1
|
Aghogho CI, Kayondo SI, Eleblu SJY, Ige A, Asante I, Offei SK, Parkes E, Egesi C, Mbanjo EGN, Shah T, Kulakow P, Rabbi IY. Genome-wide association study for yield and quality of granulated cassava processed product. THE PLANT GENOME 2024; 17:e20469. [PMID: 38880944 DOI: 10.1002/tpg2.20469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 06/18/2024]
Abstract
The starchy storage roots of cassava are commonly processed into a variety of products, including cassava granulated processed products (gari). The commercial value of cassava roots depends on the yield and quality of processed products, directly influencing the acceptance of new varieties by farmers, processors, and consumers. This study aims to estimate genetic advance through phenotypic selection and identify genomic regions associated and candidate genes linked with gari yield and quality. Higher single nucleotide polymorphism (SNP)-based heritability estimates compared to broad-sense heritability estimates were observed for most traits highlighting the influence of genetic factors on observed variation. Using genome-wide association analysis of 188 clones, genotyped using 53,150 genome-wide SNPs, nine SNPs located on seven chromosomes were significantly associated with peel loss, gari yield, color parameters for gari and eba, bulk density, swelling index, and textural properties of eba. Future research will focus on validating and understanding the functions of identified genes and their influence on gari yield and quality traits.
Collapse
Affiliation(s)
- Cynthia Idhigu Aghogho
- West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Siraj Ismail Kayondo
- International Institute of Tropical Agriculture (IITA), Eastern Africa Hub, Dar es Salaam, Tanzania
| | - Saviour J Y Eleblu
- West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Adenike Ige
- Department of Agronomy and Plant Genetics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Isaac Asante
- West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Samuel K Offei
- West Africa Centre for Crop Improvement (WACCI), College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Elizabeth Parkes
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Chiedozie Egesi
- National Root Crops Research Institute, Umuahia, Nigeria
- Plant Breeding and Genetics Section, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| | | | - Trushar Shah
- International Institute of Tropical Agriculture (IITA), c/o ILRI, Nairobi, Kenya
| | - Peter Kulakow
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Ismail Y Rabbi
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| |
Collapse
|
2
|
Kanaabi M, Namakula FB, Nuwamanya E, Kayondo IS, Muhumuza N, Wembabazi E, Iragaba P, Nandudu L, Nanyonjo AR, Baguma J, Esuma W, Ozimati A, Settumba M, Alicai T, Ibanda A, Kawuki RS. Rapid analysis of hydrogen cyanide in fresh cassava roots using NIRSand machine learning algorithms: Meeting end user demand for low cyanogenic cassava. THE PLANT GENOME 2024; 17:e20403. [PMID: 37938872 DOI: 10.1002/tpg2.20403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 11/10/2023]
Abstract
This study focuses on meeting end-users' demand for cassava (Manihot esculenta Crantz) varieties with low cyanogenic potential (hydrogen cyanide potential [HCN]) by using near-infrared spectrometry (NIRS). This technology provides a fast, accurate, and reliable way to determine sample constituents with minimal sample preparation. The study aims to evaluate the effectiveness of machine learning (ML) algorithms such as logistic regression (LR), support vector machine (SVM), and partial least squares discriminant analysis (PLS-DA) in distinguishing between low and high HCN accessions. Low HCN accessions averagely scored 1-5.9, while high HCN accessions scored 6-9 on a 1-9 categorical scale. The researchers used 1164 root samples to test different NIRS prediction models and six spectral pretreatments. The wavelengths 961, 1165, 1403-1505, 1913-1981, and 2491 nm were influential in discrimination of low and high HCN accessions. Using selected wavelengths, LR achieved 100% classification accuracy and PLS-DA achieved 99% classification accuracy. Using the full spectrum, the best model for discriminating low and high HCN accessions was the PLS-DA combined with standard normal variate with second derivative, which produced an accuracy of 99.6%. The SVM and LR had moderate classification accuracies of 75% and 74%, respectively. This study demonstrates that NIRS coupled with ML algorithms can be used to identify low and high HCN accessions, which can help cassava breeding programs to select for low HCN accessions.
Collapse
Affiliation(s)
- Michael Kanaabi
- School of Agricultural Sciences, Makerere University, Kampala, Uganda
- National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | | | - Ephraim Nuwamanya
- School of Agricultural Sciences, Makerere University, Kampala, Uganda
- National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Ismail S Kayondo
- International Institute for Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Nicholas Muhumuza
- School of Agricultural Sciences, Makerere University, Kampala, Uganda
- National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Enoch Wembabazi
- National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Paula Iragaba
- National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Leah Nandudu
- National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
- Plant Breeding and Genetics section, Cornell University, Ithaca, New York, USA
| | | | - Julius Baguma
- National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Williams Esuma
- National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Alfred Ozimati
- School of Agricultural Sciences, Makerere University, Kampala, Uganda
- National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Mukasa Settumba
- School of Agricultural Sciences, Makerere University, Kampala, Uganda
| | - Titus Alicai
- National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Angele Ibanda
- National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| | - Robert S Kawuki
- National Crops Resources Research Institute (NaCRRI), Kampala, Uganda
| |
Collapse
|
3
|
Kaweesi T, Colvin J, Campbell L, Visendi P, Maslen G, Alicai T, Seal S. In silico prediction of candidate gene targets for the management of African cassava whitefly ( Bemisia tabaci, SSA1-SG1), a key vector of viruses causing cassava brown streak disease. PeerJ 2024; 12:e16949. [PMID: 38410806 PMCID: PMC10896082 DOI: 10.7717/peerj.16949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Whiteflies (Bemisia tabaci sensu lato) have a wide host range and are globally important agricultural pests. In Sub-Saharan Africa, they vector viruses that cause two ongoing disease epidemics: cassava brown streak disease and cassava mosaic virus disease. These two diseases threaten food security for more than 800 million people in Sub-Saharan Africa. Efforts are ongoing to identify target genes for the development of novel management options against the whitefly populations that vector these devastating viral diseases affecting cassava production in Sub-Saharan Africa. This study aimed to identify genes that mediate osmoregulation and symbiosis functions within cassava whitefly gut and bacteriocytes and evaluate their potential as key gene targets for novel whitefly control strategies. The gene expression profiles of dissected guts, bacteriocytes and whole bodies were compared by RNAseq analysis to identify genes with significantly enriched expression in the gut and bacteriocytes. Phylogenetic analyses identified three candidate osmoregulation gene targets: two α-glucosidases, SUC 1 and SUC 2 with predicted function in sugar transformations that reduce osmotic pressure in the gut; and a water-specific aquaporin (AQP1) mediating water cycling from the distal to the proximal end of the gut. Expression of the genes in the gut was enriched 23.67-, 26.54- and 22.30-fold, respectively. Genome-wide metabolic reconstruction coupled with constraint-based modeling revealed four genes (argH, lysA, BCAT & dapB) within the bacteriocytes as potential targets for the management of cassava whiteflies. These genes were selected based on their role and essentiality within the different essential amino acid biosynthesis pathways. A demonstration of candidate osmoregulation and symbiosis gene targets in other species of the Bemisia tabaci species complex that are orthologs of the empirically validated osmoregulation genes highlights the latter as promising gene targets for the control of cassava whitefly pests by in planta RNA interference.
Collapse
Affiliation(s)
- Tadeo Kaweesi
- Natural Resources Institute, University of greenwich, Chatham Maritime, Kent, United Kingdom
- Rwebitaba Zonal Agricultural Research and Development Institute, National Agricultural Research Organization, Fort Portal, Kabarole, Uganda
- National Crops Resources Research Institute, National Agricultural Research Organization, Kampala, Uganda
| | - John Colvin
- Natural Resources Institute, University of greenwich, Chatham Maritime, Kent, United Kingdom
| | - Lahcen Campbell
- Wellcome Genome Campus, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, United Kingdom
| | - Paul Visendi
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Gareth Maslen
- Wellcome Genome Campus, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridge, United Kingdom
| | - Titus Alicai
- National Crops Resources Research Institute, National Agricultural Research Organization, Kampala, Uganda
| | - Susan Seal
- Natural Resources Institute, University of greenwich, Chatham Maritime, Kent, United Kingdom
| |
Collapse
|
4
|
Leal Filho W, Fedoruk M, Paulino Pires Eustachio JH, Barbir J, Lisovska T, Lingos A, Baars C. How the War in Ukraine Affects Food Security. Foods 2023; 12:3996. [PMID: 37959115 PMCID: PMC10648107 DOI: 10.3390/foods12213996] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 11/15/2023] Open
Abstract
The war in Ukraine has caused severe disruption to national and worldwide food supplies. Ukraine is a major exporter of wheat, maize, and oilseeds, staples that are now suffering a war-triggered supply risk. This paper describes the background of the problem and illustrates current trends by outlining some of the measures that may be deployed to mitigate the conflict's impacts on achieving SDG 2 (Zero hunger), especially focusing on ending hunger, achieving food security, improving nutrition, and promoting sustainable agriculture. In order to understand the main research strands in the literature that are related to food security in the context of wars, the authors adopted a bibliometric literature review based on the co-occurrence of terms technique, conducted with 631 peer-reviewed documents extracted from the Scopus database. To complement the bibliometric assessment, ten case studies were selected to narrow down the food insecurity aspects caused by the war in Ukraine. The co-occurrence analysis indicated four different thematic clusters. In the next stage, an assessment of the current situation on how war affects food security was carried out for each one of the clusters, and the reasons and possible solutions to food security were identified. Policy recommendations and theoretical implications for food security in the conflict context in Ukraine were also addressed.
Collapse
Affiliation(s)
- Walter Leal Filho
- European School of Sustainability Science and Research (ESSSR), Hamburg University of Applied Sciences, 21033 Hamburg, Germany;
- Department of Natural Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK
- Research and Transfer Centre Sustainability & Climate Change Management (FTZ-NK), Faculty of Life Sciences, Hamburg University of Applied Sciences, 21033 Hamburg, Germany (T.L.)
| | - Mariia Fedoruk
- Research and Transfer Centre Sustainability & Climate Change Management (FTZ-NK), Faculty of Life Sciences, Hamburg University of Applied Sciences, 21033 Hamburg, Germany (T.L.)
| | - João Henrique Paulino Pires Eustachio
- Research and Transfer Centre Sustainability & Climate Change Management (FTZ-NK), Faculty of Life Sciences, Hamburg University of Applied Sciences, 21033 Hamburg, Germany (T.L.)
| | - Jelena Barbir
- Research and Transfer Centre Sustainability & Climate Change Management (FTZ-NK), Faculty of Life Sciences, Hamburg University of Applied Sciences, 21033 Hamburg, Germany (T.L.)
| | - Tetiana Lisovska
- Research and Transfer Centre Sustainability & Climate Change Management (FTZ-NK), Faculty of Life Sciences, Hamburg University of Applied Sciences, 21033 Hamburg, Germany (T.L.)
| | - Alexandros Lingos
- Research and Transfer Centre Sustainability & Climate Change Management (FTZ-NK), Faculty of Life Sciences, Hamburg University of Applied Sciences, 21033 Hamburg, Germany (T.L.)
| | - Caterina Baars
- Research and Transfer Centre Sustainability & Climate Change Management (FTZ-NK), Faculty of Life Sciences, Hamburg University of Applied Sciences, 21033 Hamburg, Germany (T.L.)
| |
Collapse
|
5
|
Zeng H, Xu H, Tan M, Zhang B, Shi H. LESION SIMULATING DISEASE 3 regulates disease resistance via fine-tuning histone acetylation in cassava. PLANT PHYSIOLOGY 2023; 193:2232-2247. [PMID: 37534747 DOI: 10.1093/plphys/kiad441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/16/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023]
Abstract
Bacterial blight seriously affects the growth and production of cassava (Manihot esculenta Crantz), but disease resistance genes and the underlying molecular mechanism remain unknown. In this study, we found that LESION SIMULATING DISEASE 3 (MeLSD3) is essential for disease resistance in cassava. MeLSD3 physically interacts with SIRTUIN 1 (MeSRT1), inhibiting MeSRT1-mediated deacetylation modification at the acetylation of histone 3 at K9 (H3K9Ac). This leads to increased H3K9Ac levels and transcriptional activation of SUPPRESSOR OF BIR1 (SOBIR1) and FLAGELLIN-SENSITIVE2 (FLS2) in pattern-triggered immunity, resulting in immune responses in cassava. When MeLSD3 was silenced, the release of MeSRT1 directly decreased H3K9Ac levels and inhibited the transcription of SOBIR1 and FLS2, leading to decreased disease resistance. Notably, DELLA protein GIBBERELLIC ACID INSENSITIVE 1 (MeGAI1) also interacted with MeLSD3, which enhanced the interaction between MeLSD3 and MeSRT1 and further strengthened the inhibition of MeSRT1-mediated deacetylation modification at H3K9Ac of defense genes. In summary, this study illustrates the mechanism by which MeLSD3 interacts with MeSRT1 and MeGAI1, thereby mediating the level of H3K9Ac and the transcription of defense genes and immune responses in cassava.
Collapse
Affiliation(s)
- Hongqiu Zeng
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
- National Key Laboratory for Tropical Crop Breeding, Hainan University, 572025, Sanya, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, Hainan Province, China
| | - Haoran Xu
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
| | - Mengting Tan
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
| | - Bowen Zhang
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
| | - Haitao Shi
- Sanya Nanfan Research Institute of Hainan University, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Nanfan, School of Tropical Agriculture and Forestry, Hainan University, 572025, Sanya, Hainan Province, China
- National Key Laboratory for Tropical Crop Breeding, Hainan University, 572025, Sanya, Hainan Province, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, Hainan Province, China
| |
Collapse
|
6
|
Adebayo WG. Cassava production in africa: A panel analysis of the drivers and trends. Heliyon 2023; 9:e19939. [PMID: 37809559 PMCID: PMC10559345 DOI: 10.1016/j.heliyon.2023.e19939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Cassava is Africa's most important tuberous crop. It is an all-year-round cheap and reliable staple food for millions of Africans, making it vital for food security on the continent. However, cassava production in Africa is hindered by a persistent problem of low yield per hectare. This study addresses the dearth of research on the specific influences of area harvested and yield per hectare on cassava production in Africa. This work uses panel data from 37 African countries from 1961 to 2020 and sheds light on three key aspects. Firstly, it investigates the extent and nature of the low yield per hectare problem, offering insights into its underlying causes and implications. Secondly, it examines the interplay between area harvested and yield per hectare, revealing the factors driving the observed trends in cassava yields on the continent. Lastly, this study contributes to the achievement of Sustainable Development Goals, particularly Goal 15: Life on Land and Goal 2: Zero Hunger, by providing valuable information to enhance cassava production sustainability. The findings indicate that approximately 95.6% of the variability in production can be explained by changes in the area harvested, around 1.1% by yield variability, about 27.6% by consumer price index and 1.8% by temperature changes. Notably, the study observes a significant increase in the area harvested by 16.8 million hectares and average yield levels varied between 5.7 and 9.6 tonnes per hectare. The analysis also reveals a disparity in translating gains from disease eradication and introducing high-yield, disease-resistant varieties into smallholder cassava farming. In conclusion, the study highlights the potential for sustainable intensification of cassava production as a viable pathway to enhance absolute and per-hectare yields while promoting farmers' income and mitigating cassava cultivation-related deforestation. Understanding and addressing the low yield per hectare problem in cassava production are crucial steps toward ensuring food security and achieving sustainable agricultural practices in Africa.
Collapse
Affiliation(s)
- Waidi Gbenro Adebayo
- Department of Philosophy, Politics and Economics, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
7
|
Adjei EO, Ayamba BE, Buri MM, Biney N, Appiah K. Soil quality and fertility dynamics under a continuous cassava-maize rotation in the semi-deciduous forest agro-ecological zone of Ghana. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1095207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
The practice of crop rotation is known to significantly influence soil nutrient dynamics, depending on the type of rotation and the crops involved. As such, a field study was conducted to find out the effect of continuous cassava-maize rotation, where mineral fertilizer was only applied to the maize crop, on soil nutrients dynamics and soil quality thereof under varying rotation periods. The study revealed that Soil Organic Matter (SOM) and levels of soil nutrients, such as total nitrogen, available phosphorus and exchangeable cations (potassium, calcium, magnesium, and sodium) significantly declined with rotation period. Long term maize–cassava rotation led to subsoil (20–50cm) acidification. Soil quality as measured by Carbon Management Index (CMI) on the different aged rotations decreased with age, with the longest rotation period giving the least quality. These results and observations imply that long term cassava-maize rotation reduced soil quality and the resilience of the cropping system for continuous sustainable crops production. A regression analysis of soil nutrients with CMI under the continuous cassava-maize rotation identified the crucial role of soil total N (r2 = 0.56) and exchangeable K (r2 = 0.44) in sustaining productive cassava-maize rotation system and improved soil quality within the semi-deciduous forest agro-ecological zone. It is thus, recommended that enhanced and targeted organic and inorganic fertilization regime could be deployed on the cassava-maize rotation system to improve the inherently low levels of nutrients and increase crop yields.
Collapse
|
8
|
Namuddu A, Seal S, van Brunschot S, Malka O, Kabaalu R, Morin S, Omongo C, Colvin J. Distribution of Bemisia tabaci in different agro-ecological regions in Uganda and the threat of vector-borne pandemics into new cassava growing areas. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1068109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previous studies in sub-Saharan Africa have showed the spread of cassava mosaic disease (CMD) and cassava brown streak disease (CBSD) pandemics into different cassava growing regions by high Bemisia tabaci populations. Studies did indicate that there were stark differences in some whitefly species, yet they have not looked extensively across agroecologies. Members of B. tabaci species complex termed sub-Saharan Africa 1 (SSA1) and SSA2 have been linked to the spread of CMD and CBSD viruses. During the period of a severe CMD pandemic in the 1990s, SSA2 was the most predominant until the resurgence of SSA1, particularly SSA1-subgroup1 (SSA1-SG1) from the early 2000s to date. Cassava being a drought resilient crop has become an important food security crop and has been introduced into new areas and regions. Considering the role B. tabaci in the spread of cassava virus pandemics into neighboring regions, we investigated the genetic diversity and distribution of B. tabaci in nine different agro-ecological regions of Uganda in 2017. Adult whiteflies were collected from cassava and 33 other host plants from cassava-growing areas, those with limited cassava and areas with no cassava, where it is being introduced as a food security crop. The partial sequences of the mitochondrial cytochrome oxidase 1 (mtCO1) gene (657 bp) were used to determine the phylogenetic relationships between the sampled B. tabaci. Cassava B. tabaci SSA1 (-SG1, -SG2, -Hoslundia (previously called SSA1-SG1/2), -SG3), SSA2 and SSA3; non-cassava B. tabaci SSA6, SSA10, SSA11, SSA12, SSA13, MED-ASL, MED-Q1, MEAM1, Indian Ocean; and other Bemisia species, Bemisia afer and Bemisia Uganda1 were identified in the study. SSA3, one of the key B. tabaci species that occurs on cassava in West Africa, was identified for the first time in Uganda. The SSA1-SG1 was widely distributed, predominated on cassava and was found on 17 other host-plants. The ability of SSA1-SG1 to exist in environments with limited or no cassava growing poses the risk of continued spread of virus pandemics. Therefore, measures must be put in place to prevent the introduction of diseased materials into new areas, since the vectors exist.
Collapse
|
9
|
Zhang J, Qi C, Mecha P, Zuo Y, Ben Z, Liu H, Chen K. Pseudo high-frequency boosts the generalization of a convolutional neural network for cassava disease detection. PLANT METHODS 2022; 18:136. [PMID: 36517873 PMCID: PMC9749340 DOI: 10.1186/s13007-022-00969-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Frequency is essential in signal transmission, especially in convolutional neural networks. It is vital to maintain the signal frequency in the neural network to maintain the performance of a convolutional neural network. Due to destructive signal transmission in convolutional neural network, signal frequency downconversion in channels results into incomplete spatial information. In communication theory, the number of Fourier series coefficients determines the integrity of the information transmitted in channels. Consequently, the number of Fourier series coefficients of the signals can be replenished to reduce the information transmission loss. To achieve this, the ArsenicNetPlus neural network was proposed for signal transmission modulation in detecting cassava diseases. First, multiattention was used to maintain the long-term dependency of the features of cassava diseases. Afterward, depthwise convolution was implemented to remove aliasing signals and downconvert before the sampling operation. Instance batch normalization algorithm was utilized to keep features in an appropriate form in the convolutional neural network channels. Finally, the ArsenicPlus block was implemented to generate pseudo high-frequency in the residual structure. The proposed method was tested on the Cassava Datasets and compared with the V2-ResNet-101, EfficientNet-B5, RepVGG-B3g4 and AlexNet. The results showed that the proposed method performed [Formula: see text] in terms of accuracy, 1.2440 in terms of loss, and [Formula: see text] in terms of the F1-score, outperforming the comparison algorithms.
Collapse
Affiliation(s)
- Jiayu Zhang
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Chao Qi
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Peter Mecha
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Yi Zuo
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Zongyou Ben
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Haolu Liu
- Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing, China
| | - Kunjie Chen
- College of Engineering, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
10
|
de Carvalho RRB, Bandeira e Sousa M, de Oliveira LA, de Oliveira EJ. Phenotypic diversity and selection in biofortified cassava germplasm for yield and quality root traits. EUPHYTICA: NETHERLANDS JOURNAL OF PLANT BREEDING 2022; 218:173. [PMID: 36405300 PMCID: PMC9668781 DOI: 10.1007/s10681-022-03125-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Increasing carotenoid content and improving other root quality traits has been the focus of cassava biofortification. This study aimed to (i) evaluate the genetic variability for total carotenoid content (TCC), as well as for root yield and root quality attributes; (ii) estimate potentially useful correlations for selection; and (iii) select parents for breeding and estimate the genetic gain. Data from 2011 to 2020 of 265 cassava genotypes with cream and yellow roots were analyzed for dry matter content (DMC), shoot yield, fresh root yield (FRY), dry root yield (DRY), harvest index, average number of roots per plant, starch content, root pulp color, cyanogenic compounds, and TCC. The best linear unbiased predictions showed great phenotypic variation for all traits. Six distinct groups were formed for productive characteristics of root quality, mainly TCC, DMC and FRY. Only TCC showed high broad-sense heritability ( h 2 = 0.72), while the other traits had low to medium magnitude (0.21 ≤ h 2 ≤ 0.60). TCC was strongly correlated with pulp color (r = 0.70), but null significance for DMC. The network analysis identified a clear separation between the agronomic and quality attributes of cassava roots. The selection of the 30 genotypes for recombination in the breeding program has the potential to raise TCC by 27.05% and reduce the cyanogenic compounds content by 23.03%, in addition to increasing FRY and DRY by 22.72% and 22.95%, respectively. This is the first consolidated study on the potential of germplasm for the development biofortified cassava cultivars in Brazil.
Collapse
Affiliation(s)
- Ravena Rocha Bessa de Carvalho
- Centro de Ciências Agrárias, Ambientais e Biológicas, Universidade Federal do Recôncavo da Bahia, Cruz das Almas, BA 44380-000 Brazil
| | | | | | | |
Collapse
|
11
|
Bogale S, Haile A, Berhanu B, Beshir HM. Cassava Production Practices in Ethiopia and its use as Ingredient for Injera Making. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Ige AD, Olasanmi B, Bauchet GJ, Kayondo IS, Mbanjo EGN, Uwugiaren R, Motomura-Wages S, Norton J, Egesi C, Parkes EY, Kulakow P, Ceballos H, Dieng I, Rabbi IY. Validation of KASP-SNP markers in cassava germplasm for marker-assisted selection of increased carotenoid content and dry matter content. FRONTIERS IN PLANT SCIENCE 2022; 13:1016170. [PMID: 36311140 PMCID: PMC9597466 DOI: 10.3389/fpls.2022.1016170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Provitamin A biofortification and increased dry matter content are important breeding targets in cassava improvement programs worldwide. Biofortified varieties contribute to the alleviation of provitamin A deficiency, a leading cause of preventable blindness common among pre-school children and pregnant women in developing countries particularly Africa. Dry matter content is a major component of dry yield and thus underlies overall variety performance and acceptability by growers, processors, and consumers. Single nucleotide polymorphism (SNP) markers linked to these traits have recently been discovered through several genome-wide association studies but have not been deployed for routine marker-assisted selection (MAS). This is due to the lack of useful information on markers' performances in diverse genetic backgrounds. To overcome this bottleneck, technical and biological validation of the loci associated with increased carotenoid content and dry matter content were carried out using populations independent of the marker discovery population. In the present study, seven previously identified markers for these traits were converted to a robust set of uniplex allele-specific polymerase chain reaction (PCR) assays and validated in two independent pre-breeding and breeding populations. These assays were efficient in discriminating marker genotypic classes and had an average call rate greater than 98%. A high correlation was observed between the predicted and observed carotenoid content as inferred by root yellowness intensity in the breeding (r = 0.92) and pre-breeding (r = 0.95) populations. On the other hand, dry matter content-markers had moderately low predictive accuracy in both populations (r< 0.40) due to the more quantitative nature of the trait. This work confirmed the markers' effectiveness in multiple backgrounds, therefore, further strengthening their value in cassava biofortification to ensure nutritional security as well as dry matter content productivity. Our study provides a framework to guide future marker validation, thus leading to the more routine use of markers in MAS in cassava improvement programs.
Collapse
Affiliation(s)
- Adenike D. Ige
- International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
- Pan African University Life and Earth Sciences Institute (including Health and Agriculture), University of Ibadan, Ibadan, Nigeria
| | - Bunmi Olasanmi
- Department of Crop and Horticultural Sciences, University of Ibadan, Ibadan, Nigeria
| | | | - Ismail S. Kayondo
- International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
| | | | - Ruth Uwugiaren
- International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
- Molecular Plant Sciences program, Washington State University, Pullman, WA, United States
| | - Sharon Motomura-Wages
- College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Hilo, HI, United States
| | - Joanna Norton
- College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Hilo, HI, United States
| | - Chiedozie Egesi
- International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
- Cornell University, Ithaca, NY, United States
| | - Elizabeth Y. Parkes
- International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
| | - Peter Kulakow
- International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
| | - Hernán Ceballos
- The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Ibnou Dieng
- International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
| | - Ismail Y. Rabbi
- International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria
| |
Collapse
|
13
|
Ruengsrichaiya B, Nukoolkit C, Kalapanulak S, Saithong T. Plant-DTI: Extending the landscape of TF protein and DNA interaction in plants by a machine learning-based approach. FRONTIERS IN PLANT SCIENCE 2022; 13:970018. [PMID: 36082286 PMCID: PMC9445498 DOI: 10.3389/fpls.2022.970018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
As a sessile organism, plants hold elaborate transcriptional regulatory systems that allow them to adapt to variable surrounding environments. Current understanding of plant regulatory mechanisms is greatly constrained by limited knowledge of transcription factor (TF)-DNA interactions. To mitigate this problem, a Plant-DTI predictor (Plant DBD-TFBS Interaction) was developed here as the first machine-learning model that covered the largest experimental datasets of 30 plant TF families, including 7 plant-specific DNA binding domain (DBD) types, and their transcription factor binding sites (TFBSs). Plant-DTI introduced a novel TFBS feature construction, called TFBS base-preference, which enhanced the specificity of TFBS to DBD types. The proposed model showed better predictive performance with the TFBS base-preference than the simple binary representation. Plant-DTI was validated with 22 independent ChIP-seq datasets. It accurately predicted the measured DBD-TFBS pairs along with their TFBS motifs, and effectively predicted interactions of other TFs containing similar DBD types. Comparing to the existing state-of-art methods, Plant-DTI prediction showed a figure of merit in sensitivity and specificity with respect to the position weight matrix (PWM) and TSPTFBS methods. Finally, the proposed Plant-DTI model helped to fill the knowledge gap in the regulatory mechanisms of the cassava sucrose synthase 1 gene (MeSUS1). Plant-DTI predicted MeERF72 as a regulator of MeSUS1 in consistence with the yeast one-hybrid (Y1H) experiment. Taken together, Plant-DTI would help facilitate the prediction of TF-TFBS and TF-target gene (TG) interactions, thereby accelerating the study of transcriptional regulatory systems in plant species.
Collapse
Affiliation(s)
- Bhukrit Ruengsrichaiya
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut’s University of Technology Thonburi (Bang KhunThian), Bangkok, Thailand
| | - Chakarida Nukoolkit
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut’s University of Technology Thonburi (Bang KhunThian), Bangkok, Thailand
- School of Information Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Saowalak Kalapanulak
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut’s University of Technology Thonburi (Bang KhunThian), Bangkok, Thailand
- Center for Agricultural Systems Biology, Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang KhunThian), Bangkok, Thailand
| | - Treenut Saithong
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut’s University of Technology Thonburi (Bang KhunThian), Bangkok, Thailand
- Center for Agricultural Systems Biology, Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi (Bang KhunThian), Bangkok, Thailand
| |
Collapse
|
14
|
Rabbi IY, Kayondo SI, Bauchet G, Yusuf M, Aghogho CI, Ogunpaimo K, Uwugiaren R, Smith IA, Peteti P, Agbona A, Parkes E, Lydia E, Wolfe M, Jannink JL, Egesi C, Kulakow P. Genome-wide association analysis reveals new insights into the genetic architecture of defensive, agro-morphological and quality-related traits in cassava. PLANT MOLECULAR BIOLOGY 2022; 109:195-213. [PMID: 32734418 PMCID: PMC9162993 DOI: 10.1007/s11103-020-01038-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/20/2020] [Indexed: 05/05/2023]
Abstract
More than 40 QTLs associated with 14 stress-related, quality and agro-morphological traits were identified. A catalogue of favourable SNP markers for MAS and a list of candidate genes are provided. Cassava (Manihot esculenta) is one of the most important starchy root crops in the tropics due to its adaptation to marginal environments. Genetic progress in this clonally propagated crop can be accelerated through the discovery of markers and candidate genes that could be used in cassava breeding programs. We carried out a genome-wide association study (GWAS) using a panel of 5130 clones developed at the International Institute of Tropical Agriculture-Nigeria. The population was genotyped at more than 100,000 SNP markers via genotyping-by-sequencing (GBS). Genomic regions underlying genetic variation for 14 traits classified broadly into four categories: biotic stress (cassava mosaic disease and cassava green mite severity); quality (dry matter content and carotenoid content) and plant agronomy (harvest index and plant type) were investigated. We also included several agro-morphological traits related to leaves, stems and roots with high heritability. In total, 41 significant associations were uncovered. While some of the identified loci matched with those previously reported, we present additional association signals for the traits. We provide a catalogue of favourable alleles at the most significant SNP for each trait-locus combination and candidate genes occurring within the GWAS hits. These resources provide a foundation for the development of markers that could be used in cassava breeding programs and candidate genes for functional validation.
Collapse
Affiliation(s)
- Ismail Yusuf Rabbi
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria.
| | - Siraj Ismail Kayondo
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| | | | - Muyideen Yusuf
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| | - Cynthia Idhigu Aghogho
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| | - Kayode Ogunpaimo
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| | - Ruth Uwugiaren
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| | - Ikpan Andrew Smith
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| | - Prasad Peteti
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| | - Afolabi Agbona
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| | - Elizabeth Parkes
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| | - Ezenwaka Lydia
- National Root Crops Research Institute (NRCRI), PMB 7006, Umudike, 440221, Nigeria
| | - Marnin Wolfe
- Section on Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Jean-Luc Jannink
- Section on Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14850, USA
- United States Department of Agriculture - Agriculture Research Service, Ithaca, NY, 14850, USA
| | - Chiedozie Egesi
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
- National Root Crops Research Institute (NRCRI), PMB 7006, Umudike, 440221, Nigeria
- Global Development Department, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Peter Kulakow
- International Institute of Tropical Agriculture (IITA), Ibadan, 200001, Oyo State, Nigeria
| |
Collapse
|
15
|
Fish Food Production Using Agro-Industrial Waste Enhanced with Spirulina sp. SUSTAINABILITY 2022. [DOI: 10.3390/su14106059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The supply of animal feed is one of the main concerns of producers in the aquaculture industry, including aspects such as the cost of fish flour and its nutritional balance. The aim of this study was the preparation of a pellet-type fish food using powdered Spirulina sp. cultivated as a protein source supplemented with agro-industrial waste, and its evaluation to comply with the necessary parameters for the elaboration of extruded pellets. Spirulina sp. was cultivated in a photobioreactor at a volume of 50 L, separated by decantation and dried. The proximal characterization was 6.79% ± 0.05 moisture, 6.93% ± 0.01 ash, 66.88% ± 0.33 protein, and 5.50% ± 0.26 fat. Subsequently, flours were prepared using cassava leaves, gliricidia leaves, and rice husks. The results for the cohesion showed that the flours obtained to comply with the necessary parameters for the elaboration of extruded food. The fish feed was prepared in pellet form using the formulation for fattening Tilapia: Spirulina sp. (20%), cassava leaf flour (50%), gliricidia leaf flour (20%) and flour of rice husk (10%). Floatation analysis showed that 60% of the pellets floated for more than 40 min, and 80% retained their shape for 4 h. The results show that the obtained product can be used as fish feed, due to the lowest disintegration, together with its great capacity for water absorption and especially, its greater flotage due to the expansion effect, are physic characteristic determinants so that the fish has more time to consume extruded diets and avoid losses.
Collapse
|
16
|
Cyanide Content of Cassava Food Products Available in Australia. Foods 2022; 11:foods11101384. [PMID: 35626954 PMCID: PMC9141144 DOI: 10.3390/foods11101384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/29/2022] [Accepted: 05/08/2022] [Indexed: 02/04/2023] Open
Abstract
In 2009, Food Standards Australia New Zealand set a total cyanide content limit of 10 ppm for ready-to-eat cassava products to address food safety concerns about cyanogenic glucosides in cassava. This study surveys a range of cassava food products available in Melbourne, Australia, ten years after the implementation of these regulations. Of all the products tested, the mean cyanide content was greatest in ready-to-eat cassava chips (48.4 ppm), although imported ready-to-eat products had a higher mean cyanide content (95.9 ppm) than those manufactured in Australia (1.0 ppm). Cyanide was detected in frozen cassava products (grated mean = 12.9 ppm; whole root mean = 19.8 ppm), but was significantly reduced through processing according to packet instructions in both product types. Three methods were used to quantify total cyanide content: the evolved cyanide method, the picrate absorbance method and the picrate chart method, with satisfactory agreement between methods. The picrate absorbance and chart methods reported mean cyanide contents 13.7 ppm and 23.1 ppm higher, respectively, than the evolved cyanide method. Our results reaffirm the need for the ongoing testing of cassava food products, especially ready-to-eat products whose cyanide content will not be reduced before consumption.
Collapse
|
17
|
Pérez D, Duputié A, Vernière C, Szurek B, Caillon S. Biocultural Drivers Responsible for the Occurrence of a Cassava Bacterial Pathogen in Small-Scale Farms of Colombian Caribbean. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.841915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cassava (Manihot esculenta Crantz) is a primary crop for food security of millions of people worldwide. In Colombia, the Caribbean region contributes about half of the national cassava production, despite major socioeconomic constraints such as unequal land property, omnipresence of middlemen, low and unstable prices, armed conflict, climate change and phytosanitary issues. Among the latter is Cassava Bacterial Blight (CBB), a disease caused by the bacterial pathogen Xanthomonas phaseoli pv. manihotis (Xpm) that leads to irreversible damage to plants, impeding growth and productivity. In 2016, we analyzed the role of sociocultural and agricultural practices on CBB prevalence in small-scale fields of a village of the Colombian Caribbean region, where farmers live almost exclusively from the sale of their cassava production. Semi-structured interviews (48) were conducted with all farmers who cultivated cassava to document individual sociodemographic characteristics, cassava farming practices, and perceptions about CBB occurrence. Cassava Bacterial Blight was diagnosed in the field and the presence of Xpm was further confirmed upon laboratory analysis of collected diseased leaf samples. Our data show that (i) according to the risks perceived by farmers, CBB is the main disease affecting cassava crops in the village and it could indeed be detected in about half of the fields visited; (ii) CBB occurrence depends strongly on land property issues, likely because of an inadequate phytosanitary control during acquisition of cuttings when farmers are forced to rent the land; and (iii) there is a strong positive correlation between the use of commercial fertilizers and the occurrence of CBB in the village of Villa López.
Collapse
|
18
|
Otun S, Escrich A, Achilonu I, Rauwane M, Lerma-Escalera JA, Morones-Ramírez JR, Rios-Solis L. The future of cassava in the era of biotechnology in Southern Africa. Crit Rev Biotechnol 2022; 43:594-612. [PMID: 35369831 DOI: 10.1080/07388551.2022.2048791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cassava (Manihot esculenta) is a major staple food and the world's fourth source of calories. Biotechnological contributions to enhancing this crop, its advances, and present issues must be assessed regularly. Functional genomics, genomic-assisted breeding, molecular tools, and genome editing technologies, among other biotechnological approaches, have helped improve the potential of economically important crops like cassava by addressing some of its significant constraints, such as nutrient deficiency, toxicity, poor starch quality, disease susceptibility, low yield capacity, and postharvest deterioration. However, the development, improvement, and subsequent acceptance of the improved cultivars have been challenging and have required holistic approaches to solving them. This article provides an update of trends and gaps in cassava biotechnology, reviewing the relevant strategies used to improve cassava crops and highlighting the potential risk and acceptability of improved cultivars in Southern Africa.
Collapse
Affiliation(s)
- Sarah Otun
- School of Molecular and Cell Biology, Faculty of Science, Protein Structure-Function and Research Unit, University of the Witwatersrand, Braamfontein, Johannesburg, South Africa
| | - Ainoa Escrich
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ikechukwu Achilonu
- School of Molecular and Cell Biology, Faculty of Science, Protein Structure-Function and Research Unit, University of the Witwatersrand, Braamfontein, Johannesburg, South Africa
| | - Molemi Rauwane
- Department of Agriculture and Animal Health, Science Campus, University of South Africa, Florida, South Africa
| | - Jordy Alexis Lerma-Escalera
- Facultad de Ciencias Químicas, Centro de Investigación en Biotecnología y Nanotecnología, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico.,Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - José Rubén Morones-Ramírez
- Facultad de Ciencias Químicas, Centro de Investigación en Biotecnología y Nanotecnología, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico.,Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, UK.,Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh, UK
| |
Collapse
|
19
|
New Model High Temperature Pasting Analysis of Fermented Cassava Granules. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cassava is a starchy food item eaten by millions worldwide in various forms. The product has been subjected to various analysis forms, including the viscosity capacity of different flours made from the product. In this study, cassava granules (Garri) were subjected to scanning electron microscopy (SEM) and laser diffraction particle size analysis to determine microstructure, after which the viscosity behavior was ascertained under high pressure with the new model high-temperature rapid viscosity analyzer (RVA HT 4800), which is capable of reaching a maximum of 140 °C. Viscosity comparisons were then made with the profiles obtained at 95 °C and 140 °C. The microstructure had intact starch cells and was free of extraneous materials or fungal hyphae. The granule size range was found to be 1–1800 µM. It was established that the holding, final, and setback viscosities were most affected and decreased by at least 80% when the samples were subjected to the 140 °C HT profile. The peak time at 95 °C in yellow and white Garri samples of both brands averaged nine minutes, whereas it was 5 min at 140 °C profile. The white Garri samples tolerated the high temperature better based on breakdown viscosity values and may be used for making food products that require tolerance to high temperatures. An opportunity exists to re-evaluate different Garri varieties with the new model RVA to establish behavior at very high temperatures.
Collapse
|
20
|
de Carvalho RRB, Marmolejo Cortes DF, Bandeira e Sousa M, de Oliveira LA, de Oliveira EJ. Image-based phenotyping of cassava roots for diversity studies and carotenoids prediction. PLoS One 2022; 17:e0263326. [PMID: 35100324 PMCID: PMC8803208 DOI: 10.1371/journal.pone.0263326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/16/2022] [Indexed: 12/12/2022] Open
Abstract
Phenotyping to quantify the total carotenoids content (TCC) is sensitive, time-consuming, tedious, and costly. The development of high-throughput phenotyping tools is essential for screening hundreds of cassava genotypes in a short period of time in the biofortification program. This study aimed to (i) use digital images to extract information on the pulp color of cassava roots and estimate correlations with TCC, and (ii) select predictive models for TCC using colorimetric indices. Red, green and blue images were captured in root samples from 228 biofortified genotypes and the difference in color was analyzed using L*, a*, b*, hue and chroma indices from the International Commission on Illumination (CIELAB) color system and lightness. Colorimetric data were used for principal component analysis (PCA), correlation and for developing prediction models for TCC based on regression and machine learning. A high positive correlation between TCC and the variables b* (r = 0.90) and chroma (r = 0.89) was identified, while the other correlations were median and negative, and the L* parameter did not present a significant correlation with TCC. In general, the accuracy of most prediction models (with all variables and only the most important ones) was high (R2 ranging from 0.81 to 0.94). However, the artificial neural network prediction model presented the best predictive ability (R2 = 0.94), associated with the smallest error in the TCC estimates (root-mean-square error of 0.24). The structure of the studied population revealed five groups and high genetic variability based on PCA regarding colorimetric indices and TCC. Our results demonstrated that the use of data obtained from digital image analysis is an economical, fast, and effective alternative for the development of TCC phenotyping tools in cassava roots with high predictive ability.
Collapse
Affiliation(s)
- Ravena Rocha Bessa de Carvalho
- Centro de Ciências Agrárias, Ambientais e Biológicas, Universidade Federal do Recôncavo da Bahia, Rua Rui Barbosa, Cruz das Almas, BA, Brazil
| | | | | | | | | |
Collapse
|
21
|
Alves-Pereira A, Zucchi MI, Clement CR, Viana JPG, Pinheiro JB, Veasey EA, de Souza AP. Selective signatures and high genome-wide diversity in traditional Brazilian manioc (Manihot esculenta Crantz) varieties. Sci Rep 2022; 12:1268. [PMID: 35075210 PMCID: PMC8786832 DOI: 10.1038/s41598-022-05160-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/05/2022] [Indexed: 11/09/2022] Open
Abstract
Knowledge about genetic diversity is essential to promote effective use and conservation of crops, because it enables farmers to adapt their crops to specific needs and is the raw material for breeding. Manioc (Manihot esculenta ssp. esculenta) is one of the world's major food crops and has the potential to help achieve food security in the context of on-going climate changes. We evaluated single nucleotide polymorphisms in traditional Brazilian manioc varieties conserved in the gene bank of the Luiz de Queiroz College of Agriculture, University of São Paulo. We assessed genome-wide diversity and identified selective signatures contrasting varieties from different biomes with samples of manioc's wild ancestor M. esculenta ssp. flabellifolia. We identified signatures of selection putatively associated with resistance genes, plant development and response to abiotic stresses that might have been important for the crop's domestication and diversification resulting from cultivation in different environments. Additionally, high neutral genetic diversity within groups of varieties from different biomes and low genetic divergence among biomes reflect the complexity of manioc's evolutionary dynamics under traditional cultivation. Our results exemplify how smallholder practices contribute to conserve manioc's genetic resources, maintaining variation of potential adaptive significance and high levels of neutral genetic diversity.
Collapse
Affiliation(s)
- Alessandro Alves-Pereira
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Av. Cândido Rondon, 400, Cidade Universitária, CP: 6010, Campinas, SP, 13083-875, Brazil.,Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Av. Cândido Rondon, 400, Cidade Universitária, CP: 6010, Campinas, SP, 13083-875, Brazil
| | - Maria Imaculada Zucchi
- Agência Paulista de Tecnologia Dos Agronegócios (APTA), Pólo Centro-Sul. Rodovia SP 127, km 30, Piracicaba, SP, 13400-970, Brazil
| | - Charles R Clement
- Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo, 2936, Petrópolis, Manaus, AM, 69067-375, Brazil
| | - João Paulo Gomes Viana
- Department of Crop Sciences, University of Illinois at Urbana-Champaign (UIUC), AW-101 Turner Hall, 1102 South Goodwin Avenue, Urbana, IL, 61801-4798, USA
| | - José Baldin Pinheiro
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiróz", Universidade de São Paulo (ESALQ/USP), Av. Pádua Dias, 11, Piracicaba, SP, 13400-970, Brazil
| | - Elizabeth Ann Veasey
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiróz", Universidade de São Paulo (ESALQ/USP), Av. Pádua Dias, 11, Piracicaba, SP, 13400-970, Brazil
| | - Anete Pereira de Souza
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Av. Cândido Rondon, 400, Cidade Universitária, CP: 6010, Campinas, SP, 13083-875, Brazil. .,Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Av. Cândido Rondon, 400, Cidade Universitária, CP: 6010, Campinas, SP, 13083-875, Brazil.
| |
Collapse
|
22
|
Hrubša M, Siatka T, Nejmanová I, Vopršalová M, Kujovská Krčmová L, Matoušová K, Javorská L, Macáková K, Mercolini L, Remião F, Máťuš M, Mladěnka P. Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B 1, B 2, B 3, and B 5. Nutrients 2022; 14:484. [PMID: 35276844 PMCID: PMC8839250 DOI: 10.3390/nu14030484] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
This review summarizes the current knowledge on essential vitamins B1, B2, B3, and B5. These B-complex vitamins must be taken from diet, with the exception of vitamin B3, that can also be synthetized from amino acid tryptophan. All of these vitamins are water soluble, which determines their main properties, namely: they are partly lost when food is washed or boiled since they migrate to the water; the requirement of membrane transporters for their permeation into the cells; and their safety since any excess is rapidly eliminated via the kidney. The therapeutic use of B-complex vitamins is mostly limited to hypovitaminoses or similar conditions, but, as they are generally very safe, they have also been examined in other pathological conditions. Nicotinic acid, a form of vitamin B3, is the only exception because it is a known hypolipidemic agent in gram doses. The article also sums up: (i) the current methods for detection of the vitamins of the B-complex in biological fluids; (ii) the food and other sources of these vitamins including the effect of common processing and storage methods on their content; and (iii) their physiological function.
Collapse
Affiliation(s)
- Marcel Hrubša
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Tomáš Siatka
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Iveta Nejmanová
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic;
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Kralove, Czech Republic; (K.M.); (L.J.)
| | - Kateřina Macáková
- Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (T.S.); (K.M.)
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Fernando Remião
- UCIBIO—Applied Molecular Biosciences Unit, REQUINTE, Toxicology Laboratory, Biological Sciences Department Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marek Máťuš
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovak Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Kralove, Czech Republic; (M.H.); (M.V.); (P.M.)
| | | |
Collapse
|
23
|
Ramí́rez-Camejo LA. Diversity of culturable endophytic fungi vary through time in Manihot esculenta Crantz. BRAZ J BIOL 2022; 84:e253156. [DOI: 10.1590/1519-6984.253156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022] Open
Abstract
Abstract Endophytic fungi are a ubiquituos group that colonize all plant species on earth. Studies comparing the location of endophytic fungi within the leaves and the sampling time in Manihot esculenta Crantz (cassava) are limited. In this study, mature leaves of M. esculenta from Panama were collected in order to compare the cultivable diversity of endophytic fungi and to determine their distribution within the leaves. A total of one hundred sixty endophytes belonging to 97 species representing 13 genera and 8 morphospecies determined as mycelia sterilia that containing 63 isolates were isolated. Cladosporium, Nigrospora, Periconia, and mycelia sterilia 1 and 3 were the most predominant isolated endophytes. We detected that endophytes varied across the sampling time, but not amongst locations within leaves. The endophytes composition across sampling and the location of endophytes within leaf was similar, except for Periconia and mycelia sterilia 3 and 7. The data generated in this study contribute to the knowledge on the biodiversity of endophytic fungi in Panama, and establish the bases for future research focused on understanding the function of endophytes in M. esculenta crops.
Collapse
Affiliation(s)
- L. A. Ramí́rez-Camejo
- Institute of Scientific Research and High Technology Services, Republic of Panama; Coiba Scientific Station, Republic of Panama
| |
Collapse
|
24
|
Nyirakanani C, Bizimana JP, Kwibuka Y, Nduwumuremyi A, Bigirimana VDP, Bucagu C, Lassois L, Malice E, Gengler N, Massart S, Bragard C, Habtu M, Brostaux Y, Thonar C, Vanderschuren H. Farmer and Field Survey in Cassava-Growing Districts of Rwanda Reveals Key Factors Associated With Cassava Brown Streak Disease Incidence and Cassava Productivity. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.699655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cassava (Manihot esculenta Crantz) is a vital crop in Rwanda where it ranks as the third most consumed staple. However, cassava productivity remains below its yield potential due to several constraints, including important viral diseases, such as cassava brown streak disease (CBSD). Because various factors can be addressed to mitigate the impact of viral diseases, it is essential to identify routes of virus contamination in the cassava agrosystems from the seed system to farmer's practices and knowledge. The present study aimed at (1) assessing the current cassava seed system and farmers' practices and their knowledge of the biotic constraints to cassava production, (2) determining the status of CBSD as well as critical factors associated with its spread through the seed system channels, and (3) determining factors that influence cassava productivity in Rwanda. A cross-sectional study was carried out from May to September 2019 in 13 districts of Rwanda. A total of 130 farmers and cassava fields were visited, and the incidence and severity of CBSD were evaluated. CBSD was detected in all cassava-producing districts. The highest field incidence of CBSD was recorded in the Nyanza district (62%; 95% CI = 56–67%) followed by the Bugesera district (60%; 95% CI = 54–65%), which recorded the highest severity score of 3.0 ± 0.6. RT-PCR revealed the presence of CBSD at the rate of 35.3%. Ugandan cassava brown streak virus was predominant (21.5%) although cassava brown streak virus was 4% and mixed infection was 10%. An informal cassava seed system was dominant among individual farmers, whereas most cooperatives used quality seeds. Cassava production was found to be significantly influenced by the use of fertilizer, size of the land, farming system, cassava viral disease, and type of cassava varieties grown (p < 0.001). Disease management measures were practiced by a half of participants only. Factors found to be significantly associated with CBSD infection (p < 0.05) were the source of cuttings, proximity to borders, age of cassava, and knowledge of CBSD transmission and management.
Collapse
|
25
|
Olodude OA, Abioye VF, Iranloye YM. Development of nutritional meals and gruels from blends of pro-vitamin a cassava grits and African yam. POTRAVINARSTVO 2021. [DOI: 10.5219/1677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The potentials of underutilized African yam bean (AYB) and pro-vitamin A cassava in the development of nutritious food products with acceptable sensory properties were studied. Grits were produced from freshly harvested yellow root pro-vitamin A cassava by peeling, washing, cutting, soaking, dewatering, roasting, sieving, and milling to obtain yellow root cassava grits while AYB flour was obtained by cleaning, roasting, dehulling, milling, and sieving (425 µm). A simple lattice design was used to obtain formulations of blends (100:0; 90:10; 80:20; 70:30; 60:40 and 0:100) of yellow root cassava grits and AYB flour. Gruels were prepared from these formulations using 4:5 w/v in boiling water while meals were prepared using 1:1 w/v of blend in boiling water for 5 min. Moisture, fat, ash, protein, crude fibre, carbohydrate, β-carotene and calorific content of the blends were in the ranges of 4.66 – 7.92%, 2.20 – 2.82%, 2.16 – 2.66%, 2.72 – 20.43%, 1.15 – 1.40%, 68.65 – 83.23%, 1.33 to 3.97 μg/g and 348.37 – 358.96 kcal/100 g, respectively. Saponin, tannin, trypsin inhibitor, hemagglutinin, starchyose, raffinose, phytate and Hydrogen Cyanide ranged from 0.039 – 0.087%, 0.11 – 0.15%, 1.24 – 3.15 mg/g, 1.47 – 3.49 mg/100 g, 1.51 – 1.81%, 0.38 – 0.45%, 0.82 – 2.69 mg/g, 0.07 – 4.47 mg/kg, respectively. The sensory evaluation revealed that the meal and the gruel samples had acceptable sensory attributes. The developed products have the potentials in alleviating the problem of protein malnutrition in developing countries.
Collapse
|
26
|
Ceballos H, Hershey C, Iglesias C, Zhang X. Fifty years of a public cassava breeding program: evolution of breeding objectives, methods, and decision-making processes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2335-2353. [PMID: 34086085 PMCID: PMC8277603 DOI: 10.1007/s00122-021-03852-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/03/2021] [Indexed: 06/01/2023]
Abstract
This paper reviews and analyzes key features from cassava breeding at the International Center for Tropical Agriculture (CIAT) over 50 years and draws lessons for public breeding efforts broadly. The breeding team, jointly with national program partners and the private processing sector, defined breeding objectives and guiding business plans. These have evolved through the decades and currently focus on four global product profiles. The recurrent selection method also evolved and included innovations such as estimation of phenotypic breeding values, increasing the number of locations in the first stage of agronomic evaluations, gradual reduction of the duration of breeding cycles (including rapid cycling for high-heritability traits), the development of protocols for the induction of flowering, and the introduction of genome-wide predictions. The impact of cassava breeding depends significantly on the type of target markets. When roots are used for large processing facilities for starch, animal feeding or ethanol production (such as in SE Asia), the adoption of improved varieties is nearly universal and productivity at the regional scale increases significantly. When markets and relevant infrastructure are weak or considerable proportion of the production goes for local artisanal processing and on-farm consumption, the impact has been lower. The potential of novel breeding tools needs to be properly assessed for the most effective allocation of resources. Finally, a brief summary of challenges and opportunities for the future of cassava breeding is presented. The paper describes multiple ways that public and private sector breeding programs can learn from each other to optimize success.
Collapse
Affiliation(s)
- Hernán Ceballos
- International Center for Tropical Agriculture (CIAT), Cali, USA.
- Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Alliance, Rome, Italy.
| | | | | | - Xiaofei Zhang
- International Center for Tropical Agriculture (CIAT), Cali, USA
- Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Alliance, Rome, Italy
| |
Collapse
|
27
|
Gbashi S, Adebo O, Adebiyi JA, Targuma S, Tebele S, Areo OM, Olopade B, Odukoya JO, Njobeh P. Food safety, food security and genetically modified organisms in Africa: a current perspective. Biotechnol Genet Eng Rev 2021; 37:30-63. [PMID: 34309495 DOI: 10.1080/02648725.2021.1940735] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Moving forward from 2020, Africa faces an eminent challenge of food safety and security in the coming years. The World Food Programme (WFP) of the United Nations (UN) estimates that 20% of Africa's population of 1.2 billion people face the highest level of undernourishment in the world, likely to worsen due to COVID-19 pandemic that has brought the entire world to its knees. Factors such as insecurity and conflict, poverty, climate change and population growth have been identified as critical contributors to the food security challenges on the continent. Biotechnological research on Genetically Modified Organisms (GMOs) provides a range of opportunities (such as increased crop yields, resistance to pests and diseases, enhanced nutrient composition and food quality) in addressing the hunger, malnutrition and food security issues on the continent. However, the acceptance and adoption of GMOs on the continent has been remarkably slow, perhaps due to contrasting views about the benefits and safety concerns associated with them. With the reality of food insecurity and the booming population in Africa, there is an eminent need for a more pragmatic position to this debate. The present review presents an overview of the current situation of food safety and security and attempts to reconcile major viewpoints on GMOs research considering the current food safety and security crisis in the African continent.
Collapse
Affiliation(s)
- Sefater Gbashi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O Box 17011, Doornfontein Campus, 2028, Gauteng, South Africa
| | - Oluwafemi Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O Box 17011, Doornfontein Campus, 2028, Gauteng, South Africa
| | - Janet Adeyinka Adebiyi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O Box 17011, Doornfontein Campus, 2028, Gauteng, South Africa
| | - Sarem Targuma
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, P.O Box 17011, Doornfontein Campus, 2028, Gauteng, South Africa
| | - Shandry Tebele
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch, 7701
| | - Oluwaseun Mary Areo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O Box 17011, Doornfontein Campus, 2028, Gauteng, South Africa
| | - Bunmi Olopade
- Department of Biological Sciences, Covenant University, Ota, P.M.B. 1023, km 10, Idiroko Road, Ota, Ogun State, Nigeria
| | - Julianah Olayemi Odukoya
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O Box 17011, Doornfontein Campus, 2028, Gauteng, South Africa
| | - Patrick Njobeh
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O Box 17011, Doornfontein Campus, 2028, Gauteng, South Africa
| |
Collapse
|
28
|
De Bauw P, Birindwa D, Merckx R, Boeraeve M, Munyahali W, Peeters G, Bolaji T, Honnay O. Improved genotypes and fertilizers, not fallow duration, increase cassava yields without compromising arbuscular mycorrhizal fungus richness or diversity. MYCORRHIZA 2021; 31:483-496. [PMID: 34173082 DOI: 10.1007/s00572-021-01039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are ubiquitous in agroecosystems, but their role in mediating agricultural yield remains contested. Field experiments testing effects of realistic agronomic practices of intensification on AM fungus composition and yields are scarce, especially in the low-input systems of sub-Saharan Africa. A large, full-factorial field experiment was conducted in South-Kivu (DR Congo), testing effects of fallow duration (6 vs. 12 months), genotype (landrace vs. improved), and fertilizer management (control vs. five combinations omitting N, P, K, and/or secondary macro- and micronutrients) on yields of cassava, an important staple crop strongly colonized by AMF. Furthermore, we used DNA-metabarcoding to evaluate effects of these agronomic practices on the AM fungal communities on the roots. The shorter fallow duration strongly increased diversity and richness of AMF, but this did not correspond with increased yields. Cassava yield was mainly determined by genotype, being largest for the improved genotype, which coincided with a significantly higher sum of AM fungal sequences. Effects of fertilizer or genotype on community composition were minor to absent. We found no evidence that increased AMF richness and diversity enhanced cassava yields. In contrast, the use of the improved genotype and mineral fertilizers strongly benefitted yields, without compromising richness or diversity of AMF. Cassava-AMF associations in this work appear robust to fertilizer amendments and modern genotype improvement.
Collapse
Affiliation(s)
- Pieterjan De Bauw
- Department of Earth and Environmental Sciences, Division Soil and Water Management, Kasteelpark Arenberg, 20-3001, Leuven, KU, Belgium.
| | - Damas Birindwa
- Department of Earth and Environmental Sciences, Division Soil and Water Management, Kasteelpark Arenberg, 20-3001, Leuven, KU, Belgium
- Université Catholique de Bukavu (UCB), Bukavu, Democratic Republic of the Congo
| | - Roel Merckx
- Department of Earth and Environmental Sciences, Division Soil and Water Management, Kasteelpark Arenberg, 20-3001, Leuven, KU, Belgium
| | - Margaux Boeraeve
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, B-3001, Leuven, Belgium
| | - Wivine Munyahali
- Université Catholique de Bukavu (UCB), Bukavu, Democratic Republic of the Congo
| | - Gerrit Peeters
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, B-3001, Leuven, Belgium
| | - Thanni Bolaji
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, B-3001, Leuven, Belgium
| | - Olivier Honnay
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, B-3001, Leuven, Belgium
| |
Collapse
|
29
|
Chen C, Kashala-Abotnes E, Banea Mayambu JP, Mumba Ngoyi D, Tshala-Katumbay D, Mukeba D, Kunyu M, Boivin MJ, Wu F. Cost-effectiveness of a wetting method intervention to reduce cassava cyanide-related cognitive impairment in children. NATURE FOOD 2021; 2:469-472. [PMID: 37117687 DOI: 10.1038/s43016-021-00321-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 06/14/2021] [Indexed: 04/30/2023]
Abstract
Cassava cyanide-related neurocognitive impairment may persist for years in Central African children who rely on cassava as a dietary staple. In the Democratic Republic of the Congo, a cassava processing method, the 'wetting method', reduced cyanide in cassava, prevented konzo, and proved a cost-effective intervention to improve children's cognitive development. Scaling up use of the wetting method may help prevent neurocognitive impairment in millions of at-risk children in sub-Saharan Africa.
Collapse
Affiliation(s)
- Chen Chen
- Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI, USA
| | | | | | - Dieudonne Mumba Ngoyi
- Department of Tropical Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Désiré Tshala-Katumbay
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
- Department of Neurology, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Daniel Mukeba
- Department of Neurology, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Marcel Kunyu
- Department of Neurology, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Michael J Boivin
- Department of Psychiatry and Department of Neurology & Ophthalmology, Michigan State University, East Lansing, MI, USA
| | - Felicia Wu
- Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI, USA.
- Agricultural, Food, and Resource Economics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
30
|
Atuna RA, Achaglinkame MA, Accorley TAS, Amagloh FK. Cassava Orange-Fleshed Sweetpotato Composite Gari: A Potential Source of Dietary Vitamin A. Front Nutr 2021; 8:646051. [PMID: 34164421 PMCID: PMC8216489 DOI: 10.3389/fnut.2021.646051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
Gari, a fermented granular cassava food product, continues to play a major role in the diets of West Africans. The white cassava commonly used for this product is devoid of provitamin A but may have a significant concentration of cyanogenic compounds. The physicochemical and functional properties of partial substitution of cassava with orange-fleshed sweetpotato (OFSP) to process gari were investigated. Two commonly consumed products "eba" and "soaked gari" were prepared from the various formulations and sensorially assessed. Cassava OFSP composite gari (77% cassava:23% OFSP, 75% cassava:25% OFSP, and 73% cassava:27% OFSP) did not significantly (p > 0.05) influence the moisture content (3.39%-5.42%, p = 0.38), water absorption capacity (589-671 mL/g, p = 0.22), and swelling index (3.75-4.17, p = 0.08) compared with that of 100% cassava gari. Expectedly, increasing the levels of OFSP incorporation significantly (p < 0.001) resulted in color change from white (L* = 83.99, a* = 0.93, b* = 16.35) to orange (L* = 69.26, a* = 7.74, b* = 28.62). For β-carotene, the 73% cassava:27% sample was ~5.2 times more than the level in 100% cassava gari. Also, it had lower residual cyanogenic compounds (0.37 vs. 1.71 mg/kg, p < 0.001, measured as hydrogen cyanide) compared with cassava-only gari. The sensory scores by the 100 panelists using a five-point hedonic scale (1 = dislike extremely to 5 = like extremely) exceeded the minimum threshold (3) for acceptance. Within the limits of this study, OFSP can be composited with cassava up to 27% to process gari that has similar physicochemical properties and sensorial preference as that of cassava only. Furthermore, the OFSP-composited gari contains a significant amount of provitamin A and have a reduced residual cyanogenic compound. Thus, the composited gari could play a significant role in addressing vitamin A deficiency in Ghana compared to the 100% cassava only.
Collapse
Affiliation(s)
- Richard Atinpoore Atuna
- Department of Food Science and Technology, University for Development Studies, Tamale, Ghana
| | | | | | - Francis Kweku Amagloh
- Department of Food Science and Technology, University for Development Studies, Tamale, Ghana
| |
Collapse
|
31
|
Kwibuka Y, Bisimwa E, Blouin AG, Bragard C, Candresse T, Faure C, Filloux D, Lett JM, Maclot F, Marais A, Ravelomanantsoa S, Shakir S, Vanderschuren H, Massart S. Novel Ampeloviruses Infecting Cassava in Central Africa and the South-West Indian Ocean Islands. Viruses 2021; 13:v13061030. [PMID: 34072594 PMCID: PMC8226816 DOI: 10.3390/v13061030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 11/30/2022] Open
Abstract
Cassava is one of the most important staple crops in Africa and its production is seriously damaged by viral diseases. In this study, we identify for the first time and characterize the genome organization of novel ampeloviruses infecting cassava plants in diverse geographical locations using three high-throughput sequencing protocols [Virion-Associated Nucleotide Acid (VANA), dsRNA and total RNA], and we provide a first analysis of the diversity of these agents and of the evolutionary forces acting on them. Thirteen new Closteroviridae isolates were characterized in field-grown cassava plants from the Democratic Republic of Congo (DR Congo), Madagascar, Mayotte, and Reunion islands. The analysis of the sequences of the corresponding contigs (ranging between 10,417 and 13,752 nucleotides in length) revealed seven open reading frames. The replication-associated polyproteins have three expected functional domains: methyltransferase, helicase, and RNA-dependent RNA polymerase (RdRp). Additional open reading frames code for a small transmembrane protein, a heat-shock protein 70 homolog (HSP70h), a heat shock protein 90 homolog (HSP90h), and a major and a minor coat protein (CP and CPd respectively). Defective genomic variants were also identified in some cassava accessions originating from Madagascar and Reunion. The isolates were found to belong to two species tentatively named Manihot esculenta-associated virus 1 and 2 (MEaV-1 and MEaV-2). Phylogenetic analyses showed that MEaV-1 and MEaV-2 belong to the genus Ampelovirus, in particular to its subgroup II. MEaV-1 was found in all of the countries of study, while MEaV-2 was only detected in Madagascar and Mayotte. Recombination analysis provided evidence of intraspecies recombination occurring between the isolates from Madagascar and Mayotte. No clear association with visual symptoms in the cassava host could be identified.
Collapse
Affiliation(s)
- Yves Kwibuka
- Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium; (A.G.B.); (F.M.)
- Faculté des Sciences Agronomiques, Université Catholique de Bukavu, BP 285 Bukavu, Democratic Republic of the Congo;
- Correspondence: (Y.K.); (S.M.)
| | - Espoir Bisimwa
- Faculté des Sciences Agronomiques, Université Catholique de Bukavu, BP 285 Bukavu, Democratic Republic of the Congo;
| | - Arnaud G. Blouin
- Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium; (A.G.B.); (F.M.)
| | - Claude Bragard
- Earth and Life Institute, Applied Microbiology-Phytopathology, UCLouvain, 1348 Louvain-la-Neuve, Belgium;
| | - Thierry Candresse
- Université Bordeaux, INRAE, UMR BFP, CS20032, CEDEX, 33882 Villenave d’Ornon, France; (T.C.); (C.F.); (A.M.)
| | - Chantal Faure
- Université Bordeaux, INRAE, UMR BFP, CS20032, CEDEX, 33882 Villenave d’Ornon, France; (T.C.); (C.F.); (A.M.)
| | - Denis Filloux
- CIRAD, UMR PHIM, 34090 Montpellier, France;
- PHIM Plant Health Institute, Université Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34000 Montpellier, France
| | - Jean-Michel Lett
- CIRAD, UMR PVBMT, Pôle de Protection des Plantes, Saint-Pierre, F-97410 Ile de la Reunion, France;
| | - François Maclot
- Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium; (A.G.B.); (F.M.)
| | - Armelle Marais
- Université Bordeaux, INRAE, UMR BFP, CS20032, CEDEX, 33882 Villenave d’Ornon, France; (T.C.); (C.F.); (A.M.)
| | | | - Sara Shakir
- Plant Genetics Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium; (S.S.); (H.V.)
| | - Hervé Vanderschuren
- Plant Genetics Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium; (S.S.); (H.V.)
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Biosystems Department, KU Leuven, 3000 Leuven, Belgium
| | - Sébastien Massart
- Plant Pathology Laboratory, TERRA-Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés, 2, 5030 Gembloux, Belgium; (A.G.B.); (F.M.)
- Correspondence: (Y.K.); (S.M.)
| |
Collapse
|
32
|
Ewa F, Asiwe JNA, Okogbenin E, Ogbonna AC, Egesi C. KASPar SNP genetic map of cassava for QTL discovery of productivity traits in moderate drought stress environment in Africa. Sci Rep 2021; 11:11268. [PMID: 34050196 PMCID: PMC8163807 DOI: 10.1038/s41598-021-90131-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/27/2021] [Indexed: 11/23/2022] Open
Abstract
Cassava is an important staple in Sub-Sahara Africa. While its production has rapidly expanded to the dry savannahs of the continent, productivity is low in this ecology due to drought by farmers, extending the growth cycle from 12 months to 18, and sometimes 24 months to ensure better harvests. Yield is a complex trait and often difficult to manipulate for genetic gain in conventional breeding. Unfortunately, the dearth of molecular tools for decades has hampered molecular breeding (MB) to improve cassava productivity. This study was conducted to explore KASpar SNPs to generate more molecular tools to enhance genetic dissection of elite African germplasm for improved cassava productivity in dry environments of Africa where molecular resources are highly limited for crop improvement. To aid molecular genetic analysis of traits, a linkage map covering 1582.8 cM with an average resolution of 3.69 cM was constructed using 505 polymorphic SNP markers distributed over 21 linkage groups. Composite interval mapping using 267 F1 progeny in initial QTL mapping identified 27 QTLs for productivity traits in the dry savannah of Nigeria. The availability of KASPar SNPs are anticipated to improve the implementation of MB for the development of high performing drought-tolerant cassava varieties in Africa.
Collapse
Affiliation(s)
- Favour Ewa
- Department of Plant Production, Soil Science and Agricultural Engineering, School of Agriculture and Environmental Sciences, University of Limpopo, Sovenga, South Africa.
| | - Joseph N A Asiwe
- Department of Plant Production, Soil Science and Agricultural Engineering, School of Agriculture and Environmental Sciences, University of Limpopo, Sovenga, South Africa
| | | | - Alex C Ogbonna
- Department of Plant Breeding and Genetics Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Chiedozie Egesi
- Cassava Breeding Unit, International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| |
Collapse
|
33
|
Moore CE, Meacham-Hensold K, Lemonnier P, Slattery RA, Benjamin C, Bernacchi CJ, Lawson T, Cavanagh AP. The effect of increasing temperature on crop photosynthesis: from enzymes to ecosystems. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2822-2844. [PMID: 33619527 PMCID: PMC8023210 DOI: 10.1093/jxb/erab090] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/19/2021] [Indexed: 05/03/2023]
Abstract
As global land surface temperature continues to rise and heatwave events increase in frequency, duration, and/or intensity, our key food and fuel cropping systems will likely face increased heat-related stress. A large volume of literature exists on exploring measured and modelled impacts of rising temperature on crop photosynthesis, from enzymatic responses within the leaf up to larger ecosystem-scale responses that reflect seasonal and interannual crop responses to heat. This review discusses (i) how crop photosynthesis changes with temperature at the enzymatic scale within the leaf; (ii) how stomata and plant transport systems are affected by temperature; (iii) what features make a plant susceptible or tolerant to elevated temperature and heat stress; and (iv) how these temperature and heat effects compound at the ecosystem scale to affect crop yields. Throughout the review, we identify current advancements and future research trajectories that are needed to make our cropping systems more resilient to rising temperature and heat stress, which are both projected to occur due to current global fossil fuel emissions.
Collapse
Affiliation(s)
- Caitlin E Moore
- School of Agriculture and Environment, The University of Western Australia, Crawley, Australia
- Institute for Sustainability, Energy & Environment, University of Illinois at Urbana-Champaign, Urbana, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Katherine Meacham-Hensold
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | | | - Rebecca A Slattery
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Claire Benjamin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Carl J Bernacchi
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture–Agricultural Research Service, Urbana, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Amanda P Cavanagh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, USA
- School of Life Sciences, University of Essex, Colchester, UK
| |
Collapse
|
34
|
Nanyonjo AR, Kawuki RS, Kyazze F, Esuma W, Wembabazi E, Dufour D, Nuwamanya E, Tufan H. Assessment of end user traits and physicochemical qualities of cassava flour: a case of Zombo district, Uganda. Int J Food Sci Technol 2021; 56:1289-1297. [PMID: 33776236 PMCID: PMC7986407 DOI: 10.1111/ijfs.14940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/20/2020] [Accepted: 12/11/2020] [Indexed: 11/27/2022]
Abstract
Cassava breeding programmes in Uganda do not currently select materials based on flour making quality, explaining in part the low adoption rates of many released varieties. In this study, we describe end user trait preferences, processing qualities and physicochemical properties of cassava flour. We found that higher proportion of women than men showed preference for most attributes of cassava flour quality evaluated in this study. Preference for colour was 66% and 52% among women and men, respectively, while that for stickiness of Kwon was 26% (women) and 15% (men). Ease of peeling and stickiness of Kwon were key processing traits. Heap fermented flour had higher pasting temperatures, but lower viscosities than sun-dried flour, and had lower amylose content compared to fresh root starch. The results demonstrate the importance of gender sensitive participatory evaluation of breeding materials, in tandem with physicochemical evaluation during selection of best possible candidate breeding lines.
Collapse
Affiliation(s)
- Ann Ritah Nanyonjo
- National Crops Resources Research Institute (NaCRRI)9 km Gayaza‐Zirobwe Road, P.O. Box 7084KampalaUganda
| | - Robert Sezi Kawuki
- National Crops Resources Research Institute (NaCRRI)9 km Gayaza‐Zirobwe Road, P.O. Box 7084KampalaUganda
| | | | - Williams Esuma
- National Crops Resources Research Institute (NaCRRI)9 km Gayaza‐Zirobwe Road, P.O. Box 7084KampalaUganda
| | - Enoch Wembabazi
- National Crops Resources Research Institute (NaCRRI)9 km Gayaza‐Zirobwe Road, P.O. Box 7084KampalaUganda
| | - Dominique Dufour
- CIRAD, UMR QualisudMontpellierF‐34398France
- Qualisud, CIRAD, Institut Agro, Univ Montpellier, Avignon Universit_e, Universit_e de La R_eunionMontpellierFrance
| | - Ephraim Nuwamanya
- National Crops Resources Research Institute (NaCRRI)9 km Gayaza‐Zirobwe Road, P.O. Box 7084KampalaUganda
| | | |
Collapse
|
35
|
Palanivel H, Shah S. Unlocking the inherent potential of plant genetic resources: food security and climate adaptation strategy in Fiji and the Pacific. ENVIRONMENT, DEVELOPMENT AND SUSTAINABILITY 2021; 23:14264-14323. [PMID: 33619427 PMCID: PMC7888530 DOI: 10.1007/s10668-021-01273-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Pacific Island Countries (PICs) are the center of origin and diversity for several root, fruit and nut crops, which are indispensable for food security, rural livelihoods, and cultural identity of local communities. However, declining genetic diversity of traditional food crops and high vulnerability to climate change are major impediments for maintaining agricultural productivity. Limited initiatives to achieve food self-sufficiency and utilization of Plant Genetic Resources (PGR) for enhancing resilience of agro-ecosystems are other serious constraints. This review focuses on the visible and anticipated impacts of climate ge, on major food and tree crops in agriculture and agroforestry systems in the PICs. We argue that crop improvement through plant breeding is a viable strategy to enhance food security and climatic resilience in the region. The exploitation of adaptive traits: abiotic and biotic stress tolerance, yield and nutritional efficiency, is imperative in a world threatened by climatic extremes. However, the insular constraints of Fiji and other small PICs are major limitations for the utilization of PGR through high throughput techniques which are also cost prohibitive. Crop Improvement programs should instead focus on the identification, conservation, documentation and dissemination of information on unique landraces, community seed banks, introduction of new resistant genotypes, and sustaining and enhancing allelic diversity.
Collapse
Affiliation(s)
- Hemalatha Palanivel
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, PO Box 16417, Addis Ababa, Ethiopia
| | - Shipra Shah
- Department of Forestry, College of Agriculture, Fisheries and Forestry, Koronivia Campus, Fiji National University, PO Box 1544, Nausori, Republic of Fiji
| |
Collapse
|
36
|
Ruiz-Vera UM, De Souza AP, Ament MR, Gleadow RM, Ort DR. High sink strength prevents photosynthetic down-regulation in cassava grown at elevated CO2 concentration. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:542-560. [PMID: 33045084 PMCID: PMC7853607 DOI: 10.1093/jxb/eraa459] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/06/2020] [Indexed: 05/20/2023]
Abstract
Cassava has the potential to alleviate food insecurity in many tropical regions, yet few breeding efforts to increase yield have been made. Improved photosynthetic efficiency in cassava has the potential to increase yields, but cassava roots must have sufficient sink strength to prevent carbohydrates from accumulating in leaf tissue and suppressing photosynthesis. Here, we grew eight farmer-preferred African cassava cultivars under free-air CO2 enrichment (FACE) to evaluate the sink strength of cassava roots when photosynthesis increases due to elevated CO2 concentrations ([CO2]). Relative to the ambient treatments, elevated [CO2] treatments increased fresh (+27%) and dry (+37%) root biomass, which was driven by an increase in photosynthesis (+31%) and the absence of photosynthetic down-regulation over the growing season. Moreover, intrinsic water use efficiency improved under elevated [CO2] conditions, while leaf protein content and leaf and root cyanide concentrations were not affected. Overall, these results suggest that higher cassava yields can be expected as atmospheric [CO2] increases over the coming decades. However, there were cultivar differences in the partitioning of resources to roots versus above-grown biomass; thus, the particular responses of each cultivar must be considered when selecting candidates for improvement.
Collapse
Affiliation(s)
- Ursula M Ruiz-Vera
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Amanda P De Souza
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael R Ament
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Roslyn M Gleadow
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
37
|
Elegba W, McCallum E, Gruissem W, Vanderschuren H. Efficient Genetic Transformation and Regeneration of a Farmer-Preferred Cassava Cultivar From Ghana. FRONTIERS IN PLANT SCIENCE 2021; 12:668042. [PMID: 34140963 PMCID: PMC8204248 DOI: 10.3389/fpls.2021.668042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/22/2021] [Indexed: 05/04/2023]
Abstract
Cassava is an important staple crop that provides food and income for about 700 million Africans. Cassava productivity in Africa is limited by viral diseases, mainly cassava mosaic disease (CMD) and cassava brown streak disease (CBSD). Genetic barriers such as high heterozygosity, allopolyploidy, poor seed set, and irregular flowering constrain the development of virus-resistant cassava varieties via conventional breeding. Genetic transformation represents a valuable tool to circumvent several challenges associated with the development of virus resistance and other valuable agronomic traits in cassava. The implementation of genetic transformation in many local African cultivars is limited either by the difficulty to produce friable embryogenic callus (FEC), low transformation, and/or regeneration efficiencies. Here, we report the successful induction of organized embryogenic structures (OES) in 11 farmer-preferred cultivars locally grown in Ghana. The production of high quality FEC from one local cultivar, ADI 001, facilitated its genetic transformation with high shoot regeneration and selection efficiency, comparable to the model cassava cultivar 60444. We show that using flow cytometry for analysis of nuclear ploidy in FEC tissues prior to genetic transformation ensures the selection of genetically uniform FEC tissue for transformation. The high percentage of single insertion events in transgenic lines indicates the suitability of the ADI 001 cultivar for the introduction of virus resistance and other useful agronomic traits into the farmer-preferred cassava germplasm in Ghana and Africa.
Collapse
Affiliation(s)
- Wilfred Elegba
- Plant Biotechnology, Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Biotechnology and Nuclear Agriculture Research Institute, GAEC, Legon, Ghana
- *Correspondence: Wilfred Elegba, ;
| | - Emily McCallum
- Plant Biotechnology, Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Wilhelm Gruissem
- Plant Biotechnology, Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Hervé Vanderschuren
- Plant Biotechnology, Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Leuven, Belgium
- Plant Genetics, TERRA Research and Teaching Centre, Gembloux Agro BioTech, University of Liège, Gembloux, Belgium
- Hervé Vanderschuren,
| |
Collapse
|
38
|
Wasonga DO, Kleemola J, Alakukku L, Mäkelä PSA. Potassium Fertigation With Deficit Irrigation Improves the Nutritive Quality of Cassava. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.575353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Sessou AF, Kahia JW, Houngue JA, Ateka EM, Dadjo C, Ahanhanzo C. In vitro propagation of three mosaic disease resistant cassava cultivars. BMC Biotechnol 2020; 20:51. [PMID: 32993601 PMCID: PMC7526170 DOI: 10.1186/s12896-020-00645-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/15/2020] [Indexed: 11/22/2022] Open
Abstract
Background Cassava is a staple food for over 800 million people globally providing a cheap source of carbohydrate. However, the cultivation of cassava in the country is facing to viral diseases, particularly cassava mosaic disease (CMD) which can cause up to 95% yield losses. With aim to supply farmers demand for clean planting materials, there is need to accelerate the production of the elite cultivars by use of tissue culture in order to cope with the demand. Methods Nodal explants harvested from the greenhouse grown plants were sterilised using different concentrations of a commercial bleach JIK (3.85% NaOCl) and varying time intervals. Microshoots induction was evaluated using thidiazuron (TDZ), benzyl amino purine (BAP), and kinetin. Rooting was evaluated using different auxins (Naphthalene acetic acid NAA and Indole-3-butyricacid IBA). PCR-based SSR and SCAR markers were used to verify the presence of CMD2 gene in the regenerated plantlets. Results The highest level of sterility in explants (90%) was obtained when 20% Jik was used for 15 min. The best cytokinin for microshoots regeneration was found to be kinetin with optimum concentrations of 5, 10 and 20 μM for Agric-rouge, Atinwewe, and Agblehoundo respectively. Medium without growth regulators was the best for rooting the three cultivars. A survival rate of 100, 98, and 98% was recorded in the greenhouse for Agric-rouge, Atinwewe, and Agblehoundo respectively and the plantlets appeared to be morphologically normal. The SSR and SCAR analysis of micropropagated plants showed a profile similar to that of the mother plants indicating that the regenerated plantlets retained the CMD2 gene after passing through in vitro culture, as expected with micropropagation. Conclusion The nodal explants was established to be 20% of Jik (3.85% NaOCl) with an exposure time of 15 min. Kinetin was proved to be the best cytokinins for microshoot formation with the optimum concentration of 5, 10 and 20 μM for Agric-rouge, Atinwewe, and Agblehoundo respectively. The protocol developed during this study will be useful for mass propagation of the elite cassava cultivars.
Collapse
Affiliation(s)
- Amitchihoué Franck Sessou
- Department of Genetics and Biotechnology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Abomey-Calavi, Benin. .,Institute of Basic Sciences, Technology and Innovation, Pan African University, P. O. Box 62000-00200, Nairobi, Kenya.
| | - Jane W Kahia
- Coffee Research Institute, P.O. Box 4, Ruiru, Kenya
| | - Jerome Anani Houngue
- Department of Genetics and Biotechnology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Abomey-Calavi, Benin.
| | - Elijah Miinda Ateka
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - Colombe Dadjo
- Institute of Basic Sciences, Technology and Innovation, Pan African University, P. O. Box 62000-00200, Nairobi, Kenya
| | - Corneille Ahanhanzo
- Department of Genetics and Biotechnology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Abomey-Calavi, Benin
| |
Collapse
|
40
|
Wyckhuys KAG, Sasiprapa W, Taekul C, Kondo T. Unsung heroes: fixing multifaceted sustainability challenges through insect biological control. CURRENT OPINION IN INSECT SCIENCE 2020; 40:77-84. [PMID: 32619951 DOI: 10.1016/j.cois.2020.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/04/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Insects are indispensable actors within global agri-food systems and ensure the delivery of myriad ecosystem services. A progressive decline in insect numbers - as inflicted by habitat loss, pollution or intensive agriculture - can jeopardize a sustained provisioning of those services. Though we routinely disregard how insects help meet multiple sustainable development challenges, a gradual insect decline can have grave, long-lasting consequences. Here, we describe how insect-mediated biological control not only defuses invasive pests and can reconstitute crop productivity, but equally delivers other positive social-ecological outcomes. Drawing upon the pan-tropical invasion of the cassava mealybug and its ensuing suppression by the monophagous parasitoid Anagyrus lopezi, we illuminate how biological control contributes to food security, poverty alleviation, human wellbeing and environmental preservation. Trans-disciplinary research and 'systems thinking' are needed to maximize the potential of these biodiversity-driven interventions, and thus reap the net positive spin-offs insects provide for farmers, the environment and human society.
Collapse
Affiliation(s)
- Kris A G Wyckhuys
- Institute of Plant Protection (IPP), China Academy of Agricultural Sciences, Beijing, China; University of Queensland, Brisbane, Australia; Fujian Agriculture and Forestry University, Fuzhou, China; Chrysalis Consulting, Hanoi, Viet Nam.
| | - Walaiporn Sasiprapa
- Department of Agriculture, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| | - Charuwat Taekul
- Department of Agriculture, Ministry of Agriculture and Cooperatives, Bangkok, Thailand
| | | |
Collapse
|
41
|
Odoemelam CS, Percival B, Ahmad Z, Chang MW, Scholey D, Burton E, Okafor PN, Wilson PB. Characterization of yellow root cassava and food products: investigation of cyanide and β-carotene concentrations. BMC Res Notes 2020; 13:333. [PMID: 32653027 PMCID: PMC7353786 DOI: 10.1186/s13104-020-05175-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/07/2020] [Indexed: 11/15/2022] Open
Abstract
Objective Cyanide is a highly toxic compound, and the consumption of products containing cyanide is a significant public health concern. Conversely, β-carotene possesses essential nutritional attributes for human health, therefore the characterisation and quantification of both compounds in food products is fundamental. Herein, cyanide and β-carotene levels in two flours produced from the roots of two varieties of cassava (Manihot esculenta crantz), namely UMUCASS-38(TMS 01/1371) and NR-8082, and their associated food products were detected and quantified. Results The cyanide content of NR-8082 and UMUCASS-38 flours was determined at 18.01 ± 0.01 ppm and 17.02 ± 0.02 ppm (mean ± SD), respectively. These flours contained significantly higher (p < 0.05) than the residual cyanide levels determined in the cookies and cake produced therefrom with levels of 10.00 ± 0.00 ppm and 7.10 ± 0.14 ppm (mean ± SD), respectively. The levels of β-carotene determined in both the cake and cookie samples varied significantly (p < 0.05). The highest levels of β-carotene at 6.53 ± 0.02 µg/g (mean ± SD) were determined in raw roots of UMUCASS-38. While NR-8082 levels of β-carotene were less than UMUCASS-38 at 1.12 ± 0.02 µg/g (mean ± SD). Processing the roots into flour reduced the β-carotene content to 4.78 ± 0.01 µg/g and 0.76 ± 0.02 µg/g (mean ± SD) in UMUCASS-38 and NR-8082 flours, respectively. Cookies and cake produced from flour derived from the UMUCASS-38 variety had (mean ± SD) 2.15 ± 0.01 µg/g and 2.84 ± 0.04 µg/g of β-carotene, respectively.
Collapse
Affiliation(s)
- Chiemela S Odoemelam
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Nottingham, NG25 0QF, UK
| | - Benita Percival
- Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Zeeshan Ahmad
- Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey, BT37 0QB, Northern Ireland, UK
| | - Dawn Scholey
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Nottingham, NG25 0QF, UK
| | - Emily Burton
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Nottingham, NG25 0QF, UK
| | - Polycarp N Okafor
- Department of Biochemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Philippe B Wilson
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Nottingham, NG25 0QF, UK.
| |
Collapse
|
42
|
Li H, Yan C, Tang Y, Ma X, Chen Y, Chen S, Lin M, Liu Z. Endophytic bacterial and fungal microbiota in different cultivars of cassava (Manihot esculenta Crantz). J Microbiol 2020; 58:614-623. [PMID: 32424579 DOI: 10.1007/s12275-020-9565-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 01/01/2023]
Abstract
Endophytes colonize tissues of healthy host plants and play a crucial role in plant growth and development. However, little attention has been paid to the endophytes of tuber crops such as cassava, which is used as a staple food by approximately 800 million people worldwide. This study aimed to elucidate the diversity and composition of endophytic bacterial and fungal communities in different cassava cultivars using high-throughput sequencing. Although no significant differences in richness or diversity were observed among the different cassava cultivars, the community compositions were diverse. Two cultivars (SC124 and SC205) tolerant to root rot exhibited similar community compositions, while two other cultivars (SC10 and SC5), which are moderately and highly susceptible to root rot, respectively, harboured similar community compositions. Proteobacteria, Firmicutes, and Ascomycota dominated the endophyte assemblages, with Weissella, Serratia, Lasiodiplodia, Fusarium, and Diaporthe being the predominant genera. The differentially abundant taxonomic clades between the tolerant and susceptible cultivars were mainly rare taxa, such as Lachnoclostridium_5, Rhizobium, Lampropedia, and Stenotrophomonas. These seemed to be key genera that affected the susceptibility of cassava to root rot. Moreover, the comparison of KEGG functional profiles revealed that 'Environmental adaptation' category was significantly enriched in the tolerant cultivars, while 'Infectious diseases: Parasitic' category was significantly enriched in the susceptible cultivars. The present findings open opportunities for further studies on the roles of endophytes in the susceptibility of plants to diseases.
Collapse
Affiliation(s)
- Hong Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, P. R. China
| | - Chengliang Yan
- School of Tropical Crops, Hainan University, Haikou, 570228, P. R. China
| | - Yanqiong Tang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, P. R. China
| | - Xiang Ma
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, P. R. China
| | - Yinhua Chen
- School of Tropical Crops, Hainan University, Haikou, 570228, P. R. China
| | - Songbi Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, P. R. China
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Zhu Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, P. R. China.
| |
Collapse
|
43
|
Nwezeobi J, Onyegbule O, Nkere C, Onyeka J, van Brunschot S, Seal S, Colvin J. Cassava whitefly species in eastern Nigeria and the threat of vector-borne pandemics from East and Central Africa. PLoS One 2020; 15:e0232616. [PMID: 32379806 PMCID: PMC7205266 DOI: 10.1371/journal.pone.0232616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/18/2020] [Indexed: 12/02/2022] Open
Abstract
Bemisia tabaci (sensu latu) is a group of >40 highly cryptic whitefly species that are of global agricultural importance, both as crop pests and plant-virus vectors. Two devastating cassava diseases in East and Central Africa are spread by abundant populations of one of these species termed Sub-Saharan Africa 1 (SSA1). There is a substantive risk that these whitefly-borne pandemics will continue to spread westwards and disrupt cassava production for millions of smallholder farmers in West Africa. We report here, therefore, the first comprehensive survey of cassava B. tabaci in eastern Nigeria, a West African region likely to be the first affected by the arrival of these whitefly-borne pandemics. We found one haplotype comprising 32 individuals with 100% identical mtCO1 sequence to the East African SSA1 populations (previously termed SSA1-SG1) and 19 mtCO1 haplotypes of Sub-Saharan Africa 3 (SSA3), the latter being the most prevalent and widely distributed B. tabaci species in eastern Nigeria. A more divergent SSA1 mtCO1 sequence (previously termed SSA1-SG5) was also identified in the region, as were mtCO1 sequences identifying the presence of the MED ASL B. tabaci species and Bemisia afer. Although B. tabaci SSA1 was found in eastern Nigeria, they were not present in the high abundances associated with the cassava mosaic (CMD) and cassava brown streak disease (CBSD) pandemics of East and Central Africa. Also, no severe CMD or any CBSD symptoms were found in the region.
Collapse
Affiliation(s)
- Joachim Nwezeobi
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, United Kingdom
| | | | | | - Joseph Onyeka
- National Root Crops Research Institute, Umudike, Abia, Nigeria
| | - Sharon van Brunschot
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, United Kingdom
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Susan Seal
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, United Kingdom
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, United Kingdom
| |
Collapse
|
44
|
Garrett KA, Alcalá-Briseño RI, Andersen KF, Brawner J, Choudhury RA, Delaquis E, Fayette J, Poudel R, Purves D, Rothschild J, Small IM, Thomas-Sharma S, Xing Y. Effective Altruism as an Ethical Lens on Research Priorities. PHYTOPATHOLOGY 2020; 110:708-722. [PMID: 31821114 DOI: 10.1094/phyto-05-19-0168-rvw] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Effective altruism is an ethical framework for identifying the greatest potential benefits from investments. Here, we apply effective altruism concepts to maximize research benefits through identification of priority stakeholders, pathosystems, and research questions and technologies. Priority stakeholders for research benefits may include smallholder farmers who have not yet attained the minimal standards set out by the United Nations Sustainable Development Goals; these farmers would often have the most to gain from better crop disease management, if their management problems are tractable. In wildlands, prioritization has been based on the risk of extirpating keystone species, protecting ecosystem services, and preserving wild resources of importance to vulnerable people. Pathosystems may be prioritized based on yield and quality loss, and also factors such as whether other researchers would be unlikely to replace the research efforts if efforts were withdrawn, such as in the case of orphan crops and orphan pathosystems. Research products that help build sustainable and resilient systems can be particularly beneficial. The "value of information" from research can be evaluated in epidemic networks and landscapes, to identify priority locations for both benefits to individuals and to constrain regional epidemics. As decision-making becomes more consolidated and more networked in digital agricultural systems, the range of ethical considerations expands. Low-likelihood but high-damage scenarios such as generalist doomsday pathogens may be research priorities because of the extreme potential cost. Regional microbiomes constitute a commons, and avoiding the "tragedy of the microbiome commons" may depend on shifting research products from "common pool goods" to "public goods" or other categories. We provide suggestions for how individual researchers and funders may make altruism-driven research more effective.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- K A Garrett
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Institute for Sustainable Food Systems, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
| | - R I Alcalá-Briseño
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Institute for Sustainable Food Systems, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
| | - K F Andersen
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Institute for Sustainable Food Systems, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
| | - J Brawner
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
| | - R A Choudhury
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Institute for Sustainable Food Systems, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
| | - E Delaquis
- International Center for Tropical Agriculture (CIAT), Vientiane, Lao People's Democratic Republic
| | - J Fayette
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Institute for Sustainable Food Systems, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
| | - R Poudel
- Genomics and Bioinformatics Research Unit, United States Department of Agriculture-Agricultural Research Service, Gainesville, FL, U.S.A
| | - D Purves
- Philosophy Department, University of Florida, Gainesville, FL, U.S.A
| | - J Rothschild
- Philosophy Department, University of Florida, Gainesville, FL, U.S.A
| | - I M Small
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- North Florida Research & Education Center, University of Florida, Quincy, FL, U.S.A
| | - S Thomas-Sharma
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA, U.S.A
| | - Y Xing
- Plant Pathology Department, University of Florida, Gainesville, FL, U.S.A
- Institute for Sustainable Food Systems, University of Florida, Gainesville, FL, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
| |
Collapse
|
45
|
Alves‐Pereira A, Clement CR, Picanço‐Rodrigues D, Veasey EA, Dequigiovanni G, Ramos SLF, Pinheiro JB, de Souza AP, Zucchi MI. A population genomics appraisal suggests independent dispersals for bitter and sweet manioc in Brazilian Amazonia. Evol Appl 2020; 13:342-361. [PMID: 31993081 PMCID: PMC6976959 DOI: 10.1111/eva.12873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/14/2019] [Indexed: 12/19/2022] Open
Abstract
Amazonia is a major world centre of plant domestication, but the genetics of domestication remains unclear for most Amazonian crops. Manioc (Manihot esculenta) is the most important staple food crop that originated in this region. Although manioc is relatively well-studied, little is known about the diversification of bitter and sweet landraces and how they were dispersed across Amazonia. We evaluated single nucleotide polymorphisms (SNPs) in wild and cultivated manioc to identify outlier SNPs putatively under selection and to assess the neutral genetic structure of landraces to make inferences about the evolution of the crop in Amazonia. Some outlier SNPs were in putative manioc genes possibly related to plant architecture, transcriptional regulation and responses to stress. The neutral SNPs revealed contrasting genetic structuring for bitter and sweet landraces. The outlier SNPs may be signatures of the genomic changes resulting from domestication, while the neutral genetic structure suggests independent dispersals for sweet and bitter manioc, possibly related to the earlier domestication and diversification of the former. Our results highlight the role of ancient peoples and current smallholders in the management and conservation of manioc genetic diversity, including putative genes and specific genetic resources with adaptive potential in the context of climate change.
Collapse
Affiliation(s)
- Alessandro Alves‐Pereira
- Departamento de GenéticaEscola Superior de Agricultura “Luiz de Queiróz”Universidade de São Paulo (ESALQ‐USP)PiracicabaBrazil
- Departamento de Biologia VegetalInstituto de BiologiaUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil
| | | | | | - Elizabeth Ann Veasey
- Departamento de GenéticaEscola Superior de Agricultura “Luiz de Queiróz”Universidade de São Paulo (ESALQ‐USP)PiracicabaBrazil
| | - Gabriel Dequigiovanni
- Departamento de GenéticaEscola Superior de Agricultura “Luiz de Queiróz”Universidade de São Paulo (ESALQ‐USP)PiracicabaBrazil
| | - Santiago Linorio Ferreyra Ramos
- Departamento de GenéticaEscola Superior de Agricultura “Luiz de Queiróz”Universidade de São Paulo (ESALQ‐USP)PiracicabaBrazil
| | - José Baldin Pinheiro
- Departamento de GenéticaEscola Superior de Agricultura “Luiz de Queiróz”Universidade de São Paulo (ESALQ‐USP)PiracicabaBrazil
| | - Anete Pereira de Souza
- Departamento de Biologia VegetalInstituto de BiologiaUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil
| | | |
Collapse
|
46
|
Comparative physiology and transcriptome analysis allows for identification of lncRNAs imparting tolerance to drought stress in autotetraploid cassava. BMC Genomics 2019; 20:514. [PMID: 31226927 PMCID: PMC6588902 DOI: 10.1186/s12864-019-5895-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/10/2019] [Indexed: 01/21/2023] Open
Abstract
Background Polyploidization, pervasive among higher plant species, enhances adaptation to water deficit, but the physiological and molecular advantages need to be investigated widely. Long non-coding RNAs (lncRNAs) are involved in drought tolerance in various crops. Results Herein, we demonstrate that tetraploidy potentiates tolerance to drought stress in cassava (Manihot esculenta Crantz). Autotetraploidy reduces transpiration by lesser extent increasing of stomatal density, smaller stomatal aperture size, or greater stomatal closure, and reducing accumulation of H2O2 under drought stress. Transcriptome analysis of autotetraploid samples revealed down-regulation of genes involved in photosynthesis under drought stress, and less down-regulation of subtilisin-like proteases involved in increasing stomatal density. UDP-glucosyltransferases were increased more or reduced less in dehydrated leaves of autotetraploids compared with controls. Strand-specific RNA-seq data (validated by quantitative real time PCR) identified 2372 lncRNAs, and 86 autotetraploid-specific lncRNAs were differentially expressed in stressed leaves. The co-expressed network analysis indicated that LNC_001148 and LNC_000160 in autotetraploid dehydrated leaves regulated six genes encoding subtilisin-like protease above mentioned, thereby result in increasing the stomatal density to a lesser extent in autotetraploid cassava. Trans-regulatory network analysis suggested that autotetraploid-specific differentially expressed lncRNAs were associated with galactose metabolism, pentose phosphate pathway and brassinosteroid biosynthesis, etc. Conclusion Tetraploidy potentiates tolerance to drought stress in cassava, and LNC_001148 and LNC_000160 mediate drought tolerance by regulating stomatal density in autotetraploid cassava. Electronic supplementary material The online version of this article (10.1186/s12864-019-5895-7) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
Peña-Venegas CP, Kuyper TW, Davison J, Jairus T, Vasar M, Stomph TJ, Struik PC, Öpik M. Distinct arbuscular mycorrhizal fungal communities associate with different manioc landraces and Amazonian soils. MYCORRHIZA 2019; 29:263-275. [PMID: 31028480 DOI: 10.1007/s00572-019-00891-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Manioc (Manihot esculenta Crantz) is an important tropical crop that depends on arbuscular mycorrhizal (AM) association for its nutrition. However, little is known about the richness and species composition of AM fungal communities associating with manioc and possible differences across soils and manioc landraces. We studied the diversity and composition of AM fungal communities present in the roots of different manioc landraces and surrounding soils in indigenous shifting cultivation fields on different Amazonian soil types. A total of 126 AM fungal virtual taxa (VT; phylogenetically defined taxonomic units) were recovered from soil and root samples using 454 sequencing of AM fungal SSU rRNA gene amplicons. Different AM fungal communities occurred in different soil types. Minor differences occurred in the composition of AM fungal community associating with different manioc landraces, but AM fungal richness was not different among them. There was a low similarity between the AM fungal communities colonizing manioc roots and those recorded in the soil, independently of differences in soil properties or the manioc landrace evaluated. Rhizophagus manihotis and Glomus VT126 were the most abundant AM fungal species colonizing manioc roots. Contrasting with the results of earlier spore-based investigations, all the AM fungi identified as indicator species of particular manioc landraces were morphologically unknown Glomus species. In conclusion, different manioc landraces growing in common conditions associated with distinct AM fungal communities, whereby AM fungal communities in soils did not necessarily reflect the AM fungal communities colonizing manioc roots.
Collapse
Affiliation(s)
- Clara P Peña-Venegas
- Centre for Crop Systems Analysis, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- Instituto Amazónico de Investigaciones Científicas Sinchi, Avenida Vásquez Cobo entre Calle 15 y 16, Leticia, Amazonas, Colombia.
| | - Thomas W Kuyper
- Soil Biology Group, Wageningen University & Research, Droevendaalsesteeg 3, 6708 PB, Wageningen, The Netherlands
| | - John Davison
- Department of Botany, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| | - Teele Jairus
- Department of Botany, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| | - Martti Vasar
- Department of Botany, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| | - Tjeerd Jan Stomph
- Centre for Crop Systems Analysis, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Maarja Öpik
- Department of Botany, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| |
Collapse
|
48
|
Alitubeera PH, Eyu P, Kwesiga B, Ario AR, Zhu BP. Outbreak of Cyanide Poisoning Caused by Consumption of Cassava Flour - Kasese District, Uganda, September 2017. MMWR. MORBIDITY AND MORTALITY WEEKLY REPORT 2019; 68:308-311. [PMID: 30946738 PMCID: PMC6611475 DOI: 10.15585/mmwr.mm6813a3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Ozimati A, Kawuki R, Esuma W, Kayondo SI, Pariyo A, Wolfe M, Jannink JL. Genetic Variation and Trait Correlations in an East African Cassava Breeding Population for Genomic Selection. CROP SCIENCE 2019; 59:460-473. [PMID: 33343017 PMCID: PMC7680944 DOI: 10.2135/cropsci2018.01.0060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 09/27/2018] [Indexed: 05/14/2023]
Abstract
Cassava (Manihot esculenta Crantz) is a major source of dietary carbohydrates for >700 million people globally. However, its long breeding cycle has slowed the rate of genetic gain for target traits. This study aimed to asses genetic variation, the level of inbreeding, and trait correlations in genomic selection breeding cycles. We used phenotypic and genotypic data from the National Crops Resources Research Institute (NaCRRI) foundation population (Cycle 0, C0) and the progeny (Cycle 1, C1) derived from crosses of 100 selected C0 clones as progenitors, both to evaluate and optimize genomic selection. The highest broad-sense heritability (H 2 = 0.95) and narrow-sense heritability (h 2 = 0.81) were recorded for cassava mosaic disease severity and the lowest for root weight per plot (H 2 = 0.06 and h 2 = 0.00). We observed the highest genetic correlation (r g= 0.80) between cassava brown streak disease root incidence measured at seedling and clonal stages of evaluation, suggesting the usefulness of seedling data in predicting clonal performance for cassava brown streak root necrosis. Similarly, high genetic correlations were observed between cassava brown streak disease severity (r g= 0.83) scored at 3 and 6 mo after planting (MAP) and cassava mosaic disease, scored at 3 and 6 MAP (r g= 0.95), indicating that data obtained on these two diseases at 6 MAP would suffice. Population differentiation between C0 and C1 was not well defined, implying that the 100 selected progenitors of C1 captured the diversity in the C0. Overall, genetic gain for most traits were observed from C0 to C1.
Collapse
Affiliation(s)
- Alfred Ozimati
- A. Ozimati, R. Kawuki, W. Esuma, S.I. Kayondo, and A. Pariyo, National Crops Resources Research Institute (NaCRRI), PO Box, 7084 Kampala, Uganda
- A. Ozimati, M. Wolfe, and J.-L. Jannink, School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell Univ., Ithaca, NY, 14853
- Corresponding author (). Assigned to Associate Editor Manjit Kang
| | - Robert Kawuki
- A. Ozimati, R. Kawuki, W. Esuma, S.I. Kayondo, and A. Pariyo, National Crops Resources Research Institute (NaCRRI), PO Box, 7084 Kampala, Uganda
| | - Williams Esuma
- A. Ozimati, R. Kawuki, W. Esuma, S.I. Kayondo, and A. Pariyo, National Crops Resources Research Institute (NaCRRI), PO Box, 7084 Kampala, Uganda
| | - Siraj I Kayondo
- A. Ozimati, R. Kawuki, W. Esuma, S.I. Kayondo, and A. Pariyo, National Crops Resources Research Institute (NaCRRI), PO Box, 7084 Kampala, Uganda
| | - Anthony Pariyo
- A. Ozimati, R. Kawuki, W. Esuma, S.I. Kayondo, and A. Pariyo, National Crops Resources Research Institute (NaCRRI), PO Box, 7084 Kampala, Uganda
| | - Marnin Wolfe
- A. Ozimati, M. Wolfe, and J.-L. Jannink, School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell Univ., Ithaca, NY, 14853
- M. Wolfe and J.-L. Jannink, USDA-ARS, R.W. Holley Center for Agriculture and Health, Ithaca, NY 14853
| | - Jean-Luc Jannink
- A. Ozimati, M. Wolfe, and J.-L. Jannink, School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell Univ., Ithaca, NY, 14853
- M. Wolfe and J.-L. Jannink, USDA-ARS, R.W. Holley Center for Agriculture and Health, Ithaca, NY 14853
| |
Collapse
|
50
|
Chiewchankaset P, Siriwat W, Suksangpanomrung M, Boonseng O, Meechai A, Tanticharoen M, Kalapanulak S, Saithong T. Understanding carbon utilization routes between high and low starch-producing cultivars of cassava through Flux Balance Analysis. Sci Rep 2019; 9:2964. [PMID: 30814632 PMCID: PMC6393550 DOI: 10.1038/s41598-019-39920-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/05/2019] [Indexed: 12/15/2022] Open
Abstract
Analysis of metabolic flux was used for system level assessment of carbon partitioning in Kasetsart 50 (KU50) and Hanatee (HN) cassava cultivars to understand the metabolic routes for their distinct phenotypes. First, the constraint-based metabolic model of cassava storage roots, rMeCBM, was developed based on the carbon assimilation pathway of cassava. Following the subcellular compartmentalization and curation to ensure full network connectivity and reflect the complexity of eukaryotic cells, cultivar specific data on sucrose uptake and biomass synthesis were input, and rMeCBM model was used to simulate storage root growth in KU50 and HN. Results showed that rMeCBM-KU50 and rMeCBM-HN models well imitated the storage root growth. The flux-sum analysis revealed that both cultivars utilized different metabolic precursors to produce energy in plastid. More carbon flux was invested in the syntheses of carbohydrates and amino acids in KU50 than in HN. Also, KU50 utilized less flux for respiration and less energy to synthesize one gram of dry storage root. These results may disclose metabolic potential of KU50 underlying its higher storage root and starch yield over HN. Moreover, sensitivity analysis indicated the robustness of rMeCBM model. The knowledge gained might be useful for identifying engineering targets for cassava yield improvement.
Collapse
Affiliation(s)
- Porntip Chiewchankaset
- Division of Biotechnology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand
| | - Wanatsanan Siriwat
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand
| | - Malinee Suksangpanomrung
- Plant Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Pathumthani, 12120, Thailand
| | - Opas Boonseng
- Rayong Field Crops Research Center, Department of Agriculture, Rayong, 21150, Thailand
| | - Asawin Meechai
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (Bang Mod), Bangkok, 10140, Thailand
| | - Morakot Tanticharoen
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand
| | - Saowalak Kalapanulak
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
| | - Treenut Saithong
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok, 10150, Thailand.
| |
Collapse
|