1
|
Ma X, Huang T, Chen X, Li Q, Liao M, Fu L, Huang J, Yuan K, Wang Z, Zeng Y. Molecular mechanisms in liver repair and regeneration: from physiology to therapeutics. Signal Transduct Target Ther 2025; 10:63. [PMID: 39920130 PMCID: PMC11806117 DOI: 10.1038/s41392-024-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Liver repair and regeneration are crucial physiological responses to hepatic injury and are orchestrated through intricate cellular and molecular networks. This review systematically delineates advancements in the field, emphasizing the essential roles played by diverse liver cell types. Their coordinated actions, supported by complex crosstalk within the liver microenvironment, are pivotal to enhancing regenerative outcomes. Recent molecular investigations have elucidated key signaling pathways involved in liver injury and regeneration. Viewed through the lens of metabolic reprogramming, these pathways highlight how shifts in glucose, lipid, and amino acid metabolism support the cellular functions essential for liver repair and regeneration. An analysis of regenerative variability across pathological states reveals how disease conditions influence these dynamics, guiding the development of novel therapeutic strategies and advanced techniques to enhance liver repair and regeneration. Bridging laboratory findings with practical applications, recent clinical trials highlight the potential of optimizing liver regeneration strategies. These trials offer valuable insights into the effectiveness of novel therapies and underscore significant progress in translational research. In conclusion, this review intricately links molecular insights to therapeutic frontiers, systematically charting the trajectory from fundamental physiological mechanisms to innovative clinical applications in liver repair and regeneration.
Collapse
Affiliation(s)
- Xiao Ma
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiangzheng Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qian Li
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingheng Liao
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Fu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiwei Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
2
|
Zhang S, Tang S, Liu Y, Xue B, Xie Q, Zhao L, Yuan H. Protein-bound uremic toxins as therapeutic targets for cardiovascular, kidney, and metabolic disorders. Front Endocrinol (Lausanne) 2025; 16:1500336. [PMID: 39931238 PMCID: PMC11808018 DOI: 10.3389/fendo.2025.1500336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/02/2025] [Indexed: 02/13/2025] Open
Abstract
Cardiovascular-kidney-metabolic (CKM) syndrome is a systemic clinical condition characterized by pathological and physiological interactions among metabolic abnormalities, chronic kidney disease, and cardiovascular diseases, leading to multi-organ dysfunction and a higher incidence of cardiovascular endpoints. Traditional approaches to managing CKM syndrome risk are inadequate in these patients, necessitating strategies targeting specific CKM syndrome risk factors. Increasing evidence suggests that addressing uremic toxins and/or pathways induced by uremic toxins may reduce CKM syndrome risk and treat the disease. This review explores the interactions among heart, kidney, and metabolic pathways in the context of uremic toxins and underscores the significant role of uremic toxins as potential therapeutic targets in the pathophysiology of these diseases. Strategies aimed at regulating these uremic toxins offer potential avenues for reversing and managing CKM syndrome, providing new insights for its clinical diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huijuan Yuan
- Department of Endocrinology, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Zhengzhou, China
| |
Collapse
|
3
|
Yao M, Xiao Y, Sun Y, Zhang B, Ding Y, Ma Q, Liang F, Yang Z, Ge W, Liu S, Xin L, Yin J, Zhu X. Association of maternal gut microbial metabolites with gestational diabetes mellitus: evidence from an original case-control study, meta-analysis, and Mendelian randomization. Eur J Clin Nutr 2025; 79:33-41. [PMID: 39223299 DOI: 10.1038/s41430-024-01502-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/06/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The associations of gut microbial metabolites, such as trimethylamine N-oxide (TMAO), its precursors, and phenylacetylglutamine (PAGln), with the risk of gestational diabetes mellitus (GDM) remain unclear. METHODS Serum samples of 201 women with GDM and 201 matched controls were collected and then targeted metabolomics was performed to examine the metabolites of interest. Multivariable conditional logistic regression was applied to investigate the relationship between metabolites and GDM. Meta-analysis was performed to combine our results and four similar articles searched from online databases, and Mendelian randomization (MR) analysis was eventually conducted to explore the causalities. RESULTS In the case-control study, after dichotomization and comparing the higher versus the lower group, the adjusted odds ratio and 95% confidence interval of choline and L-carnitine with GDM were 2.124 (1.186-3.803) and 0.293 (0.134-0.638), respectively; but neutral relationships between TMAO, betaine, and PAGln with GDM were observed. The following meta-analysis consistently revealed that L-carnitine was negatively associated with GDM. However, MR analyses showed no evidence of causalities. CONCLUSIONS Maternal levels of L-carnitine were related to the risk of GDM in both the original case-control study and meta-analysis. However, we did not observe any genetic evidence to establish a causal relationship between this metabolite and GDM.
Collapse
Affiliation(s)
- Mengxin Yao
- Suzhou Center for Disease Prevention and Control, Suzhou, China
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, China
| | - Yue Xiao
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, China
| | - Yanqun Sun
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Bing Zhang
- Department of Geriatrics, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Yaling Ding
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, China
| | - Qiuping Ma
- Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, 58 Changsheng Road, Suzhou, China
| | - Fei Liang
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, China
| | - Zhuoqiao Yang
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, China
| | - Wenxin Ge
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, China
| | - Songliang Liu
- Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, 58 Changsheng Road, Suzhou, China
| | - Lili Xin
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, Medical College of Soochow University, Suzhou, China
| | - Jieyun Yin
- Department of Epidemiology and Health Statistics, Medical College of Soochow University, Suzhou, China.
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, Medical College of Soochow University, Suzhou, China.
| | - Xiaoyan Zhu
- Suzhou Center for Disease Prevention and Control, Suzhou, China.
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Andersen CJ, Fernandez ML. Emerging Biomarkers and Determinants of Lipoprotein Profiles to Predict CVD Risk: Implications for Precision Nutrition. Nutrients 2024; 17:42. [PMID: 39796476 PMCID: PMC11722654 DOI: 10.3390/nu17010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Biomarkers constitute a valuable tool to diagnose both the incidence and the prevalence of chronic diseases and may help to inform the design and effectiveness of precision nutrition interventions. Cardiovascular disease (CVD) continues to be the foremost cause of death all over the world. While the reasons that lead to increased risk for CVD are multifactorial, dyslipidemias, plasma concentrations of specific lipoproteins, and dynamic measures of lipoprotein function are strong biomarkers to predict and document coronary heart disease incidence. The aim of this review is to provide a comprehensive evaluation of the biomarkers and emerging approaches that can be utilized to characterize lipoprotein profiles as predictive tools for assessing CVD risk, including the assessment of traditional clinical lipid panels, measures of lipoprotein efflux capacity and inflammatory and antioxidant activity, and omics-based characterization of lipoprotein composition and regulators of lipoprotein metabolism. In addition, we discuss demographic, genetic, metagenomic, and lifestyle determinants of lipoprotein profiles-such as age, sex, gene variants and single-nucleotide polymorphisms, gut microbiome profiles, dietary patterns, physical inactivity, obesity status, smoking and alcohol intake, and stress-which are likely to be essential factors to explain interindividual responses to precision nutrition recommendations to mitigate CVD risk.
Collapse
Affiliation(s)
- Catherine J. Andersen
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Maria Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
- School of Nutrition and Wellness, University of Arizona, Tucson, AZ 85712, USA
| |
Collapse
|
5
|
Shayista H, Prasad MN, Raj SN, Ranjini H, Manju K, Baker S. Mechanistic overview of gut microbiota and mucosal pathogens with respect to cardiovascular diseases. THE MICROBE 2024; 5:100160. [DOI: 10.1016/j.microb.2024.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Teka T, Wu J, Oduro PK, Li Z, Wang C, Chen H, Zhang L, Wang H, Wang L, Han L. Integrated multi-omics analyses combined with western blotting discovered that cis-TSG alleviated liver injury via modulating lipid metabolism. Front Pharmacol 2024; 15:1485035. [PMID: 39635428 PMCID: PMC11614611 DOI: 10.3389/fphar.2024.1485035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Background: Polygonum multiflorum shows dual hepatoprotective and hepatotoxic effects. The bioactive components responsible for these effects are unknown. This study investigates whether cis-2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (cis-TSG), a stilbene glycoside, has hepatoprotective and/or hepatotoxic effects in a liver injury model. Methods: C57BL/6J mice were administered α-naphthylisothiocyanate (ANIT) to induce cholestasis, followed by treatment with cis-TSG. Hepatoprotective and hepatotoxic effects were assessed using serum biomarkers, liver histology, and metabolomic and lipidomic profiling. Transcriptomic analysis were conducted to explore gene expression changes associated with lipid and bile acid metabolism, inflammation, and oxidative stress. Results and Discussion: ANIT administration caused significant liver injury, evident from elevated alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and dysregulated lipid metabolism. cis-TSG treatment markedly reduced ALT and AST levels, normalized lipid profiles, and ameliorated liver damage, as seen histologically. Metabolomic and lipidomic analyses revealed that cis-TSG influenced key pathways, notably glycerophospholipid metabolism, sphingolipid metabolism, and bile acid biosynthesis. The treatment with cis-TSG increased monounsaturated and polyunsaturated fatty acids (MUFAs and PUFAs), enhancing peroxisome proliferator-activated receptor alpha (PPARα) activity. Transcriptomic data confirmed these findings, showing the downregulation of genes linked to lipid metabolism, inflammation, and oxidative stress in the cis-TSG-treated group. The findings suggest that cis-TSG has a hepatoprotective effect through modulation of lipid metabolism and PPARα activation.
Collapse
Affiliation(s)
- Tekleab Teka
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Pharmacy, Wollo University, Dessie, Ethiopia
| | - Jiang Wu
- Shenzhen Technology University, Shenzhen, China
| | - Patrick Kwabena Oduro
- Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, United States
| | - Ze Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chenxi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haitao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liming Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| |
Collapse
|
7
|
Lin L, Xiang S, Chen Y, Liu Y, Shen D, Yu X, Wu Z, Sun Y, Chen K, Luo J, Wei G, Wang Z, Ning Z. Gut microbiota: Implications in pathogenesis and therapy to cardiovascular disease (Review). Exp Ther Med 2024; 28:427. [PMID: 39301250 PMCID: PMC11411594 DOI: 10.3892/etm.2024.12716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/03/2024] [Indexed: 09/22/2024] Open
Abstract
The gut microbiota refers to the diverse bacterial community residing in the gastrointestinal tract. Recent data indicate a strong correlation between alterations in the gut microbiota composition and the onset of various diseases, notably cardiovascular disorders. Evidence suggests the gut-cardiovascular axis signaling molecules released by the gut microbiota play a pivotal role in regulation. This review systematically delineates the association between dysbiosis of the gut microbiota and prevalent cardiovascular diseases, including atherosclerosis, hypertension, myocardial infarction and heart failure. Furthermore, it provides an overview of the putative pathogenic mechanisms by which dysbiosis in the gut microbiota contributes to the progression of cardiovascular ailments. The potential modulation of gut microbiota as a preventive strategy against cardiovascular diseases through dietary interventions, antibiotic therapies and probiotic supplementation is also explored and discussed within the present study.
Collapse
Affiliation(s)
- Li Lin
- Department of Biochemistry, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Shaowei Xiang
- Department of Neurosurgery, Enshi State Central Hospital, Enshi, Hubei 445000, P.R. China
| | - Yuan Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yan Liu
- Department of Internal Medicine, The Second Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Dingwen Shen
- Department of Parasitology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Xiaoping Yu
- Department of Function, The Second Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhe Wu
- Department of Histology and Embryology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Yanling Sun
- Department of Histology and Embryology, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Kequan Chen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Jia Luo
- School of Sport, Xianning Vocational and Technical College, Xianning, Hubei 437100, P.R. China
| | - Guilai Wei
- School of Art and Design, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhiguo Wang
- Department of Dermatology, The First Affiliated Hospital, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Zhifeng Ning
- Department of Human Anatomy, Basic Medicine School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
8
|
Saparuddin F, Mohd Nawi MN, Ahmad Zamri L, Mansor F, Md Noh MF, Omar MA, Abdul Aziz NS, Wahab NA, Mediani A, Rajab NF, Sharif R. Metabolite, Biochemical, and Dietary Intake Alterations Associated with Lifestyle Interventions in Obese and Overweight Malaysian Women. Nutrients 2024; 16:3501. [PMID: 39458496 PMCID: PMC11510420 DOI: 10.3390/nu16203501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 10/28/2024] Open
Abstract
Differences in metabolic regulation among obesity phenotypes, specifically metabolically healthy obese (MHO) and metabolically unhealthy obese (MUO) women, may lead to varied responses to interventions, which could be elucidated through metabolomics. Therefore, this study aims to investigate the differences in metabolite profiles between MHO and MUO women and the changes following a lifestyle intervention. Serum samples from 36 MHO and 34 MUO women who participated in a lifestyle intervention for weight loss were analysed using untargeted proton nuclear magnetic resonance spectroscopy (1H NMR) at baseline and 6 months post-intervention. Anthropometric, clinical, and dietary intake parameters were assessed at both time points. Both groups showed differential metabolite profiles at baseline and after six months. Seven metabolites, including trimethylamine-N-oxide (TMAO), arginine, ribose, aspartate, carnitine, choline, and tyrosine, significantly changed between groups post-intervention, which all showed a decreasing pattern in MHO. Significant reductions in body weight and body mass index (BMI) in the MUO correlated with changes in the carnitine and tyrosine levels. In conclusion, metabolite profiles differed significantly between MHO and MUO women before and after a lifestyle intervention. The changes in carnitine and tyrosine levels in MUO were correlated with weight loss, suggesting potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Fatin Saparuddin
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Mohd Naeem Mohd Nawi
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | - Liyana Ahmad Zamri
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | - Fazliana Mansor
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | - Mohd Fairulnizal Md Noh
- Nutrition, Metabolism and Cardiovascular Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | - Mohd Azahadi Omar
- Sector for Biostatistic and Data Repository, National Institute of Heath, Ministry of Health, Shah Alam 40170, Selangor, Malaysia
| | | | - Norasyikin A. Wahab
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ahmed Mediani
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Nor Fadilah Rajab
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Razinah Sharif
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
9
|
Zhang W, Qin X, Zhang K, Ma J, Li M, Jin G, Liu X, Wang S, Wang B, Wu J, Liu T, Zhong W, Cao H. Microbial metabolite trimethylamine-N-oxide induces intestinal carcinogenesis through inhibiting farnesoid X receptor signaling. Cell Oncol (Dordr) 2024; 47:1183-1199. [PMID: 38315283 DOI: 10.1007/s13402-024-00920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
PURPOSE Microbial dysbiosis is considered as a hallmark of colorectal cancer (CRC). Trimethylamine-N-oxide (TMAO) as a gut microbiota-dependent metabolite has recently been implicated in CRC development. Nevertheless, evidence relating TMAO to intestinal carcinogenesis remains largely unexplored. Herein, we aimed to examine the crucial role of TMAO in CRC progression. METHODS Apcmin/+ mice were treated with TMAO or sterile PBS for 14 weeks. Intestinal tissues were isolated to evaluate the effects of TMAO on the malignant transformation of intestinal adenoma. The gut microbiota of mouse feces was detected by 16S rRNA sequencing analysis. HCT-116 cells were used to provide further evidence of TMAO on the progression of CRC. RESULTS TMAO administration increased tumor cell and stem cell proliferation, and decreased apoptosis, accompanied by DNA damage and gut barrier impairment. Gut microbiota analysis revealed that TMAO induced changes in the intestinal microbial community structure, manifested as reduced beneficial bacteria. Mechanistically, TMAO bound to farnesoid X receptor (FXR), thereby inhibiting the FXR-fibroblast growth factor 15 (FGF15) axis and activating the Wnt/β-catenin signaling pathway, whereas the FXR agonist GW4064 could blunt TMAO-induced Wnt/β-catenin pathway activation. CONCLUSION The microbial metabolite TMAO can enhance intestinal carcinogenesis by inhibiting the FXR-FGF15 pathway.
Collapse
Affiliation(s)
- Wanru Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Xiali Qin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Kexin Zhang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Jiahui Ma
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Mengfan Li
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Ge Jin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Xiang Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China
| | - Jing Wu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China.
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China.
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, 300052, China.
| |
Collapse
|
10
|
Agarwal M, Roth K, Yang Z, Sharma R, Maddipati K, Westrick J, Petriello MC. Loss of flavin-containing monooxygenase 3 modulates dioxin-like polychlorinated biphenyl 126-induced oxidative stress and hepatotoxicity. ENVIRONMENTAL RESEARCH 2024; 250:118492. [PMID: 38373550 PMCID: PMC11102846 DOI: 10.1016/j.envres.2024.118492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Dioxin-like pollutants (DLPs), such as polychlorinated biphenyl 126 (PCB 126), are synthetic chemicals classified as persistent organic pollutants. They accumulate in adipose tissue and have been linked to cardiometabolic disorders, including fatty liver disease. The toxicity of these compounds is associated with activation of the aryl hydrocarbon receptor (Ahr), leading to the induction of phase I metabolizing enzyme cytochrome P4501a1 (Cyp1a1) and the subsequent production of reactive oxygen species (ROS). Recent research has shown that DLPs can also induce the xenobiotic detoxification enzyme flavin-containing monooxygenase 3 (FMO3), which plays a role in metabolic homeostasis. We hypothesized whether genetic deletion of Fmo3 could protect mice, particularly in the liver, where Fmo3 is most inducible, against PCB 126 toxicity. To test this hypothesis, male C57BL/6 wild-type (WT) mice and Fmo3 knockout (Fmo3 KO) mice were exposed to PCB 126 or vehicle (safflower oil) during a 12-week study, at weeks 2 and 4. Various analyses were performed, including hepatic histology, RNA-sequencing, and quantitation of PCB 126 and F2-isoprostane concentrations. The results showed that PCB 126 exposure caused macro and microvesicular fat deposition in WT mice, but this macrovesicular fatty change was absent in Fmo3 KO mice. Moreover, at the pathway level, the hepatic oxidative stress response was significantly different between the two genotypes, with the induction of specific genes observed only in WT mice. Notably, the most abundant F2-isoprostane, 8-iso-15-keto PGE2, increased in WT mice in response to PCB 126 exposure. The study's findings also demonstrated that hepatic tissue concentrations of PCB 126 were higher in WT mice compared to Fmo3 KO mice. In summary, the absence of FMO3 in mice led to a distinctive response to dioxin-like pollutant exposure in the liver, likely due to alterations in lipid metabolism and storage, underscoring the complex interplay of genetic factors in the response to environmental toxins.
Collapse
Affiliation(s)
- Manisha Agarwal
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Katherine Roth
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Zhao Yang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Rahul Sharma
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Krishnarao Maddipati
- Department of Pathology, Lipidomic Core Facility, Wayne State University, Detroit, MI, 48202, USA
| | - Judy Westrick
- Department of Chemistry, Lumigen Instrumentation Center, Wayne State University, Detroit, MI, 48202, USA
| | - Michael C Petriello
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, 48202, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
11
|
Vallianou NG, Kounatidis D, Psallida S, Panagopoulos F, Stratigou T, Geladari E, Karampela I, Tsilingiris D, Dalamaga M. The Interplay Between Dietary Choline and Cardiometabolic Disorders: A Review of Current Evidence. Curr Nutr Rep 2024; 13:152-165. [PMID: 38427291 PMCID: PMC11133147 DOI: 10.1007/s13668-024-00521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE OF REVIEW Choline is an essential nutrient for human health and cellular homeostasis as it is necessary for the synthesis of lipid cell membranes, lipoproteins, and the synthesis of the neurotransmitter acetylcholine. The aim of this review is to analyze the beneficial effects of choline and its significance in cellular metabolism and various inflammatory pathways, such as the inflammasome. We will discuss the significance of dietary choline in cardiometabolic disorders, such as non-alcoholic fatty liver disease (NAFLD), cardiovascular disease (CVD), and chronic kidney disease (CKD) as well as in cognitive function and associated neuropsychiatric disorders. RECENT FINDINGS Choline deficiency has been related to the development of NAFLD and cognitive disability in the offspring as well as in adulthood. In sharp contrast, excess dietary intake of choline mediated via the increased production of trimethylamine by the gut microbiota and increased trimethylamine-N-oxide (TMAO) levels has been related to atherosclerosis in most studies. In this context, CVD and CKD through the accumulation of TMAO, p-Cresyl-sulfate (pCS), and indoxyl-sulfate (IS) in serum may be the result of the interplay between excess dietary choline, the increased production of TMAO by the gut microbiota, and the resulting activation of inflammatory responses and fibrosis. A balanced diet, with no excess nor any deficiency in dietary choline, is of outmost importance regarding the prevention of cardiometabolic disorders as well as cognitive function. Large-scale studies with the use of next-generation probiotics, especially Akkermansia muciniphila and Faecalibacterium prausnitzii, should further examine their therapeutic potential in this context.
Collapse
Affiliation(s)
- Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece.
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, Athens, Greece.
| | - Dimitris Kounatidis
- Department of Internal Medicine, Hippokration General Hospital, 114 Vassilissis Sofias str, Athens, Greece
| | - Sotiria Psallida
- Department of Microbiology, KAT General Hospital of Attica, 2 Nikis str, Athens, Greece
| | - Fotis Panagopoulos
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece
| | - Theodora Stratigou
- Department of Endocrinology and Metabolism, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece
| | - Eleni Geladari
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini str, Athens, Greece
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Dragana, 68100, Alexandroupoli, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, Athens, Greece.
| |
Collapse
|
12
|
Lee H, Koh GY, Lee H, Alves P, Yokoyama W, Wang Y. Discovery of a Novel Bioactive Compound in Orange Peel Polar Fraction on the Inhibition of Trimethylamine and Trimethylamine N-Oxide through Metabolomics Approaches and In Vitro and In Vivo Assays: Feruloylputrescine Inhibits Trimethylamine via Suppressing cntA/B Enzyme. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7870-7881. [PMID: 38562057 DOI: 10.1021/acs.jafc.3c09005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
This study compares the inhibitory effects of orange peel polar fraction (OPP) and orange peel nonpolar fraction (OPNP) on trimethylamine (TMA) and trimethylamine N-oxide (TMAO) production in response to l-carnitine treatment in vivo and in vitro. Metabolomics is used to identify bioactive compounds. The research demonstrates that the OPP effectively regulates atherosclerosis-related markers, TMA and TMAO in plasma and urine, compared to the OPNP. Our investigation reveals that these inhibitory effects are independent of changes in gut microbiota composition. The effects are attributed to the modulation of cntA/B enzyme activity and FMO3 mRNA expression in vitro. Moreover, OPP exhibits stronger inhibitory effects on TMA production than OPNP, potentially due to its higher content of feruloylputrescine, which displays the highest inhibitory activity on the cntA/B enzyme and TMA production. These findings suggest that the OPP containing feruloylputrescine has the potential to alleviate cardiovascular diseases by modulating cntA/B and FMO3 enzymes without directly influencing gut microbiota composition.
Collapse
Affiliation(s)
- Hana Lee
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, United States
| | - Gar Yee Koh
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, United States
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, Texas 78666, United States
| | - Hanna Lee
- Healthy Processed Foods Research Unit, Agricultural Research Service, United States Department of Agricultural, Albany, California 94710, United States
| | - Priscila Alves
- Healthy Processed Foods Research Unit, Agricultural Research Service, United States Department of Agricultural, Albany, California 94710, United States
| | - Wallace Yokoyama
- Healthy Processed Foods Research Unit, Agricultural Research Service, United States Department of Agricultural, Albany, California 94710, United States
| | - Yu Wang
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, United States
| |
Collapse
|
13
|
Fu Y, Hou X, Feng Z, Feng H, Li L. Research progress in the relationship between gut microbiota metabolite trimethylamine N-oxide and ischemic stroke. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:447-456. [PMID: 38970519 PMCID: PMC11208405 DOI: 10.11817/j.issn.1672-7347.2024.230427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Indexed: 07/08/2024]
Abstract
Ischemic stroke (IS) is a severe cerebrovascular disease that seriously endangers human health. Gut microbiota plays a key role as an intermediate mediator in bidirectional regulation between the brain and the intestine. In recent years, trimethylamine N-oxide (TMAO) as a gut microbiota metabolite has received widespread attention in cardiovascular diseases. Elevated levels of TMAO may increase the risk of IS by affecting IS risk factors such as atherosclerosis, atrial fibrillation, hypertension, and type 2 diabetes. TMAO exacerbates neurological damage in IS patients, increases the risk of IS recurrence, and is an independent predictor of post-stroke cognitive impairment (PSCI) in patients. Current research suggests that the mechanisms of TMAO action include endothelial dysfunction, promoting of foam cell formation, influence on cholesterol metabolism, and enhancement of platelet reactivity. Lowering plasma TMAO levels through the rational use of traditional Chinese medicine, dietary management, vitamins, and probiotics can prevent and treat IS.
Collapse
Affiliation(s)
- Yu Fu
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355.
| | - Xiaoqian Hou
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China
| | - Ziyun Feng
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China
| | - Huiyue Feng
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355
| | - Li Li
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China.
| |
Collapse
|
14
|
Ouyang J, Zhao L, Song Y, Qu H, Du T, Shi L, Cui Z, Jiang Z, Gao Z. Trends in gut-heart axis and heart failure research (1993-2023): A bibliometric and visual analysis. Heliyon 2024; 10:e25995. [PMID: 38404792 PMCID: PMC10884449 DOI: 10.1016/j.heliyon.2024.e25995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
Background The incidence of heart failure, the terminal stage of several cardiovascular diseases, is increasing owing to population growth and aging. Bidirectional crosstalk between the gut and heart plays a significant role in heart failure. This study aimed to analyze the gut-heart axis and heart failure from a bibliometric perspective. Methods We extracted literature regarding the gut-heart axis and heart failure from the Web of Science Core Collection database (January 1, 1993, to June 30, 2023) and conducted bibliometric and visualization analyses using Microsoft Excel, CiteSpace, VOSviewer, and the R package "bibliometrix." Results The final analysis included 1646 articles with an average of 35.38 citations per article. Despite some fluctuations, the number of articles published per year has steadily increased over the past 31 years, particularly since 2018. A total of 9412 authors from 2287 institutions in 86 countries have contributed to this field. The USA and China have been the most productive countries, with the Cleveland Clinic in the USA and Charité-Universitätsmedizin Berlin in Germany being the most active institutions. The cooperation between countries/regions and institutions was relatively close. Professor Tang WHW was the most productive author in the field and the journal Shocks published the highest number of articles. "Heart failure," "gut microbiota," "trimethylamine N-oxide," and "inflammation" were the most common keywords, representing the current research hotspots. The keyword burst analysis indicated that "gut microbiota" and "short-chain fatty acids" are the current frontier research topics in this field. Conclusion Research on the gut-heart axis and heart failure is increasing. This bibliometric analysis indicated that the mechanisms associated with the gut-heart axis and heart failure, particularly the gut microbiota, trimethylamine N-oxide, inflammation, and short-chain fatty acids, will become hotspots and emerging trends in research in this field. These findings provide valuable insights into current research and future directions.
Collapse
Affiliation(s)
- Jiahui Ouyang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Lingli Zhao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yewen Song
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Hua Qu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Tianyi Du
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Liu Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhijie Cui
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Zhonghui Jiang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Zhuye Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| |
Collapse
|
15
|
Florea CM, Rosu R, Moldovan R, Vlase L, Toma V, Decea N, Baldea I, Filip GA. The impact of chronic Trimethylamine N-oxide administration on liver oxidative stress, inflammation, and fibrosis. Food Chem Toxicol 2024; 184:114429. [PMID: 38176578 DOI: 10.1016/j.fct.2023.114429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
TMAO, a gut microbiota derived byproduct, has been associated with various cardiometabolic diseases by promoting oxidative stress and inflammation. The liver is the main organ for TMAO production and chronic exposure to high doses of TMAO could alter its function. In this study, we evaluated the effect of chronic exposure of high TMAO doses on liver oxidative stress, inflammation, and fibrosis. TMAO was administered daily via gastric gavage to laboratory rats for 3 months. Blood was drawn for the quantification of TMAO, and liver tissues were harvested for the assessment of oxidative stress (MDA, GSH, GSSG, GPx, CAT, and 8-oxo-dG) and inflammation by quantification of IL-1α, TNF-α, IL-10, TGF-β, NOS and COX-2 expression. The evaluation of fibrosis was made by Western blot analysis of α-SMA and Collagen-3 protein expression. Histological investigation and immunohistochemical staining of iNOS were performed in order to assess the liver damage. After 3 months of TMAO exposure, TMAO serum levels enhanced in parallel with increases in MDA and GSSG levels in liver tissue and lower values of GSH and GSH/GSSG ratio as well as a decrease in GPx and CAT activities. Inflammation was also highlighted, with enhanced iNOS, COX-2, and IL-10 expression, without structural changes and without induction of liver fibrosis.
Collapse
Affiliation(s)
- Cristian Marius Florea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Radu Rosu
- Fifth Department of Internal Medicine, Cardiology Clinic, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Remus Moldovan
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Vlad Toma
- Department of Molecular Biology and Biotechnologies, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania; Department of Experimental Biology and Biochemistry, Institute of Biological Research, branch of NIRDBS, Cluj-Napoca, Romania; Center for Systems Biology, Biodiversity and Bioresources "3B", Babeș-Bolyai University, Cluj-Napoca, Romania.
| | - Nicoleta Decea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Baldea
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
16
|
Reali E, Caliceti C, Lorenzini A, Rizzo P. The Use of Microbial Modifying Therapies to Prevent Psoriasis Exacerbation and Associated Cardiovascular Comorbidity. Inflammation 2024; 47:13-29. [PMID: 37953417 PMCID: PMC10799147 DOI: 10.1007/s10753-023-01915-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023]
Abstract
Psoriasis has emerged as a systemic disease characterized by skin and joint manifestations as well as systemic inflammation and cardiovascular comorbidities. Many progresses have been made in the comprehension of the immunological mechanisms involved in the exacerbation of psoriatic plaques, and initial studies have investigated the mechanisms that lead to extracutaneous disease manifestations, including endothelial disfunction and cardiovascular disease. In the past decade, the involvement of gut dysbiosis in the development of pathologies with inflammatory and autoimmune basis has clearly emerged. More recently, a major role for the skin microbiota in establishing the immunological tolerance in early life and as a source of antigens leading to cross-reactive responses towards self-antigens in adult life has also been evidenced. Gut microbiota can indeed be involved in shaping the immune and inflammatory response at systemic level and in fueling inflammation in the cutaneous and vascular compartments. Here, we summarized the microbiota-mediated mechanisms that, in the skin and gut, may promote and modulate local or systemic inflammation involved in psoriatic disease and endothelial dysfunction. We also analyze the emerging strategies for correcting dysbiosis or modulating skin and gut microbiota composition to integrate systemically existing pharmacological therapies for psoriatic disease. The possibility of merging systemic treatment and tailored microbial modifying therapies could increase the efficacy of the current treatments and potentially lower the effect on patient's life quality.
Collapse
Affiliation(s)
- Eva Reali
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
| | - Cristiana Caliceti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Antonello Lorenzini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Istituto Nazionale Biosistemi e Biostrutture (INBB), Rome, Italy
| | - Paola Rizzo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
- Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy.
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Ravenna, Italy.
| |
Collapse
|
17
|
Cabała S, Ożgo M, Herosimczyk A. The Kidney-Gut Axis as a Novel Target for Nutritional Intervention to Counteract Chronic Kidney Disease Progression. Metabolites 2024; 14:78. [PMID: 38276313 PMCID: PMC10819792 DOI: 10.3390/metabo14010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
A well-balanced diet is integral for overall health, aiding in managing key risk factors for kidney damage like hypertension while supplying necessary precursors for metabolite production. Dietary choices directly influence the composition and metabolic patterns of the gut microbiota, showing promise as therapeutic tools for addressing various health conditions, including chronic kidney diseases (CKD). CKD pathogenesis involves a decline in the glomerular filtration rate and the retention of nitrogen waste, fostering gut dysbiosis and the excessive production of bacterial metabolites. These metabolites act as uremic toxins, contributing to inflammation, oxidative stress, and tissue remodeling in the kidneys. Dietary interventions hold significance in reducing oxidative stress and inflammation, potentially slowing CKD progression. Functional ingredients, nutrients, and nephroprotective phytoconstituents could modulate inflammatory pathways or impact the gut mucosa. The "gut-kidney axis" underscores the impact of gut microbes and their metabolites on health and disease, with dysbiosis serving as a triggering event in several diseases, including CKD. This review provides a comprehensive overview, focusing on the gut-liver axis, and explores well-established bioactive substances as well as specific, less-known nutraceuticals showing promise in supporting kidney health and positively influencing CKD progression.
Collapse
Affiliation(s)
| | | | - Agnieszka Herosimczyk
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (S.C.); (M.O.)
| |
Collapse
|
18
|
Shafqat F, Ur Rehman S, Khan MS, Niaz K. Liver. ENCYCLOPEDIA OF TOXICOLOGY 2024:897-913. [DOI: 10.1016/b978-0-12-824315-2.00138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Usman I, Anwar A, Shukla S, Pathak P. Mechanistic Review on the Role of Gut Microbiota in the Pathology of Cardiovascular Diseases. Cardiovasc Hematol Disord Drug Targets 2024; 24:13-39. [PMID: 38879769 DOI: 10.2174/011871529x310857240607103028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 07/31/2024]
Abstract
Cardiovascular diseases (CVDs), which stand as the primary contributors to illness and death on a global scale, include vital risk factors like hyperlipidemia, hypertension, diabetes, and smoking, to name a few. However, conventional cardiovascular risk factors offer only partial insight into the complexity of CVDs. Lately, a growing body of research has illuminated that the gut microbiome and its by-products are also of paramount importance in the initiation and progression of CVDs. The gastrointestinal tract houses trillions of microorganisms, commonly known as gut microbiota, that metabolize nutrients, yielding substances like trimethylamine-N-oxide (TMAO), bile acids (BAs), short-chain fatty acids (SCFAs), indoxyl sulfate (IS), and so on. Strategies aimed at addressing these microbes and their correlated biological pathways have shown promise in the management and diagnosis of CVDs. This review offers a comprehensive examination of how the gut microbiota contributes to the pathogenesis of CVDs, particularly atherosclerosis, hypertension, heart failure (HF), and atrial fibrillation (AF), explores potential underlying mechanisms, and highlights emerging therapeutic prospects in this dynamic domain.
Collapse
Affiliation(s)
- Iqra Usman
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Aamir Anwar
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Shivang Shukla
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Priya Pathak
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| |
Collapse
|
20
|
Liu L, Xu H, Wang J, Wang H, Ren S, Huang Q, Zhang M, Zhou H, Yang C, Jia L, Huang Y, Zhang H, Tao Y, Li Y, Min Y. Trimethylamine-N-oxide (TMAO) and basic fibroblast growth factor (bFGF) are possibly involved in corticosteroid resistance in adult patients with immune thrombocytopenia. Thromb Res 2024; 233:25-36. [PMID: 37988847 DOI: 10.1016/j.thromres.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023]
Abstract
PURPOSE Immune thrombocytopenia (ITP) is an autoimmune disease characterized by accelerated platelet clearance. Gut dysbiosis was associated with its pathogenesis, but the underlying mechanisms have not been fully elucidated. Patients with ITP exhibit varying degrees of responsiveness to corticosteroid treatment. Therefore, prognostic indexes for corticosteroid responsiveness in ITP could offer valuable guidance for clinical practices. METHODS The present study examined the signature of six types of gut-microbiota metabolites and forty-eight types of cytokines, chemokines, and growth factors and their clinical significance in patients with ITP. RESULTS Both patients with good and poor corticosteroid responsiveness exhibited significantly elevated/suppressed secretion of twenty-two cyto(chemo)kins/growth factors in comparison to healthy controls. Additionally, patients with ITP demonstrated a significant decrease in plasma levels of trimethylamine-N-oxide (TMAO), which was found to be negatively correlated to circulating platelet counts, and positively correlated with Interleukin (IL)-1β and IL-18. Notably, patients who exhibited poor response to corticosteroid treatment displayed elevated levels of TMAO and basic fibroblast growth factor (bFGF) in comparison to responders. Additionally, we found that the amalgamation of TMAO, bFGF and interleukin (IL)-13 could serve as a valuable prognostic tool for predicting CS responsiveness. CONCLUSION Patients with ITP were characterized overall by an imbalanced secretion of cyto(cheo)kins/growth factors and inadequate levels of TMAO. The varying degrees of responsiveness to corticosteroid treatment can be attributed to different profiles of basic FGF and TMAO that might be related to overburdened oxidative stress and inflammasome overactivation, and ultimately mediate corticosteroid resistance.
Collapse
Affiliation(s)
- Lei Liu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Huifang Xu
- Department of Clinical Medicine, Jining Medical University, Jining, China; Department of Pediatric Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Jian Wang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Haiyan Wang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Saisai Ren
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Qian Huang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Mingyan Zhang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Hui Zhou
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Chunyan Yang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Lu Jia
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yu Huang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Hao Zhang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yanling Tao
- Department of Pediatric Hematology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Ying Li
- Department of Pediatric Hematology, Affiliated Hospital of Jining Medical University, Jining, China.
| | - Yanan Min
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, China; Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
21
|
Tu R, Xia J. Stroke and Vascular Cognitive Impairment: The Role of Intestinal Microbiota Metabolite TMAO. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:102-121. [PMID: 36740795 DOI: 10.2174/1871527322666230203140805] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 02/07/2023]
Abstract
The gut microbiome interacts with the brain bidirectionally through the microbiome-gutbrain axis, which plays a key role in regulating various nervous system pathophysiological processes. Trimethylamine N-oxide (TMAO) is produced by choline metabolism through intestinal microorganisms, which can cross the blood-brain barrier to act on the central nervous system. Previous studies have shown that elevated plasma TMAO concentrations increase the risk of major adverse cardiovascular events, but there are few studies on TMAO in cerebrovascular disease and vascular cognitive impairment. This review summarized a decade of research on the impact of TMAO on stroke and related cognitive impairment, with particular attention to the effects on vascular cognitive disorders. We demonstrated that TMAO has a marked impact on the occurrence, development, and prognosis of stroke by regulating cholesterol metabolism, foam cell formation, platelet hyperresponsiveness and thrombosis, and promoting inflammation and oxidative stress. TMAO can also influence the cognitive impairment caused by Alzheimer's disease and Parkinson's disease via inducing abnormal aggregation of key proteins, affecting inflammation and thrombosis. However, although clinical studies have confirmed the association between the microbiome-gut-brain axis and vascular cognitive impairment (cerebral small vessel disease and post-stroke cognitive impairment), the molecular mechanism of TMAO has not been clarified, and TMAO precursors seem to play the opposite role in the process of poststroke cognitive impairment. In addition, several studies have also reported the possible neuroprotective effects of TMAO. Existing therapies for these diseases targeted to regulate intestinal flora and its metabolites have shown good efficacy. TMAO is probably a new target for early prediction and treatment of stroke and vascular cognitive impairment.
Collapse
Affiliation(s)
- Ruxin Tu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
- Human Clinical Research Center for Cerebrovascular Disease, Changsha, China
| |
Collapse
|
22
|
Nicoll C, Mascotti M. Investigating the biochemical signatures and physiological roles of the FMO family using molecular phylogeny. BBA ADVANCES 2023; 4:100108. [PMID: 38034983 PMCID: PMC10682829 DOI: 10.1016/j.bbadva.2023.100108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023] Open
Abstract
Group B flavin-dependent monooxygenases are employed in swathes of different physiological functions. Despite their collectively large substrate profile, they all harness a flavin-based C4a-(hydro)peroxy intermediate for function. Within this class are the flavin-containing monooxygenases (FMOs), representing an integral component within the secondary metabolism of all living things - xenobiotic detoxification. Their broad substrate profile makes them ideal candidates for detoxifying procedures as they can tackle a range of compounds. Recent studies have illustrated that several FMOs, however, have unique substrate profiles and differing physiological functions that implicate new roles within secondary and primary metabolism. Herein this article, by employing phylogenetic approaches, and inspecting structures of AlphaFold generated models, we have constructed a biochemical blueprint of the FMO family. FMOs are clustered in four distinct groups, with two being predominantly dedicated to xenobiotic detoxification. Furthermore, we observe that differing enzymatic activities are not constricted to a 'golden' set of residues but instead an intricate constellation of primary and secondary sphere residues. We believe that this work delineates the core phylogeny of the Group B monooxygenases and will prove useful for classifying newly sequenced genes and provide directions to future biochemical investigations.
Collapse
Affiliation(s)
- C.R. Nicoll
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - M.L. Mascotti
- Molecular Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
- IMIBIO-SL CONICET, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejercito de los Andes 950, D5700HHW, San Luis, Argentina
| |
Collapse
|
23
|
Lee H, Liu X, An JP, Wang Y. Identification of Polymethoxyflavones (PMFs) from Orange Peel and Their Inhibitory Effects on the Formation of Trimethylamine (TMA) and Trimethylamine-N-oxide (TMAO) Using cntA/B and cutC/D Enzymes and Molecular Docking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16114-16124. [PMID: 37851928 DOI: 10.1021/acs.jafc.3c04462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
This study investigates the inhibitory effects of polymethoxyflavones (PMFs) on enzymes involved in the production of trimethylamine (TMA) and trimethylamine-N-oxide (TMAO). PMFs were isolated from Valencia orange peel and identified using column separation and NMR techniques. The findings reveal that nobiletin and 3,6,7,8,2',5'-hexamethoxyflavone significantly suppress cntA/B and cutC/D, respectively. Furthermore, 3,6,7,8,2',5'-hexamethoxyflavone decreases the level of TMAO formation by suppressing the FMO3 mRNA level. This study elucidates that specific structural features of PMFs can contribute to their interactions with enzymes. Our study represents the first demonstration of the ability of PMFs to mitigate the risk of cardiovascular disease (CVD) by inhibiting enzymes responsible for TMA production, which are generated by gut microbiomes. Furthermore, we introduce a novel model system utilizing TMA-induced HepG2 cells to assess and compare the inhibitory effects of PMFs on TMAO production. These findings could pave the way for the development of novel therapeutic approaches to manage CVD.
Collapse
Affiliation(s)
- Hana Lee
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, United States
| | - Xin Liu
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, United States
| | - Jin-Pyo An
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, United States
| | - Yu Wang
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida 33850, United States
| |
Collapse
|
24
|
Xue C, Chen K, Gao Z, Bao T, Dong L, Zhao L, Tong X, Li X. Common mechanisms underlying diabetic vascular complications: focus on the interaction of metabolic disorders, immuno-inflammation, and endothelial dysfunction. Cell Commun Signal 2023; 21:298. [PMID: 37904236 PMCID: PMC10614351 DOI: 10.1186/s12964-022-01016-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/11/2022] [Indexed: 11/01/2023] Open
Abstract
Diabetic vascular complications (DVCs), including macro- and micro- angiopathy, account for a high percentage of mortality in patients with diabetes mellitus (DM). Endothelial dysfunction is the initial and role step for the pathogenesis of DVCs. Hyperglycemia and lipid metabolism disorders contribute to endothelial dysfunction via direct injury of metabolism products, crosstalk between immunity and inflammation, as well as related interaction network. Although physiological and phenotypic differences support their specified changes in different targeted organs, there are still several common mechanisms underlying DVCs. Also, inhibitors of these common mechanisms may decrease the incidence of DVCs effectively. Thus, this review may provide new insights into the possible measures for the secondary prevention of DM. And we discussed the current limitations of those present preventive measures in DVCs research. Video Abstract.
Collapse
Affiliation(s)
- Chongxiang Xue
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Keyu Chen
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zezheng Gao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - LiShuo Dong
- Changchun University of Traditional Chinese Medicine, Changchun, 130117, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China.
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China.
| | - Xiuyang Li
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China.
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
25
|
Huang X, Liu Y, Li Z, Lerman LO. Mesenchymal Stem/Stromal Cells Therapy for Metabolic Syndrome: Potential Clinical Application? Stem Cells 2023; 41:893-906. [PMID: 37407022 PMCID: PMC10560401 DOI: 10.1093/stmcls/sxad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs), a class of cells with proliferative, immunomodulatory, and reparative functions, have shown therapeutic potential in a variety of systemic diseases, including metabolic syndrome (MetS). The cluster of morbidities that constitute MetS might be particularly amenable for the application of MSCs, which employ an arsenal of reparative actions to target multiple pathogenic pathways simultaneously. Preclinical studies have shown that MSCs can reverse pathological changes in MetS mainly by inhibiting inflammation, improving insulin resistance, regulating glycolipid metabolism, and protecting organ function. However, several challenges remain to overcome before MSCs can be applied for treating MetS. For example, the merits of autologous versus allogeneic MSCs sources remain unclear, particularly with autologous MSCs obtained from the noxious MetS milieu. The distinct characteristics and relative efficacy of MSCs harvested from different tissue sources also require clarification. Moreover, to improve the therapeutic efficacy of MSCs, investigators have explored several approaches that improved therapeutic efficacy but may involve potential safety concerns. This review summarized the potentially useful MSCs strategy for treating MetS, as well as some hurdles that remain to be overcome. In particular, larger-scale studies are needed to determine the therapeutic efficacy and safety of MSCs for clinical application.
Collapse
Affiliation(s)
- Xiuyi Huang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Yunchong Liu
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Zilun Li
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
26
|
Zhu J, Lyu J, Zhao R, Liu G, Wang S. Gut macrobiotic and its metabolic pathways modulate cardiovascular disease. Front Microbiol 2023; 14:1272479. [PMID: 37822750 PMCID: PMC10562559 DOI: 10.3389/fmicb.2023.1272479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Thousands of microorganisms reside in the human gut, and extensive research has demonstrated the crucial role of the gut microbiota in overall health and maintaining homeostasis. The disruption of microbial populations, known as dysbiosis, can impair the host's metabolism and contribute to the development of various diseases, including cardiovascular disease (CVD). Furthermore, a growing body of evidence indicates that metabolites produced by the gut microbiota play a significant role in the pathogenesis of cardiovascular disease. These bioactive metabolites, such as short-chain fatty acids (SCFAs), trimethylamine (TMA), trimethylamine N-oxide (TMAO), bile acids (BAs), and lipopolysaccharides (LPS), are implicated in conditions such as hypertension and atherosclerosis. These metabolites impact cardiovascular function through various pathways, such as altering the composition of the gut microbiota and activating specific signaling pathways. Targeting the gut microbiota and their metabolic pathways represents a promising approach for the prevention and treatment of cardiovascular diseases. Intervention strategies, such as probiotic drug delivery and fecal transplantation, can selectively modify the composition of the gut microbiota and enhance its beneficial metabolic functions, ultimately leading to improved cardiovascular outcomes. These interventions hold the potential to reshape the gut microbial community and restore its balance, thereby promoting cardiovascular health. Harnessing the potential of these microbial metabolites through targeted interventions offers a novel avenue for tackling cardiovascular health issues. This manuscript provides an in-depth review of the recent advances in gut microbiota research and its impact on cardiovascular health and offers a promising avenue for tackling cardiovascular health issues through gut microbiome-targeted therapies.
Collapse
Affiliation(s)
- Junwen Zhu
- Department of Cardiology, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People’s Hospital of Wenling), Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jin Lyu
- Department of Pathology, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Ruochi Zhao
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Affiliated First Hospital of Ningbo University, Ningbo, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Shuangshuang Wang
- Department of Cardiology, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People’s Hospital of Wenling), Zhejiang, China
| |
Collapse
|
27
|
Chen C, Chen W, Ding H, Wu P, Zhang G, Xie K, Zhang T. High-fat diet-induced gut microbiota alteration promotes lipogenesis by butyric acid/miR-204/ACSS2 axis in chickens. Poult Sci 2023; 102:102856. [PMID: 37390560 PMCID: PMC10331483 DOI: 10.1016/j.psj.2023.102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 07/02/2023] Open
Abstract
The gut microbiota is known to have significant involvement in the regulation of lipogenesis and adipogenesis, yet the mechanisms responsible for this relationship remain poorly understood. The current study aims to provide insight into the potential mechanisms by which the gut microbiota modulates lipogenesis in chickens. Using chickens fed with a normal-fat diet (NFD, n = 5) and high-fat diet (HFD, n = 5), we analyzed the correlation between gut microbiota, cecal metabolomics, and lipogenesis by 16s rRNA sequencing, miRNA and mRNA sequencing as well as targeted metabolomics analysis. The potential metabolite/miRNA/mRNA axis regulated by gut microbiota was identified using chickens treated with antibiotics (ABX, n = 5). The possible mechanism of gut microbiota regulating chicken lipogenesis was confirmed by fecal microbiota transplantation (FMT) from chickens fed with NFD to chickens fed with HFD (n = 5). The results showed that HFD significantly altered gut microbiota composition and enhanced chicken lipogenesis, with a significant correlation between 3. Furthermore, HFD significantly altered the hepatic miRNA expression profiles and reduced the abundance of hepatic butyric acid. Procrustes analysis indicated that the HFD-induced dysbiosis of the gut microbiota might affect the expression profiles of hepatic miRNA. Specifically, HFD-induced gut microbiota dysbiosis may reduce the abundance of butyric acid and downregulate the expression of miR-204 in the liver. Multiomics analysis identified ACSS2 as a target gene of miR-204. Gut microbiota depletion by an antibiotic cocktail (ABX) showed a gut microbiota-dependent manner in the abundance of butyric acid and the expression of miR-204/ACSS2, which have been observed to be significantly correlated. Fecal microbiota transplantation from NFD chickens into HFD chickens effectively attenuated the HFD-induced excessive lipogenesis, elevated the abundance of butyric acid and the relative expression of miR-204, and reduced the expression of ACSS2 in the liver. Mechanistically, our results showed that the gut microbiota plays an antiobesity role by regulating the butyric acid/miR-204/ACSS2 axis in chickens. This work contributed to a better understanding of the functions of gut microbiota in regulating chicken lipogenesis.
Collapse
Affiliation(s)
- Can Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Weilin Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Hao Ding
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
28
|
Jing J, Guo J, Dai R, Zhu C, Zhang Z. Targeting gut microbiota and immune crosstalk: potential mechanisms of natural products in the treatment of atherosclerosis. Front Pharmacol 2023; 14:1252907. [PMID: 37719851 PMCID: PMC10504665 DOI: 10.3389/fphar.2023.1252907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory reaction that primarily affects large and medium-sized arteries. It is a major cause of cardiovascular disease and peripheral arterial occlusive disease. The pathogenesis of AS involves specific structural and functional alterations in various populations of vascular cells at different stages of the disease. The immune response is involved throughout the entire developmental stage of AS, and targeting immune cells presents a promising avenue for its treatment. Over the past 2 decades, studies have shown that gut microbiota (GM) and its metabolites, such as trimethylamine-N-oxide, have a significant impact on the progression of AS. Interestingly, it has also been reported that there are complex mechanisms of action between GM and their metabolites, immune responses, and natural products that can have an impact on AS. GM and its metabolites regulate the functional expression of immune cells and have potential impacts on AS. Natural products have a wide range of health properties, and researchers are increasingly focusing on their role in AS. Now, there is compelling evidence that natural products provide an alternative approach to improving immune function in the AS microenvironment by modulating the GM. Natural product metabolites such as resveratrol, berberine, curcumin, and quercetin may improve the intestinal microenvironment by modulating the relative abundance of GM, which in turn influences the accumulation of GM metabolites. Natural products can delay the progression of AS by regulating the metabolism of GM, inhibiting the migration of monocytes and macrophages, promoting the polarization of the M2 phenotype of macrophages, down-regulating the level of inflammatory factors, regulating the balance of Treg/Th17, and inhibiting the formation of foam cells. Based on the above, we describe recent advances in the use of natural products that target GM and immune cells crosstalk to treat AS, which may bring some insights to guide the treatment of AS.
Collapse
Affiliation(s)
- Jinpeng Jing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Guo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Dai
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaojun Zhu
- Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Surgical Department of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhaohui Zhang
- Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Surgical Department of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
29
|
Mutengo KH, Masenga SK, Mweemba A, Mutale W, Kirabo A. Gut microbiota dependant trimethylamine N-oxide and hypertension. Front Physiol 2023; 14:1075641. [PMID: 37089429 PMCID: PMC10118022 DOI: 10.3389/fphys.2023.1075641] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
The human gut microbiota environment is constantly changing and some specific changes influence the host's metabolic, immune, and neuroendocrine functions. Emerging evidence of the gut microbiota's role in the development of cardiovascular disease (CVD) including hypertension is remarkable. There is evidence showing that alterations in the gut microbiota and especially the gut-dependant metabolite trimethylamine N-oxide is associated with hypertension. However, there is a scarcity of literature addressing the role of trimethylamine N-oxide in hypertension pathogenesis. In this review, we discuss the impact of the gut microbiota and gut microbiota dependant trimethylamine N-oxide in the pathogenesis of hypertension. We present evidence from both human and animal studies and further discuss new insights relating to potential therapies for managing hypertension by altering the gut microbiota.
Collapse
Affiliation(s)
- Katongo H. Mutengo
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
- Schools of Public Health and Medicine, University of Zambia, Lusaka, Zambia
| | - Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone, Zambia
- Schools of Public Health and Medicine, University of Zambia, Lusaka, Zambia
| | - Aggrey Mweemba
- Department of Medicine, Levy Mwanawasa Medical University, Lusaka, Zambia
| | - Wilbroad Mutale
- School of Public Health, University of Zambia, Lusaka, Zambia
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
30
|
Stonāns I, Kuzmina J, Poļaka I, Grīnberga S, Sevostjanovs E, Liepiņš E, Aleksandraviča I, Šantare D, Kiršners A, Škapars R, Pčolkins A, Tolmanis I, Sīviņš A, Leja M, Dambrova M. The Association of Circulating L-Carnitine, γ-Butyrobetaine and Trimethylamine N-Oxide Levels with Gastric Cancer. Diagnostics (Basel) 2023; 13:diagnostics13071341. [PMID: 37046558 PMCID: PMC10093028 DOI: 10.3390/diagnostics13071341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Our study aimed to evaluate the association between gastric cancer (GC) and higher concentrations of the metabolites L-carnitine, γ-butyrobetaine (GBB) and gut microbiota-mediated trimethylamine N-oxide (TMAO) in the circulation. There is evidence suggesting that higher levels of TMAO and its precursors in blood can be indicative of either a higher risk of malignancy or indeed its presence; however, GC has not been studied in this regard until now. Our study included 83 controls without high-risk stomach lesions and 105 GC cases. Blood serum L-carnitine, GBB and TMAO levels were measured by ultra-high-performance liquid chromatography–mass spectrometry (UPLC/MS/MS). Although there were no significant differences between female control and GC groups, we found a significant difference in circulating levels of metabolites between the male control group and the male GC group, with median levels of L-carnitine reaching 30.22 (25.78–37.57) nmol/mL vs. 37.38 (32.73–42.61) nmol/mL (p < 0.001), GBB–0.79 (0.73–0.97) nmol/mL vs. 0.97 (0.78–1.16) nmol/mL (p < 0.05) and TMAO–2.49 (2.00–2.97) nmol/mL vs. 3.12 (2.08–5.83) nmol/mL (p < 0.05). Thus, our study demonstrated the association between higher blood levels of L-carnitine, GBB, TMAO and GC in males, but not in females. Furthermore, correlations of any two investigated metabolites were stronger in the GC groups of both genders in comparison to the control groups. Our findings reveal the potential role of L-carnitine, GBB and TMAO in GC and suggest metabolic differences between genders. In addition, the logistic regression analysis revealed that the only significant factor in terms of predicting whether the patient belonged to the control or to the GC group was the blood level of L-carnitine in males only. Hence, carnitine might be important as a biomarker or a risk factor for GC, especially in males.
Collapse
Affiliation(s)
- Ilmārs Stonāns
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1079 Riga, Latvia
| | - Jelizaveta Kuzmina
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1079 Riga, Latvia
| | - Inese Poļaka
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1079 Riga, Latvia
| | - Solveiga Grīnberga
- Mass Spectrometry Group, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia
| | - Eduards Sevostjanovs
- Mass Spectrometry Group, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia
| | - Edgars Liepiņš
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia
| | - Ilona Aleksandraviča
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1079 Riga, Latvia
- Riga East University Hospital, LV-1038 Riga, Latvia
| | - Daiga Šantare
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1079 Riga, Latvia
- Riga East University Hospital, LV-1038 Riga, Latvia
- Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia
| | - Arnis Kiršners
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1079 Riga, Latvia
| | - Roberts Škapars
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1079 Riga, Latvia
- Riga East University Hospital, LV-1038 Riga, Latvia
| | - Andrejs Pčolkins
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1079 Riga, Latvia
- Riga East University Hospital, LV-1038 Riga, Latvia
| | - Ivars Tolmanis
- Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia
- Digestive Diseases Centre GASTRO, LV-1586 Riga, Latvia
| | - Armands Sīviņš
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1079 Riga, Latvia
- Riga East University Hospital, LV-1038 Riga, Latvia
- Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia
| | - Mārcis Leja
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1079 Riga, Latvia
- Riga East University Hospital, LV-1038 Riga, Latvia
- Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia
- Digestive Diseases Centre GASTRO, LV-1586 Riga, Latvia
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia
| |
Collapse
|
31
|
Osada J. Nutrition Genomics. Int J Mol Sci 2023; 24:ijms24076490. [PMID: 37047463 PMCID: PMC10095425 DOI: 10.3390/ijms24076490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
This Special Issue is devoted to nutrition genomics, which is the characterization of the whole genome response to nutrients, in an effort to gather all the available pertinent information and to establish the foundation for a future encyclopedia of genomic responses driven by diets or nutrients [...]
Collapse
|
32
|
The neuroprotective and antidiabetic effects of trigonelline: A review of signaling pathways and molecular mechanisms. Biochimie 2023; 206:93-104. [PMID: 36257493 DOI: 10.1016/j.biochi.2022.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/07/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022]
Abstract
The global epidemic of diabetes has brought heavy pressure on public health. New effective anti-diabetes strategies are urgently needed. Trigonelline is the main component of fenugreek, which has been proved to have a good therapeutic effect on diabetes and diabetic complications. Trigonelline achieves amelioration of diabetes, the mechanisms of which include the modulation of insulin secretion, a reduction in oxidative stress, and the improvement of glucose tolerance and insulin resistance. Besides, trigonelline has been reported to be a neuroprotective agent against many neurologic diseases including Alzheimer's disease, Parkinson's disease, stroke, and depression. Concerning the potential therapeutic effects of trigonelline, comprehensive clinical trials are warranted to evaluate this valuable molecule.
Collapse
|
33
|
Kato I, Sun J. Microbiome and Diet in Colon Cancer Development and Treatment. Cancer J 2023; 29:89-97. [PMID: 36957979 PMCID: PMC10037538 DOI: 10.1097/ppo.0000000000000649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
ABSTRACT Diet plays critical roles in defining our immune responses, microbiome, and progression of human diseases. With recent progress in sequencing and bioinformatic techniques, increasing evidence indicates the importance of diet-microbial interactions in cancer development and therapeutic outcome. Here, we focus on the epidemiological studies on diet-bacterial interactions in the colon cancer. We also review the progress of mechanistic studies using the experimental models. Finally, we discuss the limits and future directions in the research of microbiome and diet in cancer development and therapeutic outcome. Now, it is clear that microbes can influence the efficacy of cancer therapies. These research results open new possibilities for the diagnosis, prevention, and treatment of cancer. However, there are still big gaps to apply these new findings to the clinical practice.
Collapse
Affiliation(s)
- Ikuko Kato
- Department of Oncology, Wayne State University, Detroit Michigan, USA
- Department of Pathology, Wayne State University, Detroit Michigan, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, 840 S Wood Street, Room 704 CSB, MC716, Chicago, IL 60612, USA
- Department of Microbiology/Immunology, University of Illinois Chicago, Chicago, IL 60612, USA
- University of Illinois Cancer Center, 818 S Wolcott Avenue, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, 820 S. Damen Avenue, Chicago, IL 60612, USA
| |
Collapse
|
34
|
Inceu AI, Neag MA, Craciun AE, Buzoianu AD. Gut Molecules in Cardiometabolic Diseases: The Mechanisms behind the Story. Int J Mol Sci 2023; 24:3385. [PMID: 36834796 PMCID: PMC9965280 DOI: 10.3390/ijms24043385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Atherosclerotic cardiovascular disease is the most common cause of morbidity and mortality worldwide. Diabetes mellitus increases cardiovascular risk. Heart failure and atrial fibrillation are associated comorbidities that share the main cardiovascular risk factors. The use of incretin-based therapies promoted the idea that activation of alternative signaling pathways is effective in reducing the risk of atherosclerosis and heart failure. Gut-derived molecules, gut hormones, and gut microbiota metabolites showed both positive and detrimental effects in cardiometabolic disorders. Although inflammation plays a key role in cardiometabolic disorders, additional intracellular signaling pathways are involved and could explain the observed effects. Revealing the involved molecular mechanisms could provide novel therapeutic strategies and a better understanding of the relationship between the gut, metabolic syndrome, and cardiovascular diseases.
Collapse
Affiliation(s)
- Andreea-Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Anca-Elena Craciun
- Department of Diabetes, and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
35
|
In Vitro Fermentation of Pleurotus eryngii Mushrooms by Human Fecal Microbiota: Metataxonomic Analysis and Metabolomic Profiling of Fermentation Products. J Fungi (Basel) 2023; 9:jof9010128. [PMID: 36675949 PMCID: PMC9865116 DOI: 10.3390/jof9010128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Edible mushrooms contain biologically active compounds with antioxidant, antimicrobial, immunomodulatory and anticancer properties. The link between their anticancer and immunomodulatory properties with their possible prebiotic activity on gut micro-organisms has been the subject of intense research over the last decade. Lyophilized Pleurotus eryngii (PE) mushrooms, selected due to their strong lactogenic effect and anti-genotoxic, immunomodulatory properties, underwent in vitro static batch fermentation for 24 h by fecal microbiota from eight elderly apparently healthy volunteers (>65 years old). The fermentation-induced changes in fecal microbiota communities were examined using Next Generation Sequencing of the hypervariable regions of the 16S rRNA gene. Primary processing and analysis were conducted using the Ion Reporter Suite. Changes in the global metabolic profile were assessed by 1H NMR spectroscopy, and metabolites were assigned by 2D NMR spectroscopy and the MetaboMiner platform. PLS-DA analysis of both metataxonomic and metabolomic data showed a significant cluster separation of PE fermented samples relative to controls. DEseq2 analysis showed that the abundance of families such as Lactobacillaceae and Bifidobacteriaceae were increased in PE samples. Accordingly, in metabolomics, more than twenty metabolites including SCFAs, essential amino acids, and neurotransmitters discriminate PE samples from the respective controls, further validating the metataxonomic findings.
Collapse
|
36
|
Zhen J, Zhou Z, He M, Han HX, Lv EH, Wen PB, Liu X, Wang YT, Cai XC, Tian JQ, Zhang MY, Xiao L, Kang XX. The gut microbial metabolite trimethylamine N-oxide and cardiovascular diseases. Front Endocrinol (Lausanne) 2023; 14:1085041. [PMID: 36824355 PMCID: PMC9941174 DOI: 10.3389/fendo.2023.1085041] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Morbidity and mortality of cardiovascular diseases (CVDs) are exceedingly high worldwide. Researchers have found that the occurrence and development of CVDs are closely related to intestinal microecology. Imbalances in intestinal microecology caused by changes in the composition of the intestinal microbiota will eventually alter intestinal metabolites, thus transforming the host physiological state from healthy mode to pathological mode. Trimethylamine N-oxide (TMAO) is produced from the metabolism of dietary choline and L-carnitine by intestinal microbiota, and many studies have shown that this important product inhibits cholesterol metabolism, induces platelet aggregation and thrombosis, and promotes atherosclerosis. TMAO is directly or indirectly involved in the pathogenesis of CVDs and is an important risk factor affecting the occurrence and even prognosis of CVDs. This review presents the biological and chemical characteristics of TMAO, and the process of TMAO produced by gut microbiota. In particular, the review focuses on summarizing how the increase of gut microbial metabolite TMAO affects CVDs including atherosclerosis, heart failure, hypertension, arrhythmia, coronary artery disease, and other CVD-related diseases. Understanding the mechanism of how increases in TMAO promotes CVDs will potentially facilitate the identification and development of targeted therapy for CVDs.
Collapse
Affiliation(s)
- Jing Zhen
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Zhou Zhou
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng He
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hai-Xiang Han
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - En-Hui Lv
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Peng-Bo Wen
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xin Liu
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan-Ting Wang
- Department of Biochemical Pharmacy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Xun-Chao Cai
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
| | - Jia-Qi Tian
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng-Ying Zhang
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lei Xiao
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, China
- *Correspondence: Xing-Xing Kang, ; Lei Xiao,
| | - Xing-Xing Kang
- Department of Bioinformatics, School of Medical Informatics, Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Xing-Xing Kang, ; Lei Xiao,
| |
Collapse
|
37
|
Liu M, Shi W, Huang Y, Wu Y, Wu K. Intestinal flora: A new target for traditional Chinese medicine to improve lipid metabolism disorders. Front Pharmacol 2023; 14:1134430. [PMID: 36937840 PMCID: PMC10014879 DOI: 10.3389/fphar.2023.1134430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Lipid metabolism disorders (LMD) can cause a series of metabolic diseases, including hyperlipidemia, obesity, non-alcoholic fatty liver disease (NAFLD) and atherosclerosis (AS). Its development is caused by more pathogenic factors, among which intestinal flora dysbiosis is considered to be an important pathogenic mechanism of LMD. In recent years, the research on intestinal flora has made great progress, opening up new perspectives on the occurrence and therapeutic effects of diseases. With its complex composition and wide range of targets, traditional Chinese medicine (TCM) is widely used to prevent and treat LMD. This review takes intestinal flora as a target, elaborates on the scientific connotation of TCM in the treatment of LMD, updates the therapeutic thinking of LMD, and provides a reference for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Min Liu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wei Shi
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yefang Huang
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Keming Wu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
38
|
Rehman A, Tyree SM, Fehlbaum S, DunnGalvin G, Panagos CG, Guy B, Patel S, Dinan TG, Duttaroy AK, Duss R, Steinert RE. A water-soluble tomato extract rich in secondary plant metabolites lowers trimethylamine-n-oxide and modulates gut microbiota: a randomized, double-blind, placebo-controlled cross-over study in overweight and obese adults. J Nutr 2023; 153:96-105. [PMID: 36913483 DOI: 10.1016/j.tjnut.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/26/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Natural products rich in polyphenols have been shown to lower plasma trimethylamine-n-oxide (TMAO) known for its proatherogenic effects by modulating the intestinal microbiota. OBJECTIVES We aimed to determine the impact of Fruitflow, a water-soluble tomato extract, on TMAO, fecal microbiota, and plasma and fecal metabolites. METHODS Overweight and obese adults (n = 22, BMI 28-35 kg/m2) were included in a double-blind, placebo-controlled, cross-over study receiving 2×150 mg Fruitflow per day or placebo (maltodextrin) for 4 wk with a 6-week wash-out between interventions. Stool, blood, and urine samples were collected to assess changes in plasma TMAO (primary outcome) as well as fecal microbiota, fecal and plasma metabolites, and urine TMAO (secondary outcomes). In a subgroup (n = 9), postprandial TMAO was evaluated following a choline-rich breakfast (∼450 mg). Statistical methods included paired t-tests or Wilcoxon signed rank tests and permutational multivariate analysis of variance. RESULTS Fruitflow, but not placebo, reduced fasting levels of plasma (-1.5 μM, P ≤ 0.05) and urine (-19.1 μM, P ≤ 0.01) TMAO as well as plasma lipopolysaccharides (-5.3 ng/mL, P ≤ 0.05) from baseline to the end of intervention. However, these changes were significant only for urine TMAO levels when comparing between the groups (P ≤ 0.05). Changes in microbial beta, but not alpha, diversity paralleled this with a significant difference in Jaccard distance-based Principal Component (P ≤ 0.05) as well as decreases in Bacteroides, Ruminococccus, and Hungatella and increases in Alistipes when comparing between and within groups (P ≤ 0.05, respectively). There were no between-group differences in SCFAs and bile acids (BAs) in both faces and plasma but several changes within groups such as an increase in fecal cholic acid or plasma pyruvate with Fruitflow (P ≤ 0.05, respectively). An untargeted metabolomic analysis revealed TMAO as the most discriminant plasma metabolite between groups (P ≤ 0.05). CONCLUSIONS Our results support earlier findings that polyphenol-rich extracts can lower plasma TMAO in overweight and obese adults related to gut microbiota modulation. This trial was registered at clinicaltrials.gov as NCT04160481 (https://clinicaltrials.gov/ct2/show/NCT04160481?term= Fruitflow&draw= 2&rank= 2).
Collapse
Affiliation(s)
| | | | | | | | | | - Bertrand Guy
- DSM Nutritional Products, Kaiseraugst, Switzerland
| | | | - Timothy G Dinan
- Atlantia Clinical Trials, Cork, Ireland, APC Microbiome Ireland, Cork, Ireland, Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Nutrition, Faculty of Medicine, University of Oslo, Norway
| | - Ruedi Duss
- DSM Nutritional Products, Kaiseraugst, Switzerland
| | - Robert E Steinert
- DSM Nutritional Products, Kaiseraugst, Switzerland; Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
39
|
Liu D, Gu S, Zhou Z, Ma Z, Zuo H. Associations of plasma TMAO and its precursors with stroke risk in the general population: A nested case-control study. J Intern Med 2023; 293:110-120. [PMID: 36200542 DOI: 10.1111/joim.13572] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO) is a gut-derived atherogenic metabolite. However, the role of TMAO and its precursors in the development of stroke remains unclear. We aimed to examine the associations between metabolites in TMAO biosynthesis and stroke risk. METHODS A nested case-control study was performed in a community-based cohort (2013-2018, n = 16,113). We included 412 identified stroke cases and 412 controls matched by age and sex. Plasma carnitine, choline, betaine, trimethyl lysine (TML), and TMAO were measured by ultrahigh performance liquid chromatography-tandem mass spectrometry. Conditional logistic regression analyses were used to calculate odds ratios (ORs) and their 95% confidence intervals (CIs) between these biomarkers and stroke risk. RESULTS After adjustment for body mass index, smoking, hypertension, educational attainment, and estimated glomerular filtration rate, the corresponding OR for the highest versus lowest quartile was 1.74 (95% CI: 1.16-2.61, P trend = 0.006) for total stroke and 1.81 (95% CI: 1.14-2.86, P trend = 0.020) for ischemic stroke in an essentially linear dose-response fashion. A significant association between TMAO and nonischemic stroke was shown as a J-shape with OR for the highest versus second quartile of 5.75 (95% CI: 1.73-19.1). No meaningful significant risk association was found among plasma carnitine, choline, betaine, and TML with stroke risk. CONCLUSIONS Increased TMAO was associated with higher stroke risk in the community-based population, whereas the TMAO precursors carnitine, choline, betaine, and TML were not associated. Further studies are warranted to confirm these findings and to further elucidate the role of TMAO in the development of stroke.
Collapse
Affiliation(s)
- Dong Liu
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Shujun Gu
- Department of Chronic Disease Control and Prevention, Changshu Center for Disease Control and Prevention, Suzhou, China
| | - Zhengyuan Zhou
- Department of Chronic Disease Control and Prevention, Changshu Center for Disease Control and Prevention, Suzhou, China
| | - Ze Ma
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Hui Zuo
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Medical College of Soochow University, Suzhou, China
| |
Collapse
|
40
|
Plasma Cholesterol- and Body Fat-Lowering Effects of Chicken Protein Hydrolysate and Oil in High-Fat Fed Male Wistar Rats. Nutrients 2022; 14:nu14245364. [PMID: 36558523 PMCID: PMC9785847 DOI: 10.3390/nu14245364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Rest raw materials provide a new source of bioactive dietary ingredients, and this study aimed to determine the health effects of diets with chicken protein hydrolysate (CPH) and chicken oil (CO) generated from deboned chicken meat. Male Wistar rats (n = 56) were divided into seven groups in three predefined sub-experiments to study the effects of protein source (casein, chicken fillet, pork fillet, and CPH), the dose-effect of CPH (50% and 100% CPH), and the effects of combining CPH and CO. Rats were fed high-fat diets for 12 weeks, and casein and chicken fillet were used as controls in all sub-experiments. While casein, chicken-, or pork fillet diets resulted in similar weight gain and plasma lipid levels, the CPH diet reduced plasma total cholesterol. This effect was dose dependent and accompanied with the reduced hepatic activities of acetyl-CoA carboxylase and fatty acid synthase. Further, rats fed combined CPH and CO showed lower weight gain, and higher hepatic mitochondrial fatty acid oxidation, plasma L-carnitine, short-chain acylcarnitines, TMAO, and acetylcarnitine/palmitoylcarnitine. Thus, in male Wistar rats, CPH and CO lowered plasma cholesterol and increased hepatic fatty acid oxidation compared to whole protein diets, pointing to potential health-beneficial bioactive properties of these processed chicken rest raw materials.
Collapse
|
41
|
Canyelles M, Pérez A, Junza A, Miñambres I, Yanes O, Sardà H, Rotllan N, Julve J, Sánchez-Quesada JL, Tondo M, Escolà-Gil JC, Blanco-Vaca F. Divergent Effects of Glycemic Control and Bariatric Surgery on Circulating Concentrations of TMAO in Newly Diagnosed T2D Patients and Morbidly Obese. Diagnostics (Basel) 2022; 12:diagnostics12112783. [PMID: 36428843 PMCID: PMC9689652 DOI: 10.3390/diagnostics12112783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
High circulating concentrations of the gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) are significantly associated with the risk of obesity and type 2 diabetes (T2D). We aimed at evaluating the impact of glycemic control and bariatric surgery on circulating concentrations of TMAO and its microbiota-dependent intermediate, γ-butyrobetaine (γBB), in newly diagnosed T2D patients and morbidly obese subjects following a within-subject design. Based on HbA1c concentrations, T2D patients achieved glycemic control. However, the plasma TMAO and γBB concentrations were significantly increased, without changes in estimated glomerular filtration rate. Bariatric surgery was very effective in reducing weight in obese subjects. Nevertheless, the surgery reduced plasma γBB concentrations without affecting TMAO concentrations and the estimated glomerular filtration rate. Considering these results, an additional experiment was carried out in male C57BL/6J mice fed a Western-type diet for twelve weeks. Neither diet-induced obesity nor insulin resistance were associated with circulating TMAO and γBB concentrations in these genetically defined mice strains. Our findings do not support that glycemic control or bariatric surgery improve the circulating concentrations of TMAO in newly diagnosed T2D and morbidly obese patients.
Collapse
Affiliation(s)
- Marina Canyelles
- Institut de Recerca de l’Hospital Santa Creu i Sant Pau, Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Antonio Pérez
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain
| | - Alexandra Junza
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Metabolomics Platform, Department of Electronic Engineering, Universitat Rovira i Virgili, 43204 Reus, Spain
| | - Inka Miñambres
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain
| | - Oscar Yanes
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Metabolomics Platform, Department of Electronic Engineering, Universitat Rovira i Virgili, 43204 Reus, Spain
| | - Helena Sardà
- Department of Endocrinology and Nutrition, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain
| | - Noemí Rotllan
- Institut de Recerca de l’Hospital Santa Creu i Sant Pau, Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Josep Julve
- Institut de Recerca de l’Hospital Santa Creu i Sant Pau, Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - José Luis Sánchez-Quesada
- Institut de Recerca de l’Hospital Santa Creu i Sant Pau, Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Mireia Tondo
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Department of Clinical Biochemistry, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain
- Correspondence: (M.T.); (F.B.-V.)
| | - Joan Carles Escolà-Gil
- Institut de Recerca de l’Hospital Santa Creu i Sant Pau, Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Francisco Blanco-Vaca
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Department of Clinical Biochemistry, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain
- Department de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
- Correspondence: (M.T.); (F.B.-V.)
| |
Collapse
|
42
|
Association between the Changes in Trimethylamine N-Oxide-Related Metabolites and Prognosis of Patients with Acute Myocardial Infarction: A Prospective Study. J Cardiovasc Dev Dis 2022; 9:jcdd9110380. [PMID: 36354779 PMCID: PMC9694290 DOI: 10.3390/jcdd9110380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
This study aimed to investigate the association between changes in levels of trimethylamine N-oxide (TMAO) and its precursors and the prognosis of patients with acute myocardial infarction (AMI). Patients diagnosed with AMI were prospectively enrolled at Fuwai Hospital between March 2017 and January 2020. TMAO, betaine, choline, and L-carnitine were measured in 1203 patients at their initial admission and 509 patients at their follow-up of one month. Major adverse cardiovascular events (MACE), a composite of all-cause death, recurrence of MI, rehospitalization caused by HF, ischemic stroke, and any revascularization, were followed up. A decision tree by TMAO levels implicated that compared to those with low levels at admission, patients with high TMAO levels at both time points showed an increased risk of MACE (adjusted hazard ratio (HR) 1.59, 95% confidence interval (CI): 1.03–2.46; p = 0.034), while patients with high TMAO levels at admission and low levels at follow-up exhibited a similar MACE risk (adjusted HR 1.20, 95% CI: 0.69–2.06; p = 0.520). Patients with high choline levels at admission and follow-up showed an elevated MACE risk compared to those with low levels at both time points (HR 1.55, 95% CI: 1.03–2.34; p = 0.034). Repeated assessment of TMAO and choline levels helps to identify the dynamic risk of cardiovascular events.
Collapse
|
43
|
Host-microbiome interactions: Gut-Liver axis and its connection with other organs. NPJ Biofilms Microbiomes 2022; 8:89. [PMID: 36319663 PMCID: PMC9626460 DOI: 10.1038/s41522-022-00352-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/18/2022] [Indexed: 11/26/2022] Open
Abstract
An understanding of connections between gut microbiome and liver has provided important insights into the pathophysiology of liver diseases. Since gut microbial dysbiosis increases gut permeability, the metabolites biosynthesized by them can reach the liver through portal circulation and affect hepatic immunity and inflammation. The immune cells activated by these metabolites can also reach liver through lymphatic circulation. Liver influences immunity and metabolism in multiple organs in the body, including gut. It releases bile acids and other metabolites into biliary tract from where they enter the systemic circulation. In this review, the bidirectional communication between the gut and the liver and the molecular cross talk between the host and the microbiome has been discussed. This review also provides details into the intricate level of communication and the role of microbiome in Gut-Liver-Brain, Gut-Liver-Kidney, Gut-Liver-Lung, and Gut-Liver-Heart axes. These observations indicate a complex network of interactions between host organs influenced by gut microbiome.
Collapse
|
44
|
Kemp JA, Dos Santos HF, de Jesus HE, Esgalhado M, de Paiva BR, Azevedo R, Stenvinkel P, Bergman P, Lindholm B, Ribeiro-Alves M, Mafra D. Resistant Starch Type-2 Supplementation Does Not Decrease Trimethylamine N-Oxide (TMAO) Plasma Level in Hemodialysis Patients. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2022; 41:788-795. [PMID: 35512757 DOI: 10.1080/07315724.2021.1967814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 06/14/2023]
Abstract
Dysbiosis is recognized as a new cardiovascular disease (CVD) risk factor in hemodialysis (HD) patients because it is linked to increased generation in the gut of uremic toxins such as trimethylamine N-Oxide (TMAO) from dietary precursors (choline, betaine, or L-carnitine). Nutritional strategies have been proposed to modulate the gut microbiota and reduce the production of these toxins. This study aimed to evaluate the effect of amylose-resistant starch (RS) supplementation on TMAO plasma levels in HD patients. We conducted a randomized, double-blind, placebo-controlled trial (NCT02706808) with patients undergoing HD enrolled in a previous pilot study. The participants were allocated to RS or placebo groups to receive 16 g/d of RS or placebo for 4 weeks. Plasma TMAO, choline, and betaine levels were measured with LC-MS/MS. Fecal microbiome composition was evaluated by 16S ribosomal RNA sequencing, followed by a search for TMA-associated taxa. Anthropometric, routine biochemical parameters, and food intake were evaluated. Twenty-five participants finished the study, 13 in the RS group, and 12 in the placebo group. RS supplementation did not reduce TMAO plasma levels. Moreover, no significant alterations were observed in choline, betaine, anthropometric, biochemical parameters, or food intake in both groups. Likewise, RS was not found to exert any influence on the proportion of potential TMA-producing bacterial taxa in fecal matter. RS supplementation did not influence plasma TMAO, choline, betaine, or fecal taxa potentially linked to TMAO. Thus, RS does not seem to modify the TMA-associated bacterial taxa, precursors of TMAO. Supplemental data for this article is available online at https://doi.org/10.1080/07315724.2021.1967814 .
Collapse
Affiliation(s)
- Julie Ann Kemp
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | | | - Hugo Emiliano de Jesus
- Department of Marine Biology, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Marta Esgalhado
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Bruna Regis de Paiva
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Renata Azevedo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Peter Stenvinkel
- Renal Medicine and Baxter Novum, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Huddinge, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Bengt Lindholm
- Renal Medicine and Baxter Novum, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Marcelo Ribeiro-Alves
- HIV/AIDS Clinical Research Center, National Institute of Infectology (INI/Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise Mafra
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
45
|
Li W, Wang F, Jiang S, Pan B, Liu Q, Xu Q. Morphological and molecular evolution of hadal amphipod’s eggs provides insights into embryogenesis under high hydrostatic pressure. Front Cell Dev Biol 2022; 10:987409. [PMID: 36172273 PMCID: PMC9511220 DOI: 10.3389/fcell.2022.987409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Hadal zones are unique habitats characterized by high hydrostatic pressure (HHP) and scarce food supplies. The ability of eggs of species dwelling in hadal zones to develop into normal embryo under high hydrostatic pressure is an important evolutionary and developmental trait. However, the mechanisms underlying the development of eggs of hadal-dwelling species remain unknown due to the difficulty of sampling ovigerous females. Here, morphological and transcriptome analyses of eggs of the “supergiant” amphipod Alicella gigantea collected from the New Britain Trench were conducted. The morphology of A. gigantea eggs, including size, was assessed and the ultrastructure of the eggshell was investigated by scanning electron microscopy. Transcriptome sequencing and molecular adaptive evolution analysis of A. gigantea eggs showed that, as compared with shallow-water Gammarus species, genes exhibiting accelerated evolution and the positively selected genes were mostly related to pathways associated with “mitosis” and “chitin-based embryonic cuticle biosynthetic process”, suggesting that “normal mitosis maintenance” and “cuticle development and protection” are the two main adaptation strategies for survival of eggs in hadal environments. In addition, the concentration of trimethylamine oxide (TMAO), an important osmotic regulator, was significantly higher in the eggs of hadal amphipods as compared to those of shallow-water species, which might promote the eggs’ adaptation abilities. Morphological identification, evolutionary analysis, and the trimethylamine oxide concentration of A. gigantea eggs will facilitate a comprehensive overview of the piezophilic adaptation of embryos in hadal environments and provide a strategy to analyze embryogenesis under high hydrostatic pressure.
Collapse
Affiliation(s)
- Wenhao Li
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Faxiang Wang
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Shouwen Jiang
- Key Laboratory of Aquaculture Resources and Utilization, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Binbin Pan
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Qi Liu
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Qianghua Xu
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- National Distant-water Fisheries Engineering Research Center, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
46
|
Ren Z, Xu Y, Li T, Sun W, Tang Z, Wang Y, Zhou K, Li J, Ding Q, Liang K, Wu L, Yin Y, Sun Z. NAD+ and its possible role in gut microbiota: Insights on the mechanisms by which gut microbes influence host metabolism. ANIMAL NUTRITION 2022; 10:360-371. [PMID: 35949199 PMCID: PMC9356074 DOI: 10.1016/j.aninu.2022.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/01/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
|
47
|
Abdi M, Esmaeili Gouvarchin Ghaleh H, Ranjbar R. Lactobacilli and Bifidobacterium as anti-atherosclerotic agents. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:934-946. [PMID: 36159325 PMCID: PMC9464336 DOI: 10.22038/ijbms.2022.63860.14073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/04/2022] [Indexed: 11/06/2022]
Abstract
Atherosclerosis is the thickening or hardening of the arteries which is caused by a buildup of atheromatous plaque in the inner lining of an artery. Hypercholesterolemia, inflammation, oxidative stress, and trimethylamine N-oxide (TMAO) are important risk factors for atherosclerosis. Therefore, this study aimed to review the anti-atherosclerotic effects of Lactobacilli and Bifidobacterium via improving lipid profile and reducing the effects of oxidative stress, inflammation, and TMAO. To prepare the present review, several databases such as Scopus, PubMed, and Google Scholar were searched, and relevant articles from 1990 until 2022 were selected and reviewed. The present review showed that Lactobacilli and Bifidobacterium reduce the risk of atherosclerosis in both in vitro and in vivo studies by breaking down or altering cholesterol metabolism with the help of their by-products and by reducing inflammation and oxidative stress and TMAO. Consumption of Lactobacilli and Bifidobacterium can be useful in prevention of atherosclerosis.
Collapse
Affiliation(s)
- Milad Abdi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran,Corresponding author: Reza Ranjbar. Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Kuo CH, Liu CH, Wang JH, Hsu BG. Serum Trimethylamine N-Oxide Levels Correlate with Metabolic Syndrome in Coronary Artery Disease Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148710. [PMID: 35886563 PMCID: PMC9318326 DOI: 10.3390/ijerph19148710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023]
Abstract
Trimethylamine N-oxide (TMAO) is a gut microbial metabolite that affects atherogenesis and glucose dysregulation. The purpose of this study was to look at the link between blood TMAO levels and metabolic syndrome (MetS) in individuals with coronary artery disease (CAD). Blood samples were obtained in fasting status, and serum TMAO level was quantified by high-performance liquid chromatography–mass spectrometry. MetS and its components were defined according to the International Diabetes Federation diagnostic criteria. Of 92 enrolled patients, 51 (55.4%) had MetS. Patients with MetS had a greater proportion of hypertension and diabetes mellitus, higher body weight, waist circumference, body mass index, systolic blood pressure, fasting glucose, triglycerides, blood urea nitrogen, creatinine, C-reactive protein (CRP), insulin level, homeostasis model assessment of insulin resistance, and TMAO level. Multivariable logistic regression models revealed that TMAO level (odds ratio: 1.036, 95% confidence interval: 1.005–1.067, p = 0.023) could be an effective predictor of MetS among the CAD population. In these patients, the log-TMAO level was positively associated with log-CRP (β = 0.274, p = 0.001) and negatively associated with eGFR (β = −0.235, p = 0.022). In conclusion, our study revealed a positive association between serum TMAO level and MetS among patients with CAD.
Collapse
Affiliation(s)
- Chiu-Huang Kuo
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan;
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Chin-Hung Liu
- Ph.D. Program in Pharmacology and Toxicology, Department of Medicine, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
- Department of Pharmacology, Tzu Chi University, Hualien 97004, Taiwan
| | - Ji-Hung Wang
- Division of Cardiology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Correspondence: (J.-H.W.); (B.-G.H.)
| | - Bang-Gee Hsu
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Correspondence: (J.-H.W.); (B.-G.H.)
| |
Collapse
|
49
|
Merino-Ribas A, Araujo R, Pereira L, Campos J, Barreiros L, Segundo MA, Silva N, Costa CFFA, Quelhas-Santos J, Trindade F, Falcão-Pires I, Alencastre I, Dumitrescu IB, Sampaio-Maia B. Vascular Calcification and the Gut and Blood Microbiome in Chronic Kidney Disease Patients on Peritoneal Dialysis: A Pilot Study. Biomolecules 2022; 12:biom12070867. [PMID: 35883423 PMCID: PMC9313079 DOI: 10.3390/biom12070867] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 12/13/2022] Open
Abstract
Vascular calcification (VC) is a frequent condition in chronic kidney disease (CKD) and a well-established risk factor for the development of cardiovascular disease (CVD). Gut dysbiosis may contribute to CVD and inflammation in CKD patients. Nonetheless, the role of gut and blood microbiomes in CKD-associated VC remains unknown. Therefore, this pilot study aimed to explore the link between gut and blood microbiomes and VC in CKD patients on peritoneal dialysis (CKD-PD). Our results showed relative changes in specific taxa between CKD-PD patients with and without VC, namely Coprobacter, Coprococcus 3, Lactobacillus, and Eubacterium eligens group in the gut, and Cutibacterium, Pajaroellobacter, Devosia, Hyphomicrobium, and Pelomonas in the blood. An association between VC and all-cause mortality risk in CKD-PD patients was also observed, and patients with higher mortality risk corroborate the changes of Eubacterium eligens in the gut and Devosia genus in the blood. Although we did not find differences in uremic toxins, intestinal translocation markers, and inflammatory parameters among CKD-PD patients with and without VC, soluble CD14 (sCD14), a nonspecific marker of monocyte activation, positively correlated with VC severity. Therefore, gut Eubacterium eligens group, blood Devosia, and circulating sCD14 should be further explored as biomarkers for VC, CVD, and mortality risk in CKD.
Collapse
Affiliation(s)
- Ana Merino-Ribas
- Nephrology & Infectious Diseases R & D Group, i3S—Instituto de Investigação e Inovação em Saúde, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; (A.M.-R.); (R.A.); (L.P.); (J.C.); (C.F.F.A.C.); (I.A.)
- Departament de Medicina, Universitat Autonoma de Barcelona, 08035 Barcelona, Spain;
- Nephrology Department, Hospital Universitari de Girona Doctor Josep Trueta, 17007 Girona, Spain
| | - Ricardo Araujo
- Nephrology & Infectious Diseases R & D Group, i3S—Instituto de Investigação e Inovação em Saúde, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; (A.M.-R.); (R.A.); (L.P.); (J.C.); (C.F.F.A.C.); (I.A.)
| | - Luciano Pereira
- Nephrology & Infectious Diseases R & D Group, i3S—Instituto de Investigação e Inovação em Saúde, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; (A.M.-R.); (R.A.); (L.P.); (J.C.); (C.F.F.A.C.); (I.A.)
- Nephrology Department, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal;
| | - Joana Campos
- Nephrology & Infectious Diseases R & D Group, i3S—Instituto de Investigação e Inovação em Saúde, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; (A.M.-R.); (R.A.); (L.P.); (J.C.); (C.F.F.A.C.); (I.A.)
| | - Luísa Barreiros
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (L.B.); (M.A.S.)
| | - Marcela A. Segundo
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal; (L.B.); (M.A.S.)
| | - Nádia Silva
- Nephrology Department, Centro Hospitalar Universitário de São João, 4200-319 Porto, Portugal;
| | - Carolina F. F. A. Costa
- Nephrology & Infectious Diseases R & D Group, i3S—Instituto de Investigação e Inovação em Saúde, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; (A.M.-R.); (R.A.); (L.P.); (J.C.); (C.F.F.A.C.); (I.A.)
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Janete Quelhas-Santos
- UnIC@RISE- Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.Q.-S.); (F.T.); (I.F.-P.)
| | - Fábio Trindade
- UnIC@RISE- Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.Q.-S.); (F.T.); (I.F.-P.)
| | - Inês Falcão-Pires
- UnIC@RISE- Cardiovascular Research and Development Centre, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (J.Q.-S.); (F.T.); (I.F.-P.)
| | - Ines Alencastre
- Nephrology & Infectious Diseases R & D Group, i3S—Instituto de Investigação e Inovação em Saúde, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; (A.M.-R.); (R.A.); (L.P.); (J.C.); (C.F.F.A.C.); (I.A.)
| | - Ioana Bancu Dumitrescu
- Departament de Medicina, Universitat Autonoma de Barcelona, 08035 Barcelona, Spain;
- Fresenius Nephrocare, 110372 Pitesti, Romania
| | - Benedita Sampaio-Maia
- Nephrology & Infectious Diseases R & D Group, i3S—Instituto de Investigação e Inovação em Saúde, INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; (A.M.-R.); (R.A.); (L.P.); (J.C.); (C.F.F.A.C.); (I.A.)
- Faculdade de Medicina Dentária, Universidade do Porto, 4200-393 Porto, Portugal
- Correspondence: ; Tel.: +351-220-901-100
| |
Collapse
|
50
|
Ivashkin VT, Medvedev OS, Poluektova EA, Kudryavtseva AV, Bakhtogarimov IR, Karchevskaya AE. Direct and Indirect Methods for Studying Human Gut Microbiota. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2022; 32:19-34. [DOI: 10.22416/1382-4376-2022-32-2-19-34] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Aim: To review the main methods of intestinal microbiota studying.Key points. Currently, molecular genetic methods are used mainly for basic research and do not have a unified protocol for data analysis, which makes it difficult to implement them in clinical practice. Measurement of short chain fatty acids (SCFA) concentrations in plasma provides the data, which can serve as an indirect biomarker of the colonic microbiota composition. However, currently available evidence is insufficient to relate the obtained values (SCFA levels and ratio) to a particular disease with a high degree of certainty. Trimethylamine N-oxide (TMAO) levels in the blood plasma and urine can also reflect the presence of specific bacterial clusters containing genes Cut, CntA/CntB and YeaW/YeaX. Therefore, further studies are required to reveal possible correlations between certain disorders and such parameters as the composition of gut microbiota, dietary patterns and TMAO concentration. Gas biomarkers, i.e. hydrogen, methane and hydrogen sulphide, have been studied in more detail and are better understood as compared to other biomarkers of the gut microbiome composition and functionality. The main advantage of gas biomarkers is that they can be measured multiple times using non-invasive techniques. These measurements provide information on the relative proportion of hydrogenic (i.e. hydrogen producing) and hydrogenotrophic (i.e. methanogenic and sulfate-reducing) microorganisms. In its turn, this opens up the possibility of developing new approaches to correction of individual microbiota components.Conclusions. Integration of the data obtained by gut microbiota studies at the genome, transcriptome and metabolome levels would allow a comprehensive analysis of microbial community function and its interaction with the human organism. This approach may increase our understanding of the pathogenesis of various diseases as well open up new opportunities for prevention and treatment.
Collapse
Affiliation(s)
- V. T. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. S. Medvedev
- M.V. Lomonosov Moscow State University; National Medical Research Center of Cardiology
| | - E. A. Poluektova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | - A. E. Karchevskaya
- I.M. Sechenov First Moscow State Medical University (Sechenov University); N.N. Burdenko National Medical Research Center of Neurosurgery; Institute of Higher Nervous Activity and Neurophysiology
| |
Collapse
|