms. The existing laboratory data demonstrate that both in laboratory rodents and other animals ZnONPs exposure results in a significant accumulation of Zn in brain and nervous tissues, especially following long-term exposure. As a result, overexposure to ZnONPs causes oxidative stress and cell death, both in neurons and glial cells, by induction of apoptosis, necrosis and ferroptosis. In addition, ZnONPs may induce neuroinflammation through the activation of nuclear factor kappa B (NF-κB), extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), and lipoxygenase (LOX) signaling pathways. ZnONPs exposure is associated with altered cholinergic, dopaminergic, serotoninergic, as well as glutamatergic and γ-aminobutyric acid (GABA)-ergic neurotransmission, thus contributing to impaired neuronal signal transduction. Cytoskeletal alterations, as well as impaired autophagy and mitophagy also contribute to ZnONPs-induced brain damage. It has been posited that some of the adverse effects of ZnONPs in brain are mediated by altered microRNA expression and dysregulation of gut-brain axis. Furthermore, in vivo studies have demonstrated that ZnONPs exposure induced anxiety, motor and cognitive deficits, as well as adverse neurodevelopmental outcome. At the same time, the relevance of ZnONPs-induced neurotoxicity and its contribution to pathogenesis of neurological diseases in humans are still unclear. Further studies aimed at estimation of hazards of ZnONPs to human brain health and the underlying molecular mechanisms are warranted.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Anatoly V Skalny
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 700 13, Heraklion, Greece
| | - Sergey A Miroshnikov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia
| | - Abel Santamaria
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, 04960, Mexico City, Mexico; Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alexey A Tinkov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia; Laboratory of Molecular Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia.
| |
Collapse
|
33
|
Javid H, Amiri H, Hashemi SF, Reihani A, Mehri A, Hashemy SI. Multifunctional zinc oxide nanoparticles: investigating antifungal, cytotoxic, and oxidative properties. JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY 2024; 112:524-532. [DOI: 10.1007/s10971-024-06531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/23/2024] [Indexed: 11/29/2024]
|
34
|
Thirumavalavan M, Sukumar K, Sabarimuthu SQ. Trends in green synthesis, pharmaceutical and medical applications of nano ZnO: A review. INORG CHEM COMMUN 2024; 169:113002. [DOI: 10.1016/j.inoche.2024.113002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
|
35
|
Buntinx M, Vanheusden C, Hermans D. Processing and Properties of Polyhydroxyalkanoate/ZnO Nanocomposites: A Review of Their Potential as Sustainable Packaging Materials. Polymers (Basel) 2024; 16:3061. [PMID: 39518271 PMCID: PMC11548525 DOI: 10.3390/polym16213061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The escalating environmental concerns associated with conventional plastic packaging have accelerated the development of sustainable alternatives, making food packaging a focus area for innovation. Bioplastics, particularly polyhydroxyalkanoates (PHAs), have emerged as potential candidates due to their biobased origin, biodegradability, and biocompatibility. PHAs stand out for their good mechanical and medium gas permeability properties, making them promising materials for food packaging applications. In parallel, zinc oxide (ZnO) nanoparticles (NPs) have gained attention for their antimicrobial properties and ability to enhance the mechanical and barrier properties of (bio)polymers. This review aims to provide a comprehensive introduction to the research on PHA/ZnO nanocomposites. It starts with the importance and current challenges of food packaging, followed by a discussion on the opportunities of bioplastics and PHAs. Next, the synthesis, properties, and application areas of ZnO NPs are discussed to introduce their potential use in (bio)plastic food packaging. Early research on PHA/ZnO nanocomposites has focused on solvent-assisted production methods, whereas novel technologies can offer additional possibilities with regard to industrial upscaling, safer or cheaper processing, or more specific incorporation of ZnO NPs in the matrix or on the surface of PHA films or fibers. Here, the use of solvent casting, melt processing, electrospinning, centrifugal fiber spinning, miniemulsion encapsulation, and ultrasonic spray coating to produce PHA/ZnO nanocomposites is explained. Finally, an overview is given of the reported effects of ZnO NP incorporation on thermal, mechanical, gas barrier, UV barrier, and antimicrobial properties in ZnO nanocomposites based on poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). We conclude that the functionality of PHA materials can be improved by optimizing the ZnO incorporation process and the complex interplay between intrinsic ZnO NP properties, dispersion quality, matrix-filler interactions, and crystallinity. Further research regarding the antimicrobial efficiency and potential migration of ZnO NPs in food (simulants) and the End-of-Life will determine the market potential of PHA/ZnO nanocomposites as active packaging material.
Collapse
Affiliation(s)
- Mieke Buntinx
- Materials and Packaging Research & Services (MPPR&S), Institute for Materials Research (Imo-Imomec), Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium; (C.V.); (D.H.)
- Imec, Imo-Imomec, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Chris Vanheusden
- Materials and Packaging Research & Services (MPPR&S), Institute for Materials Research (Imo-Imomec), Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium; (C.V.); (D.H.)
- Imec, Imo-Imomec, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Dries Hermans
- Materials and Packaging Research & Services (MPPR&S), Institute for Materials Research (Imo-Imomec), Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium; (C.V.); (D.H.)
- Imec, Imo-Imomec, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| |
Collapse
|
36
|
Muthu S, Lakshmikanthan M, Edward-Sam E, Subramanian M, Govindan L, Patcha ABM, Krishnan K, Duraisamy N, Jeyaperumal S, Aziz AT. Encapsulation of Phloroglucinol from Rosenvingea intricata Macroalgae with Zinc Oxide Nanoparticles against A549 Lung Cancer Cells. Pharmaceutics 2024; 16:1300. [PMID: 39458629 PMCID: PMC11510838 DOI: 10.3390/pharmaceutics16101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Phloroglucinol (PHL), a phenolic compound extracted from the brown alga Rosenvingea intricata, exhibits potent antioxidant and anticancer properties. This study aims to extract, purify, and characterize PHL, and further develop functionalized zinc oxide nanoparticles (ZnO NPs) loaded with PHL to enhance its therapeutic potential. METHODS PHL was extracted using acetone and purified through Sephadex LH-20 column chromatography, yielding a highly enriched fraction (F-3). The purified compound was characterized by FTIR, HPLC, NMR, and LC-MS. ZnO NPs were synthesized, PEGylated, and conjugated with PHL, forming ZnO-PEG-PHL NPs. Their characterization included DLS, zeta potential, XRD, SEM-EDAX, and encapsulation efficiency studies. Antioxidant assays (DPPH, FRAP, ABTS, RPA) were performed and in vitro cytotoxicity on A549 lung cancer cells were determined to evaluate the therapeutic efficacy of PHL. RESULTS The purified PHL fraction showed a high phenolic content (45.65 PHL mg/g), which was was confirmed by spectral analysis. The ZnO-PEG-PHL NPs increased in size from 32.36 nm to 46.68 nm, with their zeta potential shifting from -37.87 mV to -26.82 mV. The antioxidant activity was superior for the ZnO-PEG-PHL NPs in all assays, while the in vitro cytotoxicity tests showed an IC50 of 40 µg/mL compared to 60 µg/mL for the ZnO NPs and 70 µg/mL for PHL. Apoptotic studies revealed significant cell cycle arrest and apoptosis induction. CONCLUSIONS The synthesized ZnO-PEG-PHL NPs demonstrated enhanced antioxidant and anticancer properties, making them promising candidates for cancer therapy and antioxidant applications.
Collapse
Affiliation(s)
- Sakthivel Muthu
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India
| | - Mythileeswari Lakshmikanthan
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India; (M.L.); (A.B.M.P.)
| | - Edwin Edward-Sam
- Department of Microbiology, Division of Virology and Molecular Biology, St. Peters Medical College Hospital & Research Institute, Hosur 635130, Tamil Nadu, India;
| | - Mutheeswaran Subramanian
- Xavier Research Foundation, St. Xavier's College, Palayamkottai, Tirunelveli 627002, Tamil Nadu, India;
| | - Lakshmanan Govindan
- Department of Anatomy, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India;
| | - Afrina Begum Mithen Patcha
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India; (M.L.); (A.B.M.P.)
| | - Kathiravan Krishnan
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India; (M.L.); (A.B.M.P.)
| | - Nallusamy Duraisamy
- Department of Research, Meenakshi Academy of Higher Education and Research (MAHER), Chennai 600078, Tamil Nadu, India;
| | - Selvakumari Jeyaperumal
- National Centre for Disease Control, Thiruvananthapuram Field Unit, Iranimuttam, Thiruvananthapuram 695009, Kerala, India;
| | - Al Thabiani Aziz
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
37
|
Feng J, He L, Hui JQ, Kavithaa K, Xu Z. Synthesis of Bimetallic Palladium/Zinc Oxide Nanocomposites Using Crocus sativus and Its Anticancer Activity via the Induction of Apoptosis in Cervical Cancer. Appl Biochem Biotechnol 2024; 196:6893-6914. [PMID: 38421572 DOI: 10.1007/s12010-024-04877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Palladium (Pd) and zinc oxide (ZnO) (Pd/ZnO NPs) bimettalic nanocomposites still lag much too far behind other nanoparticles investigated for various biological uses in the area of cancer treatments. Chemically created nanoparticles agglomerate under physiological conditions, impeding their use in biomedical applications. In this study, a straightforward and environmentally friendly method for creating bimetallic nanoparticles (NPs) by combining palladium (Pd) and zinc oxide (ZnO) using Crocus sativus extract (CS-Pd/ZnO NCs) was reported; the bio-synthesize bimetallic palladium/zinc oxide nanocomposites and their antioxidant and anti-cancer properties were assessed. The developed Pd/ZnO NPs were characterized using different approaches, including UV-vis, DLS, FTIR, EDX, and SEM analyses. The present investigation shows how nanocomposites are made, their distinctive properties, antioxidant activity, anticancer mechanisms, and their potential therapeutic applications. DPPH and ABTS tests were used to investigate antioxidant activity. Further, the effects of CS-Pd/ZnO NCs on HeLa cells were assessed using the cell viability, ROS generation, MMP levels, and induced apoptosis. Apoptosis induction was measured using an Annexin V-fluorescein isothicyanate assay. Cell DNA was stained with propidium iodide to evaluate the impact upon this cell cycle. Time-dependent cell death was carried on by CS-Pd/ZnO NCs. The maximum inhibitory effect was 59 ± 3.2 when dosages of 4.5 µg/mL or higher were delivered after 24 h of treatment. Additionally, the CS-Pd/ZnO NCs caused HeLa cells to undergo apoptosis. Apoptotic HeLa cells were present in 35.64% of the treated cells at 4.5 µg/mL, and the cell cycle arrest at G0/G1 phase occurred concurrently. According to these findings, the CS-Pd/ZnO NCs may be a promising candidate for the creation of brand-new cervical cancer treatment.
Collapse
Affiliation(s)
- Jun Feng
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou Jiangsu, 215000, China
| | - Leilei He
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, 221000, Jiangsu, China
| | - Jin Qing Hui
- Department of Surgical, Shaanxi Kangfu Hospital, Xian, 710065, Shaanxi, China
| | | | - Zhengzheng Xu
- Department of Gynaecology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, 430000, Hubei, China.
| |
Collapse
|
38
|
Osman A, Afify SM, Frag A, Alghandour SM. Histological Assessment of Systemic Toxicity Induced by Zinc oxide Nanoparticles and the Prophylactic Potency of Ascorbate in Albino Rats. J Microsc Ultrastruct 2024; 12:177-192. [PMID: 39811592 PMCID: PMC11729027 DOI: 10.4103/jmau.jmau_68_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 01/16/2025] Open
Abstract
Background Nanoparticles of zinc oxide (ZnO-NPs) are frequently implemented in cosmetics, additives, and electronic devices. Moreover, their applications extend to water treatment, drug delivery, and cancer therapy. As a result, NP toxicity became an essential subject in biosafety research. Aim Using histological and immunohistochemical analysis, we attempted to investigate whether ascorbate ("vitamin C") (VC) could protect liver, lung, and spleen tissues from ZnO-NP systemic toxicity. Materials and Methods Rats were classified as control group, NP group injected intraperitoneally (IP), once by dissolved ZnO-NPs (200 mg/kg), and NP + VC group injected IP, once by dissolved ZnO-NPs (200 mg/kg) and then ingested 100 mg/kg of VC orally. Blood samples were collected. Liver, lung, and spleen specimens were prepared for light, electron microscopic, and immunohistochemical analysis. Results In comparison to the control group, the NP group's liver enzyme, i.e. aspartate transaminase and alanine transaminase, values and counts of white blood cells (WBCs) were higher on the 7th day, but their red blood corpuscle (RBC) count, hemoglobin (Hgb) level, platelet count, and albumin values were lower. Histopathological analysis of liver, lung, and spleen tissues showed severe toxicity manifested by cell apoptosis, mononuclear cell infiltration, dilated blood vessels, and hemorrhage. In addition, the NP group showed a significantly higher expression of Ki67 and caspase-3 immunoreactivity. The biochemical, hematological, and histopathological results of the NP + VC group improved overall, reflecting VC's protective effect against systemic toxicity. Conclusion Our study revealed that ascorbate (VC) inhibited the systemic toxicity prompted by ZnO-NPs in lung, liver, and spleen tissues, indicating its importance for future treatment with ZnO-NPs.
Collapse
Affiliation(s)
- Amira Osman
- Department of Histology and Cell Biology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Said Mohamed Afify
- Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Al-Menoufia, Egypt
| | - Amira Frag
- Department of Anatomy, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | |
Collapse
|
39
|
Asif M, Fakhar-E-Alam M, Tahir M, Jamil F, Sardar H, Rehman J, Dahlous KA. Synthesis, Characterization, and Evaluation of the Antimicrobial and Anticancer Activities of Zinc Oxide and Aluminum-Doped Zinc Oxide Nanocomposites. Pharmaceuticals (Basel) 2024; 17:1216. [PMID: 39338378 PMCID: PMC11435269 DOI: 10.3390/ph17091216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
In this research, we developed undoped and aluminum-doped zinc oxide for antimicrobial and anticancer activities. This study focuses on the synthesis, characterization, and biological activities of zinc oxide nanoparticles (ZnO NPs) and aluminum-doped zinc oxide nanocomposites (Zn1-xAlxO NCs) at varying concentrations (x = 0, 0.25, 0.5, and 0.75 wt%) using the coprecipitation method. Various characterization techniques such as XRD, UV-Vis, FTIR, EDX, and SEM were performed to analyze the crystal structure, optical properties, functional group identification, elemental composition, and surface morphology. The antimicrobial activity test showed that Zn0.75Al0.25O NCs exhibited the strongest inhibition zone against Bacillus cereus compared to Staphylococcus aureus > Pasteurella multocida > Escherichia coli. Moreover, the cytotoxicity and cell viability of liver cancer (HepG-2), breast cancer (MCF-7), ovarian cancer (SKOV3), and normal liver cell lines) were evaluated using the MTT assay, demonstrating that Zn0.75Al0.25O NCs not only enhance cell destruction but also show low cytotoxicity and high biocompatibility at low concentrations. These results suggest that Zn0.75Al0.25O NCs could be a promising candidate for in vivo anticancer applications and should be further investigated.
Collapse
Affiliation(s)
- Muhammad Asif
- Department of Physics, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Fakhar-E-Alam
- Department of Physics, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Tahir
- Department of Chemistry, Quaid-e-Azam University, Islamabad 45320, Pakistan
| | - Farah Jamil
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Hassan Sardar
- Department of Physics, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Javed Rehman
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
- MEU Research Unit, Middle East University, Amman 11831, Jordan
| | - Kholood A Dahlous
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
40
|
Ashoub MH, Amiri M, Fatemi A, Farsinejad A. Evaluation of ferroptosis-based anti-leukemic activities of ZnO nanoparticles synthesized by a green route against Pre-B acute lymphoblastic leukemia cells (Nalm-6 and REH). Heliyon 2024; 10:e36608. [PMID: 39263164 PMCID: PMC11387337 DOI: 10.1016/j.heliyon.2024.e36608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Background Our research presents an efficient and practical method for producing Zinc Oxide nanoparticles (ZnO NPs), which have anti-leukemic effects based on ferroptosis. Methods The black cardamom extract was employed as a capping and reducing agent for the green synthesis. The NPs have been characterized via scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. Additionally, leukemic and normal cells were exposed to ZnO NPs (25, 50, 75, 100, 150, 200, and 300 μg/mL) for 24 and 48 h. The cell vitality was then measured using the MTT test. Moreover, ferroptosis indicators were assessed via commercial testing kits, and finally, qRT-PCR and flow cytometry were used to measure gene expression and cell death. Results The findings displayed that green synthesized ZnO NPs reduced the survival of leukemic cells, with IC50 values of 150.89 μg/ml for Nalm-6 and 101.31 μg/ml for REH cells after 48 h. The ZnO NPs increased ferroptosis by significantly increasing MDA, intracellular iron, ACSL4, ALOX15, and p53 mRNA expressions while significantly decreasing GSH and GPx activity levels and SLC7A11 and GPx4 mRNA expressions. On the other hand, ZnO NPs exhibited no toxicity toward normal cells. Conclusions The research suggests that ZnO NPs synthesized using the green approach can induce ferroptosis in leukemic cells by disrupting redox homeostasis and increasing intracellular iron levels, potentially enhancing the benefits of anti-leukemic therapies in the future.
Collapse
Affiliation(s)
- Muhammad Hossein Ashoub
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahnaz Amiri
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Ahmad Fatemi
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Alireza Farsinejad
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
41
|
Abedin S, Adeleke OA. State of the art in pediatric nanomedicines. Drug Deliv Transl Res 2024; 14:2299-2324. [PMID: 38324166 DOI: 10.1007/s13346-024-01532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
In recent years, the continuous development of innovative nanopharmaceuticals is expanding their biomedical and clinical applications. Nanomedicines are being revolutionized to circumvent the limitations of unbound therapeutic agents as well as overcome barriers posed by biological interfaces at the cellular, organ, system, and microenvironment levels. In many ways, the use of nanoconfigured delivery systems has eased challenges associated with patient differences, and in our opinion, this forms the foundation for their potential usefulness in developing innovative medicines and diagnostics for special patient populations. Here, we present a comprehensive review of nanomedicines specifically designed and evaluated for disease management in the pediatric population. Typically, the pediatric population has distinguishing needs relative to those of adults majorly because of their constantly growing bodies and age-related physiological changes, which often need specialized drug formulation interventions to provide desirable therapeutic effects and outcomes. Besides, child-centric drug carriers have unique delivery routes, dosing flexibility, organoleptic properties (e.g., taste, flavor), and caregiver requirements that are often not met by traditional formulations and can impact adherence to therapy. Engineering pediatric medicines as nanoconfigured structures can potentially resolve these limitations stemming from traditional drug carriers because of their unique capabilities. Consequently, researchers from different specialties relentlessly and creatively investigate the usefulness of nanomedicines for pediatric disease management as extensively captured in this compilation. Some examples of nanomedicines covered include nanoparticles, liposomes, and nanomicelles for cancer; solid lipid and lipid-based nanostructured carriers for hypertension; self-nanoemulsifying lipid-based systems and niosomes for infections; and nanocapsules for asthma pharmacotherapy.
Collapse
Affiliation(s)
- Saba Abedin
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Oluwatoyin A Adeleke
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
42
|
Ansari AA, Lv R, Gai S, Parchur AK, Solanki PR, Archana, Ansari Z, Dhayal M, Yang P, Nazeeruddin M, Tavakoli MM. ZnO nanostructures – Future frontiers in photocatalysis, solar cells, sensing, supercapacitor, fingerprint technologies, toxicity, and clinical diagnostics. Coord Chem Rev 2024; 515:215942. [DOI: 10.1016/j.ccr.2024.215942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
43
|
Bashir I, Dilshad E. A comparative study of Mentha longifolia var. asiatica and Zygophyllum arabicum ZnO nanoparticles against breast cancer targeting Rab22A gene. PLoS One 2024; 19:e0308982. [PMID: 39213285 PMCID: PMC11364221 DOI: 10.1371/journal.pone.0308982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Breast cancer is the most frequently diagnosed cancer worldwide, and the incidence rate has increased enormously over the last three decades. Rab proteins are members of the Rab GTPase superfamily. The aberrant function of these proteins leads to the development of tumors. Mentha longifolia var. asiatica and Zygophyllum arabicum have been known for their therapeutic potential for ages. The present study aimed to synthesize ZnO nanoparticles encapsulated with the extracts of M. longifolia var. asiatica and Z. arabicum and evaluating their therapeutic potential against breast cancer, targeting the Rab22A gene and its protein. UV-Vis spectrophotometer showed characteristic absorbance peaks at 295 nm and 345 nm for Z. arabicum and M. longifolia var. asiatica ZnONPs, respectively. The FTIR bands of Z. arabicum nanoparticles suggested the presence of aldehydes, alcohols, and polyols whereas bands of M. longifolia var. asiatica ZnONPs suggested the presence of carboxyl groups, hydroxyl groups, alkynes, and amines. SEM revealed the size of Z. arabicum ZnO NPs to be 25 ± 4 nm with a spherical shape as compared to nanoparticles of M. longifolia var. asiatica having a size of 35 ± 6 nm with a hexagonal shape. EDX determined the elemental composition of both particles. The cytotoxicity of both plant extracts and respective NPs was determined against the MCF-7 breast cancer cell line, which was found to be significant with an IC50 value of 51.68 μM for Z. arabicum and 88.02 μM for M. longifolia var. asiatica ZnO compared to plant extracts (64.01 μM and 107.9 μM for Z. arabicum and M. longifolia var. asiatica). The gene expression and protein levels of Rab22A were decreased in nanoparticle-treated cells as compared to the control group. The apoptotic role of synthesized nanoparticles against the MCF-7 cell line was also determined by the expression of apoptotic pathway genes and proteins (bax, caspase 3, caspase 8 and caspase 9). All samples showed significant apoptotic activity by activating intrinsic and extrinsic pathway genes. The activity of Z. arabicum was more eminent as compared to M. longifolia var. asiatica which was evident by the greater expression of studied genes and proteins as determined by Real-time qPCR and ELISA. This is the first-ever report describing the comparative analysis of the efficacy of Z. arabicum and M. longifolia var. asiatica ZnONPs against breast cancer.
Collapse
Affiliation(s)
- Iqra Bashir
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| |
Collapse
|
44
|
Madeo LF, Schirmer C, Cirillo G, Asha AN, Ghunaim R, Froeschke S, Wolf D, Curcio M, Tucci P, Iemma F, Büchner B, Hampel S, Mertig M. ZnO-Graphene Oxide Nanocomposite for Paclitaxel Delivery and Enhanced Toxicity in Breast Cancer Cells. Molecules 2024; 29:3770. [PMID: 39202850 PMCID: PMC11357239 DOI: 10.3390/molecules29163770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
A ZnO-Graphene oxide nanocomposite (Z-G) was prepared in order to exploit the biomedical features of each component in a single anticancer material. This was achieved by means of an environmentally friendly synthesis, taking place at a low temperature and without the involvement of toxic reagents. The product was physicochemically characterized. The ZnO-to-GO ratio was determined through thermogravimetric analysis, while scanning electron microscopy and transmission electron microscopy were used to provide insight into the morphology of the nanocomposite. Using energy-dispersive X-ray spectroscopy, it was possible to confirm that the graphene flakes were homogeneously coated with ZnO. The crystallite size of the ZnO nanoparticles in the new composite was determined using X-ray powder diffraction. The capacity of Z-G to enhance the toxicity of the anticancer drug Paclitaxel towards breast cancer cells was assessed via a cell viability study, showing the remarkable anticancer activity of the obtained system. Such results support the potential use of Z-G as an anticancer agent in combination with a common chemotherapeutic like Paclitaxel, leading to new chemotherapeutic formulations.
Collapse
Affiliation(s)
- Lorenzo Francesco Madeo
- Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V., 04736 Waldheim, Germany; (C.S.); (M.M.)
- Leibniz Institute for Solid State and Material Research Dresden, 01069 Dresden, Germany; (S.F.); (D.W.); (B.B.); (S.H.)
| | - Christine Schirmer
- Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V., 04736 Waldheim, Germany; (C.S.); (M.M.)
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy; (G.C.); (M.C.); (P.T.); (F.I.)
| | - Ayah Nader Asha
- Department of Applied Chemistry and Biology, Palestine Polytechnic University, Hebron P.O. Box 198, Palestine; (A.N.A.); (R.G.)
| | - Rasha Ghunaim
- Department of Applied Chemistry and Biology, Palestine Polytechnic University, Hebron P.O. Box 198, Palestine; (A.N.A.); (R.G.)
| | - Samuel Froeschke
- Leibniz Institute for Solid State and Material Research Dresden, 01069 Dresden, Germany; (S.F.); (D.W.); (B.B.); (S.H.)
| | - Daniel Wolf
- Leibniz Institute for Solid State and Material Research Dresden, 01069 Dresden, Germany; (S.F.); (D.W.); (B.B.); (S.H.)
| | - Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy; (G.C.); (M.C.); (P.T.); (F.I.)
| | - Paola Tucci
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy; (G.C.); (M.C.); (P.T.); (F.I.)
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy; (G.C.); (M.C.); (P.T.); (F.I.)
| | - Bernd Büchner
- Leibniz Institute for Solid State and Material Research Dresden, 01069 Dresden, Germany; (S.F.); (D.W.); (B.B.); (S.H.)
- Institute of Solid State and Materials Physics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Silke Hampel
- Leibniz Institute for Solid State and Material Research Dresden, 01069 Dresden, Germany; (S.F.); (D.W.); (B.B.); (S.H.)
| | - Michael Mertig
- Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V., 04736 Waldheim, Germany; (C.S.); (M.M.)
- Institute of Physical Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
45
|
Hidayat C, Sadarman S, Adli DN, Rusli RK, Bakrie B, Ginting SP, Asmarasari SA, Brahmantiyo B, Darmawan A, Zainal H, Fanindi A, Rusdiana S, Herdiawan I, Sutedi E, Yanza YR, Jayanegara A. Comparative effects of dietary zinc nanoparticle and conventional zinc supplementation on broiler chickens: A meta-analysis. Vet World 2024; 17:1733-1747. [PMID: 39328433 PMCID: PMC11422639 DOI: 10.14202/vetworld.2024.1733-1747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/12/2024] [Indexed: 09/28/2024] Open
Abstract
Background and Aim Zinc (Zn) is important for various physiological processes in broiler chickens, including protein and carbohydrate metabolism, growth, and reproduction. The gastrointestinal absorption of Zn in broiler chickens was notably low. One approach that has been explored for enhancing the bioavailability of Zn is the development of Zn nanoparticles (NPs). Zn is required for various physiological processes in broiler chickens, including protein and carbohydrate metabolism, growth, and reproduction. Therefore, this study aimed to assess the impact of conventional Zn and Zn NPs on broiler chickens using a meta-analysis methodology. Materials and Methods A database was built from published literature to evaluate the effects of the addition of Zn NPs and conventional Zn on broiler chicken responses, including the following parameters: production performance; carcass cuts; visceral organ weight; lymphoid organ weight; nutrient digestibility; intestinal villi; mineral Zn, calcium, and phosphorus concentrations; hematology; blood parameters; immunoglobulin; and intestinal bacterial population. Various scientific platforms, including Scopus, Web of Science, PubMed Central, and Google Scholar, were used to search for peer-reviewed articles. A database was created from 25 studies that met the inclusion criteria. The data were then processed for a meta-analysis using a mixed-model methodology. Different types of Zn (NPs versus conventional) were considered fixed effects, different studies were treated as random effects, and p-values were used as model statistics. Results Across the parameters observed in this study, the use of Zn NPs was more efficient in Zn utilization than conventional Zn, as evidenced by the average dose of Zn NPs being much lower than that of conventional Zn (79.44 vs. 242.76 mg/kg) yet providing similar (p > 0.05) or even significantly better effects (p < 0.05) compared to conventional Zn usage. Conclusion This investigation revealed the beneficial influence of Zn NPs in broiler chickens compared to the conventional utilization of Zn through an all-encompassing meta-analysis. Moreover, Zn NPs have proven to be more effective in Zn utilization when juxtaposed with conventional Zn, as demonstrated by the significantly lower quantity of Zn NPs administered compared to conventional Zn, while yielding comparable or even superior outcomes compared to the traditional utilization of Zn. A limitation of this study is that the Zn NPs used were sourced from inorganic Zn NPs. Therefore, future research should focus on evaluating the efficiency of organic Zn NPs in broiler chicken feed.
Collapse
Affiliation(s)
- Cecep Hidayat
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta-Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Sadarman Sadarman
- Department of Animal Science, Faculty of Agriculture and Animal Science, Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru 28293, Indonesia
- Animal Feed and Nutrition Modelling Research Group, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Danung Nur Adli
- Animal Feed and Nutrition Modelling Research Group, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
- Department of Feed and Animal Nutrition, Faculty of Animal Science, Universitas Brawijaya, Malang, Indonesia
| | - Ridho Kurniawan Rusli
- Animal Feed and Nutrition Modelling Research Group, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
- Department of Nutrition and Feed Technology, Faculty of Animal Science, Universitas Andalas, Padang, 25175, Indonesia
| | - Bachtar Bakrie
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta-Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Simon Petrus Ginting
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta-Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Santiananda Arta Asmarasari
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta-Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Bram Brahmantiyo
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta-Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Arif Darmawan
- Animal Feed and Nutrition Modelling Research Group, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Hasnelly Zainal
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta-Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Achmad Fanindi
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta-Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Supardi Rusdiana
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta-Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Iwan Herdiawan
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta-Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Endang Sutedi
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta-Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Yulianri Rizki Yanza
- Animal Feed and Nutrition Modelling Research Group, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
- Department of Animal Nutrition and Feed Technology, Faculty of Animal Husbandry, Padjadjaran University, Jl. Raya Bandung Sumedang KM 21, Jatinangor, Sumedang, 45363, Indonesia
| | - Anuraga Jayanegara
- Animal Feed and Nutrition Modelling Research Group, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| |
Collapse
|
46
|
Kavipriya R, Ramasubburayan R. Phytofabrication of biocompatible zinc oxide nanoparticle using Gymnema sylvestre and its potent in vitro antibacterial, antibiofilm, and cytotoxicity against human breast cancer cells (MDA-MB-231). Bioprocess Biosyst Eng 2024; 47:1377-1391. [PMID: 38819452 DOI: 10.1007/s00449-024-03035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
The increasing incidence of breast cancer and bacterial biofilm in medical devices significantly heightens global mortality and morbidity, challenging synthetic drugs. Consequently, greener-synthesized nanomaterials have emerged as a versatile alternative for various biomedical applications, offering new therapeutic avenues. This study explores the synthesis of biocompatible zinc oxide (ZnONPs) nanoparticles using Gymnema sylvestre and its antibacterial, antibiofilm, and cytotoxic properties. Characterization of ZnONPs inferred that UV-Vis spectra exhibited a sharp peak at 370 nm. Fourier transform infrared spectroscopical analysis revealed the presence of active functional groups such as aldehyde, alkyne, cyclic alkene, sulfate, alkyl aryl ether, and Zn-O bonds. X-ray diffraction analysis results confirmed the crystalline nature of the nanoparticle. Scanning electron microscope analysis evidenced hexagonal morphology, and energy-dispersive X-ray analysis confirmed zinc content. High-resolution transmission electron microscope analysis showed hexagonal and rod-shaped ZnONPs with a size of 5 nm. Zeta potential results affirmed the stability of nanoparticles. The ZnONPs effectively inhibited gram-positive (18-20 mm) than gram-negative (12-18 mm) bacterial pathogens with lower bacteriostatic and higher bactericidal values. Biofilm inhibitory property inferred ZnONPs were more effective against gram-positive (38-94%) than gram-negative bacteria (27-86%). The concentration of ZnONPs to exert 50% biofilm-inhibitory is lower against gram-positive bacteria (179.26-203.95 μg/mL) than gram-negative bacteria (201.46-236.19 μg/mL). Microscopic visualization inferred that at 250 μg/mL, ZnONPs strongly disrupted biofilm formation, as evidenced by decreased biofilm density and altered architecture. The cytotoxicity of ZnONPs against breast cancer cells showed a dose-dependent reduction in cell viability with an IC50 value of 19.4 µg/mL. AO/EB staining indicated early and late apoptotic cell death of breast cancer cells under fluorescence microscopy. The results of hemolytic activity validated the biocompatibility of the ZnONPs. Thus, the unique properties of the green-synthesized ZnONPs suggest their potential as effective drug carriers for targeted delivery in cancer therapy and the treatment of biofilm-related infections.
Collapse
Affiliation(s)
- R Kavipriya
- Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - R Ramasubburayan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India.
| |
Collapse
|
47
|
Sattar S, Imran M, Anwar A, Akhtar MN, Alsafari IA, Khan FA, Iqbal HMN. Formulation of biodegradable alginate-based nano-carriers for in-vitro drug delivery and antibacterial activity. Int J Biol Macromol 2024; 274:133274. [PMID: 38906345 DOI: 10.1016/j.ijbiomac.2024.133274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Evaluation of the controlled release of ciprofloxacin (CIP.HCl) and the antibacterial efficacy of alginate (ALG)-based nanocarriers constitute the primary objectives of the current work. Herein, ALG-based nano-structures were prepared by the co-precipitation method and thoroughly analyzed using different characterization techniques, i.e., fourier transform infrared (FT-IR), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and zeta potential (ZP). The intense peaks emerged at 500, 545, and 750 cm-1 due to the CeO bond. Peaks that appeared at 550-600 cm-1 and 525 cm-1 are due to the stretching vibrations of FeO and ZnO bonds, respectively. Lowering of the peaks from 1640 to 1630 cm-1 and 1420 to 1384 cm-1 were observed in ALG-based nanocomposite (NC) due to the interaction of ALG with metal oxides (MO), which confirmed the formulation of CeO2/ZnFe2O4/ALG nanocomposite. The diffraction peaks at 28.6°, 56.6°, 76.5°, 37°, 47.9°, 62.3°, 74°, 13°, 21° confirmed the synthesis of MO (crystallite size 15.74 nm) and CeO2/ZnFe2O4/ALG (12 nm). In accordance with morphological studies, CeO2/ZnFe2O4 oxides had a uniform distribution throughout the relatively smooth and permeable surface of the ALG-based NC. Ciprofloxacin (CIP) was used as a model drug. Negative values of ZP revealed that CIP-loaded nanocomposite (CeO2/ZnFe2O4/ALG/CIP) had more stability than CeO2/ZnFe2O4/ALG. The maximum percentage of loading around 25 % on ALG NC was examined using the optical density (OD) method at pH 5.5. Correlation coefficients from the first order (0.971), Korsmeyer (0.9858), and Hixson (0.9021) models show the best-fitted models of the release profile in all circumstances. The release mechanism was investigated using various kinetics models. The controlled drug released was observed around 17 % at 40 °C after 3 h at pH 7.4, which is almost identical to the body temperature of a human, which is 37 °C. Similarly, after 24 h, sustained and controlled in-vitro release of the drug was studied, and it was 37, 72, and 74 % at pH 2.2, 7.4, and 9.4, respectively. Thus, prepared ALG-based NC is suitable for the controlled in-vitro release of (CIP.HCl). Metal oxides (CeO2/ZnFe2O4) and ALG-based nanocomposite (CeO2/ZnFe2O4/ALG) showed great antibacterial activity against Staphylococcus aureus (S. aureus) like 15 mm and 14 mm than Escherichia coli (E. coli).
Collapse
Affiliation(s)
- Sobia Sattar
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Imran
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Ayesha Anwar
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Nadeem Akhtar
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ibrahim A Alsafari
- Department of Biology, College of Science, University of Hafr Al Batin, P.O. Box 1803, Hafar Al Batin 31991, Saudi Arabia
| | - Farhan A Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, Pakistan
| | - Hafiz M N Iqbal
- Facultad de Agronomía, Campus Ciencias Agropecuarias; Universidad Autónoma de Nuevo León; C.P. 66050, General Escobedo, Nuevo León, Mexico.
| |
Collapse
|
48
|
Es-Haghi A, Amiri MS, Taghavizadeh Yazdi ME. Ferula latisecta gels for synthesis of zinc/silver binary nanoparticles: antibacterial effects against gram-negative and gram-positive bacteria and physicochemical characteristics. BMC Biotechnol 2024; 24:51. [PMID: 39090578 PMCID: PMC11292920 DOI: 10.1186/s12896-024-00878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
This study explores the potential antibacterial applications of zinc oxide nanoparticles (ZnO NPs) enhanced with silver (Ag) using plant gel (ZnO-AgO NPs). The problem addressed is the increasing prevalence of pathogenic bacteria and the need for new, effective antimicrobial agents. ZnO NPs possess distinctive physicochemical properties that enable them to selectively target bacterial cells. Their small size and high surface area-to-volume ratio allow efficient cellular uptake and interaction with bacterial cells. In this study, the average size of the synthesized ZnO-Ag nanoparticles was 77.1 nm, with a significant standard deviation of 33.7 nm, indicating a wide size distribution. The nanoparticles demonstrated remarkable antibacterial efficacy against gram-negative and gram-positive bacteria, with inhibition zones of 14.33 mm for E. coli and 15.66 mm for B. subtilis at a concentration of 300 µg/ml. Minimum inhibitory concentrations (MIC) were determined to be 100 µg/ml for E. coli and 75 µg/ml for S. saprophyticus. Additionally, ZnO-Ag NPs exhibited excellent biocompatibility, making them appropriate for various pharmacological uses. This study utilizes Ferula latisecta gels, offering a sustainable and eco-friendly approach to nanoparticle synthesis. Incorporating of Ag into ZnO NPs significantly enhances their antimicrobial properties, with the combined results showing great inhibition effects on pathogenic microbes. The findings suggest that ZnO-Ag NPs could be a promising candidate for addressing the challenges posed by drug-resistant bacterial infections and enhancing antimicrobial treatments.
Collapse
Affiliation(s)
- Ali Es-Haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | | | | |
Collapse
|
49
|
Sholkamy EN, Abdelhamid MAA, Khalifa HO, Ki MR, Pack SP. Bioinspired Synthesis and Characterization of Dual-Function Zinc Oxide Nanoparticles from Saccharopolyspora hirsuta: Exploring Antimicrobial and Anticancer Activities. Biomimetics (Basel) 2024; 9:456. [PMID: 39194435 DOI: 10.3390/biomimetics9080456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Microbial synthesis offers a sustainable and eco-friendly approach for nanoparticle production. This study explores the biogenic synthesis of zinc oxide nanoparticles (ZnO-NPs) utilizing the actinomycete Saccharopolyspora hirsuta (Ess_amA6) isolated from Tapinoma simrothi. The biosynthesized ZnO-NPs were characterized using various techniques to confirm their formation and properties. UV-visible spectroscopy revealed a characteristic peak at 372 nm, indicative of ZnO-NPs. X-ray diffraction (XRD) analysis confirmed the crystalline structure of the ZnO-NPs as hexagonal wurtzite with a crystallite size of approximately 37.5 ± 13.60 nm. Transmission electron microscopy (TEM) analysis showed the presence of both spherical and roughly hexagonal ZnO nanoparticles in an agglomerated state with a diameter of approximately 44 nm. The biogenic ZnO-NPs exhibited promising biomedical potential. They demonstrated selective cytotoxic activity against human cancer cell lines, demonstrating higher efficacy against Hep-2 cells (IC50 = 73.01 µg/mL) compared to MCF-7 cells (IC50 = 112.74 µg/mL). Furthermore, the biosynthesized ZnO-NPs displayed broad-spectrum antimicrobial activity against both Pseudomonas aeruginosa and Staphylococcus aureus with clear zones of inhibition of 12.67 mm and 14.33 mm, respectively. The MIC and MBC values against P. aeruginosa and S. aureus ranged between 12.5 and 50 µg/mL. These findings suggest the potential of S. hirsuta-mediated ZnO-NPs as promising biocompatible nanomaterials with dual applications as antimicrobial and anticancer agents.
Collapse
Affiliation(s)
- Essam N Sholkamy
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed A A Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Hazim O Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
- Institute of Industrial Technology, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| |
Collapse
|
50
|
Hheidari A, Mohammadi J, Ghodousi M, Mahmoodi M, Ebrahimi S, Pishbin E, Rahdar A. Metal-based nanoparticle in cancer treatment: lessons learned and challenges. Front Bioeng Biotechnol 2024; 12:1436297. [PMID: 39055339 PMCID: PMC11269265 DOI: 10.3389/fbioe.2024.1436297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Cancer, being one of the deadliest diseases, poses significant challenges despite the existence of traditional treatment approaches. This has led to a growing demand for innovative pharmaceutical agents that specifically target cancer cells for effective treatment. In recent years, the use of metal nanoparticles (NPs) as a promising alternative to conventional therapies has gained prominence in cancer research. Metal NPs exhibit unique properties that hold tremendous potential for various applications in cancer treatment. Studies have demonstrated that certain metals possess inherent or acquired anticancer capabilities through their surfaces. These properties make metal NPs an attractive focus for therapeutic development. In this review, we will investigate the applicability of several distinct classes of metal NPs for tumor targeting in cancer treatment. These classes may include gold, silver, iron oxide, and other metals with unique properties that can be exploited for therapeutic purposes. Additionally, we will provide a comprehensive summary of the risk factors associated with the therapeutic application of metal NPs. Understanding and addressing these factors will be crucial for successful clinical translation and to mitigate any potential challenges or failures in the translation of metal NP-based therapies. By exploring the therapeutic potential of metal NPs and identifying the associated risk factors, this review aims to contribute to the advancement of cancer treatment strategies. The anticipated outcome of this review is to provide valuable insights and pave the way for the advancement of effective and targeted therapies utilizing metal NPs specifically for cancer patients.
Collapse
Affiliation(s)
- Ali Hheidari
- Department of Mechanical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Javad Mohammadi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Ghodousi
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, United States
| | - Mohammadreza Mahmoodi
- Bio-microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Sina Ebrahimi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Esmail Pishbin
- Bio-microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| |
Collapse
|