1
|
Li Y, Qin K, Liang W, Yan W, Fragoulis A, Pufe T, Buhl EM, Zhao Q, Greven J. Kidney Injury in a Murine Hemorrhagic Shock/Resuscitation Model Is Alleviated by sulforaphane's Anti-Inflammatory and Antioxidant Action. Inflammation 2024:10.1007/s10753-024-02106-2. [PMID: 39023831 DOI: 10.1007/s10753-024-02106-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/09/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Hemorrhagic shock/resuscitation (HS/R) can lead to acute kidney injury, mainly manifested as oxidative stress and inflammatory injury in the renal tubular epithelial cells, as well as abnormal autophagy and apoptosis. Sulforaphane (SFN), an agonist of the nuclear factor-erythroid factor 2-related factor 2 (Nrf2) signaling pathway, is involved in multiple biological activities, such as anti-inflammatory, antioxidant, autophagy, and apoptosis regulation. This study investigated the effect of SFN on acute kidney injury after HS/R in mice. Hemorrhagic shock was induced in mice by controlling the arterial blood pressure at a range of 35-45 mmHg for 90 min within arterial blood withdrawal. Fluid resuscitation was carried out by reintroducing withdrawn blood and 0.9% NaCl. We found that SFN suppressed the elevation of urea nitrogen and serum creatinine levels in the blood induced by HS/R. SFN mitigated pathological alterations including swollen renal tubules and renal casts in kidney tissue of HS/R mice. Inflammation levels and oxidative stress were significantly downregulated in mouse kidney tissue after SFN administration. In addition, the kidney tissue of HS/R mice showed high levels of autophagosomes as observed by electron microscopy. However, SFN can further enhance the formation of autophagosomes in the HS/R + SFN group. SFN also increased autophagy-related proteins Beclin1 expression and suppressed P62 expression, while increasing the ratio of microtubule-associated protein 1 light chain 3 (LC3)-II and LC3-I (LC3-II/LC3-I). SFN also effectively decreased cleaved caspase-3 level and enhanced the ratio of anti-apoptotic protein B cell lymphoma 2 and Bcl2-associated X protein (Bcl2/Bax). Collectively, SFN effectively inhibited inflammation and oxidative stress, enhanced autophagy, thereby reducing HS/R-induced kidney injury and apoptosis levels in mouse kidneys.
Collapse
Affiliation(s)
- You Li
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Kang Qin
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany.
- Department of Shoulder and Elbow Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| | - Weiqiang Liang
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Weining Yan
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Eva Miriam Buhl
- Department of Anatomy and Cell Biology, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
- Electron Microscopy Facility, Institute for Pathology, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Qun Zhao
- Department of Orthopedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| | - Johannes Greven
- Department of Thoracic Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, Aachen, 52074, Germany
| |
Collapse
|
2
|
Lu M, Ji J, Lv Y, Zhao J, Liu Y, Jiao Q, Liu T, Mou Y, You Q, Jiang Z. Bivalent inhibitors of the BTB E3 ligase KEAP1 enable instant NRF2 activation to suppress acute inflammatory response. Cell Chem Biol 2024; 31:1188-1202.e10. [PMID: 38157852 DOI: 10.1016/j.chembiol.2023.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/14/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
Most BTB-containing E3 ligases homodimerize to recognize a single substrate by engaging multiple degrons, represented by E3 ligase KEAP1 dimer and its substrate NRF2. Inactivating KEAP1 to hinder ubiquitination-dependent NRF2 degradation activates NRF2. While various KEAP1 inhibitors have been reported, all reported inhibitors bind to KEAP1 in a monovalent fashion and activate NRF2 in a lagging manner. Herein, we report a unique bivalent KEAP1 inhibitor, biKEAP1 (3), that engages cellular KEAP1 dimer to directly release sequestered NRF2 protein, leading to an instant NRF2 activation. 3 promotes the nuclear translocation of NRF2, directly suppressing proinflammatory cytokine transcription. Data from in vivo experiments showed that 3, with unprecedented potency, reduced acute inflammatory burden in several acute inflammation models in a timely manner. Our findings demonstrate that the bivalent KEAP1 inhibitor can directly enable sequestered substrate NRF2 to suppress inflammatory transcription response and dampen various acute inflammation injuries.
Collapse
Affiliation(s)
- Mengchen Lu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University Medical College, Suzhou 215123, China
| | - Jianai Ji
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yifei Lv
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Zhao
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuting Liu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qiong Jiao
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Tian Liu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Mou
- College of Pharmacy and Chemistry and Chemical Engineering, Taizhou University, Taizhou 225300, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
3
|
Habtemariam S. Anti-Inflammatory Therapeutic Mechanisms of Isothiocyanates: Insights from Sulforaphane. Biomedicines 2024; 12:1169. [PMID: 38927376 PMCID: PMC11200786 DOI: 10.3390/biomedicines12061169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Isothiocyanates (ITCs) belong to a group of natural products that possess a highly reactive electrophilic -N=C=S functional group. They are stored in plants as precursor molecules, glucosinolates, which are processed by the tyrosinase enzyme upon plant tissue damage to release ITCs, along with other products. Isolated from broccoli, sulforaphane is by far the most studied antioxidant ITC, acting primarily through the induction of a transcription factor, the nuclear factor erythroid 2-related factor 2 (Nrf2), which upregulates downstream antioxidant genes/proteins. Paradoxically, sulforaphane, as a pro-oxidant compound, can also increase the levels of reactive oxygen species, a mechanism which is attributed to its anticancer effect. Beyond highlighting the common pro-oxidant and antioxidant effects of sulforaphane, the present paper was designed to assess the diverse anti-inflammatory mechanisms reported to date using a variety of in vitro and in vivo experimental models. Sulforaphane downregulates the expression of pro-inflammatory cytokines, chemokines, adhesion molecules, cycloxyhenase-2, and inducible nitric oxide synthase. The signalling pathways of nuclear factor κB, activator protein 1, sirtuins 1, silent information regulator sirtuin 1 and 3, and microRNAs are among those affected by sulforaphane. These anti-inflammatory actions are sometimes due to direct action via interaction with the sulfhydryl structural moiety of cysteine residues in enzymes/proteins. The following are among the topics discussed in this paper: paradoxical signalling pathways such as the immunosuppressant or immunostimulant mechanisms; crosstalk between the oxidative and inflammatory pathways; and effects dependent on health and disease states.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
4
|
Das B, Dahiya A, Patel BK. Isothiocyanates: happy-go-lucky reagents in organic synthesis. Org Biomol Chem 2024; 22:3772-3798. [PMID: 38656266 DOI: 10.1039/d4ob00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Owing to their unique structural features, isothiocyanates (ITCs) are a class of highly useful and inimitable reagents as the -NCS group serves both as electrophile and nucleophile in organic synthesis. ITCs share a rich legacy in organic, medicinal, and combinatorial chemistry. Compared to their oxygen equivalents, isocyanates, ITCs are easily available, less unpleasant, and somewhat less harmful to work with (mild conditions) which makes them happy-go-lucky reagents. Functionalized ITCs can finely tune the reactivity of the -NCS group and thus can be exploited in the late-stage functionalization processes. This review's primary aim is to outline ITC chemistry in the construction and derivatization of heterocycles through the lens of sustainability. For ease and brevity, the sections are divided based on reactive centers present in functionalized ITCs and modes of cyclisation. Scrutinizing their probable unexplored directions for future research studies is also addressed.
Collapse
Affiliation(s)
- Bubul Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
- Department of Chemistry, Bagadhar Brahma Kishan College, Jalah, Assam 781327, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| |
Collapse
|
5
|
Ruhee RT, Suzuki K. The Immunomodulatory Effects of Sulforaphane in Exercise-Induced Inflammation and Oxidative Stress: A Prospective Nutraceutical. Int J Mol Sci 2024; 25:1790. [PMID: 38339067 PMCID: PMC10855658 DOI: 10.3390/ijms25031790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Sulforaphane (SFN) is a promising molecule for developing phytopharmaceuticals due to its potential antioxidative and anti-inflammatory effects. A plethora of research conducted in vivo and in vitro reported the beneficial effects of SFN intervention and the underlying cellular mechanisms. Since SFN is a newly identified nutraceutical in sports nutrition, only some human studies have been conducted to reflect the effects of SFN intervention in exercise-induced inflammation and oxidative stress. In this review, we briefly discussed the effects of SFN on exercise-induced inflammation and oxidative stress. We discussed human and animal studies that are related to exercise intervention and mentioned the underlying cellular signaling mechanisms. Since SFN could be used as a potential therapeutic agent, we mentioned briefly its synergistic attributes with other potential nutraceuticals that are associated with acute and chronic inflammatory conditions. Given its health-promoting effects, SFN could be a prospective nutraceutical at the forefront of sports nutrition.
Collapse
Affiliation(s)
- Ruheea Taskin Ruhee
- Research Fellow of Japan Society for the Promotion of Sciences, Tokyo 102-0083, Japan
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| |
Collapse
|
6
|
Hussain I, Fatima S, Tabish M. Unravelling the molecular interactions of phenyl isothiocyanate and benzoyl isothiocyanate with human lysozyme: Biophysical and computational analyses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123408. [PMID: 37717484 DOI: 10.1016/j.saa.2023.123408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Phenyl isothiocyanate and benzoyl isothiocyanate are the phytochemicals present in the Brassicaceae family. They have antibacterial, antiapoptotic and antifungal properties. Protein-small molecule interaction studies are done to assess the changes in structure, dynamics, and functions of protein and to decipher the binding mechanism. This study is based on the comparative binding of PT and BT with human lysozyme using in vitro and computational techniques. UV, fluorescence emission, and FRET spectra gave insight into the complex formation, quenching mechanism, and binding parameters. Both PT and BT quenched the intrinsic fluorescence of Lyz by a static quenching mechanism. Synchronous, 3D fluorescence and CD spectroscopy substantiated conformational and microenvironmental alterations in the Lyz. The metal ions and β-cyclodextrin had a pronounced effect on the binding strength of Lyz-PT and Lyz-BT complexes. Accessible surface area analysis was determined to characterise the amino acid residue packing. Molecular docking further validated the wet lab experimental results.
Collapse
Affiliation(s)
- Irfan Hussain
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, UP 202002, India
| | - Sana Fatima
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, UP 202002, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, A.M.U, Aligarh, UP 202002, India.
| |
Collapse
|
7
|
Fields NJ, Palmer KR, Nisi A, Marshall SA. Preeclampsia to COVID-19: A journey towards improved placental and vascular function using sulforaphane. Placenta 2023; 141:84-93. [PMID: 37591715 DOI: 10.1016/j.placenta.2023.08.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Excess inflammation and oxidative stress are common themes in many pathologies of pregnancy including preeclampsia and more recently severe COVID-19. The risk of preeclampsia increases following maternal infection with COVID-19, potentially relating to significant overlap in pathophysiology with endothelial, vascular and immunological dysfunction common to both. Identifying a therapy which addresses these injurious processes and stabilises the endothelial and vascular maternal system would help address the significant global burden of maternal and neonatal morbidity and mortality they cause. Sulforaphane is a naturally occurring phytonutrient found most densely within cruciferous vegetables. It has anti-inflammatory, antioxidant and immune modulating properties via upregulation of phase-II detoxification enzymes. This review will cover the common pathways shared by COVID-19 and preeclampsia and offer a potential therapeutic target via nuclear factor erythroid 2-related factor upregulation in the form of sulforaphane.
Collapse
Affiliation(s)
- Neville J Fields
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, 27-31 Wright Street, Clayton, Victoria, Australia; Monash Health, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria, Australia.
| | - Kirsten R Palmer
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, 27-31 Wright Street, Clayton, Victoria, Australia; Monash Health, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria, Australia
| | - Anthony Nisi
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, 27-31 Wright Street, Clayton, Victoria, Australia
| | - Sarah A Marshall
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, 27-31 Wright Street, Clayton, Victoria, Australia
| |
Collapse
|
8
|
Gasparello J, Marzaro G, Papi C, Gentili V, Rizzo R, Zurlo M, Scapoli C, Finotti A, Gambari R. Effects of Sulforaphane on SARS‑CoV‑2 infection and NF‑κB dependent expression of genes involved in the COVID‑19 'cytokine storm'. Int J Mol Med 2023; 52:76. [PMID: 37477130 PMCID: PMC10555481 DOI: 10.3892/ijmm.2023.5279] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/09/2023] [Indexed: 07/22/2023] Open
Abstract
Since its spread at the beginning of 2020, the coronavirus disease 2019 (COVID‑19) pandemic represents one of the major health problems. Despite the approval, testing, and worldwide distribution of anti‑severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) vaccines, the development of specific antiviral agents targeting the SARS‑CoV‑2 life cycle with high efficiency, and/or interfering with the associated 'cytokine storm', is highly required. A recent study, conducted by the authors' group indicated that sulforaphane (SFN) inhibits the expression of IL‑6 and IL‑8 genes induced by the treatment of IB3‑1 bronchial cells with a recombinant spike protein of SARS‑CoV‑2. In the present study, the ability of SFN to inhibit SARS‑CoV‑2 replication and the expression of pro‑inflammatory genes encoding proteins of the COVID‑19 'cytokine storm' was evaluated. SARS‑CoV‑2 replication was assessed in bronchial epithelial Calu‑3 cells. Moreover, SARS‑CoV‑2 replication and expression of pro‑inflammatory genes was evaluated by reverse transcription quantitative droplet digital PCR. The effects on the expression levels of NF‑κB were assessed by western blotting. Molecular dynamics simulations of NF‑kB/SFN interactions were conducted with Gromacs 2021.1 software under the Martini 2 CG force field. Computational studies indicated that i) SFN was stably bound with the NF‑κB monomer; ii) a ternary NF‑kB/SFN/DNA complex was formed; iii) the SFN interacted with both the protein and the nucleic acid molecules modifying the binding mode of the latter, and impairing the full interaction between the NF‑κB protein and the DNA molecule. This finally stabilized the inactive complex. Molecular studies demonstrated that SFN i) inhibits the SARS‑CoV‑2 replication in infected Calu‑3 cells, decreasing the production of the N‑protein coding RNA sequences, ii) decreased NF‑κB content in SARS‑CoV‑2 infected cells and inhibited the expression of NF‑kB‑dependent IL‑1β and IL‑8 gene expression. The data obtained in the present study demonstrated inhibitory effects of SFN on the SARS‑CoV‑2 life cycle and on the expression levels of the pro‑inflammatory genes, sustaining the possible use of SFN in the management of patients with COVID‑19.
Collapse
Affiliation(s)
- Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, I-35131 Padova
| | - Chiara Papi
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara
| | - Valentina Gentili
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Matteo Zurlo
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara
| | - Chiara Scapoli
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, I-44121 Ferrara
| |
Collapse
|
9
|
Li L, Ma P, Nirasawa S, Liu H. Formation, immunomodulatory activities, and enhancement of glucosinolates and sulforaphane in broccoli sprouts: a review for maximizing the health benefits to human. Crit Rev Food Sci Nutr 2023; 64:7118-7148. [PMID: 36847125 DOI: 10.1080/10408398.2023.2181311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Broccoli sprouts have been considered as functional foods which have received increasing attention because they have been highly prized for glucosinolates, phenolics, and vitamins in particular glucosinolates. One of hydrolysates-sulforaphane from glucoraphanin is positively associated with the attenuation of inflammatory, which could reduce diabetes, cardiovascular and cancer risk. In recent decades, the great interest in natural bioactive components especially for sulforaphane promotes numerous researchers to investigate the methods to enhance glucoraphanin levels in broccoli sprouts and evaluate the immunomodulatory activities of sulforaphane. Therefore, glucosinolates profiles are different in broccoli sprouts varied with genotypes and inducers. Physicochemical, biological elicitors, and storage conditions were widely studied to promote the accumulation of glucosinolates and sulforaphane in broccoli sprouts. These inducers would stimulate the biosynthesis pathway gene expression and enzyme activities of glucosinolates and sulforaphane to increase the concentration in broccoli sprouts. The immunomodulatory activity of sulforaphane was summarized to be a new therapy for diseases with immune dysregulation. The perspective of this review served as a potential reference for customers and industries by application of broccoli sprouts as a functional food and clinical medicine.
Collapse
Affiliation(s)
- Lizhen Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Peihua Ma
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| | - Satoru Nirasawa
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Science, Tsukuba, Ibaraki Japan
| | - Haijie Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Liu Z, Deng P, Liu S, Bian Y, Xu Y, Zhang Q, Wang H, Pi J. Is Nuclear Factor Erythroid 2-Related Factor 2 a Target for the Intervention of Cytokine Storms? Antioxidants (Basel) 2023; 12:antiox12010172. [PMID: 36671034 PMCID: PMC9855012 DOI: 10.3390/antiox12010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
The term "cytokine storm" describes an acute pathophysiologic state of the immune system characterized by a burst of cytokine release, systemic inflammatory response, and multiple organ failure, which are crucial determinants of many disease outcomes. In light of the complexity of cytokine storms, specific strategies are needed to prevent and alleviate their occurrence and deterioration. Nuclear factor erythroid 2-related factor 2 (NRF2) is a CNC-basic region-leucine zipper protein that serves as a master transcription factor in maintaining cellular redox homeostasis by orchestrating the expression of many antioxidant and phase II detoxification enzymes. Given that inflammatory response is intertwined with oxidative stress, it is reasonable to assume that NRF2 activation limits inflammation and thus cytokine storms. As NRF2 can mitigate inflammation at many levels, it has emerged as a potential target to prevent and treat cytokine storms. In this review, we summarized the cytokine storms caused by different etiologies and the rationale of interventions, focusing mainly on NRF2 as a potential therapeutic target.
Collapse
Affiliation(s)
- Zihang Liu
- The First Department of Clinical Medicine, China Medical University, Shenyang 110122, China
| | - Panpan Deng
- The First Department of Clinical Medicine, China Medical University, Shenyang 110122, China
| | - Shengnan Liu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yiying Bian
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yuanyuan Xu
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Huihui Wang
- Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China
- Correspondence: (H.W.); or (J.P.)
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
- Correspondence: (H.W.); or (J.P.)
| |
Collapse
|
11
|
Ibrahim Fouad G. Sulforaphane, an Nrf-2 Agonist, Modulates Oxidative Stress and Inflammation in a Rat Model of Cuprizone-Induced Cardiotoxicity and Hepatotoxicity. Cardiovasc Toxicol 2023; 23:46-60. [PMID: 36650404 PMCID: PMC9859885 DOI: 10.1007/s12012-022-09776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023]
Abstract
Cuprizone (CPZ) is a neurotoxic agent that is used to induce demyelination and neurotoxicity in rats. This study aimed to investigate the protective potential of sulforaphane (SF), nuclear factor E2 related factor (Nrf-2) activator, against CPZ-induced cardiotoxicity and hepatotoxicity. Male adult Wistar rats (n = 18) were fed with a regular diet or a CPZ-contained diet (0.2%) for four weeks. The rats were divided into three groups (n = 6): negative control rats, CPZ-exposed rats, and CPZ + SF treated rats. SF was intraperitoneally administrated (2 mg/kg/day) for two weeks. The anti-inflammatory and anti-oxidative functions of SF were investigated biochemically, histologically, and immunohistochemically. CPZ increased serum levels of cardiac troponin 1 (CTn1), aspartate amino transaminase (AST), alanine amino transaminase (ALT), and alkaline phosphatase (ALP). In addition, serum levels of inflammatory interferon-gamma (IFN-γ), and pro-inflammatory interleukin 1β (IL-1β) were significantly elevated. Moreover, CPZ administration provoked oxidative stress as manifested by declined serum levels of total antioxidant capacity (TAC), as well as, stimulated lipid peroxidation and decreased catalase activities in both cardiac and hepatic tissues. SF treatment reversed all these biochemical alterations through exerting anti-oxidative and anti-inflammatory activities, and this was supported by histopathological investigations in both cardiac and hepatic tissues. This SF-triggered modulation of oxidative stress and inflammation is strongly associated with Nrf-2 activation, as evidenced by activated immunoexpression in both cardiac and hepatic tissues. This highlights the cardioprotective and hepatoprotective activities of SF via Nrf-2 activation and enhancing catalase function.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
12
|
In Silico and In Vitro Analysis of Sulforaphane Anti- Candida Activity. Antibiotics (Basel) 2022; 11:antibiotics11121842. [PMID: 36551499 PMCID: PMC9774275 DOI: 10.3390/antibiotics11121842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Oropharyngeal candidiasis/candidosis is a common and recurrent opportunistic fungal infection. Fluconazole (FLZ), one of the most used and effective antifungal agents, has been associated with a rise of resistant Candida species in immunocompromised patients undergoing prophylactic therapy. Sulforaphane (SFN), a compound from cruciferous vegetables, is an antimicrobial with yet controversial activities and mechanisms on fungi. Herein, the in silico and antifungal activities of SFN against C. albicans were investigated. In silico analyzes for the prediction of the biological activities and oral bioavailability of SFN, its possible toxicity and pharmacokinetic parameters, as well as the estimates of its gastrointestinal absorption, permeability to the blood-brain barrier and skin, and similarities to drugs, were performed by using different software. SFN in vitro anti-Candida activities alone and in combination with fluconazole (FLZ) were determined by the broth microdilution method and the checkerboard, biofilm and hyphae formation tests. Amongst the identified probable biological activities of SFN, nine indicated an antimicrobial potential. SFN was predicted to be highly absorbable by the gastrointestinal tract, to present good oral availability, and not to be irritant and/or hepatotoxic. SFN presented antifungal activity against C. albicans and prevented both biofilm and hyphae formation by this microorganism. SFN was additive/synergistic to FLZ. Overall, the data highlights the anti-Candida activity of SFN and its potential to be used as an adjuvant therapy to FLZ in clinical settings.
Collapse
|
13
|
Aparici M, Bravo M, Calama E, García-González V, Domènech T, Córdoba M, Roger I, Cortijo J, Góngora-Benítez M, Paradís-Bas M, Collins B, Davis AM, Albericio F, Puig C. Pharmacological characterization of a novel peptide inhibitor of the Keap1-Nrf2 protein-protein interaction. Biochem Pharmacol 2022; 204:115226. [PMID: 36027928 DOI: 10.1016/j.bcp.2022.115226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/26/2022]
Abstract
LAS200813 is a novel bicyclic lipopeptide that activates Nrf2 by binding to Keap1, thereby antagonising the Keap1-Nrf2 protein-protein interaction. In this work we report the pharmacological characterization of LAS200813 in Nrf2-dependent translational preclinical models. LAS200813 binds to Keap1 with high affinity (IC50: 0.73 nM) and is able to induce the translocation of Nrf2 to the nucleus. Furthermore, LAS200813 increases the expression of Nrf2 target genes in human bronchial epithelial cells (EC50 of 96 and 70 nM for srxn1 and nqo1, respectively). Similarly, the intratracheal administration of LAS200813 to rats increases the expression of Nrf2-dependent genes in lung tissue, an effect that lasts for a few hours. Moreover, in cells exposed to cigarette smoke, LAS200813 shows an antioxidant effect by increasing the production of glutathione and prevents cellular apoptosis. In conclusion, the results described herein demonstrate that LAS200813 is a potent non-electrophilic Nrf2-activating peptide designed to be administered by inhaled route which may be a potential therapeutic strategy for respiratory diseases driven by oxidative stress.
Collapse
Affiliation(s)
- Mònica Aparici
- Almirall, R&D Center, Sant Feliu de Llobregat, Barcelona, Spain.
| | - Mònica Bravo
- Almirall, R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | - Elena Calama
- Almirall, R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | | | - Teresa Domènech
- Almirall, R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | - Mònica Córdoba
- Almirall, R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | - Inés Roger
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain; CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain; CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Miriam Góngora-Benítez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Science Park, Barcelona, Spain; CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, Barcelona, Spain
| | - Marta Paradís-Bas
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Science Park, Barcelona, Spain; CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, Barcelona, Spain
| | - Barry Collins
- Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Andrew M Davis
- Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Fernando Albericio
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Science Park, Barcelona, Spain; CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, Barcelona, Spain
| | - Carlos Puig
- Almirall, R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| |
Collapse
|
14
|
Long-term sulforaphane-treatment restores redox homeostasis and prevents cognitive decline in middleaged female and male rats, but cannot revert previous damage in old animals. Biogerontology 2022; 23:587-613. [PMID: 35960458 DOI: 10.1007/s10522-022-09984-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/02/2022] [Indexed: 11/02/2022]
Abstract
Aging is a complex and detrimental process, which disrupts most organs and systems within the organisms. The nervous system is morphologically and functionally affected during normal aging, and oxidative stress has been involved in age-related damage, leading to cognitive decline and neurodegenerative processes. Sulforaphane (SFN) is a hormetin that activates the antioxidant and anti-inflammatory responses. So, we aimed to evaluate if SFN long-term treatment was able to prevent age-associated cognitive decline in adult and old female and male rats. Memory was evaluated in adult (15-month-old), and old (21-month-old) female and male Wistar rats after three months of SFN treatment. Young rats (4-month-old) were used as age controls. The antioxidant response induction, the redox state (GSH/GSSG), and oxidative damage were determined in the brain cortex (Cx) and hippocampus (Hc). Our results showed that SFN restored redox homeostasis in the Cx and Hc of adult rats, thus preventing cognitive decline in both sexes; however, the redox responses were not the same in males and females. Old rats were not able to recover their redox state as adults did, but they had a mild improvement. These results suggest that SFN mainly prevents rather than reverts neural damage; though, there might also be a range of opportunities to use hormetins like SFN, to improve redox modulation in old animals.
Collapse
|
15
|
Therapeutic effect of the sulforaphane derivative JY4 on ulcerative colitis through the NF-κB-p65 pathway. Inflammopharmacology 2022; 30:1717-1728. [PMID: 35943671 DOI: 10.1007/s10787-022-01044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/22/2022] [Indexed: 11/05/2022]
Abstract
The efficacy of the sulforaphane derivative JY4 was evaluated in acute and chronic mouse models of ulcerative colitis induced by dextran sodium sulfate. Oral administration of JY4 led to significant improvements in symptoms, with recovery of body weight and colorectal length, together with reduced diarrhoea, bloody stools, ulceration of colonic tissue and infiltration of inflammatory cells. The oral bioavailability of JY4, determined by comparing oral dosing with injection into the tail vein, was 5.67%, which was comply with the idea in the intestinal function. Using a dual-luciferase reporter assay, immunofluorescence studies, western blot analysis and immunohistochemical staining, JY4 was shown to significant interfere with the NF-κB-p65 signaling pathway. By preventing the activation of NF-κB-p65, JY4 inhibited the overexpression of downstream inflammatory factors, thereby exerting an anti-inflammatory effect on the intestinal tract. This study thus provides a promising candidate drug, and a new concept for the treatment of ulcerative colitis.
Collapse
|
16
|
Immunomodulatory Effects of (R)-Sulforaphane on LPS-Activated Murine Immune Cells: Molecular Signaling Pathways and Epigenetic Changes in Histone Markers. Pharmaceuticals (Basel) 2022; 15:ph15080966. [PMID: 36015113 PMCID: PMC9414446 DOI: 10.3390/ph15080966] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to explore the immunomodulatory effects of the natural enantiomer (R)-Sulforaphane (SFN) and the possible signaling pathways involved in an ex vivo model of LPS-stimulated murine peritoneal macrophages. Furthermore, we studied the epigenetic changes induced by (R)-SFN as well as the post-translational modifications of histone H3 (H3K9me3 and H3K18ac) in relation to the production of cytokines in murine splenocytes after LPS stimulation. (R)-SFN was able to modulate the inflammatory response and oxidative stress induced by LPS stimulation in murine peritoneal macrophages through the inhibition of reactive oxygen species (ROS), nitric oxide (NO) and cytokine (IL-1β, IL-6, IL-17, IL-18 and TNF-α) production by down-regulating the expression of pro-inflammatory enzymes (iNOS, COX-2 and mPGES-1). We also found that activation of the Nrf-2/HO-1 axis and inhibition of the JAK2/STAT-3, MAPK, canonical and non-canonical inflammasome signaling pathways could have been responsible for the immunomodulatory effects of (R)-SFN. Furthermore, (R)-SFN modulated epigenetic modifications through histone methylation (H3K9me3) and deacetylation (H3K18ac) in LPS-activated spleen cells. Collectively, our results suggest that (R)-SFN could be a promising epinutraceutical compound for the management of immunoinflammatory diseases.
Collapse
|
17
|
Hill CR, Shafaei A, Balmer L, Lewis JR, Hodgson JM, Millar AH, Blekkenhorst LC. Sulfur compounds: From plants to humans and their role in chronic disease prevention. Crit Rev Food Sci Nutr 2022; 63:8616-8638. [PMID: 35380479 DOI: 10.1080/10408398.2022.2057915] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sulfur is essential for the health of plants and is an indispensable dietary component for human health and disease prevention. Its incorporation into our food supply is heavily reliant upon the uptake of sulfur into plant tissue and our subsequent intake. Dietary requirements for sulfur are largely calculated based upon requirements for the sulfur-containing amino acids (SAA), cysteine and methionine, to meet the demands for synthesis of proteins, enzymes, co-enzymes, vitamins, and hormones. SAA are found in abundance in animal sources and are relatively low in plants. However, some plants, particularly cruciferous and allium vegetables, produce many protective sulfur-containing secondary metabolites, such as glucosinolates and cysteine sulfoxides. The variety and quantity of these sulfur-containing metabolites are extensive and their effects on human health are wide-reaching. Many benefits appear to be related to sulfur's role in redox biochemistry, protecting against uncontrolled oxidative stress and inflammation; features consistent within cardiometabolic dysfunction and many chronic metabolic diseases of aging. This narrative explores the origins and importance of sulfur, its incorporation into our food supply and dietary sources. It also explores the overarching potential of sulfur for human health, particularly around the amelioration of oxidative stress and chronic inflammation, and subsequent chronic disease prevention.
Collapse
Affiliation(s)
- Caroline R Hill
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
| | - Armaghan Shafaei
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Joondalup, Australia
| | - Lois Balmer
- Centre for Precision Health, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Nedlands, Australia
| | - Joshua R Lewis
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
- Centre for Kidney Research, Children's Hospital at Westmead School of Public Health, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Jonathan M Hodgson
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Lauren C Blekkenhorst
- Nutrition & Health Innovation Research Institute, School of Medical and Health Science, Edith Cowan University, Perth, Australia
- Royal Perth Hospital Research Foundation, Perth, Australia
- Medical School, The University of Western Australia, Nedlands, Australia
| |
Collapse
|
18
|
Intestinal Flora: A Potential Mechanism by Which Yinlai Decoction Treats Lipopolysaccharide-Induced Pneumonia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3034714. [PMID: 35368748 PMCID: PMC8967558 DOI: 10.1155/2022/3034714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/16/2022] [Accepted: 01/30/2022] [Indexed: 11/17/2022]
Abstract
Background. We intended to explore the mechanism of Yinlai decoction in the treatment of lipopolysaccharide (LPS)-induced pneumonia from the perspective of intestinal flora. Methods. Thirty Sprague–Dawley rats were randomly assigned to the blank control group (N), the pneumonia group (P), and the Yinlai decoction group (PT). The rat pneumonia model was established using LPS inhalation (0.5 mg/mL, 5 mL, 30 min/day, 3 days). Yinlai decoction was administered intragastrically (2 mL/100 g, 3 days). Lung tissue pathology, organ indexes, serum inflammatory factors, tumor necrosis factor-alpha (TNF-α), and intestinal flora changes were measured. Results. Lung tissue inflammation was prevented by Yinlai decoction. IL-6 levels showed a higher tendency to be higher, and IL-12 and TNF-α were significantly higher in the PT group than in the P group. The structure of the intestinal flora in the P differed from that in the N. The relative abundance of 10 out of 12 microflora was significantly higher in the P group than in the N and PT groups. In the PT group, the structure and the distribution of microbial groups were like those of the N group. Conclusions. Yinlai decoction inhibited LPS-induced lung and systemic inflammation in rats and may help the intestinal flora restore equilibrium by inhibiting the colonization of pathogenic bacteria and adjusting the ratio between probiotics and pathogenic bacteria. Intestinal flora may serve as a mediator of Yinlai decoction’s effect on LPS-induced pneumonia.
Collapse
|
19
|
Williams EJ, Guilleminault L, Berthon BS, Eslick S, Wright T, Karihaloo C, Gately M, Baines KJ, Wood LG. Sulforaphane Reduces Pro-Inflammatory Response To Palmitic Acid In Monocytes And Adipose Tissue Macrophages. J Nutr Biochem 2022; 104:108978. [DOI: 10.1016/j.jnutbio.2022.108978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/03/2021] [Accepted: 02/09/2022] [Indexed: 10/18/2022]
|
20
|
Liang W, Greven J, Fragoulis A, Horst K, Bläsius F, Wruck C, Pufe T, Kobbe P, Hildebrand F, Lichte P. Sulforaphane-Dependent Up-Regulation of NRF2 Activity Alleviates Both Systemic Inflammatory Response and Lung Injury After Hemorrhagic Shock/Resuscitation in Mice. Shock 2022; 57:221-229. [PMID: 34559743 DOI: 10.1097/shk.0000000000001859] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Hemorrhagic shock/resuscitation (HS/R) is closely associated with overwhelming oxidative stress and systemic inflammation. As an effective activator of the nuclear factor-erythroid factor 2 related factor 2 (Nrf2) pathway, sulforaphane (SFN) exerts antioxidant and anti-inflammatory effects. We explored SFN's effects on alveolar macrophages (AMs), systemic inflammation, and pulmonary damage in an isolated murine HS/R model. Male C57/BL6 wild type and transgenic antioxidant response element (ARE)-luciferase (luc) mice (both n = 6 per group) were exposed to either pressure-controlled HS/R (mean arterial pressure 35-45 mm Hg for 90 min) or sham procedure (surgery without HS/R) or were sacrificed without intervention (control group). Fluid resuscitation was performed via the reinfusion of withdrawn blood and 0.9% saline. Sulforaphane or 0.9% saline (vehicle) was administrated intraperitoneally. Mice were sacrificed 6, 24, or 72 h after resuscitation. Bioluminescence imaging of ARE-luc mice was conducted to measure pulmonary Nrf2 activity. Plasma was collected to determine systemic cytokine levels. Alveolar macrophages were isolated before measuring cytokines in the supernatant and performing immunofluorescence staining, as well as Western blot for intracellular Nrf2. Histological damage was assessed via the acute lung injury score and wet/dry ratio.Hemorrhagic shock/resuscitation was associated with pulmonary Nrf2 activation. Sulforaphane enhanced pulmonary Nrf2 activity and the Nrf2 activation of AM, while it decreased lung damage. Sulforaphane exerted down-regulatory effects on AM-generated and systemic pro-inflammatory mediators, while it did not have such effects on IL-10.In conclusion, SFN beneficially enhances pulmonary Nrf2 activity and promotes Nrf2 accumulation in AMs' nuclei. This may exert not only local protective effects but also systemic effects via the down-regulation of pro-inflammatory cytokines. The administration of Nrf2 activator post-HS/R may represent an innovative treatment strategy.
Collapse
Affiliation(s)
- Weiqiang Liang
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan City, Shandong Province, PR China
| | - Johannes Greven
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, Aachen, Germany
| | - Klemens Horst
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Felix Bläsius
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Christoph Wruck
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, Aachen, Germany
| | - Philipp Kobbe
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Frank Hildebrand
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Philipp Lichte
- Department of Orthopedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
21
|
Yap KM, Sekar M, Fuloria S, Wu YS, Gan SH, Mat Rani NNI, Subramaniyan V, Kokare C, Lum PT, Begum MY, Mani S, Meenakshi DU, Sathasivam KV, Fuloria NK. Drug Delivery of Natural Products Through Nanocarriers for Effective Breast Cancer Therapy: A Comprehensive Review of Literature. Int J Nanomedicine 2021; 16:7891-7941. [PMID: 34880614 PMCID: PMC8648329 DOI: 10.2147/ijn.s328135] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Despite recent advances in the diagnosis and treatment of breast cancer (BC), it remains a global health issue affecting millions of women annually. Poor prognosis in BC patients is often linked to drug resistance as well as the lack of effective therapeutic options for metastatic and triple-negative BC. In response to these unmet needs, extensive research efforts have been devoted to exploring the anti-BC potentials of natural products owing to their multi-target mechanisms of action and good safety profiles. Various medicinal plant extracts/essential oils and natural bioactive compounds have demonstrated anti-cancer activities in preclinical BC models. Despite the promising preclinical results, however, the clinical translation of natural products has often been hindered by their poor stability, aqueous solubility and bioavailability. There have been attempts to overcome these limitations, particularly via the use of nano-based drug delivery systems (NDDSs). This review highlights the tumour targeting mechanisms of NDDSs, the advantages and disadvantages of the major classes of NDDSs and their current clinical status in BC treatment. Besides, it also discusses the proposed anti-BC mechanisms and nanoformulations of nine medicinal plants' extracts/essential oils and nine natural bioactive compounds; selected via the screening of various scientific databases, including PubMed, Scopus and Google Scholar, based on the following keywords: "Natural Product AND Nanoparticle AND Breast Cancer". Overall, these nanoformulations exhibit improved anti-cancer efficacy against preclinical BC models, with some demonstrating biocompatibility with normal cell lines and mouse models. Further clinical studies are, however, warranted to ascertain their efficacy and biocompatibility in humans.
Collapse
Affiliation(s)
- Kah Min Yap
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | | | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | | | - Chandrakant Kokare
- Department of Pharmaceutics, Sinhgad Technical Education Society’s, Sinhgad Institute of Pharmacy, Narhe, Pune, 411041, India
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Asir-Abha, 61421, Saudi Arabia
| | - Shankar Mani
- Department of Pharmaceutical Chemistry, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, Karnataka, 571418, India
| | | | | | | |
Collapse
|
22
|
Audousset C, McGovern T, Martin JG. Role of Nrf2 in Disease: Novel Molecular Mechanisms and Therapeutic Approaches - Pulmonary Disease/Asthma. Front Physiol 2021; 12:727806. [PMID: 34658913 PMCID: PMC8511424 DOI: 10.3389/fphys.2021.727806] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a major transcription factor involved in redox homeostasis and in the response induced by oxidative injury. Nrf2 is present in an inactive state in the cytoplasm of cells. Its activation by internal or external stimuli, such as infections or pollution, leads to the transcription of more than 500 elements through its binding to the antioxidant response element. The lungs are particularly susceptible to factors that generate oxidative stress such as infections, allergens and hyperoxia. Nrf2 has a crucial protective role against these ROS. Oxidative stress and subsequent activation of Nrf2 have been demonstrated in many human respiratory diseases affecting the airways, including asthma and chronic obstructive pulmonary disease (COPD), or the pulmonary parenchyma such as acute respiratory distress syndrome (ARDS) and pulmonary fibrosis. Several compounds, both naturally occurring and synthetic, have been identified as Nrf2 inducers and enhance the activation of Nrf2 and expression of Nrf2-dependent genes. These inducers have proven particularly effective at reducing the severity of the oxidative stress-driven lung injury in various animal models. In humans, these compounds offer promise as potential therapeutic strategies for the management of respiratory pathologies associated with oxidative stress but there is thus far little evidence of efficacy through human trials. The purpose of this review is to summarize the involvement of Nrf2 and its inducers in ARDS, COPD, asthma and lung fibrosis in both human and in experimental models.
Collapse
Affiliation(s)
- Camille Audousset
- Meakins-Christie Laboratories, McGill University, Montréal, QC, Canada
| | - Toby McGovern
- Meakins-Christie Laboratories, McGill University, Montréal, QC, Canada
| | - James G Martin
- Meakins-Christie Laboratories, McGill University, Montréal, QC, Canada
| |
Collapse
|
23
|
Zhou XD, Wang JL, Guo DD, Jiang WW, Li ZK, Wang L, Zou Y, Bi MJ, Li Q. Neuroprotective effect of targeted regulatory Nrf2 gene on rats with acute brain injury induced by carbon monoxide poisoning. ENVIRONMENTAL TOXICOLOGY 2021; 36:1742-1757. [PMID: 34032369 DOI: 10.1002/tox.23295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Oxidative stress has been considered as an important cause of neurocyte damage induced by carbon monoxide (CO) poisoning; however, the precise mechanisms are not fully understood. The study aimed to elucidate the molecular mechanism and the neuroprotective effect of targeted regulatory nuclear factor erythroid2-related factor 2 (Nrf2) gene on acute brain injury in CO poisoning rats. An acute CO poisoning rat model was established by CO inhalation in hyperbaric oxygen chamber and followed by the administration of Nrf2 gene-loaded lentivirus. Mitochondrial membrane potential (ΔΨM), the levels of Nrf2, glutamate-cysteine ligase catalytic subunit (GCLC), catalase (CAT) and glutathione peroxidase (GSH-Px), and cell apoptosis were determined in brain tissue in rats. We found that CO poisoning could decrease ΔΨm of cells, slightly increase the expressions of Nrf2 and GCLC at mRNA and protein levels, reduce CAT and GSH-Px, and thus initiate apoptosis process. The Nrf2 gene treatment could obviously enhance the expressions of Nrf2 at mRNA and protein levels, and increase the concentrations of CAT and GSH-Px, maintain the ΔΨm of cells in brain tissue, significantly inhibit cell apoptosis as compared with the CO poisoning group (p < .05). These findings suggest that CO poisoning could induce oxidative stress and impair mitochondrial function of cells in brain tissue. The administration of Nrf2 gene could notably strengthen the antioxidant capacity of cells through regulating the downstream genes of Nrf2/antioxidant responsive element signal pathway, and positively protect cells against brain injury induced by acute severe CO poisoning.
Collapse
Affiliation(s)
- Xu-Dong Zhou
- Emergency Department, Shenzhen University General Hospital, Shenzhen, China
| | - Jing-Lin Wang
- Emergency Center, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Da-Dong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wen-Wen Jiang
- Centre of Integrated Chinese and Western Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ze-Kun Li
- Emergency Department, Shenzhen University General Hospital, Shenzhen, China
- Centre of Integrated Chinese and Western Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Li Wang
- Emergency Center, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Yong Zou
- Emergency Center, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Ming-Jun Bi
- Emergency Center, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Qin Li
- Emergency Department, Shenzhen University General Hospital, Shenzhen, China
| |
Collapse
|
24
|
Gasparello J, D'Aversa E, Papi C, Gambari L, Grigolo B, Borgatti M, Finotti A, Gambari R. Sulforaphane inhibits the expression of interleukin-6 and interleukin-8 induced in bronchial epithelial IB3-1 cells by exposure to the SARS-CoV-2 Spike protein. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 87:153583. [PMID: 34033999 PMCID: PMC8095027 DOI: 10.1016/j.phymed.2021.153583] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/02/2021] [Accepted: 04/23/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND A key clinical feature of COVID-19 is a deep inflammatory state known as "cytokine storm" and characterized by high expression of several cytokines, chemokines and growth factors, including IL-6 and IL-8. A direct consequence of this inflammatory state in the lungs is the Acute Respiratory Distress Syndrome (ARDS), frequently observed in severe COVID-19 patients. The "cytokine storm" is associated with severe forms of COVID-19 and poor prognosis for COVID-19 patients. Sulforaphane (SFN), one of the main components of Brassica oleraceae L. (Brassicaceae or Cruciferae), is known to possess anti-inflammatory effects in tissues from several organs, among which joints, kidneys and lungs. PURPOSE The objective of the present study was to determine whether SFN is able to inhibit IL-6 and IL-8, two key molecules involved in the COVID-19 "cytokine storm". METHODS The effects of SFN were studied in vitro on bronchial epithelial IB3-1 cells exposed to the SARS-CoV-2 Spike protein (S-protein). The anti-inflammatory activity of SFN on IL-6 and IL-8 expression has been evaluated by RT-qPCR and Bio-Plex analysis. RESULTS In our study SFN inhibits, in cultured IB3-1 bronchial cells, the gene expression of IL-6 and IL-8 induced by the S-protein of SARS-CoV-2. This represents the proof-of-principle that SFN may modulate the release of some key proteins of the COVID-19 "cytokine storm". CONCLUSION The control of the cytokine storm is one of the major issues in the management of COVID-19 patients. Our study suggests that SFN can be employed in protocols useful to control hyperinflammatory state associated with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Elisabetta D'Aversa
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Chiara Papi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Laura Gambari
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Brunella Grigolo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Research Center for Innovative Therapies of Cystic Fibrosis, University of Ferrara, Italy.
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Italian Consortium for Biotechnologies (C.I.B.); Research Center for Innovative Therapies of Cystic Fibrosis, University of Ferrara, Italy.
| |
Collapse
|
25
|
Mangla B, Javed S, Sultan MH, Kumar P, Kohli K, Najmi A, Alhazmi HA, Al Bratty M, Ahsan W. Sulforaphane: A review of its therapeutic potentials, advances in its nanodelivery, recent patents, and clinical trials. Phytother Res 2021; 35:5440-5458. [PMID: 34184327 DOI: 10.1002/ptr.7176] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/27/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
Traditionally, herbal supplements have shown an exceptional potential of desirability for the prevention of diseases and their treatment. Sulforaphane (SFN), an organosulfur compound belongs to the isothiocyanate (ITC) group and is mainly found naturally in cruciferous vegetables. Several studies have now revealed that SFN possesses broad spectrum of activities and has shown extraordinary potential as antioxidant, antitumor, anti-angiogenic, and anti-inflammatory agent. In addition, SFN is proven to be less toxic, non-oxidizable, and its administration to individuals is well tolerated, making it an effective natural dietary supplement for clinical trials. SFN has shown its ability to be a promising future drug molecule for the management of various diseases mainly due to its potent antioxidant properties. In recent times, several newer drug delivery systems were designed and developed for this potential molecule in order to enhance its bioavailability, stability, and to reduce its side effects. This review focuses to cover numerous data supporting the wide range of pharmacological activities of SFN, its drug-related issues, and approaches to improve its physicochemical and biological properties, including solubility, stability, and bioavailability. Recent patents and the ongoing clinical trials on SFN are also summarized.
Collapse
Affiliation(s)
- Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Shamama Javed
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Muhammad Hadi Sultan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Pankaj Kumar
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences & Research University (DPSRU), New Delhi, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia.,Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
26
|
Food-Derived Pharmacological Modulators of the Nrf2/ARE Pathway: Their Role in the Treatment of Diseases. Molecules 2021; 26:molecules26041016. [PMID: 33671866 PMCID: PMC7918973 DOI: 10.3390/molecules26041016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/28/2022] Open
Abstract
Oxidative stress, which refers to unbalanced accumulation of reactive oxygen species (ROS) levels in cells, has been linked to acute and chronic diseases. Nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) pathway plays a vital role in regulating cytoprotective genes and enzymes in response to oxidative stress. Therefore, pharmacological regulation of Nrf2/ARE pathway is an effective method to treat several diseases that are mainly characterized by oxidative stress and inflammation. Natural products that counteract oxidative stress by modulating Nrf2 have contributed significantly to disease treatment. In this review, we focus on bioactive compounds derived from food that are Nrf2/ARE pathway regulators and describe the molecular mechanisms for regulating Nrf2 to exert favorable effects in experimental models of diseases.
Collapse
|
27
|
Ke YY, Shyu YT, Wu SJ. Evaluating the Anti-Inflammatory and Antioxidant Effects of Broccoli Treated with High Hydrostatic Pressure in Cell Models. Foods 2021; 10:167. [PMID: 33467537 PMCID: PMC7830254 DOI: 10.3390/foods10010167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 11/25/2022] Open
Abstract
Isothiocyanates (ITCs) are important functional components of cruciferous vegetables. The principal isothiocyanate molecule in broccoli is sulforaphane (SFN), followed by erucin (ERN). They are sensitive to changes in temperature, especially high temperature environments where they are prone to degradation. The present study investigates the effects of high hydrostatic pressure on isothiocyanate content, myrosinase activity, and other functional components of broccoli, and evaluates its anti-inflammatory and antioxidant effects. Broccoli samples were treated with different pressures and for varying treatment times; 15 min at 400 MPa generated the highest amounts of isothiocyanates. The content of flavonoids and vitamin C were not affected by the high-pressure processing strategy, whereas total phenolic content (TPC) exhibited an increasing tendency with increasing pressure, indicating that high-pressure processing effectively prevents the loss of the heat-sensitive components and enhances the nutritional content. The activity of myrosinase (MYR) increased after high-pressure processing, indicating that the increase in isothiocyanate content is related to the stimulation of myrosinase activity by high-pressure processing. In other key enzymes, the ascorbate peroxidase (APX) activity was unaffected by high pressure, whereas peroxidase (POD) and polyphenol oxidase (PPO) activity exhibited a 1.54-fold increase after high-pressure processing, indicating that high pressures can effectively destroy oxidases and maintain food quality. With regards to efficacy evaluation, NO production was inhibited and the expression levels of inducible nitric oxide synthase (iNOS) and Cyclooxygenase-2 (COX-2) were decreased in broccoli treated with high pressures, whereas the cell viability remained unaffected. The efficacy was more significant when the concentration of SFN was 60 mg·mL-1. In addition, at 10 mg·mL-1 SFN, the reduced/oxidized glutathione (GSH/GSSG) ratio in inflammatory macrophages increased from 5.99 to 9.41. In conclusion, high-pressure processing can increase the isothiocyanate content in broccoli, and has anti-inflammatory and anti-oxidant effects in cell-based evaluation strategies, providing a potential treatment strategy for raw materials or additives used in healthy foods.
Collapse
Affiliation(s)
| | | | - Sz-Jie Wu
- Department of Horticulture and Landscape Architecture, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan; (Y.-Y.K.); (Y.-T.S.)
| |
Collapse
|
28
|
He YQ, Zhou CC, Yu LY, Wang L, Deng JL, Tao YL, Zhang F, Chen WS. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol Res 2021; 163:105224. [PMID: 33007416 PMCID: PMC7522693 DOI: 10.1016/j.phrs.2020.105224] [Citation(s) in RCA: 202] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) as common life-threatening lung diseases with high mortality rates are mostly associated with acute and severe inflammation in lungs. With increasing in-depth studies of ALI/ARDS, significant breakthroughs have been made, however, there are still no effective pharmacological therapies for treatment of ALI/ARDS. Especially, the novel coronavirus pneumonia (COVID-19) is ravaging the globe, and causes severe respiratory distress syndrome. Therefore, developing new drugs for therapy of ALI/ARDS is in great demand, which might also be helpful for treatment of COVID-19. Natural compounds have always inspired drug development, and numerous natural products have shown potential therapeutic effects on ALI/ARDS. Therefore, this review focuses on the potential therapeutic effects of natural compounds on ALI and the underlying mechanisms. Overall, the review discusses 159 compounds and summarizes more than 400 references to present the protective effects of natural compounds against ALI and the underlying mechanism.
Collapse
Affiliation(s)
- Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu-Yao Yu
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang Wang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiu-Ling Deng
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Long Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Feng Zhang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Wan-Sheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
29
|
Park JW, Ryu HW, Ahn HI, Min JH, Kim SM, Kim MG, Kwon OK, Hwang D, Kim SY, Choi S, Zamora N, Rosales K, Oh SR, Lee JW, Ahn KS. The Anti-Inflammatory Effect of Trichilia martiana C. DC. in the Lipopolysaccharide-Stimulated Inflammatory Response in Macrophages and Airway Epithelial Cells and in LPS-Challenged Mice. J Microbiol Biotechnol 2020; 30:1614-1625. [PMID: 32876073 PMCID: PMC9728236 DOI: 10.4014/jmb.2006.06042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022]
Abstract
A number of species of the genus Trichilia (Meliaceae) exhibit anti-inflammatory effects. However, the effect of Trichilia martiana C. DC. (TM) on lipopolysaccharide (LPS)-induced inflammation has not, to the best of our knowledge, yet been determined. Therefore, in the present study, the antiinflammatory effect of TM on LPS-stimulated RAW264.7 macrophages was evaluated. The ethanol extract of TM (TMEE) significantly inhibited LPS-induced nitric oxide (NO), prostaglandin 2 (PGE2), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). TMEE also reduced the levels of inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β and IL-6. The upregulation of mitogen-activated protein kinases (MAPKs) and NF-κB activation was revealed to be downregulated following TMEE pretreatment. Furthermore, TMEE was indicated to lead to the nucleus translocation of nuclear factor erythroid-derived 2-related factor 2 (Nrf2) and the expression of heme oxygenase-1 (HO-1). In H292 airway epithelial cells, the pretreatment of TMEE significantly downregulated the production of LPS-stimulated IL-1β, and TMEE was indicated to increase the expression of HO-1. In animal models exhibiting LPS-induced acute lung injury (ALI), treatment with TMEE reduced the levels of macrophages influx and TNF-α production in the bronchoalveolar lavage fluid (BALF) of ALI mice. Additionally, TMEE significantly downregulated the activation of ERK, JNK and IκB, and upregulated the expression of HO-1 in the lungs of ALI mice. In conclusion, the results of the current study demonstrated that TMEE could exert a regulatory role in the prevention or treatment of the endotoxin-mediated inflammatory response.
Collapse
Affiliation(s)
- Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 286, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 286, Republic of Korea
| | - Hye In Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 286, Republic of Korea
| | - Jae-Hong Min
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 286, Republic of Korea,College of Pharmacy, Chungbuk National University, Cheongju 8160, Republic of Korea
| | - Seong-Man Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 286, Republic of Korea,College of Pharmacy, Chungnam National University, Daejeon 414, Republic of Korea,
| | - Min-Gu Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 286, Republic of Korea,College of Pharmacy, Chungbuk National University, Cheongju 8160, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 286, Republic of Korea
| | - Daseul Hwang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 286, Republic of Korea,College of Pharmacy, Chungbuk National University, Cheongju 8160, Republic of Korea
| | - Soo-Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 311, Republic of Korea
| | - Sangho Choi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 311, Republic of Korea
| | - Nelson Zamora
- Bioprospecting Research Unit, National Biodiversity Institute, Santo Domingo, Heredia 22-3100, Costa Rica
| | - Kattia Rosales
- Bioprospecting Research Unit, National Biodiversity Institute, Santo Domingo, Heredia 22-3100, Costa Rica
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 286, Republic of Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 286, Republic of Korea,Corresponding authors J-W.Lee Phone : +82-43-240-6135 Fax : +82-43-240-6129 E-mail:
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 286, Republic of Korea,K-S.Ahn Phone : +82-43-240-6113 Fax : +82-43-240-6129 E-mail:
| |
Collapse
|
30
|
Majnooni MB, Fakhri S, Shokoohinia Y, Kiyani N, Stage K, Mohammadi P, Gravandi MM, Farzaei MH, Echeverría J. Phytochemicals: Potential Therapeutic Interventions Against Coronavirus-Associated Lung Injury. Front Pharmacol 2020; 11:588467. [PMID: 33658931 PMCID: PMC7919380 DOI: 10.3389/fphar.2020.588467] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Since the outbreak of coronavirus disease 2019 (COVID-19) in December 2019, millions of people have been infected and died worldwide. However, no drug has been approved for the treatment of this disease and its complications, which urges the need for finding novel therapeutic agents to combat. Among the complications due to COVID-19, lung injury has attained special attention. Besides, phytochemicals have shown prominent anti-inflammatory effects and thus possess significant effects in reducing lung injury caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Also, the prevailing evidence reveales the antiviral effects of those phytochemicals, including anti-SARS-CoV activity, which could pave the road in providing suitable lead compounds in the treatment of COVID-19. In the present study, candidate phytochemicals and related mechanisms of action have been shown in the treatment/protection of lung injuries induced by various methods. In terms of pharmacological mechanism, phytochemicals have shown potential inhibitory effects on inflammatory and oxidative pathways/mediators, involved in the pathogenesis of lung injury during COVID-19 infection. Also, a brief overview of phytochemicals with anti-SARS-CoV-2 compounds has been presented.
Collapse
Affiliation(s)
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yalda Shokoohinia
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Ric Scalzo Botanical Research Institute, Southwest College of Naturopathic Medicine, Tempe, AZ, United States
| | - Narges Kiyani
- Ric Scalzo Botanical Research Institute, Southwest College of Naturopathic Medicine, Tempe, AZ, United States
| | - Katrina Stage
- Ric Scalzo Botanical Research Institute, Southwest College of Naturopathic Medicine, Tempe, AZ, United States
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento De Ciencias Del Ambiente, Facultad De Química y Biología, Universidad De Santiago De Chile, Santiago, Chile
| |
Collapse
|
31
|
Abouzed TK, Beltagy EER, Kahilo KA, Ibrahim WM. Molecular changes associated with the anticancer effect of sulforaphane against Ehrlich solid tumour in mice. J Biochem Mol Toxicol 2020; 35:e22655. [PMID: 33094879 DOI: 10.1002/jbt.22655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 02/05/2023]
Abstract
The anticancer effect of sulforaphane (SFN) is mediated by several signalling pathways. However, little is known regarding the underlying mechanism in Ehrlich solid tumours (ESTs) in mice. This study was conducted to determine molecular changes associated with the anticancer effect of SFN and to compare its preventive (cotreatment) and therapeutic (posttreatment) effects. Ehrlich (murine mammary adenocarcinoma) solid tumour was selected and changes in the gene expression were determined in tumour tissues by the real-time polymerase chain reaction. The results showed that SFN increased the expression of the oxidative stress gene NrF2 and its downstream targets (HO1 and CAT). Conversely, SFN administration decreased the expression of the epigenesis-related genes (HDAC1 and DNMT1) and inflammation-related genes (TNFa, NFkB and Cox2). Overall, SFN cotreatment presented notable molecular changes than the posttreatment strategy. These data suggest that molecular changes associated with the anticancer effects of SFN against EST involved induction of oxidative stress, inhibition of inflammation and epigenetic modifications.
Collapse
Affiliation(s)
- Tarek K Abouzed
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Esraa-Elden R Beltagy
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt.,Department of Clinical Pathology and Clinical Chemistry, Kafrelsheikh University Hospital, Kafr El-Sheikh, Egypt
| | - Khaled A Kahilo
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Wafaa M Ibrahim
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
32
|
Hudlikar R, Wang L, Wu R, Li S, Peter R, Shannar A, Chou PJ, Liu X, Liu Z, Kuo HCD, Kong AN. Epigenetics/Epigenomics and Prevention of Early Stages of Cancer by Isothiocyanates. Cancer Prev Res (Phila) 2020; 14:151-164. [PMID: 33055265 DOI: 10.1158/1940-6207.capr-20-0217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/26/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
Cancer is a complex disease and cancer development takes 10-50 years involving epigenetics. Evidence suggests that approximately 80% of human cancers are linked to environmental factors impinging upon genetics/epigenetics. Because advanced metastasized cancers are resistant to radiotherapy/chemotherapeutic drugs, cancer prevention by relatively nontoxic chemopreventive "epigenetic modifiers" involving epigenetics/epigenomics is logical. Isothiocyanates are relatively nontoxic at low nutritional and even higher pharmacologic doses, with good oral bioavailability, potent antioxidative stress/antiinflammatory activities, possess epigenetic-modifying properties, great anticancer efficacy in many in vitro cell culture and in vivo animal models. This review summarizes the latest advances on the role of epigenetics/epigenomics by isothiocyanates in prevention of skin, colon, lung, breast, and prostate cancers. The exact molecular mechanism how isothiocyanates modify the epigenetic/epigenomic machinery is unclear. We postulate "redox" processes would play important roles. In addition, isothiocyanates sulforaphane and phenethyl isothiocyanate, possess multifaceted molecular mechanisms would be considered as "general" cancer preventive agents not unlike chemotherapeutic agents like platinum-based or taxane-based drugs. Analogous to chemotherapeutic agents, the isothiocyanates would need to be used in combination with other nontoxic chemopreventive phytochemicals or drugs such as NSAIDs, 5-α-reductase/aromatase inhibitors targeting different signaling pathways would be logical for the prevention of progression of tumors to late advanced metastatic states.
Collapse
Affiliation(s)
- Rasika Hudlikar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Rebecca Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ahmad Shannar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Pochung Jordan Chou
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Xia Liu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Department of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou, China
| | - Zhigang Liu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Department of Food and Pharmaceutical Engineering, Guiyang University, Guiyang, China
| | - Hsiao-Chen Dina Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.
| |
Collapse
|
33
|
Bein K, Ganguly K, Martin TM, Concel VJ, Brant KA, Di YPP, Upadhyay S, Fabisiak JP, Vuga LJ, Kaminski N, Kostem E, Eskin E, Prows DR, Jang AS, Leikauf GD. Genetic determinants of ammonia-induced acute lung injury in mice. Am J Physiol Lung Cell Mol Physiol 2020; 320:L41-L62. [PMID: 33050709 DOI: 10.1152/ajplung.00276.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this study, a genetically diverse panel of 43 mouse strains was exposed to ammonia, and genome-wide association mapping was performed employing a single-nucleotide polymorphism (SNP) assembly. Transcriptomic analysis was used to help resolve the genetic determinants of ammonia-induced acute lung injury. The encoded proteins were prioritized based on molecular function, nonsynonymous SNP within a functional domain or SNP within the promoter region that altered expression. This integrative functional approach revealed 14 candidate genes that included Aatf, Avil, Cep162, Hrh4, Lama3, Plcb4, and Ube2cbp, which had significant SNP associations, and Aff1, Bcar3, Cntn4, Kcnq5, Prdm10, Ptcd3, and Snx19, which had suggestive SNP associations. Of these genes, Bcar3, Cep162, Hrh4, Kcnq5, and Lama3 are particularly noteworthy and had pathophysiological roles that could be associated with acute lung injury in several ways.
Collapse
Affiliation(s)
- Kiflai Bein
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Koustav Ganguly
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania.,Unit of Integrated Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Timothy M Martin
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vincent J Concel
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kelly A Brant
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Y P Peter Di
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Swapna Upadhyay
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania.,Unit of Integrated Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - James P Fabisiak
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Louis J Vuga
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Naftali Kaminski
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Emrah Kostem
- Departments of Computer Science and Human Genetics, University of California, Los Angeles, California
| | - Eleazar Eskin
- Departments of Computer Science and Human Genetics, University of California, Los Angeles, California
| | - Daniel R Prows
- Division of Human Genetics, Cincinnati Children's Hospital and Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Ann-Soo Jang
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea
| | - George D Leikauf
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
34
|
Zhuang L, Xu K, Zhu Y, Wang F, Xiao J, Guo L. Calcium affects glucoraphanin metabolism in broccoli sprouts under ZnSO 4 stress. Food Chem 2020; 334:127520. [PMID: 32693332 DOI: 10.1016/j.foodchem.2020.127520] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/23/2020] [Accepted: 07/05/2020] [Indexed: 10/23/2022]
Abstract
CaCl2, Ca2+ chelator (EGTA) and Ca2+ channel blocker (verapamil) were used to investigate mechanism of glucoraphanin metabolism in broccoli sprouts under ZnSO4 stress. CaCl2 treatment promoted sprout growth, reduced MDA (malonaldehyde) content and electrolyte leakage in sprouts under ZnSO4 stress. The highest MDA content and electrolyte leakage were obtained in ZnSO4 plus verapamil-treated sprouts. In addition, ZnSO4 plus CaCl2 treatment significantly enhanced glucoraphanin content and sulforaphane formation, while an opposite result was observed after ZnSO4 plus EGTA treatment; which were further supported by expression of glucoraphanin biosynthetic and hydrolytic genes as well as myrosinase (MYR) and epithiospecifier protein (ESP) activities. These results indicated that exogenous and endogenous calcium promoted glucoraphanin biosynthesis and the conversion rate of glucoraphanin into sulforaphane. Verapamil treatment also stimulated glucoraphanin biosynthesis, but exerted an adverse influence on sulforaphane formation from the hydrolysis of glucoraphanin because of much higher ESP expression and ESP activity than ZnSO4 treatment.
Collapse
Affiliation(s)
- Li Zhuang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong, People's Republic of China
| | - Kexin Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Yinglian Zhu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong, People's Republic of China
| | - Fengwu Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong, People's Republic of China
| | - Junxia Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong, People's Republic of China.
| | - Liping Guo
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong, People's Republic of China.
| |
Collapse
|
35
|
Ruhee RT, Suzuki K. The Integrative Role of Sulforaphane in Preventing Inflammation, Oxidative Stress and Fatigue: A Review of a Potential Protective Phytochemical. Antioxidants (Basel) 2020; 9:antiox9060521. [PMID: 32545803 PMCID: PMC7346151 DOI: 10.3390/antiox9060521] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/19/2022] Open
Abstract
Cruciferous vegetables hold a myriad of bioactive molecules that are renowned for possessing unique medicinal benefits. Sulforaphane (SFN) is one of the potential nutraceuticals contained within cruciferous vegetables that is useful for improving health and diseased conditions. The objective of this review is to discuss the mechanistic role for SFN in preventing oxidative stress, fatigue, and inflammation. Direct and indirect research evidence is reported to identify the nontoxic dose of SFN for human trials, and effectiveness of SFN to attenuate inflammation and/or oxidative stress. SFN treatment modulates redox balance via activating redox regulator nuclear factor E2 factor-related factor (Nrf2). SFN may play a crucial role in altering the Keap1/Nrf2/ARE pathway (an intricate response to many stimuli or stress), which induces Nrf2 target gene activation to reduce oxidative stress. In addition, SFN reduces inflammation by suppressing centrally involved inflammatory regulator nuclear factor-kappa B (NF-κB), which in turn downregulates the expression of proinflammatory cytokines and mediators. Exercise may induce a significant range of fatigue, inflammation, oxidative stress, and/or organ damage due to producing excessive reactive oxygen species (ROS) and inflammatory cytokines. SFN may play an effective role in preventing such damage via inducing phase 2 enzymes, activating the Nrf2/ARE signaling pathway or suppressing nuclear translocation of NF-κB. In this review, we summarize the integrative role of SFN in preventing fatigue, inflammation, and oxidative stress, and briefly introduce the history of cruciferous vegetables and the bioavailability and pharmacokinetics of SFN reported in previous research. To date, very limited research has been conducted on SFN’s effectiveness in improving exercise endurance or performance. Therefore, more research needs to be carried out to determine the effectiveness of SFN in the field of exercise and lifestyle factors.
Collapse
Affiliation(s)
- Ruheea Taskin Ruhee
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan;
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
- Correspondence: ; Tel.: +81-4-2947-6898
| |
Collapse
|
36
|
Lin CY, Yao CA. Potential Role of Nrf2 Activators with Dual Antiviral and Anti-Inflammatory Properties in the Management of Viral Pneumonia. Infect Drug Resist 2020; 13:1735-1741. [PMID: 32606823 PMCID: PMC7295331 DOI: 10.2147/idr.s256773] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) pandemic has already caused a huge burden to the global healthcare system, with the death toll reached tens of thousands. Although some antiviral agents were identified and used to inhibit viral replication, the management of cytokine storm is also a critical issue. In this article, we reviewed the literature on drug candidates for severe acute respiratory syndrome (SARS-CoV-1) and provided a brief overview of a class of drugs that exert antiviral and anti-inflammatory effects. These molecules mitigated inflammatory cytokine cascades induced by viral infections via Nrf2 activating capacity and might have additional anti-fibrotic and anti-remodeling properties. Besides, their effects on the regulation of scavenger receptors expression by macrophages may offer some benefits to the pulmonary antibacterial defense system after viral infection. The potential roles of these agents assessed on the basis of the pathophysiology of viral pneumonia and acute respiratory distress syndrome were also discussed. Further research is needed to ascertain whether Nrf2 activators are useful in the management of viral pneumonia.
Collapse
Affiliation(s)
- Chih-Yin Lin
- Department of Neurology, Chang Gung Memorial Hospital, Linkou 333, Taiwan
| | - Chun-An Yao
- Department of Dermatology, Cathay General Hospital, Taipei, Taiwan
| |
Collapse
|
37
|
Ruhee RT, Roberts LA, Ma S, Suzuki K. Organosulfur Compounds: A Review of Their Anti-inflammatory Effects in Human Health. Front Nutr 2020; 7:64. [PMID: 32582751 PMCID: PMC7280442 DOI: 10.3389/fnut.2020.00064] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/20/2020] [Indexed: 12/15/2022] Open
Abstract
Phytonutrients are widely recognized for providing protective human health benefits. Among the phytonutrients, epidemiological and experimental studies show that dietary organosulfur compounds (OSC) play a significant role in preventing various human pathological progressions, including chronic inflammation, by decreasing inflammatory mediators such as nitric oxide (NO), prostaglandin (PG)E2, interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and IL-17, which are all typical hallmarks of inflammation. Evidence supports OSC in reducing the expression of these markers, thereby attenuating chronic inflammatory processes. Nuclear factor-kappa B (NF-κB) is a key regulating factor during inflammation, and novel evidence shows that OSC downregulates this transcriptional factor, thus contributing to the anti-inflammatory response. In vitro and in vivo studies show that inflammation is mechanistically linked with acute and chronic pathological conditions including cancer, diabetes, obesity, neural dysfunction, etc. Furthermore, a considerable number of experiments have demonstrated that the anti-inflammatory properties of OSC occur in a dose-dependent manner. These experiments also highlight indirect mechanisms as well as potent co-functions for protective roles as antioxidants, and in providing chemoprotection and neuroprotection. In this brief review, we provided an overview of the anti-inflammatory effects of OSC and elucidated probable mechanisms that are associated with inflammation and chronic disorders.
Collapse
Affiliation(s)
| | - Llion Arwyn Roberts
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia.,School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Sihui Ma
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | | |
Collapse
|
38
|
Acetylated Polysaccharides From Pleurotus geesteranus Alleviate Lung Injury Via Regulating NF-κB Signal Pathway. Int J Mol Sci 2020; 21:ijms21082810. [PMID: 32316588 PMCID: PMC7216226 DOI: 10.3390/ijms21082810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022] Open
Abstract
The present work investigated the anti-inflammatory, antioxidant, and lung protection effects of acetylated Pleurotus geesteranus polysaccharides (AcPPS) on acute lung injury (ALI) mice. The acetylation of AcPPS was successfully shown by the peaks of 1737 cm−1 and 1249 cm−1 by FTIR. The animal experiments demonstrated that lung damage can be induced by zymosan. However, the supplementation of AcPPS had potential effects on reducing lung index, remitting inflammatory symptoms (TNF-α, IL-1β, and IL-6), inhibiting NF-κB signal pathway based on up-regulating the level of IκBα and down-regulating p-IκBα level by Western blotting and immunofluorescence assay, preventing oxidative stress (ROS, SOD, GSH-Px, CAT, T-AOC, and MDA), reducing lipid accumulation (TC, TG, LDL-C, HDL-C, and VLDL-C), and alleviating lung functions by histopathologic observation. These results demonstrated that AcPPS might be suitable for natural food for prevention or remission in ALI.
Collapse
|
39
|
Shaukat A, Yang C, Yang Y, Guo YF, Jiang K, Guo S, Liu J, Zhang T, Zhao G, Ma X, Wu Z, Zhou Q, Akhtar M, Zahoor A, Umar T, Shaukat I, Hanif S, Rajput SA, Hassan M, Mehmood K, Hua Z, Xiaoyan W, Nannan Y, Deng G. Ginsenoside Rb 1: A novel therapeutic agent in Staphylococcusaureus-induced Acute Lung Injury with special reference to Oxidative stress and Apoptosis. Microb Pathog 2020; 143:104109. [PMID: 32171710 DOI: 10.1016/j.micpath.2020.104109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/20/2022]
Abstract
Acute lung injury (ALI) is considered as an uncontrolled inflammatory response that can leads to acute respiratory distress syndrome (ARDS), which limits the therapeutic strategies. Ginsenosides Rb1 (Rb1), an active ingredient obtained from Panax ginseng, possesses a broad range of pharmacological and medicinal properties, comprising the anti-inflammatory, anti-oxidant, and anti-tumor activities. Therefore, the purpose of the present study was to investigate the protective effects of Rb1 against S. aureus-induced (ALI) through regulation of Nuclear factor erythroid 2-related factor 2 (Nrf2) and mitochondrial-mediated apoptotic pathways in mice (in-vivo), and RAW264.7 cells (in-vitro). For that purpose, forty Kunming mice were randomly assigned into four treatment groups; (1) Control group (phosphate buffer saline (PBS); (2) S. aureus group; (3) S. aureus + Rb1 (20 mg/kg) group; and (4) Rb1 (20 mg/kg) group. The 20 μg/mL dose of Rb1 was used in RAW264.7 cells. In the present study, we found that Rb1 treatment reduced ALI-induced oxidative stress via suppressing the accumulation of malondialdehyde (MDA) and myeloperoxidase (MPO) and increase the antioxidant enzyme activities of superoxidase dismutase 1 (SOD1), Catalase (CAT), and glutathione peroxidase 1 (Gpx1). Similarly, Rb1 markedly increased messenger RNA (mRNA) expression of antioxidant genes (SOD1, CAT and Gpx1) in comparison with ALI group. The histopathological results showed that Rb1 treatment ameliorated ALI-induced hemorrhages, hyperemia, perivascular edema and neutrophilic infiltration in the lungs of mice. Furthermore, Rb1 enhanced the antioxidant defense system through activating the Nrf2 signaling pathway. Our findings showed that Rb1 treated group significantly up-regulated mRNA and protein expression of Nrf2 and its downstream associated genes down-regulated by ALI in vivo and in vitro. Moreover, ALI significantly increased the both mRNA and protein expression of mitochondrial-apoptosis-related genes (Bax, caspase-3, caspase-9, cytochrome c and p53), while decreased the Bcl-2. In addition, Rb1 therapy significantly reversed the mRNA and protein expression of these mitochondrial-apoptosis-related genes, as compared to the ALI group in vivo and in vitro. Taken together, Rb1 alleviates ALI-induced oxidative injury and apoptosis by modulating the Nrf2 and mitochondrial signaling pathways in the lungs of mice.
Collapse
Affiliation(s)
- Aftab Shaukat
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Chao Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yaping Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ying-Fang Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Junfeng Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China; College of Animal Science, Tarim University, Alar, Xinjiang, 843300, People's Republic of China
| | - Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiaofei Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhiming Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qingqing Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Muhammad Akhtar
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Arshad Zahoor
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Talha Umar
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Irfan Shaukat
- Faculty of Medicine, University of Lorraine, Nancy, France
| | | | - Shahid Ali Rajput
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Guangzhou, 510642, People's Republic of China
| | - Mubashar Hassan
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Khalid Mehmood
- University College of Veterinary & Animal Sciences, Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Zhang Hua
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Wang Xiaoyan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yin Nannan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
40
|
Effects of Plant and Animal Natural Products on Mitophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6969402. [PMID: 32308807 PMCID: PMC7086453 DOI: 10.1155/2020/6969402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/11/2020] [Accepted: 02/22/2020] [Indexed: 01/07/2023]
Abstract
Mitophagy is a protected cellular process that is essential for autophagic removal of damaged mitochondria and for preservation of a healthy mitochondrial population. In the last years, a particular interest has been devoted in studying the effects of natural compounds on mitophagy. Different natural compounds may modulate mitochondrial oxidative phosphorylation, the production of mitochondrial reactive oxygen species, the expression of mitophagy- and autophagy-related genes, and the activities of transcription factors which regulate the expression of mitochondrial proteins, thereby controlling mitochondrial damage and mitophagy. Remarkably, since mitochondrial function has a crucial role in the pathogenesis of various diseases (e.g., cancer, atherosclerosis, Duchenne muscular dystrophy, diabetes complications, Alzheimer's disease, and hepatic steatosis), these effects might have important therapeutic implications. In this review, preclinical studies investigating the role of different natural compounds in the modulation of mitophagy will be discussed.
Collapse
|
41
|
Zhang Y, Ma X, Jiang D, Chen J, Jia H, Wu Z, Kim IH, Yang Y. Glycine Attenuates Lipopolysaccharide-Induced Acute Lung Injury by Regulating NLRP3 Inflammasome and NRF2 Signaling. Nutrients 2020; 12:nu12030611. [PMID: 32110933 PMCID: PMC7146254 DOI: 10.3390/nu12030611] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
Glycine supplementation has been reported to alleviate lipopolysaccharide (LPS)-induced lung injury in mice. However, the underlying mechanisms responsible for this beneficial effect remain unknown. In the present study, male C57BL/6 mice were treated with aerosolized glycine (1000 mg in 5 mL of 0.9% saline) or vehicle (0.9% saline) once daily for 7 continuous days, and then were exposed to aerosolized LPS (5 mg in 5 mL of 0.9% saline) for 30 min to induce lung injury. Sera and lung tissues were collected 24 h post LPS challenge. Results showed that glycine pretreatment attenuated LPS-induced decreases of mucin at both protein and mRNA levels, reduced LPS-triggered upregulation of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interferons, granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukins. Further study showed that glycine-reduced LPS challenge resulted in the upregulation of nuclear factor κB (NF-κB), nucleotide binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome. In addition, LPS exposure led to the downregulation of NRF2 and downstream targets, which were significantly improved by glycine administration in the lung tissues. Our findings indicated that glycine pretreatment prevented LPS-induced lung injury by regulating both NLRP3 inflammasome and NRF2 signaling.
Collapse
Affiliation(s)
- Yunchang Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China; (Y.Z.); (X.M.); (D.J.); (J.C.); (H.J.); (Z.W.)
| | - Xiaoshi Ma
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China; (Y.Z.); (X.M.); (D.J.); (J.C.); (H.J.); (Z.W.)
| | - Da Jiang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China; (Y.Z.); (X.M.); (D.J.); (J.C.); (H.J.); (Z.W.)
| | - Jingqing Chen
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China; (Y.Z.); (X.M.); (D.J.); (J.C.); (H.J.); (Z.W.)
| | - Hai Jia
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China; (Y.Z.); (X.M.); (D.J.); (J.C.); (H.J.); (Z.W.)
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China; (Y.Z.); (X.M.); (D.J.); (J.C.); (H.J.); (Z.W.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, Cheonan 330-714, Korea;
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China; (Y.Z.); (X.M.); (D.J.); (J.C.); (H.J.); (Z.W.)
- Correspondence: ; Tel.: +86-10-62734655
| |
Collapse
|
42
|
Antioxidants as a Potential Target against Inflammation and Oxidative Stress in Attention-Deficit/Hyperactivity Disorder. Antioxidants (Basel) 2020; 9:antiox9020176. [PMID: 32098021 PMCID: PMC7070894 DOI: 10.3390/antiox9020176] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
Psychostimulants and non-psychostimulants are the medications prescribed for the treatment of attention-deficit/hyperactivity disorder (ADHD). However, several adverse results have been linked with an increased risk of substance use and side effects. The pathophysiology of ADHD is not completely known, although it has been associated with an increase in inflammation and oxidative stress. This review presents an overview of findings following antioxidant treatment for ADHD and describes the potential amelioration of inflammation and oxidative stress using antioxidants that might have a future as multi-target adjuvant therapy in ADHD. The use of antioxidants against inflammation and oxidative conditions is an emerging field in the management of several neurodegenerative and neuropsychiatric disorders. Thus, antioxidants could be promising as an adjuvant ADHD therapy.
Collapse
|
43
|
Jiang S, Yang Z, Huang L, Yang W, Song D, Liu F, Ge J, Wang Y, Jiang S. Effect of Illicium verum or Eucommia ulmoides leaf extracts on the anti-stress ability, and mRNA and protein expression of Nrf2 and TNF-α in Duroc × Landrace × Yorkshire and Chinese native Licha-black nursery piglets. J Anim Physiol Anim Nutr (Berl) 2019; 104:1085-1095. [PMID: 31667936 DOI: 10.1111/jpn.13235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/09/2019] [Accepted: 09/21/2019] [Indexed: 01/10/2023]
Abstract
Plant extracts are considered to be an effective alternative to antibiotics in response to weaning stress in piglets. This study evaluated the effect of Illicium verum extracts (IVE) or Eucommia ulmoides leaf extracts (ELE) on growth performance, serum and liver antioxidant ability of nursery piglets, as well as the difference of IVE and ELE on Duroc × Landrace × Yorkshire (DLY) and Chinese native Licha-black (LCB) piglets. A total of 96 nursery piglets (48 DLY and 48 LCB piglets) with an average body weight of 11.22 ± 0.32 kg were randomly divided into four treatments in a 2 × 4 factorial design. Each treatment had four replicates with 3 DLY and 3 LCB piglets per replicate respectively. Treatments included: basal diet, basal diet + 500 mg/kg IVE, basal diet + 250 mg/kg ELE and basal diet + 50 mg/kg chlortetracycline (CHL). All piglets were housed individually for the 42 days trial period after 7 days adaptation. Results showed that there were significant interactions (p < .05) between piglets species and dietary treatments in average daily gain (ADG) and feed efficiency, serum and hepatic glutathione peroxidase (GSH-Px) and malondialdehyde (MDA), hepatic integral optical density (IOD) of α-tumour necrosis factor (TNF-α), hepatic relative mRNA expressions of nuclear factor erythroid 2-related factor 2 (Nrf2)/TNF-α and protein expression of TNF-α. Regardless of piglets species, supplementation with IVE and ELE increased (p < .05) ADG and feed efficiency, T-SOD and GSH-Px in serum and liver, hepatic IOD of Nrf2, hepatic mRNA and protein expression of Nrf2/TNF-α. However, CHL treatment resulted in lower (p < .05) serum GSH-Px and hepatic mRNA and protein expression of Nrf2/TNF-α, and higher hepatic MDA and IOD of TNF-α. Compared to LCB, DLY piglets had higher (p < .05) ADG and feed efficiency, serum and hepatic MDA, and protein expression of TNF-α, but lower (p < .05) ADFI, liver index, serum and hepatic GSH-Px, hepatic IOD of TNF-α, mRNA expressions of Nrf2/TNF-α were observed. In conclusion, Illicium verum (500 mg/kg) and Eucommia ulmoides leaf (250 mg/kg) extracts can increase the growth performance and antioxidant ability of DLY and LCB piglets, while chlortetracycline produces undesirable side-effects on the antioxidant ability of DLY and LCB piglets. Illicium verum and Eucommia ulmoides leaf extracts produced different antioxidant effects in DLY and LCB piglets with the Chinese native Licha-black pig responding better than Duroc × Landrace × Yorkshire.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Zaibin Yang
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Libo Huang
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Weiren Yang
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Danping Song
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Faxiao Liu
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Jinshan Ge
- Shandong Zhongcheng feed Technology Co., Ltd, Feicheng, China
| | - Yuxi Wang
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Shuzhen Jiang
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| |
Collapse
|
44
|
Pei X, Zhang XJ, Chen HM. Bardoxolone treatment alleviates lipopolysaccharide (LPS)-induced acute lung injury through suppressing inflammation and oxidative stress regulated by Nrf2 signaling. Biochem Biophys Res Commun 2019; 516:270-277. [PMID: 31248593 DOI: 10.1016/j.bbrc.2019.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 06/01/2019] [Indexed: 01/01/2023]
Abstract
Nuclear factor-erythroid 2 related factor 2 (Nrf2) plays critical roles in attenuating various inflammation- and oxidative stress-induced diseases, including acute lung injury (ALI). Bardoxolone (Bard), a synthetic triterpenoid based on natural product oleanolic acid, is one of the most potent Nrf2 activator. However, if Bard could prevent lipopolysaccharide (LPS)-induced ALI by inducing Nrf2 activation and its down-streaming signals, is still poorly understood. In this study, we attempted to explore the protective effect of Bard on ALI and the underlying molecular mechanisms. The results indicated that Bard significantly attenuated ALI through reducing the lung wet/dry weight ratio and protein concentration, neutrophil infiltration, malondialdehyde (MDA) and myeloperoxidase (MPO) levels, and improving superoxide dismutase (SOD) and glutathione (GSH) activities. In addition, Bard effectively ameliorated histopathological alterations, reactive oxygen species (ROS) production, pro-inflammatory cytokines release, and the expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX2) and high mobility group box 1 (HMGB1). Moreover, the inhibitory role of Bard in inflammation was also attributed to its suppression of nuclear factor-κB (NF-κB) signaling. Furthermore, the activation of mitogen-activated protein kinases (MAPKs) signaling, including p38, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK), induced by LPS was substantially ameliorated by Bard. The beneficial effects of Bard on ALI were confirmed in LPS-incubated cells in vitro. Meanwhile, the in vitro studies also demonstrated that Bard-improved ALI was largely due to its role in inducing Nrf2 signaling through a dose-dependent manner. Importantly, we found that Bard-attenuated histological changes, inflammation, ROS production, NF-κB and MAPKs signaling in Nrf2+/+ mice were significantly abolished in mice with Nrf2 knockout. Therefore, our study for the first time provided evidence that Bard could effectively ameliorate LPS-induced ALI by reducing oxidative stress and inflammation mainly through the activation of Nrf2 signaling.
Collapse
Affiliation(s)
- Xianfeng Pei
- Department of Endocrinology, Ankang Central Hospital, Shaanxi, 725000, China
| | - Xiao-Jun Zhang
- Department of Endocrinology, Ankang Central Hospital, Shaanxi, 725000, China
| | - He-Ming Chen
- Department of Endocrinology, Ankang Central Hospital, Shaanxi, 725000, China.
| |
Collapse
|
45
|
Nadeem A, Ahmad SF, Al-Harbi NO, Attia SM, Bakheet SA, Ibrahim KE, Alqahtani F, Alqinyah M. Nrf2 activator, sulforaphane ameliorates autism-like symptoms through suppression of Th17 related signaling and rectification of oxidant-antioxidant imbalance in periphery and brain of BTBR T+tf/J mice. Behav Brain Res 2019; 364:213-224. [DOI: 10.1016/j.bbr.2019.02.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/17/2019] [Accepted: 02/17/2019] [Indexed: 12/11/2022]
|
46
|
Subedi L, Lee JH, Yumnam S, Ji E, Kim SY. Anti-Inflammatory Effect of Sulforaphane on LPS-Activated Microglia Potentially through JNK/AP-1/NF-κB Inhibition and Nrf2/HO-1 Activation. Cells 2019; 8:cells8020194. [PMID: 30813369 PMCID: PMC6406309 DOI: 10.3390/cells8020194] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/16/2019] [Accepted: 02/20/2019] [Indexed: 12/21/2022] Open
Abstract
Sulforaphane (SFN), a potent nuclear factor erythroid 2-related factor 2 (Nrf2) activator, is present in the species of the Brassicaceae, especially in broccoli sprouts. In this study, the effects of SFN against microglial activation and inflammation, and the potential mechanisms involved, were analyzed. As mitogen-activated protein kinase (MAPK) signaling plays a key role in microglial activation and inflammation, we focused on the role of SFN in regulating the MAPK signaling regulation of the inflammatory and anti-inflammatory cascades in lipopolysaccharide (LPS)-activated microglia. The anti-inflammatory and immunomodulatory effects of SFN were explored by evaluating the expression and secretion of inflammatory proteins, cytokines, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and activator protein-1 (AP-1) under pre- and post-treatment conditions. Under the SFN pre- and post-treatment conditions, the MAPK phosphorylation levels were significantly reduced in both acutely and chronically activated microglial cells. SFN also reduced the c-Jun N-terminal kinase (JNK) phosphorylation levels, which subsequently reduced NF-κB and AP-1 signaling. As a result, the expression of the inflammatory mediators (iNOS, COX-2, NO, and PGE2) and proinflammatory cytokines (TNF-α, IL-6, and IL-1β) was decreased. At the same time, SFN increased the expression of Nrf2 and heme oxygenase-1 (HO-1) as well as the production of the anti-inflammatory cytokines IL-10 and IL-4. In conclusion, this study demonstrated that SFN exerts an anti-neuroinflammatory effect on microglia through JNK/AP-1/NF-κB pathway inhibition and Nrf2/HO-1 pathway activation.
Collapse
Affiliation(s)
- Lalita Subedi
- Laboratory of Pharmacognosy, College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea.
| | - Jae Hyuk Lee
- Laboratory of Pharmacognosy, College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea.
| | - Silvia Yumnam
- Laboratory of Pharmacognosy, College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea.
| | - Eunhee Ji
- Laboratory of Clinical Pharmacy, College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea.
| | - Sun Yeou Kim
- Laboratory of Pharmacognosy, College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea.
- Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
- Gachon Medical Research Institute, Gil Medical Center, Incheon 21565, Korea.
| |
Collapse
|
47
|
Zhang R, Kyriss T, Dippon J, Boedeker E, Friedel G. Preoperative serum lactate dehydrogenase level as a predictor of major complications following thoracoscopic lobectomy: a propensity-adjusted analysis. Eur J Cardiothorac Surg 2019; 56:5315640. [PMID: 30753382 DOI: 10.1093/ejcts/ezz027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/14/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Despite the positive effects of a thoracoscopic approach on improving postoperative outcomes, the risk of major complications following thoracoscopic lobectomy is not negligible. We sought to assess the usefulness of the preoperative determination of serum biomarkers to refine risk stratification in this patient population. METHODS From 2009 to 2017, 626 patients (285 women, 341 men; median age: 67 years) underwent thoracoscopic lobectomy or anatomical segmentectomy for confirmed or suspected early-stage lung cancer or metastasis at our institution. Preoperative serum biomarkers, including albumin, C-reactive protein, haemoglobin and lactate dehydrogenase (LDH), were examined as predictors of postoperative cardiopulmonary complications using logistic regression analyses followed by causal inference. RESULTS The 90-day mortality, cardiopulmonary complication and overall morbidity rates were 1.0%, 13.1% and 18.1%, respectively. Although serum albumin, C-reactive protein and haemoglobin were not associated with cardiopulmonary complications in regression analyses, preoperative serum LDH level emerged as an independent morbidity predictor (odds ratio 1.008, 95% confidence interval 1.002-1.013; P = 0.006). The causal inference using the covariate balancing generalized propensity score methodology demonstrated similar results and an approximately positive linear relationship between the odds of cardiopulmonary complications and preoperative serum LDH level. For every 100 U/l increase in preoperative serum LDH, a 2-fold increase in the odds of cardiopulmonary complications was observed. CONCLUSIONS Our results suggest that the preoperative serum LDH level is an independent predictor of 90-day cardiopulmonary complications following thoracoscopic lobectomy or segmentectomy, even in properly selected patients. Therefore, we recommend incorporating early serum LDH measurements as a readily available method into the risk assessment process prior to major lung resection.
Collapse
Affiliation(s)
- Ruoyu Zhang
- Department of Thoracic Surgery, Chest Hospital Schillerhoehe, Robert-Bosch-Krankenhaus, Teaching Hospital of the University of Tuebingen, Stuttgart, Germany
| | - Thomas Kyriss
- Department of Thoracic Surgery, Chest Hospital Schillerhoehe, Robert-Bosch-Krankenhaus, Teaching Hospital of the University of Tuebingen, Stuttgart, Germany
| | - Jürgen Dippon
- Department of Mathematics, University Stuttgart, Stuttgart, Germany
| | - Enole Boedeker
- Department of Thoracic Surgery, Chest Hospital Schillerhoehe, Robert-Bosch-Krankenhaus, Teaching Hospital of the University of Tuebingen, Stuttgart, Germany
| | - Godehard Friedel
- Department of Thoracic Surgery, Chest Hospital Schillerhoehe, Robert-Bosch-Krankenhaus, Teaching Hospital of the University of Tuebingen, Stuttgart, Germany
| |
Collapse
|
48
|
Role of Nrf2 and Its Activators in Respiratory Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7090534. [PMID: 30728889 PMCID: PMC6341270 DOI: 10.1155/2019/7090534] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/22/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023]
Abstract
Transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a major regulator of antioxidant response element- (ARE-) driven cytoprotective protein expression. The activation of Nrf2 signaling plays an essential role in preventing cells and tissues from injury induced by oxidative stress. Under the unstressed conditions, natural inhibitor of Nrf2, Kelch-like ECH-associated protein 1 (Keap1), traps Nrf2 in the cytoplasm and promotes the degradation of Nrf2 by the 26S proteasome. Nevertheless, stresses including highly oxidative microenvironments, impair the ability of Keap1 to target Nrf2 for ubiquitination and degradation, and induce newly synthesized Nrf2 to translocate to the nucleus to bind with ARE. Due to constant exposure to external environments, including diverse pollutants and other oxidants, the redox balance maintained by Nrf2 is fairly important to the airways. To date, researchers have discovered that Nrf2 deletion results in high susceptibility and severity of insults in various models of respiratory diseases, including bronchopulmonary dysplasia (BPD), respiratory infections, acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), asthma, idiopathic pulmonary fibrosis (IPF), and lung cancer. Conversely, Nrf2 activation confers protective effects on these lung disorders. In the present review, we summarize Nrf2 involvement in the pathogenesis of the above respiratory diseases that have been identified by experimental models and human studies and describe the protective effects of Nrf2 inducers on these diseases.
Collapse
|
49
|
Briones-Herrera A, Eugenio-Pérez D, Reyes-Ocampo JG, Rivera-Mancía S, Pedraza-Chaverri J. New highlights on the health-improving effects of sulforaphane. Food Funct 2018; 9:2589-2606. [PMID: 29701207 DOI: 10.1039/c8fo00018b] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this paper, we review recent evidence about the beneficial effects of sulforaphane (SFN), which is the most studied member of isothiocyanates, on both in vivo and in vitro models of different diseases, mainly diabetes and cancer. The role of SFN on oxidative stress, inflammation, and metabolism is discussed, with emphasis on those nuclear factor E2-related factor 2 (Nrf2) pathway-mediated mechanisms. In the case of the anti-inflammatory effects of SFN, the point of convergence seems to be the downregulation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), with the consequent amelioration of other pathogenic processes such as hypertrophy and fibrosis. We emphasized that SFN shows opposite effects in normal and cancer cells at many levels; for instance, while in normal cells it has protective actions, in cancer cells it blocks the induction of factors related to the malignity of tumors, diminishes their development, and induces cell death. SFN is able to promote apoptosis in cancer cells by many mechanisms, the production of reactive oxygen species being one of the most relevant ones. Given its properties, SFN could be considered as a phytochemical at the forefront of natural medicine.
Collapse
Affiliation(s)
- Alfredo Briones-Herrera
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | | | | | | |
Collapse
|
50
|
Lee JW, Chun W, Kwon OK, Park HA, Lim Y, Lee JH, Kim DY, Kim JH, Lee HK, Ryu HW, Oh SR, Ahn KS. 3,4,5-Trihydroxycinnamic acid attenuates lipopolysaccharide (LPS)-induced acute lung injury via downregulating inflammatory molecules and upregulating HO-1/AMPK activation. Int Immunopharmacol 2018; 64:123-130. [PMID: 30173052 DOI: 10.1016/j.intimp.2018.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/04/2018] [Accepted: 08/16/2018] [Indexed: 11/29/2022]
Abstract
The increase in inflammatory cytokines and chemokines is a common denominator in the pathogenesis of acute lung injury (ALI) which are involved in the influx of inflammatory cells and lung damage. The aim of the present study was to evaluate the protective effect of 3,4,5-trihydroxycinnamic acid (THC) in lipopolysaccharide (LPS)-induced ALI. THC efficiently decreased the mRNA expression of interleukin-8 (IL-8) in LPS-stimulated A549 airway epithelial cells. THC induced heme oxygenase-1 (HO-1) expression in A549 cells. THC also increased the activation of AMP-activated protein kinase (AMPK) in A549 cells and RAW264.7 macrophages. In LPS-induced ALI in mice, THC significantly suppressed neutrophil influx and monocyte chemoattractant protein-1 (MCP-1) production in the bronchoalveolar lavage fluid (BALF). THC also attenuated the levels of neutrophil elastase (NE), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the BALF and serum. In addition, THC inhibited the expressions of inducible nitric oxide synthase (iNOS) and the activation of nuclear factor-kappa B (NF-κB) in the lung. These protective effects of THC were accompanied with HO-1 induction and AMPK activation. Taken together, the present study clearly demonstrates that THC significantly attenuates the LPS-induced ALI, suggesting that THC might be a valuable therapeutic adjuvant in airway inflammatory disorders.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, Kangwon 200-701, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Hyun Ah Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Yourim Lim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Jae-Hyeon Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Doo-Young Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Jung Hee Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Hyeong-Kyu Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea.
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Chungju-si, Chungbuk 363-883, Republic of Korea.
| |
Collapse
|