1
|
Jiang A, Chen C, Feng J, Li Q, Liu W, Dong M. Boosting electrocatalytic hydrogen evolution via partial oxidation of rhenium through cobalt modification in nanoalloy structure. J Colloid Interface Sci 2025; 677:617-625. [PMID: 39154453 DOI: 10.1016/j.jcis.2024.08.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Although the theoretical electrocatalytic activity of rhenium (Re) for the hydrogen evolution reaction is comparable to that of platinum, the experimental performance of reported rhenium-based electrocatalysts remains unsatisfactory. Herein, we report a highly efficient and stable electrocatalyst composed of rhenium and cobalt (Co) nanoalloy embedded in nitrogen-doped carbon film (Re3Co2@NCF). The Re3Co2@NCF electrocatalyst exhibited remarkable hydrogen evolution performance, with an overpotential as low as 30 ± 3 mV to reach a current density of 10 mA cm-2. In addition, the Re3Co2@NCF demonstrated exceptional stability over several days at a current density of 150 mA cm-2. Theoretical calculations revealed that alloying cobalt with rhenium altered the electronic structure of the metals, causing partial oxidation of the superficial metal atoms. This modification provided a balance for various intermediates' adsorption and desorption, thereby boosting the intrinsic activity of rhenium for hydrogen evolution reaction. This work improves the electrocatalytic performance of rhenium to its theoretical activity, suggesting a promising future for rhenium-based electrocatalysts.
Collapse
Affiliation(s)
- Anning Jiang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250000, China; Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chao Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jijun Feng
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250000, China
| | - Qiang Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Wei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C DK-8000, Denmark.
| |
Collapse
|
2
|
Cheng Y, Li Y, Qiao Z, Hu L, Geng H, Dong H, Liao F, Shao M. Accelerated water dissociation kinetics by nickel-nickelous hydroxide epitaxial interfaces for superior alkaline hydrogen generation. J Colloid Interface Sci 2024; 679:600-608. [PMID: 39471588 DOI: 10.1016/j.jcis.2024.10.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
The intrinsic performance of an electrocatalyst can be reinforced by constructing appropriate epitaxial interfaces, where the modulated electronic states and adsorption/desorption behaviors are conductive to enhancing electrocatalytic activity. Herein, nickel-nickelous hydroxide epitaxial interface supported on nickel foam (Ni-Ni(OH)2/NF) with epitaxial growth of nickel nanoparticles on the surface of nickelous hydroxide nanoribbons is devised for alkaline hydrogen evolution reaction (HER). Notably, the Ni-Ni(OH)2/NF reveals excellent electrocatalytic activity of alkaline HER (158 mV @ 100 mA cm-2), along with robust stability (90 % activity retention after 150 h continuous test at 200 mA cm-2). Theoretical simulations disclose the tuned interface electronic structure and accelerated water dissociation around the epitaxial nickel-nickelous hydroxide interface result in efficient electrochemical activity toward alkaline hydrogen evolution.
Collapse
Affiliation(s)
- Yafei Cheng
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Yanlong Li
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Zhenyu Qiao
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Lulu Hu
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Hongbo Geng
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Huilong Dong
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
| | - Fan Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China.
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China.
| |
Collapse
|
3
|
Ramadhany P, Luong Q, Zhang Z, Leverett J, Samorì P, Corrie S, Lovell E, Canbulat I, Daiyan R. State of Play of Critical Mineral-Based Catalysts for Electrochemical E-Refinery to Synthetic Fuels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405029. [PMID: 38838055 DOI: 10.1002/adma.202405029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/17/2024] [Indexed: 06/07/2024]
Abstract
The pursuit of decarbonization involves leveraging waste CO2 for the production of valuable fuels and chemicals (e.g., ethanol, ethylene, and urea) through the electrochemical CO2 reduction reactions (CO2RR). The efficacy of this process heavily depends on electrocatalyst performance, which is generally reliant on high loading of critical minerals. However, the supply of these minerals is susceptible to shortage and disruption, prompting concerns regarding their usage, particularly in electrocatalysis, requiring swift innovations to mitigate the supply risks. The reliance on critical minerals in catalyst fabrication can be reduced by implementing design strategies that improve the available active sites, thereby increasing the mass activity. This review seeks to discuss and analyze potential strategies, challenges, and opportunities for improving catalyst activity in CO2RR with a special attention to addressing the risks associated with critical mineral scarcity. By shedding light onto these aspects of critical mineral-based catalyst systems, this review aims to inspire the development of high-performance catalysts and facilitates the practical application of CO2RR technology, whilst mitigating adverse economic, environmental, and community impacts.
Collapse
Affiliation(s)
- Putri Ramadhany
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Quang Luong
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| | - Ziling Zhang
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| | - Josh Leverett
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, 67000, France
| | - Simon Corrie
- Chemical and Biological Engineering Department, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Clayton, VIC 3800, Australia
| | - Emma Lovell
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ismet Canbulat
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| | - Rahman Daiyan
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Chang S, Hou W, Del Valle-Perez A, Ullah I, Qiu S, Rodriguez JL, Díaz-Vázquez LM, Cunci L, Morell G, Wu X. A Low-Acidity Chloride Electrolyte Enables Exceptional Reversibility and Stability in Aqueous Tin Metal Batteries. Angew Chem Int Ed Engl 2024:e202414346. [PMID: 39302244 DOI: 10.1002/anie.202414346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Tin (Sn) metal has emerged as a promising anode for aqueous batteries, due to its high capacity, non-toxicity, and cost-effectiveness. However, Sn metal has often been coupled with strong and corrosive sulfuric acids (2-3 M), leading to severe electrode corrosion and hydrogen evolution issues. Although high efficiency and long cycling were reported, the results were achieved using high currents to kinetically mask electrode-electrolyte side reactions. Herein, we introduce a low-acidity tin chloride electrolyte (pH=1.09) as a more viable option, which eliminates the need of strong acids and enables a reversible dendrite-free Sn plating chemistry. Remarkably, the plating efficiency approaches unity (99.97 %) under standard testing conditions (1 mA cm-2 for 1 mAh cm-2), which maintains high at 99.23-99.93 % across various aggressive conditions, including low current (0.1-0.25 mA cm-2), high capacity (5-10 mAh cm-2), and extended resting time (24-72 hours). The battery calendar life is further prolonged to 3064 hours, significantly surpassing literature reports. Additionally, we presented an effective method to mitigate the potential Sn2+ oxidization issue on the cathode, demonstrating long-cycling Sn||LiMn2O4 hybrid batteries. This work offers critical insights for developing highly reversible Sn metal batteries.
Collapse
Affiliation(s)
- Songyang Chang
- Department of Chemistry, University of Puerto Rico-Rio Piedras Campus, San Juan, PR 00925, USA
| | - Wentao Hou
- Department of Chemistry, University of Puerto Rico-Rio Piedras Campus, San Juan, PR 00925, USA
| | | | - Irfan Ullah
- Department of Chemistry, University of Puerto Rico-Rio Piedras Campus, San Juan, PR 00925, USA
| | - Shen Qiu
- Department of Chemistry, University of Puerto Rico-Rio Piedras Campus, San Juan, PR 00925, USA
| | | | - Liz M Díaz-Vázquez
- Department of Chemistry, University of Puerto Rico-Rio Piedras Campus, San Juan, PR 00925, USA
| | - Lisandro Cunci
- Department of Chemistry, University of Puerto Rico-Rio Piedras Campus, San Juan, PR 00925, USA
| | - Gerardo Morell
- Department of Physics, University of Puerto Rico-Rio Piedras Campus, San Juan, PR 00925, USA
| | - Xianyong Wu
- Department of Chemistry, University of Puerto Rico-Rio Piedras Campus, San Juan, PR 00925, USA
| |
Collapse
|
5
|
Lousada CM, Kotasthane AM. Hydrogen adsorption on fcc metal surfaces towards the rational design of electrode materials. Sci Rep 2024; 14:20972. [PMID: 39251693 PMCID: PMC11385180 DOI: 10.1038/s41598-024-71703-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
The successful large-scale implementation of hydrogen as an energy vector requires high performance electrodes and catalysts made of abundant materials. Rational materials design strategies are the most efficient means of reaching this goal. Here we present a study on the adsorption of H-atoms onto fcc transition metal surfaces and propose descriptors for the rational design of electrodes and catalysts by means of correlations between fundamental properties of the materials and among other properties, their experimentally measured performance as hydrogen evolution electrodes (HEE). A large set of quantum mechanical modelling data at the DFT level was produced, covering the adsorption of H-atoms onto the most stable surfaces (100), (110) and (111) of: Ag, Au, Co, Cu, Ir, Ni, Pd, Pt and Rh. For each material and surface, a coverage dependent set of minimum energy structures was produced and chemical potentials for adsorption of H-atoms were obtained. Averaging procedures are here proposed to approach modelling to the experiments. Several correlations between the computed data and experimentally measured quantities are done to validate our methodology: surface plane dependent adsorption energies, chemical potentials and experimentally determined surface energies and work functions. We search for descriptors of catalytic activity by testing correlations between the DFT data obtained from our averaging procedures and experimental data on HEE performance. Our methodology allows us to obtain linear correlations between the adsorption energy of H-atoms and the exchange current density (i0) in a HEE, avoiding the volcano-like plots. We show that the chemical potential has limitations as a descriptor of i0 because it reaches an early plateau in terms of i0. Simple quantities obtained from database data such as the first stage electronegativity (χ) as devised by Mulliken has a strong linear correlation i0. With a quantity we denominate modified second-stage electronegativity (χ2m) we can reproduce the typical volcano plot in a correlation with i0. A theoretical and conceptual framework is presented. It shows that both χ and χ2m, that depend on the first ionization potential, second ionization potential and electron affinity of the elements can be used as descriptors in rational design of electrodes or of catalysts for hydrogen systems.
Collapse
Affiliation(s)
- Cláudio M Lousada
- Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| | - Atharva M Kotasthane
- Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden
| |
Collapse
|
6
|
Wyss V, Dinu IA, Marot L, Palivan CG, Delley MF. Thermocatalytic epoxidation by cobalt sulfide inspired by the material's electrocatalytic activity for oxygen evolution reaction. Catal Sci Technol 2024; 14:4550-4565. [PMID: 39139589 PMCID: PMC11318377 DOI: 10.1039/d4cy00518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
New discoveries in catalysis by earth-abundant materials can be guided by leveraging knowledge across two sub-disciplines of heterogeneous catalysis: electrocatalysis and thermocatalysis. Cobalt sulfide has been reported to be a highly active electrocatalyst for the oxygen evolution reaction (OER). Under these oxidative conditions, cobalt sulfide forms oxidized surfaces that outperform directly prepared cobalt oxide in OER catalysis. We postulated that the catalytic activity of oxidized cobalt sulfide for OER could reflect a more general ability to catalyze O-transfer reactions. Herein, we show that cobalt sulfide (CoS x ) indeed catalyzes the epoxidation of cyclooctene, a thermal O-transfer reaction. Similarly to OER, the surface-oxidized CoS x formed under reaction conditions outperformed the directly prepared cobalt oxide, hydroxide, and oxyhydroxide for epoxidation catalysis. Another notable phenomenological parallel to OER was revealed by the electron paramagnetic resonance (EPR) analysis of all spent Co-based catalysts that showed significant structural changes and the formation of paramagnetic Co(ii) and Co(iv) species. Mechanistic investigations suggest that a higher density of Co(ii) and/or an easier formation of high-valent Co species in the case of surface-oxidized cobalt sulfide is responsible for its high activity as an epoxidation catalyst. Our results provide important insight into the surface chemistry of Co-based catalysts and show the potential of oxidized CoS x as an earth-abundant catalyst for O-transfer reactivity beyond OER. This work highlights the utility of bridging electrocatalysis and thermocatalysis for the development of more sustainable chemical processes.
Collapse
Affiliation(s)
- Vanessa Wyss
- Department of Chemistry, University of Basel 4058 Basel Switzerland
| | | | - Laurent Marot
- Department of Physics, University of Basel 4056 Basel Switzerland
| | | | | |
Collapse
|
7
|
Sikdar N. Electrochemical CO 2 Reduction Reaction: Comprehensive Strategic Approaches to Catalyst Design for Selective Liquid Products Formation. Chemistry 2024:e202402477. [PMID: 39115935 DOI: 10.1002/chem.202402477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
The escalating concern regarding the release of CO2 into the atmosphere poses a significant threat to the contemporary efforts in mitigating climate change. Amidst a multitude of strategies for curtailing CO2 emissions, the electrochemical CO2 reduction presents a promising avenue for transforming CO2 molecules into a diverse array of valuable gaseous and liquid products, such as CO, CH3OH, CH4, HCO2H, C2H4, C2H5OH, CH3CO2H, 1-C3H7OH and others. The mechanistic investigations of gaseous products (e. g. CO, CH4, C2H4, C2H6 and others) broadly covered in the literature. There is a noticeable gap in the literature when it comes to a comprehensive summary exclusively dedicated to coherent roadmap for the designing principles for a selective catalyst all possible liquid products (such as CH3OH, C2H5OH, 1-C3H7OH, 2-C3H7OH, 1-C4H9OH, as well as other C3-C4 products like methylglyoxal and 2,3-furandiol, in addition to HCO2H, AcOH, oxalic acid and others), selectively converted by CO2 reduction. This entails a meticulous analysis to justify these approaches and a thorough exploration of the correlation between materials and their electrocatalytic properties. Furthermore, these insightful discussions illuminate the future prospects for practical applications, a facet not exhaustively examined in prior reviews.
Collapse
Affiliation(s)
- Nivedita Sikdar
- Department of Chemistry, GITAM (Gandhi Institute of Technology and Management) School of Science Hyderabad, Telengana, 502329, India
| |
Collapse
|
8
|
Xia D, Lee C, Charpentier NM, Deng Y, Yan Q, Gabriel JP. Drivers and Pathways for the Recovery of Critical Metals from Waste-Printed Circuit Boards. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309635. [PMID: 38837685 PMCID: PMC11321694 DOI: 10.1002/advs.202309635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/15/2024] [Indexed: 06/07/2024]
Abstract
The ever-increasing importance of critical metals (CMs) in modern society underscores their resource security and circularity. Waste-printed circuit boards (WPCBs) are particularly attractive reservoirs of CMs due to their gamut CM embedding and ubiquitous presence. However, the recovery of most CMs is out of reach from current metal-centric recycling industries, resulting in a flood loss of refined CMs. Here, 41 types of such spent CMs are identified. To deliver a higher level of CM sustainability, this work provides an insightful overview of paradigm-shifting pathways for CM recovery from WPCBs that have been developed in recent years. As a crucial starting entropy-decreasing step, various strategies of metal enrichment are compared, and the deployment of artificial intelligence (AI) and hyperspectral sensing is highlighted. Then, tailored metal recycling schemes are presented for the platinum group, rare earth, and refractory metals, with emphasis on greener metallurgical methods contributing to transforming CMs into marketable products. In addition, due to the vital nexus of CMs between the environment and energy sectors, the upcycling of CMs into electro-/photo-chemical catalysts for green fuel synthesis is proposed to extend the recycling chain. Finally, the challenges and outlook on this all-round upgrading of WPCB recycling are outlined.
Collapse
Affiliation(s)
- Dong Xia
- SCARCE LaboratoryEnergy Research Institute @ NTUNanyang Technological UniversitySingapore639798Singapore
| | - Carmen Lee
- SCARCE LaboratoryEnergy Research Institute @ NTUNanyang Technological UniversitySingapore639798Singapore
- School of Material Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Nicolas M. Charpentier
- SCARCE LaboratoryEnergy Research Institute @ NTUNanyang Technological UniversitySingapore639798Singapore
- Université Paris‐SaclayCEACNRSNIMBELICSENGif‐sur‐Yvette91191France
| | - Yuemin Deng
- Université Paris‐SaclayCEACNRSNIMBELICSENGif‐sur‐Yvette91191France
- Ecologic France15 Avenue du CentreGuyancour78280France
| | - Qingyu Yan
- SCARCE LaboratoryEnergy Research Institute @ NTUNanyang Technological UniversitySingapore639798Singapore
- School of Material Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Jean‐Christophe P. Gabriel
- SCARCE LaboratoryEnergy Research Institute @ NTUNanyang Technological UniversitySingapore639798Singapore
- Université Paris‐SaclayCEACNRSNIMBELICSENGif‐sur‐Yvette91191France
| |
Collapse
|
9
|
Kowalski RM, Banerjee A, Yue C, Gracia SG, Cheng D, Morales-Guio CG, Sautet P. Electroreduction of Captured CO 2 on Silver Catalysts: Influence of the Capture Agent and Proton Source. J Am Chem Soc 2024. [PMID: 39037349 DOI: 10.1021/jacs.4c03915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
In the context of carbon reutilization, the direct electroreduction of captured CO2 (c-CO2RR) appears as an appealing approach since it avoids the energetically costly separation of CO2 from the capture agent. In this process, CO2 is directly reduced from its captured form. Here, we investigate the influence of the capture agent and proton source on that reaction from a combination of theory and experiment. Specifically, we consider methoxide-captured CO2, NH3-captured CO2, and bicarbonate on silver electrocatalysts. We show that the proton source plays a key role in the interplay of the chemistries for the electroreduction of protons, free CO2, and captured CO2. Our density functional theory calculations, including the influence of the potential, demonstrate that a proton source with smaller pKa improves the reactivity for c-CO2RR, but also increases the selectivity toward the hydrogen evolution reaction (HER) on silver surfaces. Since c-CO2RR requires an additional chemical protonation step, the influence of the proton source is stronger than that of the HER. However, c-CO2RR cannot compete with the HER on Ag, Experimentally, the dominant product observed is H2 with low amounts of CO being produced. Through a rotating cylinder electrode cell of well-defined mass-transport properties, we conclude that although methanol solvent exhibits a lower HER activity, HER remains dominant over c-CO2RR. Our work suggests that methoxide is a potential alternative capture agent to NH3 for direct reduction of captured CO2, though challenges in catalyst design, particularly in reducing the onset potential of c-CO2RR to surpass the HER, remain to be addressed.
Collapse
Affiliation(s)
- Robert Michael Kowalski
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Avishek Banerjee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Chudi Yue
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Sara G Gracia
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Dongfang Cheng
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Carlos G Morales-Guio
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
- Chemistry and Biochemistry Department, University of California, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
10
|
Zhan T, Lu J, Chen L, Ma C, Zhao Y, Wang X, Wang J, Ling Q, Xiao Z, Wu P. Ir Nanoparticles Supported on Oxygen-Deficient Vanadium Oxides Prepared by a Polyoxovanadate Precursor for Enhanced Electrocatalytic Hydrogen Evolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13496-13504. [PMID: 38875122 DOI: 10.1021/acs.langmuir.4c00891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Developing highly active electrocatalysts is crucial for the application of electrocatalytic water splitting. In this study, we prepared vanadium oxide-graphene carbon nanocomposites (VxOy/C) with abundant defects using a carbon- and oxygen-rich hexavanadate derivative Na2[V6O7{(OCH2)3CCH3}4] as a precursor without the addition of an extra carbon source. Subsequently, the VxOy/C was used as a catalyst support to load a small amount of Ir, forming the Ir/VxOy/C nanoelectrocatalyst. This catalyst exhibited low hydrogen evolution overpotentials of only 18.90 and 13.46 mV at a working current density of 10 mA cm-2 in 1.0 M KOH and 0.5 M H2SO4 electrolyte systems, outperforming the commercial Pt/C catalysts. Additionally, the catalyst showed excellent chemical stability and long-term durability. This work provides a new strategy for the design and synthesis of highly active electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Taozhu Zhan
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| | - Jiaqiang Lu
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| | - Lihong Chen
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| | - Chunhui Ma
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| | - Yanchao Zhao
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| | - Xingyue Wang
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| | - Jiani Wang
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| | - Qian Ling
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| | - Zicheng Xiao
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| | - Pingfan Wu
- Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
| |
Collapse
|
11
|
Schalenbach M, Tesch R, Kowalski PM, Eichel RA. The electrocatalytic activity for the hydrogen evolution reaction on alloys is determined by element-specific adsorption sites rather than d-band properties. Phys Chem Chem Phys 2024; 26:14171-14185. [PMID: 38713015 DOI: 10.1039/d4cp01084a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Trends of the electrocatalytic activities for the hydrogen evolution reaction (HER) across transition metals are typically explained by d-band properties such as center or upper edge positions in relation to Fermi levels. Here, the universality of this relation is questioned for alloys, exemplified for the AuPt system which is examined with electrocatalytic measurements and density functional theory (DFT) calculations. At small overpotentials, linear combinations of the pure-metals' Tafel kinetics normalized to the alloy compositions are found to precisely resemble the measured HER activities. DFT calculations show almost neighbor-independent adsorption energies on Au and Pt surface-sites, respectively, as the adsorbed hydrogen influences the electron density mostly locally at the adsorption site itself. In contrast, the density of states of the d-band describe the delocalized conduction electrons in the alloys, which are unable to portray the local electronic environments at adsorption sites and related bonding strengths. The adsorption energies at element-specific surface sites are related to overpotential-dependent reaction mechanisms in a multidimensional reinterpretation of the volcano plot for alloys, which bridges the found inconsistencies between activity and bonding strength descriptors of the common electrocatalytic theory for alloys.
Collapse
Affiliation(s)
- Maximilian Schalenbach
- Fundamental Electrochemistry (IEK-9), Institute of Energy and Climate Research, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany.
| | - Rebekka Tesch
- Theory and Computation of Energy Materials (IEK-13), Institute of Energy and Climate Research, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
- Jülich Aachen Research Alliance JARA Energy & Center for Simulation and Data Science (CSD), 52425 Jülich, Germany
| | - Piotr M Kowalski
- Theory and Computation of Energy Materials (IEK-13), Institute of Energy and Climate Research, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
- Jülich Aachen Research Alliance JARA Energy & Center for Simulation and Data Science (CSD), 52425 Jülich, Germany
| | - Rüdiger-A Eichel
- Fundamental Electrochemistry (IEK-9), Institute of Energy and Climate Research, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany.
- Institute of Physical Chemistry, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
12
|
Feidenhans’l A, Regmi YN, Wei C, Xia D, Kibsgaard J, King LA. Precious Metal Free Hydrogen Evolution Catalyst Design and Application. Chem Rev 2024; 124:5617-5667. [PMID: 38661498 PMCID: PMC11082907 DOI: 10.1021/acs.chemrev.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/26/2024]
Abstract
The quest to identify precious metal free hydrogen evolution reaction catalysts has received unprecedented attention in the past decade. In this Review, we focus our attention to recent developments in precious metal free hydrogen evolution reactions in acidic and alkaline electrolyte owing to their relevance to commercial and near-commercial low-temperature electrolyzers. We provide a detailed review and critical analysis of catalyst activity and stability performance measurements and metrics commonly deployed in the literature, as well as review best practices for experimental measurements (both in half-cell three-electrode configurations and in two-electrode device testing). In particular, we discuss the transition from laboratory-scale hydrogen evolution reaction (HER) catalyst measurements to those in single cells, which is a critical aspect crucial for scaling up from laboratory to industrial settings but often overlooked. Furthermore, we review the numerous catalyst design strategies deployed across the precious metal free HER literature. Subsequently, we showcase some of the most commonly investigated families of precious metal free HER catalysts; molybdenum disulfide-based, transition metal phosphides, and transition metal carbides for acidic electrolyte; nickel molybdenum and transition metal phosphides for alkaline. This includes a comprehensive analysis comparing the HER activity between several families of materials highlighting the recent stagnation with regards to enhancing the intrinsic activity of precious metal free hydrogen evolution reaction catalysts. Finally, we summarize future directions and provide recommendations for the field in this area of electrocatalysis.
Collapse
Affiliation(s)
| | - Yagya N. Regmi
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| | - Chao Wei
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Dong Xia
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| | - Jakob Kibsgaard
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Laurie A. King
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| |
Collapse
|
13
|
Quan L, Jiang H, Mei G, Sun Y, You B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem Rev 2024; 124:3694-3812. [PMID: 38517093 DOI: 10.1021/acs.chemrev.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
Collapse
Affiliation(s)
- Li Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guoliang Mei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
14
|
Wang M, Langer M, Altieri R, Crisci M, Osella S, Gatti T. Two-Dimensional Layered Heterojunctions for Photoelectrocatalysis. ACS NANO 2024; 18:9245-9284. [PMID: 38502101 DOI: 10.1021/acsnano.3c12274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Two-dimensional (2D) layered nanomaterial heterostructures, arising from the combination of 2D materials with other low-dimensional species, feature a large surface area to volume ratio, which provides a high density of active sites for catalytic applications and for (photo)electrocatalysis (PEC). Meanwhile, their electronic band structure and high electrical conductivity enable efficient charge transfer (CT) between the active material and the substrate, which is essential for catalytic activity. In recent years, researchers have demonstrated the potential of a range of 2D material interfaces, such as graphene, graphitic carbon nitride (g-C3N4), metal chalcogenides (MCs), and MXenes, for (photo)electrocatalytic applications. For instance, MCs such as MoS2 and WS2 have shown excellent catalytic activity for hydrogen evolution, while graphene and MXenes have been used for the reduction of carbon dioxide to higher value chemicals. However, despite their great potential, there are still major challenges that need to be addressed to fully realize the potential of 2D materials for PEC. For example, their stability under harsh reaction conditions, as well as their scalability for large-scale production are important factors to be considered. Generating heterojunctions (HJs) by combining 2D layered structures with other nanomaterials is a promising method to improve the photoelectrocatalytic properties of the former. In this review, we inspect thoroughly the recent literature, to demonstrate the significant potential that arises from utilizing 2D layered heterostructures in PEC processes across a broad spectrum of applications, from energy conversion and storage to environmental remediation. With the ongoing research and development, it is likely that the potential of these materials will be fully expressed in the near future.
Collapse
Affiliation(s)
- Mengjiao Wang
- Department of Applied Science and Technology, Politecnico di Torino, Torino, 10129, Italy
| | - Michal Langer
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Warsaw, 02097, Poland
| | - Roberto Altieri
- Institute of Physical Chemistry and Center for Materials Research (LaMa), Justus Liebig University, Giessen, 35392, Germany
| | - Matteo Crisci
- Institute of Physical Chemistry and Center for Materials Research (LaMa), Justus Liebig University, Giessen, 35392, Germany
| | - Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Warsaw, 02097, Poland
| | - Teresa Gatti
- Department of Applied Science and Technology, Politecnico di Torino, Torino, 10129, Italy
| |
Collapse
|
15
|
Miao L, Jia W, Cao X, Jiao L. Computational chemistry for water-splitting electrocatalysis. Chem Soc Rev 2024; 53:2771-2807. [PMID: 38344774 DOI: 10.1039/d2cs01068b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has attracted great interest in recent years for producing hydrogen with high-purity. However, the practical applications of this technology are limited by the development of electrocatalysts with high activity, low cost, and long durability. In the search for new electrocatalysts, computational chemistry has made outstanding contributions by providing fundamental laws that govern the electron behavior and enabling predictions of electrocatalyst performance. This review delves into theoretical studies on electrochemical water-splitting processes. Firstly, we introduce the fundamentals of electrochemical water electrolysis and subsequently discuss the current advancements in computational methods and models for electrocatalytic water splitting. Additionally, a comprehensive overview of benchmark descriptors is provided to aid in understanding intrinsic catalytic performance for water-splitting electrocatalysts. Finally, we critically evaluate the remaining challenges within this field.
Collapse
Affiliation(s)
- Licheng Miao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Wenqi Jia
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xuejie Cao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
16
|
Araujo RB, Edvinsson T. Supervised AI and Deep Neural Networks to Evaluate High-Entropy Alloys as Reduction Catalysts in Aqueous Environments. ACS Catal 2024; 14:3742-3755. [PMID: 38510666 PMCID: PMC10949192 DOI: 10.1021/acscatal.3c05017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/22/2024]
Abstract
Competitive surface adsorption energies on catalytic surfaces constitute a fundamental aspect of modeling electrochemical reactions in aqueous environments. The conventional approach to this task relies on applying density functional theory, albeit with computationally intensive demands, particularly when dealing with intricate surfaces. In this study, we present a methodological exposition of quantifying competitive relationships within complex systems. Our methodology leverages quantum-mechanical-guided deep neural networks, deployed in the investigation of quinary high-entropy alloys composed of Mo-Cr-Mn-Fe-Co-Ni-Cu-Zn. These alloys are under examination as prospective electrocatalysts, facilitating the electrochemical synthesis of ammonia in aqueous media. Even in the most favorable scenario for nitrogen fixation identified in this study, at the transition from O and OH coverage to surface hydrogenation, the probability of N2 coverage remains low. This underscores the fact that catalyst optimization alone is insufficient for achieving efficient nitrogen reduction. In particular, these insights illuminate that system consideration with oxygen- and hydrogen-repelling approaches or high-pressure solutions would be necessary for improved nitrogen reduction within an aqueous environment.
Collapse
Affiliation(s)
- Rafael B. Araujo
- Department
of Materials Science and Engineering, Solid State Physics, Uppsala University, Box 35, 75103 Uppsala, Sweden
| | - Tomas Edvinsson
- Department
of Materials Science and Engineering, Solid State Physics, Uppsala University, Box 35, 75103 Uppsala, Sweden
- Energy
Materials Laboratory, School of Natural and Environmental Science, Newcastle University, NE1 7RU Newcastle Upon Tyne, U.K.
| |
Collapse
|
17
|
Wan Z, Wang L, Zhou Y, Xu S, Zhang J, Chen X, Li S, Ou C, Kong X. A frogspawn inspired twin Mo 2C/Ni composite with a conductive fibrous network as a robust bifunctional catalyst for advanced anion exchange membrane electrolyzers. NANOSCALE 2024. [PMID: 38439677 DOI: 10.1039/d3nr06242b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Anion exchange membrane water electrolysis (AEMWE) is considered one of the most cost-effective methods for producing green hydrogen. However, the performance of AEMWE is still restrained by the slow reaction kinetics and poor ion/electron transport of catalysts. Herein, inspired by frogspawn, Mo2C nanoparticles coupled with Ni were in situ embedded into a N-doped porous carbon nanofiber network (Mo2C/NCNTs@Ni) by chemical crosslinking electrospinning combined with carbonization. The unique bionic structure can guarantee favorable overall structural flexibility and fast ion/electron transport kinetics. As a result of the robust hydrogen binding energy of Mo2C, as well as the synergistic impact between Ni and Mo2C nanoparticles and the conductive network resembling frogspawn, the catalyst developed demonstrates excellent performance in both the HER and OER. When employed as a bifunctional catalyst in water electrolysis, Mo2C/NCNTs@Ni delivers overpotentials of 155 mV and 320 mV at 10 mA cm-2 for the HER and OER, respectively. In addition, the Mo2C/NCNTs@Ni also displays excellent long-term durability during a continuous operation test under different currents for 50 h. The assembled AEMWE electrolyzers with Mo2C/NCNTs@Ni as both the anode and cathode can achieve a current density of 82.5 mA cm-2 at 1.99 V, indicating great potential for industrial water splitting. These results give an insight for the development of advanced bifunctional electrocatalysts for the next generation of green and efficient H2 production by water electrolysis.
Collapse
Affiliation(s)
- Zhongmin Wan
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China.
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang, 414006, China
| | - Linqing Wang
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China.
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang, 414006, China
| | - Yuheng Zhou
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China.
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang, 414006, China
| | - Siyuan Xu
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China.
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang, 414006, China
| | - Jing Zhang
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China.
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang, 414006, China
| | - Xi Chen
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China.
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang, 414006, China
| | - Shi Li
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China.
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang, 414006, China
| | - Changjie Ou
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China.
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang, 414006, China
| | - Xiangzhong Kong
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China.
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang, 414006, China
| |
Collapse
|
18
|
Tüysüz H. Alkaline Water Electrolysis for Green Hydrogen Production. Acc Chem Res 2024. [PMID: 38335244 PMCID: PMC10882964 DOI: 10.1021/acs.accounts.3c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
ConspectusThe global energy landscape is undergoing significant change. Hydrogen is seen as the energy carrier of the future and will be a key element in the development of more sustainable industry and society. However, hydrogen is currently produced mainly from fossil fuels, and this needs to change. Alkaline water electrolysis with advanced technology has the most significant potential for this transition to produce large-scale green hydrogen by utilizing renewable energy. The assembly of industrial electrolyzer plants is more complex on a larger scale, but it follows a basic working principle, which involves two half-cells of anode and cathode sites where the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) occur. Out of the two reactions, the OER is more challenging both thermodynamically and kinetically. Besides having access to renewable electricity, developing durable and abundant electrocatalysts for the OER remains a challenge in large-scale alkaline water electrolysis. Among different physicochemical properties, the electrocatalyst surface and its interaction with water and reaction intermediates, as well as formed molecular hydrogen and oxygen, play an essential role in the catalytic performance and the reaction mechanism. In particular, the binding strengths between the catalyst surface and intermediates determine the rate-limiting step and electrocatalytic performance.This Account gives some insights into the status of the hydrogen economy and basic principles of alkaline water electrolysis by covering its fundamentals as well as industrial developments. Further, the HER and OER reaction mechanisms of alkaline water electrolysis and selected electrocatalyst progress for both half-reactions are briefly discussed. The Adsorbate Evolution Mechanism and the Lattice Oxygen Mechanism for the OER are explained with specific references. This Account also deliberates on the author's selected contributions to the development of transition metal-based electrocatalysts for alkaline water electrolysis with an emphasis on OER. The focus is particularly given to the enhancement of intrinsic activity, the role of eg-filling, phase segregation, and defect structure of cobalt-based electrocatalysts for OER. Structural modification and phase transformation of the cobalt oxide electrocatalyst under working conditions are further deliberated. In addition, the creation of new active surface species and the activation of cobalt- and nickel-based electrocatalysts through iron uptake from the alkaline electrolyte are discussed. In the end, this Account provides a brief overview of challenges related to large-scale production and utilization of green hydrogen.
Collapse
Affiliation(s)
- Harun Tüysüz
- Department of Heterogeneous Catalysis and Sustainable Energy, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm- Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
19
|
Zhao Y, Hu X, Stucky GD, Boettcher SW. Thermodynamic, Kinetic, and Transport Contributions to Hydrogen Evolution Activity and Electrolyte-Stability Windows for Water-in-Salt Electrolytes. J Am Chem Soc 2024; 146:3438-3448. [PMID: 38288948 DOI: 10.1021/jacs.3c12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Concentrated water-in-salt electrolytes (WiSEs) are used in aqueous batteries and to control electrochemical reactions for fuel production. The hydrogen evolution reaction is a parasitic reaction at the negative electrode that limits cell voltage in WiSE batteries and leads to self-discharge, and affects selectivity for electrosynthesis. Mitigating and modulating these processes is hampered by a limited fundamental understanding of HER kinetics in WiSEs. Here, we quantitatively assess how thermodynamics, kinetics, and interface layers control the apparent HER activities in 20 m LiTFSI. When the LiTFSI concentration is increased from 1 to 20 m, an increase in proton activity causes a positive shift in the HER equilibrium potential of 71 mV. The exchange current density, io, derived from the HER branch for 20 m LiTFSI in 98% purity (0.56 ± 0.05 μA/cmPt2), however, is 8 times lower than for 20 m LiTFSI in 99.95% (4.7 ± 0.2 μA/cmPt2) and 32 times lower than for 1 m LiTFSI in 98% purity (18 ± 1 μA/cmPt2), demonstrating that the WiSE's impurities and concentration are both central in significantly suppressing HER kinetics. The ability and applicability of the reported methods are extended by examining additional WiSEs formulations made of acetates and nitrates.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Chemistry and Biochemistry and the Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Xudong Hu
- Department of Chemistry and Biochemistry and the Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Galen D Stucky
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Shannon W Boettcher
- Department of Chemistry and Biochemistry and the Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Department of Chemical & Biomolecular Engineering and Department of Chemistry, University of California, Berkeley, and Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
20
|
Liu BY, Zhen EF, Zhang LL, Cai J, Huang J, Chen YX. The pH-Induced Increase of the Rate Constant for HER at Au(111) in Acid Revealed by Combining Experiments and Kinetic Simulation. Anal Chem 2024; 96:67-75. [PMID: 38153001 DOI: 10.1021/acs.analchem.3c02818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Origins of pH effects on the kinetics of electrocatalytic reactions involving the transfer of both protons and electrons, including the hydrogen evolution reaction (HER) considered in this study, are heatedly debated. By taking the HER at Au(111) in acid solutions of different pHs and ionic concentrations as the model systems, herein, we report how to derive the intrinsic kinetic parameters of such reactions and their pH dependence through the measurement of j-E curves and the corresponding kinetic simulation based on the Frumkin-Butler-Volmer theory and the modified Poisson-Nernst-Planck equation. Our study reveals the following: (i) the same set of kinetic parameters, such as the standard activation Gibbs free energy, charge transfer coefficient, and Gibbs adsorption energy for Had at Au(111), can simulate well all the j-E curves measured in solutions with different pH and temperatures; (ii) on the reversible hydrogen electrode scale, the intrinsic rate constant increases with the increase of pH, which is in contrast with the decrease of the HER current with the increase of pH; and (iii) the ratio of the rate constants for HER at Au(111) in x M HClO4 + (0.1 - x) M NaClO4 (pH ≤ 3) deduced before properly correcting the electric double layer (EDL) effects to the ones estimated with EDL correction is in the range of ca. 10 to 40, and even in a solution of x M HClO4 + (1 - x) M NaClO4 (pH ≤ 2) there is a difference of ca. 5× in the rate constants without and with EDL correction. The importance of proper correction of the EDL effects as well as several other important factors on unveiling the intrinsic pH-dependent reaction kinetics are discussed to help converge our analysis of pH effects in electrocatalysis.
Collapse
Affiliation(s)
- Bing-Yu Liu
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Er-Fei Zhen
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lu-Lu Zhang
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jun Cai
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jun Huang
- Institute of Energy and Climate Research, IEK-13: Theory and Computation of Energy Materials, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Theorie Elektrokatalytischer Grenzflächen, Fakultät für Georessourcen und Materialtechnik, RWTH Aachen University, 52062 Aachen, Germany
| | - Yan-Xia Chen
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
21
|
Yan S, Chen Z, Chen Y, Peng C, Ma X, Lv X, Qiu Z, Yang Y, Yang Y, Kuang M, Xu X, Zheng G. High-Power CO 2-to-C 2 Electroreduction on Ga-Spaced, Square-like Cu Sites. J Am Chem Soc 2023; 145:26374-26382. [PMID: 37992232 DOI: 10.1021/jacs.3c10202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The electrochemical conversion of CO2 into multicarbon (C2) products on Cu-based catalysts is strongly affected by the surface coverage of adsorbed CO (*CO) intermediates and the subsequent C-C coupling. However, the increased *CO coverage inevitably leads to strong *CO repulsion and a reduced C-C coupling efficiency, thus resulting in suboptimal CO2-to-C2 activity and selectivity, especially at ampere-level electrolysis current densities. Herein, we developed an atomically ordered Cu9Ga4 intermetallic compound consisting of Cu square-like binding sites interspaced by catalytically inert Ga atoms. Compared to Cu(100) previously known with a high C2 selectivity, the Ga-spaced, square-like Cu sites presented an elongated Cu-Cu distance that allowed to reduce *CO repulsion and increased *CO coverage simultaneously, thus endowing more efficient C-C coupling to C2 products than Cu(100) and Cu(111). The Cu9Ga4 catalyst exhibited an outstanding CO2-to-C2 electroreduction, with a peak C2 partial current density of 1207 mA cm-2 and a corresponding Faradaic efficiency of 71%. Moreover, the Cu9Ga4 catalyst demonstrated a high-power (∼200 W) electrolysis capability with excellent electrochemical stability.
Collapse
Affiliation(s)
- Shuai Yan
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Zheng Chen
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Yangshen Chen
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Chen Peng
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Xingyu Ma
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan Province 610041, China
| | - Ximeng Lv
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Zhehao Qiu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yong Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yaoyue Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan Province 610041, China
| | - Min Kuang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xin Xu
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
- MOE Key Laboratory of Computational Physical Sciences, Fudan University, Shanghai 200433, China
- Hefei National Laboratory, Hefei 230088, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
22
|
Ren JT, Chen L, Wang HY, Yuan ZY. High-entropy alloys in electrocatalysis: from fundamentals to applications. Chem Soc Rev 2023; 52:8319-8373. [PMID: 37920962 DOI: 10.1039/d3cs00557g] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
High-entropy alloys (HEAs) comprising five or more elements in near-equiatomic proportions have attracted ever increasing attention for their distinctive properties, such as exceptional strength, corrosion resistance, high hardness, and excellent ductility. The presence of multiple adjacent elements in HEAs provides unique opportunities for novel and adaptable active sites. By carefully selecting the element configuration and composition, these active sites can be optimized for specific purposes. Recently, HEAs have been shown to exhibit remarkable performance in electrocatalytic reactions. Further activity improvement of HEAs is necessary to determine their active sites, investigate the interactions between constituent elements, and understand the reaction mechanisms. Accordingly, a comprehensive review is imperative to capture the advancements in this burgeoning field. In this review, we provide a detailed account of the recent advances in synthetic methods, design principles, and characterization technologies for HEA-based electrocatalysts. Moreover, we discuss the diverse applications of HEAs in electrocatalytic energy conversion reactions, including the hydrogen evolution reaction, hydrogen oxidation reaction, oxygen reduction reaction, oxygen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, and alcohol oxidation reaction. By comprehensively covering these topics, we aim to elucidate the intricacies of active sites, constituent element interactions, and reaction mechanisms associated with HEAs. Finally, we underscore the imminent challenges and emphasize the significance of both experimental and theoretical perspectives, as well as the potential applications of HEAs in catalysis. We anticipate that this review will encourage further exploration and development of HEAs in electrochemistry-related applications.
Collapse
Affiliation(s)
- Jin-Tao Ren
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Lei Chen
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Hao-Yu Wang
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Zhong-Yong Yuan
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
23
|
Arnosti NA, Wyss V, Delley MF. Controlled Surface Modification of Cobalt Phosphide with Sulfur Tunes Hydrogenation Catalysis. J Am Chem Soc 2023; 145:23556-23567. [PMID: 37873976 PMCID: PMC10623574 DOI: 10.1021/jacs.3c07312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Transition metal phosphides have shown promise as catalysts for water splitting and hydrotreating, especially when a small amount of sulfur is incorporated into the phosphides. However, the effect of sulfur on catalysis is not well understood. In part, this is because conventional preparation methods of sulfur-doped transition metal phosphides lead to sulfur both inside and at the surface of the material. Here, we present an alternative method of modifying cobalt phosphide (CoP) with sulfur using molecular S-transfer reagents, namely, phosphine sulfides (SPR3). SPR3 added sulfur to the surface of CoP and using a series of SPR3 reagents having different P═S bond strengths enabled control over the amount and type of sulfur transferred. Our results show that there is a distribution of different sulfur sites possible on the CoP surface with S-binding strengths in the range of 69 to 84 kcal/mol. This provides fundamental information on how sulfur binds to an amorphous CoP surface and provides a basis to assess how number and type of sulfur on CoP influences catalysis. For the catalytic hydrogenation of cinnamaldehyde, intermediate amounts of sulfur with intermediate binding strengths at the surface of CoP were optimal. With some but not too much sulfur, CoP exhibited a higher hydrogenation productivity and a decreased formation of secondary reaction products. Our work provides important insight into the S-effect on the catalysis by transition metal phosphides and opens new avenues for catalyst design.
Collapse
Affiliation(s)
- Nina A. Arnosti
- Department of Chemistry, University
of Basel, 4058 Basel, Switzerland
| | - Vanessa Wyss
- Department of Chemistry, University
of Basel, 4058 Basel, Switzerland
| | | |
Collapse
|
24
|
Yang Q, Li X, Chen L, Han X, Wang FR, Tang J. Effective Activation of Strong C-Cl Bonds for Highly Selective Photosynthesis of Bibenzyl via Homo-Coupling. Angew Chem Int Ed Engl 2023; 62:e202307907. [PMID: 37515455 PMCID: PMC10952150 DOI: 10.1002/anie.202307907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/08/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
Carbon-carbon (C-C) coupling of organic halides has been successfully achieved in homogeneous catalysis, while the limitation, e.g., the dependence on rare noble metals, complexity of the metal-ligand catalylst and the poor catalyst stability and recyclability, needs to be tackled for a green process. The past few years have witnessed heterogeneous photocatalysis as a green and novel method for organic synthesis processes. However, the study on C-C coupling of chloride substrates is rare due to the extremely high bond energy of C-Cl bond (327 kJ mol-1 ). Here, we report a robust heterogeneous photocatalyst (Cu/ZnO) to drive the homo-coupling of benzyl chloride with high efficiency, which achieves an unprecedented high selectivity of bibenzyl (93 %) and yield rate of 92 % at room temperature. Moreover, this photocatalytic process has been validated for C-C coupling of 10 benzylic chlorides all with high yields. In addition, the excellent stability has been observed for 8 cycles of reactions. With detailed characterization and DFT calculation, the high selectivity is attributed to the enhanced adsorption of reactants, stabilization of intermediates (benzyl radicals) for the selective coupling by the Cu loading and the moderate oxidation ability of the ZnO support, besides the promoted charge separation and transfer by Cu species.
Collapse
Affiliation(s)
- Qingning Yang
- Department of Chemical EngineeringUniversity College London Torrington PlaceLondonWC1E 7JEUK
| | - Xiyi Li
- Department of Chemical EngineeringUniversity College London Torrington PlaceLondonWC1E 7JEUK
| | - Lu Chen
- Department of Chemical EngineeringUniversity College London Torrington PlaceLondonWC1E 7JEUK
| | - Xiaoyu Han
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Feng Ryan Wang
- Department of Chemical EngineeringUniversity College London Torrington PlaceLondonWC1E 7JEUK
| | - Junwang Tang
- Department of Chemical EngineeringUniversity College London Torrington PlaceLondonWC1E 7JEUK
- Industrial Catalysis Centre, Department of Chemical EngineeringTsinghua UniversityBeijing100084China
| |
Collapse
|
25
|
Feng Y, He X, Cheng M, Zhu Y, Wang W, Zhang Y, Zhang H, Zhang G. Selective Adsorption Behavior Modulation on Nickel Selenide by Heteroatom Implantation and Heterointerface Construction Achieves Efficient Co-production of H 2 and Formate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301986. [PMID: 37096917 DOI: 10.1002/smll.202301986] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Glycerol-assisted hybrid water electrolysis is a potential strategy to achieve energy-efficient hydrogen production. However, the design of an efficient catalyst for the specific reaction is still a key challenge, which suffers from the barrier of regulating the adsorption characteristics of distinctive intermediates in different reactions. Herein, a novel rationale that achieves selective adsorption behavior modulation for self-supported nickel selenide electrode by heteroatom implantation and heterointerface construction through electrodeposition is developed, which can realize nichetargeting optimization on hydrogen evolution reaction (HER) and glycerol oxidation reaction (GOR), respectively. Specifically, the prepared Mo-doped Ni3 Se2 electrode exhibits superior catalytic activity for HER, while the NiSe-Ni3 Se2 electrode exhibits high Faradaic efficiency (FE) towards formate production for GOR. A two-electrode electrolyzer exhibits superb activity that only needs an ultralow cell voltage of 1.40 V to achieve 40 mA cm-2 with a high FE (97%) for formate production. Theoretical calculation unravels that the introduction of molybdenum contributes to the deviation of the d-band center of Ni3 Se2 from the Fermi level, which is conducive to hydrogen desorption. Meanwhile, the construction of the heterojunction induces the distortion of the surface structure of nickel selenide, which exposes highly active nickel sites for glycerol adsorption, thus contributing to the excellent electrocatalytic performance.
Collapse
Affiliation(s)
- Yafei Feng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaoyue He
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Mingyu Cheng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yin Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wentao Wang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science Guizhou Education University, Guiyang, 550018, China
| | - Yangyang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Huaikun Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Genqiang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
26
|
Zhurenok AV, Vasichenko DB, Berdyugin SN, Gerasimov EY, Saraev AA, Cherepanova SV, Kozlova EA. Photocatalysts Based on Graphite-like Carbon Nitride with a Low Content of Rhodium and Palladium for Hydrogen Production under Visible Light. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2176. [PMID: 37570494 PMCID: PMC10421291 DOI: 10.3390/nano13152176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
In this study, we proposed photocatalysts based on graphite-like carbon nitride with a low content (0.01-0.5 wt.%) of noble metals (Pd, Rh) for hydrogen evolution under visible light irradiation. As precursors of rhodium and palladium, labile aqua and nitrato complexes [Rh2(H2O)8(μ-OH)2](NO3)4∙4H2O and (Et4N)2[Pd(NO3)4], respectively, were proposed. To obtain metallic particles, reduction was carried out in H2 at 400 °C. The synthesized photocatalysts were studied using X-ray diffraction, X-ray photoelectron spectroscopy, UV-Vis diffuse reflectance spectroscopy and high-resolution transmission electron microscopy. The activity of the photocatalysts was tested in the hydrogen evolution from aqueous and aqueous alkaline solutions of TEOA under visible light with a wavelength of 428 nm. It was shown that the activity for the 0.01-0.5% Rh/g-C3N4 series is higher than in the case of the 0.01-0.5% Pd/g-C3N4 photocatalysts. The 0.5% Rh/g-C3N4 sample showed the highest activity per gram of catalyst, equal to 3.9 mmol gcat-1 h-1, whereas the most efficient use of the metal particles was found over the 0.1% Rh/g-C3N4 photocatalyst, with the activity of 2.4 mol per gram of Rh per hour. The data obtained are of interest and can serve for further research in the field of photocatalytic hydrogen evolution using noble metals as cocatalysts.
Collapse
Affiliation(s)
- Angelina V. Zhurenok
- Federal Research Center, Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, Novosibirsk 630090, Russia; (A.V.Z.); (D.B.V.); (E.Y.G.); (A.A.S.); (S.V.C.)
| | - Danila B. Vasichenko
- Federal Research Center, Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, Novosibirsk 630090, Russia; (A.V.Z.); (D.B.V.); (E.Y.G.); (A.A.S.); (S.V.C.)
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia;
| | - Semen N. Berdyugin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, Novosibirsk 630090, Russia;
| | - Evgeny Yu. Gerasimov
- Federal Research Center, Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, Novosibirsk 630090, Russia; (A.V.Z.); (D.B.V.); (E.Y.G.); (A.A.S.); (S.V.C.)
| | - Andrey A. Saraev
- Federal Research Center, Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, Novosibirsk 630090, Russia; (A.V.Z.); (D.B.V.); (E.Y.G.); (A.A.S.); (S.V.C.)
| | - Svetlana V. Cherepanova
- Federal Research Center, Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, Novosibirsk 630090, Russia; (A.V.Z.); (D.B.V.); (E.Y.G.); (A.A.S.); (S.V.C.)
| | - Ekaterina A. Kozlova
- Federal Research Center, Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, Novosibirsk 630090, Russia; (A.V.Z.); (D.B.V.); (E.Y.G.); (A.A.S.); (S.V.C.)
| |
Collapse
|
27
|
Manna N, Singh M, Kurungot S. Microporous 3D-Structured Hierarchically Entangled Graphene-Supported Pt 3Co Alloy Catalyst for PEMFC Application with Process-Friendly Features. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37267475 DOI: 10.1021/acsami.3c03372] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To improve the oxygen reduction reaction (ORR) performance in a proton-exchange membrane fuel cell (PEMFC) cathode with respect to mass activity and durability, a suitable electrocatalyst design strategy is essentially needed. Here, we have prepared a sub-three nm-sized platinum (Pt)-cobalt (Co) alloy (Pt3Co)-supported N-doped microporous 3D graphene (Pt3Co/pNEGF) by using the polyol synthesis method. A microwave-assisted synthesis method was employed to prepare the catalyst based on the 3D porous carbon support with a large pore volume and dense micro-/mesoporous surfaces. The ORR performance of Pt3Co/pNEGF closely matches with the state-of-the-art commercial Pt/C catalyst in 0.1 M HClO4, with a small overpotential of 10 mV. The 3D microporous structure of the N-doped graphene significantly improves the mass transport of the reactant and thus the overall ORR performance. As a result of the lower loading of Pt in Pt3Co/pNEGF as compared to that in Pt/C, the alloy catalyst achieved 1.5 times higher mass activity than Pt/C. After 10,000 cycles, the difference in the electrochemically active surface area (ECSA) and half-wave potential (E1/2) of Pt3Co/pNEGF is found to be 5 m2 gPt-1 (ΔECSA) and 24 mV (ΔE1/2), whereas, for Pt/C, these values are 9 m2 gPt-1 and 32 mV, respectively. Finally, in a realistic perspective, single-cell testing of a membrane electrode assembly (MEA) was made by sandwiching the Pt3Co/pNEGF-coated gas diffusion layers as the cathode displayed a maximum power density of 800 mW cm-2 under H2-O2 feed conditions with a clear indication of helping the system in the mass-transfer region (i.e., the high current dragging condition). The nature of the I-V polarization shows a progressively lower slope in this region of the polarization plot compared to a similar system made from its Pt/C counterpart and a significantly improved performance throughout the polarization region in the case of the system made from the Pt3Co/NEGF catalyst (without the microwave treatment) counterpart. These results validate the better process friendliness of Pt3Co/pNEGF as a PEMFC electrode-specific catalyst owing to its unique texture with 3D architecture and well-defined porosity with better structural endurance.
Collapse
Affiliation(s)
- Narugopal Manna
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mayank Singh
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sreekumar Kurungot
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
28
|
Zeb Z, Huang Y, Chen L, Zhou W, Liao M, Jiang Y, Li H, Wang L, Wang L, Wang H, Wei T, Zang D, Fan Z, Wei Y. Comprehensive overview of polyoxometalates for electrocatalytic hydrogen evolution reaction. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
29
|
Calle-Vallejo F. The ABC of Generalized Coordination Numbers and Their Use as a Descriptor in Electrocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2207644. [PMID: 37102632 PMCID: PMC10369287 DOI: 10.1002/advs.202207644] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/08/2023] [Indexed: 06/19/2023]
Abstract
The quest for enhanced electrocatalysts can be boosted by descriptor-based analyses. Because adsorption energies are the most common descriptors, electrocatalyst design is largely based on brute-force routines that comb materials databases until an energetic criterion is verified. In this review, it is shown that an alternative is provided by generalized coordination numbers (denoted by CN ¯ $\overline {{\rm{CN}}} $ or GCN), an inexpensive geometric descriptor for strained and unstrained transition metals and some alloys. CN ¯ $\overline {{\rm{CN}}} $ captures trends in adsorption energies on both extended surfaces and nanoparticles and is used to elaborate structure-sensitive electrocatalytic activity plots and selectivity maps. Importantly, CN ¯ $\overline {{\rm{CN}}} $ outlines the geometric configuration of the active sites, thereby enabling an atom-by-atom design, which is not possible using energetic descriptors. Specific examples for various adsorbates (e.g., *OH, *OOH, *CO, and *H), metals (e.g., Pt and Cu), and electrocatalytic reactions (e.g., O2 reduction, H2 evolution, CO oxidation, and reduction) are presented, and comparisons are made against other descriptors.
Collapse
Affiliation(s)
- Federico Calle-Vallejo
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Department of Advanced Materials and Polymers: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, 20018, Av. Tolosa 72, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza de Euskadi 5, Bilbao, 48009, Spain
| |
Collapse
|
30
|
Li H, Dai S, Wu Y, Dong Q, Chen J, Chen HT, Hu A, Chou J, Chen T. Atomic Scaled Depth Correlation to the Oxygen Reduction Reaction Performance of Single Atom Ni Alloy to the NiO 2 Supported Pd Nanocrystal. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207109. [PMID: 36752398 PMCID: PMC10104651 DOI: 10.1002/advs.202207109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Indexed: 06/18/2023]
Abstract
This study demonstrates the intercalation of single-atom Ni (NiSA ) substantially reduces the reaction activity of Ni oxide supported Pd nanoparticle (NiO2 /Pd) in the oxygen reduction reaction (ORR). The results indicate the transition states kinetically consolidate the adsorption energy for the chemisorbed O and OH species on the ORR activity. Notably, the NiO2 /Ni1 /Pd performs the optimum ORR behavior with the lowest barrier of 0.49 eV and moderate second-step barrier of 0.30 eV consequently confirming its utmost ORR performance. Through the stepwise cross-level demonstrations, a structure-Eads -ΔE correspondence for the proposed NiO2 /Nin /Pd systems is established. Most importantly, such a correspondence reveals that the electronic structure of heterogeneous catalysts can be significantly differed by the segregation of atomic clusters in different dimensions and locations. Besides, the doping-depth effect exploration of the NiSA in the NiO2 /Pd structure intrinsically elucidates that the Ni atom doping in the subsurface induces the most fruitful NiSA /PdML synergy combining the electronic and strain effects to optimize the ORR, whereas this desired synergy diminishes at high Pd coverages. Overall, the results not only rationalize the variation in the redox properties but most importantly provides a precision evaluation of the process window for optimizing the configuration and composition of bimetallic catalysts in practical experiments.
Collapse
Affiliation(s)
- Haolin Li
- School of Materials Science and EngineeringZhejiang Sci‐Tech UniversityHangzhou310018China
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu300044Taiwan
- Department of Mechanical EngineeringCity University of Hong KongHong Kong SAR999077China
| | - Sheng Dai
- School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200234China
| | - Yawei Wu
- Department of Mechanical EngineeringCity University of Hong KongHong Kong SAR999077China
| | - Qi Dong
- Department of Electrical EngineeringTsinghua UniversityBeijing100084China
| | - Jianjun Chen
- School of Materials Science and EngineeringZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Hsin‐Yi Tiffany Chen
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Alice Hu
- Department of Mechanical EngineeringCity University of Hong KongHong Kong SAR999077China
- Department of Materials Science and EngineeringCity University of Hong KongHong Kong SAR999077China
| | - Jyh‐Pin Chou
- Department of PhysicsNational Changhua University of EducationChanghua50007Taiwan
| | - Tsan‐Yao Chen
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu300044Taiwan
- Hierarchical Green‐Energy Materials (Hi‐GEM) Research CentreNational Cheng Kung UniversityTainan70101Taiwan
- Department of Materials Science and EngineeringNational Taiwan University of Science and TechnologyTaipei10617Taiwan
| |
Collapse
|
31
|
Mayer JM. Bonds over Electrons: Proton Coupled Electron Transfer at Solid-Solution Interfaces. J Am Chem Soc 2023; 145:7050-7064. [PMID: 36943755 PMCID: PMC10080693 DOI: 10.1021/jacs.2c10212] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
This Perspective argues that most redox reactions of materials at an interface with a protic solution involve net proton-coupled electron transfer (PCET) (or other cation-coupled ET). This view contrasts with the traditional electron-transfer-focused view of redox reactions at semiconductors, but redox processes at metal surfaces are often described as PCET. Taking a thermodynamic perspective, transfer of an electron is typically accompanied by a stoichiometric proton, much as the chemistry of lithium-ion batteries involves coupled transfers of e- and Li+. The PCET viewpoint implicates the surface-H bond dissociation free energy (BDFE) as the preeminent energetic parameter and its conceptual equivalents, the electrochemical ne-/nH+ potential versus the reversible hydrogen electrode (RHE) and the free energy of hydrogenation, ΔG°H. These parameters capture the thermochemistry of PCET at interfaces better than electronic parameters such as Fermi energies, electron chemical potentials, flat-band potentials, or band-edge energies. A unified picture of PCET at metal and semiconductor surfaces is presented. Exceptions, limitations, implications, and future directions motivated by this approach are described.
Collapse
Affiliation(s)
- James M Mayer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
32
|
Exner KS. Toward data‐ and mechanistic‐driven volcano plots in electrocatalysis. ELECTROCHEMICAL SCIENCE ADVANCES 2023. [DOI: 10.1002/elsa.202200014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Affiliation(s)
- Kai S. Exner
- Faculty of Chemistry Theoretical Inorganic Chemistry University Duisburg‐Essen Essen Germany
- Cluster of Excellence RESOLV Bochum Germany
- Center for Nanointegration (CENIDE) Duisburg‐Essen Duisburg Germany
| |
Collapse
|
33
|
Razzaq S, Exner KS. Materials Screening by the Descriptor G max(η): The Free-Energy Span Model in Electrocatalysis. ACS Catal 2023; 13:1740-1758. [PMID: 36776387 PMCID: PMC9903997 DOI: 10.1021/acscatal.2c03997] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/05/2022] [Indexed: 01/18/2023]
Abstract
To move from fossil-based energy resources to a society based on renewables, electrode materials free of precious noble metals are required to efficiently catalyze electrochemical processes in fuel cells, batteries, or electrolyzers. Materials screening operating at minimal computational cost is a powerful method to assess the performance of potential electrode compositions based on heuristic concepts. While the thermodynamic overpotential in combination with the volcano concept refers to the most popular descriptor-based analysis in the literature, this notion cannot reproduce experimental trends reasonably well. About two years ago, the concept of G max(η), based on the idea of the free-energy span model, has been proposed as a universal approach for the screening of electrocatalysts. In contrast to other available descriptor-based methods, G max(η) factors overpotential and kinetic effects by a dedicated evacuation scheme of adsorption free energies into an analysis of trends. In the present perspective, we discuss the application of G max(η) to different electrocatalytic processes, including the oxygen evolution and reduction reactions, the nitrogen reduction reaction, and the selectivity problem of the competing oxygen evolution and peroxide formation reactions, and we outline the advantages of this screening approach over previous investigations.
Collapse
Affiliation(s)
- Samad Razzaq
- University
Duisburg-Essen, Faculty of Chemistry, Theoretical Inorganic Chemistry, Universitätsstraße 5, 45141 Essen, Germany
| | - Kai S. Exner
- University
Duisburg-Essen, Faculty of Chemistry, Theoretical Inorganic Chemistry, Universitätsstraße 5, 45141 Essen, Germany
- Cluster
of Excellence RESOLV, 44801 Bochum, Germany
- Center
for Nanointegration (CENIDE) Duisburg-Essen, 47057 Duisburg, Germany
| |
Collapse
|
34
|
Chemical functionalized noble metal nanocrystals for electrocatalysis. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Kuge K, Yamauchi K, Sakai K. Theoretical study on the mechanism of the hydrogen evolution reaction catalyzed by platinum subnanoclusters. Dalton Trans 2023; 52:583-597. [PMID: 36421022 DOI: 10.1039/d2dt02645g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The smallest subnanocluster models of platinum colloid (Ptn) are supposed to diffuse in aqueous media in order to examine their behaviors when they are subjected to the electrocatalytic hydrogen evolution reaction under zero overpotential conditions at pH 0. The DFT approach allows us to clarify the nature of individual proton transfer (PT) and electron transfer (ET) processes together with the importance of relying on concerted proton-electron transfer (CPET) pathways to promote the majority of H* adsorption processes by Ptn subnanoclusters. Although the CPET processes are closely correlated with the Volmer steps (Pt + H+ + e- → Pt-H*) described so far in electrochemistry, our study for the first time points out the essential capability of the Ptn clusters to promote the multiple PT steps without the need to transfer any electrons, revealing the fundamentally high basicity of the naked Ptn clusters (pKa = 27-28 for Pt4, Pt5, and Pt6). The discrete cluster models adopted herein avoid the structural constraints forced by the standard slab models and enable us to discuss the drastic alterations in the geometric and electronic structures of the intermediates given by the consecutive promotion of multiple CPET steps. The weakening of the Pt-H* bond strength with the increasing number of CPET steps is well rationalized by carefully examining the changes in the ν(Pt-H*) vibrational frequencies, the hydricity, and the H2 desorption energy. The behaviors are also correlated with the underpotential and overpotential deposited hydrogen atoms (HUPD and HOPD) discussed in electrochemical studies for many years.
Collapse
Affiliation(s)
- Keita Kuge
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Kosei Yamauchi
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Ken Sakai
- Department of Chemistry, Faculty of Science, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
36
|
Hydrogen Evolution Volcano(es)—From Acidic to Neutral and Alkaline Solutions. Catalysts 2022. [DOI: 10.3390/catal12121541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
As the global energy crisis continues, efficient hydrogen production is one of the hottest topics these days. In this sense, establishing catalytic trends for hydrogen production is essential for choosing proper H2 generation technology and catalytic material. Volcano plots for hydrogen evolution in acidic media are well-known, while a volcano plot in alkaline media was constructed ten years ago using theoretically calculated hydrogen binding energies. Here, for the first time, we show that the volcano-type relationships are largely maintained in a wide range of pH values, from acidic to neutral and alkaline solutions. We do this using theoretically calculated hydrogen binding energies on clean metallic surfaces and experimentally measured hydrogen evolution overpotentials. When metallic surfaces are exposed to high anodic potentials, hydrogen evolution can be boosted or significantly impeded, depending on the type of metal and the electrolyte in which the reaction occurs. Such effects are discussed here and can be used to properly tailor catalytic materials for hydrogen production via different water electrolysis technologies.
Collapse
|
37
|
Antipin D, Risch M. Calculation of the Tafel slope and reaction order of the oxygen evolution reaction between pH 12 and pH 14 for the adsorbate mechanism. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Denis Antipin
- Nachwuchsgruppe Gestaltung des Sauerstoffentwicklungsmechanismus, Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH Berlin Germany
| | - Marcel Risch
- Nachwuchsgruppe Gestaltung des Sauerstoffentwicklungsmechanismus, Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH Berlin Germany
| |
Collapse
|
38
|
Zheng J, Deng Y, Li W, Yin J, West PJ, Tang T, Tong X, Bock DC, Jin S, Zhao Q, Garcia-Mendez R, Takeuchi KJ, Takeuchi ES, Marschilok AC, Archer LA. Design principles for heterointerfacial alloying kinetics at metallic anodes in rechargeable batteries. SCIENCE ADVANCES 2022; 8:eabq6321. [PMID: 36332032 PMCID: PMC9635833 DOI: 10.1126/sciadv.abq6321] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
How surface chemistry influences reactions occurring thereupon has been a long-standing question of broad scientific and technological interest. Here, we consider the relation between the surface chemistry at interfaces and the reversibility of electrochemical transformations at rechargeable battery electrodes. Using Zn as a model system, we report that a moderate strength of chemical interaction between the deposit and the substrate-neither too weak nor too strong-enables highest reversibility and stability of the plating/stripping redox processes. Focused ion beam and electron microscopy were used to directly probe the morphology, chemistry, and crystallography of heterointerfaces of distinct natures. Analogous to the empirical Sabatier principle for chemical heterogeneous catalysis, our findings arise from competing interfacial processes. Using full batteries with stringent negative electrode-to-positive electrode capacity (N:P) ratios, we show that such knowledge provides a powerful tool for designing key materials in highly reversible battery systems based on Earth-abundant, low-cost metals such as Zn and Na.
Collapse
Affiliation(s)
- Jingxu Zheng
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yue Deng
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Wenzao Li
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jiefu Yin
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Patrick J. West
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Materials Science and Chemical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | - Tian Tang
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - David C. Bock
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, NY 11794, USA
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Shuo Jin
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Qing Zhao
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Regina Garcia-Mendez
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Kenneth J. Takeuchi
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Materials Science and Chemical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Esther S. Takeuchi
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Materials Science and Chemical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Amy C. Marschilok
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
- Institute for Electrochemically Stored Energy, Stony Brook University, Stony Brook, NY 11794, USA
- Department of Materials Science and Chemical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Lynden A. Archer
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
39
|
Agarwal RG, Mayer JM. Coverage-Dependent Rate-Driving Force Relationships: Hydrogen Transfer from Cerium Oxide Nanoparticle Colloids. J Am Chem Soc 2022; 144:20699-20709. [DOI: 10.1021/jacs.2c07988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rishi G. Agarwal
- Department of Chemistry, Yale University, New Haven, Connecticut06520-8107, United States
| | - James M. Mayer
- Department of Chemistry, Yale University, New Haven, Connecticut06520-8107, United States
| |
Collapse
|
40
|
Flores-Lasluisa JX, Huerta F, Cazorla-Amorós D, Morallón E. Transition metal oxides with perovskite and spinel structures for electrochemical energy production applications. ENVIRONMENTAL RESEARCH 2022; 214:113731. [PMID: 35753372 DOI: 10.1016/j.envres.2022.113731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Transition metal oxide-based materials are an interesting alternative to substitute noble-metal based catalyst in energy conversion devices designed for oxygen reduction (ORR), oxygen evolution (OER) and hydrogen evolution reactions (HER). Perovskite (ABO3) and spinel (AB2O4) oxides stand out against other structures due to the possibility of tailoring their chemical composition and, consequently, their properties. Particularly, the electrocatalytic performance of these materials depends on features such as chemical composition, crystal structure, nanostructure, cation substitution level, eg orbital filling or oxygen vacancies. However, they suffer from low electrical conductivity and surface area, which affects the catalytic response. To mitigate these drawbacks, they have been combined with carbon materials (e.g. carbon black, carbon nanotubes, activated carbon, and graphene) that positively influence the overall catalytic activity. This review provides an overview on tunable perovskites (mainly lanthanum-based) and spinels featuring 3d metal cations such as Mn, Fe, Co, Ni and Cu on octahedral sites, which are known to be active for the electrochemical energy conversion.
Collapse
Affiliation(s)
- J X Flores-Lasluisa
- Dept. Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - F Huerta
- Dept. Ingenieria Textil y Papelera, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell, 1, E-03801, Alcoy, Spain
| | - D Cazorla-Amorós
- Dept. Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain
| | - E Morallón
- Dept. Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080, Alicante, Spain.
| |
Collapse
|
41
|
Madu DC, Lilo MV, Thompson AA, Pan H, McGehee MD, Barile CJ. Investigating Formate, Sulfate, and Halide Anions in Reversible Zinc Electrodeposition Dynamic Windows. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47810-47821. [PMID: 36251798 DOI: 10.1021/acsami.2c14893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Reversible metal electrodeposition (RME) is an emerging and promising method for designing dynamic windows with electrically controllable transmission, excellent color neutrality, and wide dynamic range. Zn is a viable option for metal-based dynamic windows due to its fast switching kinetics and reversibility despite its very negative deposition voltage. In this manuscript, we study the effect of the supporting electrolyte anions for Zn electrodeposition on transparent tin-doped indium oxide. Through systematic additions or removal of components of the electrolytes, we are able to establish a link between the anions and the effectiveness of Zn RME. This insight allows us to design practical two-electrode 25 cm2 Zn dynamic windows that switch to <1% within 20 s. Lastly, we demonstrate that the accumulation of Zn(OH)2 species on the working electrode degrades the optical contrast of Zn windows during long-term cycling. However, the elimination of these species through acid immersion allows the windows to cycle at least 500 times. Reversible Zn electrodeposition in the presence of a polyethylene glycol additive further improves the cycle life to greater than 1000 cycles. Taken together, these studies highlight important design principles for the construction of robust dynamic windows based on Zn RME.
Collapse
Affiliation(s)
- Desmond C Madu
- Department of Chemistry, University of Nevada, Reno, Nevada89557, United States
| | - Micah V Lilo
- Department of Chemistry, University of Nevada, Reno, Nevada89557, United States
| | - Andrew A Thompson
- Department of Chemistry, University of Nevada, Reno, Nevada89557, United States
| | - Hanqing Pan
- Department of Chemistry, University of Nevada, Reno, Nevada89557, United States
| | - Michael D McGehee
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado80303, United States
- Materials Science and Engineering, University of Colorado, Boulder, Colorado80303, United States
| | | |
Collapse
|
42
|
Smiljanić M, Panić S, Bele M, Ruiz-Zepeda F, Pavko L, Gašparič L, Kokalj A, Gaberšček M, Hodnik N. Improving the HER Activity and Stability of Pt Nanoparticles by Titanium Oxynitride Support. ACS Catal 2022; 12:13021-13033. [PMID: 36313525 PMCID: PMC9594320 DOI: 10.1021/acscatal.2c03214] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/29/2022] [Indexed: 11/29/2022]
Abstract
![]()
Water electrolysis powered by renewables is regarded
as the feasible
route for the production of hydrogen, obtained at the cathode side
through electrochemical hydrogen evolution reaction (HER). Herein,
we present a rational strategy to improve the overall HER catalytic
performance of Pt, which is known as the best monometallic catalyst
for this reaction, by supporting it on a conductive titanium oxynitride
(TiONx) dispersed over reduced graphene
oxide nanoribbons. Characterization of the Pt/TiONx composite revealed the presence of small Pt particles with
diameters between 2 and 3 nm, which are well dispersed over the TiONx support. The Pt/TiONx nanocomposite exhibited improved HER activity and stability with
respect to the Pt/C benchmark in an acid electrolyte, which was ascribed
to the strong metal–support interaction (SMSI) triggered between
the TiONx support and grafted Pt nanoparticles.
SMSI between TiONx and Pt was evidenced
by X-ray photoelectron spectroscopy (XPS) through a shift of the binding
energies of the characteristic Pt 4f photoelectron lines with respect
to Pt/C. Density functional theory (DFT) calculations confirmed the
strong interaction between Pt nanoparticles and the TiONx support. This strong interaction improves the stability
of Pt nanoparticles and weakens the binding of chemisorbed H atoms
thereon. Both of these effects may result in enhanced HER activity.
Collapse
Affiliation(s)
- Milutin Smiljanić
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000Ljubljana, Slovenia
- Laboratory for Atomic Physics, Institute for Nuclear Sciences Vinča, University of Belgrade, Mike Alasa 12-14, 11001Belgrade, Serbia
| | - Stefan Panić
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000Ljubljana, Slovenia
| | - Marjan Bele
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000Ljubljana, Slovenia
| | - Francisco Ruiz-Zepeda
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000Ljubljana, Slovenia
| | - Luka Pavko
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000Ljubljana, Slovenia
| | - Lea Gašparič
- Department of Physical and Organic Chemistry, Jožef Stefan Institute, Jamova cesta 39, 1000Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000Ljubljana, Slovenia
- Centre of Excellence for Low-Carbon Technologies, Hajdrihova 19, 1000Ljubljana, Slovenia
| | - Anton Kokalj
- Department of Physical and Organic Chemistry, Jožef Stefan Institute, Jamova cesta 39, 1000Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000Ljubljana, Slovenia
| | - Miran Gaberšček
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000Ljubljana, Slovenia
| | - Nejc Hodnik
- Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000Ljubljana, Slovenia
- University of Nova Gorica, Vipavska 13, 5000Nova Gorica, Slovenia
| |
Collapse
|
43
|
Fan Z, Liao F, Ji Y, Liu Y, Huang H, Wang D, Yin K, Yang H, Ma M, Zhu W, Wang M, Kang Z, Li Y, Shao M, Hu Z, Shao Q. Coupling of nanocrystal hexagonal array and two-dimensional metastable substrate boosts H 2-production. Nat Commun 2022; 13:5828. [PMID: 36192414 PMCID: PMC9530234 DOI: 10.1038/s41467-022-33512-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022] Open
Abstract
Designing well-ordered nanocrystal arrays with subnanometre distances can provide promising materials for future nanoscale applications. However, the fabrication of aligned arrays with controllable accuracy in the subnanometre range with conventional lithography, template or self-assembly strategies faces many challenges. Here, we report a two-dimensional layered metastable oxide, trigonal phase rhodium oxide (space group, P-3m1 (164)), which provides a platform from which to construct well-ordered face-centred cubic rhodium nanocrystal arrays in a hexagonal pattern with an intersurface distance of only 0.5 nm. The coupling of the well-ordered rhodium array and metastable substrate in this catalyst triggers and improves hydrogen spillover, enhancing the acidic hydrogen evolution for H2 production, which is essential for various clean energy-related devices. The catalyst achieves a low overpotential of only 9.8 mV at a current density of -10 mA cm-2, a low Tafel slope of 24.0 mV dec-1, and high stability under a high potential (vs. RHE) of -0.4 V (current density of ~750 mA cm-2). This work highlights the important role of metastable materials in the design of advanced materials to achieve high-performance catalysis.
Collapse
Affiliation(s)
- Zhenglong Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Fan Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Hui Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Dan Wang
- College of Energy, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Kui Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Haiwei Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Mengjie Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Wenxiang Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Meng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078, Macau SAR, China.
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden, 01187, Germany.
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
44
|
Kumar A, Zhang G, Liu W, Sun X. Electrocatalysis and activity descriptors with metal phthalocyanines for energy conversion reactions. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Zeradjanin AR, Narangoda P, Masa J, Schlögl R. What Controls Activity Trends of Electrocatalytic Hydrogen Evolution Reaction?─Activation Energy Versus Frequency Factor. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aleksandar R. Zeradjanin
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Praveen Narangoda
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Justus Masa
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Robert Schlögl
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
- Fritz-Haber-Institut der Max-Planck Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
46
|
Aykut Y, Bayrakçeken Yurtcan A. The role of the Pd ratio in increasing the activity of Pt for high efficient hydrogen evolution reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Patra KK, Liu Z, Lee H, Hong S, Song H, Abbas HG, Kwon Y, Ringe S, Oh J. Boosting Electrochemical CO 2 Reduction to Methane via Tuning Oxygen Vacancy Concentration and Surface Termination on a Copper/Ceria Catalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kshirodra Kumar Patra
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
- Catalysis Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Zhu Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Hojeong Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seungwon Hong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hakhyeon Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hafiz Ghulam Abbas
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Youngkook Kwon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Stefan Ringe
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jihun Oh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
48
|
Eder M, Courtois C, Petzoldt P, Mackewicz S, Tschurl M, Heiz U. Size and Coverage Effects of Ni and Pt Co-Catalysts in the Photocatalytic Hydrogen Evolution from Methanol on TiO 2(110). ACS Catal 2022. [DOI: 10.1021/acscatal.2c02230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Moritz Eder
- Chair of Physical Chemistry & Catalysis Research Center, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Carla Courtois
- Chair of Physical Chemistry & Catalysis Research Center, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Philip Petzoldt
- Chair of Physical Chemistry & Catalysis Research Center, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Sonia Mackewicz
- Chair of Physical Chemistry & Catalysis Research Center, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Martin Tschurl
- Chair of Physical Chemistry & Catalysis Research Center, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Ueli Heiz
- Chair of Physical Chemistry & Catalysis Research Center, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
49
|
Abstract
This Review provides an overview of the emerging concepts of catalysts, membranes, and membrane electrode assemblies (MEAs) for water electrolyzers with anion-exchange membranes (AEMs), also known as zero-gap alkaline water electrolyzers. Much of the recent progress is due to improvements in materials chemistry, MEA designs, and optimized operation conditions. Research on anion-exchange polymers (AEPs) has focused on the cationic head/backbone/side-chain structures and key properties such as ionic conductivity and alkaline stability. Several approaches, such as cross-linking, microphase, and organic/inorganic composites, have been proposed to improve the anion-exchange performance and the chemical and mechanical stability of AEMs. Numerous AEMs now exceed values of 0.1 S/cm (at 60-80 °C), although the stability specifically at temperatures exceeding 60 °C needs further enhancement. The oxygen evolution reaction (OER) is still a limiting factor. An analysis of thin-layer OER data suggests that NiFe-type catalysts have the highest activity. There is debate on the active-site mechanism of the NiFe catalysts, and their long-term stability needs to be understood. Addition of Co to NiFe increases the conductivity of these catalysts. The same analysis for the hydrogen evolution reaction (HER) shows carbon-supported Pt to be dominating, although PtNi alloys and clusters of Ni(OH)2 on Pt show competitive activities. Recent advances in forming and embedding well-dispersed Ru nanoparticles on functionalized high-surface-area carbon supports show promising HER activities. However, the stability of these catalysts under actual AEMWE operating conditions needs to be proven. The field is advancing rapidly but could benefit through the adaptation of new in situ techniques, standardized evaluation protocols for AEMWE conditions, and innovative catalyst-structure designs. Nevertheless, single AEM water electrolyzer cells have been operated for several thousand hours at temperatures and current densities as high as 60 °C and 1 A/cm2, respectively.
Collapse
Affiliation(s)
- Naiying Du
- National
Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
- Energy,
Mining and Environment Research Centre, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| | - Claudie Roy
- Energy,
Mining and Environment Research Centre, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
- National
Research Council of Canada, 2620 Speakman Drive, Mississauga, Ontario L5K 1B1, Canada
| | - Retha Peach
- Forschungszentrum
Jülich GmbH, Helmholtz Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstaße 1, 91058 Erlangen, Germany
| | - Matthew Turnbull
- National
Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
- Energy,
Mining and Environment Research Centre, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| | - Simon Thiele
- Forschungszentrum
Jülich GmbH, Helmholtz Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), Cauerstaße 1, 91058 Erlangen, Germany
- Department
Chemie- und Bioingenieurwesen, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Christina Bock
- National
Research Council of Canada, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
- Energy,
Mining and Environment Research Centre, 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
50
|
Sargeant E, Illas F, Rodríguez P, Calle-Vallejo F. On the shifting peak of volcano plots for oxygen reduction and evolution. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|