1
|
Aschner M, Skalny AV, Lu R, Martins AC, Tsatsakis A, Miroshnikov SA, Santamaria A, Tinkov AA. Molecular mechanisms of zinc oxide nanoparticles neurotoxicity. Chem Biol Interact 2024; 403:111245. [PMID: 39278458 DOI: 10.1016/j.cbi.2024.111245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Zinc oxide nanoparticles (ZnONPs) are widely used in industry and biomedicine. A growing body of evidence demonstrates that ZnONPs exposure may possess toxic effects to a variety of tissues, including brain. Therefore, the objective of the present review was to summarize existing evidence on neurotoxic effects of ZnONPs and discuss the underlying molecular mechanisms. The existing laboratory data demonstrate that both in laboratory rodents and other animals ZnONPs exposure results in a significant accumulation of Zn in brain and nervous tissues, especially following long-term exposure. As a result, overexposure to ZnONPs causes oxidative stress and cell death, both in neurons and glial cells, by induction of apoptosis, necrosis and ferroptosis. In addition, ZnONPs may induce neuroinflammation through the activation of nuclear factor kappa B (NF-κB), extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), and lipoxygenase (LOX) signaling pathways. ZnONPs exposure is associated with altered cholinergic, dopaminergic, serotoninergic, as well as glutamatergic and γ-aminobutyric acid (GABA)-ergic neurotransmission, thus contributing to impaired neuronal signal transduction. Cytoskeletal alterations, as well as impaired autophagy and mitophagy also contribute to ZnONPs-induced brain damage. It has been posited that some of the adverse effects of ZnONPs in brain are mediated by altered microRNA expression and dysregulation of gut-brain axis. Furthermore, in vivo studies have demonstrated that ZnONPs exposure induced anxiety, motor and cognitive deficits, as well as adverse neurodevelopmental outcome. At the same time, the relevance of ZnONPs-induced neurotoxicity and its contribution to pathogenesis of neurological diseases in humans are still unclear. Further studies aimed at estimation of hazards of ZnONPs to human brain health and the underlying molecular mechanisms are warranted.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Anatoly V Skalny
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 700 13, Heraklion, Greece
| | - Sergey A Miroshnikov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia
| | - Abel Santamaria
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, 04960, Mexico City, Mexico; Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alexey A Tinkov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460018, Russia; Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119146, Russia; Laboratory of Molecular Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia.
| |
Collapse
|
2
|
Muthu S, Lakshmikanthan M, Edward-Sam E, Subramanian M, Govindan L, Patcha ABM, Krishnan K, Duraisamy N, Jeyaperumal S, Aziz AT. Encapsulation of Phloroglucinol from Rosenvingea intricata Macroalgae with Zinc Oxide Nanoparticles against A549 Lung Cancer Cells. Pharmaceutics 2024; 16:1300. [PMID: 39458629 PMCID: PMC11510838 DOI: 10.3390/pharmaceutics16101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Phloroglucinol (PHL), a phenolic compound extracted from the brown alga Rosenvingea intricata, exhibits potent antioxidant and anticancer properties. This study aims to extract, purify, and characterize PHL, and further develop functionalized zinc oxide nanoparticles (ZnO NPs) loaded with PHL to enhance its therapeutic potential. METHODS PHL was extracted using acetone and purified through Sephadex LH-20 column chromatography, yielding a highly enriched fraction (F-3). The purified compound was characterized by FTIR, HPLC, NMR, and LC-MS. ZnO NPs were synthesized, PEGylated, and conjugated with PHL, forming ZnO-PEG-PHL NPs. Their characterization included DLS, zeta potential, XRD, SEM-EDAX, and encapsulation efficiency studies. Antioxidant assays (DPPH, FRAP, ABTS, RPA) were performed and in vitro cytotoxicity on A549 lung cancer cells were determined to evaluate the therapeutic efficacy of PHL. RESULTS The purified PHL fraction showed a high phenolic content (45.65 PHL mg/g), which was was confirmed by spectral analysis. The ZnO-PEG-PHL NPs increased in size from 32.36 nm to 46.68 nm, with their zeta potential shifting from -37.87 mV to -26.82 mV. The antioxidant activity was superior for the ZnO-PEG-PHL NPs in all assays, while the in vitro cytotoxicity tests showed an IC50 of 40 µg/mL compared to 60 µg/mL for the ZnO NPs and 70 µg/mL for PHL. Apoptotic studies revealed significant cell cycle arrest and apoptosis induction. CONCLUSIONS The synthesized ZnO-PEG-PHL NPs demonstrated enhanced antioxidant and anticancer properties, making them promising candidates for cancer therapy and antioxidant applications.
Collapse
Affiliation(s)
- Sakthivel Muthu
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India
| | - Mythileeswari Lakshmikanthan
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India; (M.L.); (A.B.M.P.)
| | - Edwin Edward-Sam
- Department of Microbiology, Division of Virology and Molecular Biology, St. Peters Medical College Hospital & Research Institute, Hosur 635130, Tamil Nadu, India;
| | - Mutheeswaran Subramanian
- Xavier Research Foundation, St. Xavier's College, Palayamkottai, Tirunelveli 627002, Tamil Nadu, India;
| | - Lakshmanan Govindan
- Department of Anatomy, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India;
| | - Afrina Begum Mithen Patcha
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India; (M.L.); (A.B.M.P.)
| | - Kathiravan Krishnan
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India; (M.L.); (A.B.M.P.)
| | - Nallusamy Duraisamy
- Department of Research, Meenakshi Academy of Higher Education and Research (MAHER), Chennai 600078, Tamil Nadu, India;
| | - Selvakumari Jeyaperumal
- National Centre for Disease Control, Thiruvananthapuram Field Unit, Iranimuttam, Thiruvananthapuram 695009, Kerala, India;
| | - Al Thabiani Aziz
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
3
|
Zewail M. Leflunomide nanocarriers: a new prospect of therapeutic applications. J Microencapsul 2024:1-24. [PMID: 39320955 DOI: 10.1080/02652048.2024.2407373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Leflunomide (LEF) is a well-known disease-modifying anti-rheumatic agent (DMARDs) that was approved in 1998 for rheumatoid arthritis (RA) management. It is enzymatically converted into active metabolite teriflunomide (TER) inside the body. LEF and TER possess several pharmacological effects in a variety of diseases including multiple sclerosis, cancer, viral infections and neurobehavioral brain disorders. Despite the aforementioned pharmacological effects exploring these effects in nanomedicine applications has been focused mainly on RA and cancer treatment. This review summarises the main pharmacological, and pharmacokinetic effects of LEF along with highlighting the applications of nanoencapsulation of LEF and its metabolite in different diseases.
Collapse
Affiliation(s)
- Mariam Zewail
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| |
Collapse
|
4
|
Asif M, Fakhar-E-Alam M, Tahir M, Jamil F, Sardar H, Rehman J, Dahlous KA. Synthesis, Characterization, and Evaluation of the Antimicrobial and Anticancer Activities of Zinc Oxide and Aluminum-Doped Zinc Oxide Nanocomposites. Pharmaceuticals (Basel) 2024; 17:1216. [PMID: 39338378 PMCID: PMC11435269 DOI: 10.3390/ph17091216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
In this research, we developed undoped and aluminum-doped zinc oxide for antimicrobial and anticancer activities. This study focuses on the synthesis, characterization, and biological activities of zinc oxide nanoparticles (ZnO NPs) and aluminum-doped zinc oxide nanocomposites (Zn1-xAlxO NCs) at varying concentrations (x = 0, 0.25, 0.5, and 0.75 wt%) using the coprecipitation method. Various characterization techniques such as XRD, UV-Vis, FTIR, EDX, and SEM were performed to analyze the crystal structure, optical properties, functional group identification, elemental composition, and surface morphology. The antimicrobial activity test showed that Zn0.75Al0.25O NCs exhibited the strongest inhibition zone against Bacillus cereus compared to Staphylococcus aureus > Pasteurella multocida > Escherichia coli. Moreover, the cytotoxicity and cell viability of liver cancer (HepG-2), breast cancer (MCF-7), ovarian cancer (SKOV3), and normal liver cell lines) were evaluated using the MTT assay, demonstrating that Zn0.75Al0.25O NCs not only enhance cell destruction but also show low cytotoxicity and high biocompatibility at low concentrations. These results suggest that Zn0.75Al0.25O NCs could be a promising candidate for in vivo anticancer applications and should be further investigated.
Collapse
Affiliation(s)
- Muhammad Asif
- Department of Physics, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Fakhar-E-Alam
- Department of Physics, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Tahir
- Department of Chemistry, Quaid-e-Azam University, Islamabad 45320, Pakistan
| | - Farah Jamil
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Hassan Sardar
- Department of Physics, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Javed Rehman
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004, China
- MEU Research Unit, Middle East University, Amman 11831, Jordan
| | - Kholood A Dahlous
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Ashoub MH, Amiri M, Fatemi A, Farsinejad A. Evaluation of ferroptosis-based anti-leukemic activities of ZnO nanoparticles synthesized by a green route against Pre-B acute lymphoblastic leukemia cells (Nalm-6 and REH). Heliyon 2024; 10:e36608. [PMID: 39263164 PMCID: PMC11387337 DOI: 10.1016/j.heliyon.2024.e36608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Background Our research presents an efficient and practical method for producing Zinc Oxide nanoparticles (ZnO NPs), which have anti-leukemic effects based on ferroptosis. Methods The black cardamom extract was employed as a capping and reducing agent for the green synthesis. The NPs have been characterized via scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. Additionally, leukemic and normal cells were exposed to ZnO NPs (25, 50, 75, 100, 150, 200, and 300 μg/mL) for 24 and 48 h. The cell vitality was then measured using the MTT test. Moreover, ferroptosis indicators were assessed via commercial testing kits, and finally, qRT-PCR and flow cytometry were used to measure gene expression and cell death. Results The findings displayed that green synthesized ZnO NPs reduced the survival of leukemic cells, with IC50 values of 150.89 μg/ml for Nalm-6 and 101.31 μg/ml for REH cells after 48 h. The ZnO NPs increased ferroptosis by significantly increasing MDA, intracellular iron, ACSL4, ALOX15, and p53 mRNA expressions while significantly decreasing GSH and GPx activity levels and SLC7A11 and GPx4 mRNA expressions. On the other hand, ZnO NPs exhibited no toxicity toward normal cells. Conclusions The research suggests that ZnO NPs synthesized using the green approach can induce ferroptosis in leukemic cells by disrupting redox homeostasis and increasing intracellular iron levels, potentially enhancing the benefits of anti-leukemic therapies in the future.
Collapse
Affiliation(s)
- Muhammad Hossein Ashoub
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahnaz Amiri
- Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Ahmad Fatemi
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Alireza Farsinejad
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
6
|
Bashir I, Dilshad E. A comparative study of Mentha longifolia var. asiatica and Zygophyllum arabicum ZnO nanoparticles against breast cancer targeting Rab22A gene. PLoS One 2024; 19:e0308982. [PMID: 39213285 PMCID: PMC11364221 DOI: 10.1371/journal.pone.0308982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Breast cancer is the most frequently diagnosed cancer worldwide, and the incidence rate has increased enormously over the last three decades. Rab proteins are members of the Rab GTPase superfamily. The aberrant function of these proteins leads to the development of tumors. Mentha longifolia var. asiatica and Zygophyllum arabicum have been known for their therapeutic potential for ages. The present study aimed to synthesize ZnO nanoparticles encapsulated with the extracts of M. longifolia var. asiatica and Z. arabicum and evaluating their therapeutic potential against breast cancer, targeting the Rab22A gene and its protein. UV-Vis spectrophotometer showed characteristic absorbance peaks at 295 nm and 345 nm for Z. arabicum and M. longifolia var. asiatica ZnONPs, respectively. The FTIR bands of Z. arabicum nanoparticles suggested the presence of aldehydes, alcohols, and polyols whereas bands of M. longifolia var. asiatica ZnONPs suggested the presence of carboxyl groups, hydroxyl groups, alkynes, and amines. SEM revealed the size of Z. arabicum ZnO NPs to be 25 ± 4 nm with a spherical shape as compared to nanoparticles of M. longifolia var. asiatica having a size of 35 ± 6 nm with a hexagonal shape. EDX determined the elemental composition of both particles. The cytotoxicity of both plant extracts and respective NPs was determined against the MCF-7 breast cancer cell line, which was found to be significant with an IC50 value of 51.68 μM for Z. arabicum and 88.02 μM for M. longifolia var. asiatica ZnO compared to plant extracts (64.01 μM and 107.9 μM for Z. arabicum and M. longifolia var. asiatica). The gene expression and protein levels of Rab22A were decreased in nanoparticle-treated cells as compared to the control group. The apoptotic role of synthesized nanoparticles against the MCF-7 cell line was also determined by the expression of apoptotic pathway genes and proteins (bax, caspase 3, caspase 8 and caspase 9). All samples showed significant apoptotic activity by activating intrinsic and extrinsic pathway genes. The activity of Z. arabicum was more eminent as compared to M. longifolia var. asiatica which was evident by the greater expression of studied genes and proteins as determined by Real-time qPCR and ELISA. This is the first-ever report describing the comparative analysis of the efficacy of Z. arabicum and M. longifolia var. asiatica ZnONPs against breast cancer.
Collapse
Affiliation(s)
- Iqra Bashir
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| |
Collapse
|
7
|
Mohamed ATAE, Ragheb MA, Shehata MR, Mohamed AS. In vivo cardioprotective effect of zinc oxide nanoparticles against doxorubicin-induced myocardial infarction by enhancing the antioxidant system and nitric oxide production. J Trace Elem Med Biol 2024; 86:127516. [PMID: 39226872 DOI: 10.1016/j.jtemb.2024.127516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/26/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Myocardial infarction (MI) is the result of reduced or stopped blood supply to a section of the myocardium. Regardless of its potential effectiveness in the treatment of several types of cancers, doxorubicin (DOX) capabilities are restricted because of its widespread cardiotoxic impact. AIM In this study, the protective effect of zinc oxide nanoparticles against doxorubicin-induced myocardial infarction in rats is examined. METHODS Zinc oxide nanoparticles (ZnO NPs) were synthesized and characterized using X-ray diffraction, transmission electron microscope, and UV-Vis spectral analysis. A total cumulative dose of DOX (18 mg/kg body weight, i.p.) was injected once daily on days 2, 4, 6, 8, 10, and 12 (i.p.) to induce MI in rats. 24 rats were divided into 4 groups; control, MI, and MI treated with two doses of ZnO NPs (45 and 22.5 mg/kg). RESULTS The treatment with ZnO NPs restored ST-segment near normal, ameliorated the changes in cardiac troponin T, creatine kinase, lactate dehydrogenase, aspartate aminotransferase, alanine amino transferase, alkaline phosphatase, total proteins, malondialdehyde, nitric oxide, reduced glutathione, and catalase.The histological investigation revealed that ZnO NPs treated group showed marked improvement in the examined cardiac muscle and liver in numerous sections.The lower dose of ZnO NPs (22.5 mg/kg) was significantly more effective than the higher dose (45 mg/kg). CONCLUSION The effect of ZnO NPs against doxorubicin-induced myocardial infarction in rats was assessed and the results revealed a successful cardioprotective potency through enhancing the antioxidant system and stimulating nitric oxide production in myocardial infarcted rats. This work implies that ZnO NPs could serve as promising agents for treating doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
| | - Mohamed A Ragheb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Egypt.
| | | | | |
Collapse
|
8
|
Madeo LF, Schirmer C, Cirillo G, Asha AN, Ghunaim R, Froeschke S, Wolf D, Curcio M, Tucci P, Iemma F, Büchner B, Hampel S, Mertig M. ZnO-Graphene Oxide Nanocomposite for Paclitaxel Delivery and Enhanced Toxicity in Breast Cancer Cells. Molecules 2024; 29:3770. [PMID: 39202850 PMCID: PMC11357239 DOI: 10.3390/molecules29163770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
A ZnO-Graphene oxide nanocomposite (Z-G) was prepared in order to exploit the biomedical features of each component in a single anticancer material. This was achieved by means of an environmentally friendly synthesis, taking place at a low temperature and without the involvement of toxic reagents. The product was physicochemically characterized. The ZnO-to-GO ratio was determined through thermogravimetric analysis, while scanning electron microscopy and transmission electron microscopy were used to provide insight into the morphology of the nanocomposite. Using energy-dispersive X-ray spectroscopy, it was possible to confirm that the graphene flakes were homogeneously coated with ZnO. The crystallite size of the ZnO nanoparticles in the new composite was determined using X-ray powder diffraction. The capacity of Z-G to enhance the toxicity of the anticancer drug Paclitaxel towards breast cancer cells was assessed via a cell viability study, showing the remarkable anticancer activity of the obtained system. Such results support the potential use of Z-G as an anticancer agent in combination with a common chemotherapeutic like Paclitaxel, leading to new chemotherapeutic formulations.
Collapse
Affiliation(s)
- Lorenzo Francesco Madeo
- Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V., 04736 Waldheim, Germany; (C.S.); (M.M.)
- Leibniz Institute for Solid State and Material Research Dresden, 01069 Dresden, Germany; (S.F.); (D.W.); (B.B.); (S.H.)
| | - Christine Schirmer
- Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V., 04736 Waldheim, Germany; (C.S.); (M.M.)
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy; (G.C.); (M.C.); (P.T.); (F.I.)
| | - Ayah Nader Asha
- Department of Applied Chemistry and Biology, Palestine Polytechnic University, Hebron P.O. Box 198, Palestine; (A.N.A.); (R.G.)
| | - Rasha Ghunaim
- Department of Applied Chemistry and Biology, Palestine Polytechnic University, Hebron P.O. Box 198, Palestine; (A.N.A.); (R.G.)
| | - Samuel Froeschke
- Leibniz Institute for Solid State and Material Research Dresden, 01069 Dresden, Germany; (S.F.); (D.W.); (B.B.); (S.H.)
| | - Daniel Wolf
- Leibniz Institute for Solid State and Material Research Dresden, 01069 Dresden, Germany; (S.F.); (D.W.); (B.B.); (S.H.)
| | - Manuela Curcio
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy; (G.C.); (M.C.); (P.T.); (F.I.)
| | - Paola Tucci
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy; (G.C.); (M.C.); (P.T.); (F.I.)
| | - Francesca Iemma
- Department of Pharmacy Health and Nutritional Science, University of Calabria, 87036 Rende, Italy; (G.C.); (M.C.); (P.T.); (F.I.)
| | - Bernd Büchner
- Leibniz Institute for Solid State and Material Research Dresden, 01069 Dresden, Germany; (S.F.); (D.W.); (B.B.); (S.H.)
- Institute of Solid State and Materials Physics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Silke Hampel
- Leibniz Institute for Solid State and Material Research Dresden, 01069 Dresden, Germany; (S.F.); (D.W.); (B.B.); (S.H.)
| | - Michael Mertig
- Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V., 04736 Waldheim, Germany; (C.S.); (M.M.)
- Institute of Physical Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
9
|
Hidayat C, Sadarman S, Adli DN, Rusli RK, Bakrie B, Ginting SP, Asmarasari SA, Brahmantiyo B, Darmawan A, Zainal H, Fanindi A, Rusdiana S, Herdiawan I, Sutedi E, Yanza YR, Jayanegara A. Comparative effects of dietary zinc nanoparticle and conventional zinc supplementation on broiler chickens: A meta-analysis. Vet World 2024; 17:1733-1747. [PMID: 39328433 PMCID: PMC11422639 DOI: 10.14202/vetworld.2024.1733-1747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/12/2024] [Indexed: 09/28/2024] Open
Abstract
Background and Aim Zinc (Zn) is important for various physiological processes in broiler chickens, including protein and carbohydrate metabolism, growth, and reproduction. The gastrointestinal absorption of Zn in broiler chickens was notably low. One approach that has been explored for enhancing the bioavailability of Zn is the development of Zn nanoparticles (NPs). Zn is required for various physiological processes in broiler chickens, including protein and carbohydrate metabolism, growth, and reproduction. Therefore, this study aimed to assess the impact of conventional Zn and Zn NPs on broiler chickens using a meta-analysis methodology. Materials and Methods A database was built from published literature to evaluate the effects of the addition of Zn NPs and conventional Zn on broiler chicken responses, including the following parameters: production performance; carcass cuts; visceral organ weight; lymphoid organ weight; nutrient digestibility; intestinal villi; mineral Zn, calcium, and phosphorus concentrations; hematology; blood parameters; immunoglobulin; and intestinal bacterial population. Various scientific platforms, including Scopus, Web of Science, PubMed Central, and Google Scholar, were used to search for peer-reviewed articles. A database was created from 25 studies that met the inclusion criteria. The data were then processed for a meta-analysis using a mixed-model methodology. Different types of Zn (NPs versus conventional) were considered fixed effects, different studies were treated as random effects, and p-values were used as model statistics. Results Across the parameters observed in this study, the use of Zn NPs was more efficient in Zn utilization than conventional Zn, as evidenced by the average dose of Zn NPs being much lower than that of conventional Zn (79.44 vs. 242.76 mg/kg) yet providing similar (p > 0.05) or even significantly better effects (p < 0.05) compared to conventional Zn usage. Conclusion This investigation revealed the beneficial influence of Zn NPs in broiler chickens compared to the conventional utilization of Zn through an all-encompassing meta-analysis. Moreover, Zn NPs have proven to be more effective in Zn utilization when juxtaposed with conventional Zn, as demonstrated by the significantly lower quantity of Zn NPs administered compared to conventional Zn, while yielding comparable or even superior outcomes compared to the traditional utilization of Zn. A limitation of this study is that the Zn NPs used were sourced from inorganic Zn NPs. Therefore, future research should focus on evaluating the efficiency of organic Zn NPs in broiler chicken feed.
Collapse
Affiliation(s)
- Cecep Hidayat
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta-Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Sadarman Sadarman
- Department of Animal Science, Faculty of Agriculture and Animal Science, Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru 28293, Indonesia
- Animal Feed and Nutrition Modelling Research Group, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Danung Nur Adli
- Animal Feed and Nutrition Modelling Research Group, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
- Department of Feed and Animal Nutrition, Faculty of Animal Science, Universitas Brawijaya, Malang, Indonesia
| | - Ridho Kurniawan Rusli
- Animal Feed and Nutrition Modelling Research Group, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
- Department of Nutrition and Feed Technology, Faculty of Animal Science, Universitas Andalas, Padang, 25175, Indonesia
| | - Bachtar Bakrie
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta-Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Simon Petrus Ginting
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta-Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Santiananda Arta Asmarasari
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta-Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Bram Brahmantiyo
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta-Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Arif Darmawan
- Animal Feed and Nutrition Modelling Research Group, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Hasnelly Zainal
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta-Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Achmad Fanindi
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta-Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Supardi Rusdiana
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta-Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Iwan Herdiawan
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta-Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Endang Sutedi
- Research Center for Animal Husbandry, Research Organization for Agriculture and Food, National Research and Innovation Agency of Indonesia, Cibinong Science Center, Jalan Raya Jakarta-Bogor, Cibinong, Bogor 16915, West Java, Indonesia
| | - Yulianri Rizki Yanza
- Animal Feed and Nutrition Modelling Research Group, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
- Department of Animal Nutrition and Feed Technology, Faculty of Animal Husbandry, Padjadjaran University, Jl. Raya Bandung Sumedang KM 21, Jatinangor, Sumedang, 45363, Indonesia
| | - Anuraga Jayanegara
- Animal Feed and Nutrition Modelling Research Group, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| |
Collapse
|
10
|
Kavipriya R, Ramasubburayan R. Phytofabrication of biocompatible zinc oxide nanoparticle using Gymnema sylvestre and its potent in vitro antibacterial, antibiofilm, and cytotoxicity against human breast cancer cells (MDA-MB-231). Bioprocess Biosyst Eng 2024; 47:1377-1391. [PMID: 38819452 DOI: 10.1007/s00449-024-03035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
The increasing incidence of breast cancer and bacterial biofilm in medical devices significantly heightens global mortality and morbidity, challenging synthetic drugs. Consequently, greener-synthesized nanomaterials have emerged as a versatile alternative for various biomedical applications, offering new therapeutic avenues. This study explores the synthesis of biocompatible zinc oxide (ZnONPs) nanoparticles using Gymnema sylvestre and its antibacterial, antibiofilm, and cytotoxic properties. Characterization of ZnONPs inferred that UV-Vis spectra exhibited a sharp peak at 370 nm. Fourier transform infrared spectroscopical analysis revealed the presence of active functional groups such as aldehyde, alkyne, cyclic alkene, sulfate, alkyl aryl ether, and Zn-O bonds. X-ray diffraction analysis results confirmed the crystalline nature of the nanoparticle. Scanning electron microscope analysis evidenced hexagonal morphology, and energy-dispersive X-ray analysis confirmed zinc content. High-resolution transmission electron microscope analysis showed hexagonal and rod-shaped ZnONPs with a size of 5 nm. Zeta potential results affirmed the stability of nanoparticles. The ZnONPs effectively inhibited gram-positive (18-20 mm) than gram-negative (12-18 mm) bacterial pathogens with lower bacteriostatic and higher bactericidal values. Biofilm inhibitory property inferred ZnONPs were more effective against gram-positive (38-94%) than gram-negative bacteria (27-86%). The concentration of ZnONPs to exert 50% biofilm-inhibitory is lower against gram-positive bacteria (179.26-203.95 μg/mL) than gram-negative bacteria (201.46-236.19 μg/mL). Microscopic visualization inferred that at 250 μg/mL, ZnONPs strongly disrupted biofilm formation, as evidenced by decreased biofilm density and altered architecture. The cytotoxicity of ZnONPs against breast cancer cells showed a dose-dependent reduction in cell viability with an IC50 value of 19.4 µg/mL. AO/EB staining indicated early and late apoptotic cell death of breast cancer cells under fluorescence microscopy. The results of hemolytic activity validated the biocompatibility of the ZnONPs. Thus, the unique properties of the green-synthesized ZnONPs suggest their potential as effective drug carriers for targeted delivery in cancer therapy and the treatment of biofilm-related infections.
Collapse
Affiliation(s)
- R Kavipriya
- Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - R Ramasubburayan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India.
| |
Collapse
|
11
|
Sattar S, Imran M, Anwar A, Akhtar MN, Alsafari IA, Khan FA, Iqbal HMN. Formulation of biodegradable alginate-based nano-carriers for in-vitro drug delivery and antibacterial activity. Int J Biol Macromol 2024; 274:133274. [PMID: 38906345 DOI: 10.1016/j.ijbiomac.2024.133274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Evaluation of the controlled release of ciprofloxacin (CIP.HCl) and the antibacterial efficacy of alginate (ALG)-based nanocarriers constitute the primary objectives of the current work. Herein, ALG-based nano-structures were prepared by the co-precipitation method and thoroughly analyzed using different characterization techniques, i.e., fourier transform infrared (FT-IR), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and zeta potential (ZP). The intense peaks emerged at 500, 545, and 750 cm-1 due to the CeO bond. Peaks that appeared at 550-600 cm-1 and 525 cm-1 are due to the stretching vibrations of FeO and ZnO bonds, respectively. Lowering of the peaks from 1640 to 1630 cm-1 and 1420 to 1384 cm-1 were observed in ALG-based nanocomposite (NC) due to the interaction of ALG with metal oxides (MO), which confirmed the formulation of CeO2/ZnFe2O4/ALG nanocomposite. The diffraction peaks at 28.6°, 56.6°, 76.5°, 37°, 47.9°, 62.3°, 74°, 13°, 21° confirmed the synthesis of MO (crystallite size 15.74 nm) and CeO2/ZnFe2O4/ALG (12 nm). In accordance with morphological studies, CeO2/ZnFe2O4 oxides had a uniform distribution throughout the relatively smooth and permeable surface of the ALG-based NC. Ciprofloxacin (CIP) was used as a model drug. Negative values of ZP revealed that CIP-loaded nanocomposite (CeO2/ZnFe2O4/ALG/CIP) had more stability than CeO2/ZnFe2O4/ALG. The maximum percentage of loading around 25 % on ALG NC was examined using the optical density (OD) method at pH 5.5. Correlation coefficients from the first order (0.971), Korsmeyer (0.9858), and Hixson (0.9021) models show the best-fitted models of the release profile in all circumstances. The release mechanism was investigated using various kinetics models. The controlled drug released was observed around 17 % at 40 °C after 3 h at pH 7.4, which is almost identical to the body temperature of a human, which is 37 °C. Similarly, after 24 h, sustained and controlled in-vitro release of the drug was studied, and it was 37, 72, and 74 % at pH 2.2, 7.4, and 9.4, respectively. Thus, prepared ALG-based NC is suitable for the controlled in-vitro release of (CIP.HCl). Metal oxides (CeO2/ZnFe2O4) and ALG-based nanocomposite (CeO2/ZnFe2O4/ALG) showed great antibacterial activity against Staphylococcus aureus (S. aureus) like 15 mm and 14 mm than Escherichia coli (E. coli).
Collapse
Affiliation(s)
- Sobia Sattar
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Imran
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Ayesha Anwar
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Nadeem Akhtar
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ibrahim A Alsafari
- Department of Biology, College of Science, University of Hafr Al Batin, P.O. Box 1803, Hafar Al Batin 31991, Saudi Arabia
| | - Farhan A Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, Pakistan
| | - Hafiz M N Iqbal
- Facultad de Agronomía, Campus Ciencias Agropecuarias; Universidad Autónoma de Nuevo León; C.P. 66050, General Escobedo, Nuevo León, Mexico.
| |
Collapse
|
12
|
Es-Haghi A, Amiri MS, Taghavizadeh Yazdi ME. Ferula latisecta gels for synthesis of zinc/silver binary nanoparticles: antibacterial effects against gram-negative and gram-positive bacteria and physicochemical characteristics. BMC Biotechnol 2024; 24:51. [PMID: 39090578 PMCID: PMC11292920 DOI: 10.1186/s12896-024-00878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
This study explores the potential antibacterial applications of zinc oxide nanoparticles (ZnO NPs) enhanced with silver (Ag) using plant gel (ZnO-AgO NPs). The problem addressed is the increasing prevalence of pathogenic bacteria and the need for new, effective antimicrobial agents. ZnO NPs possess distinctive physicochemical properties that enable them to selectively target bacterial cells. Their small size and high surface area-to-volume ratio allow efficient cellular uptake and interaction with bacterial cells. In this study, the average size of the synthesized ZnO-Ag nanoparticles was 77.1 nm, with a significant standard deviation of 33.7 nm, indicating a wide size distribution. The nanoparticles demonstrated remarkable antibacterial efficacy against gram-negative and gram-positive bacteria, with inhibition zones of 14.33 mm for E. coli and 15.66 mm for B. subtilis at a concentration of 300 µg/ml. Minimum inhibitory concentrations (MIC) were determined to be 100 µg/ml for E. coli and 75 µg/ml for S. saprophyticus. Additionally, ZnO-Ag NPs exhibited excellent biocompatibility, making them appropriate for various pharmacological uses. This study utilizes Ferula latisecta gels, offering a sustainable and eco-friendly approach to nanoparticle synthesis. Incorporating of Ag into ZnO NPs significantly enhances their antimicrobial properties, with the combined results showing great inhibition effects on pathogenic microbes. The findings suggest that ZnO-Ag NPs could be a promising candidate for addressing the challenges posed by drug-resistant bacterial infections and enhancing antimicrobial treatments.
Collapse
Affiliation(s)
- Ali Es-Haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | | | | |
Collapse
|
13
|
Sholkamy EN, Abdelhamid MAA, Khalifa HO, Ki MR, Pack SP. Bioinspired Synthesis and Characterization of Dual-Function Zinc Oxide Nanoparticles from Saccharopolyspora hirsuta: Exploring Antimicrobial and Anticancer Activities. Biomimetics (Basel) 2024; 9:456. [PMID: 39194435 DOI: 10.3390/biomimetics9080456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Microbial synthesis offers a sustainable and eco-friendly approach for nanoparticle production. This study explores the biogenic synthesis of zinc oxide nanoparticles (ZnO-NPs) utilizing the actinomycete Saccharopolyspora hirsuta (Ess_amA6) isolated from Tapinoma simrothi. The biosynthesized ZnO-NPs were characterized using various techniques to confirm their formation and properties. UV-visible spectroscopy revealed a characteristic peak at 372 nm, indicative of ZnO-NPs. X-ray diffraction (XRD) analysis confirmed the crystalline structure of the ZnO-NPs as hexagonal wurtzite with a crystallite size of approximately 37.5 ± 13.60 nm. Transmission electron microscopy (TEM) analysis showed the presence of both spherical and roughly hexagonal ZnO nanoparticles in an agglomerated state with a diameter of approximately 44 nm. The biogenic ZnO-NPs exhibited promising biomedical potential. They demonstrated selective cytotoxic activity against human cancer cell lines, demonstrating higher efficacy against Hep-2 cells (IC50 = 73.01 µg/mL) compared to MCF-7 cells (IC50 = 112.74 µg/mL). Furthermore, the biosynthesized ZnO-NPs displayed broad-spectrum antimicrobial activity against both Pseudomonas aeruginosa and Staphylococcus aureus with clear zones of inhibition of 12.67 mm and 14.33 mm, respectively. The MIC and MBC values against P. aeruginosa and S. aureus ranged between 12.5 and 50 µg/mL. These findings suggest the potential of S. hirsuta-mediated ZnO-NPs as promising biocompatible nanomaterials with dual applications as antimicrobial and anticancer agents.
Collapse
Affiliation(s)
- Essam N Sholkamy
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohamed A A Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Hazim O Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
- Institute of Industrial Technology, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| |
Collapse
|
14
|
Hheidari A, Mohammadi J, Ghodousi M, Mahmoodi M, Ebrahimi S, Pishbin E, Rahdar A. Metal-based nanoparticle in cancer treatment: lessons learned and challenges. Front Bioeng Biotechnol 2024; 12:1436297. [PMID: 39055339 PMCID: PMC11269265 DOI: 10.3389/fbioe.2024.1436297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Cancer, being one of the deadliest diseases, poses significant challenges despite the existence of traditional treatment approaches. This has led to a growing demand for innovative pharmaceutical agents that specifically target cancer cells for effective treatment. In recent years, the use of metal nanoparticles (NPs) as a promising alternative to conventional therapies has gained prominence in cancer research. Metal NPs exhibit unique properties that hold tremendous potential for various applications in cancer treatment. Studies have demonstrated that certain metals possess inherent or acquired anticancer capabilities through their surfaces. These properties make metal NPs an attractive focus for therapeutic development. In this review, we will investigate the applicability of several distinct classes of metal NPs for tumor targeting in cancer treatment. These classes may include gold, silver, iron oxide, and other metals with unique properties that can be exploited for therapeutic purposes. Additionally, we will provide a comprehensive summary of the risk factors associated with the therapeutic application of metal NPs. Understanding and addressing these factors will be crucial for successful clinical translation and to mitigate any potential challenges or failures in the translation of metal NP-based therapies. By exploring the therapeutic potential of metal NPs and identifying the associated risk factors, this review aims to contribute to the advancement of cancer treatment strategies. The anticipated outcome of this review is to provide valuable insights and pave the way for the advancement of effective and targeted therapies utilizing metal NPs specifically for cancer patients.
Collapse
Affiliation(s)
- Ali Hheidari
- Department of Mechanical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Javad Mohammadi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Ghodousi
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, United States
| | - Mohammadreza Mahmoodi
- Bio-microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Sina Ebrahimi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Esmail Pishbin
- Bio-microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| |
Collapse
|
15
|
Benkhira L, Ferhat MF, Khaled MTO, Messai R, Bounedjar N, Tedjani ML, Zoukel A, Humayun M, Bououdina M. Multifunctional assessment of copper-doped ZnO nanoparticles synthesized via gliding arc discharge plasma technique: antioxidant, antibacterial, and photocatalytic performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43743-43756. [PMID: 38907817 DOI: 10.1007/s11356-024-34054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
In this paper, undoped and copper-doped ZnO nanoparticles (NPs) were successfully synthesized using a gliding arc discharge (GAD) plasma technique, which is a sustainable, cost-effective, and scalable method. This method offers several advantages over traditional synthesis methods. The synthesized NPs were characterized by various techniques to understand their physicochemical properties. XRD analysis confirmed the presence of characteristic peaks of pure ZnO, while doped samples exhibited additional peaks corresponding to CuO crystal planes, indicating the successful incorporation of Cu into the lattice. As obvious, bare ZnO showed absorption peak at 378 nm corresponding to the band gap of 3.21 eV. The band gap of Cu-doped samples increased systematically, i.e., 3.35 eV for 2% Cu, 3.47 eV for 4% Cu, and 3.66 eV for 6% Cu. SEM images revealed aggregation and increase in particle size with the increasing in Cu concentration. EDAX analysis revealed a decrease in the weight percentage of oxygen and zinc with the increase in Cu concentration, suggesting structural changes within the lattice. Furthermore, the antibacterial activity against Gram-positive and Gram-negative bacteria, antioxidant activity, and photocatalytic activity against three different organic dyes such as Brilliant Cresyl Blue (BCB), Methylene Blue (MB), and Congo Red (CR) was studied. It is found that the photocatalytic activity of ZnO NPs varies with Cu concentration, leading to a decrease in its performance. The antibacterial activity of the NPs was also assessed, with undoped ZnO NPs showing dose-dependent effects against bacteria, while the Cu-doped ZnO NPs exhibited decreased efficacy. Interestingly, Cu doping significantly enhanced the antioxidant activity of the NPs compared to the undoped ZnO.
Collapse
Affiliation(s)
- Latra Benkhira
- Faculty of Technology, Department of Process Engineering, University of El Oued, 789, 39000, El Oued, BP, Algeria
- Renewable Energy development Research Unit in Arid Zones (UDERZA), University of El Oued, BP789, 39000, El Oued, Algeria
| | - Mohammed Fouad Ferhat
- Faculty of Technology, Department of Process Engineering, University of El Oued, 789, 39000, El Oued, BP, Algeria
- Laboratory of Sciences and Techniques of the Environment and Valorization, University Abdelhamid Benbbadis of Mostaganem, 227, 27000, c, BP, Algeria
- Renewable Energy development Research Unit in Arid Zones (UDERZA), University of El Oued, BP789, 39000, El Oued, Algeria
| | - Mohammed Tayeb Oucif Khaled
- Renewable Energy development Research Unit in Arid Zones (UDERZA), University of El Oued, BP789, 39000, El Oued, Algeria
| | - Ridha Messai
- Faculty of Technology, Department of Process Engineering, University of El Oued, 789, 39000, El Oued, BP, Algeria
- Laboratory of Sciences and Techniques of the Environment and Valorization, University Abdelhamid Benbbadis of Mostaganem, 227, 27000, c, BP, Algeria
| | - Nourelhouda Bounedjar
- Renewable Energy development Research Unit in Arid Zones (UDERZA), University of El Oued, BP789, 39000, El Oued, Algeria
- Faculty of Exact Sciences, Department of Chemistry, University of El Oued, 39000, El Oued, Algeria
| | - Mohammed Laid Tedjani
- Faculty of Technology, Department of Process Engineering, University of El Oued, 789, 39000, El Oued, BP, Algeria
- Renewable Energy development Research Unit in Arid Zones (UDERZA), University of El Oued, BP789, 39000, El Oued, Algeria
| | - Abdelhalim Zoukel
- Laboratory Physico-Chemistry of Materials, Laghouat University, Laghouat, Algeria
- Center for Scientific and Technical Research in Physicochemical Analysis (PTAPC-Laghouat-CRAPC), Laghouat, Algeria
| | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia.
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| |
Collapse
|
16
|
Yin Q, Zhou Q, Hu J, Weng J, Liu S, Yin L, Long L, Tong Y, Tang K, Bai S, Ou L. Fabrication of bimetallic Ag@ZnO nanocomposite and its anti-cancer activity on cervical cancer via impeding PI3K/AKT/mTOR pathway. J Trace Elem Med Biol 2024; 84:127437. [PMID: 38564977 DOI: 10.1016/j.jtemb.2024.127437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Bimetallic nanoparticles, specifically Zinc oxide (ZnO) and Silver (Ag), continue to much outperform other nanoparticles investigated for a variety of biological uses in the field of cancer therapy. This study introduces biosynthesis of bimetallic silver/zinc oxide nanocomposites (Ag@ZnO NCs) using the Crocus sativus extract and evaluates their anti-cancer properties against cervical cancer. METHODS The process of generating bimetallic nanoparticles (NPs), namely Ag@ZnO NCs, through the utilization of Crocus sativus extract proved to be uncomplicated and eco-friendly. Various methods, such as UV-vis, DLS, FTIR, EDX, and SEM analyses, were utilized to characterize the generated Ag@ZnO NCs. The MTT assay was employed to assess the cytotoxic properties of biosynthesized bimetallic Ag@ZnO NCs against the HeLa cervical cancer cell line. Moreover, the impact of Ag@ZnO NCs on HeLa cells was assessed by examining cell survival, ROS production, MMP levels, and induced apoptosis. Through western blot analysis, the expression levels of the PI3K, AKT, mTOR, Cyclin D, and CDK proteins seemed to be ascertained. Using flow cytometry, the cancer cells' progression through necrosis and apoptosis, in addition to the cell cycle analysis, were investigated. RESULTS Bimetallic Ag@ZnO NCs that were biosynthesized showed a high degree of stability, as demonstrated by the physicochemical assessments. The median size of the particles in these NCs was approximately 80-90 nm, and their zeta potential was -14.70 mV. AgNPs and ZnO were found, according to EDX data. Further, Ag@ZnO NCs hold promise as a potential treatment for cervical cancer. After 24 hours of treatment, a dosage of 5 µg/mL or higher resulted in a maximum inhibitory effect of 58 ± 2.9. The concurrent application of Ag/ZnO NPs to HeLa cells resulted in elevated apoptotic signals and a significant generation of reactive oxygen species (ROS). As a result, the bimettalic Ag@ZnO NCs treatment has been recognized as a chemotherapeutic intervention by inhibiting the production of PI3K, AKT, and mTOR-mediated regulation of propagation and cell cycle-regulating proteins. CONCLUSIONS The research yielded important insights into the cytotoxic etiology of biosynthesized bimetallic Ag@ZnO NCs against HeLa cells. The biosynthesized bimetallic Ag@ZnO NCs have a significant antitumor potential, which appears to be associated with the development of oxidative stress, which inhibits the development of the cell cycle and the proliferation of cells. Therefore, in the future, biosynthesized bimetallic Ag@ZnO NCs may be used as a powerful anticancer drug to treat cervical cancer.
Collapse
Affiliation(s)
- Qinghua Yin
- Department of Oncology, Yueyang Central Hospital, Yueyang, Hunan 414000, China.
| | - Qiang Zhou
- Department of Oncology, Yueyang Central Hospital, Yueyang, Hunan 414000, China
| | - Jianbing Hu
- Department of Oncology, Yueyang Central Hospital, Yueyang, Hunan 414000, China
| | - Jie Weng
- Department of Oncology, Yueyang Central Hospital, Yueyang, Hunan 414000, China
| | - Songlian Liu
- Department of Oncology, Yueyang Central Hospital, Yueyang, Hunan 414000, China
| | - Leilan Yin
- Department of Oncology, Yueyang Central Hospital, Yueyang, Hunan 414000, China
| | - Ling Long
- Department of Oncology, Yueyang Central Hospital, Yueyang, Hunan 414000, China
| | - Yajun Tong
- Department of Oncology, Yueyang Central Hospital, Yueyang, Hunan 414000, China
| | - Kewei Tang
- Department of Oncology, Yueyang Central Hospital, Yueyang, Hunan 414000, China
| | - Site Bai
- Department of Oncology, Yueyang Central Hospital, Yueyang, Hunan 414000, China
| | - Ludi Ou
- Department of Oncology, Yueyang Central Hospital, Yueyang, Hunan 414000, China
| |
Collapse
|
17
|
Swidan MM, Marzook F, Sakr TM. pH-Sensitive doxorubicin delivery using zinc oxide nanoparticles as a rectified theranostic platform: in vitro anti-proliferative, apoptotic, cell cycle arrest and in vivo radio-distribution studies. J Mater Chem B 2024; 12:6257-6274. [PMID: 38845545 DOI: 10.1039/d4tb00615a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Despite enormous advancements in its management, cancer is the world's primary cause of mortality. Therefore, tremendous strides were made to produce intelligent theranostics with mitigated side effects and improved specificity and efficiency. Thus, we developed a pH-sensitive theranostic platform composed of dextran immobilized zinc oxide nanoparticles, loaded with doxorubicin and radiolabeled with the technetium-99m radionuclide (99mTc-labelled DOX-loaded ZnO@dextran). The platform measured 11.5 nm in diameter with -12 mV zeta potential, 88% DOX loading efficiency and 98.5% radiolabeling efficiency. It showed DOX release in a pH-responsive manner, releasing 93.1% cumulatively at pH 5 but just 7% at pH 7.4. It showed improved intracellular uptake, which resulted in a high growth suppressive effect against MCF-7 cancer cells as compared to the free DOX. It boasted a 4 times lower IC50 than DOX, indicating its significant anti-proliferative potential (0.14 and 0.55 μg ml-1, respectively). The in vitro biological evaluation revealed that its molecular mode of anti-proliferative action included downregulating Cdk-2, which provoked G1/S cell cycle arrest, and upregulating both the intracellular ROS level and caspase-3, which induced apoptosis and necrosis. The in vivo experiments in Ehrlich-ascites carcinoma bearing mice demonstrated that DOX-loaded ZnO@dextran showed a considerable 4-fold increase in anti-tumor efficacy compared to DOX. Moreover, by utilizing the diagnostic radionuclide (99mTc), the radiolabeled platform (99mTc-labelled DOX-loaded ZnO@dextran) was in vivo monitored in tumor-bearing mice, revealing high tumor accumulation (14% ID g-1 at 1 h p.i.) and reduced uptake in non-target organs with a 17.5 T/NT ratio at 1 h p.i. Hence, 99mTc-labelled DOX-loaded ZnO@dextran could be recommended as a rectified tumor-targeted theranostic platform.
Collapse
Affiliation(s)
- Mohamed M Swidan
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, PO13759, Cairo, Egypt.
| | - Fawzy Marzook
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, PO13759, Cairo, Egypt.
| | - Tamer M Sakr
- Radioactive Isotopes and Generator Department, Hot Labs Center, Egyptian Atomic Energy Authority, PO13759, Cairo, Egypt
| |
Collapse
|
18
|
Aouadi A, Hamada Saud D, Rebiai A, Achouri A, Benabdesselam S, Mohamed Abd El-Mordy F, Pohl P, Ahmad SF, Attia SM, Abulkhair HS, Ararem A, Messaoudi M. Introducing the antibacterial and photocatalytic degradation potentials of biosynthesized chitosan, chitosan-ZnO, and chitosan-ZnO/PVP nanoparticles. Sci Rep 2024; 14:14753. [PMID: 38926522 PMCID: PMC11208610 DOI: 10.1038/s41598-024-65579-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
The development of nanomaterials has been speedily established in recent years, yet nanoparticles synthesized by traditional methods suffer unacceptable toxicity and the sustainability of the procedure for synthesizing such nanoparticles is inadequate. Consequently, green biosynthesis, which employs biopolymers, is gaining attraction as an environmentally sound alternative to less sustainable approaches. Chitosan-encapsulated nanoparticles exhibit exceptional antibacterial properties, offering a wide range of uses. Chitosan, obtained from shrimp shells, aided in the environmentally friendly synthesis of high-purity zinc oxide nanoparticles (ZnO NPs) with desirable features such as the extraction yield (41%), the deacetylation (88%), and the crystallinity index (74.54%). The particle size of ZnO NPs was 12 nm, while that of chitosan-ZnO NPs was 21 nm, and the bandgap energies of these nanomaterials were 3.98 and 3.48, respectively. The strong antibacterial action was demonstrated by ZnO NPs, chitosan-ZnO NPs, and chitosan-ZnO/PVP, particularly against Gram-positive bacteria, making them appropriate for therapeutic use. The photocatalytic degradation abilities were also assessed for all nanoparticles. At a concentration of 6 × 10-5 M, chitosan removed 90.5% of the methylene blue (MB) dye, ZnO NPs removed 97.4%, chitosan-coated ZnO NPs removed 99.6%, while chitosan-ZnO/PVP removed 100%. In the case of toluidine blue (TB), at a concentration of 4 × 10-3 M, the respective efficiencies were 96.8%, 96.8%, 99.5%, and 100%, respectively. Evaluation of radical scavenger activity revealed increased scavenging of ABTS and DPPH radicals by chitosan-ZnO/PVP compared to individual zinc oxide or chitosan-ZnO, where the IC50 results were 0.059, 0.092, 0.079 mg/mL, respectively, in the ABTS test, and 0.095, 0.083, 0.061, and 0.064 mg/mL in the DPPH test, respectively. Moreover, in silico toxicity studies were conducted to predict the organ-specific toxicity through ProTox II software. The obtained results suggest the probable safety and the absence of organ-specific toxicity with all the tested samples.
Collapse
Affiliation(s)
- Abdelatif Aouadi
- Process Engineering Laboratory, Applied Sciences Faculty, Kasdi Merbah University, 30000, Ouargla, Algeria
- Laboratory of Applied Chemistry and Environment, Faculty of Exact Sciences, University of Hamma Lakhdar El-Oued, B.P.789, 39000, El-Oued, Algeria
| | - Djamila Hamada Saud
- Process Engineering Laboratory, Applied Sciences Faculty, Kasdi Merbah University, 30000, Ouargla, Algeria
| | - Abdelkrim Rebiai
- Laboratory of Applied Chemistry and Environment, Faculty of Exact Sciences, University of Hamma Lakhdar El-Oued, B.P.789, 39000, El-Oued, Algeria
| | - Abdelhak Achouri
- Laboratory of Applied Chemistry and Environment, Faculty of Exact Sciences, University of Hamma Lakhdar El-Oued, B.P.789, 39000, El-Oued, Algeria
- Water, Environment and Sustainable Development Laboratory (2E2D), Faculty of Technology, University of Blida 1, Route Soumâa, BP 270, Blida, Algeria
| | - Soulef Benabdesselam
- Laboratory of Water and Environmental Engineering in the Saharan Environment, Process Engineering Department, Faculty of Applied Sciences, Kasdi Merbah-Ouargla University, Ouargla, Algeria
| | - Fatma Mohamed Abd El-Mordy
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
| | - Pawel Pohl
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, University of Science and Technology, Wyspianskiego 27, 50-370, Wrocław, Poland
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, International Coastal Road, New Damietta, 34518, Egypt
| | - Abderrahmane Ararem
- Nuclear Research Centre of Birine, P.O. Box 180, 17200, Ain Oussera, Djelfa, Algeria
| | - Mohammed Messaoudi
- Nuclear Research Centre of Birine, P.O. Box 180, 17200, Ain Oussera, Djelfa, Algeria.
| |
Collapse
|
19
|
Mongy Y, Shalaby T. Green synthesis of zinc oxide nanoparticles using Rhus coriaria extract and their anticancer activity against triple-negative breast cancer cells. Sci Rep 2024; 14:13470. [PMID: 38866790 PMCID: PMC11169510 DOI: 10.1038/s41598-024-63258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024] Open
Abstract
The growing interest in using plant extracts for the biogenic synthesis of zinc oxide nanoparticles (ZnO NPs) stems from their facile, eco-friendly, and biologically safe approach instead of chemical routes. For the first time, ZnO NPs were successfully biosynthesized using Rhus coriaria fruit aqueous extract as a reducing and capping agent. Characterization revealed that the biosynthesized ZnO NPs possessed a maximum absorbance of approximately 359 nm and closely resembled the hexagonal ZnO wurtzite crystalline structure, with an average crystalline size of 16.69 nm. The transmission electron microscope (TEM) showed the presence of spherical and hexagonal morphologies, with an average grain size of 20.51 ± 3.90 nm. Moreover, the elemental composition of the synthesized ZnO NPs was assessed via energy-dispersive X-ray spectrometry (EDX), and the presence of phytocompounds on their surface was subsequently verified through FT-IR analysis. The ζ-potential of ZnO NPs was recorded at - 19.9 ± 0.1663 mV. Regarding anti-cancer properties, ZnO NPs were found to possess potent anti-tumor effects on MCF-7 and MDA-MB-231 breast cancer cells. Their efficacy was dose-dependent, with IC50 values ranging from 35.04-44.86 μg/mL for MCF-7 and 55.54-63.71 µg/mL for MDA-MB-231 cells. Mechanistic studies in MDA-MB-231 cells revealed apoptosis induction, validated by DAPI staining, confocal microscopy, and Annexin V/PI staining, showing apoptosis by 12.59% and 81.57% at ½ IC50 and IC50 values, respectively. Additionally, ZnO NPs were observed to provoke S-phase arrest and inhibit colony-forming and metastatic potential by modulating apoptosis and metastasis-related genes. This study unravels new insights into how ZnO NPs provoke cancer cell death and inhibit metastasis, revealing new prospects in cancer nanotechnology.
Collapse
Affiliation(s)
- Youssef Mongy
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt.
| | - Thanaa Shalaby
- Medical Biophysics Department, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
- Nanotechnology Training Center, Medical Technology Center, Alexandria University, Alexandria, Egypt
| |
Collapse
|
20
|
Pei J, Natarajan PM, Umapathy VR, Swamikannu B, Sivaraman NM, Krishnasamy L, Palanisamy CP. Advancements in the Synthesis and Functionalization of Zinc Oxide-Based Nanomaterials for Enhanced Oral Cancer Therapy. Molecules 2024; 29:2706. [PMID: 38893579 PMCID: PMC11173400 DOI: 10.3390/molecules29112706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The fabrication of zinc oxide-based nanomaterials (including natural and synthetic polymers like sulfated polysaccharide, chitosan, and polymethyl methacrylate) has potential to improve oral cancer treatment strategies. This comprehensive review explores the diverse synthesis methods employed to fabricate zinc oxide nanomaterials tailored for oral cancer applications. Several synthesis processes, particularly sol-gel, hydrothermal, and chemical vapor deposition approaches, are thoroughly studied, highlighting their advantages and limitations. The review also examines how synthesis parameters, such as precursor selection, the reaction temperature, and growth conditions, influence both the physicochemical attributes and biological efficacy of the resulting nanomaterials. Furthermore, recent advancements in surface functionalization and modification strategies targeted at improving the targeting specificity and pharmaceutical effectiveness of zinc oxide-based nanomaterials in oral cancer therapy are elucidated. Additionally, the review provides insights into the existing issues and prospective views in the field, emphasizing the need for further research to optimize synthesis methodologies and elucidate the mechanisms underlying the efficacy of zinc oxide-based nanoparticles in oral cancer therapy.
Collapse
Affiliation(s)
- Jinjin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China;
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, d Centre of Medical and Bio-Allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Chennai 600 107, Tamil Nadu, India;
| | - Bhuminathan Swamikannu
- Department of Prosthodontics, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai 600 100, Tamil Nadu, India;
| | - Nandini Manickam Sivaraman
- Department of Microbiology, Sree Balaji Medical College and Hospital, Bharath University, Chennai 600 100, Tamil Nadu, India; (N.M.S.); (L.K.)
| | - Lakshmi Krishnasamy
- Department of Microbiology, Sree Balaji Medical College and Hospital, Bharath University, Chennai 600 100, Tamil Nadu, India; (N.M.S.); (L.K.)
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
21
|
Bellala S, Viswanathan K, Guntakanti U, Kowthalam A, Han SS, Kummara MR, Obireddy SR, Lai WF. Composite Microgels Loaded with Doxorubicin-Conjugated Amine-Functionalized Zinc Ferrite Nanoparticles for Stimuli-Responsive Sustained Drug Release. Int J Nanomedicine 2024; 19:5059-5070. [PMID: 38836007 PMCID: PMC11149627 DOI: 10.2147/ijn.s448594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/08/2024] [Indexed: 06/06/2024] Open
Abstract
Purpose The purpose of this study is to address the need for efficient drug delivery with high drug encapsulation efficiency and sustained drug release. We aim to create nanoparticle-loaded microgels for potential applications in treatment development. Methods We adopted the process of ionic gelation to generate microgels from sodium alginate and carboxymethyl cellulose. These microgels were loaded with doxorubicin-conjugated amine-functionalized zinc ferrite nanoparticles (AZnFe-NPs). The systems were characterized using various techniques. Toxicity was evaluated in MCF-7 cells. In vitro release studies were conducted at different pH levels at 37 oC, with the drug release kinetics being analyzed using various models. Results The drug encapsulation efficiency of the created carriers was as high as 70%. The nanoparticle-loaded microgels exhibited pH-responsive behavior and sustained drug release. Drug release from them was mediated via a non-Fickian type of diffusion. Conclusion Given their high drug encapsulation efficiency, sustained drug release and pH-responsiveness, our nanoparticle-loaded microgels show promise as smart carriers for future treatment applications. Further development and research can significantly benefit the field of drug delivery and treatment development.
Collapse
Affiliation(s)
- Shirisha Bellala
- Department of Chemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, 515003, India
| | - Karthika Viswanathan
- Department of Nanoscience and Technology, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India
| | - Ujwala Guntakanti
- Department of Chemistry, G. Pulla Reddy Engineering College, Kurnool, Andhra Pradesh, 518 007, India
| | - Anitha Kowthalam
- Department of Chemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, 515003, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | | | - Sreekanth Reddy Obireddy
- Department of Chemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, 515003, India
- Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, 310014, China
| | - Wing-Fu Lai
- Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Zhejiang, 310014, China
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| |
Collapse
|
22
|
Maharjan A, Gautam R, Lee G, Kim D, Lee D, Acharya M, Kim H, Heo Y, Kim C. Assessment of skin sensitization potential of zinc oxide, aluminum oxide, manganese oxide, and copper oxide nanoparticles through the local lymph node assay: 5-bromo-deoxyuridine flow cytometry method. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024:1-11. [PMID: 38796781 DOI: 10.1080/15287394.2024.2357466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The advent of nanotechnology has significantly spurred the utilization of nanoparticles (NPs) across diverse sectors encompassing industry, agriculture, engineering, cosmetics, and medicine. Metallic oxides including zinc oxide (ZnO), copper oxide (CuO), manganese oxide (Mn2O3), and aluminum oxide (Al2O3), in their NP forms, have become prevalent in cosmetics and various dermal products. Despite the expanding consideration of these compounds for dermal applications, their potential for initiating skin sensitization (SS) has not been comprehensively examined. An in vivo assay, local lymph node assay: 5-bromo-2-deoxyuridine-flow cytometry method (LLNA: BrdU-FCM) recognized as an alternative testing method for screening SS potential was used to address these issues. Following the OECD TG 442B guidelines, NPs suspensions smaller than 50 nm size were prepared for ZnO and Al2O3 at concentrations of 10, 25, and 50%, and Mn2O3 and CuO at concentrations of 5, 10, and 25%, and applied to the dorsum of each ear of female BALB/c mice on a daily basis for 3 consecutive days. Regarding the prediction of test substance to skin sensitizer if sensitization index (SI)≥2.7, all 4 NPs were classified as non-sensitizing. The SI values were below 2.06, 1.33, 1.42, and 0.99 for ZnO, Al2O3, Mn2O3, and CuO, respectively, at all test concentrations. Although data presented were negative with respect to adverse SS potential for these 4 NPs, further confirmatory tests addressing other key events associated with SS adverse outcome pathway need to be carried out to arrive at an acceptable conclusion on the skin safety for both cosmetic and dermal applications.
Collapse
Affiliation(s)
- Anju Maharjan
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - Ravi Gautam
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - GiYong Lee
- Department of Toxicity Assessment, Daegu Catholic University Graduate School of Medical Health and Science, Gyeongsan, Republic of Korea
| | - DongYoon Kim
- Department of Toxicity Assessment, Daegu Catholic University Graduate School of Medical Health and Science, Gyeongsan, Republic of Korea
| | - DaEun Lee
- Department of Occupational Health, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - Manju Acharya
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - HyoungAh Kim
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong Heo
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
- Department of Toxicity Assessment, Daegu Catholic University Graduate School of Medical Health and Science, Gyeongsan, Republic of Korea
- Department of Occupational Health, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
| | - ChangYul Kim
- Department of Health and Safety, Daegu Catholic University Graduate School, Gyeongsan, Republic of Korea
- Department of Toxicity Assessment, Daegu Catholic University Graduate School of Medical Health and Science, Gyeongsan, Republic of Korea
| |
Collapse
|
23
|
Streich S, Higuchi J, Opalińska A, Wojnarowicz J, Giovanoli P, Łojkowski W, Buschmann J. Ultrasonic Coating of Poly(D,L-lactic acid)/Poly(lactic-co-glycolic acid) Electrospun Fibers with ZnO Nanoparticles to Increase Angiogenesis in the CAM Assay. Biomedicines 2024; 12:1155. [PMID: 38927362 PMCID: PMC11201106 DOI: 10.3390/biomedicines12061155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Critical-size bone defects necessitate bone void fillers that should be integrated well and be easily vascularized. One viable option is to use a biocompatible synthetic polymer and sonocoat it with zinc oxide (ZnO) nanoparticles (NPs). However, the ideal NP concentration and size must be assessed because a high dose of ZnO NPs may be toxic. Electrospun PDLLA/PLGA scaffolds were produced with different concentrations (0.5 or 1.0 s of sonocoating) and sizes of ZnO NPs (25 nm and 70 nm). They were characterized by SEM, EDX, ICP-OES, and the water contact angle. Vascularization and integration into the surrounding tissue were assessed with the CAM assay in the living chicken embryo. SEM, EDX, and ICP-OES confirmed the presence of ZnO NPs on polymer fibers. Sonocoated ZnO NPs lowered the WCA compared with the control. Smaller NPs were more pro-angiogenic exhibiting a higher vessel density than the larger NPs. At a lower concentration, less but larger vessels were visible in an environment with a lower cell density. Hence, the favored combination of smaller ZnO NPs at a lower concentration sonocoated on PDLLA/PLGA electrospun meshes leads to an advanced state of tissue integration and vascularization, providing a valuable synthetic bone graft to be used in clinics in the future.
Collapse
Affiliation(s)
- Selina Streich
- Medical Faculty, University of Zurich, Campus Irchel, 8006 Zurich, Switzerland;
- Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Julia Higuchi
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (J.H.); (A.O.); (J.W.); (W.Ł.)
| | - Agnieszka Opalińska
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (J.H.); (A.O.); (J.W.); (W.Ł.)
| | - Jacek Wojnarowicz
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (J.H.); (A.O.); (J.W.); (W.Ł.)
| | - Pietro Giovanoli
- Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Witold Łojkowski
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (J.H.); (A.O.); (J.W.); (W.Ł.)
| | - Johanna Buschmann
- Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland;
| |
Collapse
|
24
|
Dong S, Huang Y, Yan H, Tan H, Fan L, Chao M, Ren Y, Guan M, Zhang J, Liu Z, Gao F. Ternary heterostructure-driven photoinduced electron-hole separation enhanced oxidative stress for triple-negative breast cancer therapy. J Nanobiotechnology 2024; 22:240. [PMID: 38735931 PMCID: PMC11089806 DOI: 10.1186/s12951-024-02530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/03/2024] [Indexed: 05/14/2024] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) stand as among the most significant metal oxide nanoparticles in trigger the formation of reactive oxygen species (ROS) and induce apoptosis. Nevertheless, the utilization of ZnO NPs has been limited by the shallowness of short-wavelength light and the constrained production of ROS. To overcome these limitations, a strategy involves achieving a red shift towards the near-infrared (NIR) light spectrum, promoting the separation and restraining the recombination of electron-hole (e--h+) pairs. Herein, the hybrid plasmonic system Au@ZnO (AZ) with graphene quantum dots (GQDs) doping (AZG) nano heterostructures is rationally designed for optimal NIR-driven cancer treatment. Significantly, a multifold increase in ROS generation can be achieved through the following creative initiatives: (i) plasmonic Au nanorods expands the photocatalytic capabilities of AZG into the NIR domain, offering a foundation for NIR-induced ROS generation for clinical utilization; (ii) elaborate design of mesoporous core-shell AZ structures facilitates the redistribution of electron-hole pairs; (iii) the incorporation GQDs in mesoporous structure could efficiently restrain the recombination of the e--h+ pairs; (iv) Modification of hyaluronic acid (HA) can enhance CD44 receptor mediated targeted triple-negative breast cancer (TNBC). In addition, the introduced Au NRs present as catalysts for enhancing photothermal therapy (PTT), effectively inducing apoptosis in tumor cells. The resulting HA-modified AZG (AZGH) exhibits efficient hot electron injection and e--h+ separation, affording unparalleled convenience for ROS production and enabling NIR-induced PDT for the cancer treanment. As a result, our well-designed mesoporous core-shell AZGH hybrid as photosensitizers can exhibit excellent PDT efficacy.
Collapse
Affiliation(s)
- Shuqing Dong
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Yuqi Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hanrong Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Huarong Tan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Liying Fan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Minghao Chao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yiping Ren
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ming Guan
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Jiaxin Zhang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China.
| | - Zhao Liu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China.
| | - Fenglei Gao
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
25
|
Vaghari-Tabari M, Jafari-Gharabaghlou D, Mohammadi M, Hashemzadeh MS. Zinc Oxide Nanoparticles and Cancer Chemotherapy: Helpful Tools for Enhancing Chemo-sensitivity and Reducing Side Effects? Biol Trace Elem Res 2024; 202:1878-1900. [PMID: 37639166 DOI: 10.1007/s12011-023-03803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/05/2023] [Indexed: 08/29/2023]
Abstract
Cancer chemotherapy is still a serious challenge. Chemo-resistance and destructive side effects of chemotherapy drugs are the most critical limitations of chemotherapy. Chemo-resistance is the leading cause of chemotherapy failure. Chemo-resistance, which refers to the resistance of cancer cells to the anticancer effects of chemotherapy drugs, is caused by various reasons. Among the most important of these reasons is the increase in the efflux of chemotherapy drugs due to the rise in the expression and activity of ABC transporters, the weakening of apoptosis, and the strengthening of stemness. In the last decade, a significant number of studies focused on the application of nanotechnology in cancer treatment. Considering the anti-cancer properties of zinc, zinc oxide nanoparticles have received much attention in recent years. Some studies have indicated that zinc oxide nanoparticles can target the critical mechanisms of cancer chemo-resistance and enhance the effectiveness of chemotherapy drugs. These studies have shown that zinc oxide nanoparticles can reduce the activity of ABC transporters, increase DNA damage and apoptosis, and attenuate stemness in cancer cells, leading to enhanced chemo-sensitivity. Some other studies have also shown that zinc oxide nanoparticles in low doses can be helpful in minimizing the harmful side effects of chemotherapy drugs. In this article, after a brief overview of the mechanisms of chemo-resistance and anticancer effects of zinc, we will review all these studies in detail.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mozafar Mohammadi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
26
|
Fatima K, Asif M, Farooq U, Gilani SJ, Bin Jumah MN, Ahmed MM. Antioxidant and Anti-inflammatory Applications of Aerva persica Aqueous-Root Extract-Mediated Synthesis of ZnO Nanoparticles. ACS OMEGA 2024; 9:15882-15892. [PMID: 38617686 PMCID: PMC11007848 DOI: 10.1021/acsomega.3c08143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
In the present study, ZnO nanoparticles were synthesized by using aqueous extracts of Aerva persica roots. Characterization of as-prepared ZnO nanoparticles was carried out using different techniques, including powder X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and BET surface area analysis. Morphological analysis confirmed the small, aggregated flake-shaped morphology of as-synthesized ZnO nanostructures. The as-prepared ZnO nanoparticles were analyzed for their potential application as anti-inflammatory (using in vivo inhibition of carrageenan induced paw edema) and antioxidant (using in vitro radical scavenging activity) agents. The ZnO nanoparticles were found to have a potent antioxidant and anti-inflammatory activity comparable to that of standard ascorbic acid (antioxidant) and indomethacin (anti-inflammatory drug). Therefore, due to their ecofriendly synthesis, nontoxicity, and biocompatible nature, zinc oxide nanoparticles synthesized successfully from roots extract of the plant Aerva persica with potent efficiencies can be utilized for different biomedical applications.
Collapse
Affiliation(s)
- Kaneez Fatima
- Faculty
of Pharmacy, Maulana Azad University, Bujhawad, Teh: Luni, Jodhpur 342802, Rajasthan, India
- INTI
International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
| | - Mohammad Asif
- Faculty
of Pharmacy, Lachoo Memorial College of
Science and Technology, Shastri Nagar, Sector A, Jodhpur 342001, Rajasthan, India
| | - Umar Farooq
- Chemistry
Department, School of Basic Sciences, Galgotias
University, Greater
Noida 201309, India
| | - Sadaf Jamal Gilani
- Department
of Basic Health Sciences, Foundation Year, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - May Nasser Bin Jumah
- Biology Department,
College of Science, Princess Nourah bint
Abdulrahman University, Riyadh 11671, Saudi Arabia
- Environment
and Biomaterial Unit, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Saudi
Society for Applied Science, Princess Nourah
bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
27
|
Eren B, Gunduz MK, Kaymak G, Berikten D, Bahsi ZB. Therapeutic Potential of Sol-Gel ZnO Nanocrystals: Anticancer, Antioxidant, and Antimicrobial Tri-Action. ACS OMEGA 2024; 9:14818-14829. [PMID: 38585122 PMCID: PMC10993253 DOI: 10.1021/acsomega.3c07191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/09/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024]
Abstract
Zinc oxide nanocrystals (ZnO NCs) hold great promise in nanomedicine with fascinating multifunctional properties. We investigated the therapeutic potential of sol-gel synthesized ZnO NCs with crystal sizes of 52.65 and 25.11 nm, focusing on their anticancer effects on HepG2 and HT29 cells, antioxidant properties, and antimicrobial activity. Both samples displayed a hexagonal wurtzite ZnO structure, wherein the crystal sizes diminished with lower calcination temperatures according to X-ray diffraction. The scanning electron microscopy analysis revealed that lowering the calcination temperature resulted in a decrease in the grain size of the ZnO NCs, as expected. This reduction in grain size combined with a decrease in crystal size resulted in a significant 40% reduction in the reflectance of the ZnO NCs in UV-vis-NIR spectroscopy. It was also observed that the ZnO NCs calcined at higher temperatures exhibited larger particle sizes with a reduced surface area mean of 69.30 μm and a stable negative zeta potential of -11.2 mV. In contrast, the ZnO NCs calcined at lower temperatures exhibited a larger surface area mean of 34.56 μm and a positive zeta potential of +10 mV. In both cell lines, the cytotoxic potential was found to be higher in HepG2 cells. Specifically, when ZnO nanocrystals (NCs) with a crystal size of 52.65 nm were used, the lowest cell viability was observed at a concentration of 5.74 μg/mL. Based on oxidative stress index values, a lower crystal size of ZnO NCs displayed greater effectiveness in HT29 cells, while a higher crystal size of ZnO NCs had pronounced effects in HepG2 cells. Moreover, both ZnO NCs exhibited significant antimicrobial activity against Gram-positive bacteria (Enterococcus faecalis and Staphylococcus aureus) and Candida parapsilopsis fungus. These findings emphasize sol-gel ZnO NCs' potential as versatile agents in nanomedicine, spurring research on targeted cancer therapies and antimicrobial innovations.
Collapse
Affiliation(s)
- Busra Eren
- Institute
of Biotechnology, Gebze Technical University, Gebze, Kocaeli 41400, Turkey
| | - Meliha Koldemir Gunduz
- Faculty
of Engineering and Natural Sciences, Department of Basic Sciences
of Engineering, Kutahya Health Sciences
University, Kütahya 43100, Turkey
| | - Gullu Kaymak
- Training
and Research Center, Kutahya Health Sciences
University, Kütahya 43500, Turkey
| | - Derya Berikten
- Faculty
of Engineering and Natural Sciences, Department of Molecular Biology
and Genetics, Kütahya Health Sciences
University, Kütahya 43100, Turkey
| | - Zehra Banu Bahsi
- Institute
of Biotechnology, Gebze Technical University, Gebze, Kocaeli 41400, Turkey
| |
Collapse
|
28
|
Chaudhary P, Janmeda P, Pareek A, Chuturgoon AA, Sharma R, Pareek A. Etiology of lung carcinoma and treatment through medicinal plants, marine plants and green synthesized nanoparticles: A comprehensive review. Biomed Pharmacother 2024; 173:116294. [PMID: 38401516 DOI: 10.1016/j.biopha.2024.116294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
Lung cancer, a leading global cause of mortality, poses a significant public health challenge primarily linked to tobacco use. While tobacco contributes to over 90% of cases, factors like dietary choices and radiation exposure also play a role. Despite potential benefits from early detection, cancer patients face hurdles, including drug resistance, chemotherapy side effects, high treatment costs, and limited healthcare access. Traditional medicinal plant knowledge has recently unveiled diverse cancer chemopreventive agents from terrestrial and marine sources. These phytochemicals regulate intricate molecular processes, influencing the immune system, apoptosis, cell cycle, proliferation, carcinogen elimination, and antioxidant levels. In pursuing cutting-edge strategies to combat the diverse forms of cancer, technological advancements have spurred innovative approaches. Researchers have focused on the green synthesis of metallic nanoparticles using plant metabolites. This method offers distinct advantages over conventional physical and chemical synthesis techniques, such as cost-effectiveness, biocompatibility, and energy efficiency. Metallic nanoparticles, through various pathways such as the generation of reactive oxygen species, modulation of enzyme activity, DNA fragmentation, disruption of signaling pathways, perturbation of cell membranes, and interference with mitochondrial function resulting in DNA damage, cell cycle arrest, and apoptosis, exhibit significant potential for preventive applications. Thus, the amalgamation of phytocompounds and metallic nanoparticles holds promise as a novel approach to lung cancer therapy. However, further refinements and advancements are necessary to enhance the environmentally friendly process of metallic nanoparticle synthesis.
Collapse
Affiliation(s)
- Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India.
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana (Ayurvedic Pharmaceutics), Banaras Hindu University, Varanasi 221005, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India.
| |
Collapse
|
29
|
Mishra S, Garg P, Srivastava S, Srivastava P. Br - nanoconjugate enhances the antibacterial efficacy of nimboloide against Flavobacterium columnare infection in Labeo rohita: A nanoinformatics approach. Microb Pathog 2024; 189:106575. [PMID: 38423405 DOI: 10.1016/j.micpath.2024.106575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The bacterial pathogen, Flavobacterium columnare causes columnaris disease in Labeo rohita globally. Major effects of this bacterial infection include skin rashes and gill necrosis. Nimbolide, the key ingredient of the leaf extract of Azadirachta indica possesses anti-bacterial properties effective against many microorganisms. Nano-informatics plays a promising role in drug development and its delivery against infections caused by multi-drug-resistant bacteria. Currently, studies in the disciplines of dentistry, food safety, bacteriology, mycology, virology, and parasitology are being conducted to learn more about the wide anti-virulence activity of nimbolide. METHODS The toxicity of nimbolide was predicted to determine its dosage for treating bacterial infection in Labeo rohita. Further, comparative 3-D structure prediction and docking studies are done for nimbolide conjugated nanoparticles with several key target receptors to determine better natural ligands against columnaris disease. The nanoparticle conjugates are being designed using in-silico approaches to study molecular docking interactions with the target receptor. RESULTS Bromine conjugated nimbolide shows the best molecular interaction with the target receptors of selected species ie L rohita. Nimbolide comes under the class III level of toxic compound so, attempts are made to reduce the dosage of the compound without compromising its efficiency. Further, bromine is also used as a common surfactant and can eliminate heavy metals from wastewater. CONCLUSION The dosage of bromine-conjugated nimbolide can be reduced to a non-toxic level and thus the efficiency of the Nimbolide can be increased. Moreover, it can be used to synthesize nanoparticle composites which have potent antibacterial activity towards both gram-positive and gram-negative bacteria. This material also forms a good coating on the surface and kills both airborne and waterborne bacteria.
Collapse
Affiliation(s)
- Sanjana Mishra
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India
| | - Prekshi Garg
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India
| | - Shilpi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India
| | - Prachi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, 226028, India.
| |
Collapse
|
30
|
Berehu HM, Patnaik S. Biogenic Zinc Oxide Nanoparticles synthesized from Tinospora Cordifolia induce oxidative stress, mitochondrial damage and apoptosis in Colorectal Cancer. Nanotheranostics 2024; 8:312-329. [PMID: 38577319 PMCID: PMC10988208 DOI: 10.7150/ntno.84995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 01/16/2024] [Indexed: 04/06/2024] Open
Abstract
Cancer chemotherapy remains a serious challenge, and new approaches to therapy are urgently needed to build novel treatment regimens. The methanol extract of the stem of Tinospora Cordifolia was used to synthesize biogenic zinc oxide nanoparticles (ZnO-NPs) that display anticancer activities against colorectal cancer. Biogenic ZnO-NPs synthesized from methanol extract of Tinospora Cordifolia stem (ZnO-NPs TM) were tested against HCT-116 cell lines to assess anticancer activity. UV-Vis, FTIR, XRD, SEM, and TEM analysis characterized the biogenic ZnO-NPs. To see how well biogenic ZnO-NPs fight cancer, cytotoxicity, AO/EtBr staining, Annexin V/PI staining, mitochondrial membrane potential (MMP), generation of reactive oxygen species (ROS) analysis, and caspase cascade activity analysis were performed to assess the anticancer efficacy of biogenic ZnO-NPs. The IC50 values of biogenic ZnO-NPs treated cells (HCT-116 and Caco-2) were 31.419 ± 0.682μg/ml and 36.675 ± 0.916μg/ml, respectively. qRT-PCR analysis showed that cells treated with biogenic ZnO-NPs Bax and P53 mRNA levels increased significantly (p ≤ 0.001). It showed to have impaired MMP and increased ROS generation. In a corollary, our in vivo study showed that biogenic ZnO-NPs have an anti-tumour effect. Biogenic ZnO-NPs TM showed both in vitro and in vivo anticancer effects that could be employed as anticancer drugs.
Collapse
Affiliation(s)
- Hadgu Mendefro Berehu
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| | - Srinivas Patnaik
- Disease Biology Laboratory, School of Biotechnology KIIT Deemed to Be University, Odisha, India
| |
Collapse
|
31
|
Kadir NHA, Murugan N, Khan AA, Sandrasegaran A, Khan AU, Alam M. Evaluation of the cytotoxicity, antioxidant activity, and molecular docking of biogenic zinc oxide nanoparticles derived from pumpkin seeds. Microsc Res Tech 2024; 87:602-615. [PMID: 38018343 DOI: 10.1002/jemt.24437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023]
Abstract
This study aimed to investigate the characterization of zinc oxide nanoparticles (ZnONPs) produced from Cucurbita pepo L. (pumpkin seeds) and their selective cytotoxic effectiveness on human colon cancer cells (HCT 116) and African Green Monkey Kidney, Vero cells. The study also investigated the antioxidant activity of ZnONPs. The study also examined ZnONPs' antioxidant properties. This was motivated by the limited research on the comparative cytotoxic effects of ZnO NPs on normal and HCT116 cells. The ZnO NPs were characterized using Fourier-transform infrared spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Transmission Electron Microscope/Selected Area Electron Diffraction (TEM/SAED), and Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX) for determination of chemical fingerprinting, heat stability, size, and morphology of the elements, respectively. Based on the results, ZnO NPs from pumpkins were found to be less than 5 μm and agglomerates in nature. Furthermore, the ZnO NPs fingerprinting and SEM-EDX element analysis were similar to previous literature, suggesting the sample was proven as ZnO NPs. The ZnO NPs also stable at a temperature of 380°C indicating that the green material is quite robust at 60-400°C. The cell viability of Vero cells and HCT 116 cell line were measured at two different time points (24 and 48 h) to assess the cytotoxicity effects of ZnO NP on these cells using AlamarBlue assay. Cytotoxic results have shown that ZnO NPs did not inhibit Vero cells but were slightly toxic to cancer cells, with a dose-response curve IC50 = ~409.7 μg/mL. This green synthesis of ZnO NPs was found to be non-toxic to normal cells but has a slight cytotoxicity effect on HCT 116 cells. A theoretical study used molecular docking to investigate nanoparticle interaction with cyclin-dependent kinase 2 (CDK2), exploring its mechanism in inhibiting CDK2's role in cancer. Further study should be carried out to determine suitable concentrations for cytotoxicity studies. Additionally, DPPH has a significant antioxidant capacity, with an IC50 of 142.857 μg/mL. RESEARCH HIGHLIGHTS: Pumpkin seed extracts facilitated a rapid, high-yielding, and environmentally friendly synthesis of ZnO nanoparticles. Spectrophotometric analysis was used to investigate the optical properties, scalability, size, shape, dispersity, and stability of ZnO NPs. The cytotoxicity of ZnO NPs on Vero and HCT 116 cells was assessed, showing no inhibition of Vero cells and cytotoxicity of cancer cells. The DPPH assay was also used to investigate the antioxidant potential of biogenic nanoparticles. A molecular docking study was performed to investigate the interaction of ZnO NPs with CDK2 and to explore the mechanism by which they inhibit CDK2's role in cancer.
Collapse
Affiliation(s)
- Nurul Huda Abd Kadir
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Navindran Murugan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Azhar U Khan
- Department of Chemistry, School of Life and Basic Sciences, SIILAS Campus, Jaipur National University, Jaipur, India
| | - Mahboob Alam
- Department of Safety Engineering, Dongguk University Wise, Gyeongju-si, Gyeongbuk, South Korea
| |
Collapse
|
32
|
Păun AG, Popescu S, Ungureanu C, Trusca R, Pirvu C. Reduced TiO 2 Nanotubes/Silk Fibroin/ZnO as a Promising Hybrid Antibacterial Coating. Chempluschem 2024; 89:e202300450. [PMID: 37888941 DOI: 10.1002/cplu.202300450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023]
Abstract
The current research aims to elucidate the influence of reduction process of TiO2 nanostructures on the surface properties of a bioinspired Ti modified implant, considering that the interface between a biomaterial surface and the living tissue plays an important role for this interaction. The production of reduced TiO2 nanotubes (RNT) with lower band gap is optimized and their performance is compared with those of simple TiO2 nanotubes (NT). The more conductive surfaces provided by the presence of RNT on Ti, allow a facile deposition of silk fibroin (SF) film using the electrochemical deposition method. This hybrid film is then functionalized with ZnO nanoparticles, to improve the antibacterial effect of the coating. The modified Ti surface is evaluated in terms of surface chemistry, morphology and roughness, wettability, surface energy, surface charge and antibacterial properties. Surface analysis such as SEM, AFM, FTIR and contact angle measurements were performed to obtain topographical features and wettability. FT-IR analysis confirms that SF was effectively attached to TiO2 nanotubes surfaces. The electrochemical deposition of SF and SF-ZnO reduced the interior diameter of nanotubes from ~85 nm to approx. 50-60 nm. All modified surfaces have a hydrophilic character.
Collapse
Affiliation(s)
- Angela Gabriela Păun
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7 street, Bucharest, 011061, Romania
| | - Simona Popescu
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7 street, Bucharest, 011061, Romania
| | - Camelia Ungureanu
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7 street, Bucharest, 011061, Romania
| | - Roxana Trusca
- National Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042, Bucharest, Romania
| | - Cristian Pirvu
- Department of General Chemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, Gheorghe Polizu 1-7 street, Bucharest, 011061, Romania
| |
Collapse
|
33
|
Azizi A, Ghasemirad M, Mortezagholi B, Movahed E, Aryanezhad SS, Makiya A, Ghodrati H, Nasiri K. Study of Cytotoxic and Antibacterial Activity of Ag- and Mg-Dual-Doped ZnO Nanoparticles. ChemistryOpen 2024; 13:e202300093. [PMID: 37955867 PMCID: PMC10924039 DOI: 10.1002/open.202300093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/12/2023] [Indexed: 11/14/2023] Open
Abstract
A non-laborious process for the fabrication of silver and magnesium dual doped zinc oxide nanoparticles (Ag/Mg-ZnO NP) is described. The wurtzite ZnO nano-structures and the dual doped NP were analyzed by PXRD. SEM data showed the hexagonal morphology of our product, while the gathered anti-bacterial outcomes towards Streptococcus mutans bacteria through micro-dilution technic affirmed the enhanced performance of doped NP compared to the native ones. Furthermore, we gauged the toxic impacts of synthesized pure and Ag/Mg-ZnO NP against a breast cancer (MDA-MB-231) cell line through an MTT trial, which highlighted the superiority of the doped when compared to the native nanoparticles. In light of these comparisons, the applicability of Ag/Mg-ZnO NP in dental and medical science is proposed.
Collapse
Affiliation(s)
- Aytan Azizi
- Department of Endodontics Dental SchoolQazvin university of medical sciencesshahid bahounar boulevard, P.O. Box: 3419759811QazvinIran
| | - Mohammad Ghasemirad
- Department of Periodontics Faculty of DentistryRafsanjan University of Medical SciencesKhalije Fars Blvd., Pasdaran street, P.O. Box: 1946853314RafsanjanIran
| | - Bardia Mortezagholi
- Dental Research Center Faculty of DentistryIslamic Azad University of Medical SciencesShariati St, P.O. Box 19395-1495TehranIran
| | - Emad Movahed
- Dental Research Center Faculty of DentistryIslamic Azad University of Medical SciencesShariati St, P.O. Box 19395-1495TehranIran
| | - Seyed Sasan Aryanezhad
- Oral and Maxillofacial Radiology, Private PracticeDaroost street, P.O. Box 1944614581TehranIran
| | - Ali Makiya
- Student Research Committee, Faculty of DentistryMashhad University of Medical ScienceMashhadIran
| | - Hoda Ghodrati
- Department of ProsthodonticsShahid Beheshti University of Medical SciencesDaneshjoo Blvd, Velenjak, St., P.O. Box 1983969411TehranIran
| | - Kamyar Nasiri
- Department of dentistryIslamic Azad University of Medical SciencesP.O. Box 19585-466TehranIran
| |
Collapse
|
34
|
Singh D. Exploiting nuclear-mitochondrial cross-talk in theranostics: Enhancing drug delivery and diagnostic precision. Mitochondrion 2024; 75:101839. [PMID: 38158150 DOI: 10.1016/j.mito.2023.101839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The dynamic interplay between nuclear and mitochondrial processes plays a pivotal role in cellular homeostasis and disease progression. Exploiting this nuclear-mitochondrial cross-talk has emerged as a promising avenue in the field of theranostics, offering enhanced drug delivery and diagnostic precision for a wide range of medical conditions, particularly cancer. This abstract provides a brief overview of the key concepts and recent advancements in this rapidly evolving field. Recent research has elucidated the significance of mitochondrial dysfunction in various diseases, including cancer. Mitochondria, often referred to as the "powerhouses" of the cell, not only regulate energy production but also contribute to critical processes such as apoptosis, ROS generation, and metabolic signaling. Dysregulation of these mitochondrial functions is frequently associated with disease pathogenesis. In theranostics, the targeted modulation of mitochondrial function holds great promise. Mitochondria-targeted drug delivery systems have been designed to selectively deliver therapeutic agents to these organelles, thereby mitigating mitochondrial dysfunction while minimizing off-target effects. This precise drug delivery enhances the therapeutic efficacy of anticancer drugs and reduces the risk of drug resistance. Moreover, the diagnostic potential of nuclear-mitochondrial cross-talk is being harnessed to develop novel biomarkers and imaging techniques. Mitochondrial DNA mutations and alterations in mitochondrial metabolism serve as valuable indicators of disease progression and drug responsiveness. Non-invasive imaging modalities, such as positron emission tomography (PET) and magnetic resonance imaging (MRI), have been employed to visualize mitochondrial activity and assess therapeutic outcomes.
Collapse
Affiliation(s)
- Dilpreet Singh
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali 140413, India.
| |
Collapse
|
35
|
Feng J, He L, Hui JQ, Kavithaa K, Xu Z. Synthesis of Bimetallic Palladium/Zinc Oxide Nanocomposites Using Crocus sativus and Its Anticancer Activity via the Induction of Apoptosis in Cervical Cancer. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04877-8. [PMID: 38421572 DOI: 10.1007/s12010-024-04877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Palladium (Pd) and zinc oxide (ZnO) (Pd/ZnO NPs) bimettalic nanocomposites still lag much too far behind other nanoparticles investigated for various biological uses in the area of cancer treatments. Chemically created nanoparticles agglomerate under physiological conditions, impeding their use in biomedical applications. In this study, a straightforward and environmentally friendly method for creating bimetallic nanoparticles (NPs) by combining palladium (Pd) and zinc oxide (ZnO) using Crocus sativus extract (CS-Pd/ZnO NCs) was reported; the bio-synthesize bimetallic palladium/zinc oxide nanocomposites and their antioxidant and anti-cancer properties were assessed. The developed Pd/ZnO NPs were characterized using different approaches, including UV-vis, DLS, FTIR, EDX, and SEM analyses. The present investigation shows how nanocomposites are made, their distinctive properties, antioxidant activity, anticancer mechanisms, and their potential therapeutic applications. DPPH and ABTS tests were used to investigate antioxidant activity. Further, the effects of CS-Pd/ZnO NCs on HeLa cells were assessed using the cell viability, ROS generation, MMP levels, and induced apoptosis. Apoptosis induction was measured using an Annexin V-fluorescein isothicyanate assay. Cell DNA was stained with propidium iodide to evaluate the impact upon this cell cycle. Time-dependent cell death was carried on by CS-Pd/ZnO NCs. The maximum inhibitory effect was 59 ± 3.2 when dosages of 4.5 µg/mL or higher were delivered after 24 h of treatment. Additionally, the CS-Pd/ZnO NCs caused HeLa cells to undergo apoptosis. Apoptotic HeLa cells were present in 35.64% of the treated cells at 4.5 µg/mL, and the cell cycle arrest at G0/G1 phase occurred concurrently. According to these findings, the CS-Pd/ZnO NCs may be a promising candidate for the creation of brand-new cervical cancer treatment.
Collapse
Affiliation(s)
- Jun Feng
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou Jiangsu, 215000, China
| | - Leilei He
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, 221000, Jiangsu, China
| | - Jin Qing Hui
- Department of Surgical, Shaanxi Kangfu Hospital, Xian, 710065, Shaanxi, China
| | | | - Zhengzheng Xu
- Department of Gynaecology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, 430000, Hubei, China.
| |
Collapse
|
36
|
Jimenez-Chavez A, Pedroza-Herrera G, Betancourt-Reyes I, De Vizcaya Ruiz A, Masuoka-Ito D, Zapien JA, Medina-Ramirez IE. Aluminum enhances the oxidative damage of ZnO NMs in the human neuroblastoma SH-SY5Y cell line. DISCOVER NANO 2024; 19:36. [PMID: 38407768 PMCID: PMC10897122 DOI: 10.1186/s11671-024-03973-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
Bare and doped zinc oxide nanomaterials (ZnO NMs) are of great interest as multifunctional platforms for biomedical applications. In this study, we systematically investigate the physicochemical properties of Aluminum doped ZnO (AZO) and its bio-interactions with neuroblastoma (SH-SY5Y) and red blood (RBCs) cells. We provide a comprehensive chemical and structural characterization of the NMs. We also evaluated the biocompatibility of AZO NMs using traditional toxicity assays and advanced microscopy techniques. The toxicity of AZO NMs towards SH-SY5Y cells, decreases as a function of Al doping but is higher than the toxicity of ZnO NMs. Our results show that N-acetyl cysteine protects SH-SY5Y cells against reactive oxygen species toxicity induced by AZO NMs. ZnO and AZO NMs do not exert hemolysis in human RBCs at the doses that cause toxicity (IC50) in neuroblastoma cells. The Atomic force microscopy qualitative analysis of the interaction of SH-SY5Y cells with AZO NMs shows evidence that the affinity of the materials with the cells results in morphology changes and diminished interactions between neighboring cells. The holotomographic microscopy analysis demonstrates NMs' internalization in SH-SY5Y cells, changes in their chemical composition, and the role of lipid droplets in the clearance of toxicants.
Collapse
Affiliation(s)
- Arturo Jimenez-Chavez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados de IPN (CINVESTAV-IPN), Ciudad de Mexico, México
| | - Gladis Pedroza-Herrera
- Department of Chemistry, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico
| | - Israel Betancourt-Reyes
- Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de México, Mexico, México
| | - Andrea De Vizcaya Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados de IPN (CINVESTAV-IPN), Ciudad de Mexico, México
- Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California Irvine, Irvine, CA, USA
| | - David Masuoka-Ito
- Department of Stomatology, Universidad Autónoma de Aguascalientes. Av. Universidad 940, Aguascalientes, Ags, Mexico
| | - Juan Antonio Zapien
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, People's Republic of China.
| | - Iliana E Medina-Ramirez
- Department of Chemistry, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Aguascalientes, Ags, Mexico.
| |
Collapse
|
37
|
Anyaegbunam NJ, Mba IE, Ige AO, Ogunrinola TE, Emenike OK, Uwazie CK, Ujah PN, Oni AJ, Anyaegbunam ZKG, Olawade DB. Revisiting the smart metallic nanomaterials: advances in nanotechnology-based antimicrobials. World J Microbiol Biotechnol 2024; 40:102. [PMID: 38366174 DOI: 10.1007/s11274-024-03925-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Despite significant advancements in diagnostics and treatments over the years, the problem of antimicrobial drug resistance remains a pressing issue in public health. The reduced effectiveness of existing antimicrobial drugs has prompted efforts to seek alternative treatments for microbial pathogens or develop new drug candidates. Interestingly, nanomaterials are currently gaining global attention as a possible next-generation antibiotics. Nanotechnology holds significant importance, particularly when addressing infections caused by multi-drug-resistant organisms. Alternatively, these biomaterials can also be combined with antibiotics and other potent biomaterials, providing excellent synergistic effects. Over the past two decades, nanoparticles have gained significant attention among research communities. Despite the complexity of some of their synthesis strategies and chemistry, unrelenting efforts have been recorded in synthesizing potent and highly effective nanomaterials using different approaches. With the ongoing advancements in nanotechnology, integrating it into medical procedures presents novel approaches for improving the standard of patient healthcare. Although the field of nanotechnology offers promises, much remains to be learned to overcome the several inherent issues limiting their full translation to clinics. Here, we comprehensively discussed nanotechnology-based materials, focusing exclusively on metallic nanomaterials and highlighting the advances in their synthesis, chemistry, and mechanisms of action against bacterial pathogens. Importantly, we delve into the current challenges and prospects associated with the technology.
Collapse
Affiliation(s)
- Ngozi J Anyaegbunam
- Measurement and Evaluation unit, Science Education Department, University of Nigeria, Nsukka, Nigeria
| | - Ifeanyi Elibe Mba
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka, Nsukka, Nigeria.
| | - Abimbola Olufunke Ige
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | | | | | | | - Patrick Ndum Ujah
- 7Department of Education Foundations, University of Nigeria Nsukka, Nsukka, Nigeria
| | - Ayodele John Oni
- Department of Industrial chemistry, Federal University of Technology, Akure, Nigeria
| | | | - David B Olawade
- Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, UK
| |
Collapse
|
38
|
Rashid MH, Sujoy SI, Rahman MS, Haque MJ. Aloe vera assisted green synthesis of Ag and Cu co-doped ZnO nanoparticles and a comprehensive analysis of their structural, morphological, optical, electrical and antibacterial properties. Heliyon 2024; 10:e25438. [PMID: 38322891 PMCID: PMC10844577 DOI: 10.1016/j.heliyon.2024.e25438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/08/2024] Open
Abstract
This study investigates the potential of utilizing Aloe vera-assisted green synthesis with transition metal dopants of Ag and Cu for greater efficiency and sustainability in advanced scientific applications utilizing ZnO nanoparticles. Samples were prepared using the co-precipitation method, maintaining a basic pH media of 10. Aloe vera gel extract was chosen for its acclaimed role as a stabilizing and reducing agent and its proven antioxidant, antibacterial, and anticancer properties. The XRD report revealed the hexagonal Wurtzite crystal structure of nanoparticles, exhibiting a crystallite size range of 17-23 nm with substantial alterations in lattice parameters, dislocation density, and bond lengths when dopants were added. Additionally, EDX analysis confirmed the perfect doping of Ag and Cu in ZnO without any impurities. SEM analysis indicated a reduction in agglomeration, accompanied by a transition in particle morphology from columnar to globular. Additionally, the optical study showed a band gap range of 3.18-3.27 eV, confirming it to be a wide band gap semiconductor. The effect of dopants resulted in an increase in transparency and band gap, while a decrease in absorption coefficient in the visible wavelength region. With increasing temperature, a decline in electrical resistivity was noted, with co-doped nanoparticles consistently exhibiting the lowest resistivity, affirming semiconductor characteristics. Most importantly, A remarkable antibacterial efficacy was noticed at low concentrations against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria. The zone of inhibition produced by nanoparticles exhibited values akin to the antibiotic control, even at substantially lower doses. This research offers a comprehensive analysis of the effects of Ag and Cu in Aloe vera-assisted green-synthesized ZnO nanoparticles, concurrently addressing their potential applications in biomedical, energy storage, and optoelectronic devices.
Collapse
Affiliation(s)
- Md Hasnat Rashid
- Department of Glass & Ceramic Engineering, Rajshahi University of Engineering & Technology, Rajshahi, 6204, Bangladesh
| | - Saiful Islam Sujoy
- Department of Glass & Ceramic Engineering, Rajshahi University of Engineering & Technology, Rajshahi, 6204, Bangladesh
| | - Md Saifur Rahman
- Department of Physics, Rajshahi University, Rajshahi, 6205, Bangladesh
| | - Md Jahidul Haque
- Department of Glass & Ceramic Engineering, Rajshahi University of Engineering & Technology, Rajshahi, 6204, Bangladesh
| |
Collapse
|
39
|
Mejía-Méndez JL, Navarro-López DE, Sanchez-Martinez A, Ceballos-Sanchez O, Garcia-Amezquita LE, Tiwari N, Juarez-Moreno K, Sanchez-Ante G, López-Mena ER. Lanthanide-Doped ZnO Nanoparticles: Unraveling Their Role in Cytotoxicity, Antioxidant Capacity, and Nanotoxicology. Antioxidants (Basel) 2024; 13:213. [PMID: 38397812 PMCID: PMC10886043 DOI: 10.3390/antiox13020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This study used a sonochemical synthesis method to prepare (La, Sm)-doped ZnO nanoparticles (NPs). The effect of incorporating these lanthanide elements on the structural, optical, and morphological properties of ZnO-NPs was analyzed. The cytotoxicity and the reactive oxygen species (ROS) generation capacity of ZnO-NPs were evaluated against breast (MCF7) and colon (HT29) cancer cell lines. Their antioxidant activity was analyzed using a DPPH assay, and their toxicity towards Artemia salina nauplii was also evaluated. The results revealed that treatment with NPs resulted in the death of 10.559-42.546% and 18.230-38.643% of MCF7 and HT29 cells, respectively. This effect was attributed to the ability of NPs to downregulate ROS formation within the two cell lines in a dose-dependent manner. In the DPPH assay, treatment with (La, Sm)-doped ZnO-NPs inhibited the generation of free radicals at IC50 values ranging from 3.898 to 126.948 μg/mL. Against A. salina nauplii, the synthesized NPs did not cause death nor induce morphological changes at the tested concentrations. A series of machine learning (ML) models were used to predict the biological performance of (La, Sm)-doped ZnO-NPs. Among the designed ML models, the gradient boosting model resulted in the greatest mean absolute error (MAE) (MAE 9.027, R2 = 0.86). The data generated in this work provide innovative insights into the influence of La and Sm on the structural arrangement and chemical features of ZnO-NPs, together with their cytotoxicity, antioxidant activity, and in vivo toxicity.
Collapse
Affiliation(s)
- Jorge L. Mejía-Méndez
- Laboratory of Phytochemistry Research, Chemical Biological Sciences Department, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico;
| | - Diego E. Navarro-López
- Tecnologicode Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico;
| | - Araceli Sanchez-Martinez
- Departamento de Ingeniería de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan 45157, Mexico; (A.S.-M.); (O.C.-S.)
| | - Oscar Ceballos-Sanchez
- Departamento de Ingeniería de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan 45157, Mexico; (A.S.-M.); (O.C.-S.)
| | - Luis Eduardo Garcia-Amezquita
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada No 2501, Monterrey 64849, Mexico;
| | - Naveen Tiwari
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela, Rúa Jenaro de La Fuente S/N, 15782 Santiago de Compostela, Spain
| | - Karla Juarez-Moreno
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, Mexico
| | - Gildardo Sanchez-Ante
- Tecnologicode Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico;
| | - Edgar R. López-Mena
- Tecnologicode Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico;
| |
Collapse
|
40
|
Abedin S, Adeleke OA. State of the art in pediatric nanomedicines. Drug Deliv Transl Res 2024:10.1007/s13346-024-01532-x. [PMID: 38324166 DOI: 10.1007/s13346-024-01532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
In recent years, the continuous development of innovative nanopharmaceuticals is expanding their biomedical and clinical applications. Nanomedicines are being revolutionized to circumvent the limitations of unbound therapeutic agents as well as overcome barriers posed by biological interfaces at the cellular, organ, system, and microenvironment levels. In many ways, the use of nanoconfigured delivery systems has eased challenges associated with patient differences, and in our opinion, this forms the foundation for their potential usefulness in developing innovative medicines and diagnostics for special patient populations. Here, we present a comprehensive review of nanomedicines specifically designed and evaluated for disease management in the pediatric population. Typically, the pediatric population has distinguishing needs relative to those of adults majorly because of their constantly growing bodies and age-related physiological changes, which often need specialized drug formulation interventions to provide desirable therapeutic effects and outcomes. Besides, child-centric drug carriers have unique delivery routes, dosing flexibility, organoleptic properties (e.g., taste, flavor), and caregiver requirements that are often not met by traditional formulations and can impact adherence to therapy. Engineering pediatric medicines as nanoconfigured structures can potentially resolve these limitations stemming from traditional drug carriers because of their unique capabilities. Consequently, researchers from different specialties relentlessly and creatively investigate the usefulness of nanomedicines for pediatric disease management as extensively captured in this compilation. Some examples of nanomedicines covered include nanoparticles, liposomes, and nanomicelles for cancer; solid lipid and lipid-based nanostructured carriers for hypertension; self-nanoemulsifying lipid-based systems and niosomes for infections; and nanocapsules for asthma pharmacotherapy.
Collapse
Affiliation(s)
- Saba Abedin
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Oluwatoyin A Adeleke
- College of Pharmacy, Faculty of Health, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
41
|
Sharma B, Upadhyaya D, Deshmukh P, Chakraborty S, Sahu K, Satapathy S, Majumder SK. Azadirachta indica (AI)leaf extract coated ZnO- AInanocore-shell particles for enhanced antibacterial activity against methicillin-resistant Staphylococcus aureus(MRSA). Biomed Mater 2024; 19:025014. [PMID: 38215483 DOI: 10.1088/1748-605x/ad1df7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/12/2024] [Indexed: 01/14/2024]
Abstract
With the rise in microbial resistance to traditional antibiotics and disinfectants, there is a pressing need for the development of novel and effective antibacterial agents. Two major approaches being adopted worldwide to overcome antimicrobial resistance are the use of plant leaf extracts and metallic nanoparticles (NPs). However, there are no reports on the antibacterial potential of NPs coated with plant extracts, which may lead to novel ways of treating infections. This study presents an innovative approach to engineer antibacterial NPs by leveraging the inherent antibacterial properties of zinc oxide NPs (ZnO NPs) in combination withAzadirachta indica(AI) leaf extract, resulting in enhanced antibacterial efficacy. ZnO NPs were synthesised by the precipitation method and subsequently coated withAIleaf extract to produce ZnO-AInanocore-shell structures. The structural and morphological characteristics of the bare and leaf extract coated ZnO NPs were analysed by x-ray diffraction and field emission scanning electron microscopy, respectively. The presence of anAIleaf extract coating on ZnO NPs and subsequent formation of ZnO-AInanocore-shell structures was verified through Fourier transform infrared spectroscopy and photoluminescence techniques. The antibacterial efficacy of both ZnO NPs and ZnO-AInanocore-shell particles was evaluated against methicillin-resistantStaphylococcus aureususing a zone of inhibition assay. The results showed an NP concentration-dependent increase in the diameter of the inhibition zone, with ZnO-AInanocore-shell particles exhibiting superior antibacterial properties, owing to the combined effect of ZnO NPs and the poly phenols present inAIleaf extract. These findings suggest that ZnO-AInanocore-shell structures hold promise for the development of novel antibacterial creams and hydrogels for various biomedical applications.
Collapse
Affiliation(s)
- Bhumika Sharma
- Functional Biomaterials Lab, Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh, India
| | - Dipika Upadhyaya
- Department of Biotechnology, Holkar Science College, Indore 452001, Madhya Pradesh, India
| | - Pratik Deshmukh
- Functional Biomaterials Lab, Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Sourabrata Chakraborty
- Functional Biomaterials Lab, Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh, India
| | - Khageswar Sahu
- Functional Biomaterials Lab, Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Srinibas Satapathy
- Functional Biomaterials Lab, Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Shovan Kumar Majumder
- Functional Biomaterials Lab, Laser Biomedical Applications Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| |
Collapse
|
42
|
Ali M, Benfante V, Di Raimondo D, Salvaggio G, Tuttolomondo A, Comelli A. Recent Developments in Nanoparticle Formulations for Resveratrol Encapsulation as an Anticancer Agent. Pharmaceuticals (Basel) 2024; 17:126. [PMID: 38256959 PMCID: PMC10818631 DOI: 10.3390/ph17010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Resveratrol is a polyphenolic compound that has gained considerable attention in the past decade due to its multifaceted therapeutic potential, including anti-inflammatory and anticancer properties. However, its anticancer efficacy is impeded by low water solubility, dose-limiting toxicity, low bioavailability, and rapid hepatic metabolism. To overcome these hurdles, various nanoparticles such as organic and inorganic nanoparticles, liposomes, polymeric nanoparticles, dendrimers, solid lipid nanoparticles, gold nanoparticles, zinc oxide nanoparticles, zeolitic imidazolate frameworks, carbon nanotubes, bioactive glass nanoparticles, and mesoporous nanoparticles were employed to deliver resveratrol, enhancing its water solubility, bioavailability, and efficacy against various types of cancer. Resveratrol-loaded nanoparticle or resveratrol-conjugated nanoparticle administration exhibits excellent anticancer potency compared to free resveratrol. This review highlights the latest developments in nanoparticle-based delivery systems for resveratrol, focusing on the potential to overcome limitations associated with the compound's bioavailability and therapeutic effectiveness.
Collapse
Affiliation(s)
- Muhammad Ali
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy;
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Viviana Benfante
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy;
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Domenico Di Raimondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Giuseppe Salvaggio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Albert Comelli
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy;
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
43
|
Gomaa S, Nassef M, Tabl G, Zaki S, Abdel-Ghany A. Doxorubicin and folic acid-loaded zinc oxide nanoparticles-based combined anti-tumor and anti-inflammatory approach for enhanced anti-cancer therapy. BMC Cancer 2024; 24:34. [PMID: 38178054 PMCID: PMC10768430 DOI: 10.1186/s12885-023-11714-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Zinc oxide nanoparticles (ZnONPs) have impressively shown their efficacy in targeting and therapy of cancer. The present research was designated to investigate the potential of ZnONP nanocomposites as a cancer chemotherapeutic-based drug delivery system and to assess the anti-tumor and anti-inflammatory effectiveness of ZnONP nanocomposites combination with systemic chemotherapeutic drugs doxorubicin (DOX) and folic acid (FA) in Ehrlich ascites carcinoma (EAC) tumor cell line both in vitro and in vivo. METHODS Anti-tumor potential of ZnONP nanocomposites: ZnONPs, ZnONPs/FA, ZnONPs/DOX and ZnONPs/DOX/FA against EAC tumor cell line was evaluated in vitro by MTT assay. Anti-tumor and anti-inflammatory efficacy of ZnONP nanocomposites were analyzed in vivo by examination of the proliferation rate and apoptosis rate of EAC tumor cells by flow cytometry, splenocytes count, level of inflammatory markers interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α), as well as liver and kidney function in EAC-challenged mice. RESULTS In vitro results showed that ZnONP nanocomposites showed a high anti-proliferative potency against EAC tumor cells. Furthermore, the in vivo study revealed that the treatment EAC-challenged mice with ZnONPs, ZnONPs/DOX, ZnONPs/FA and ZnONPs/DOX/FA hindered the proliferation rate of implanted EAC tumor cells through lowering their number and increasing their apoptosis rate. Moreover, the treatment of EAC-challenged mice with ZnONPs/DOX/FA markedly decreased the level of IL-6 and TNF-α and remarkably ameliorated the liver and kidney damages that were elevated by implantation of EAC tumor cells, restoring the liver and kidney functions to be close to the naïve mice control. CONCLUSION ZnONP nanocomposites may be useful as a cancer chemotherapeutic-based drug delivery system. ZnONP nanocomposites: ZnONPs/DOX, ZnONPs/FA and ZnONPs/DOX/FA regimen may have anti-inflammatory approaches and a great potential to increase anti-tumor effect of conventional chemotherapy, overcoming resistance to cancer systemic chemotherapeutics and reducing their side effects, offering a promising regimen for cancer therapy.
Collapse
Affiliation(s)
- Soha Gomaa
- Zoology department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mohamed Nassef
- Zoology department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Ghada Tabl
- Zoology department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Somia Zaki
- Zoology department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Asmaa Abdel-Ghany
- Zoology department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
44
|
Rathnam SS, Deepak T, Sahoo BN, Meena T, Singh Y, Joshi A. Metallic Nanocarriers for Therapeutic Peptides: Emerging Solutions Addressing the Delivery Challenges in Brain Ailments. J Pharmacol Exp Ther 2024; 388:39-53. [PMID: 37875308 DOI: 10.1124/jpet.123.001689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
Peptides and proteins have recently emerged as efficient therapeutic alternatives to conventional therapies. Although they emerged a few decades back, extensive exploration of various ailments or disorders began recently. The drawbacks of current chemotherapies and irradiation treatments, such as drug resistance and damage to healthy tissues, have enabled the rise of peptides in the quest for better prospects. The chemical tunability and smaller size make them easy to design selectively for target tissues. Other remarkable properties include antifungal, antiviral, anti-inflammatory, protection from hemorrhage stroke, and as therapeutic agents for gastric disorders and Alzheimer and Parkinson diseases. Despite these unmatched properties, their practical applicability is often hindered due to their weak susceptibility to enzymatic digestion, serum degradation, liver metabolism, kidney clearance, and immunogenic reactions. Several methods are adapted to increase the half-life of peptides, such as chemical modifications, fusing with Fc fragment, change in amino acid composition, and carrier-based delivery. Among these, nanocarrier-mediated encapsulation not only increases the half-life of the peptides in vivo but also aids in the targeted delivery. Despite its structural complexity, they also efficiently deliver therapeutic molecules across the blood-brain barrier. Here, in this review, we tried to emphasize the possible potentiality of metallic nanoparticles to be used as an efficient peptide delivery system against brain tumors and neurodegenerative disorders. SIGNIFICANCE STATEMENT: In this review, we have emphasized the various therapeutic applications of peptides/proteins, including antimicrobial, anticancer, anti-inflammatory, and neurodegenerative diseases. We also focused on these peptides' challenges under physiological conditions after administration. We highlighted the importance and potentiality of metallic nanocarriers in the ability to cross the blood-brain barrier, increasing the stability and half-life of peptides, their efficiency in targeting the delivery, and their diagnostic applications.
Collapse
Affiliation(s)
- Shanmuga Sharan Rathnam
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Thirumalai Deepak
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Badri Narayana Sahoo
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Tanishq Meena
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Yogesh Singh
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| | - Abhijeet Joshi
- Department of Biosciences and Biomedical Engineering (S.S.R., B.N.S., T.M., Y.S., A.J.), Indian Institute of Technology Indore, Simrol, India and Department of Biotechnology and Medical Engineering (T.D.), National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
45
|
Saraswat I, Goel A. Cervical Cancer Therapeutics: An In-depth Significance of Herbal and Chemical Approaches of Nanoparticles. Anticancer Agents Med Chem 2024; 24:627-636. [PMID: 38299417 DOI: 10.2174/0118715206289468240130051102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/02/2024]
Abstract
Cervical cancer emerges as a prominent health issue, demanding attention on a global level for women's well-being, which frequently calls for more specialized and efficient treatment alternatives. Traditional therapies may have limited tumour targeting and adverse side effects. Recent breakthroughs have induced a transformative shift in the strategies employed against cervical cancer. biocompatible herbal nanoparticles and metallic particles made of gold, silver, and iron have become promising friends in the effort to fight against this serious disease and understand the possibility of these nanoparticles for targeted medication administration. this review article delves into the latest advancements in cervical cancer research. The safety and fabrication of these nanomaterials and their remarkable efficacy against cervical tumour spots are addressed. This review study, in short, provides an extensive introduction to the fascinating field of metallic and herbal nanoparticles in cervical cancer treatment. The information that has been examined points to a bright future in which women with cervical cancer may experience fewer side effects, more effective therapy, and an improved quality of life. This review holds promise and has the potential to fundamentally reshape the future of cervical cancer treatment by addressing urgent issues and unmet needs in the field.
Collapse
Affiliation(s)
- Istuti Saraswat
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Anjana Goel
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
46
|
Saeed M, Marwani HM, Shahzad U, Asiri AM, Rahman MM. Recent Advances, Challenges, and Future Perspectives of ZnO Nanostructure Materials Towards Energy Applications. CHEM REC 2024; 24:e202300106. [PMID: 37249417 DOI: 10.1002/tcr.202300106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/17/2023] [Indexed: 05/31/2023]
Abstract
In this approach, zinc oxide (ZnO) is a multipurpose substance with remarkable characteristics such as high sensitivity, a large specific area, non-toxicity, excellent compatibility, and a high isoelectric point, which make it attractive for discussion with some limitations. It is the most favorable possible option for the collection of nanostructures in terms of structure and their characteristics. The development of numerous ZnO nanostructure-based electrochemical sensors and biosensors used in health diagnosis, pharmaceutical evaluation, food hygiene, and contamination of the environment monitoring is described, as well as the production of ZnO nanostructures. Nanostructured ZnO has good chemical and temperature durability as an n-type semiconducting material, making it useful in a wide range of uses, from luminous materials to supercapacitors, batteries, solar cells, photocatalysis, biosensors, medicinal devices, and more. When compared to the bulk materials, the nanosized materials have both a higher rate of disintegration and a higher solubility. Furthermore, ZnO nanoparticles are regarded as top contenders for electrochemical sensors due to their strong electrochemical behaviors and electron transmission characteristics. The impact of many factors, including selectivity, sensitivity, detection limit, strength, and structures, arrangements, and their respective functioning processes, has been investigated. This study concentrated a substantial amount of its attention on the recent advancements that have been made in ZnO-based nanoparticles, composites, and modified materials for use in the application areas of energy storage and conversion devices as well as biological applications. Supercapacitors, Li-ion batteries, dye-sensitized solar cells, photocatalysis, biosensors, medicinal, and biological systems have been studied. ZnO-based materials are constantly analyzed for their advantages in energy and life science applications.
Collapse
Affiliation(s)
- Mohsin Saeed
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hadi M Marwani
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Umer Shahzad
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed M Rahman
- Chemistry department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
47
|
Abdel-Gawad DRI, Shaban NS, Moselhy WA, El-Dek SI, Ibrahim MA, Azab AA, Hassan NEHY. Estimating the in vitro cytotoxicity of the newly emerged zinc oxide (ZnO) doped chromium nanoparticles using the human fetal lung fibroblast cells (WI38 cells). J Trace Elem Med Biol 2024; 81:127342. [PMID: 38016358 DOI: 10.1016/j.jtemb.2023.127342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
Advances in nanotechnology have been increased for more smart applications and getting the highest level of benefits, recently modification of the surface characters of nanoparticles is a new trend to get the optimal benefits, one of these modification is doping of zinc oxide with chromium nanoparticles (ZnO doped Cr NPs), the present study aimed to identify the surface characters of doped ZnO and their possible cytotoxic effects. The doped NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Field emission scanning electron microscope (FESEM), and Electromagnetic Data Exchange (EDX). Human fetal lung fibroblast cells (WI38 Cells) was treated with variable concentrations of pure ZnO and ZnO doped Cr (0.01 %, 0.02 %, 0.03 % and 0.04 %) for 24 hr at 37 °C followed by the MTT assay. The cells treated with the obtained half-maximal inhibitory concentration (IC50). The supernatant and cells were collected for oxidant/anti-oxidant and molecular analysis.The observed FESEM features are in line with the reported XRD analysis confirming the hexagonal crystal symmetry of all samples. The findings revealed that pure ZnO exhibited potent cytotoxic effects followed by (0.03 % and 0.04 %). All tested NPs produce lipid peroxidation significantly (0.03 % and 0.04 %). The significant up regulation of Bcl-2-associated X protein (BAX) and apoptotic Caspase (Cas-3) transcription level were reported in ZnO and 0.03 % and 0.04 % in contrast the anti apoptitic B-cell lymphoma 2 (Bcl-2) is elevated in 0.01 % and 0.02 %. Doping of ZnO with Cr causing significant morphological changes which effect on their toxicity especially with 0.03 % and 0.04 %.
Collapse
Affiliation(s)
| | - Nema S Shaban
- Faculty of Veterinary Medicine, Beni-suef University, Beni-suef 62511, Egypt
| | | | - S I El-Dek
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - A A Azab
- Solid State Physics Dept., Physics Research Institute, National Research Center, Dokki, Giza, 12622, Egypt
| | | |
Collapse
|
48
|
Ostovar S, Pourmadadi M, Zaker MA. Co-biopolymer of chitosan/carboxymethyl cellulose hydrogel improved by zinc oxide and graphene quantum dots nanoparticles as pH-sensitive nanocomposite for quercetin delivery to brain cancer treatment. Int J Biol Macromol 2023; 253:127091. [PMID: 37758113 DOI: 10.1016/j.ijbiomac.2023.127091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Brain cancer is the major reason of cancer-relevant deaths every year, as it is the most challenging cancer to treat and drug delivery. Quercetin (QUR), as a flavonoid substance found in plants and fruits, has good anticancer and medicinal effects on brain tumors, but its low stability and bioavailability as well as the blood-brain barrier (BBB), prevent it from reaching brain tumors. This research has introduced a nanocomposite made of biocompatible polymers, chitosan, and carboxymethyl cellulose. This co- biopolymer's mechanical and chemical properties and drug-loading capacity have been improved by adding zinc oxide nanoparticles (ZnO NPs). In addition, graphene quantum dots (GQDs) were used to improve the chemical properties as well as the ability to penetrate the BBB. The CS/CMC/GQDs/ZnO@QUR nanocomposites have nanoneedle structures with an average size of 219.38 ± 5.21 nm and a zeta potential of -53 mV. The morphology, chemical bonds, and crystallinity of the nanocomposite were examined by FE-SEM, FTIR, and XRD analyses, respectively. By examining the release of QUR, it became apparent that the half-drug release takes about 72 h, which has a much more controlled release than other QUR carriers. Further, the MTT test on U-87 MG and L929 cell lines suggested that this nanocomposite has good anticancer properties and low cytotoxicity compared to the free QUR.
Collapse
Affiliation(s)
- Shima Ostovar
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| | - Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran.
| | - Mohammad Amin Zaker
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran
| |
Collapse
|
49
|
Kahandal A, Chaudhary S, Methe S, Nagwade P, Sivaram A, Tagad CK. Galactomannan polysaccharide as a biotemplate for the synthesis of zinc oxide nanoparticles with photocatalytic, antimicrobial and anticancer applications. Int J Biol Macromol 2023; 253:126787. [PMID: 37690639 DOI: 10.1016/j.ijbiomac.2023.126787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Biotemplates provide a facile, rapid, and environmentally benign route for synthesizing various nanostructured materials. Herein, Locust Bean Gum (LBG), a galactomannan polysaccharide, has been used as a biotemplate for synthesizing ZnO nanoparticles (NPs) for the first time. The composition, structure, morphology, and bandgap of ZnO were investigated by Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Photoelectron Spectroscopy (XPS), X-ray powder diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and UV-vis spectroscopy. XRD data showed single-phase crystalline hexagonal NPs. FTIR spectra confirmed the presence of M-O bonding in the sample. At a concentration of 0.5 mg/mL the NPs can degrade Rhodamine B under sunlight, displaying excellent photocatalytic activity. These NPs exhibited antimicrobial activity in both Staphylococcus aureus and Bacillus subtilis. Significant cell death was observed at 500 μg/mL, 250 μg/mL, 125 μg/mL and 62.5 μg/mL of NP in breast cancer, ovarian cancer and lung cancer cell lines. Wound healing assay showed that the NPs significantly blocked the cell migration at a concentration as low as 62.5 μg/mL in all three cell lines. Further optimization of the nanostructure properties will make it a promising candidate in the field of nano-biotechnology and bioengineering owing to its wide range of potential applications.
Collapse
Affiliation(s)
- Amol Kahandal
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India
| | - Sanyukta Chaudhary
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India
| | - Saakshi Methe
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India
| | - Pratik Nagwade
- Department of Chemistry, Shri Anand College, Pathardi, Ahmednagar, MH, India
| | - Aruna Sivaram
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India.
| | - Chandrakant K Tagad
- MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India.
| |
Collapse
|
50
|
Mfengwana PMAH, Sone BT. Green synthesis and characterization of ruthenium oxide nanoparticles using Gunnera perpensa for potential anticancer activity against MCF7 cancer cells. Sci Rep 2023; 13:22638. [PMID: 38114615 PMCID: PMC10730706 DOI: 10.1038/s41598-023-50005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
The use of green methods for ruthenium oxide nanoparticles (RuONPs) synthesis is gaining attention due to their eco-friendliness, cost-effectiveness, and availability. However, reports on the green synthesis and characterization of RuONPs are limited compared to other metal nanoparticles. The green synthesis and characterization of RuONPs using water extracts of Gunnera perpensa leaves as a reducing agent is reported in this study. The RuONPs were characterized using X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Ultraviolet spectroscopy (UV-VIS). MTT assay was used to assess the cytotoxicity of the RuONPs against MCF7 and Vero cell lines. X-ray diffraction analysis results revealed the presence of crystalline and amorphous forms of RuONPs, while IR spectroscopy revealed the presence of functional groups associated with G. perpensa leaves. SEM showed that the RuONPs consisted predominantly of hexagonal and cuboid-like structures with a considerable degree of agglomeration being observed. The cell culture results indicated a low anticancer efficacy of RuONPs against MCF7 and Vero cell lines, suggesting that RuONPs may not be a good lead for anti-cancer drugs. This study highlights the potential of using green synthesis methods to produce RuONPs and their characterization, as well as their cytotoxicity against cancer cells.
Collapse
Affiliation(s)
- Polo-Ma-Abiele H Mfengwana
- Department of Health Sciences, Central University of Technology, Free State, Park Road, Private Bag X20539, Bloemfontein, 9301, South Africa.
| | - Bertrand T Sone
- Chemistry Department, Faculty of Natural & Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|