1
|
Mukherjee S, Aoki Y, Kawamura S, Sodeoka M. Ligand-Controlled Copper-Catalyzed Halo-Halodifluoromethylation of Alkenes and Alkynes Using Fluorinated Carboxylic Anhydrides. Angew Chem Int Ed Engl 2024; 63:e202407150. [PMID: 38979689 DOI: 10.1002/anie.202407150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Polyhalogenated molecules are often found as bioactive compounds in nature and are used as synthetic building blocks. Fluoroalkyl compounds hold promise for the development of novel pharmaceuticals and agrochemicals, as the introduction of fluoroalkyl groups is known to improve lipophilicity, membrane permeability, and metabolic stability. Three-component 1,2-halo-halodifluoromethylation reactions of alkenes are useful for their synthesis. However, general methods enabling the introduction of halodifluoromethyl (CF2X) and halogen (X') groups in the desired combination of X and X' are lacking. To address this gap, for the first time, we report a three-component halo-halodifluoromethylation of alkenes and alkynes using combinations of commercially available fluorinated carboxylic anhydrides ((CF2XCO)2O, X=Cl and Br) and alkali metal halides (X'=Cl and Br). In situ prepared fluorinated diacyl peroxides were identified as important intermediates, and the use of appropriate bipyridyl-based ligands and a copper catalyst was essential for achieving high product selectivity. The synthetic utility of the polyhalogenated products was demonstrated by exploiting differences in the reactivities of their C-X and C-X' bonds to achieve selective derivatization. Finally, the reaction mechanism and ligand effect were investigated using experimental and theoretical methods to provide important insights for the further development of catalytic reactions.
Collapse
Affiliation(s)
- Subrata Mukherjee
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yuma Aoki
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shintaro Kawamura
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mikiko Sodeoka
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
2
|
Peng X, Zeng Z, Hassan S, Xue Y. The potential of marine natural Products: Recent Advances in the discovery of Anti-Tuberculosis agents. Bioorg Chem 2024; 151:107699. [PMID: 39128242 DOI: 10.1016/j.bioorg.2024.107699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Tuberculosis (TB) is an infectious airborne disease caused by Mycobacterium tuberculosis. Since the 1990 s, many countries have made significant progress in reducing the incidence of TB and associated mortality by improving health services and strengthening surveillance systems. Nevertheless, due to the emergence of multidrug-resistant TB (MDR-TB), alongside extensively drug-resistant TB (XDR-TB) and TB-HIV co-infection, TB remains one of the lead causes of death arising from infectious disease worldwide, especially in developing countries and disadvantaged populations. Marine natural products (MNPs) have received a large amount of attention in recent years as a source of pharmaceutical constituents and lead compounds, and are expected to offer significant resources and potential in the fields of drug development and biotechnology in the years to come. This review summarizes 169 marine natural products and their synthetic derivatives displaying anti-TB activity from 2013 to the present, including their structures, sources and functions. Partial synthetic information and structure-activity relationships (SARs) are also included.
Collapse
Affiliation(s)
- Xinyu Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Ziqian Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Said Hassan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda 24540, Pakistan
| | - Yongbo Xue
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
3
|
Knutsen HK, Åkesson A, Bampidis V, Bignami M, Bodin L, Chipman JK, Degen G, Hernández‐Jerez A, Hofer T, Landi S, Leblanc J, Machera K, Ntzani E, Rychen G, Sand S, Schwerdtle T, Vejdovszky K, Viviani B, Benford D, Hart A, Rose M, Schroeder H, Vleminckx C, Vrijheid M, Gkimprixi E, Kouloura E, Riolo F, Bordajandi LR, Hogstrand C. Update of the risk assessment of brominated phenols and their derivatives in food. EFSA J 2024; 22:e9034. [PMID: 39444985 PMCID: PMC11496907 DOI: 10.2903/j.efsa.2024.9034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
The European Commission asked EFSA to update its 2012 risk assessment on brominated phenols and their derivatives in food, focusing on five bromophenols and one derivative: 2,4,6-tribromophenol (2,4,6-TBP), 2,4-dibromophenol (2,4-DBP), 4-bromophenol (4-BP), 2,6-dibromophenol (2,6-DBP), tetrabrominated bisphenol S (TBBPS), tetrabromobisphenol S bismethyl ether (TBBPS-BME). Based on the overall evidence, the CONTAM Panel considered in vivo genotoxicity of 2,4,6-TBP to be unlikely. Effects in liver and kidney were considered as the critical effects of 2,4,6-tribromophenol (2,4,6-TBP) in studies in rats. A BMDL10 of 353 mg/kg body weight (bw) per day for kidney papillary necrosis in male rats was identified and was selected as the reference point for the risk characterisation. The derivation of a health-based guidance value was not considered appropriate due to major limitations in the toxicological database. Instead, the margin of exposure (MOE) approach was applied to assess possible health concerns. Around 78,200 analytical results for 2,4,6-TBP in food were used to estimate dietary exposure for the European population. Considering the resulting MOE values, all far above an MOE of 6000 that does not raise a health concern, and accounting for the uncertainties affecting the exposure and hazard assessments, the CONTAM Panel concluded with at least 95% probability that the current dietary exposure to 2,4,6-TBP does not raise a health concern. Due to lack of occurrence data, no risk assessment could be performed for breastfed or formula-fed infants. No risk characterisation could be performed for any of the other brominated phenols and derivatives included in the assessment, due to lack of data both on the toxicity and occurrence.
Collapse
|
4
|
Lessard O, Grosset-Magagne M, Johnson PA, Giguère D. Synthesis and conformational analysis of pyran inter-halide analogues of ᴅ-talose. Beilstein J Org Chem 2024; 20:2442-2454. [PMID: 39355854 PMCID: PMC11443651 DOI: 10.3762/bjoc.20.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/11/2024] [Indexed: 10/03/2024] Open
Abstract
In this work, we describe the synthesis of halogenated pyran analogues of ᴅ-talose using a halo-divergent strategy from known 1,6-anhydro-2,3-dideoxy-2,3-difluoro-β-ᴅ-mannopyranose. In solution and in the solid-state, all analogues adopt standard 4 C 1-like conformations despite 1,3-diaxial repulsion between the F2 and the C4 halogen. Moreover, the solid-state conformational analysis of halogenated pyrans reveals deviation in the intra-annular torsion angles arising from repulsion between the axial fluorine at C2 and the axial halogen at C4, which increases with the size of the halogen at C4 (F < Cl < Br < I). Crystal packing arrangements of pyran inter-halides show hydrogen bond acceptor and nonbonding interactions for the halogen at C4. Finally, density functional theory (DFT) calculations corroborate the preference of talose analogues to adopt a 4 C 1-like conformation and a natural bonding orbital (NBO) analysis demonstrates the effects of hyperconjugation from C-F antibonding orbitals.
Collapse
Affiliation(s)
- Olivier Lessard
- Département de Chimie, 1045 av. De la Médecine, Université Laval, Québec City, Qc, G1V 0A6, PROTEO, Canada
| | - Mathilde Grosset-Magagne
- Département de Chimie, 1045 av. De la Médecine, Université Laval, Québec City, Qc, G1V 0A6, PROTEO, Canada
| | - Paul A Johnson
- Département de Chimie, 1045 av. De la Médecine, Université Laval, Québec City, Qc, G1V 0A6, PROTEO, Canada
| | - Denis Giguère
- Département de Chimie, 1045 av. De la Médecine, Université Laval, Québec City, Qc, G1V 0A6, PROTEO, Canada
| |
Collapse
|
5
|
Surwase AJ, Thakur NL. Production of marine-derived bioactive peptide molecules for industrial applications: A reverse engineering approach. Biotechnol Adv 2024; 77:108449. [PMID: 39260778 DOI: 10.1016/j.biotechadv.2024.108449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/28/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
This review examines a wide range of marine microbial-derived bioactive peptide molecules, emphasizing the significance of reverse engineering in their production. The discussion encompasses the advancements in Marine Natural Products (MNPs) bio-manufacturing through the integration of omics-driven microbial engineering and bioinformatics. The distinctive features of non-ribosomally synthesised peptides (NRPs), and ribosomally synthesised precursor peptides (RiPP) biosynthesis is elucidated and presented. Additionally, the article delves into the origins of common peptide modifications. It highlights various genome mining approaches for the targeted identification of Biosynthetic Gene Clusters (BGCs) and novel RiPP and NRPs-derived peptides. The review aims to demonstrate the advancements, prospects, and obstacles in engineering both RiPP and NRP biosynthetic pathways.
Collapse
Affiliation(s)
- Akash J Surwase
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Narsinh L Thakur
- CSIR-National Institute of Oceanography, Dona Paula 403004, Goa, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Buljan A, Stepanić V, Čikoš A, Babić Brčić S, Bojanić K, Roje M. Total Synthesis and Biological Profiling of Putative (±)-Marinoaziridine B and (±)- N-Methyl Marinoaziridine A. Mar Drugs 2024; 22:310. [PMID: 39057419 PMCID: PMC11278217 DOI: 10.3390/md22070310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The total synthesis of two new marine natural products, (±)-marinoaziridine B 7 and (±)-N-methyl marinoaziridine A 8, was accomplished. The (±)-marinoaziridine 7 was prepared in a six-step linear sequence with a 2% overall yield. The key steps in our strategy were the preparation of the chiral epoxide (±)-5 using the Johnson Corey Chaykovsky reaction, followed by the ring-opening reaction and the Staudinger reaction. The N,N-dimethylation of compound (±)-7 gives (±)-N-methyl marinoaziridine A 8. The NMR spectra of synthetized (±)-marinoaziridine B 7 and isolated natural product did not match. The compounds are biologically characterized using relevant in silico, in vitro and in vivo methods. In silico ADMET and bioactivity profiling predicted toxic and neuromodulatory effects. In vitro screening by MTT assay on three cell lines (MCF-7, H-460, HEK293T) showed that both compounds exhibited moderate to strong antiproliferative and cytotoxic effects. Antimicrobial tests on bacterial cultures of Escherichia coli and Staphylococcus aureus demonstrated the dose-dependent inhibition of the growth of both bacteria. In vivo toxicological tests were performed on zebrafish Danio rerio and showed a significant reduction of zebrafish mortality due to N-methylation in (±)-8.
Collapse
Affiliation(s)
- Anđela Buljan
- Laboratory for Chiral Technologies, Scientific Center of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia;
| | - Višnja Stepanić
- Laboratory for Machine Learning and Knowledge Representation, Division of Electronics, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia;
| | - Ana Čikoš
- NMR Centre, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia;
| | - Sanja Babić Brčić
- Laboratory for Aquaculture Biotechnology, Scientific Center of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (S.B.B.); (K.B.)
| | - Krunoslav Bojanić
- Laboratory for Aquaculture Biotechnology, Scientific Center of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (S.B.B.); (K.B.)
| | - Marin Roje
- Laboratory for Chiral Technologies, Scientific Center of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia;
| |
Collapse
|
7
|
Parte LG, Fernández S, Sandonís E, Guerra J, López E. Transition-Metal-Catalyzed Transformations for the Synthesis of Marine Drugs. Mar Drugs 2024; 22:253. [PMID: 38921564 PMCID: PMC11204618 DOI: 10.3390/md22060253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024] Open
Abstract
Transition metal catalysis has contributed to the discovery of novel methodologies and the preparation of natural products, as well as new chances to increase the chemical space in drug discovery programs. In the case of marine drugs, this strategy has been used to achieve selective, sustainable and efficient transformations, which cannot be obtained otherwise. In this perspective, we aim to showcase how a variety of transition metals have provided fruitful couplings in a wide variety of marine drug-like scaffolds over the past few years, by accelerating the production of these valuable molecules.
Collapse
Affiliation(s)
- Lucía G. Parte
- Department of Organic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain; (L.G.P.); (E.S.)
| | - Sergio Fernández
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London (QMUL), Mile End Road, London E1 4NS, UK;
| | - Eva Sandonís
- Department of Organic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain; (L.G.P.); (E.S.)
| | - Javier Guerra
- Department of Organic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain; (L.G.P.); (E.S.)
| | - Enol López
- Department of Organic Chemistry, ITAP, School of Engineering (EII), University of Valladolid (UVa), Dr Mergelina, 47002 Valladolid, Spain
| |
Collapse
|
8
|
Su Q, Xu B, Chen X, Rokita SE. Misregulation of bromotyrosine compromises fertility in male Drosophila. Proc Natl Acad Sci U S A 2024; 121:e2322501121. [PMID: 38748578 PMCID: PMC11126969 DOI: 10.1073/pnas.2322501121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/15/2024] [Indexed: 05/27/2024] Open
Abstract
Biological regulation often depends on reversible reactions such as phosphorylation, acylation, methylation, and glycosylation, but rarely halogenation. A notable exception is the iodination and deiodination of thyroid hormones. Here, we report detection of bromotyrosine and its subsequent debromination during Drosophila spermatogenesis. Bromotyrosine is not evident when Drosophila express a native flavin-dependent dehalogenase that is homologous to the enzyme responsible for iodide salvage from iodotyrosine in mammals. Deletion or suppression of the dehalogenase-encoding condet (cdt) gene in Drosophila allows bromotyrosine to accumulate with no detectable chloro- or iodotyrosine. The presence of bromotyrosine in the cdt mutant males disrupts sperm individualization and results in decreased fertility. Transgenic expression of the cdt gene in late-staged germ cells rescues this defect and enhances tolerance of male flies to bromotyrosine. These results are consistent with reversible halogenation affecting Drosophila spermatogenesis in a process that had previously eluded metabolomic, proteomic, and genomic analyses.
Collapse
Affiliation(s)
- Qi Su
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD21218
| | - Bing Xu
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD21218
| | - Xin Chen
- HHMI, The Johns Hopkins University, Baltimore, MD21218
- Department of Biology, The Johns Hopkins University, Baltimore, MD21218
| | - Steven E. Rokita
- Department of Chemistry, The Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
9
|
Saegusa R, Kurihara M, Shigehisa H. Mechanistic Studies on Bromocyclization of Unsaturated Thioester by Density Functional Theory and Experiment. J Org Chem 2024; 89:7320-7323. [PMID: 38708905 DOI: 10.1021/acs.joc.4c00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Using sulfur-containing nucleophiles in halocyclization has been underexplored notwithstanding their potential to generate novel S-heterocycles and despite the extensive exploration of oxygen, nitrogen, and carbon nucleophiles. In this study, we focused on the bromocyclization of alkenoic thioesters with N-bromoacetamide, which leads to the formation of cyclic bromosulfides. Investigation into the mechanistic pathways of these reactions revealed that the sulfur atom behaves as a nucleophile, leading to S-acetylsulfonium intermediates. HBr and Br2 played significant roles in these transformations.
Collapse
Affiliation(s)
- Rinako Saegusa
- Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi Nishitokyo, Tokyo 202-8585, Japan
| | - Miari Kurihara
- Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi Nishitokyo, Tokyo 202-8585, Japan
| | - Hiroki Shigehisa
- Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi Nishitokyo, Tokyo 202-8585, Japan
| |
Collapse
|
10
|
Tan P, Wang S, Li G, Wang H, Zhao Z, Jiang H, Xie L, Yang L, Chen J, Zhang Z. Oxidative Cascade Iodocyclization of 1, n-Dienes: Synthesis of Iodinated Benzo[ b]azepine and Benzo[ b]azocine Derivatives. J Org Chem 2024; 89:6405-6415. [PMID: 38603543 DOI: 10.1021/acs.joc.4c00438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
An oxidative cascade iodocyclization of 1,7- or 1,8-dienes has been realized under mild conditions. By employing I2 as an iodine source, this protocol provides a concise and efficient approach to a great deal of biologically significant iodinated benzo[b]azepine and benzo[b]azocine derivatives in moderate to good yields. The gram-scale synthesis and further transformation of products render the approach practical and attractive. Radical trapping and deuterium-labeling experiments help to understand the mechanism.
Collapse
Affiliation(s)
- Pengpeng Tan
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Shilong Wang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Guiling Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Huichao Wang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Ziheng Zhao
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Haochen Jiang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Lei Xie
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, P. R. China
| | - Liru Yang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Jinchun Chen
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Zhen Zhang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| |
Collapse
|
11
|
Schweizer S, Halder K, Schäfer A, Hauns J, Marsili L, Mazzariol S, Fossi MC, Muñoz-Arnanz J, Jiménez B, Vetter W. High Amounts of Halogenated Natural Products in Sperm Whales ( Physeter macrocephalus) from Two Italian Regions in the Mediterranean Sea. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:233-242. [PMID: 38660428 PMCID: PMC11036390 DOI: 10.1021/envhealth.3c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 04/26/2024]
Abstract
Halogenated natural products (HNPs) are considered to be emerging contaminants whose environmental distribution and fate are only incompletely known. Therefore, several persistent and bioaccumulative HNP groups, together with man-made polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), were quantified in the blubber of nine sperm whales (Physeter macrocephalus) stranded on the coast of the Mediterranean Sea in Italy. The naturally occurring polybrominated hexahydroxanthene derivatives (PBHDs; sum of TetraBHD and TriBHD) were the most prominent substance class with up to 77,000 ng/g blubber. The mean PBHD content (35,800 ng/g blubber) even exceeded the one of PCBs (28,400 ng/g blubber), although the region is known to be highly contaminated with man-made contaminants. Based on mean values, Q1 ∼ PBDEs > MeO-BDEs ∼ 2,2'-diMeO-BB 80 and several other HNPs followed with decreasing amounts. All blubber samples contained an abundant compound whose molecular formula (C16H19Br3O2) was verified using high-resolution mass spectrometry. The only plausible matching isomer was (2S,4'S,9R,9'S)-2,7-dibromo-4'-bromomethyl-1,1-dimethyl-2,3,4,4',9,9'-9,9'-hexahydro-1H-xanthen-9-ol (OH-TriBHD), a hydroxylated secondary metabolite previously detected together with TriBHD and TetraBHD in a sponge known to be a natural producer of PBHDs. The estimated mean amount of the presumed OH-TriBHD was 3000 ng/g blubber, which is unexpectedly high for hydroxylated compounds in the lipids of marine mammals.
Collapse
Affiliation(s)
- Sina Schweizer
- Institute of Food Chemistry, Department of Food Chemistry (170b), University of Hohenheim, 70599 Stuttgart, Germany
| | - Kristin Halder
- Institute of Food Chemistry, Department of Food Chemistry (170b), University of Hohenheim, 70599 Stuttgart, Germany
| | - Annika Schäfer
- Institute of Food Chemistry, Department of Food Chemistry (170b), University of Hohenheim, 70599 Stuttgart, Germany
| | - Jakob Hauns
- European Union Reference Laboratory (EURL) for Halogenated POPs in Feed and Food, 79114 Freiburg, Germany
| | - Letizia Marsili
- Department of Environmental, Earth and Physical Sciences, University of Siena, 53100 Siena, Italy
| | - Sandro Mazzariol
- Department of Public Health, Comparative Pathology and Veterinary Hygiene, University of Padova, 35020 Legnaro, Italy
| | - Maria Cristina Fossi
- Department of Environmental, Earth and Physical Sciences, University of Siena, 53100 Siena, Italy
| | - Juan Muñoz-Arnanz
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), 28006 Madrid, Spain
| | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), 28006 Madrid, Spain
| | - Walter Vetter
- Institute of Food Chemistry, Department of Food Chemistry (170b), University of Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
12
|
Lixi F, Vitiello L, Giannaccare G. Marine Natural Products Rescuing the Eye: A Narrative Review. Mar Drugs 2024; 22:155. [PMID: 38667772 PMCID: PMC11050997 DOI: 10.3390/md22040155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Different degrees of visual impairment lead to a decrease in patient wellbeing, which has an adverse effect on many facets of social and professional life. Eye disorders can affect several parts of the eye, most notably the retina and the cornea, and the impacted areas might share a common form of cellular damage or dysfunction (such as inflammation, oxidative stress and neuronal degeneration). Considering that marine organisms inhabit a broad variety of marine habitats, they display a great degree of chemical diversity. As a result, molecules with a marine origin are receiving more and more attention in the hopes of developing novel therapeutic approaches. For instance, fucoxanthin has been demonstrated to be effective in protecting the retina against photo-induced damage, while largazole, astaxanthin and spirulina have all shown antioxidant, anti-inflammatory and antiapoptotic activities that can be useful for the management of several ocular diseases, such as age-related macular degeneration and ocular surface disorders. The aim of this review is to analyze the scientific literature relating to the therapeutic effects on the eye of the main natural marine products, focusing on their mechanism of action and potential clinical uses for the management of ocular diseases.
Collapse
Affiliation(s)
- Filippo Lixi
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy;
| | - Livio Vitiello
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, 84035 Polla, Italy;
| | - Giuseppe Giannaccare
- Eye Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy;
| |
Collapse
|
13
|
Jiang Y, Kim A, Olive C, Lewis JC. Selective C-H Halogenation of Alkenes and Alkynes Using Flavin-Dependent Halogenases. Angew Chem Int Ed Engl 2024; 63:e202317860. [PMID: 38280216 PMCID: PMC10947852 DOI: 10.1002/anie.202317860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 01/29/2024]
Abstract
Single component flavin-dependent halogenases (FDHs) possess both flavin reductase and FDH activity in a single enzyme. We recently reported that the single component FDH AetF catalyzes site-selective bromination and iodination of a variety of aromatic substrates and enantioselective bromolactonization and iodoetherification of styrenes bearing pendant carboxylic acid or alcohol substituents. Given this inherent reactivity and selectivity, we explored the utility of AetF as catalyst for alkene and alkyne C-H halogenation. We find that AetF catalyzes halogenation of a range of 1,1-disubstituted styrenes, often with high stereoselectivity. Despite the utility of haloalkenes for cross-coupling and other applications, accessing these compounds in a stereoselective manner typically requires functional group interconversion processes, and selective halogenation of 1,1'-disubstituted olefins remains rare. We also establish that AetF and homologues of this enzyme can halogenate terminal alkynes. Mutagenesis studies and deuterium kinetic isotope effects are used to support a mechanistic proposal involving covalent catalysis for halogenation of unactivated alkynes by AetF homologues. These findings expand the scope of FDH catalysis and continue to show the unique utility of single component FDHs for biocatalysis.
Collapse
Affiliation(s)
- Yuhua Jiang
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Ahram Kim
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Cahmlo Olive
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Jared C. Lewis
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
14
|
Lavecchia A, Fosso B, Engelen AH, Borin S, Manzari C, Picardi E, Pesole G, Placido A. Macroalgal microbiomes unveil a valuable genetic resource for halogen metabolism. MICROBIOME 2024; 12:47. [PMID: 38454513 PMCID: PMC10919026 DOI: 10.1186/s40168-023-01740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/18/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND Macroalgae, especially reds (Rhodophyta Division) and browns (Phaeophyta Division), are known for producing various halogenated compounds. Yet, the reasons underlying their production and the fate of these metabolites remain largely unknown. Some theories suggest their potential antimicrobial activity and involvement in interactions between macroalgae and prokaryotes. However, detailed investigations are currently missing on how the genetic information of prokaryotic communities associated with macroalgae may influence the fate of organohalogenated molecules. RESULTS To address this challenge, we created a specialized dataset containing 161 enzymes, each with a complete enzyme commission number, known to be involved in halogen metabolism. This dataset served as a reference to annotate the corresponding genes encoded in both the metagenomic contigs and 98 metagenome-assembled genomes (MAGs) obtained from the microbiome of 2 red (Sphaerococcus coronopifolius and Asparagopsis taxiformis) and 1 brown (Halopteris scoparia) macroalgae. We detected many dehalogenation-related genes, particularly those with hydrolytic functions, suggesting their potential involvement in the degradation of a wide spectrum of halocarbons and haloaromatic molecules, including anthropogenic compounds. We uncovered an array of degradative gene functions within MAGs, spanning various bacterial orders such as Rhodobacterales, Rhizobiales, Caulobacterales, Geminicoccales, Sphingomonadales, Granulosicoccales, Microtrichales, and Pseudomonadales. Less abundant than degradative functions, we also uncovered genes associated with the biosynthesis of halogenated antimicrobial compounds and metabolites. CONCLUSION The functional data provided here contribute to understanding the still largely unexplored role of unknown prokaryotes. These findings support the hypothesis that macroalgae function as holobionts, where the metabolism of halogenated compounds might play a role in symbiogenesis and act as a possible defense mechanism against environmental chemical stressors. Furthermore, bacterial groups, previously never connected with organohalogen metabolism, e.g., Caulobacterales, Geminicoccales, Granulosicoccales, and Microtrichales, functionally characterized through MAGs reconstruction, revealed a biotechnologically relevant gene content, useful in synthetic biology, and bioprospecting applications. Video Abstract.
Collapse
Affiliation(s)
- Anna Lavecchia
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
| | - Bruno Fosso
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
| | - Aschwin H Engelen
- Center of Marine Sciences (CCMar), University of Algarve, Campus Gambelas, Faro, 8005-139, Portugal
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Celoria 2, Milan, 20133, Italy
| | - Caterina Manzari
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council of Italy, Via Giovanni Amendola, Bari, 122/O, 70126, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70124, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council of Italy, Via Giovanni Amendola, Bari, 122/O, 70126, Italy
| | - Antonio Placido
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council of Italy, Via Giovanni Amendola, Bari, 122/O, 70126, Italy.
| |
Collapse
|
15
|
Kuhlisch C, Shemi A, Barak-Gavish N, Schatz D, Vardi A. Algal blooms in the ocean: hot spots for chemically mediated microbial interactions. Nat Rev Microbiol 2024; 22:138-154. [PMID: 37833328 DOI: 10.1038/s41579-023-00975-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/15/2023]
Abstract
The cycling of major nutrients in the ocean is affected by large-scale phytoplankton blooms, which are hot spots of microbial life. Diverse microbial interactions regulate bloom dynamics. At the single-cell level, interactions between microorganisms are mediated by small molecules in the chemical crosstalk that determines the type of interaction, ranging from mutualism to pathogenicity. Algae interact with viruses, bacteria, parasites, grazers and other algae to modulate algal cell fate, and these interactions are dependent on the environmental context. Recent advances in mass spectrometry and single-cell technologies have led to the discovery of a growing number of infochemicals - metabolites that convey information - revealing the ability of algal cells to govern biotic interactions in the ocean. The diversity of infochemicals seems to account for the specificity in cellular response during microbial communication. Given the immense impact of algal blooms on biogeochemical cycles and climate regulation, a major challenge is to elucidate how microscale interactions control the fate of carbon and the recycling of major elements in the ocean. In this Review, we discuss microbial interactions and the role of infochemicals in algal blooms. We further explore factors that can impact microbial interactions and the available tools to decipher them in the natural environment.
Collapse
Affiliation(s)
- Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Adva Shemi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Barak-Gavish
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
16
|
Sheokand D, Grewal A, Kumar P, Chauhan R, Saini V, Kumar A. Molecular docking analysis of marine phytochemicals with BACE-1. Bioinformation 2024; 20:151-155. [PMID: 38497071 PMCID: PMC10941776 DOI: 10.6026/973206300200151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Alzheimer's disease (AD), a debilitating neurodegenerative condition, is characterized by progressive cognitive decline brought about by the deposition of amyloid beta (Aβ) plaques in the brain initiates downstream neuronal dysfunction and death in AD pathogenesis. The β-secretase (BACE-1) enzyme plays a crucial role in generating Aβ from amyloid precursor protein (APP). Hence, we report the virtual screening of marine phytochemicals as BACE-1 inhibitors. 2583 compounds, retrieved from Comprehensive Marine Natural Product Database (CMNPD), were primarily screened for drug-likeliness and blood-brain barrier permeability using admetSAR 2.0 and in-house BBBper tool and resulted in a total of 635 phytochemicals, selected for further docking studies using BACE-1 as target receptor and Atabecestat as standard BACE-1 inhibitor. Seven of 635 compounds docked against BACE-1, showed better binding affinities than Atabecestat, with the red algal metabolite lactodehydrothyrsiferol showing lowest binding energy of -10.83 kcal/mol. These compounds are worth investigating further to assess their neuroprotective efficacy and pharmacokinetic properties. The study also provides a rational framework to uncover novel pharmacophores from marine sources for AD therapy acting through BACE-1 inhibition.
Collapse
Affiliation(s)
- Deepak Sheokand
- Toxicology and Computational Biology Group, Centre for Bioinformatics, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Annu Grewal
- Toxicology and Computational Biology Group, Centre for Bioinformatics, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pawan Kumar
- Toxicology and Computational Biology Group, Centre for Bioinformatics, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Raveena Chauhan
- Toxicology and Computational Biology Group, Centre for Bioinformatics, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Vandana Saini
- Toxicology and Computational Biology Group, Centre for Bioinformatics, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Ajit Kumar
- Toxicology and Computational Biology Group, Centre for Bioinformatics, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
17
|
Glasser NR, Cui D, Risser DD, Okafor CD, Balskus EP. Accelerating the discovery of alkyl halide-derived natural products using halide depletion. Nat Chem 2024; 16:173-182. [PMID: 38216751 PMCID: PMC10849952 DOI: 10.1038/s41557-023-01390-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/30/2023] [Indexed: 01/14/2024]
Abstract
Even in the genomic era, microbial natural product discovery workflows can be laborious and limited in their ability to target molecules with specific structural features. Here we leverage an understanding of biosynthesis to develop a workflow that targets the discovery of alkyl halide-derived natural products by depleting halide anions, a key biosynthetic substrate for enzymatic halogenation, from microbial growth media. By comparing the metabolomes of bacterial cultures grown in halide-replete and deficient media, we rapidly discovered the nostochlorosides, the products of an orphan halogenase-encoding gene cluster from Nostoc punctiforme ATCC 29133. We further found that these products, a family of unusual chlorinated glycolipids featuring the rare sugar gulose, are polymerized via an unprecedented enzymatic etherification reaction. Together, our results highlight the power of leveraging an understanding of biosynthetic logic to streamline natural product discovery.
Collapse
Affiliation(s)
- Nathaniel R Glasser
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Dongtao Cui
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Douglas D Risser
- Department of Biology, University of the Pacific, Stockton, CA, USA
| | - C Denise Okafor
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
18
|
Besse C, Niemann HH, Sewald N. Increasing the Stability of Flavin-Dependent Halogenases by Disulfide Engineering. Chembiochem 2024; 25:e202300700. [PMID: 37917145 DOI: 10.1002/cbic.202300700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/27/2023] [Accepted: 11/02/2023] [Indexed: 11/03/2023]
Abstract
Flavin-dependent halogenases allow halogenation of electron-rich aromatic compounds under mild reaction conditions even at electronically unfavored positions with high regioselectivity. In order to expand the application of halogenases, the enzymes need to be improved in terms of stability and efficiency. A previous study with the tryptophan 6-halogenase Thal demonstrated that thermostable Thal variants tend to form dimers in solution while the wild type is present as a monomer. Based on this a dimeric Thal variant was generated that is covalently linked by disulfide bonds. Introducing two cysteine residues at the dimer interface resulted in the variant Thal CC with significantly increased thermostability (▵T50 =15.7 K) and stability over time at elevated temperature compared to the wild type. By introducing the homologous mutations into the tryptophan 5-halogenase PyrH, we were able to show that the stabilization by covalent dimerization can also be transferred to other halogenases. Moreover, it was possible to further increase the thermostability of PyrH by inserting cysteine mutations at alternative sites of the dimer interface.
Collapse
Affiliation(s)
- Caroline Besse
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Hartmut H Niemann
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
19
|
Huang W, Yang J, Gao K, Wang Z, Huang G, Yao W, Yang J. Construction of Enantioenriched Quaternary C-Cl Oxindoles through Palladium-Catalyzed Asymmetric Allylic Substitution with Chloroenolates. J Org Chem 2023; 88:15298-15310. [PMID: 37831540 DOI: 10.1021/acs.joc.3c01811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
A palladium-catalyzed asymmetric chloroenolate allylation with vinyl benzoxazinanones under mild reaction conditions has been developed, affording a series of optically active 3,3-disubstituted oxindoles exhibiting a chloro-group and a linear aryl amino side chain in good yields with up to 96% ee. Versatile functional group tolerance on the benzene ring has been demonstrated, and the utility of this method was probed by a scale-up synthesis and highlighted by product derivatizations.
Collapse
Affiliation(s)
- Wen Huang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Jingjie Yang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Kai Gao
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Zhiming Wang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Guobo Huang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Weijun Yao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and School of Pharmaceutical Science, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| |
Collapse
|
20
|
Zhang W, Liu T, Ang HT, Luo P, Lei Z, Luo X, Koh MJ, Wu J. Modular and Practical 1,2-Aryl(Alkenyl) Heteroatom Functionalization of Alkenes through Iron/Photoredox Dual Catalysis. Angew Chem Int Ed Engl 2023; 62:e202310978. [PMID: 37699857 DOI: 10.1002/anie.202310978] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Efficient methods for synthesizing 1,2-aryl(alkenyl) heteroatomic cores, encompassing heteroatoms such as nitrogen, oxygen, sulfur, and halogens, are of significant importance in medicinal chemistry and pharmaceutical research. In this study, we present a mild, versatile and practical photoredox/iron dual catalytic system that enables access to highly privileged 1,2-aryl(alkenyl) heteroatomic pharmacophores with exceptional efficiency and site selectivity. Our approach exhibits an extensive scope, allowing for the direct utilization of a wide range of commodity or commercially available (hetero)arenes as well as activated and unactivated alkenes with diverse functional groups, drug scaffolds, and natural product motifs as substrates. By merging iron catalysis with the photoredox cycle, a vast array of alkene 1,2-aryl(alkenyl) functionalization products that incorporate a neighboring azido, amino, halo, thiocyano and nitrooxy group were secured. The scalability and ability to rapid synthesize numerous bioactive small molecules from readily available starting materials highlight the utility of this protocol.
Collapse
Affiliation(s)
- Weigang Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Tao Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Hwee Ting Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Penghao Luo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhexuan Lei
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xiaohua Luo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
21
|
Chua JQI, Christensen TEK, Palle J, Wittig NK, Grünewald TA, Garrevoet J, Spiers KM, Castillo-Michel H, Schramm A, Chien WL, Sobota RM, Birkedal H, Miserez A. Biomineralization of mantis shrimp dactyl club following molting: Apatite formation and brominated organic components. Acta Biomater 2023; 170:479-495. [PMID: 37659728 DOI: 10.1016/j.actbio.2023.08.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
The stomatopod Odontodactylus scyllarus uses weaponized club-like appendages to attack its prey. These clubs are made of apatite, chitin, amorphous calcium carbonate, and amorphous calcium phosphate organized in a highly hierarchical structure with multiple regions and layers. We follow the development of the biomineralized club as a function of time using clubs harvested at specific times since molting. The clubs are investigated using a broad suite of techniques to unravel the biomineralization history of the clubs. Nano focus synchrotron x-ray diffraction and x-ray fluorescence experiments reveal that the club structure is more organized with more sub-regions than previously thought. The recently discovered impact surface has crystallites in a different size and orientation than those in the impact region. The crystal unit cell parameters vary to a large degree across individual samples, which indicates a spatial variation in the degree of chemical substitution. Energy dispersive spectroscopy and Raman spectroscopy show that this variation cannot be explained by carbonation and fluoridation of the lattice alone. X-ray fluorescence and mass spectroscopy show that the impact surface is coated with a thin membrane rich in bromine that forms at very initial stages of club formation. Proteomic studies show that a fraction of the club mineralization protein-1 has brominated tyrosine suggesting that bromination of club proteins at the club surface is an integral component of the club design. Taken together, the data unravel the spatio-temporal changes in biomineral structure during club formation. STATEMENT OF SIGNIFICANCE: Mantis shrimp hunt using club-like appendages that contain apatite, chitin, amorphous calcium carbonate, and amorphous calcium phosphate ordered in a highly hierarchical structure. To understand the formation process of the club we analyze clubs harvested at specific times since molting thereby constructing a club formation map. By combining several methods ranging from position resolved synchrotron X-ray diffraction to proteomics, we reveal that clubs form from an organic membrane with brominated protein and that crystalline apatite phases are present from the very onset of club formation and grow in relative importance over time. This reveals a complex biomineralization process leading to these fascinating biomineralized tools.
Collapse
Affiliation(s)
- Jia Qing Isaiah Chua
- Biological and Biomimetic Materials Laboratory, Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798, Singapore
| | - Thorbjørn Erik Køppen Christensen
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences
| | - Jonas Palle
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Nina Kølln Wittig
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Tilman A Grünewald
- European Synchrotron Radiation Facility (ESRF), Avenue des Martyrs 71, 38000 Grenoble, France
| | - Jan Garrevoet
- Deutsches Elektronen Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany
| | - Kathryn M Spiers
- Deutsches Elektronen Synchrotron DESY, Notkestr. 85, D-22607 Hamburg, Germany
| | - Hiram Castillo-Michel
- European Synchrotron Radiation Facility (ESRF), Avenue des Martyrs 71, 38000 Grenoble, France
| | - Andreas Schramm
- Department of Biology, Section for Microbiology and Center for Electromicrobiology, Aarhus University, Aarhus, DK-8000, Denmark
| | - Wang Loo Chien
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Singapore 138673, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Singapore 138673, Singapore
| | - Henrik Birkedal
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Ali Miserez
- Biological and Biomimetic Materials Laboratory, Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, 639798, Singapore; School of Biological Sciences, NTU, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
22
|
Saegusa R, Fujihara T, Shigehisa H. Bromocyclization of Alkenoic Thioester and Access to Functionalized Sulfur-Heterocycles. Org Lett 2023. [PMID: 37819433 DOI: 10.1021/acs.orglett.3c02953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Although oxygen, nitrogen, and carbon have been extensively studied as nucleophilic elements in the halocyclization of alkenes, sulfur-based nucleophiles are relatively unexplored. Herein, we investigated bromocyclization chemistry involving unsaturated thioesters, with a focus on their use as potential S-nucleophiles. We developed a bromocyclization method that uses alkenoic thioesters and N-bromoacetamide (NBA) to form cyclic bromosulfides. The resulting 5-exo products are labile and can be used in various nucleophilic substitution reactions.
Collapse
Affiliation(s)
- Rinako Saegusa
- Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi Nishitokyo, Tokyo 202-8585, Japan
| | - Takashi Fujihara
- Comprehensive Analysis Centre for Science, Saitama University, Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Hiroki Shigehisa
- Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi Nishitokyo, Tokyo 202-8585, Japan
| |
Collapse
|
23
|
Dembitsky VM. Steroids Bearing Heteroatom as Potential Drugs for Medicine. Biomedicines 2023; 11:2698. [PMID: 37893072 PMCID: PMC10604304 DOI: 10.3390/biomedicines11102698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Heteroatom steroids, a diverse class of organic compounds, have attracted significant attention in the field of medicinal chemistry and drug discovery. The biological profiles of heteroatom steroids are of considerable interest to chemists, biologists, pharmacologists, and the pharmaceutical industry. These compounds have shown promise as potential therapeutic agents in the treatment of various diseases, such as cancer, infectious diseases, cardiovascular disorders, and neurodegenerative conditions. Moreover, the incorporation of heteroatoms has led to the development of targeted drug delivery systems, prodrugs, and other innovative pharmaceutical approaches. Heteroatom steroids represent a fascinating area of research, bridging the fields of organic chemistry, medicinal chemistry, and pharmacology. The exploration of their chemical diversity and biological activities holds promise for the discovery of novel drug candidates and the development of more effective and targeted treatments.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
24
|
Zhang Z, Zhu Q, Pyle D, Zhou X, Dong G. Methyl Ketones as Alkyl Halide Surrogates: A Deacylative Halogenation Approach for Strategic Functional Group Conversions. J Am Chem Soc 2023; 145:21096-21103. [PMID: 37712624 PMCID: PMC11102776 DOI: 10.1021/jacs.3c08176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Alkyl halides are versatile precursors to access diverse functional groups (FGs). Due to their lability, the development of surrogates for alkyl halides is strategically important for complex molecule synthesis. Given the stability and ease of derivatization inherent in common alkyl ketones, here we report a deacylative halogenation approach to convert various methyl ketones to the corresponding alkyl chlorides, bromides, and iodides. The reaction is driven by forming an aromatic byproduct, i.e., 1,2,4-triazole, in which N'-methylpicolinohydrazonamide (MPHA) is employed to form a prearomatic intermediate and halogen atom-transfer (XAT) reagents are used to quench the alkyl radical intermediate. The reaction is efficient in yielding primary and secondary alkyl halides from a wide range of methyl ketones with broad FG tolerance. It also works for complex natural-product-derived and fluoro-containing substrates. In addition, one-pot conversions of methyl ketones to various other FGs and annulations with alkenes and alkynes through deacylative halogenation are realized. Moreover, an unusual iterative homologation of alkyl iodides is also demonstrated. Finally, mechanistic studies reveal an intriguing double XAT process for the deacylative iodination reaction, which could have implications beyond this work.
Collapse
Affiliation(s)
- Zining Zhang
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Qi Zhu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Daniel Pyle
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Xukai Zhou
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
25
|
Zheng T, Xu J, Cheng S, Ye J, Ma S, Tong R. Green Halogenation of Indoles with Oxone-Halide. J Org Chem 2023; 88:11497-11503. [PMID: 37499121 DOI: 10.1021/acs.joc.3c00638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Oxidative functionalization of indoles is one of the most widely used approaches to exploit the synthetic utility of indoles. In continuation of our research interest in the green oxidation of indoles, we further explore the oxidation of indoles with oxone-halide and discover that the protecting group on the nitrogen of indoles plays a decisive role in controlling the pathways of indole oxidation with oxone-halide. An electron-withdrawing group on the nitrogen of indoles (N-EWG) enables C2 halogenation with stoichiometric halide, while C3 halogenation could be selectively achieved by using stoichiometric halide without dependence on the electronic property of the protecting group on the indole nitrogen. Different from our previous results obtained by using catalytic halide, these findings lead to the development of an environmentally friendly, efficient, and mild protocol for access to 2- or 3-haloindoles (chloro and bromo). As compared to the previous synthetic methods for 2-/3-haloindoles, our method exploits the in situ-generated reactive halogenating species from oxone-halide for halogenation of indoles and thus eliminates the use of stoichiometric halogenating agents and the production of toxic and hazardous organic byproducts derived from oxidants.
Collapse
Affiliation(s)
- Tao Zheng
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Jun Xu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Shaojun Cheng
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Jianghai Ye
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Shiqiang Ma
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon 999077, Hong Kong, China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon 999077, Hong Kong, China
| |
Collapse
|
26
|
Dembitsky VM. Biological Activity and Structural Diversity of Steroids Containing Aromatic Rings, Phosphate Groups, or Halogen Atoms. Molecules 2023; 28:5549. [PMID: 37513423 PMCID: PMC10384810 DOI: 10.3390/molecules28145549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
This review delves into the investigation of the biological activity and structural diversity of steroids and related isoprenoid lipids. The study encompasses various natural compounds, such as steroids with aromatic ring(s), steroid phosphate esters derived from marine invertebrates, and steroids incorporating halogen atoms (I, Br, or Cl). These compounds are either produced by fungi or fungal endophytes or found in extracts of plants, algae, or marine invertebrates. To assess the biological activity of these natural compounds, an extensive examination of referenced literature sources was conducted. The evaluation encompassed in vivo and in vitro studies, as well as the utilization of the QSAR method. Numerous compounds exhibited notable properties such as strong anti-inflammatory, anti-neoplastic, anti-proliferative, anti-hypercholesterolemic, anti-Parkinsonian, diuretic, anti-eczematic, anti-psoriatic, and various other activities. Throughout the review, 3D graphs illustrating the activity of individual steroids are presented alongside images of selected terrestrial or marine organisms. Additionally, the review provides explanations for specific types of biological activity associated with these compounds. The data presented in this review hold scientific interest for academic science as well as practical implications in the fields of pharmacology and practical medicine. The analysis of the biological activity and structural diversity of steroids and related isoprenoid lipids provides valuable insights that can contribute to advancements in both theoretical understanding and applied research.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
27
|
Craig A, Ermolovich Y, Cameron A, Rodler A, Wang H, Hawkes JA, Hubert M, Björkling F, Molchanova N, Brimble MA, Moodie LWK, Svenson J. Antimicrobial Peptides Incorporating Halogenated Marine-Derived Amino Acid Substituents. ACS Med Chem Lett 2023; 14:802-809. [PMID: 37312845 PMCID: PMC10258904 DOI: 10.1021/acsmedchemlett.3c00093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/01/2023] [Indexed: 06/15/2023] Open
Abstract
Small synthetic mimics of cationic antimicrobial peptides represent a promising class of compounds with leads in clinical development for the treatment of persistent microbial infections. The activity and selectivity of these compounds rely on a balance between hydrophobic and cationic components, and here, we explore the activity of 19 linear cationic tripeptides against five different pathogenic bacteria and fungi, including clinical isolates. The compounds incorporated modified hydrophobic amino acids inspired by motifs often found in bioactive marine secondary metabolites in combination with different cationic residues to probe the possibility of generating active compounds with improved safety profiles. Several of the compounds displayed high activity (low μM concentrations), comparable with the positive controls AMC-109, amoxicillin, and amphotericin B. A higher activity was observed against the fungal strains, and a low in vitro off-target toxicity was observed against erythrocytes and HeLa cells, thereby illustrating effective means for tuning the activity and selectivity of short antimicrobial peptides.
Collapse
Affiliation(s)
- Alexander
J. Craig
- Drug
Design and Discovery, Department of Medicinal Chemistry, Biomedical
Centre, Uppsala University, 75123 Uppsala, Sweden
- Analytical
Chemistry, Department of Chemistry, Biomedical Centre, Uppsala University, 75123 Uppsala, Sweden
| | - Yuri Ermolovich
- Department
of Drug Design and Pharmacology, University
of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Alan Cameron
- School
of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Agnes Rodler
- Department
of Pharmacy, Biomedical Centre, Uppsala
University, 75123 Uppsala, Sweden
| | - Helen Wang
- Department
of Medical Biochemistry and Microbiology, Biomedical Centre, Uppsala University, 75123 Uppsala, Sweden
| | - Jeffrey A. Hawkes
- Analytical
Chemistry, Department of Chemistry, Biomedical Centre, Uppsala University, 75123 Uppsala, Sweden
| | - Madlen Hubert
- Department
of Pharmacy, Biomedical Centre, Uppsala
University, 75123 Uppsala, Sweden
| | - Fredrik Björkling
- Department
of Drug Design and Pharmacology, University
of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Natalia Molchanova
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Margaret A. Brimble
- School
of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Lindon W. K. Moodie
- Drug
Design and Discovery, Department of Medicinal Chemistry, Biomedical
Centre, Uppsala University, 75123 Uppsala, Sweden
- Uppsala
Antibiotic Centre, Biomedical Centre, Uppsala
University, 75123 Uppsala, Sweden
| | - Johan Svenson
- Cawthron
Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| |
Collapse
|
28
|
Yancey CE, Yu F, Tripathi A, Sherman DH, Dick GJ. Expression of Microcystis Biosynthetic Gene Clusters in Natural Populations Suggests Temporally Dynamic Synthesis of Novel and Known Secondary Metabolites in Western Lake Erie. Appl Environ Microbiol 2023; 89:e0209222. [PMID: 37070981 PMCID: PMC10231183 DOI: 10.1128/aem.02092-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/02/2023] [Indexed: 04/19/2023] Open
Abstract
Microcystis spp. produce diverse secondary metabolites within freshwater cyanobacterial harmful algal blooms (cyanoHABs) around the world. In addition to the biosynthetic gene clusters (BGCs) encoding known compounds, Microcystis genomes harbor numerous BGCs of unknown function, indicating a poorly understood chemical repertoire. While recent studies show that Microcystis produces several metabolites in the lab and field, little work has focused on analyzing the abundance and expression of its broader suite of BGCs during cyanoHAB events. Here, we use metagenomic and metatranscriptomic approaches to track the relative abundance of Microcystis BGCs and their transcripts throughout the 2014 western Lake Erie cyanoHAB. The results indicate the presence of several transcriptionally active BGCs that are predicted to synthesize both known and novel secondary metabolites. The abundance and expression of these BGCs shifted throughout the bloom, with transcript abundance levels correlating with temperature, nitrate, and phosphorus concentrations and the abundance of co-occurring predatory and competitive eukaryotic microorganisms, suggesting the importance of both abiotic and biotic controls in regulating expression. This work highlights the need for understanding the chemical ecology and potential risks to human and environmental health posed by secondary metabolites that are produced but often unmonitored. It also indicates the prospects for identifying pharmaceutical-like molecules from cyanoHAB-derived BGCs. IMPORTANCE Microcystis spp. dominate cyanobacterial harmful algal blooms (cyanoHABs) worldwide and pose significant threats to water quality through the production of secondary metabolites, many of which are toxic. While the toxicity and biochemistry of microcystins and several other compounds have been studied, the broader suite of secondary metabolites produced by Microcystis remains poorly understood, leaving gaps in our understanding of their impacts on human and ecosystem health. We used community DNA and RNA sequences to track the diversity of genes encoding synthesis of secondary metabolites in natural Microcystis populations and assess patterns of transcription in western Lake Erie cyanoHABs. Our results reveal the presence of both known gene clusters that encode toxic secondary metabolites as well as novel ones that may encode cryptic compounds. This research highlights the need for targeted studies of the secondary metabolite diversity in western Lake Erie, a vital freshwater source to the United States and Canada.
Collapse
Affiliation(s)
- Colleen E. Yancey
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Fengan Yu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashootosh Tripathi
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Natural Products Discovery Core, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - David H. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
29
|
Vrabec R, Blunden G, Cahlíková L. Natural Alkaloids as Multi-Target Compounds towards Factors Implicated in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054399. [PMID: 36901826 PMCID: PMC10003045 DOI: 10.3390/ijms24054399] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in elderly people; currently, there is no efficient treatment. Considering the increase in life expectancy worldwide AD rates are predicted to increase enormously, and thus the search for new AD drugs is urgently needed. A great amount of experimental and clinical evidence indicated that AD is a complex disorder characterized by widespread neurodegeneration of the CNS, with major involvement of the cholinergic system, causing progressive cognitive decline and dementia. The current treatment, based on the cholinergic hypothesis, is only symptomatic and mainly involves the restoration of acetylcholine (ACh) levels through the inhibition of acetylcholinesterase (AChE). Since the introduction of the Amaryllidaceae alkaloid galanthamine as an antidementia drug in 2001, alkaloids have been one of the most attractive groups for searching for new AD drugs. The present review aims to comprehensively summarize alkaloids of various origins as multi-target compounds for AD. From this point of view, the most promising compounds seem to be the β-carboline alkaloid harmine and several isoquinoline alkaloids since they can simultaneously inhibit several key enzymes of AD's pathophysiology. However, this topic remains open for further research on detailed mechanisms of action and the synthesis of potentially better semi-synthetic analogues.
Collapse
Affiliation(s)
- Rudolf Vrabec
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Gerald Blunden
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - Lucie Cahlíková
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
- Correspondence:
| |
Collapse
|
30
|
Visible-light-induced controllable α-chlorination of nafimidone derivatives through LMCT excitation of CuCl2. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
31
|
Bioactivity and Metabolome Mining of Deep-Sea Sediment-Derived Microorganisms Reveal New Hybrid PKS-NRPS Macrolactone from Aspergillus versicolor PS108-62. Mar Drugs 2023; 21:md21020095. [PMID: 36827136 PMCID: PMC9961484 DOI: 10.3390/md21020095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Despite low temperatures, poor nutrient levels and high pressure, microorganisms thrive in deep-sea environments of polar regions. The adaptability to such extreme environments renders deep-sea microorganisms an encouraging source of novel, bioactive secondary metabolites. In this study, we isolated 77 microorganisms collected by a remotely operated vehicle from the seafloor in the Fram Strait, Arctic Ocean (depth of 2454 m). Thirty-two bacteria and six fungal strains that represented the phylogenetic diversity of the isolates were cultured using an One-Strain-Many-Compounds (OSMAC) approach. The crude EtOAc extracts were tested for antimicrobial and anticancer activities. While antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecium was common for many isolates, only two bacteria displayed anticancer activity, and two fungi inhibited the pathogenic yeast Candida albicans. Due to bioactivity against C. albicans and rich chemical diversity based on molecular network-based untargeted metabolomics, Aspergillus versicolor PS108-62 was selected for an in-depth chemical investigation. A chemical work-up of the SPE-fractions of its dichloromethane subextract led to the isolation of a new PKS-NRPS hybrid macrolactone, versicolide A (1), a new quinazoline (-)-isoversicomide A (3), as well as three known compounds, burnettramic acid A (2), cyclopenol (4) and cyclopenin (5). Their structures were elucidated by a combination of HRMS, NMR, [α]D, FT-IR spectroscopy and computational approaches. Due to the low amounts obtained, only compounds 2 and 4 could be tested for bioactivity, with 2 inhibiting the growth of C. albicans (IC50 7.2 µg/mL). These findings highlight, on the one hand, the vast potential of the genus Aspergillus to produce novel chemistry, particularly from underexplored ecological niches such as the Arctic deep sea, and on the other, the importance of untargeted metabolomics for selection of marine extracts for downstream chemical investigations.
Collapse
|
32
|
Boehm P, Kehl N, Morandi B. Rhodium-Catalyzed Anti-Markovnikov Transfer Hydroiodination of Terminal Alkynes. Angew Chem Int Ed Engl 2023; 62:e202214071. [PMID: 36336665 PMCID: PMC10107805 DOI: 10.1002/anie.202214071] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
A rhodium-catalyzed anti-Markovnikov hydroiodination of aromatic and aliphatic terminal alkynes is reported. Depending on the choice of ligand and substrate, either (E)- or (Z)-configured alkenyl iodides are obtained in high to exclusive isomeric purity. The reaction exhibits a broad substrate scope and high functional group tolerance, employing easily accessible or commercially available aliphatic iodides as HI surrogates through a shuttle process. The synthesized vinyl iodides were applied in several C-C and C-heteroatom bond-forming reactions with full retention of the stereoselectivity. The developed method could be used to significantly shorten the total synthesis of a marine cis-fatty acid. Additionally, initial deuterium-labeling experiments and stoichiometric reactions shed some light on the potential reaction mechanism.
Collapse
Affiliation(s)
- Philip Boehm
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093, Zürich, Switzerland
| | - Niklas Kehl
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093, Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093, Zürich, Switzerland
| |
Collapse
|
33
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
34
|
Afzal S, Yadav AK, Poonia AK, Choure K, Yadav AN, Pandey A. Antimicrobial therapeutics isolated from algal source: retrospect and prospect. Biologia (Bratisl) 2023; 78:291-305. [PMID: 36159744 PMCID: PMC9486765 DOI: 10.1007/s11756-022-01207-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 08/12/2022] [Indexed: 01/26/2023]
Abstract
In the last few decades, attention on new natural antimicrobial compounds has arisen due to a change in consumer preferences and the increase in the number of resistant microorganisms. Algae are defined as photosynthetic organisms that demonstrate a wide range of adaptability to adverse environmental conditions like temperature extremes, photo-oxidation, high or low salinity, and osmotic stress. Algae are primarily known to produce large amounts of secondary metabolite against various kinds of pathogenic microbes. Among these algae, micro and microalgae of river, lake, and algae of oceanic origin have been reported to have antimicrobial activity against the bacteria and fungi of pathogenic nature. Various polar and non- polar extracts of micro- and macro algae have been used for the suppression of these pathogenic fungi. Apart from these, certain algal derivatives have also been isolated from these having antibacterial and antifungal potential. Among the bioactive molecules of algae, polysaccharides, sulphated polysaccharides, phyco-cyanobilins polyphenols, lectins, proteins lutein, vitamin E, B12 and K1, peptides, polyunsaturated fatty acids and pigments can be highlighted. In the present review, we will discuss the biological activity of these derived compounds as antifungal/ antibacterial agents and their most promising applications. A brief outline is also given for the prospects of these isolated phytochemicals and using algae as therapeutic in the dietary form. We have also tried to answer whether alga-derived metabolites can serve as potential therapeutics for the treatment of SARS-CoV-2 like viral infections too.
Collapse
Affiliation(s)
- Shadma Afzal
- Department of Biotechnology, Motilal Nehru national Institute of Technology Allahabad, Prayagraj, UP India
| | - Alok Kumar Yadav
- Department of Biotechnology, Motilal Nehru national Institute of Technology Allahabad, Prayagraj, UP India
| | - Anuj Kumar Poonia
- University Institute of Biotechnology , Chandigarh University, Chandigarh, Punjab India
| | - Kamlesh Choure
- Faculty of Life Science and Technology, Department of Biotechnology, AKS University, Satna, MP India
| | - Ajar Nath Yadav
- Department of Biotechnology, Eternal University, Baru Sahib Sirmour, HP India
| | - Ashutosh Pandey
- Faculty of Life Science and Technology, Department of Biotechnology, AKS University, Satna, MP India
| |
Collapse
|
35
|
Zippilli C, Bartolome MJ, Hilberath T, Botta L, Hollmann F, Saladino R. A Photochemoenzymatic Hunsdiecker-Borodin-Type Halodecarboxylation of Ferulic Acid. Chembiochem 2022; 23:e202200367. [PMID: 35921215 DOI: 10.1002/cbic.202200367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Indexed: 01/07/2023]
Abstract
A photochemoenzymatic halodecarboxylation of ferulic acid was achieved using vanadate-dependent chloroperoxidase as (bio)catalyst and oxygen and organic solvent as sole stoichiometric reagents in a biphasic system. Performance and selectivity were improved through a phase transfer catalyst, reaching a turnover number of 660.000 for the enzyme.
Collapse
Affiliation(s)
- Claudio Zippilli
- Department of Biological and Ecological Sciences, University of Tuscia, Via S.C. De Lellis s.n.c., 01100, Viterbo, Italy.,Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, The Netherlands
| | - Miguel Jimenez Bartolome
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Strasse 20, 3430, Tulln, Austria
| | - Thomas Hilberath
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, The Netherlands
| | - Lorenzo Botta
- Department of Biological and Ecological Sciences, University of Tuscia, Via S.C. De Lellis s.n.c., 01100, Viterbo, Italy
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, The Netherlands
| | - Raffaele Saladino
- Department of Biological and Ecological Sciences, University of Tuscia, Via S.C. De Lellis s.n.c., 01100, Viterbo, Italy
| |
Collapse
|
36
|
Liao L, Xu X, Ji J, Zhao X. Asymmetric Intermolecular Iodinative Difunctionalization of Allylic Sulfonamides Enabled by Organosulfide Catalysis: Modular Entry to Iodinated Chiral Molecules. J Am Chem Soc 2022; 144:16490-16501. [PMID: 36053004 DOI: 10.1021/jacs.2c05668] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Electrophilic halogenation of alkenes is a powerful transformation offering a convenient route for the construction of valuable functionalized molecules. However, as a highly important reaction in this field, catalytic asymmetric intermolecular iodinative difunctionalization remains a formidable challenge. Herein, we report that an efficient Lewis basic chiral sulfide-catalyzed approach enables this reaction. By this approach, challenging substrates such as γ,γ-disubstituted allylic sulfonamides and 1,1-disubstituted alkenes with an allylic sulfonamide unit undergo electrophilic iodinative difunctionalization to give a variety of iodine-functionalized chiral molecules in good yields with excellent enantio- and diastereoselectivities. A series of free phenols as nucleophiles are successfully incorporated into the substrates. Aside from phenols, primary and secondary alcohols, fluoride, and azide also serve as efficient nucleophiles. The obtained iodinated products are a good platform molecule, which can be easily transformed into various chiral compounds such as α-aryl ketones, chiral secondary amines, and aziridines via rearrangement or substitution. Mechanistic studies revealed that the chiral sulfide catalyst displays a superior effect on control of the reactivity of electrophilic iodine and the enantioselective construction of the chiral iodiranium ion intermediate and catalyst aggregates might be formed as a resting state in the reactions.
Collapse
Affiliation(s)
- Lihao Liao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xinru Xu
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Jieying Ji
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
37
|
Sood U, Dhingra GG, Anand S, Hira P, Kumar R, Kaur J, Verma M, Singhvi N, Lal S, Rawat CD, Singh VK, Kaur J, Verma H, Tripathi C, Singh P, Dua A, Saxena A, Phartyal R, Jayaraj P, Makhija S, Gupta R, Sahni S, Nayyar N, Abraham JS, Somasundaram S, Lata P, Solanki R, Mahato NK, Prakash O, Bala K, Kumari R, Toteja R, Kalia VC, Lal R. Microbial Journey: Mount Everest to Mars. Indian J Microbiol 2022; 62:323-337. [PMID: 35974919 PMCID: PMC9375815 DOI: 10.1007/s12088-022-01029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/01/2022] [Indexed: 11/05/2022] Open
Abstract
A rigorous exploration of microbial diversity has revealed its presence on Earth, deep oceans, and vast space. The presence of microbial life in diverse environmental conditions, ranging from moderate to extreme temperature, pH, salinity, oxygen, radiations, and altitudes, has provided the necessary impetus to search for them by extending the limits of their habitats. Microbiology started as a distinct science in the mid-nineteenth century and has provided inputs for the betterment of mankind during the last 150 years. As beneficial microbes are assets and pathogens are detrimental, studying both have its own merits. Scientists are nowadays working on illustrating the microbial dynamics in Earth's subsurface, deep sea, and polar regions. In addition to studying the role of microbes in the environment, the microbe-host interactions in humans, animals and plants are also unearthing newer insights that can help us to improve the health of the host by modulating the microbiota. Microbes have the potential to remediate persistent organic pollutants. Antimicrobial resistance which is a serious concern can also be tackled only after monitoring the spread of resistant microbes using disciplines of genomics and metagenomics The cognizance of microbiology has reached the top of the world. Space Missions are now looking for signs of life on the planets (specifically Mars), the Moon and beyond them. Among the most potent pieces of evidence to support the existence of life is to look for microbial, plant, and animal fossils. There is also an urgent need to deliberate and communicate these findings to layman and policymakers that would help them to take an adequate decision for better health and the environment around us. Here, we present a glimpse of recent advancements by scientists from around the world, exploring and exploiting microbial diversity.
Collapse
Affiliation(s)
- Utkarsh Sood
- The Energy and Resources Institute, New Delhi, India
| | | | - Shailly Anand
- Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Princy Hira
- Maitreyi College, University of Delhi, New Delhi, India
| | - Roshan Kumar
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar India
| | | | - Mansi Verma
- Sri Venkateswara College, University of Delhi, New Delhi, India
| | | | - Sukanya Lal
- Ramjas College, University of Delhi, Delhi, India
| | | | | | - Jaspreet Kaur
- Maitreyi College, University of Delhi, New Delhi, India
| | | | | | - Priya Singh
- Maitreyi College, University of Delhi, New Delhi, India
| | - Ankita Dua
- Shivaji College, University of Delhi, New Delhi, India
| | - Anjali Saxena
- Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | | | - Perumal Jayaraj
- Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Seema Makhija
- Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Renu Gupta
- Maitreyi College, University of Delhi, New Delhi, India
| | - Sumit Sahni
- Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Namita Nayyar
- Sri Venkateswara College, University of Delhi, New Delhi, India
| | | | | | - Pushp Lata
- Ramjas College, University of Delhi, Delhi, India
| | - Renu Solanki
- Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Nitish Kumar Mahato
- University Department of Zoology, Kolhan University, Chaibasa, Jharkhand India
| | - Om Prakash
- National Centre for Cell Sciences, Pune, Maharashtra India
| | - Kiran Bala
- Deshbandhu College, University of Delhi, New Delhi, India
| | - Rashmi Kumari
- College of Commerce, Arts and Science, Patliputra University, Patna, Bihar India
| | - Ravi Toteja
- Acharya Narendra Dev College, University of Delhi, Delhi, India
| | | | - Rup Lal
- The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
38
|
Ko SH, Lim Y, Kim EJ, Ko YW, Hong IS, Kim S, Jung Y. Antarctic Marine Algae Extracts as a Potential Natural Resource to Protect Epithelial Barrier Integrity. Mar Drugs 2022; 20:562. [PMID: 36135751 PMCID: PMC9503798 DOI: 10.3390/md20090562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
The intestine and skin provide crucial protection against the external environment. Strengthening the epithelial barrier function of these organs is critical for maintaining homeostasis against inflammatory stimuli. Recent studies suggest that polar marine algae are a promising bioactive resource because of their adaptation to extreme environments. To investigate the bioactive properties of polar marine algae on epithelial cells of the intestine and skin, we created extracts of the Antarctic macroalgae Himantothallus grandifolius, Plocamium cartilagineum, Phaeurus antarcticus, and Kallymenia antarctica, analyzed the compound profiles of the extracts using gas chromatography-mass spectrometry, and tested the protective activities of the extracts on human intestinal and keratinocyte cell lines by measuring cell viability and reactive oxygen species scavenging. In addition, we assessed immune responses modulated by the extracts by real-time polymerase chain reaction, and we monitored the barrier-protective activities of the extracts on intestinal and keratinocyte cell lines by measuring transepithelial electrical resistance and fluorescence-labeled dextran flux, respectively. We identified bioactive compounds, including several fatty acids and lipid compounds, in the extracts, and found that the extracts perform antioxidant activities that remove intracellular reactive oxygen species and scavenge specific radicals. Furthermore, the Antarctic marine algae extracts increased cell viability, protected cells against inflammatory stimulation, and increased the barrier integrity of cells damaged by lipopolysaccharide or ultraviolet radiation. These results suggest that Antarctic marine algae have optimized their composition for polar environments, and furthermore, that the bioactive properties of compounds produced by Antarctic marine algae can potentially be used to develop therapeutics to promote the protective barrier function of the intestine and skin.
Collapse
Affiliation(s)
- Seong-Hee Ko
- Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - YoonHee Lim
- Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - Eun Jae Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea
| | - Young Wook Ko
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea
| | - In-Sun Hong
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Korea
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Korea
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea
| | - YunJae Jung
- Department of Microbiology, College of Medicine, Gachon University, Incheon 21999, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Korea
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon 21999, Korea
| |
Collapse
|
39
|
Wang J, Xie Y, Song Y, Cong Z, Zhao K, Pang X, Liu Y, Huang X. New diterpene and indole alkaloid analogues from the Streptomyces malaysiensis SCSIO 41397. Chem Biodivers 2022; 19:e202200731. [PMID: 36036172 DOI: 10.1002/cbdv.202200731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022]
Abstract
One new cyclooctatin-type diterpenoid, 15-hydroxyl-cyclooctatin ( 1 ), and one new indole alkaloid, streptoprenylindole D ( 3 ), along with 9 known compounds, were isolated from the Streptomyces malaysiensis SCSIO 41397. Their structures were established on the basis of spectroscopic analysis, optical rotation, and by a comparison with data from the literature. All isolated compounds were evaluated for their antibacterial (MRSA), antitumor (22Rv1 and PC-3) and antiviral (HSV-1/2) activities. According to the analysis of biological gene clusters in the whole genome, we preliminarily locate the gene clusters related to the synthesis of 15-hydroxyl-cyclooctatin ( 1 ).
Collapse
Affiliation(s)
- Junfeng Wang
- South China Sea Institute of Oceanology Chinese Academy of Sciences, CAS Key Lab of Tropical Marine Bio-Resources, 164 West Xingangxi Road, 510301, Guangzhou, CHINA
| | - Yuhui Xie
- South China Sea Institute of Oceanology Chinese Academy of Sciences, Key Laboratory of Tropical Marine Bio-Resources and Ecology, 164 West Xingang Road, Guangzhou, CHINA
| | - Yue Song
- South China Sea Institute of Oceanology Chinese Academy of Sciences, Key Laboratory of Tropical Marine Bio-Resources and Ecology, 164nXingangxi Road, Guangzhou, CHINA
| | - Ziwen Cong
- South China Sea Institute of Oceanology Chinese Academy of Sciences, Key Laboratory of Tropical Marine Bio-Resources and Ecology, 164 West Xingang Road, Guangzhou, CHINA
| | - Kai Zhao
- South China Sea Institute of Oceanology Chinese Academy of Sciences, Key Laboratory of Tropical Marine Bio-Resources and Ecology, 164 West Xingang Road, Guangzhou, CHINA
| | - Xiaoyan Pang
- South China Sea Institute of Oceanology Chinese Academy of Sciences, Key Laboratory of Tropical Marine Bio-Resources and Ecology, 164 West Xingang Road, Guangzhou, CHINA
| | - Yonghong Liu
- South China Sea Institute of Oceanology Chinese Academy of Sciences, Key Laboratory of Tropical Marine Bio-Resources and Ecology, 164 West Xingang Road, Guangzhou, CHINA
| | - Xiaolong Huang
- Hainan University, School of Life Sciences, 58 Renmin Road, Haikou, CHINA
| |
Collapse
|
40
|
Ren X, Chen C, Ye Y, Xu Z, Zhao Q, Luo X, Liu Y, Guo P. Anti-inflammatory compounds from the mangrove endophytic fungus Amorosia sp. SCSIO 41026. Front Microbiol 2022; 13:976399. [PMID: 36212882 PMCID: PMC9533711 DOI: 10.3389/fmicb.2022.976399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Three new chlorinated compounds, including two propenylphenol derivatives, chlorophenol A and B (1 and 2), and one benzofuran derivative, chlorophenol C (3), together with 16 known compounds, were isolated from the mangrove endophytic fungus Amorosia sp. SCSIO 41026. 7-Chloro-3,4-dihydro-6,8-dihydroxy-3-methylisocoumarine (4) and 2,4-dichloro-3-hydroxy-5-methoxy-toluene (5) were obtained as new natural products. Their structures were elucidated by physicochemical properties and extensive spectroscopic analysis. Compounds 1, 4, 7, 9, 13, 15, 16, and 19 possessed inhibitory effects against the excessive production of nitric oxide (NO) and pro-inflammatory cytokines in lipopolysaccharide (LPS)-challenged RAW264.7 macrophages without obvious cytotoxicity. Moreover, 5-chloro-6-hydroxymellein (13) further alleviated the pathological lung injury of LPS-administrated mice and protected RAW264.7 macrophages against LPS-induced inflammation through PI3K/AKT pathway in vivo. Our research laid the foundation for the application of compound 13 as a potential anti-inflammatory candidate.
Collapse
Affiliation(s)
- Xue Ren
- Capital Institute of Pediatrics, Beijing, China
| | - Chunmei Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuxiu Ye
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Ziying Xu
- Capital Institute of Pediatrics, Beijing, China
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Xiaowei Luo
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
- *Correspondence: Xiaowei Luo,
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Yonghong Liu,
| | - Peng Guo
- Capital Institute of Pediatrics, Beijing, China
- Peng Guo,
| |
Collapse
|
41
|
Ohyoshi T, Zhao Y, Kigoshi H. Isolation and Synthesis of Azuriaplysins A and B, Bromoditerpenes with an α-Methylene Carbonyl from the Sea Hare Aplysia kurodai. JOURNAL OF NATURAL PRODUCTS 2022; 85:2082-2089. [PMID: 35834804 DOI: 10.1021/acs.jnatprod.2c00476] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
New bromoditerpenes having an α-methylene carbonyl structure, azuriaplysins A (1) and B (2), were isolated from the sea hare Aplysia kurodai. Their relative stereostructures were determined based on one- and two-dimensional NMR spectroscopic analysis. In addition, the absolute stereostructures were determined by the total synthesis of both enantiomers of azuriaplysins A (1) and B (2), the key points of which were bromocyclization of farnesol and optical resolution of a key intermediate. Azuriaplysin B (2) and its enantiomer exhibited moderate cytotoxicity against HeLa S3 cells.
Collapse
Affiliation(s)
- Takayuki Ohyoshi
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Japan
| | - Yiwen Zhao
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Japan
| | - Hideo Kigoshi
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Japan
| |
Collapse
|
42
|
Zhao Q, Li B, Zhou X, Wang Z, Zhang FL, Li Y, Zhou X, Fu Y, Wang YF. Boryl Radicals Enabled a Three-Step Sequence to Assemble All-Carbon Quaternary Centers from Activated Trichloromethyl Groups. J Am Chem Soc 2022; 144:15275-15285. [PMID: 35950969 DOI: 10.1021/jacs.2c05798] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The construction of diversely substituted all-carbon quaternary centers has been a longstanding challenge in organic synthesis. Methods that add three alkyl substituents to a simple C(sp3) atom rely heavily on lengthy multiple processes, which usually involve several preactivation steps. Here, we describe a straightforward three-step sequence that uses a range of readily accessible activated trichloromethyl groups as the carbon source, the three C-Cl bonds of which are selectively functionalized to introduce three alkyl chains. In each step, only a single C-Cl bond was cleaved with the choice of an appropriate Lewis base-boryl radical as the promoter. A vast range of diversely substituted all-carbon quaternary centers could be accessed directly from these activated CCl3 trichloromethyl groups or by simple derivatizations. The use of different alkene traps in each of the three steps enabled facile collections of a large library of products. The utility of this strategy was demonstrated by the synthesis of variants of two drug molecules, whose structures could be easily modulated by varying the alkene partner in each step. The results of kinetic and computational studies enabled the design of the three-step reaction and provided insights into the reaction mechanisms.
Collapse
Affiliation(s)
- Qiang Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Bin Li
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xi Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Zhao Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Feng-Lian Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yuanming Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xiaoguo Zhou
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yao Fu
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yi-Feng Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei 230026, Anhui, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
43
|
Cunha SC, Menezes-Sousa D, Mello FV, Miranda JAT, Fogaca FHS, Alonso MB, Torres JPM, Fernandes JO. Survey on endocrine-disrupting chemicals in seafood: Occurrence and distribution. ENVIRONMENTAL RESEARCH 2022; 210:112886. [PMID: 35150711 DOI: 10.1016/j.envres.2022.112886] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Currently, the presence of endocrine disrupting chemicals (EDCs) in the marine environment pose а potential risk to both wildlife and human health. The occurrence of EDCs in seafood depends of several factors such as source and amounts of EDCs that reach the aquatic environment, physicochemical features of EDCs, and its accumulation in trophic chain. This review highlights the occurrence and distribution of EDCs along the seafood in the last 6 years. The following EDCs were included in this review: brominated flame retardants (PBDEs, PBBs, HBCDDs, TBBPA, and novel flame retardants); pharmaceuticals (paracetamol, ibuprofen, diclofenac, carbamazepine), bisphenols, hormones, personal care products (Musk and UV Filters), and pesticides (organochlorides, organophosphates, and pyrethroids). Some of them were found above the threshold that may cause negative effects on human, animal, and environmental health. More control in some countries, as well as new legislation and inspection over the purchase, sale, use, and production of these compounds, are urgently needed. This review provides data to support risk assessment and raises critical gaps to stimulate and improve future research.
Collapse
Affiliation(s)
- Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Dhoone Menezes-Sousa
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal; Micropollutants Laboratory Jan Japenga, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro. Av. Carlos Chagas Filho, 373 - CCS - Bl. G, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Flávia V Mello
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal; Micropollutants Laboratory Jan Japenga, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro. Av. Carlos Chagas Filho, 373 - CCS - Bl. G, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Joyce A T Miranda
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal; Micropollutants Laboratory Jan Japenga, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro. Av. Carlos Chagas Filho, 373 - CCS - Bl. G, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Fabiola H S Fogaca
- Bioacessiblity Laboratory, Embrapa Agroindustria de Alimentos, Av. Das Americas, 29501, 23020-470, Guaratiba, Rio de Janeiro, RJ, Brazil
| | - Mariana B Alonso
- Micropollutants Laboratory Jan Japenga, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro. Av. Carlos Chagas Filho, 373 - CCS - Bl. G, 21941-902, Rio de Janeiro, RJ, Brazil
| | - João Paulo M Torres
- Micropollutants Laboratory Jan Japenga, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro. Av. Carlos Chagas Filho, 373 - CCS - Bl. G, 21941-902, Rio de Janeiro, RJ, Brazil
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| |
Collapse
|
44
|
Brillante S, Galasso C, Lauritano C, Carrella S. From the Sea for the Sight: Marine Derived Products for Human Vision. Front Aging Neurosci 2022; 14:892764. [PMID: 35615590 PMCID: PMC9124809 DOI: 10.3389/fnagi.2022.892764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
Visual impairment, at different degrees, produce a reduction of patient wellness which negatively impact in many aspects of working and social activities. Eye diseases can have common cellular damages or dysfunctions (e.g., inflammation, oxidative stress, neuronal degeneration), and can target several eye compartments, primarily cornea and retina. Marine organisms exhibit high chemical diversity due to the wide range of marine ecosystems where they live; thus, molecules of marine origin are gaining increasing attention for the development of new mutation-independent therapeutic strategies, to reduce the progression of retina pathologies having a multifactorial nature and characterized by high genetic heterogeneity. This review aims to describe marine natural products reported in the recent literature that showed promising therapeutic potential for the development of new drugs to be used to contrast the progression of eye pathologies. These natural compounds exhibited beneficial and protective properties on different in vitro cell systems and on in vivo models, through different mechanisms of action, including anti-inflammatory, antioxidant, antiangiogenic/vasoprotective or cytoprotective effects. We report compounds produced by several marine source (e.g., sponges, algae, shrimps) that can be administrated as food or with target-specific strategies. In addition, we describe and discuss the uses of opsin family proteins from marine organisms for the optimization of new optogenetic therapeutic strategies.
Collapse
Affiliation(s)
| | - Christian Galasso
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, Amendolara, Italy
| | - Chiara Lauritano
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Sabrina Carrella
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Naples, Italy
- *Correspondence: Sabrina Carrella
| |
Collapse
|
45
|
Wackett LP. Pseudomonas: Versatile Biocatalysts for PFAS. Environ Microbiol 2022; 24:2882-2889. [PMID: 35384226 DOI: 10.1111/1462-2920.15990] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Lawrence P Wackett
- Microbial Engineering, University of Minnesota.,Biotechnology Institute, University of Minnesota.,Biochemistry, Molecular Biology and Biophysics, University of Minnesota
| |
Collapse
|
46
|
Recent development of biomimetic halogenation inspired by vanadium dependent haloperoxidase. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214404] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Wang J, Pang X, Chen C, Gao C, Zhou X, Liu Y, Luo X. Chemistry, Biosynthesis, and Biological Activity of Halogenated Compounds Produced by Marine Microorganisms. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiamin Wang
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
| | - Chunmei Chen
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
| | - Chenghai Gao
- Institute of Marine Drugs Guangxi University of Chinese Medicine Nanning 530200 China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458 China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
- Institute of Marine Drugs Guangxi University of Chinese Medicine Nanning 530200 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458 China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
| | - Xiaowei Luo
- Institute of Marine Drugs Guangxi University of Chinese Medicine Nanning 530200 China
| |
Collapse
|
48
|
Yu W, Jiao X, Fan Y, Zhu S, Chu L. Metallaphotoredox‐Enabled Intermolecular Carbobromination of Alkynes with Alkenyl Bromides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wei Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 People's Republic of China
| | - Xiaorui Jiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 People's Republic of China
| | - Yanmin Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 People's Republic of China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 People's Republic of China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 People's Republic of China
| |
Collapse
|
49
|
Wackett LP. Nothing lasts forever: understanding microbial biodegradation of polyfluorinated compounds and perfluorinated alkyl substances. Microb Biotechnol 2022; 15:773-792. [PMID: 34570953 PMCID: PMC8913905 DOI: 10.1111/1751-7915.13928] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Poly- and perfluorinated chemicals, including perfluorinated alkyl substances (PFAS), are pervasive in today's society, with a negative impact on human and ecosystem health continually emerging. These chemicals are now subject to strict government regulations, leading to costly environmental remediation efforts. Commercial polyfluorinated compounds have been called 'forever chemicals' due to their strong resistance to biological and chemical degradation. Environmental cleanup by bioremediation is not considered practical currently. Implementation of bioremediation will require uncovering and understanding the rare microbial successes in degrading these compounds. This review discusses the underlying reasons why microbial degradation of heavily fluorinated compounds is rare. Fluorinated and chlorinated compounds are very different with respect to chemistry and microbial physiology. Moreover, the end product of biodegradation, fluoride, is much more toxic than chloride. It is imperative to understand these limitations, and elucidate physiological mechanisms of defluorination, in order to better discover, study, and engineer bacteria that can efficiently degrade polyfluorinated compounds.
Collapse
Affiliation(s)
- Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaSt. PaulMN55108USA
| |
Collapse
|
50
|
Matulja D, Vranješević F, Kolympadi Markovic M, Pavelić SK, Marković D. Anticancer Activities of Marine-Derived Phenolic Compounds and Their Derivatives. Molecules 2022; 27:molecules27041449. [PMID: 35209235 PMCID: PMC8879422 DOI: 10.3390/molecules27041449] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 12/24/2022] Open
Abstract
Since the middle of the last century, marine organisms have been identified as producers of chemically and biologically diverse secondary metabolites which have exerted various biological activities including anticancer, anti-inflammatory, antioxidant, antimicrobial, antifouling and others. This review primarily focuses on the marine phenolic compounds and their derivatives with potent anticancer activity, isolated and/or modified in the last decade. Reports on the elucidation of their structures as well as biosynthetic studies and total synthesis are also covered. Presented phenolic compounds inhibited cancer cells proliferation or migration, at sub-micromolar or nanomolar concentrations (lamellarins D (37), M (38), K (39), aspergiolide B (41), fradimycin B (62), makulavamine J (66), mayamycin (69), N-acetyl-N-demethylmayamycin (70) or norhierridin B (75)). In addition, they exhibited anticancer properties by a diverse biological mechanism including induction of apoptosis or inhibition of cell migration and invasive potential. Finally, phlorotannins 1–7 and bromophenols 12–29 represent the most researched phenolic compounds, of which the former are recognized as protective agents against UVB or gamma radiation-induced skin damages. Finally, phenolic metabolites were assorted into six main classes: phlorotannins, bromophenols, flavonoids, coumarins, terpenophenolics, quinones and hydroquinones. The derivatives that could not be attributed to any of the above-mentioned classes were grouped in a separate class named miscellaneous compounds.
Collapse
Affiliation(s)
- Dario Matulja
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
| | - Filip Vranješević
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
| | - Maria Kolympadi Markovic
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 5, 51000 Rijeka, Croatia
- Correspondence: (S.K.P.); (D.M.); Tel.: +385-51-688-266 (S.K.P.); +385-91-500-8676 (D.M.)
| | - Dean Marković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (D.M.); (F.V.); (M.K.M.)
- Correspondence: (S.K.P.); (D.M.); Tel.: +385-51-688-266 (S.K.P.); +385-91-500-8676 (D.M.)
| |
Collapse
|