1
|
Hameed H, Sarwar HS, Younas K, Zaman M, Jamshaid M, Irfan A, Khalid M, Sohail MF. Exploring the potential of nanomedicine for gene therapy across the physicochemical and cellular barriers. Funct Integr Genomics 2024; 24:177. [PMID: 39340586 DOI: 10.1007/s10142-024-01459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
After COVID-19, a turning point in the way of pharmaceutical technology is gene therapy with beneficial potential to start a new medical era. However, commercialization of such pharmaceuticals would never be possible without the help of nanotechnology. Nanomedicine can fulfill the growing needs linked to safety, efficiency, and site-specific targeted delivery of Gene therapy-based pharmaceuticals. This review's goal is to investigate how nanomedicine may be used to transfer nucleic acids by getting beyond cellular and physicochemical barriers. Firstly, we provide a full description of types of gene therapy, their mechanism, translation, transcription, expression, type, and details of diseases with possible mechanisms that can only be treated with genes-based pharmaceuticals. Additionally, we also reviewed different types of physicochemical barriers, physiological and cellular barriers in nucleic acids (DNA/RNA) based drug delivery. Finally, we highlight the need and importance of cationic lipid-based nanomedicine/nanocarriers in gene-linked drug delivery and how nanotechnology can help to overcome the above-discussed barrier in gene therapy and their biomedical applications.
Collapse
Affiliation(s)
- Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan.
| | - Hafiz Shoaib Sarwar
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Komel Younas
- Faculty of Pharmacy, University Paris Saclay, 17 Avenue des sciences, 91190, Orsay, France
| | - Muhammad Zaman
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Muhammad Jamshaid
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Maha Khalid
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Muhammad Farhan Sohail
- Department of Chemistry, SBASSE, Lahore University of Management Sciences (LUMS), Lahore, 54000, Pakistan
- Alliant College of Pharmacy and Allied Health Sciences, Lahore, 54000, Pakistan
| |
Collapse
|
2
|
Andrée L, Egberink RO, Heesakkers R, Suurmond CAE, Joziasse LS, Khalifeh M, Wang R, Yang F, Brock R, Leeuwenburgh SCG. Local mRNA Delivery from Nanocomposites Made of Gelatin and Hydroxyapatite Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50497-50506. [PMID: 39284017 PMCID: PMC11440464 DOI: 10.1021/acsami.4c12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Local delivery of messenger ribonucleic acid (mRNA) is increasingly being advocated as a promising new strategy to enhance the performance of biomaterials. While extensive research has been dedicated to the complexation of these oligonucleotides into nanoparticles to facilitate systemic delivery, research on developing suitable biomaterial carriers for the local delivery of mRNA is still scarce. So far, mRNA-nanoparticles (mRNA-NPs) are mainly loaded into traditional polymeric hydrogels. Here, we show that calcium phosphate nanoparticles can be used for both reinforcement of nanoparticle-based hydrogels and the complexation of mRNA. mRNA was incorporated into lipid-coated calcium phosphate nanoparticles (LCPs) formulated with a fusogenic ionizable lipid in the outer layer of the lipid coat. Nanocomposites of gelatin and hydroxyapatite nanoparticles were prepared at various ratios. Higher hydroxyapatite nanoparticle content increased the viscoelastic properties of the nanocomposite but did not affect its self-healing ability. Combination of these nanocomposites with peptide, lipid, and the LCP mRNA formulations achieved local mRNA release as demonstrated by protein expression in cells in contact with the biomaterials. The LCP-based formulation was superior to the other formulations by showing less sensitivity to hydroxyapatite and the highest cytocompatibility.
Collapse
Affiliation(s)
- Lea Andrée
- Department of Dentistry─Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Rik Oude Egberink
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Renée Heesakkers
- Department of Dentistry─Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Ceri-Anne E Suurmond
- Department of Dentistry─Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Lucas S Joziasse
- Department of Dentistry─Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Masoomeh Khalifeh
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Rong Wang
- Department of Dentistry─Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Fang Yang
- Department of Dentistry─Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Roland Brock
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain
| | - Sander C G Leeuwenburgh
- Department of Dentistry─Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| |
Collapse
|
3
|
Parvin N, Joo SW, Mandal TK. Enhancing Vaccine Efficacy and Stability: A Review of the Utilization of Nanoparticles in mRNA Vaccines. Biomolecules 2024; 14:1036. [PMID: 39199422 PMCID: PMC11353004 DOI: 10.3390/biom14081036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
The development of vaccines has entered a new era with the advent of nanotechnology, particularly through the utilization of nanoparticles. This review focuses on the role of nanoparticles in enhancing the efficacy and stability of mRNA vaccines. Nanoparticles, owing to their unique properties such as high surface area, tunable size, and their ability to be functionalized, have emerged as powerful tools in vaccine development. Specifically, lipid nanoparticles (LNPs) have revolutionized the delivery of mRNA vaccines by protecting the fragile mRNA molecules and facilitating their efficient uptake by cells. This review discusses the various types of nanoparticles employed in mRNA vaccine formulations, including lipid-based, polymer-based, and inorganic nanoparticles, highlighting their advantages and limitations. Moreover, it explores the mechanisms by which nanoparticles improve immune responses, such as enhanced antigen presentation and the prolonged release of mRNA. This review also addresses the challenges and future directions in nanoparticle-based vaccine development, emphasizing the need for further research to optimize formulations for broader applications. By providing an in-depth analysis of the current advancements in and potential of nanoparticles in mRNA vaccines, this review aims to shed light on their critical role in combating infectious diseases and improving public health outcomes.
Collapse
Affiliation(s)
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Tapas Kumar Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
4
|
Wang J, Fang Y, Luo Z, Wang J, Zhao Y. Emerging mRNA Technology for Liver Disease Therapy. ACS NANO 2024; 18:17378-17406. [PMID: 38916747 DOI: 10.1021/acsnano.4c02987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Liver diseases have consistently posed substantial challenges to global health. It is crucial to find innovative methods to effectively prevent and treat these diseases. In recent times, there has been an increasing interest in the use of mRNA formulations that accumulate in liver tissue for the treatment of hepatic diseases. In this review, we start by providing a detailed introduction to the mRNA technology. Afterward, we highlight types of liver diseases, discussing their causes, risks, and common therapeutic strategies. Additionally, we summarize the latest advancements in mRNA technology for the treatment of liver diseases. This includes systems based on hepatocyte growth factor, hepatitis B virus antibody, left-right determination factor 1, human hepatocyte nuclear factor α, interleukin-12, methylmalonyl-coenzyme A mutase, etc. Lastly, we provide an outlook on the potential of mRNA technology for the treatment of liver diseases, while also highlighting the various technical challenges that need to be addressed. Despite these difficulties, mRNA-based therapeutic strategies may change traditional treatment methods, bringing hope to patients with liver diseases.
Collapse
Affiliation(s)
- Ji Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yile Fang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zhiqiang Luo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
5
|
Makhijani S, Elossaily GM, Rojekar S, Ingle RG. mRNA-based vaccines - global approach, challenges, and could be a promising wayout for future pandemics. Pharm Dev Technol 2024; 29:559-565. [PMID: 38814266 DOI: 10.1080/10837450.2024.2361656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024]
Abstract
mRNA-based vaccines are assured to significantly boost biopharmaceuticals since outbreak of coronavirus disease- 2019. Respiratory infections, such as influenza, SARS, MERS, COVID-19, and respiratory syncytial virus, often have high transmission rates due to their airborne spread. Respiratory infections can lead to severe illness and death. These outbreaks can cause substantial economic and social disruption, as seen with the COVID-19 pandemic. In our interconnected world, respiratory diseases can spread rapidly across borders. mRNA-based vaccines (e.g. mRNA-1283) can reduce the transmission by creating immunity in the population, thus lowering the incidence and spread of these diseases. Vaccines are crucial for global health security, helping to prevent local outbreaks from becoming global pandemics. Nevertheless, various concerns remain such as intracellular delivery, susceptibility to degradation by catalytic hydrolysis, and instability due to several physiological conditions. Therefore, an hour needed to address these challenges and opportunities for attaining high-quality and stable mRNA-based vaccines with novel drug delivery systems. The authors contributed an extensive review of the mRNA-based clinical development, progress in stability, and delivery challenges to mitigate market needs. In addition, the authors discuss crucial advances in the growth of mRNA-based vaccines to date; which dominate an extensive scope of therapeutic implementation. Finally, recent mRNA-based vaccines in clinical trials, adjuvant benefits, and prospects are discussed.
Collapse
Affiliation(s)
- Shivani Makhijani
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DMIHER), Deemed to be University, Wardha, Maharashtra, India
| | - Gehan M Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | | | - Rahul G Ingle
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DMIHER), Deemed to be University, Wardha, Maharashtra, India
| |
Collapse
|
6
|
Luo R, Le H, Wu Q, Gong C. Nanoplatform-Based In Vivo Gene Delivery Systems for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312153. [PMID: 38441386 DOI: 10.1002/smll.202312153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Indexed: 07/26/2024]
Abstract
Gene therapy uses modern molecular biology methods to repair disease-causing genes. As a burgeoning therapeutic, it has been widely applied for cancer therapy. Since 1989, there have been numerous clinical gene therapy cases worldwide. However, a few are successful. The main challenge of clinical gene therapy is the lack of efficient and safe vectors. Although viral vectors show high transfection efficiency, their application is still limited by immune rejection and packaging capacity. Therefore, the development of non-viral vectors is overwhelming. Nanoplatform-based non-viral vectors become a hotspot in gene therapy. The reasons are mainly as follows. 1) Non-viral vectors can be engineered to be uptaken by specific types of cells or tissues, providing effective targeting capability. 2) Non-viral vectors can protect goods that need to be delivered from degradation. 3) Nanoparticles can transport large-sized cargo such as CRISPR/Cas9 plasmids and nucleoprotein complexes. 4) Nanoparticles are highly biosafe, and they are not mutagenic in themselves compared to viral vectors. 5) Nanoparticles are easy to scale preparation, which is conducive to clinical conversion and application. Here, an overview of the categories of nanoplatform-based non-viral gene vectors, the limitations on their development, and their applications in cancer therapy.
Collapse
Affiliation(s)
- Rui Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Le
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qinjie Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
7
|
Zhang Y, Gao Z, Yang X, Xu Q, Lu Y. Leveraging high-throughput screening technologies in targeted mRNA delivery. Mater Today Bio 2024; 26:101101. [PMID: 38883419 PMCID: PMC11176929 DOI: 10.1016/j.mtbio.2024.101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 05/25/2024] [Indexed: 06/18/2024] Open
Abstract
Messenger ribonucleic acid (mRNA) has emerged as a promising molecular preventive and therapeutic approach that opens new avenues for healthcare. Although the use of delivery systems, especially lipid nanoparticles (LNPs), greatly improves the efficiency and stability of mRNA, mRNA tends to accumulate in the liver and hardly penetrates physiological barriers to reach the target site after intravenous injection. Hence, the rational design of targeting strategies aimed at directing mRNA to specific tissues and cells remains an enormous challenge in mRNA therapy. High-throughput screening (HTS) is a cutting-edge targeted technique capable of synthesizing chemical compound libraries for the large-scale experiments to validate the efficiency of mRNA delivery system. In this review, we firstly provide an overview of conventional low-throughput targeting strategies. Then the latest advancements in HTS techniques for mRNA targeted delivery, encompassing optimizing structures of large-scale delivery vehicles and developing large-scale surface ligands, as well as the applications of HTS techniques in extrahepatic systemic diseases are comprehensively summarized. Moreover, we illustrate the selection of administration routes for targeted mRNA delivery. Finally, challenges in the field and potential solutions to tackle them are proposed, offering insights for future development toward mRNA targeted therapy.
Collapse
Affiliation(s)
- Yuchen Zhang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Zhifei Gao
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Xiao Yang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Qinglong Xu
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Yao Lu
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| |
Collapse
|
8
|
Liric Rajlic I, Guglieri‐Lopez B, Rangoonwala N, Ivaturi V, Van L, Mori S, Wipke B, Burdette D, Attarwala H. Translational kinetic-pharmacodynamics of mRNA-6231, an investigational mRNA therapeutic encoding mutein interleukin-2. CPT Pharmacometrics Syst Pharmacol 2024; 13:1067-1078. [PMID: 38676306 PMCID: PMC11179705 DOI: 10.1002/psp4.13142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Regulatory T cells (Tregs) are essential for maintaining immune homeostasis by serving as negative regulators of adaptive immune system effector cell responses. Reduced production or function of Tregs has been implicated in several human autoimmune diseases. The cytokine interleukin 2 plays a central role in promoting Treg differentiation, survival, and function in vivo and may therefore have therapeutic benefits for autoimmune diseases. mRNA-6231 is an investigational, lipid nanoparticle-encapsulated, mRNA-based therapy that encodes a modified human interleukin 2 mutein fused to human serum albumin (HSA-IL2m). Herein, we report the development of a semi-mechanistic kinetic-pharmacodynamic model to quantify the relationship between subcutaneous dose(s) of mRNA-6231, HSA-IL2m protein expression, and Treg expansion in nonhuman primates. The nonclinical kinetic-pharmacodynamic model was extrapolated to humans using allometric scaling principles and the physiological basis of pharmacological mechanisms to predict the clinical response to therapy a priori. Model-based simulations were used to inform the dose selection and design of the first-in-human clinical study (NCT04916431). The modeling approach used to predict human responses was validated when data became available from the phase I clinical study. This validation indicates that the approach is valuable in informing clinical decision-making.
Collapse
Affiliation(s)
| | | | | | | | - Linh Van
- Pharmacometrics, Moderna, Inc.CambridgeMassachusettsUSA
| | - Simone Mori
- External Research Ventures, Moderna, Inc.CambridgeMassachusettsUSA
| | - Brian Wipke
- Immune Therapeutics Discovery, Moderna, Inc.CambridgeMassachusettsUSA
| | - Douglas Burdette
- Drug Metabolism and Pharmacokinetics, Moderna, Inc.CambridgeMassachusettsUSA
| | | |
Collapse
|
9
|
Fedorovskiy AG, Antropov DN, Dome AS, Puchkov PA, Makarova DM, Konopleva MV, Matveeva AM, Panova EA, Shmendel EV, Maslov MA, Dmitriev SE, Stepanov GA, Markov OV. Novel Efficient Lipid-Based Delivery Systems Enable a Delayed Uptake and Sustained Expression of mRNA in Human Cells and Mouse Tissues. Pharmaceutics 2024; 16:684. [PMID: 38794346 PMCID: PMC11125954 DOI: 10.3390/pharmaceutics16050684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Over the past decade, mRNA-based therapy has displayed significant promise in a wide range of clinical applications. The most striking example of the leap in the development of mRNA technologies was the mass vaccination against COVID-19 during the pandemic. The emergence of large-scale technology and positive experience of mRNA immunization sparked the development of antiviral and anti-cancer mRNA vaccines as well as therapeutic mRNA agents for genetic and other diseases. To facilitate mRNA delivery, lipid nanoparticles (LNPs) have been successfully employed. However, the diverse use of mRNA therapeutic approaches requires the development of adaptable LNP delivery systems that can control the kinetics of mRNA uptake and expression in target cells. Here, we report effective mRNA delivery into cultured mammalian cells (HEK293T, HeLa, DC2.4) and living mouse muscle tissues by liposomes containing either 1,26-bis(cholest-5-en-3β-yloxycarbonylamino)-7,11,16,20-tetraazahexacosane tetrahydrochloride (2X3) or the newly applied 1,30-bis(cholest-5-en-3β-yloxycarbonylamino)-9,13,18,22-tetraaza-3,6,25,28-tetraoxatriacontane tetrahydrochloride (2X7) cationic lipids. Using end-point and real-time monitoring of Fluc mRNA expression, we showed that these LNPs exhibited an unusually delayed (of over 10 h in the case of the 2X7-based system) but had highly efficient and prolonged reporter activity in cells. Accordingly, both LNP formulations decorated with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG2000) provided efficient luciferase production in mice, peaking on day 3 after intramuscular injection. Notably, the bioluminescence was observed only at the site of injection in caudal thigh muscles, thereby demonstrating local expression of the model gene of interest. The developed mRNA delivery systems hold promise for prophylactic applications, where sustained synthesis of defensive proteins is required, and open doors to new possibilities in mRNA-based therapies.
Collapse
Affiliation(s)
- Artem G. Fedorovskiy
- Belozersky Institute of Physico-Chemical Biology, Department of Materials Science, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.G.F.); (M.V.K.); (E.A.P.)
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russia; (P.A.P.); (D.M.M.); (E.V.S.); (M.A.M.)
| | - Denis N. Antropov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.N.A.); (A.S.D.); (A.M.M.); (G.A.S.)
| | - Anton S. Dome
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.N.A.); (A.S.D.); (A.M.M.); (G.A.S.)
| | - Pavel A. Puchkov
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russia; (P.A.P.); (D.M.M.); (E.V.S.); (M.A.M.)
| | - Daria M. Makarova
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russia; (P.A.P.); (D.M.M.); (E.V.S.); (M.A.M.)
| | - Maria V. Konopleva
- Belozersky Institute of Physico-Chemical Biology, Department of Materials Science, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.G.F.); (M.V.K.); (E.A.P.)
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russia; (P.A.P.); (D.M.M.); (E.V.S.); (M.A.M.)
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Anastasiya M. Matveeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.N.A.); (A.S.D.); (A.M.M.); (G.A.S.)
| | - Eugenia A. Panova
- Belozersky Institute of Physico-Chemical Biology, Department of Materials Science, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.G.F.); (M.V.K.); (E.A.P.)
| | - Elena V. Shmendel
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russia; (P.A.P.); (D.M.M.); (E.V.S.); (M.A.M.)
| | - Mikhail A. Maslov
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 119571 Moscow, Russia; (P.A.P.); (D.M.M.); (E.V.S.); (M.A.M.)
| | - Sergey E. Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Department of Materials Science, Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.G.F.); (M.V.K.); (E.A.P.)
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya” of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Grigory A. Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.N.A.); (A.S.D.); (A.M.M.); (G.A.S.)
| | - Oleg V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.N.A.); (A.S.D.); (A.M.M.); (G.A.S.)
| |
Collapse
|
10
|
Pawar S, Pingale P, Garkal A, Osmani RAM, Gajbhiye K, Kulkarni M, Pardeshi K, Mehta T, Rajput A. Unlocking the potential of nanocarrier-mediated mRNA delivery across diverse biomedical frontiers: A comprehensive review. Int J Biol Macromol 2024; 267:131139. [PMID: 38615863 DOI: 10.1016/j.ijbiomac.2024.131139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/23/2024] [Accepted: 03/23/2024] [Indexed: 04/16/2024]
Abstract
Messenger RNA (mRNA) has gained marvelous attention for managing and preventing various conditions like cancer, Alzheimer's, infectious diseases, etc. Due to the quick development and success of the COVID-19 mRNA-based vaccines, mRNA has recently grown in prominence. A lot of products are in clinical trials and some are already FDA-approved. However, still improvements in line of optimizing stability and delivery, reducing immunogenicity, increasing efficiency, expanding therapeutic applications, scalability and manufacturing, and long-term safety monitoring are needed. The delivery of mRNA via a nanocarrier system gives a synergistic outcome for managing chronic and complicated conditions. The modified nanocarrier-loaded mRNA has excellent potential as a therapeutic strategy. This emerging platform covers a wide range of diseases, recently, several clinical studies are ongoing and numerous publications are coming out every year. Still, many unexplained physical, biological, and technical problems of mRNA for safer human consumption. These complications were addressed with various nanocarrier formulations. This review systematically summarizes the solved problems and applications of nanocarrier-based mRNA delivery. The modified nanocarrier mRNA meaningfully improved mRNA stability and abridged its immunogenicity issues. Furthermore, several strategies were discussed that can be an effective solution in the future for managing complicated diseases.
Collapse
Affiliation(s)
- Smita Pawar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai 400019, Maharashtra, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES's Sir Dr. M. S. Gosavi College of Pharmaceutical Education and Research, Nashik 422005, Maharashtra, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India; Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Kavita Gajbhiye
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India
| | - Madhur Kulkarni
- SCES's Indira College of Pharmacy, New Pune Mumbai Highway, Tathwade 411033, Pune, Maharashtra, India
| | - Krutika Pardeshi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sandip University, Nashik 422213, Maharashtra, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India.
| |
Collapse
|
11
|
Wang J, Zhu H, Gan J, Liang G, Li L, Zhao Y. Engineered mRNA Delivery Systems for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308029. [PMID: 37805865 DOI: 10.1002/adma.202308029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Indexed: 10/09/2023]
Abstract
Messenger RNA (mRNA)-based therapeutic strategies have shown remarkable promise in preventing and treating a staggering range of diseases. Optimizing the structure and delivery system of engineered mRNA has greatly improved its stability, immunogenicity, and protein expression levels, which has led to a wider range of uses for mRNA therapeutics. Herein, a thorough analysis of the optimization strategies used in the structure of mRNA is first provided and delivery systems are described in great detail. Furthermore, the latest advancements in biomedical engineering for mRNA technology, including its applications in combatting infectious diseases, treating cancer, providing protein replacement therapy, conducting gene editing, and more, are summarized. Lastly, a perspective on forthcoming challenges and prospects concerning the advancement of mRNA therapeutics is offered. Despite these challenges, mRNA-based therapeutics remain promising, with the potential to revolutionize disease treatment and contribute to significant advancements in the biomedical field.
Collapse
Affiliation(s)
- Ji Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Haofang Zhu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jingjing Gan
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Gaofeng Liang
- Institute of Organoids on Chips Translational Research, Henan Academy of Sciences, Zhengzhou, 450009, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Institute of Organoids on Chips Translational Research, Henan Academy of Sciences, Zhengzhou, 450009, China
| |
Collapse
|
12
|
Hou F, Guo Z, Ho MT, Hui Y, Zhao CX. Particle-Based Artificial Antigen-Presenting Cell Systems for T Cell Activation in Adoptive T Cell Therapy. ACS NANO 2024; 18:8571-8599. [PMID: 38483840 DOI: 10.1021/acsnano.3c10180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
T cell-based adoptive cell therapy (ACT) has emerged as a promising treatment for various diseases, particularly cancers. Unlike other immunotherapy modalities, ACT involves directly transferring engineered T cells into patients to eradicate diseased cells; hence, it necessitates methods for effectively activating and expanding T cells in vitro. Artificial antigen-presenting cells (aAPCs) have been widely developed based on biomaterials, particularly micro- and nanoparticles, and functionalized with T cell stimulatory antibodies to closely mimic the natural T cell-APC interactions. Due to their vast clinical utility, aAPCs have been employed as an off-the-shelf technology for T cell activation in FDA-approved ACTs, and the development of aAPCs is constantly advancing with the emergence of aAPCs with more sophisticated designs and additional functionalities. Here, we review the recent advancements in particle-based aAPCs for T cell activation in ACTs. Following a brief introduction, we first describe the manufacturing processes of ACT products. Next, the design and synthetic strategies for micro- and nanoparticle-based aAPCs are discussed separately to emphasize their features, advantages, and limitations. Then, the impact of design parameters of aAPCs, such as size, shape, ligand density/mobility, and stiffness, on their functionality and biomedical performance is explored to provide deeper insights into the design concepts and principles for more efficient and safer aAPCs. The review concludes by discussing current challenges and proposing future perspectives for the development of more advanced aAPCs.
Collapse
Affiliation(s)
- Fei Hou
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Zichao Guo
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Minh Trang Ho
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yue Hui
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Chun-Xia Zhao
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
13
|
Puccetti M, Pariano M, Schoubben A, Giovagnoli S, Ricci M. Biologics, theranostics, and personalized medicine in drug delivery systems. Pharmacol Res 2024; 201:107086. [PMID: 38295917 DOI: 10.1016/j.phrs.2024.107086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
The progress in human disease treatment can be greatly advanced through the implementation of nanomedicine. This approach involves targeted and cell-specific therapy, controlled drug release, personalized dosage forms, wearable drug delivery, and companion diagnostics. By integrating cutting-edge technologies with drug delivery systems, greater precision can be achieved at the tissue and cellular levels through the use of stimuli-responsive nanoparticles, and the development of electrochemical sensor systems. This precision targeting - by virtue of nanotechnology - allows for therapy to be directed specifically to affected tissues while greatly reducing side effects on healthy tissues. As such, nanomedicine has the potential to transform the treatment of conditions such as cancer, genetic diseases, and chronic illnesses by facilitating precise and cell-specific drug delivery. Additionally, personalized dosage forms and wearable devices offer the ability to tailor treatment to the unique needs of each patient, thereby increasing therapeutic effectiveness and compliance. Companion diagnostics further enable efficient monitoring of treatment response, enabling customized adjustments to the treatment plan. The question of whether all the potential therapeutic approaches outlined here are viable alternatives to current treatments is also discussed. In general, the application of nanotechnology in the field of biomedicine may provide a strong alternative to existing treatments for several reasons. In this review, we aim to present evidence that, although in early stages, fully merging advanced technology with innovative drug delivery shows promise for successful implementation across various disease areas, including cancer and genetic or chronic diseases.
Collapse
Affiliation(s)
- Matteo Puccetti
- Department of Pharmaceutical Sciences, University of Perugia, Italy,.
| | | | | | | | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, Italy,.
| |
Collapse
|
14
|
Fahmy SA, Mahdy NK, Mohamed AH, Mokhtar FA, Youness RA. Hijacking 5-Fluorouracil Chemoresistance in Triple Negative Breast Cancer via microRNAs-Loaded Chitosan Nanoparticles. Int J Mol Sci 2024; 25:2070. [PMID: 38396746 PMCID: PMC10889139 DOI: 10.3390/ijms25042070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Chemotherapy is still the mainstay of treatment for triple-negative breast cancer (TNBC) patients. Yet only 20% of TNBC patients show a pathologic complete response (pCR) after neoadjuvant chemotherapy. 5-Fluorouracil (5-FU) is a stable cornerstone in all recommended chemotherapeutic protocols for TNBC patients. However, TNBC patients' innate or acquired chemoresistance rate for 5-FU is steeply escalating. This study aims to unravel the mechanism behind the chemoresistance of 5-FU in the aggressive TNBC cell line, MDA-MB-231 cells, to explore further the role of the tumor suppressor microRNAs (miRNAs), miR-1275, miR-615-5p, and Let-7i, in relieving the 5-FU chemoresistance in TNBC, and to finally provide a translational therapeutic approach to co-deliver 5-FU and the respective miRNA oligonucleotides using chitosan-based nanoparticles (CsNPs). In this regard, cellular viability and proliferation were investigated using MTT and BrdU assays, respectively. 5-FU was found to induce JAK/STAT and PI3K/Akt/mTOR pathways in MDA-MB-231 cells with contaminant repression of their upstream regulators miR-1275, miR-615-5p, and Let-7i. Moreover, CsNPs prepared using the ionic gelation method were chosen and studied as nanovectors of 5-FU and a combination of miRNA oligonucleotides targeting TNBC. The average particle sizes, surface charges, and morphologies of the different CsNPs were characterized using dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. In addition, the encapsulation efficiency (EE%), drug loading capacity (DLC%), and release manner at two different pH values were assessed. In conclusion, the novel CsNPs co-loaded with 5-FU and the combination of the three miRNA oligonucleotides demonstrated synergistic activity and remarkable repression in cellular viability and proliferation of TNBC cells through alleviating the chemoresistance to 5-FU.
Collapse
Affiliation(s)
- Sherif Ashraf Fahmy
- Chemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11835, Egypt
| | - Noha Khalil Mahdy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Adham H Mohamed
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), New Administrative Capital, Cairo 11835, Egypt
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Fatma A Mokhtar
- Fujairah Research Centre, Sakamkam Road, Fujairah 1626, United Arab Emirates
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida 44813, Sharkia, Egypt
| | - Rana A Youness
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), New Administrative Capital, Cairo 11835, Egypt
| |
Collapse
|
15
|
Reis-Claro I, Silva MI, Moutinho A, Garcia BC, Pereira-Castro I, Moreira A. Application of the iPLUS non-coding sequence in improving biopharmaceuticals production. Front Bioeng Biotechnol 2024; 12:1355957. [PMID: 38380261 PMCID: PMC10876878 DOI: 10.3389/fbioe.2024.1355957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024] Open
Abstract
The biotechnological landscape has witnessed significant growth in biological therapeutics particularly in the field of recombinant protein production. Here we investigate the function of 3'UTR cis-regulatory elements in increasing mRNA and protein levels in different biological therapeutics and model systems, spanning from monoclonal antibodies to mRNA vaccines. We explore the regulatory function of iPLUS - a universal sequence capable of consistently augmenting recombinant protein levels. By incorporating iPLUS in a vector to express a monoclonal antibody used in immunotherapy, in a mammalian cell line used by the industry (ExpiCHO), trastuzumab production increases by 2-fold. As yeast Pichia pastoris is widely used in the manufacture of industrial enzymes and pharmaceuticals, we then used iPLUS in tandem (3x) and iPLUSv2 (a variant of iPLUS) to provide proof-of-concept data that it increases the production of a reporter protein more than 100-fold. As iPLUS functions by also increasing mRNA levels, we hypothesize that these sequences could be used as an asset in the mRNA vaccine industry. In fact, by including iPLUSv2 downstream of Spike we were able to double its production. Moreover, the same effect was observed when we introduced iPLUSv2 downstream of MAGEC2, a tumor-specific antigen tested for cancer mRNA vaccines. Taken together, our study provides data (TLR4) showing that iPLUS may be used as a valuable asset in a variety of systems used by the biotech and biopharmaceutical industry. Our results underscore the critical role of non-coding sequences in controlling gene expression, offering a promising avenue to accelerate, enhance, and cost-effectively optimize biopharmaceutical production processes.
Collapse
Affiliation(s)
- Inês Reis-Claro
- Gene Regulation, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Maria Inês Silva
- Gene Regulation, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana Moutinho
- Gene Regulation, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Beatriz C. Garcia
- Gene Regulation, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Isabel Pereira-Castro
- Gene Regulation, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Alexandra Moreira
- Gene Regulation, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
16
|
Wang N, Wang T. Innovative translational platforms for rapid developing clinical vaccines against COVID-19 and other infectious disease. Biotechnol J 2024; 19:e2300658. [PMID: 38403469 DOI: 10.1002/biot.202300658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 02/27/2024]
Abstract
A vaccine is a biological preparation that contains the antigen capable of stimulating the immune system to form the defense against pathogens. Vaccine development often confronts big challenges, including time/energy-consuming, low efficacy, lag to pathogen emergence and mutation, and even safety concern. However, these seem now mostly conquerable through constructing the advanced translational platforms that can make innovative vaccines, sometimes, potentiated with a distinct multifunctional VADS (vaccine adjuvant delivery system), as evidenced by the development of various vaccines against the covid-19 pandemic at warp speed. Particularly, several covid-19 vaccines, such as the viral-vectored vaccines, mRNA vaccines and DNA vaccines, regarded as the innovative ones that are rapidly made via the high technology-based translational platforms. These products have manifested powerful efficacy while showing no unacceptable safety profile in clinics, allowing them to be approved for massive vaccination at also warp speed. Now, the proprietary translational platforms integrated with the state-of-the-art biotechnologies, and even the artificial intelligence (AI), represent an efficient mode for rapid making innovative clinical vaccines against infections, thus increasingly attracting interests of vaccine research and development. Herein, the advanced translational platforms for making innovative vaccines, together with their design principles and immunostimulatory efficacies, are comprehensively elaborated.
Collapse
Affiliation(s)
- Ning Wang
- School of Food and Biological engineering, Hefei University of Technology, Hefei, Anhui Province, China
| | - Ting Wang
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
17
|
Bahl E, Jyoti A, Singh A, Siddqui A, Upadhyay SK, Jain D, Shah MP, Saxena J. Nanomaterials for intelligent CRISPR-Cas tools: improving environment sustainability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32101-x. [PMID: 38291210 DOI: 10.1007/s11356-024-32101-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) is a desirable gene modification tool covering a wide area in various sectors of medicine, agriculture, and microbial biotechnology. The role of this incredible genetic engineering technology has been extensively investigated; however, it remains formidable with cargo choices, nonspecific delivery, and insertional mutagenesis. Various nanomaterials including lipid, polymeric, and inorganic are being used to deliver the CRISPR-Cas system. Progress in nanomaterials could potentially address these challenges by accelerating precision targeting, cost-effectiveness, and one-step delivery. In this review, we highlighted the advances in nanotechnology and nanomaterials as smart delivery systems for CRISPR-Cas so as to ameliorate applications for environmental remediation including biomedical research and healthcare, strategies for mitigating antimicrobial resistance, and to be used as nanofertilizers for enhancing crop growth, and reducing the environmental impact of traditional fertilizers. The timely co-evolution of nanotechnology and CRISPR technologies has contributed to smart novel nanostructure hybrids for improving the onerous tasks of environmental remediation and biological sustainability.
Collapse
Affiliation(s)
- Ekansh Bahl
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, S.A.S Nagar, 140413, Punjab, India
| | - Anupam Jyoti
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India
| | - Abhijeet Singh
- Department of Biosciences, Manipal University Jaipur, Rajasthan, 303007, India
| | - Arif Siddqui
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, 313001, India
| | - Maulin P Shah
- Industrial Wastewater Research Lab, Ankleshwar, India
| | - Juhi Saxena
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, S.A.S Nagar, 140413, Punjab, India.
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara, Gujarat, India.
| |
Collapse
|
18
|
Mohammadian Farsani A, Mokhtari N, Nooraei S, Bahrulolum H, Akbari A, Farsani ZM, Khatami S, Ebadi MS, Ahmadian G. Lipid nanoparticles: The game-changer in CRISPR-Cas9 genome editing. Heliyon 2024; 10:e24606. [PMID: 38288017 PMCID: PMC10823087 DOI: 10.1016/j.heliyon.2024.e24606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/31/2024] Open
Abstract
The steady progress in genome editing, especially genome editing based on the use of clustered regularly interspaced short palindromic repeats (CRISPR) and programmable nucleases to make precise modifications to genetic material, has provided enormous opportunities to advance biomedical research and promote human health. However, limited transfection efficiency of CRISPR-Cas9 poses a substantial challenge, hindering its wide adoption for genetic modification. Recent advancements in nanoparticle technology, specifically lipid nanoparticles (LNPs), offer promising opportunities for targeted drug delivery. LNPs are becoming popular as a means of delivering therapeutics, including those based on nucleic acids and mRNA. Notably, certain LNPs, such as Polyethylene glycol-phospholipid-modified cationic lipid nanoparticles and solid lipid nanoparticles, exhibit remarkable potential for efficient CRISPR-Cas9 delivery as a gene editing instrument. This review will introduce the molecular mechanisms and diverse applications of the CRISPR/Cas9 gene editing system, current strategies for delivering CRISPR/Cas9-based tools, the advantage of LNPs for CRISPR-Cas9 delivery, an overview of strategies for overcoming off-target genome editing, and approaches for improving genome targeting and tissue targeting. We will also highlight current developments and recent clinical trials for the delivery of CRISPR/Cas9. Finally, future directions for overcoming the limitations and adaptation of this technology for clinical trials will be discussed.
Collapse
Affiliation(s)
- Arezoo Mohammadian Farsani
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Negin Mokhtari
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi Univesity, Tehran, Iran
| | - Saghi Nooraei
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Howra Bahrulolum
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ali Akbari
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Zoheir Mohammadian Farsani
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Seyedmoein Khatami
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mozhdeh sadat Ebadi
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
19
|
Kapoor D, Chilkapalli SC, Prajapati BG, Rodriques P, Patel R, Singh S, Bhattacharya S. The Astonishing Accomplishment of Biological Drug Delivery using Lipid Nanoparticles: An Ubiquitous Review. Curr Pharm Biotechnol 2024; 25:1952-1968. [PMID: 38265380 DOI: 10.2174/0113892010268824231122041237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 01/25/2024]
Abstract
Biotech drugs, including proteins, hormones, enzymes, DNA/RNA therapies, and cell-based treatments, are gaining popularity due to their effectiveness. However, effective delivery systems are needed to overcome administration challenges. Lipid nanoparticles (LNPs) have emerged as promising carriers for various therapies. LNPs are biocompatible, less likely to cause adverse reactions, and can stabilize delicate biological drugs, enhancing their stability and solubility. Scalable and cost-effective manufacturing processes make LNPs suitable for largescale production. Despite recent research efforts, challenges in stability, toxicity, and regulatory concerns have limited the commercial availability of LNP-based products. This review explores the applications, administration routes, challenges, and future directions of LNPs in delivering biopharmaceuticals.
Collapse
Affiliation(s)
- Devesh Kapoor
- Department of Pharmaceutical Technology, Dr. Dayaram Patel Pharmacy College, Bardoli 394601, Gujarat, India
| | - Shirisha C Chilkapalli
- Department of Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana-384012, Gujarat, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana-384012, Gujarat, India
| | - Paul Rodriques
- Department of Pharmaceutical Technology, Krishna School of Pharmacy and Research, KPGU, Vadodara, Mumbai NH#8, Varnama, Vadodara, Gujarat, India
| | - Ravish Patel
- Department of Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa 388 421, Anand, Gujarat, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM's NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
20
|
Ma Y, Li S, Lin X, Chen Y. Bioinspired Spatiotemporal Management toward RNA Therapies. ACS NANO 2023; 17:24539-24563. [PMID: 38091941 DOI: 10.1021/acsnano.3c08219] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Ribonucleic acid (RNA)-based therapies have become an attractive topic in disease intervention, especially with some that have been approved by the FDA such as the mRNA COVID-19 vaccine (Comirnaty, Pfizer-BioNTech, and Spikevax, Moderna) and Patisiran (siRNA-based drug for liver delivery). However, extensive applications are still facing challenges in delivering highly negatively charged RNA to the targeted site. Therapeutic delivery strategies including RNA modifications, RNA conjugates, and RNA polyplexes and delivery platforms such as viral vectors, nanoparticle-based delivery platforms, and hydrogel-based delivery platforms as potential nucleic acid-releasing depots have been developed to enhance their cellular uptake and protect nucleic acid from being degraded by immune systems. Here, we review the growing number of viral vectors, nanoparticles, and hydrogel-based RNA delivery systems; describe RNA loading/release mechanism induced by environmental stimulations including light, heat, pH, or enzyme; discuss their physical or chemical interactions; and summarize the RNA therapeutics release period (temporal) and their target cells/organs (spatial). Finally, we describe current concerns, highlight current challenges and future perspectives of RNA-based delivery systems, and provide some possible research areas that provide opportunities for clinical translation of RNA delivery carriers.
Collapse
Affiliation(s)
- Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shiyao Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xin Lin
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27705, United States
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Khunsuk PO, Pongma C, Palaga T, Hoven VP. Zwitterionic Polymer-Decorated Lipid Nanoparticles for mRNA Delivery in Mammalian Cells. Biomacromolecules 2023; 24:5654-5665. [PMID: 37956106 DOI: 10.1021/acs.biomac.3c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Lipid nanoparticles (LNPs) play a key role in the effective transport of mRNA into cells for protein translation. Despite the stealthiness of poly(ethylene glycol) (PEG) that helps protect LNPs from protein absorption and blood clearance, the generation of anti-PEG antibodies resulting in PEG allergies remains a challenge for the development of an mRNA vaccine. Herein, a non-PEG lipid was developed by conjugating 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) with an antifouling zwitterionic polymer, poly(2-methyacryloyloxyethyl phosphorylcholine) (PMPC), of different chain lengths. The PMPC-LNPs formulated from DPPE-PMPC were spherical (diameter ≈ 144-255 nm), neutral in charge, and stable at 4 °C for up to 28 days. Their fraction of stealthiness being close to 1 emphasized the antifouling characteristics of PMPC decorated on LNPs. The PMPC-LNPs were nontoxic to HEK293T cells, did not induce inflammatory responses in THP-1 cells, and exhibited an mRNA transfection efficiency superior to that of PEG-LNPs. This work demonstrated the potential of the developed zwitterionic polymer-conjugated LNPs as promising mRNA carriers.
Collapse
Affiliation(s)
- Phim-On Khunsuk
- Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Chitsuda Pongma
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
- Center of Excellence in Materials and Bio-interfaces, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Voravee P Hoven
- Center of Excellence in Materials and Bio-interfaces, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
22
|
Xu Y, Zheng Y, Ding X, Wang C, Hua B, Hong S, Huang X, Lin J, Zhang P, Chen W. PEGylated pH-responsive peptide-mRNA nano self-assemblies enhance the pulmonary delivery efficiency and safety of aerosolized mRNA. Drug Deliv 2023; 30:2219870. [PMID: 37336779 DOI: 10.1080/10717544.2023.2219870] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 06/21/2023] Open
Abstract
Inhalable messenger RNA (mRNA) has demonstrated great potential in therapy and vaccine development to confront various lung diseases. However, few gene vectors could overcome the airway mucus and intracellular barriers for successful pulmonary mRNA delivery. Apart from the low pulmonary gene delivery efficiency, nonnegligible toxicity is another common problem that impedes the clinical application of many non-viral vectors. PEGylated cationic peptide-based mRNA delivery vector is a prospective approach to enhance the pulmonary delivery efficacy and safety of aerosolized mRNA by oral inhalation administration. In this study, different lengths of hydrophilic PEG chains were covalently linked to an amphiphilic, water-soluble pH-responsive peptide, and the peptide/mRNA nano self-assemblies were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The in vitro mRNA binding and release, cellular uptake, transfection, and cytotoxicity were studied, and finally, a proper PEGylated peptide with enhanced pulmonary mRNA delivery efficiency and improved safety in mice was identified. These results showed that a proper N-terminus PEGylation strategy using 12-monomer linear monodisperse PEG could significantly improve the mRNA transfection efficiency and biocompatibility of the non-PEGylated cationic peptide carrier, while a longer PEG chain modification adversely decreased the cellular uptake and transfection on A549 and HepG2 cells, emphasizing the importance of a proper PEG chain length selection. Moreover, the optimized PEGylated peptide showed a significantly enhanced mRNA pulmonary delivery efficiency and ameliorated safety profiles over the non-PEGylated peptide and LipofectamineTM 2000 in mice. Our results reveal that the PEGylated peptide could be a promising mRNA delivery vector candidate for inhaled mRNA vaccines and therapeutic applications for the prevention and treatment of different respiratory diseases in the future.
Collapse
Affiliation(s)
- Yingying Xu
- School of Pharmacy, Fujian Medical University, Fuzhou, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Yijing Zheng
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xuqiu Ding
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Chengyan Wang
- Institute of Laboratory Animal Center, Fujian Medical University, Fuzhou, China
| | - Bin Hua
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Shilian Hong
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xiaoman Huang
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jiali Lin
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Peng Zhang
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, China
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
23
|
Zhang T, Aipire A, Li Y, Guo C, Li J. Antigen cross-presentation in dendric cells: From bench to bedside. Biomed Pharmacother 2023; 168:115758. [PMID: 37866002 DOI: 10.1016/j.biopha.2023.115758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
Cross-presentation (XPT) is an adaptation of the cellular process in which dendritic cells (DCs) present exogenous antigens on major histocompatibility complex (MHC) class I molecules for recognition of the cytotoxic T lymphocytes (CTL) and natural killer (NK) cells, resulting in immunity or tolerance. Recent advances in DCs have broadened our understanding of the underlying mechanisms of XPT and strengthened their application in tumor immunotherapy. In this review, we summarized the known mechanisms of XPT, including the receptor-mediated internalization of exogenous antigens, endosome escape, engagement of the other XPT-related proteins, and adjuvants, which significantly enhance the XPT capacity of DCs. Consequently, various strategies to enhance XPT can be adopted and optimized to improve outcomes of DC-based therapy.
Collapse
Affiliation(s)
- Tingting Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Adila Aipire
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yijie Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Changying Guo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
24
|
Bondue T, Berlingerio SP, Siegerist F, Sendino-Garví E, Schindler M, Baelde HJ, Cairoli S, Goffredo BM, Arcolino FO, Dieker J, Janssen MJ, Endlich N, Brock R, Gijsbers R, van den Heuvel L, Levtchenko E. Evaluation of the efficacy of cystinosin supplementation through CTNS mRNA delivery in experimental models for cystinosis. Sci Rep 2023; 13:20961. [PMID: 38016974 PMCID: PMC10684520 DOI: 10.1038/s41598-023-47085-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023] Open
Abstract
Messenger RNA (mRNA) therapies are emerging in different disease areas, but have not yet reached the kidney field. Our aim was to study the feasibility to treat the genetic defect in cystinosis using synthetic mRNA in cell models and ctns-/- zebrafish embryos. Cystinosis is a prototype lysosomal storage disorder caused by mutations in the CTNS gene, encoding the lysosomal cystine-H+ symporter cystinosin, and leading to cystine accumulation in all cells of the body. The kidneys are the first and the most severely affected organs, presenting glomerular and proximal tubular dysfunction, progressing to end-stage kidney failure. The current therapeutic standard cysteamine, reduces cystine levels, but has many side effects and does not restore kidney function. Here, we show that synthetic mRNA can restore lysosomal cystinosin expression following lipofection into CTNS-/- kidney cells and injection into ctns-/- zebrafish. A single CTNS mRNA administration decreases cellular cystine accumulation for up to 14 days in vitro. In the ctns-/- zebrafish, CTNS mRNA therapy improves proximal tubular reabsorption, reduces proteinuria, and restores brush border expression of the multi-ligand receptor megalin. Therefore, this proof-of-principle study takes the first steps in establishing an mRNA-based therapy to restore cystinosin expression, resulting in cystine reduction in vitro and in the ctns-/- larvae, and restoration of the zebrafish pronephros function.
Collapse
Affiliation(s)
- Tjessa Bondue
- Laboratory of Pediatric Nephrology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | | - Florian Siegerist
- Institute of Anatomy and Cell Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Elena Sendino-Garví
- Division Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Maximilian Schindler
- Institute of Anatomy and Cell Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Hans Jacobus Baelde
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sara Cairoli
- Laboratory of Metabolic Biochemistry, Department of Pediatric Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Bianca Maria Goffredo
- Laboratory of Metabolic Biochemistry, Department of Pediatric Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Fanny Oliveira Arcolino
- Laboratory of Pediatric Nephrology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, Emma Children's Hospital and Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Manoe Jacoba Janssen
- Division Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Nicole Endlich
- Institute of Anatomy and Cell Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Roland Brock
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Rik Gijsbers
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- Leuven Viral Vector Core (LVVC), KU Leuven, Leuven, Belgium
| | - Lambertus van den Heuvel
- Laboratory of Pediatric Nephrology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elena Levtchenko
- Laboratory of Pediatric Nephrology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, H7-234, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Qian J, Guo Y, Xu Y, Wang X, Chen J, Wu X. Combination of micelles and liposomes as a promising drug delivery system: a review. Drug Deliv Transl Res 2023; 13:2767-2789. [PMID: 37278964 DOI: 10.1007/s13346-023-01368-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/07/2023]
Abstract
Among various nanocarriers, liposomes, and micelles are relatively mature drug delivery systems with the advantages of prolonging drug half-life, reducing toxicity, and improving efficacy. However, both have problems, such as poor stability and insufficient targeting. To further exploit the excellent properties of micelles and liposomes and avoid their shortcomings, researchers have developed new drug delivery systems by combining the two and making use of their respective advantages to achieve the goals of increasing the drug loading capacity, multiple targeting, and multiple drug delivery. The results have demonstrated that this new combination approach is a very promising delivery platform. In this paper, we review the combination strategies, preparation methods, and applications of micelles and liposomes to introduce the research progress, advantages, and challenges of composite carriers.
Collapse
Affiliation(s)
- Jiecheng Qian
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yankun Guo
- Department of Pharmacy, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Pharmacy, Organization Department, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youfa Xu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Shanghai Wei Er Lab, Shanghai, China
| | - Xinyu Wang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jianming Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
- Shanghai Wei Er Lab, Shanghai, China.
| | - Xin Wu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
- Shanghai Wei Er Lab, Shanghai, China.
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Zhao Y, Gan L, Ke D, Chen Q, Fu Y. Mechanisms and research advances in mRNA antibody drug-mediated passive immunotherapy. J Transl Med 2023; 21:693. [PMID: 37794448 PMCID: PMC10552228 DOI: 10.1186/s12967-023-04553-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
Antibody technology is widely used in the fields of biomedical and clinical therapies. Nonetheless, the complex in vitro expression of recombinant proteins, long production cycles, and harsh storage conditions have limited their applications in medicine, especially in clinical therapies. Recently, this dilemma has been overcome to a certain extent by the development of mRNA delivery systems, in which antibody-encoding mRNAs are enclosed in nanomaterials and delivered to the body. On entering the cytoplasm, the mRNAs immediately bind to ribosomes and undergo translation and post-translational modifications. This process produces monoclonal or bispecific antibodies that act directly on the patient. Additionally, it eliminates the cumbersome process of in vitro protein expression and extends the half-life of short-lived proteins, which significantly reduces the cost and duration of antibody production. This review focuses on the benefits and drawbacks of mRNA antibodies compared with the traditional in vitro expressed antibodies. In addition, it elucidates the progress of mRNA antibodies in the prevention of infectious diseases and oncology therapy.
Collapse
Affiliation(s)
- Yuxiang Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian, PR China
| | - Linchuan Gan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian, PR China
| | - Dangjin Ke
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian, PR China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian, PR China.
| | - Yajuan Fu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian, PR China.
| |
Collapse
|
27
|
Muslimov A, Tereshchenko V, Shevyrev D, Rogova A, Lepik K, Reshetnikov V, Ivanov R. The Dual Role of the Innate Immune System in the Effectiveness of mRNA Therapeutics. Int J Mol Sci 2023; 24:14820. [PMID: 37834268 PMCID: PMC10573212 DOI: 10.3390/ijms241914820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Advances in molecular biology have revolutionized the use of messenger RNA (mRNA) as a therapeutic. The concept of nucleic acid therapy with mRNA originated in 1990 when Wolff et al. reported successful expression of proteins in target organs by direct injection of either plasmid DNA or mRNA. It took decades to bring the transfection efficiency of mRNA closer to that of DNA. The next few decades were dedicated to turning in vitro-transcribed (IVT) mRNA from a promising delivery tool for gene therapy into a full-blown therapeutic modality, which changed the biotech market rapidly. Hundreds of clinical trials are currently underway using mRNA for prophylaxis and therapy of infectious diseases and cancers, in regenerative medicine, and genome editing. The potential of IVT mRNA to induce an innate immune response favors its use for vaccination and immunotherapy. Nonetheless, in non-immunotherapy applications, the intrinsic immunostimulatory activity of mRNA directly hinders the desired therapeutic effect since it can seriously impair the target protein expression. Targeting the same innate immune factors can increase the effectiveness of mRNA therapeutics for some indications and decrease it for others, and vice versa. The review aims to present the innate immunity-related 'barriers' or 'springboards' that may affect the development of immunotherapies and non-immunotherapy applications of mRNA medicines.
Collapse
Affiliation(s)
- Albert Muslimov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
- Laboratory of Nano- and Microencapsulation of Biologically Active Substances, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia;
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia;
| | - Valeriy Tereshchenko
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| | - Daniil Shevyrev
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| | - Anna Rogova
- Laboratory of Nano- and Microencapsulation of Biologically Active Substances, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia;
- Saint-Petersburg Chemical-Pharmaceutical University, Professora Popova 14, 197376 St. Petersburg, Russia
- School of Physics and Engineering, ITMO University, Lomonosova 9, 191002 St. Petersburg, Russia
| | - Kirill Lepik
- RM Gorbacheva Research Institute, Pavlov University, L’va Tolstogo 6-8, 197022 St. Petersburg, Russia;
| | - Vasiliy Reshetnikov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, 630090 Novosibirsk, Russia
| | - Roman Ivanov
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, Olympic Ave 1, 354340 Sirius, Russia; (V.T.); (D.S.); (V.R.); (R.I.)
| |
Collapse
|
28
|
Yan Y, Liu X, Wang L, Wu C, Shuai Q, Zhang Y, Liu S. Branched hydrophobic tails in lipid nanoparticles enhance mRNA delivery for cancer immunotherapy. Biomaterials 2023; 301:122279. [PMID: 37591187 DOI: 10.1016/j.biomaterials.2023.122279] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/11/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
Efficient and safe delivery of vulnerable mRNA is a long-standing challenge for the broad application of the emerging mRNA-based therapeutics. Herein, a combinatorial library containing 119 novel lipids was constructed via sequential aza-Michael addition reactions of arylates and varying amines to tackle the ongoing challenge in mRNA delivery. Through in vitro screening of the lipid library on IGROV 1 cells, we identified several synthetic lipids with superior mRNA delivery efficacy. The delivery capability of these lipids was verified by the potent expression of luciferase in BALB/c mice upon intravenous administration of luciferase-encoding mRNA lipid nanoparticles (LNPs). Further investigations on the structure-activity relationship revealed that lipids with branched hydrophobic tails were better at delivering mRNA than those containing linear tails at the similar total number of carbons. In comparison to linear tails, the branched tails endowed LNPs with less inner hydrophobicity, fewer surface charges, and proper stability, which benefits the cellular uptake of LNPs and the intracellular trafficking of mRNA, thus improves the delivery efficacy of mRNA. The therapeutical potential of the lead LNPs was evaluated by delivering ovalbumin (OVA)-encoding mRNA to mice bearing B16-OVA melanoma tumors. The results demonstrated that the administration of OVA mRNA LNPs significantly activated CD8+ T cells in tumor microenvironment and substantially prohibited the growth of the aggressive B16-OVA tumors. The robust antitumor efficacy highlights the great potential of these LNPs in cancer immunotherapy.
Collapse
Affiliation(s)
- Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Xiaomin Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Longyu Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chengfan Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qi Shuai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yanmei Zhang
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Shuai Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
29
|
Yu MZ, Wang NN, Zhu JQ, Lin YX. The clinical progress and challenges of mRNA vaccines. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1894. [PMID: 37096256 DOI: 10.1002/wnan.1894] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023]
Abstract
Owing to the breakthroughs in the prevention and control of the COVID-19 pandemic, messenger RNA (mRNA)-based vaccines have emerged as promising alternatives to conventional vaccine approaches for infectious disease prevention and anticancer treatments. Advantages of mRNA vaccines include flexibility in designing and manipulating antigens of interest, scalability in rapid response to new variants, ability to induce both humoral and cell-mediated immune responses, and ease of industrialization. This review article presents the latest advances and innovations in mRNA-based vaccines and their clinical translations in the prevention and treatment of infectious diseases or cancers. We also highlight various nanoparticle delivery platforms that contribute to their success in clinical translation. Current challenges related to mRNA immunogenicity, stability, and in vivo delivery and the strategies for addressing them are also discussed. Finally, we provide our perspectives on future considerations and opportunities for applying mRNA vaccines to fight against major infectious diseases and cancers. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Meng-Zhen Yu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Nan-Nan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Jia-Qing Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
| | - Yao-Xin Lin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, People's Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| |
Collapse
|
30
|
Al Fayez N, Nassar MS, Alshehri AA, Alnefaie MK, Almughem FA, Alshehri BY, Alawad AO, Tawfik EA. Recent Advancement in mRNA Vaccine Development and Applications. Pharmaceutics 2023; 15:1972. [PMID: 37514158 PMCID: PMC10384963 DOI: 10.3390/pharmaceutics15071972] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Messenger RNA (mRNA) vaccine development for preventive and therapeutic applications has evolved rapidly over the last decade. The mRVNA vaccine has proven therapeutic efficacy in various applications, including infectious disease, immunotherapy, genetic disorders, regenerative medicine, and cancer. Many mRNA vaccines have made it to clinical trials, and a couple have obtained FDA approval. This emerging therapeutic approach has several advantages over conventional methods: safety; efficacy; adaptability; bulk production; and cost-effectiveness. However, it is worth mentioning that the delivery to the target site and in vivo degradation and thermal stability are boundaries that can alter their efficacy and outcomes. In this review, we shed light on different types of mRNA vaccines, their mode of action, and the process to optimize their development and overcome their limitations. We also have explored various delivery systems focusing on the nanoparticle-mediated delivery of the mRNA vaccine. Generally, the delivery system plays a vital role in enhancing mRNA vaccine stability, biocompatibility, and homing to the desired cells and tissues. In addition to their function as a delivery vehicle, they serve as a compartment that shields and protects the mRNA molecules against physical, chemical, and biological activities that can alter their efficiency. Finally, we focused on the future considerations that should be attained for safer and more efficient mRNA application underlining the advantages and disadvantages of the current mRNA vaccines.
Collapse
Affiliation(s)
- Nojoud Al Fayez
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Majed S Nassar
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Abdullah A Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Meshal K Alnefaie
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Fahad A Almughem
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Bayan Y Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Abdullah O Alawad
- Healthy Aging Research Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Essam A Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| |
Collapse
|
31
|
Chehelgerdi M, Chehelgerdi M. The use of RNA-based treatments in the field of cancer immunotherapy. Mol Cancer 2023; 22:106. [PMID: 37420174 PMCID: PMC10401791 DOI: 10.1186/s12943-023-01807-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023] Open
Abstract
Over the past several decades, mRNA vaccines have evolved from a theoretical concept to a clinical reality. These vaccines offer several advantages over traditional vaccine techniques, including their high potency, rapid development, low-cost manufacturing, and safe administration. However, until recently, concerns over the instability and inefficient distribution of mRNA in vivo have limited their utility. Fortunately, recent technological advancements have mostly resolved these concerns, resulting in the development of numerous mRNA vaccination platforms for infectious diseases and various types of cancer. These platforms have shown promising outcomes in both animal models and humans. This study highlights the potential of mRNA vaccines as a promising alternative approach to conventional vaccine techniques and cancer treatment. This review article aims to provide a thorough and detailed examination of mRNA vaccines, including their mechanisms of action and potential applications in cancer immunotherapy. Additionally, the article will analyze the current state of mRNA vaccine technology and highlight future directions for the development and implementation of this promising vaccine platform as a mainstream therapeutic option. The review will also discuss potential challenges and limitations of mRNA vaccines, such as their stability and in vivo distribution, and suggest ways to overcome these issues. By providing a comprehensive overview and critical analysis of mRNA vaccines, this review aims to contribute to the advancement of this innovative approach to cancer treatment.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
32
|
Bondue T, Berlingerio SP, van den Heuvel L, Levtchenko E. The Zebrafish Embryo as a Model Organism for Testing mRNA-Based Therapeutics. Int J Mol Sci 2023; 24:11224. [PMID: 37446400 DOI: 10.3390/ijms241311224] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
mRNA-based therapeutics have revolutionized the world of molecular therapy and have proven their potential in the vaccination campaigns for SARS-CoV2 and clinical trials for hereditary disorders. Preclinical studies have mainly focused on in vitro and rodent studies. However, research in rodents is costly and labour intensive, and requires ethical approval for all interventions. Zebrafish embryonic disease models are not always classified as laboratory animals and have been shown to be extremely valuable for high-throughput drug testing. Zebrafish larvae are characterized by their small size, optical transparency and high number of embryos, and are therefore also suited for the study of mRNA-based therapeutics. First, the one-cell stage injection of naked mRNA can be used to assess the effectivity of gene addition in vivo. Second, the intravascular injection in older larvae can be used to assess tissue targeting efficiency of (packaged) mRNA. In this review, we describe how zebrafish can be used as a steppingstone prior to testing mRNA in rodent models. We define the procedures that can be employed for both the one-cell stage and later-stage injections, as well as the appropriate procedures for post-injection follow-up.
Collapse
Affiliation(s)
- Tjessa Bondue
- Department of Development and Regeneration, KU Leuven Campus Gasthuisberg, 3000 Leuven, Belgium
| | | | - Lambertus van den Heuvel
- Department of Development and Regeneration, KU Leuven Campus Gasthuisberg, 3000 Leuven, Belgium
- Department of Pediatric Nephrology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Elena Levtchenko
- Department of Development and Regeneration, KU Leuven Campus Gasthuisberg, 3000 Leuven, Belgium
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
33
|
Zhu X, Li S. Nanomaterials in tumor immunotherapy: new strategies and challenges. Mol Cancer 2023; 22:94. [PMID: 37312116 DOI: 10.1186/s12943-023-01797-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
Tumor immunotherapy exerts its anti-tumor effects by stimulating and enhancing immune responses of the body. It has become another important modality of anti-tumor therapy with significant clinical efficacy and advantages compared to chemotherapy, radiotherapy and targeted therapy. Although various kinds of tumor immunotherapeutic drugs have emerged, the challenges faced in the delivery of these drugs, such as poor tumor permeability and low tumor cell uptake rate, had prevented their widespread application. Recently, nanomaterials had emerged as a means for treatment of different diseases due to their targeting properties, biocompatibility and functionalities. Moreover, nanomaterials possess various characteristics that overcome the defects of traditional tumor immunotherapy, such as large drug loading capacity, precise tumor targeting and easy modification, thus leading to their wide application in tumor immunotherapy. There are two main classes of novel nanoparticles mentioned in this review: organic (polymeric nanomaterials, liposomes and lipid nanoparticles) and inorganic (non-metallic nanomaterials and metallic nanomaterials). Besides, the fabrication method for nanoparticles, Nanoemulsions, was also introduced. In summary, this review article mainly discussed the research progress of tumor immunotherapy based on nanomaterials in the past few years and offers a theoretical basis for exploring novel tumor immunotherapy strategies in the future.
Collapse
Affiliation(s)
- Xudong Zhu
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People's Republic of China.
| |
Collapse
|
34
|
Luan N, Cao H, Wang Y, Lin K, Hu J, Liu C. Comparison of Immune Responses between Inactivated and mRNA SARS-CoV-2 Vaccines Used for a Booster Dose in Mice. Viruses 2023; 15:1351. [PMID: 37376650 DOI: 10.3390/v15061351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
A large amount of real-world data suggests that the emergence of variants of concern (VOCs) has brought new challenges to the fight against SARS-CoV-2 because the immune protection elicited by the existing coronavirus disease 2019 (COVID-19) vaccines was weakened. In response to the VOCs, it is necessary to advocate for the administration of booster vaccine doses to extend the effectiveness of vaccines and enhance neutralization titers. In this study, the immune effects of mRNA vaccines based on the WT (prototypic strain) and omicron (B1.1.529) strains for use as booster vaccines were investigated in mice. It was determined that with two-dose inactivated vaccine priming, boosting with mRNA vaccines could elevate IgG titers, enhance cell-mediated immunity, and provide immune protection against the corresponding variants, but cross-protection against distinct strains was inferior. This study comprehensively describes the differences in the mice boosted with mRNA vaccines based on the WT strain and the omicron strain, a harmful VOC that has resulted in a sharp rise in the number of infections, and reveals the most efficacious vaccination strategy against omicron and future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ning Luan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Han Cao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Yunfei Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Kangyang Lin
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Jingping Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Cunbao Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| |
Collapse
|
35
|
Lehot V, Neuberg P, Ripoll M, Daubeuf F, Erb S, Dovgan I, Ursuegui S, Cianférani S, Kichler A, Chaubet G, Wagner A. Targeted Anticancer Agent with Original Mode of Action Prepared by Supramolecular Assembly of Antibody Oligonucleotide Conjugates and Cationic Nanoparticles. Pharmaceutics 2023; 15:1643. [PMID: 37376091 DOI: 10.3390/pharmaceutics15061643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Despite their clinical success, Antibody-Drug Conjugates (ADCs) are still limited to the delivery of a handful of cytotoxic small-molecule payloads. Adaptation of this successful format to the delivery of alternative types of cytotoxic payloads is of high interest in the search for novel anticancer treatments. Herein, we considered that the inherent toxicity of cationic nanoparticles (cNP), which limits their use as oligonucleotide delivery systems, could be turned into an opportunity to access a new family of toxic payloads. We complexed anti-HER2 antibody-oligonucleotide conjugates (AOC) with cytotoxic cationic polydiacetylenic micelles to obtain Antibody-Toxic-Nanoparticles Conjugates (ATNPs) and studied their physicochemical properties, as well as their bioactivity in both in vitro and in vivo HER2 models. After optimising their AOC/cNP ratio, the small (73 nm) HER2-targeting ATNPs were found to selectively kill antigen-positive SKBR-2 cells over antigen-negative MDA-MB-231 cells in serum-containing medium. Further in vivo anti-cancer activity was demonstrated in an SKBR-3 tumour xenograft model in BALB/c mice in which stable 60% tumour regression could be observed just after two injections of 45 pmol of ATNP. These results open interesting prospects in the use of such cationic nanoparticles as payloads for ADC-like strategies.
Collapse
Affiliation(s)
- Victor Lehot
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Patrick Neuberg
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Manon Ripoll
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - François Daubeuf
- UAR3286, Plate-Forme de Chimie Biologique Intégrative de Strasbourg, ESBS, CNRS-Strasbourg University, 67400 Illkirch-Graffenstaden, France
| | - Stéphane Erb
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Institut du Médicament de Strasbourg, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Igor Dovgan
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Sylvain Ursuegui
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Institut du Médicament de Strasbourg, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Antoine Kichler
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
36
|
Wickline SA, Hou KK, Pan H. Peptide-Based Nanoparticles for Systemic Extrahepatic Delivery of Therapeutic Nucleotides. Int J Mol Sci 2023; 24:ijms24119455. [PMID: 37298407 DOI: 10.3390/ijms24119455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Peptide-based nanoparticles (PBN) for nucleotide complexation and targeting of extrahepatic diseases are gaining recognition as potent pharmaceutical vehicles for fine-tuned control of protein production (up- and/or down-regulation) and for gene delivery. Herein, we review the principles and mechanisms underpinning self-assembled formation of PBN, cellular uptake, endosomal release, and delivery to extrahepatic disease sites after systemic administration. Selected examples of PBN that have demonstrated recent proof of concept in disease models in vivo are summarized to offer the reader a comparative view of the field and the possibilities for clinical application.
Collapse
Affiliation(s)
- Samuel A Wickline
- Division of Cardiology, Department of Medical Engineering, University of South Florida, Tampa, FL 33602, USA
| | - Kirk K Hou
- Department of Ophthalmology, Stein and Doheny Eye Institutes, University of California, Los Angeles, CA 90095, USA
| | - Hua Pan
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
37
|
Rodimova S, Mozherov A, Elagin V, Karabut M, Shchechkin I, Kozlov D, Krylov D, Gavrina A, Bobrov N, Zagainov V, Zagaynova E, Kuznetsova D. Effect of Hepatic Pathology on Liver Regeneration: The Main Metabolic Mechanisms Causing Impaired Hepatic Regeneration. Int J Mol Sci 2023; 24:ijms24119112. [PMID: 37298064 DOI: 10.3390/ijms24119112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023] Open
Abstract
Liver regeneration has been studied for many decades, and the mechanisms underlying regeneration of normal liver following resection are well described. However, no less relevant is the study of mechanisms that disrupt the process of liver regeneration. First of all, a violation of liver regeneration can occur in the presence of concomitant hepatic pathology, which is a key factor reducing the liver's regenerative potential. Understanding these mechanisms could enable the rational targeting of specific therapies to either reduce the factors inhibiting regeneration or to directly stimulate liver regeneration. This review describes the known mechanisms of normal liver regeneration and factors that reduce its regenerative potential, primarily at the level of hepatocyte metabolism, in the presence of concomitant hepatic pathology. We also briefly discuss promising strategies for stimulating liver regeneration and those concerning methods for assessing the regenerative potential of the liver, especially intraoperatively.
Collapse
Affiliation(s)
- Svetlana Rodimova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Artem Mozherov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Vadim Elagin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Maria Karabut
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Ilya Shchechkin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Dmitry Kozlov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Dmitry Krylov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Alena Gavrina
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| | - Nikolai Bobrov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- The Volga District Medical Centre of Federal Medical and Biological Agency, 14 Ilinskaya St., 603000 Nizhny Novgorod, Russia
| | - Vladimir Zagainov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Nizhny Novgorod Regional Clinical Oncologic Dispensary, Delovaya St., 11/1, 603126 Nizhny Novgorod, Russia
| | - Elena Zagaynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
| | - Daria Kuznetsova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Sq., 603000 Nizhny Novgorod, Russia
- Laboratory of Molecular Genetic Research, Institute of Clinical Medicine, N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina Ave., 603022 Nizhny Novgorod, Russia
| |
Collapse
|
38
|
Litvinova VR, Rudometov AP, Karpenko LI, Ilyichev AA. mRNA Vaccine Platform: mRNA Production and Delivery. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2023; 49:220-235. [PMID: 37252004 PMCID: PMC10197051 DOI: 10.1134/s1068162023020152] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 05/31/2023]
Abstract
Vaccination is the most efficient way to prevent infectious diseases. mRNA-based vaccines is a new approach to vaccine development, which have several very useful advantages over other types of vaccines. Since mRNA encodes only the target antigen there is no potential risk of infection as in the case with attenuated or inactivated pathogens. The mode of action of mRNA-vaccines implies that their genetic information is expressed only in the cytosol, leaving very little possibility of mRNA integration into the host's genome. mRNA-vaccines can induce specific cellular and humoral immune responses, but do not induce the antivector immune response. The mRNA-vaccine platform allows for easy target gene replacement without the need to change the production technology, which is important to address the time lag between the epidemic onset and vaccine release. The present review discusses the history of mRNA vaccines, mRNA vaccine production technology, ways to increase mRNA stability, modifications of the cap, poly(A)-tail, coding and noncoding parts of mRNA, target mRNA vaccine purification from byproducts, and delivery methods.
Collapse
Affiliation(s)
- V. R. Litvinova
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Welfare, 630559 Koltsovo, Novosibirsk Region Russia
| | - A. P. Rudometov
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Welfare, 630559 Koltsovo, Novosibirsk Region Russia
| | - L. I. Karpenko
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Welfare, 630559 Koltsovo, Novosibirsk Region Russia
| | - A. A. Ilyichev
- State Research Center of Virology and Biotechnology “Vector”, Federal Service for Surveillance on Consumer Rights Protection and Human Welfare, 630559 Koltsovo, Novosibirsk Region Russia
| |
Collapse
|
39
|
Li D, Liu Q, Yang M, Xu H, Zhu M, Zhang Y, Xu J, Tian C, Yao J, Wang L, Liang Y. Nanomaterials for mRNA-based therapeutics: Challenges and opportunities. Bioeng Transl Med 2023; 8:e10492. [PMID: 37206219 PMCID: PMC10189457 DOI: 10.1002/btm2.10492] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
Messenger RNA (mRNA) holds great potential in developing immunotherapy, protein replacement, and genome editing. In general, mRNA does not have the risk of being incorporated into the host genome and does not need to enter the nucleus for transfection, and it can be expressed even in nondividing cells. Therefore, mRNA-based therapeutics provide a promising strategy for clinical treatment. However, the efficient and safe delivery of mRNA remains a crucial constraint for the clinical application of mRNA therapeutics. Although the stability and tolerability of mRNA can be enhanced by directly retouching the mRNA structure, there is still an urgent need to improve the delivery of mRNA. Recently, significant progress has been made in nanobiotechnology, providing tools for developing mRNA nanocarriers. Nano-drug delivery system is directly used for loading, protecting, and releasing mRNA in the biological microenvironment and can be used to stimulate the translation of mRNA to develop effective intervention strategies. In the present review, we summarized the concept of emerging nanomaterials for mRNA delivery and the latest progress in enhancing the function of mRNA, primarily focusing on the role of exosomes in mRNA delivery. Moreover, we outlined its clinical applications so far. Finally, the key obstacles of mRNA nanocarriers are emphasized, and promising strategies to overcome these obstacles are proposed. Collectively, nano-design materials exert functions for specific mRNA applications, provide new perception for next-generation nanomaterials, and thus revolution of mRNA technology.
Collapse
Affiliation(s)
- De‐feng Li
- Department of GastroenterologyShenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Qi‐song Liu
- National Clinical Research Center for Infectious DiseasesShenzhen Third People's Hospital, Southern University of Science and TechnologyShenzhenChina
| | - Mei‐feng Yang
- Department of HematologyYantian District People's HospitalShenzhenGuangdongChina
| | - Hao‐ming Xu
- Department of Gastroenterology and HepatologyGuangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Min‐zheng Zhu
- Department of Gastroenterology and Hepatologythe Second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouGuangdongChina
| | - Yuan Zhang
- Department of Medical AdministrationHuizhou Institute of Occupational Diseases Control and PreventionHuizhouGuangdongChina
| | - Jing Xu
- Department of Gastroenterology and HepatologyGuangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Cheng‐mei Tian
- Department of EmergencyShenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Jun Yao
- Department of GastroenterologyShenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Li‐sheng Wang
- Department of GastroenterologyShenzhen People's Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdongChina
| | - Yu‐jie Liang
- Department of Child and Adolescent PsychiatryShenzhen Kangning Hospital, Shenzhen Mental Health CenterShenzhenChina
- Affiliated Hospital of Jining Medical University, Jining Medical UniversityJiningShandongChina
| |
Collapse
|
40
|
Shah S, Famta P, Tiwari V, Kotha AK, Kashikar R, Chougule MB, Chung YH, Steinmetz NF, Uddin M, Singh SB, Srivastava S. Instigation of the epoch of nanovaccines in cancer immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1870. [PMID: 36410742 PMCID: PMC10182210 DOI: 10.1002/wnan.1870] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/03/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
Cancer is an unprecedented proliferation of cells leading to abnormalities in differentiation and maturation. Treatment of primary and metastatic cancer is challenging. In addition to surgery, chemotherapy and radiation therapies have been conventionally used; however, they suffer from severe toxicity and non-specificity. Immunotherapy, the science of programming the body's own defense system against cancer has gained tremendous attention in the last few decades. However, partial immunogenic stimulation, premature degradation and inability to activate dendritic and helper T cells has resulted in limited clinical success. The era of nanomedicine has brought about several breakthroughs in various pharmaceutical and biomedical fields. Hereby, we review and discuss the interplay of tumor microenvironment (TME) and the immunological cascade and how they can be employed to develop nanoparticle-based cancer vaccines and immunotherapies. Nanoparticles composed of lipids, polymers and inorganic materials contain useful properties suitable for vaccine development. Proteinaceous vaccines derived from mammalian viruses, bacteriophages and plant viruses also have unique advantages due to their immunomodulation capabilities. This review accounts for all such considerations. Additionally, we explore how attributes of nanotechnology can be utilized to develop successful nanomedicine-based vaccines for cancer therapy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering, & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, INDIA
| | - Arun K Kotha
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Rama Kashikar
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Mahavir Bhupal Chougule
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Young Hun Chung
- Departments of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole F. Steinmetz
- Departments of Bioengineering, NanoEngineering, Radiology, Moores Cancer Center, Center for Nano-ImmunoEngineering, Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mohammad Uddin
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, INDIA
| |
Collapse
|
41
|
Khan MS, Baskoy SA, Yang C, Hong J, Chae J, Ha H, Lee S, Tanaka M, Choi Y, Choi J. Lipid-based colloidal nanoparticles for applications in targeted vaccine delivery. NANOSCALE ADVANCES 2023; 5:1853-1869. [PMID: 36998671 PMCID: PMC10044484 DOI: 10.1039/d2na00795a] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
Bioactive molecules and their effects have been influenced by their solubility and administration route. In many therapeutic reagents, the performance of therapeutics is dependent on physiological barriers in the human body and delivery efficacy. Therefore, an effective and stable therapeutic delivery promotes pharmaceutical advancement and suitable biological usage of drugs. In the biological and pharmacological industries, lipid nanoparticles (LNPs) have emerged as a potential carrier to deliver therapeutics. Since studies reported doxorubicin-loaded liposomes (Doxil®), LNPs have been applied to numerous clinical trials. Lipid-based nanoparticles, including liposomes, solid lipid nanoparticles (SLNs), and nanostructured lipid nanoparticles, have also been developed to deliver active ingredients in vaccines. In this review, we present the type of LNPs used to develop vaccines with attractive advantages. We then discuss messenger RNA (mRNA) delivery for the clinical application of mRNA therapeutic-loaded LNPs and recent research trend of LNP-based vaccine development.
Collapse
Affiliation(s)
- Muhammad Saad Khan
- Department of Physics, Toronto Metropolitan University 350 Victoria Street Toronto M5B2K3 Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), St. Michael's Hospital 209 Victoria Street Toronto M5B1W8 Canada
| | - Sila Appak Baskoy
- Institute for Biomedical Engineering, Science and Technology (iBEST), St. Michael's Hospital 209 Victoria Street Toronto M5B1W8 Canada
- Department of Chemistry and Biology, Toronto Metropolitan University, Faculty of Science 350 Victoria Street Toronto M5B2K3 ON Canada
| | - Celina Yang
- Department of Physics, Toronto Metropolitan University 350 Victoria Street Toronto M5B2K3 Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), St. Michael's Hospital 209 Victoria Street Toronto M5B1W8 Canada
| | - Joohye Hong
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Jayoung Chae
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Heejin Ha
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
| | - Sungjun Lee
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation Seoul 06974 Republic of Korea
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama-shi 226-8503 Kanagawa Japan
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation Seoul 06974 Republic of Korea
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University Seoul 06974 Republic of Korea
- Feynman Institute of Technology, Nanomedicine Corporation Seoul 06974 Republic of Korea
| |
Collapse
|
42
|
Zhong Y, Du S, Dong Y. mRNA delivery in cancer immunotherapy. Acta Pharm Sin B 2023; 13:1348-1357. [PMID: 37139419 PMCID: PMC10150179 DOI: 10.1016/j.apsb.2023.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
Messenger RNA (mRNA) has drawn much attention in the medical field. Through various treatment approaches including protein replacement therapies, gene editing, and cell engineering, mRNA is becoming a potential therapeutic strategy for cancers. However, delivery of mRNA into targeted organs and cells can be challenging due to the unstable nature of its naked form and the low cellular uptake. Therefore, in addition to mRNA modification, efforts have been devoted to developing nanoparticles for mRNA delivery. In this review, we introduce four categories of nanoparticle platform systems: lipid, polymer, lipid-polymer hybrid, and protein/peptide-mediated nanoparticles, together with their roles in facilitating mRNA-based cancer immunotherapies. We also highlight promising treatment regimens and their clinical translation.
Collapse
Affiliation(s)
- Yichen Zhong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Icahn Genomics Institute, Precision Immunology Institute, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shi Du
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Icahn Genomics Institute, Precision Immunology Institute, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, Department of Biomedical Engineering, Center for Clinical and Translational Science, Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Center for Cancer Engineering, Center for Cancer Metabolism, Pelotonia Institute for Immune-Oncology, The Ohio State University, Columbus, OH 43210, USA
- Icahn Genomics Institute, Precision Immunology Institute, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Corresponding author.
| |
Collapse
|
43
|
Sufian MA, Ilies MA. Lipid-based nucleic acid therapeutics with in vivo efficacy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1856. [PMID: 36180107 PMCID: PMC10023279 DOI: 10.1002/wnan.1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 03/09/2023]
Abstract
Synthetic vectors for therapeutic nucleic acid delivery are currently competing significantly with their viral counter parts due to their reduced immunogenicity, large payload capacity, and ease of manufacture under GMP-compliant norms. The approval of Onpattro, a lipid-based siRNA therapeutic, and the proven clinical success of two lipid-based COVID-19 vaccines from Pfizer-BioNTech, and Moderna heralded the specific advantages of lipid-based systems among all other synthetic nucleic acid carriers. Lipid-based systems with diverse payloads-plasmid DNA (pDNA), antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA (miRNA), small activating RNA (saRNA), and messenger RNA (mRNA)-are now becoming a mature technology, with growing impact in the clinic. Research over four decades identified the key factors determining the therapeutic success of these multi-component systems. Here, we discuss the main nucleic acid-based technologies, presenting their mechanism of action, delivery barriers facing them, the structural properties of the payload as well as the component lipids that regulate physicochemical properties, pharmacokinetics and biodistribution, efficacy, and toxicity of the resultant nanoparticles. We further detail on the formulation parameters, evolution of the manufacturing techniques that generate reproducible and scalable outputs, and key manufacturing aspects that enable control over physicochemical properties of the resultant particles. Preclinical applications of some of these formulations that were successfully translated from in vitro studies to animal models are subsequently discussed. Finally, clinical success and failure of these systems starting from 1993 to present are highlighted, in a holistic literature review focused on lipid-based nucleic acid delivery systems. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Md Abu Sufian
- Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Marc A. Ilies
- Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| |
Collapse
|
44
|
Hegde YM, Theivendren P, Srinivas G, Palanivel M, Shanmugam N, Kunjiappan S, Vellaichamy S, Gopal M, Dharmalingam SR. A Recent Advancement in Nanotechnology Approaches for the Treatment of Cervical Cancer. Anticancer Agents Med Chem 2023; 23:37-59. [PMID: 35570521 DOI: 10.2174/1871520622666220513160706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/05/2022] [Accepted: 03/17/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cervical cancer is one of the leading causes of female death, with a mortality rate of over 200,000 per year in developing countries. Despite a decrease in cervical cancer occurrences in developed countries over the last decade, the frequency of the disease in developing nations continues to rise at an alarming rate, particularly when it is linked to the human papillomavirus (HPV). With just a few highly invasive conventional therapies available, there is a clear need for novel treatment options such as nanotechnology-based chemotherapeutic drug delivery. METHODS Traditional anticancer therapy is limited by poor drug potency, non-specificity, unwanted side effects, and the development of multiple drug resistance (MDR), leading to a decrease in long-term anticancer therapeutic efficacy. An ideal cancer therapy requires a personalized and specialized medication delivery method capable of eradicating even the last cancer cell responsible for disease recurrence. RESULTS Nanotechnology provides effective drug delivery mechanisms, allowing it to serve both therapeutic and diagnostic purposes. Nanotechnology-based formulations are widely used to accurately target the target organ, maintain drug load bioactivity, preferentially accumulate the drug at the target location, and reduce cytotoxicity. CONCLUSION The key benefits of this drug delivery are that it improves pharmacological activity, solubility, and bioavailability and reduces toxicity in the target tissue by targeting ligands, allowing for new innovative treatment methods in an area that is desperately required. The goal of this review is to highlight possible research on nanotechnologybased delivery systems for cancer detection and treatment.
Collapse
Affiliation(s)
- Yashoda Mariappa Hegde
- Department of Pharmaceutics, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Panneerselvam Theivendren
- Department of Pharmaceutical Chemistry, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Geetha Srinivas
- Department of Pharmaceutics, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Monashilpa Palanivel
- Department of Pharmaceutics, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Nivetha Shanmugam
- Department of Pharmaceutics, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil-626126, India
| | - Sivakumar Vellaichamy
- Department of Pharmaceutics, Arulmigu Kalasalingam College of Pharmacy, Krishnankoil-626126, India
| | - Murugananthan Gopal
- Department of Pharmacognosy, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| | - Senthil Rajan Dharmalingam
- Department of Pharmaceutics, Swamy Vivekananda College of Pharmacy, Elayampalayam, Namakkal, Tamilnadu 637205, India
| |
Collapse
|
45
|
Protein Transduction Domain-Mediated Delivery of Recombinant Proteins and In Vitro Transcribed mRNAs for Protein Replacement Therapy of Human Severe Genetic Mitochondrial Disorders: The Case of Sco2 Deficiency. Pharmaceutics 2023; 15:pharmaceutics15010286. [PMID: 36678915 PMCID: PMC9861957 DOI: 10.3390/pharmaceutics15010286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial disorders represent a heterogeneous group of genetic disorders with variations in severity and clinical outcomes, mostly characterized by respiratory chain dysfunction and abnormal mitochondrial function. More specifically, mutations in the human SCO2 gene, encoding the mitochondrial inner membrane Sco2 cytochrome c oxidase (COX) assembly protein, have been implicated in the mitochondrial disorder fatal infantile cardioencephalomyopathy with COX deficiency. Since an effective treatment is still missing, a protein replacement therapy (PRT) was explored using protein transduction domain (PTD) technology. Therefore, the human recombinant full-length mitochondrial protein Sco2, fused to TAT peptide (a common PTD), was produced (fusion Sco2 protein) and successfully transduced into fibroblasts derived from a SCO2/COX-deficient patient. This PRT contributed to effective COX assembly and partial recovery of COX activity. In mice, radiolabeled fusion Sco2 protein was biodistributed in the peripheral tissues of mice and successfully delivered into their mitochondria. Complementary to that, an mRNA-based therapeutic approach has been more recently considered as an innovative treatment option. In particular, a patented, novel PTD-mediated IVT-mRNA delivery platform was developed and applied in recent research efforts. PTD-IVT-mRNA of full-length SCO2 was successfully transduced into the fibroblasts derived from a SCO2/COX-deficient patient, translated in host ribosomes into a nascent chain of human Sco2, imported into mitochondria, and processed to the mature protein. Consequently, the recovery of reduced COX activity was achieved, thus suggesting the potential of this mRNA-based technology for clinical translation as a PRT for metabolic/genetic disorders. In this review, such research efforts will be comprehensibly presented and discussed to elaborate their potential in clinical application and therapeutic usefulness.
Collapse
|
46
|
Vavilis T, Stamoula E, Ainatzoglou A, Sachinidis A, Lamprinou M, Dardalas I, Vizirianakis IS. mRNA in the Context of Protein Replacement Therapy. Pharmaceutics 2023; 15:pharmaceutics15010166. [PMID: 36678793 PMCID: PMC9866414 DOI: 10.3390/pharmaceutics15010166] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Protein replacement therapy is an umbrella term used for medical treatments that aim to substitute or replenish specific protein deficiencies that result either from the protein being absent or non-functional due to mutations in affected patients. Traditionally, such an approach requires a well characterized but arduous and expensive protein production procedure that employs in vitro expression and translation of the pharmaceutical protein in host cells, followed by extensive purification steps. In the wake of the SARS-CoV-2 pandemic, mRNA-based pharmaceuticals were recruited to achieve rapid in vivo production of antigens, proving that the in vivo translation of exogenously administered mRNA is nowadays a viable therapeutic option. In addition, the urgency of the situation and worldwide demand for mRNA-based medicine has led to an evolution in relevant technologies, such as in vitro transcription and nanolipid carriers. In this review, we present preclinical and clinical applications of mRNA as a tool for protein replacement therapy, alongside with information pertaining to the manufacture of modified mRNA through in vitro transcription, carriers employed for its intracellular delivery and critical quality attributes pertaining to the finished product.
Collapse
Affiliation(s)
- Theofanis Vavilis
- Laboratory of Biology and Genetics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Dentistry, European University Cyprus, Nicosia 2404, Cyprus
- Correspondence:
| | - Eleni Stamoula
- Centre of Systems Biology, Department of Biotechnology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Alexandra Ainatzoglou
- Centre of Systems Biology, Department of Biotechnology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios Sachinidis
- 4th Department of Internal Medicine, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Malamatenia Lamprinou
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Dardalas
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Life & Health Sciences, School of Sciences and Engineering, University of Nicosia, Nicosia 1700, Cyprus
| |
Collapse
|
47
|
The potential of RNA-based therapy for kidney diseases. Pediatr Nephrol 2023; 38:327-344. [PMID: 35507149 PMCID: PMC9066145 DOI: 10.1007/s00467-021-05352-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 01/10/2023]
Abstract
Inherited kidney diseases (IKDs) are a large group of disorders affecting different nephron segments, many of which progress towards kidney failure due to the absence of curative therapies. With the current advances in genetic testing, the understanding of the molecular basis and pathophysiology of these disorders is increasing and reveals new potential therapeutic targets. RNA has revolutionized the world of molecular therapy and RNA-based therapeutics have started to emerge in the kidney field. To apply these therapies for inherited kidney disorders, several aspects require attention. First, the mRNA must be combined with a delivery vehicle that protects the oligonucleotides from degradation in the blood stream. Several types of delivery vehicles have been investigated, including lipid-based, peptide-based, and polymer-based ones. Currently, lipid nanoparticles are the most frequently used formulation for systemic siRNA and mRNA delivery. Second, while the glomerulus and tubules can be reached by charge- and/or size-selectivity, delivery vehicles can also be equipped with antibodies, antibody fragments, targeting peptides, carbohydrates or small molecules to actively target receptors on the proximal tubule epithelial cells, podocytes, mesangial cells or the glomerular endothelium. Furthermore, local injection strategies can circumvent the sequestration of RNA formulations in the liver and physical triggers can also enhance kidney-specific uptake. In this review, we provide an overview of current and potential future RNA-based therapies and targeting strategies that are in development for kidney diseases, with particular interest in inherited kidney disorders.
Collapse
|
48
|
Lipophilic poly(glycolide) blocks in morpholin-2-one-based CARTs for plasmid DNA delivery: Polymer regioregularity, sequence of lipophilic/polyamine blocks, and nanoparticle stability as factors of transfection efficiency. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Karim ME, Haque ST, Al-Busaidi H, Bakhtiar A, Tha KK, Holl MMB, Chowdhury EH. Scope and challenges of nanoparticle-based mRNA delivery in cancer treatment. Arch Pharm Res 2022; 45:865-893. [DOI: 10.1007/s12272-022-01418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
|
50
|
Recent approaches to mRNA vaccine delivery by lipid-based vectors prepared by continuous-flow microfluidic devices. Future Med Chem 2022; 14:1561-1581. [DOI: 10.4155/fmc-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Advancements in nanotechnology have resulted in the introduction of several nonviral delivery vectors for the nontoxic, efficient delivery of encapsulated mRNA-based vaccines. Lipid- and polymer-based nanoparticles (NP) have proven to be the most potent delivery systems, providing increased delivery efficiency and protection of mRNA molecules from degradation. Here, the authors provide an overview of the recent studies carried out using lipid NPs and their functionalized forms, polymeric and lipid-polymer hybrid nanocarriers utilized mainly for the encapsulation of mRNAs for gene and immune therapeutic applications. A microfluidic system as a prevalent methodology for the preparation of NPs with continuous flow enables NP size tuning, rapid mixing and production reproducibility. Continuous-flow microfluidic devices for lipid and polymeric encapsulated RNA NP production are specifically reviewed.
Collapse
|